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ABSTRACT

Decentralized training of deep learning models is a key element for enabling data
privacy and on-device learning over networks, as well as for efficient scaling to
large compute clusters. As current approaches are limited by network bandwidth,
we propose the use of communication compression in the decentralized training
context. We show that CHOCO-SGD achieves linear speedup in the number of
workers for arbitrary high compression ratios on general non-convex functions, and
non-IID training data. We demonstrate the practical performance of the algorithm
in two key scenarios: the training of deep learning models (i) over decentralized
user devices, connected by a peer-to-peer network and (ii) in a datacenter.

1 INTRODUCTION

Distributed machine learning—i.e. the training of machine learning models using distributed opti-
mization algorithms—has recently enabled many successful applications in research and industry.
Such methods offer two of the key success factors: 1) computational scalability by leveraging the
simultaneous computational power of many devices, and 2) data-locality, the ability to perform
joint training while keeping each part of the training data local to each participating device. Recent
theoretical results indicate that decentralized schemes can be as efficient as the centralized approaches,
at least when considering convergence of training loss vs. iterations (Scaman et al., 2017; 2018; Lian
et al., 2017; Tang et al., 2018; Koloskova et al., 2019; Assran et al., 2019).

Gradient compression techniques have been proposed for the standard distributed training case (Alis-
tarh et al., 2017; Wen et al., 2017; Lin et al., 2018; Wangni et al., 2018; Stich et al., 2018), to reduce
the amount of data that has to be sent over each communication link in the network. For decentralized
training of deep neural networks, Tang et al. (2018) introduce two algorithms (DCD, ECD) which
allow for communication compression. However, both these algorithms are restrictive with respect to
the used compression operators, only allowing for unbiased compressors and—more significantly—
so far not supporting arbitrarily high compression ratios. We here study CHOCO-SGD—recently
introduced for convex problems only (Koloskova et al., 2019)—which overcomes these constraints.

For the evaluation of our algorithm we in particular focus on the generalization performance (on the
test-set) on standard machine learning benchmarks, hereby departing from previous work such as
e.g. (Tang et al., 2018; Wang et al., 2019; Tang et al., 2019; Reisizadeh et al., 2019) that mostly consid-
ered training performance (on the train-set). We study two different scenarios: firstly, (i) training on a
challenging peer-to-peer setting, where the training data is distributed over the training devices (and
not allowed to move), similar to the federated learning setting (McMahan et al., 2017; Kairouz et al.,
2019). We are again able to show speed-ups for CHOCO-SGD over the decentralized baseline (Lian
et al., 2017) with much less communication overhead. Secondly, (ii) training in a datacenter setting,
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where decentralized communication patterns allow better scalability than centralized approaches. For
this setting we show that communication efficient CHOCO-SGD can improve time-to-accuracy on
large tasks, such as e.g. ImageNet training. However, when investigating the scaling of decentralized
algorithms to larger number of nodes we observe that (all) decentralized schemes encounter difficul-
ties and often do not reach the same (test and train) performance as centralized schemes. As these
findings point out some deficiencies of current decentralized training schemes (and are not particular
to our scheme) we think that reporting these results is a helpful contribution to the community to spur
further research on decentralized training schemes that scale to large number of peers.

Contributions. Our contributions can be summarized as:
• On the theory side, we are the first to show that CHOCO-SGD converges at rate
O
(
1/
√
nT + 1/(ρ2δT )2/3

)
on non-convex smooth functions, where n denotes the number of nodes,

T the number of iterations, ρ the spectral gap of the mixing matrix and δ the compression ratio.
The main term, O

(
1/
√
nT
)
, matches with the centralized baselines with exact communication and

shows a linear speedup in the number of workers n. Both ρ and δ only affect the asymptotically
smaller second term.

• On the practical side, we present a version of CHOCO-SGD with momentum and analyze its
practical performance on two relevant scenarios:
◦ for on-device training over a realistic peer-to-peer social network, where lowering the bandwidth

requirements of joint training is especially impactful
◦ in a datacenter setting for computational scalability of training deep learning models for

resource efficiency and improved time-to-accuracy
• Lastly, we systematically investigate performance of the decentralized schemes when scaling

to larger number of nodes and we point out some (shared) difficulties encountered by current
decentralized learning approaches.

2 RELATED WORK

For the training in communication restricted settings a variety of methods have been proposed. For
instance, decentralized schemes (Lian et al., 2017; Nedić et al., 2018; Koloskova et al., 2019), gradient
compression (Seide et al., 2014; Strom, 2015; Alistarh et al., 2017; Wen et al., 2017; Lin et al., 2018;
Wangni et al., 2018; Bernstein et al., 2018; Lin et al., 2018; Alistarh et al., 2018; Stich et al., 2018;
Karimireddy et al., 2019), asynchronous methods (Recht et al., 2011; Assran et al., 2019), coordinate
updates Nesterov (2012); Richtárik & Takáč (2016); Stich et al. (2017a;b); He et al. (2018), or
performing multiple local SGD steps before averaging (Zhang et al., 2016; McMahan et al., 2017;
Stich, 2019; Lin et al., 2020). This especially covers learning over decentralized data, as extensively
studied in the federated learning literature for the centralized algorithms (McMahan et al., 2016;
Kairouz et al., 2019). In this paper we advocate for combining decentralized SGD schemes with
gradient compression.

Decentralized SGD. We in particular focus on approaches based on gossip averaging (Kempe et al.,
2003; Xiao & Boyd, 2004; Boyd et al., 2006) whose convergence rate typically depends on the
spectral gap ρ ≥ 0 of the mixing matrix (Xiao & Boyd, 2004). Lian et al. (2017) combine SGD with
gossip averaging and show that the leading term in the convergence rate O

(
1/
√
nT
)

is consistent with
the convergence of the centralized mini-batch SGD (Dekel et al., 2012) and the spectral gap only
affects the asymptotically smaller terms. Similar results have been observed very recently for related
schemes (Scaman et al., 2017; 2018; Koloskova et al., 2019; Yu et al., 2019).

Quantization. Communication compression with quantization has been popularized in the deep
learning community by the reported successes in (Seide et al., 2014; Strom, 2015). Theoretical
guarantees were first established for schemes with unbiased compression (Alistarh et al., 2017; Wen
et al., 2017; Wangni et al., 2018) but soon extended to biased compression (Bernstein et al., 2018)
as well. Schemes with error correction work often best in practice and give the best theoretical
gurantees (Lin et al., 2018; Alistarh et al., 2018; Stich et al., 2018; Karimireddy et al., 2019; Stich &
Karimireddy, 2019). Recently, also proximal updates and variance reduction have been studied in
combination with quantized updates (Mishchenko et al., 2019; Horváth et al., 2019).

Decentralized Optimization with Quantization. It has been observed that gossip averaging can
diverge (or not converge to the correct solution) in the presence of quantization noise (Xiao et al.,
2005; Carli et al., 2007; Nedić et al., 2008; Dimakis et al., 2010; Carli et al., 2010b; Yuan et al., 2012).
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Reisizadeh et al. (2018) propose an algorithm that can still converge, though at a slower rate than
the exact scheme. Another line of work proposed adaptive schemes (with increasing compression
accuracy) that converge at the expense of higher communication cost (Carli et al., 2010a; Doan et al.,
2018; Berahas et al., 2019). For deep learning applications, Tang et al. (2018) proposed the DCD and
ECD algorithms that converge at the same rate as the centralized baseline though only for constant
compression ratio. The CHOCO-SGD algorithm that we consider in this work can deal with arbitrary
high compression, and has been introduced in (Koloskova et al., 2019) but only been analyzed for
convex functions. For non-convex functions we show a rate of O

(
1/
√
nT + 1/(ρ2δT )

2
3

)
, where δ > 0

measures the compression quality. Simultaneous work of Tang et al. (2019) introduced DeepSqueeze,
an alternative method which also converges with arbitrary compression ratio. In our experiments,
under the same amount of tuning, CHOCO-SGD achieves higher test accuracy.

3 CHOCO-SGD

In this section we formally introduce the decentralized optimization problem, compression operators,
and the gossip-based stochastic optimization algorithm CHOCO-SGD from (Koloskova et al., 2019).

Distributed Setup. We consider optimization problems distributed across n nodes of the form

f? := min
x∈Rd

[
f(x) :=

1

n

n∑
i=1

fi(x)

]
, fi(x) := Eξi∼Di

Fi(x, ξi) , ∀i ∈ [n] , (1)

where D1, . . . Dn are local distributions for sampling data which can be different on every node,
Fi : Rd × Ω → R are possibly non-convex (and non-identical) loss functions. This setting covers
the important case of empirical risk minimization in distributed machine learning and deep learning
applications.

Communication. Every device is only allowed to communicate with its local neighbours defined
by the network topology, given as a weighted graph G = ([n], E), with edges E representing the
communication links along which messages (e.g. model updates) can be exchanged. We assign a
positive weight wij to every edge (wij = 0 for disconnected nodes {i, j} /∈ E).

Assumption 1 (Mixing matrix). We assume that W ∈ [0, 1]n×n, (W )ij = wij is a symmetric
(W = W>) doubly stochastic (W1 = 1,1>W = 1>) matrix with eigenvalues 1 = |λ1(W )| >
|λ2(W )| ≥ · · · ≥ |λn(W )| and spectral gap ρ := 1− |λ2(W )| ∈ (0, 1] .

In our experiments we set the weights based on the local node degrees: wij =
max{deg(i),deg(j)}−1 for {i, j} ∈ E. This will not only guarantee ρ > 0 but these weights
can easily be computed in a local fashion on each node (Xiao & Boyd, 2004).

Compression. We aim to only transmit compressed (e.g. quantized or sparsified) messages. We
formalized this through the notion of compression operators that was e.g. also used in (Tang et al.,
2018; Stich et al., 2018).

Definition 3.1 (Compression operator). Q : Rd → Rd is a compression operator if it satisfies

EQ ‖Q(x)− x‖ 2 ≤ (1− δ) ‖x‖2 , ∀x ∈ Rd , (2)

for a parameter δ > 0. Here EQ denotes the expectation over the internal randomness of operator Q.

In contrast to the quantization operators used in e.g. (Alistarh et al., 2017; Horváth et al., 2019),
compression operators defined as in (2) are not required to be unbiased and therefore supports a larger
class of compression operators. Some examples can be found in (Koloskova et al., 2019) and we
further discuss specific compression schemes in Section 5.

Algorithm. CHOCO-SGD is summarized in Algorithm 1. Every worker i stores its own private
variable xi ∈ Rd that is updated by a stochastic gradient step in part 2© and a modified gossip
averaging step on line 2. This step is a key element of the algorithm as it preserves the averages of
the iterates even in presence of quantization noise (the compression errors are not discarded, but
aggregated in the local variables xi, see also (Koloskova et al., 2019)). The nodes communicate with
their neighbors in part 1© and update the variables x̂j ∈ Rd for all their neighbors {i, j} ∈ E only
using compressed updates. These x̂i are available to all the neighbours of the node i and represent
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Algorithm 1 CHOCO-SGD (Koloskova et al., 2019)

input: Initial value x(− 1
2 ) ∈ Rd, x(− 1

2 )
i = x(− 1

2 ) on each node i ∈ [n], consensus stepsize γ, SGD stepsize η,
communication graph G = ([n], E) and mixing matrix W , initialize x̂

(0)
i := 0 ∀i ∈ [n]

1: for t in 0 . . . T − 1 do {in parallel for all workers i ∈ [n]}

2: x
(t)
i := x

(t− 1
2 )

i + γ
∑
j:{i,j}∈E wij

(
x̂
(t)
j − x̂

(t)
i

)
/ modified gossip averaging

3: q
(t)
i := Q(x

(t)
i − x̂

(t)
i ) / compression

4: for neighbors j : {i, j} ∈ E (including {i} ∈ E) do
5: Send q

(t)
i and receive q

(t)
j / communication

6: x̂
(t+1)
j := q

(t)
j + x̂

(t)
j / local update

7: end for
8: Sample ξ(t)i , compute gradient g(t)

i := ∇Fi(x(t)
i , ξ

(t)
i )

9: x
(t+ 1

2 )
i := x

(t)
i − ηg

(t)
i / stochastic gradient update

10: end for

1©

2©

the ‘publicly available’ copies of the private xi, in general xi 6= x̂i, due to the communication
restrictions.

From an implementation aspect, it is worth highlighting that the communication part 1© and the
gradient computation part 2© can both be executed in parallel because they are independent. Moreover,
each node only needs to store 3 vectors at most, independent of the number of neighbors (this might
not be obvious from the notation used here for additinal clarity, for further details c.f. (Koloskova et al.,
2019)). We further propose a momentum-version of CHOCO-SGD in Algorithm 2 (see Section D for
further details).

4 CONVERGENCE OF CHOCO-SGD ON SMOOTH NON-CONVEX PROBLEMS

As the first main contribution, we extend the analysis of CHOCO-SGD to non-convex problems. For
this we make the following technical assumptions:
Assumption 2. Each function fi : Rd → R for i ∈ [n] is L-smooth, that is

‖∇fi(y)−∇fi(x)‖ ≤ L ‖y − x‖ , ∀x,y ∈ Rd, i ∈ [n],

and the variance of the stochastic gradients is bounded on each worker:

Eξi ‖∇Fi(x, ξi)−∇fi(x)‖2 ≤ σ2
i , Eξi ‖∇Fi(x, ξi)‖

2 ≤ G2 , ∀x ∈ Rd, i ∈ [n], (3)

where Eξi [·] denotes the expectation over ξi ∼ Di. We also denote σ2 := 1
n

∑n
i=1 σ

2
i for convenience.

Theorem 4.1. Under Assumptions 1–2 there exists a constant stepsize η and the consensus stepsize
from (Koloskova et al., 2019), γ := ρ2δ

16ρ+ρ2+4β2+2ρβ2−8ρδ with β = ‖I −W‖2 ∈ [0, 2], such that

the averaged iterates x(t) := 1
n

∑n
i=1 x

(t)
i of Algorithm 1 satisfy:

1

T + 1

T∑
t=0

∥∥∥∇f(x(t)
)∥∥∥2

2
= O

((
LF0σ

2

n(T + 1)

)1/2

+

(
GLF0

c(T + 1)

)2/3

+
LF0

T + 1

)
where c := ρ2δ

82 denotes the convergence rate of the underlying consensus averaging scheme
of (Koloskova et al., 2019), F0 := f(x(0))− f?.

This result shows that CHOCO-SGD converges as O
(
1/
√
nT + 1/(ρ2δT )2/3

)
. The first term shows a

linear speed-up compared to SGD on a single node, while compression and graph topology affect
only the higher order second term. In the special case when exact averaging without compression
is used (δ = 1) , then c = ρ and the rate improves to O

(
1/
√
nT + 1/(ρT )2/3

)
, recovering the rate

in (Wang & Joshi, 2018). This upper bound improves slightly over (Lian et al., 2017) that shows
O
(
1/
√
nT + n/(nρT )2/3

)
.1 For the proofs and convergence of the individual iterates xi we refer to

Appendix A.
1Theorem 1 of Lian et al. (2017) and stepsize tuned with Lemma A.4.
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5 COMPARISON TO BASELINES FOR VARIOUS COMPRESSION SCHEMES

In this section we experimentally compare CHOCO-SGD to the relevant baselines for a selection
of commonly used compression operators. For the experiments we further leverage momentum in
all implemented algorithms. The newly developed momentum version of CHOCO-SGD is given as
Algorithm 2.

Algorithm 2 CHOCO-SGD with Momentum
input: The same as for Algorithm 1, additionally: weight decay factor λ, momentum factor β,

local momentum memory v
(0)
i := 0, ∀i ∈ [n]

Lines 1–8 in Algorithm 1 are left unmodified
Line 9 in Algorithm 1 is replaced with the following two lines

9: v
(t+1)
i := (g

(t)
i + λx

(t)
i ) + βv

(t)
i / local momentum with weight decay

10: x
(t+ 1

2 )
i := x

(t)
i − ηv

(t+1)
i / stochastic gradient update

Setup. In order to match the setting in (Tang et al., 2018) for our first set of experiments, we
use a ring topology with n = 8 nodes and train the ResNet20 architecture (He et al., 2016) on
the Cifar10 dataset (50K/10K training/test samples) (Krizhevsky, 2012). We randomly split the
training data between workers and shuffle it after every epoch, following standard procedure as
e.g. in (Goyal et al., 2017). We implement DCD and ECD with momentum (Tang et al., 2018),
DeepSqueeze with momentum (Tang et al., 2019), CHOCO-SGD with momentum (Algorithm 2)
and standard (all-reduce) mini-batch SGD with momentum and without compression (Dekel et al.,
2012). Our implementations are open-source and available at https://github.com/epfml/
ChocoSGD. The momentum factor is set to 0.9 without dampening. For all algorithms we fine-tune
the initial learning rate and gradually warm it up from a relative small value (0.1) (Goyal et al., 2017)
for the first 5 epochs. The learning rate is decayed by 10 twice, at 150 and 225 epochs, and stop
training at 300 epochs. For CHOCO-SGD and DeepSqueeze the consensus learning rate γ is also
tuned. The detailed hyper-parameter tuning procedure refers to Appendix F. Every compression
scheme is applied to every layer of ResNet20 separately. We evaluate the top-1 test accuracy on
every node separately over the whole dataset and report the average performance over all nodes.

Compression Schemes. We implement two unbiased compression schemes: (i) gsgdb quantization
that randomly rounds the weights to b-bit representations (Alistarh et al., 2017), and (ii) randoma

sparsification, which preserves a randomly chosen a fraction of the weights and sets the other ones to
zero (Wangni et al., 2018). Further two biased compression schemes: (iii) topa, which selects the a
fraction of weights with the largest magnitude and sets the other ones to zero (Alistarh et al., 2018;
Stich et al., 2018), and (iv) sign compression, which compresses each weight to its sign scaled by the
norm of the full vector (Bernstein et al., 2018; Karimireddy et al., 2019). We refer to Appendix C for
exact definitions of the schemes.

DCD and ECD have been analyzed only for unbiased quantization schemes, thus the combination with
the two biased schemes is not supported by theory. In converse, CHOCO-SGD and DeepSqueeze has
been studied only for biased schemes according to Definition 2. However, both unbiased compression
schemes can be scaled down in order to meet the specification (cf. discussions in (Stich et al., 2018;
Koloskova et al., 2019)) and we adopt this for the experiments.

Results. The results are summarized in Tab. 1. For unbiased compression schemes, ECD and
DCD only achieve good performance when the compression ratio is small, and sometimes even
diverge when the compression ratio is high. This is consistent2 with the theoretical and experimental
results in (Tang et al., 2018). We further observe that the performance of DCD with the biased topa
sparsification is much better than with the unbiased randoma counterpart, though this operator is not
yet supported by theory.

2 Tang et al. (2018) only consider absolute bounds on the quantization error. Such bounds might be restrictive
(i.e. allowing only for low compression) when the input vectors are unbounded. This might be the reason for the
instabilities observed here and also in (Tang et al., 2018, Fig. 4), (Koloskova et al., 2019, Figs. 5–6).
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Table 1: Top-1 test accuracy for decentralized DCD, ECD, DeepSqueeze and CHOCO-SGD with different
compression schemes. Reported top-1 test accuracies are averaged over three runs with fine-tuned hyper-
parameters (learning rate, weight decay, consensus stepsize). The fine-tuned all-reduce baseline reaches accuracy
92.64, with 1.04 MB gradient transmission per iteration. (? indicates that 2 out of 3 runs diverged).

Algorithm Error-
feedback

Quantization (QSGD) Sparsification (random-%)
16 bits 8 bits 4 bits 2 bits 50% 10% 1%

transmitted data/iteration 0.52 MB 0.26 MB 0.13 MB 0.065 MB 1.04 MB 0.21 MB 0.031 MB
DCD-PSGD 7 92.51± 0.05 92.36± 0.28 23.56± 2.97 diverges 92.05± 0.25 diverges diverges
ECD-PSGD 7 92.02± 0.14 59.11± 1.57 diverges diverges diverges diverges diverges
DeepSqueeze 3 92.27± 0.21 91.83± 0.35 91.47± 0.21 90.96± 0.19 91.46± 0.09 90.96± 0.16 88.55± 0.11
CHOCO-SGD 3 92.34± 0.19 92.30± 0.08 91.92± 0.27 91.41± 0.11 92.54± 0.26 91.87± 0.21 91.32± 0.17

Algorithm Error-
feedback

Sparsification (top-%) Sign+Norm
50% 10% 1% -

transmitted data/iteration 1.04 MB 0.21 MB 0.031 MB 0.032 MB
DCD-PSGD 7 92.40± 0.11 91.97± 0.14 89.79± 0.40 92.40± 0.14
ECD-PSGD 7 17.03 ? 16.78 ? 18.03 ? diverges
DeepSqueeze 3 91.55± 0.28 91.31± 0.25 90.47± 0.17 91.38± 0.19
CHOCO-SGD 3 92.54± 0.26 92.29± 0.05 91.73± 0.11 92.46± 0.10

CHOCO-SGD can generalize reasonably well in all scenarios (at most 1.65% accuracy drop) for fixed
training budget. The sign compression achieves state-of-the-art accuracy and requires approximately
32× less bits per weight than the full precision baseline.

6 USE CASE I: ON-DEVICE PEER-TO-PEER LEARNING

We now shift our focus to challenging real-world scenarios which are intrinsically decentralized, i.e.
each part of the training data remains local to each device, and thus centralized methods either fail or
are inefficient to implement. Typical scenarios comprise e.g. sensor networks, or mobile devices or
hospitals which jointly train a machine learning model. Common to these applications is that i) each
device has only access to locally stored or acquired data, ii) communication bandwidth is limited
(either physically, or artificially for e.g. metered connections), iii) the global network topology is
typically unknown to a single device, and iv) the number of connected devices is typically large.
Additionally, this fully decentralized setting is also strongly motivated by privacy aspects, enabling to
keep the training data private on each device at all times.

Modeling. To simulate this scenario, we permanently split the training data between the nodes,
i.e. the data is never shuffled between workers during training, and every node has distinct part of
the dataset. To the best of our knowledge, no prior works studied this scenario for decentralized
deep learning. For the centralized approach, gathering methods such as all-reduce are not efficiently
implementable in this setting, hence we compare to the centralized baseline where all nodes route their
updates to a central coordinator for aggregation. For the comparison we consider CHOCO-SGD with
sign compression (this combination achieved the compromise between accuracy and compression
level in Tab. 1)), decentralized SGD without compression (Lian et al., 2017), and centralized SGD
without compression.

Scaling to Large Number of Nodes. To study the scaling properties of CHOCO-SGD,
we train on 4, 16, 36 and 64 number of nodes. We compare decentralized algorithms
on two different topologies: ring as the worst possible topology, and on the torus
with much larger spectral gap. The corresponding parameters are listed in Table 2.

Table 2: Summary of communication topologies.
Topology spectral gap ρ

max. node degree n = 4 n = 16 n = 36 n = 64

ring 2 0.67 0.05 0.01 0.003
torus 4 0.67 0.4 0.2 0.12
fully-connected d 1 1 1 1

We train ResNet8 (He et al., 2016)
(78K parameters), on Cifar10
dataset (50K/10K training/test sam-
ples) (Krizhevsky, 2012). For simplicity,
we keep the learning rate constant and
separately tune it for all methods. We
further tune the consensus learning rate
for CHOCO-SGD.

The results are summarized in Fig. 1 (and Fig. 6, Tabs. 7–8 in Appendix G). First we compare the
testing accuracy reached after 300 epochs (Fig. 1, left). CentralizedSGD has a good performance
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Figure 1: Scaling of CHOCO-SGD with sign compression to large number of devices on Cifar10
dataset. Left: best testing accuracy of the algorithms reached after 300 epochs. Right: best testing
accuracy reached after communicating 1000 MB.

for all the considered number of nodes. CHOCO-SGD slows down due to the influence of the graph
topology (Decentralized curve), which is consistent with the spectral gaps order (see Tab. 2),
and also influenced by the communication compression (CHOCO curve), which slows down training
uniformly for both topologies. We observed that the train performance is similar to the test on Fig. 1,
therefore the performance degradation is explained by the slower convergence (Theorem 4.1) and
is not a generalization issue. Increasing the number of epochs improves the performance of the
decentralized schemes. However, even using 10 times more epochs, we were not able to perfectly
close the gap between centralized and decentralized algorithms for both train and test performance.

In the real decentralized scenario, the interest is not to minimize the epochs number, but the amount
of communication to reduce the cost of the user’s mobile data. We therefore fix the number of
transmitted bits to 1000 MB and compare the best testing accuracy reached (Fig. 1, right). CHOCO-
SGD performs the best while having slight degradation due to increasing number of nodes. It is
beneficial to use torus topology when the number of nodes is large because it has good mixing
properties, for small networks there is not much difference between these two topologies—the benefit
of a large spectral gap is canceled by the increased communication due larger node degree for torus
topology. Both Decentralized and Centralized SGD requires significantly larger number of bits to
reach reasonable accuracy.

Experiments on a Real Social Network Graph. We simulate training models on user devices
(e.g. mobile phones), connected by a real social network. We chosen Davis Southern women social
network (Davis et al., 1941) with 32 nodes. We train ResNet20 (0.27 million parameters) model on
the Cifar10 dataset (50K/10K training/test samples) (Krizhevsky, 2012) for image classification
and a three-layer LSTM architecture (Hochreiter & Schmidhuber, 1997) (28.95 million parameters)
for a language modeling task on WikiText-2 (600 training and 60 validation articles with a total
of 2′088′628 and 217′646 tokens respectively) (Merity et al., 2016). The depicted curves of the
training loss are the averaged local loss over all workers (local model with fixed local data); the
test performance uses the mean of the evaluations for local models on whole test dataset. For more
detailed experimental setup we refer to Appendix F.

The results are summarized in Figs. 2–3 and in Tab. 3. For the image classification task, when compar-
ing the training accuracy reached after the same number of epochs, we observe that the decentralized
algorithm performs best, follows by the centralized and lastly the quantized decentralized. However,
the test accuracy is highest for the centralized scheme. When comparing the test accuracy reached for
the same transmitted data3, CHOCO-SGD significantly outperforms the exact decentralized scheme,
with the centralized performing worst. We note a slight accuracy drop, i.e. after the same number of
epochs (but much less transmitted data), CHOCO-SGD does not reach the same level of test accuracy
than the baselines.

For the language modeling task, both decentralized schemes suffer a drop in the training loss when
the evaluation reaching the epoch budget; while our CHOCO-SGD outperforms the centralized SGD
in test perplexity. When considering perplexity for a fixed data volume (middle and right subfigure of
Fig. 3), CHOCO-SGD performs best, followed by the exact decentralized and centralized algorithms.

3The figure reports the transmitted data on the busiest node, i.e on the max-degree node (degree 14) node for
decentralized schemes, and degree 32 for the centralized one.
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Figure 2: Image classification: ResNet-20 on CIFAR-10 on social network topology.
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Figure 3: Language modeling: LSTM on WikiText-2 on social network topology.

Table 3: Summary of performance when training with the same epoch budget (as centralized SGD).
Algorithm ResNet-20 (Fig. 2) LSTM (Fig. 3)

max. connections/node data/gradient top-1 test acc. data/gradient test perplexity

Centralized SGD 32 1.04 MB 93.00 110.43 MB 89.39
Exact Decentralized SGD 14 1.04 MB 92.12 110.43 MB 91.38
CHOCO-SGD (Sign + Norm) 14 0.032 MB 91.80 3.45 MB 86.58
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Figure 4: Parameter deviations for Resnet20 trained on Cifar10 (using CHOCO-SGD) on social network
topology (32 workers). (Left) performance of the averaged model compared to the average of performances of
local models. (Right) parameters divergence: averaged L2 consensus distance between local models xi and the
averaged model x = 1

n

∑n
i=1 xi, i.e., 1

n

∑n
i=1 ‖xi − x̄‖22.

On Figure 4 we additionally depict the test accuracy of the averaged model x(t) = 1
n

∑n
i=1 x

(t)
i (left)

and averaged distance of the local models from the averaged model (right), for CHOCO-SGD on
image classification task. Towards the end of the optimization the local models reach consensus
(Figure 4, right), and their individual test performances are the same as performance of averaged
model. Interestingly, before decreasing the stepsize at the epoch 225, the local models are in general
diverging from the averaged model, while decreasing only when the stepsize decreases. A similar
behavior was also reported in (Assran et al., 2019).

7 USE CASE II: EFFICIENT LARGE-SCALE TRAINING IN A DATACENTER

Decentralized optimization methods offer a way to address scaling issues even for well connected
devices, such as e.g. in datacenter with fast InfiniBand (100Gbps) or Ethernet (10Gbps) connections.
Lian et al. (2017) describe scenarios when decentralized schemes can outperform centralized ones,
and recently, Assran et al. (2019) presented impressive speedups for training on 256 GPUs, for
the setting when all nodes can access all training data. The main differences of their algorithm to
CHOCO-SGD are the asynchronous gossip updates, time-varying communication topology and most
importantly exact communication, making their setup not directly comparable to ours. We note
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Figure 5: Large-scale training: Resnet-50 on ImageNet-1k in the datacenter setting. The
topology has 8 nodes (each accesses 4 GPUs). We use sign as the compression scheme, for CHOCO-
SGD and Centralized SGD. For centralized SGD baseline without compression, we use all-reduce to
aggregate the gradients; we use all-gather for centralized SGD with sign gradients quantization. The
benefits of CHOCO-SGD can be further pronounced when scaling to more nodes.

that these properties of asynchronous communication and changing topology for faster mixing are
orthogonal to our contribution, and offer promise to be combined.

Setup. We train ImageNet-1k (1.28M/50K training/validation) (Deng et al., 2009) with
Resnet-50 (He et al., 2016). We perform our experiments on 8 machines (n1-standard-32 from
Google Cloud with Intel Ivy Bridge CPU platform), where each of machines has 4 Tesla P100
GPUs and each machine interconnected via 10Gbps Ethernet. Within one machine communication
is fast and we rely on the local data parallelism to aggregate the gradients for the later gradients
communication (over the machines). Between different machines we consider centralized (fully
connected topology) and decentralized (ring topology) communication, with and without compressed
communication (sign compression). Several methods categorized by communication schemes are
evaluated: (i) centralized SGD (full-precision communication), (ii) error-feedback centralized SGD
with compressed communications Karimireddy et al. (2019) through sign compression, (iii) de-
centralized SGD (Lian et al., 2017) with parallelized forward pass and gradients communication
(full-precision communication), and (iv) CHOCO-SGD with sign compressed communications. The
mini-batch size on each GPU is 128, and we follow the general SGD training scheme in (Goyal et al.,
2017) and directly use all their hyperparameters for all evaluated methods. Due to the limitation of
the computational resource, we did not heavily tune the consensus stepsize for CHOCO-SGD4.

Results. We depict the training loss and top-1 test accuracy in terms of epochs and time in Fig. 5.
CHOCO-SGD benefits from its decentralized and parallel structure and takes less time than all-reduce
to perform the same number of epochs, while having only a slight 1.5% accuracy loss5. In terms of
time per epoch, our speedup does not match that of (Assran et al., 2019), as the used hardware and
the communication pattern6 are very different. Their scheme is orthogonal to our approach and could
be integrated for better training efficiency. Nevertheless, we still demonstrate a time-wise 20% gain
over the common all-reduce baseline, on our used commodity hardware cluster.

8 CONCLUSION

We propose the use of CHOCO-SGD (and its momentum version) for enabling decentralized deep
learning training in bandwidth-constrained environments. We provide theoretical convergence
guarantees for the non-convex setting and show that the algorithm enjoys linear speedup in the
number of nodes. We empirically study the performance of the algorithm in a variety of settings on
the image classification (ImageNet-1k, Cifar10) and on the language modeling task (WikiText-2).
Whilst previous work successfully demonstrated that decentralized methods can be a competitive
alternative to centralized training schemes when no communication constraints are present (Lian et al.,
2017; Assran et al., 2019), our main contribution is to enable training in strongly communication-

4We estimate the consensus stepsize by running CHOCO-SGD with different values for the first 3 epochs.
5Centralized SGD with full precision gradients achieved test accuracy of 76.37%, v.s. 76.03% for centralized

SGD (with sign compression), v.s. 74.92% for plain decentralized SGD, and vs. 75.15% for CHOCO-SGD
(with sign compression).

6We consider undirected communication, contrary to the directed 1-peer communication (every node sends
and receives one message at every iteration) in Assran et al. (2019).
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restricted environments, and while respecting the challenging constraint of locality of the training
data. We theoretically and practically demonstrate the performance of decentralized schemes for
arbitrary high communication compression, and under data-locality, and thus significantly expand the
reach of potential applications of fully decentralized deep learning.
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A CONVERGENCE OF CHOCO-SGD

In this section we present the proof of Theorem 4.1. For this, we will first derive a slightly more
general statement: in Theorem A.3 we analyze CHOCO-SGD for arbitrary stepsizes η, and then
derive Theorem 4.1 as a special case.

The structure of the proof follows Koloskova et al. (2019). That is, we first show that Algorithm 1 is
a special case of a more general class of algorithms (given in Algorithm 3): Observe that Algorithm 1
consists of two main components: 2© the stochastic gradient update, performed locally on each node,
and 1© the (quantized) averaging among the nodes. We can show convergence of all algorithms of
this type—i.e. stochastic gradient updates 2© followed by an arbitrary averaging step 1©—as long as
the averaging scheme exhibits linear convergence. For the specific averaging used in CHOCO-SGD,
linear convergence has been shown in (Koloskova et al., 2019) and we will use their estimate of the
convergence rate of the averaging scheme.

A.1 A GENERAL FRAMEWORK FOR DECENTRALIZED SGD WITH ARBITRARY AVERAGING

For convenience, we use the following matrix notation in this subsection.

X(t) :=
[
x
(t)
1 , . . . ,x(t)

n

]
∈ Rd×n, X

(t)
:=
[
x(t), . . . ,x(t)

]
∈ Rd×n,

∂F (X(t), ξ(t)) :=
[
∇F1(x

(t)
1 , ξ

(t)
1 ), . . . ,∇Fn(x(t)

n , ξ(t)n )
]
∈ Rd×n.

Decentralized SGD with arbitrary averaging is given in Algorithm 3.

Algorithm 3 DECENTRALIZED SGD WITH ARBITRARY AVERAGING SCHEME

input: X(0) =
[
x(0), . . . ,x(0)

]
, stepsize η, averaging function h : Rd×n × Rd×n → Rd×n × Rd×n,

initialize Y (0) = 0
1: for t in 0 . . . T − 1 do {in parallel for all workers i ∈ [n]}
2: X(t+ 1

2 ) = X(t) − η∂Fi(X(t), ξ(t)) / stochastic gradient updates
3: (X(t+1), Y (t+1)) = h(X(t+ 1

2 ), Y (t)) / blackbox averaging/gossip
4: end for

2© {
1© {

Assumption 3. For an averaging scheme h : Rd×n × Rd×n → Rd×n × Rd×n let (X+, Y +) :=
h(X,Y ) for X,Y ∈ Rd×n. Assume that h preserves the average of iterates:

X+11>

n
= X

11>

n
, ∀X,Y ∈ Rd×n , (4)

and that it converges with linear rate for a parameter 0 < c ≤ 1

Eh Ψ(X+, Y +) ≤ (1− c)Ψ(X,Y ) , ∀X,Y ∈ Rd×n , (5)

and Laypunov function Ψ(X,Y ) := ‖X−X‖2F +‖X−Y ‖2F withX := 1
nX11>, where Eh denotes

the expectation over internal randomness of averaging scheme h.

Example: Exact Averaging. Setting X+ = XW and Y + = X+ gives an exact consensus
averaging algorithm with mixing matrix W (Xiao & Boyd, 2004). It converges at the rate c = ρ,
where ρ is an eigengap of mixing matrix W , defined in Assumption 1. Substituting it into the
Algorithm 3 we recover D-PSGD algorithm, analyzed in Lian et al. (2017).

Example: CHOCO-SGD. To recover CHOCO-SGD, we need to choose CHOCO-
GOSSIP (Koloskova et al., 2019) as consensus averaging scheme, which is defined as
X+ = X + γY (W − I) and Y + = Y + Q(X+ − Y ) (in the main text we write X̂ in-
stead of Y ). This scheme converges with c = ρ2δ

82 . The results from the main part can be recovered by

13



Published as a conference paper at ICLR 2020

substituting this c = ρ2δ
82 in the more general results below. It is important to note that for Algorithm 1

given in the main text, the order of the communication part 1© and the gradient computation part 2©
is exchanged. We did this to better illustrate that both these parts are independent and that they can
be executed in parallel. The effect of this change can be captured by changing the initial values but
does not affect the convergence rate.

A.2 PROOFS

Remark A.1 (Mini-batch variance). If for functions fi, Fi defined in (1) Assumption 2 holds, i.e.
Eξ ‖∇Fi(x, ξ)−∇fi(x)‖2 ≤ σ2

i , i ∈ [n], then

E
ξ
(t)
1 ,...,ξ

(t)
n

∥∥∥∥∥ 1

n

n∑
i=1

(
∇fi(x(t)

i )−∇Fi(x(t)
i , ξ

(t)
i )
)∥∥∥∥∥

2

≤ σ2

n
, (6)

where σ2 =
∑n

i=1 σ
2
i

n .

Proof. This follows from

E

∥∥∥∥∥ 1

n

n∑
i=1

Yi

∥∥∥∥∥
2

=
1

n2

 n∑
i=1

E‖Yi‖2 +
∑
i 6=j

E〈Yi, Yj〉

 =
1

n2

n∑
i=1

E‖Yi‖2 ≤
1

n2

n∑
i=1

σ2
i =

σ2

n

for Yi = fi(x
(t)
i ) − ∇Fi(x(t)

i , ξ
(t)
i ). Expectation of scalar product is equal to zero because ξi is

independent of ξj since i 6= j.

Lemma A.2. Under Assumptions 1–3 the iterates of the Algorithm 3 with constant stepsize η satisfy
n∑
i=1

∥∥∥x(t) − x
(t)
i

∥∥∥2
2
≤ η2 12nG2

c2
.

Proof of Lemma A.2. We start by following the proof of Lemma 21 from Koloskova et al. (2019).

Define rt = E
∥∥∥X(t) −X(t)

∥∥∥2 + E
∥∥X(t) − Y (t)

∥∥2,

rt+1

(5)
≤ (1− c)E

∥∥∥X(t+ 1
2 ) −X(t+ 1

2 )
∥∥∥2
F

+ (1− c)E
∥∥∥Y (t) −X(t+ 1

2 )
∥∥∥2
F

= (1− c)E
∥∥∥∥X(t) −X(t) − η∂F (X(t), ξ(t))

(
11>

n
− I
)∥∥∥∥2

F

+ (1− c)E
∥∥∥Y (t) −X(t) + η∂F (X(t), ξ(t))

∥∥∥2
F

(9)
≤ (1− c)(1 + α−1)E

(∥∥∥X(t) −X(t)
∥∥∥2
F

+
∥∥∥Y (t) −X(t)

∥∥∥2
F

)
+ (1− c)(1 + α)η2E

(∥∥∥∥∂F (X(t), ξ(t))

(
11>

n
− I
)∥∥∥∥2

F

+
∥∥∥∂F (X(t), ξ(t))

∥∥∥2
F

)

≤ (1− c)
(

(1 + α−1)E
(∥∥∥X(t) −X(t)

∥∥∥2
F

+
∥∥∥Y (t) −X(t)

∥∥∥2
F

)
+ 2n(1 + α)η2G2

)
α= 2

c

≤
(

1− c

2

)
E
(∥∥∥X(t) −X(t)

∥∥∥2
F

+
∥∥∥Y (t) −X(t)

∥∥∥2
F

)
+

6n

c
η2G2 .

Define A = 3nG2, we got a recursion

rt+1 ≤
(

1− c

2

)
rt +

2

c
η2A,

Verifying that rt ≤ η2 4A
c2 satisfy recursion completes the proof as E

∥∥∥X(t) −X(t)
∥∥∥2 ≤ rt.
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Indeed, r0 = 0 ≤ η2 4A
c2 as X(0) = X

(0)
and Y (0) = 0

rt+1 ≤
(

1− c

2

)
rt + η2

2A

c
≤
(

1− c

2

)
η2

4A

c2
+ η2

2A

c
= η2

4A

c2
.

Theorem A.3. Under Assumptions 1–3 with constant stepsize η < 1
4L , the averaged iterates

x(t) = 1
n

∑n
i=1 x

(t)
i of Algorithm 3 satisfy:

1

T + 1

T∑
t=0

∥∥∥∇f(x(t))
∥∥∥2
2
≤ 4

η(T + 1)

(
f(x(0))− f?

)
+ η

2σ2L

n
+ η2

36G2L2

c2

where c denotes convergence rate of underlying averaging scheme.

Proof of Theorem A.3. By L-smoothness

Et+1 f(x(t+1)) = Et+1 f

(
x(t) − η

n

n∑
i=1

∇Fi(x(t)
i , ξ

(t)
i )

)

≤ f(x(t))−Et+1

〈
∇f(x(t)),

η

n

n∑
i=1

∇Fi(x(t)
i , ξ

(t)
i )

〉
︸ ︷︷ ︸

=:T1

+ Et+1
L

2
η2

∥∥∥∥∥ 1

n

n∑
i=1

∇Fi(x(t)
i , ξ

(t)
i )

∥∥∥∥∥
2

2︸ ︷︷ ︸
=:T2

To estimate the second term, we add and subtract∇f(x(t))

T1 = −η
∥∥∥∇f(x(t))

∥∥∥2 + η

〈
∇f(x(t)),∇f(x(t))− 1

n

n∑
i=1

∇fi(x(t)
i )

〉
(8),γ=1

≤ −η
2

∥∥∥∇f(x(t))
∥∥∥2 +

η

2n

n∑
i=1

∥∥∥∇f(x(t))−∇fi(x(t)
i )
∥∥∥2

For the last term, we add and subtract∇f(x(t)) and the sum of∇fi(x(t)
i )

T2 = Et+1

∥∥∥∥∥ 1

n

n∑
i=1

(
∇Fi(x(t)

i , ξ
(t)
i )−∇fi(x(t)

i )
)∥∥∥∥∥

2

2

+

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(t)
i )±∇f(x(t))

∥∥∥∥∥
2

2

(6),(9),(7)
≤ σ2

n
+

2

n

n∑
i=1

∥∥∥∇f(x(t))−∇fi(x(t)
i )
∥∥∥2
2

+ 2
∥∥∥∇f(x(t))

∥∥∥2
Combining this together and using L-smoothness to estimate

∥∥∥∇f(x(t))−∇fi(x(t)
i )
∥∥∥2
2
,

Et+1 f(x(t+1)) ≤ f(x(t))− η
(

1

2
− Lη

)∥∥∥∇f(x(t))
∥∥∥2
2

+

(
1

2
ηL2 + η2L3

)
1

n

n∑
i=1

∥∥∥x(t) − x
(t)
i

∥∥∥2
2

+
Lη2σ2

2n
.

Using Lemma A.2 to bound the third term and using that η ≤ 1
4L in the second and in the third terms

Et+1 f(x(t+1)) ≤ f(x(t))− η

4

∥∥∥∇f(x(t))
∥∥∥2
2

+ η3
9L2G2

c2
+ η2

Lσ2

2n
,

Rearranging terms and averaging over t

1

T + 1

T∑
t=0

∥∥∥∇f(x(t))
∥∥∥2
2

(9)
≤ 4

η

1

T + 1

T∑
t=0

(
Ef(x(t))− Ef(x(t+1))

)
+ η2

36G2L2

c2
+ η

2Lσ2

n

≤ 4

η(T + 1)

(
f(x(0))− f?

)
+ η

2σ2L

n
+ η2

36G2L2

c2
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A.3 COROLLARIES

To obtain final convergence rate we carefully tune the stepsize. For this we consider first an auxiliary
lemma.

Lemma A.4. For any parameters r0 ≥ 0, b ≥ 0, e ≥ 0, d ≥ 0 there exists constant stepsize η ≤ 1
d

such that

ΨT :=
r0

η(T + 1)
+ bη + eη2 ≤ 2

(
br0
T + 1

) 1
2

+ 2e1/3
(

r0
T + 1

) 2
3

+
dr0
T + 1

Proof. Choosing η = min

{(
r0

b(T+1)

) 1
2

,
(

r0
e(T+1)

) 1
3

, 1d

}
≤ 1

d we have three cases

• η = 1
d and is smaller than both

(
r0

b(T+1)

) 1
2

and
(

r0
e(T+1)

) 1
3

, then

ΨT ≤
dr0
T + 1

+
b

d
+

e

d2
≤
(

br0
T + 1

) 1
2

+
dr0
T + 1

+ e1/3
(

r0
T + 1

) 2
3

• η =
(

r0
b(T+1)

) 1
2

<
(

r0
e(T+1)

) 1
3

, then

ΨT ≤ 2

(
r0b

T + 1

) 1
2

+ e

(
r0

b(T + 1)

)
≤ 2

(
r0b

T + 1

) 1
2

+ e
1
3

(
r0

(T + 1)

) 2
3

,

• The last case, η =
(

r0
e(T+1)

) 1
3

<
(

r0
b(T+1)

) 1
2

ΨT ≤ 2e
1
3

(
r0

(T + 1)

) 2
3

+ b

(
r0

e(T + 1)

) 1
3

≤ 2e
1
3

(
r0

(T + 1)

) 2
3

+

(
br0
T + 1

) 1
2

Corollary A.5 (Generalized Theorem 4.1). Under Assumptions 1–3 with constant stepsize η tuned
as in Lemma A.4, the averaged iterates x(t) = 1

n

∑n
i=1 x

(t)
i of Algorithm 3 satisfy:

1

T + 1

T∑
t=0

∥∥∥∇f(x(t))
∥∥∥2
2
≤ 4

√
2Lσ2

n(T + 1)
+ 17

(
GLF0

c(T + 1)

) 2
3

+
16LF0

T + 1

where c denotes convergence rate of underlying averaging scheme, F0 = f(x(0))− f?.

Proof. The result follows from Theorem A.3 and Lemma A.4 with r0 = 4
(
f(x(0))− f?

)
, b =

2σ2L
n , e = 36G2L2

c2 and d = 4L.

The first term shows a linear speed up compared to SGD on one node, whereas the underlying
averaging scheme affects only the second-order term. Substituting the convergence rate for exact
averaging with W (c = ρ) gives the rate O(1/

√
nT + 1/(Tρ)

2
3 ).

CHOCO-SGD with the underlying CHOCO-GOSSIP averaging scheme converges at the rate
O(1/

√
nT + 1/(Tρ2δ)

2
3 ). The dependence on ρ (eigengap of the mixing matrix W ) is worse than

in the exact case. This might either just be an artifact of our proof technique or a consequence of
supporting arbitrary high compression.

The corollary gives guarantees for the averaged vector of parameters x, however in a decentralized
setting it is very expensive and sometimes impossible to average all the parameters distributed across
several machines, especially when the number of machines and the model size is large. We can get
similar guarantees on the individual iterates xi as e.g. in (Assran et al., 2019). We summarize these
briefly below.
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Corollary A.6 (Convergence of local weights). Under the same setting as in Corollary A.5,

1

T + 1

T∑
t=0

1

n

n∑
i=1

∥∥∥∇f(x(t)
i

)∥∥∥2
2
≤ 8

√
2Lσ2

n(T + 1)
+ 37

(
GLF0

c(T + 1)

) 2
3

+
32LF0

T + 1

Proof of Corollary A.6.

1

T + 1

T∑
t=0

1

n

n∑
i=1

∥∥∥∇f(x
(t)
i )
∥∥∥2
2
≤ 1

T + 1

T∑
t=0

1

n

n∑
i=1

(
2
∥∥∥∇f(x

(t)
i )−∇f(x(t))

∥∥∥2
2

+ 2
∥∥∥∇f(x(t))

∥∥∥2
2

)

≤ 1

T + 1

T∑
t=0

1

n

n∑
i=1

(
2L2

∥∥∥x(t)
i − x(t)

∥∥∥2
2

+ 2
∥∥∥∇f(x(t))

∥∥∥2
2

)
where we used L-smoothness of f . Using Theorem A.3 and tuning the stepsize as in Lemma A.4 we
get the statement of the corollary.

Choosing the stepsize differently, we can also get the following convergence rate for T = Ω(nL2):

Corollary A.7. Under Assumptions 1–3 with constant stepsize η =
√

n
T+1 for T ≥ 16nL2, the

averaged iterates x(t) = 1
n

∑n
i=1 x

(t)
i of Algorithm 3 satisfy:

1

T + 1

T∑
t=0

∥∥∥∇f(x(t))
∥∥∥2
2
≤

4
(
f(x(0))− f?

)
+ 2σ2L√

n(T + 1)
+

36G2nL2

(T + 1)c2

where c denotes convergence rate of underlying averaging scheme.

B USEFUL INEQUALITIES

Lemma B.1. For arbitrary set of n vectors {ai}ni=1, ai ∈ Rd∥∥∥∥∥
n∑
i=1

ai

∥∥∥∥∥
2

≤ n
n∑
i=1

‖ai‖2 . (7)

Lemma B.2. For given two vectors a,b ∈ Rd

2 〈a,b〉 ≤ γ ‖a‖2 + γ−1 ‖b‖2 , ∀γ > 0 . (8)

Lemma B.3. For given two vectors a,b ∈ Rd

‖a + b‖2 ≤ (1 + α) ‖a‖2 + (1 + α−1) ‖b‖2 , ∀α > 0 . (9)

This inequality also holds for the sum of two matrices A,B ∈ Rn×d in Frobenius norm.

C COMPRESSION SCHEMES

We implement the compression schemes detailed below.

• gsgdb (Alistarh et al., 2017). The unbiased gsgdb : Rd → Rd compression operator (for
b > 1) is given as

gsgdb(x) := ‖x‖2 · sig(x) · 2−(b−1) ·
⌊

2(b−1) |x|
‖x‖2

+ u

⌋
where u ∼u.a.r. [0, 1]d is a random dithering vector and sig(x) assigns the element-wise
sign: (sig(x))i = 1 if (x)i ≥ 0 and (sig(x))i = −1 if (x)i < 0. As the value in the right
bracket will be rounded to an integer in {0, . . . , 2(b−1)−1}, each coordinate can be encoded
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with at most (b−1)+1 bits (1 for the sign). For more efficent encoding schemes cf. Alistarh
et al. (2017).
A biased version is given as

gsgdb(x) :=
‖x‖2
τ
· sig(x) · 2−(b−1) ·

⌊
2(b−1) |x|
‖x‖2

+ u

⌋
for τ = 1 + min

{
d

22(b−1) ,
√
d

2(b−1)

}
and is a δ = 1

τ compression operator (Koloskova et al.,
2019).

• randoma (Wangni et al., 2018). Let u ∈ {0, 1}d be a masking vector, sampled uniformly at
random from the set {u ∈ {0, 1}d : ‖u‖1 = badc}. Then the unbiased randoma : Rd →
Rd operator is defined as

randoma(x) :=
d

badc
· x� u .

The biased version is given as
randoma(x) := x� u ,

and is a δ = a compression operator (Stich et al., 2018).
Only 32badc bits are required to send randoma(x) to another node—all the values of
non-zero entries (we assume that entries are represented as float32 numbers). Receiver
can recover positions of these entries if it knows the random seed of uniform sampling
operator used to select these entries. This random seed could be communicated once on
preprocessing stage (before starting the algorithm).

• topa (Alistarh et al., 2018; Stich et al., 2018). The biased topa : Rd → Rd operator is
defined as

topa(x) := x� u(x) ,

where u(x) ∈ {0, 1}d, ‖u‖1 = badc is a masking vector with (u)i = 1 for indices
i ∈ π−1({1, . . . , badc}) where the permutation π is such that

∣∣(x)π(1)
∣∣ ≥ ∣∣(x)π(2)

∣∣ ≥
· · · ≥

∣∣(x)π(d)
∣∣. The topa operator is a δ = a compression operator (Stich et al., 2018).

In the case of topa compression 2 · 32badc bits are required because along with the values
we need to send positions of these values.

• sign (Bernstein et al., 2018; Karimireddy et al., 2019). The biased (scaled) sign: Rd → R
compression operator is defined as

sign(x) :=
‖x‖1
d
· sgn(x) .

The sign operator is a δ =
‖x‖21
d‖x‖22

compression operator (Karimireddy et al., 2019).

In total for the sign compression we need to send only d+ 32 bits—one bit for every entry
in x and 32 bits for ‖x‖1.

D CHOCO-SGD WITH MOMENTUM

Algorithm 2 demonstrates how to combine CHOCO-SGD with weight decay and momentum. Nes-
terov momentum can be analogously adapted for our decentralized setting.

E ERROR FEEDBACK INTERPRETATION OF CHOCO-SGD

To better understand how does CHOCO-SGD work, we can interpret it as an error feedback algorithm
(Stich et al., 2018; Karimireddy et al., 2019; Stich & Karimireddy, 2019). We can equivalently rewrite
CHOCO-SGD (Algorithm 1) as Algorithm 4. The common feature of error feedback algorithms is
that quantization errors are saved into the internal memory, which is added to the compressed value
at the next iteration. In CHOCO-SGD the value we want to transmit is the difference x

(t)
i − x

(t−1)
i ,

which represents the evolution of local variable xi at step t. Before compressing this value on line 4,
the internal memory is added on line 3 to correct for the errors. Then, on line 5 internal memory is
updated. Note that m(t)

i = x
(t−1)
i − x̂

(t)
i in the old notation.
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Algorithm 4 CHOCO-SGD (Koloskova et al., 2019) as Error Feedback

input: Initial values x(0)
i ∈ Rd on each node i ∈ [n], consensus stepsize γ, SGD stepsize η,

comm. graph G = ([n], E) and mixing matrix W , initialize x̂
(0)
i = x

(−1)
i := 0, ∀i ∈ [n]

1: for t in 0 . . . T − 1 do {in parallel for all workers i ∈ [n]}

2: x
(t)
i := x

(t− 1
2 )

i + γ
∑
j:{i,j}∈E wij

(
x̂
(t)
j − x̂

(t)
i

)
/ modified gossip averaging

3: v
(t)
i = x

(t)
i − x

(t−1)
i + m

(t)
i

4: q
(t)
i := Q(v

(t)
i ) / compression

5: m
(t+1)
i = v

(t)
i − q

(t)
i / memory update

6: for neighbors j : {i, j} ∈ E (including {i} ∈ E) do
7: Send q

(t)
i and receive q

(t)
j / communication

8: x̂
(t+1)
j := q

(t)
j + x̂

(t)
j / local update

9: end for
10: Sample ξ(t)i , compute gradient g(t)

i := ∇Fi(x(t)
i , ξ

(t)
i )

11: x
(t+ 1

2 )
i := x

(t)
i − ηg

(t)
i / stochastic gradient update

12: end for

F DETAILED EXPERIMENTAL SETUP AND TUNED HYPERPARAMETERS

We precise the procedure of model training as well as the hyper-parameter tuning in this section.

Social Network Setup. For the comparison we consider CHOCO-SGD with sign compression
(this combination achieved the compromise between accuracy and compression level in Table 1)),
decentralized SGD without compression, and centralized SGD without compression. We train two
models, firstly ResNet20 (He et al., 2016) (0.27 million parameters) for image classification on the
Cifar10 dataset (50K/10K training/test samples) (Krizhevsky, 2012) and secondly, a three-layer
LSTM architecture (Hochreiter & Schmidhuber, 1997) (28.95 million parameters) for a language
modeling task on WikiText-2 (600 training and 60 validation articles with a total of 2′088′628 and
217′646 tokens respectively) (Merity et al., 2016). For the language modeling task, we borrowed and
adapted the general experimental setup of Merity et al. (2017), where we use a three-layer LSTM
with hidden dimension of size 650. The loss is averaged over all examples and timesteps. The BPTT
length is set to 30. We fine-tune the value of gradient clipping (0.4), and the dropout (0.4) is only
applied on the output of LSTM.

We train both of ResNet20 and LSTM for 300 epochs, unless mentioned specifically. The per
node mini-batch size is 32 for both datasets. The momentum (with factor 0.9) is only applied on the
ResNet20 training.

Social Network and a Datacenter details. For all algorithms, we gradually warmup (Goyal et al.,
2017) the learning rate from a relative small value (0.1) to the fine-tuned initial learning rate for the
first 5 training epochs. During the training procedure, the tuned initial learning rate is decayed by the
factor of 10 when accessing 50% and 75% of the total training epochs. The learning rate is tuned by
finding the optimal initial learning rate (after the scaling).

The optimal η̂ is searched in a pre-defined grid and we ensure that the best performance was contained
in the middle of the grids. For example, if the best performance was ever at one of the extremes of
the grid, we would try new grid points. Same searching logic applies to the consensus stepsize.

Table 4 demonstrates the fine-tuned hpyerparameters of CHOCO-SGD for training ResNet-20 on
Cifar10, while Table 6 reports our fine-tuned hpyerparameters of our baselines. Table 5 demonstrates
the fine-tuned hpyerparameters of CHOCO-SGD for training ResNet-20/LSTM on a social network
topology.

We estimate the runtime information (depicted in Figure 5) of different methods from three trials
of the evaluation on Google Cloud (Kubernetes Engine). More precisely, we create the cluster on
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Google Cloud for three times and each time we estimate the time per mini-batch of different methods
(through the first two training epochs).

Table 4: Tuned hyper-parameters of CHOCO-SGD for training ResNet-20 on Cifar10, corresponding to
the ring topology with 8 nodes in Table 1. We randomly split the training data between nodes and shuffle it after
every epoch. The per node mini-batch size is 128 and the degree of each node is 3.

Compression schemes Learning rate Consensus stepsize
QSGD (16-bit) 1.60 0.2
QSGD (8-bit) 0.96 0.2
QSGD (4-bit) 1.60 0.075
QSGD (2-bit) 0.96 0.025

Sparsification (random-50%) 2.40 0.45
Sparsification (random-10%) 1.20 0.075
Sparsification (random-1%) 0.48 0.00625

Sparsification (top-50%) 1.60 0.45
Sparsification (top-10%) 1.60 0.15
Sparsification (top-1%) 1.20 0.0375

Sign+Norm 1.60 0.45

Table 5: Tuned hyper-parameters of CHOCO-SGD, corresponding to the social network topology with 32
nodes in Table 3. We randomly split the training data between the nodes and keep this partition fixed during the
entire training (no shuffling). The per node mini-batch size is 32 and the maximum degree of the node is 14.

Configuration Learning rate Consensus stepsize
ResNet-20, Cifar10, Sign+Norm 1.0 0.5
LSTM, WikiText-2, Sign+Norm 25 0.6

Table 6: Tuned hyper-parameters of DCD, ECD, and DeepSqueeze for training ResNet-20 on Cifar10,
corresponding to the ring topology with 8 nodes in Table 1. We randomly split the training data between nodes
and shuffle it after every epoch. The per node mini-batch size is 128 and the degree of each node is 3. We only
report the hpyerparameters corresponding to results that can reach to reasonable performance in our experiments.

Compression schemes Learning rate Consensus stepsize
DCD, QSGD (16-bit) 2.40 -
DCD, QSGD (8-bit) 1.20 -
DCD, Sparsification (random-50%) 0.80 -
DCD, Sparsification (top-50%) 1.20 -
DCD, Sparsification (top-10%) 1.60 -
DCD, Sparsification (top-1%) 2.40 -
ECD, QSGD (16-bit) 0.96 -
ECD, QSGD (8-bit) 1.20 -

DeepSqueeze, QSGD (4-bit) 0.60 0.01
DeepSqueeze, QSGD (2-bit) 0.80 0.005
DeepSqueeze, Sparsification (top-50%) 0.80 0.05
DeepSqueeze, Sparsification (top-10%) 0.60 0.01
DeepSqueeze, Sparsification (top-1%) 0.40 0.005
DeepSqueeze, Sparsification (random-1%) 0.80 0.0005
DeepSqueeze, Sign+Norm 0.48 0.01
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G ADDITIONAL PLOTS

To complement our results for scaling to a large number of nodes, we here additionally depict the
learning curves (e.g. test accuracy) for the training on 64 nodes. We also mark the levels used for
Fig. 1.
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Figure 6: Scaling of CHOCO-SGD with sign compression to large number of devices on Cifar10
dataset. Convergence curves for 64 nodes. Vertical lines corresponds to the epoch/bits budget used in
Fig. 1.

Table 7: The exact epoch for the same bits budget in Fig. 1.

n = 4 n = 16 n = 36 n = 64

Centralized 5 6 6 6
Decentralized (Ring) 7 17 32 54
Decentralized (Torus) 6 10 18 29

CHOCO (Ring) 105 408 904 1588
CHOCO (Torus) 55 206 454 796

Table 8: The exact transmitted bits (in MB) for the same epoch budget in Fig. 1.

n = 4 n = 16 n = 36 n = 64

Centralized 139683 140041 144299 142899
Decentralized (Ring) 69841 17505 8016 4554
Decentralized (Torus) 139683 35010 16033 9109

CHOCO (Ring) 2208 564 253 144
CHOCO (Torus) 4417 1129 506 288

We additionally visualize the learning curves for the social network topology in Fig. 7 and Fig. 8.
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(a) Training top-1 accuracy.
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(b) Training top-1 accuracy.
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(c) Test top-1 accuracy.

Figure 7: Training ResNet-20 on CIFAR-10 with decentralized algorithm on a real world social network
topology. The topology has 32 nodes and we assume each node can only access a disjoint subset of the whole
dataset. The local mini-batch size is 32.

We additionally provide the learning curves of training top-1, top-5 accuracy and test top-5 accuracy
for the datacenter experiment in Fig. 9.
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(a) Test loss.
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(b) Test perplexity.

Figure 8: Training LSTM on WikiText2 with decentralized algorithm on a real world social network
topology. The topology has 32 nodes and we assume each node can only access a disjoint subset of the whole
dataset. The local mini-batch size is 32.
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(a) Training top-1 accuracy.
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(b) Training top-5 accuracy.
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(c) Test top-1 accuracy.

Figure 9: Large-scale training: ResNet-50 on ImageNet in the datacenter.
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