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Abstract— Human-Robot Interfaces (HRIs) represent a cru-
cial component in telerobotic systems. Body-Machine Interfaces
(BoMIs) based on body motion can feel more intuitive than
standard HRIs for naive users as they leverage humans’ natural
control capability over their movements. Among the different
methods used to map human gestures into robot commands,
data-driven approaches select a set of body segments and
transform their motion into commands for the robot based
on the users’ spontaneous motion patterns. Despite being a
versatile and generic method, there is no scientific evidence
that implementing an interface based on spontaneous motion
maximizes its effectiveness. In this study, we compare a set
of BoMIs based on different body segments to investigate this
aspect. We evaluate the interfaces in a teleoperation task of a
fixed-wing drone and observe users’ performance and feedback.
To this aim, we use a framework that allows a user to control
the drone with a single Inertial Measurement Unit (IMU) and
without prior instructions. All the interfaces are entirely data-
driven and depend on the user’s spontaneous motion. We show
through a user study that selecting the body segment for a
BoMI based on spontaneous motion can lead to sub-optimal
performance. Based on our findings, we suggest additional
metrics based on biomechanical and behavioral factors that
might improve data-driven methods for the design of HRIs.

I. INTRODUCTION

Several robotic applications, such as search-and-rescue
missions [1], [2], exploration of complex environments [3],
[4], and robotic surgery [5], [6], require human teleoperation
and intuitive Human-Robot Interfaces (HRI). An HRI is a
system that acquires inputs from the human operator and
translates them into commands for the robot. One of the
main objectives of effective HRIs is intuitiveness. Despite the
extensive use of the term, a formal definition of intuitiveness
is missing. This term is often referred to as a compound of
objective dimensions like robustness and performance and
subjective human factors such as the sense of presence,
transparency, and individual preferences [7]. In summary, we
consider an interface to be intuitive if new users can master
it in a short time, and if their experience is positive.

Widely used HRIs, such as remote controllers, require
substantial cognitive effort and long training sessions to
be mastered [1], [8], [9]. Moreover, HRI design relies on
predefined gestures with few degrees of freedom instead
of leveraging natural human dexterity. Recent studies have
shown that using spontaneous body motion as control inputs
can improve teleoperation efficiency and reduce cognitive

The authors are with the Laboratory of Intelligent Systems, École Poly-
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workload [10]–[12]. HRIs that use body motion signals are
called Body-Machine Interfaces (BoMIs).

A major challenge in the BoMI design is the definition
of a mapping function. The mapping function transforms
a set of body signals into robot commands and carries
out two main tasks [13]. First, it selects a subset of the
significant signals to control the robot (e.g., the motion of
one or more body segments). This step is known as feature
selection. Second, it transforms those signals into robot
commands employing regression or classification methods.
In this article, we experimentally assess the effectiveness of
feature selection methods and challenge the assumption that
spontaneous body motion always results in better HRIs.

BoMI feature selection methods can be grouped into
two categories: data-independent and data-driven. Data-
independent methods refer to approaches that do not leverage
prior knowledge about the operators’ preferred motion to
control the robot. They can be implemented by considering
kinematic or functional correspondences between the human
body’s morphology and the robot’s morphology and estab-
lishing a linear mapping between the two. For example, the
control of NASA’s humanoid robot Robonaut is performed
by mapping directly the operator’s arm motion into com-
mands for the robot arm [14]. It is also possible to design the
mapping heuristically, based on familiar and straightforward
body motion, or based on the task requirements. For example,
allowing users to control a quadrotor’s position by scaling the
user’s hand position [15], or indicating the desired direction
[16]–[18], or again to control manipulators through foot
motion leaving the user hands-free [19]. Data-independent
methods depend on both the robot’s morphology and the
task, and thus cannot be generalized.

Instead, data-driven methods aim at extracting the human-
robot mapping from the spontaneous motion of the operator
attempting to control a robot. Spontaneity, in this case, refers
to body motion patterns that a person would adopt to control
the robot without prior instructions. Operators are presented
with actions or maneuvers performed by the robot and are
asked to move their body as if they were controlling the
robot with their body motion. Data-driven approaches can
be transferred across different robots as they do not depend
on the kinematic model of the robot, such as robotic arms
[20], fixed-wing drones [10], quadrotors [21], and wheeled
robots [22]. In previous work on winged drones, the authors
observed that most people spontaneously move their torso to
control the robot [10], [12].

In our previous work, we developed a framework, based



on a data-driven approach, to automatically implement HRI
mappings personalized to each individual [12]. Since human
subjects display different preferred motions, we found that
the users’ performance can improve if the HRI is adapted to
them. However, to track the body motion of the participants,
we used a motion capture system. This infrastructure is
bulky, expensive, and cannot be easily deployed outside
of laboratory settings. Moreover, the same previous studies
show that the use of a single body segment is sufficient to
control this kind of robot, and thus tracking the whole body
might be a redundant choice. For this reason, in this work, we
extended our framework to track the orientation of a single
body segment with a single IMU.

Despite the efforts in designing new BoMIs, there is
still no scientific evidence that feature selection based on
spontaneous motion results in more intuitive HRIs. In this
article, we fill this gap for the example of fixed-wing drone
teleoperation. To reduce the scope of our work we selected
a set of body segments from the upper body and let a
set of participants (N=18) teleoperate the drone using these
segments. Specifically, we selected the body segments in
the upper body having 3 degrees of freedom (DoF): torso,
hand, and upper arm (Fig. 1A). We believe that this set is
representative of the task at hand. Indeed,

• The torso segment was chosen as previous work found
that it is the most spontaneous segment for drone
teleoperation [10], [15].

• The hand segment was chosen as hands are often used
for manipulation and interfacing with external devices.

• The upper arm segment was chosen as it represents the
only remaining 3-DoF segment in the upper body, and
can be used as a baseline condition.

We chose not to include a standard interface (i.e. a remote
controller) in this study as we want to focus on body-motion
based telerobotics and explore the impact of different condi-
tions. For a comparison between such methods and standard
interfaces, we refer the reader to prior literature [10], [15]. As
there are different ways to use a body segment to interface
with a robot, we employed our framework to allow each
participant to use their preferred strategy. This choice allows
us to compare the interfaces with each other, as they are
all entirely data-driven and not biased by a heuristic design
which may privilege some body segments. We compared
the users’ performance during the drone teleoperation task
and we also gathered their feedback about the teleoperation
experience through a questionnaire. We found that motion
patterns spontaneously adopted by users do not necessarily
translate into better interfaces. Finally, through a study of the
participants’ motion, we suggest alternative metrics based on
biomechanical and behavioral factors that might improve the
design process of novel HRIs based on data-driven methods.

The paper is organized as follows. Section II presents an
overview of the overall methodology. Section III presents
the results, whereas Section IV discusses them. Finally,
Section V concludes the paper.

II. METHODS

Participants: 18 participants between the ages of 19
and 31 were recruited for our study, with the following
characteristics: age = 23 ± 2, 14 were male and 4 were
female, 16 were right-handed and 2 were left-handed. At the
beginning of each session, we explained the experimental
procedure and obtained informed consent1.

Simulator: we used a fixed-wing drone simulator, devel-
oped in Unity3D, to run our experiment. The simulation
displayed the trajectory of a fixed-wing drone flying at
a constant speed of 12 m/s. The drone was modeled to
mimic a realistic UAV, with three PI controllers for roll,
pitch, and speed setpoints. The drone performed a set of
predefined maneuvers: two roll maneuvers (left/right), two
pitch maneuvers (up/down), and four additional maneuvers
consisting of a combination of pitch and roll. The duration
of each maneuver was 8s.

Motion data acquisition: we captured the user’s body
motion with a single IMU placed on the body segment of
interest. The IMU orientation was acquired at a frequency
f = 100Hz, in quaternion format, and converted into Euler
Angles according to the ZYX convention (Fig. 1A).

Body segment dexterity estimation: in the first stage,
we recorded each participant’s mobility and speed of motion
using a fixed set of movements involving the three considered
body segments. We installed the IMU on the three body
parts and acquired data, in order, for the torso, the hand,
and the upper arm. First, we evaluated the segment mobility.
We asked the participants to move the body segment on
which the IMU was situated to the limit of their motion
capability in the order roll-pitch-yaw in the IMU frame.
For the torso, it corresponded to the order left/right rota-
tion - extension/flexion - right/left side bending. For the
hand, it corresponded to the order flexion/extension - prona-
tion/supination - ulnar/radial deviation. For the upper arm,
it corresponded to the order positive/negative circumduction
- abduction/adduction - flexion-extension (Fig. 1B). Each
movement was repeated five times. Subsequently, we mea-
sured the maximum angular speed of each body segment. We
asked our participants to repeat the three movements above
five additional times, this time moving as fast as possible.

Personalized HRI implementation: in the second stage,
we generated a personalized interface for each participant to
allow them to teleoperate a fixed-wing drone. We installed
the IMU on the user’s body corresponding to one of the three
tracked body segments. The participant was asked to imitate
the motion of a simulated drone with their body, by moving
the segment of their upper body which was currently being
tracked (Fig. 1C). The mapping is personalized as, even if the
body part was predefined, the users were given no instruc-
tions about how to move to control the robot. The participants
wore a Head-Mounted Display (HMD) for VR during this
phase, with a First-Person View (FPV) viewpoint, to increase
their immersion in the virtual environment. We acquired

1The experiments were approved by the Human Research Ethics Com-
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Fig. 1: Overview of the experimental protocol. (A) Anchoring point and reference frame for the three conditions corresponding to the
tracked body segments. The IMU was always installed on the dominant hand and the corresponding arm. (B) Acquisition procedure for
mobility and speed evaluation of the three body segments. (C) Calibration procedure. The participant observes the simulation and moves
the selected body segment as if they were in control of the fixed-wing drone (here, Torso interface). (D) Teleoperation task. The participant
controls the drone trajectory with their body using the personalized body-machine interface created during the calibration (here, simulation
and hardware tests for the Torso interface).

data synchronously from the simulator and the IMU, and
the framework provided a mapping function between the
IMU motion and the drone input commands. The algorithm
is based on the method we proposed in our previous work
[12], and simplified into two main steps: data preprocessing
and regression. Moreover, it was extended to accept IMU
inputs, and a filtering stage consisting of a fifth-order digital
Butterworth filter was included to cope with the higher noise
of the sensor.

Teleoperation task: after the generation of the per-
sonalized mapping for each participant, they were asked
to teleoperate the drone through a path consisting of 42
waypoints (Fig. 1D). Each waypoint was placed at a fixed
distance from the previous one, with a fixed horizontal
or vertical displacement, corresponding to one of the four
basic maneuvers left/right/up/down. Each path was pseudo-
randomly generated at the beginning of each run to contain
all the maneuvers in the same quantity. The participants were
instructed to steer the simulated drone as close as possible to
the center of each waypoint and performed the teleoperation
task twice with each body segment. At the end of the two
runs, we installed the IMU on a different body segment and
repeated the calibration procedure. To minimize bias effects,
we generated pseudo-randomly the order of the three body
segments to be tracked. Before initiating the new calibration
procedure, the subjects performed a washout task [20]. The
goal of the task was to prevent users from getting used to the
simulator dynamics and to compensate for possible learning
effects. During the washout task, we inverted the signs of
the commands for the drone. Additionally, the gains of the
internal PID regulators were randomly modified in a range
of ±10% from their nominal values to change the system
dynamics. We did not record data during the washout tasks,
and the users did not know its purpose during the experiment.

Surveys: at the end of the experimental procedure,
the participants filled an additional personal feedback ques-
tionnaire comprising four questions about the teleoperation
experience, listed in Table I.

ID Question
Q1 Which body part was the easiest to use?
Q2 Which body part was the most comfortable to use?
Q3 Which body part did you prefer using?
Q4 Why did you prefer this body part?

TABLE I: User personal feedback questionnaire.

III. RESULTS

In this section, we report the experimental protocols and
results obtained through our study. First, we performed an
extensive user study in simulation, and later a qualitative
study on a real robot. Our main results consist of a statistical
analysis of the effects of using a specific body segment for
the control of the robot. Our study is developed on three
experimental conditions, corresponding to the three groups
using the aforementioned body segments:

• Torso body segment users (hereafter “Torso group”)
• Hand body segment users (hereafter “Hand group”)
• Upper arm body segment users (hereafter “Arm group”)

We did not include an alternative interface as a baseline, as
this study is focused on body-motion based interfaces.

All of our results employ the Kruskal-Wallis T-test to
assess the statistical significance relative to the equality of
the medians, and the Levene T-test for the equality of the
variances [23], [24].

Hand-based interface leads to the best performance, arm
to the worst: first, we evaluated the participants’ performance



Fig. 2: Teleoperation error while crossing the waypoints. (A) Evo-
lution of error during the two repetitions of the task (colored dotted
lines and exponential fit (solid line). (B) Initial error, measured in
the first minute of teleoperation. (C) Final error, measured in the
last minute of teleoperation. (∗∗p < 0.01, ∗p < 0.05)

during the teleoperation. In this phase of the experiment, we
defined a personalized mapping between each participant and
the simulated drone, as described in Section II. During the
teleoperation task, the user was asked to follow a randomly
generated pathway consisting of 42 waypoints, for a total
of two runs. We used the distance from the center of
the waypoints as a performance metric - the shorter the
distance, the better the performance. The average across all
18 participants of this error throughout all 84 waypoints
shows clear differences across the experimental groups (Fig.
2A). For each group, we fit a decreasing exponential curve to
show the trend. In terms of average error, the arm proved to
be the worst body part for the control of the drone, whereas
the hand was the best. In all cases, the final error was lower
than the initial one, proving that all the groups showed some
learning effects in the task. We considered two metrics to
quantitatively evaluate the participants’ performance. First,
we considered the initial error, computed as the average of
the errors during the first minute of navigation corresponding,
on average, to the first 18 waypoints. Hand group (eIH =
5.22 ± 2.12 m) and Torso group (eIT = 5.66 ± 1.18 m)
outperformed Arm group (eIA = 9.64 ± 3.38 m, p < 0.01)
in the initial phase. Secondly, we defined the final error,
computed analogously as the average of the errors during
the last minute of navigation. At the end of the two runs, the
initial differences were preserved, with Hand group (eFH =
2.40 ± 0.79 m) and Torso group (eFT = 4.52 ± 1.50 m)
showing smaller errors than Arm group (eFA = 6.11±1.20 m,
p < 0.01). Moreover, Hand group exhibited a higher learning
effect, performing significantly better than Torso group (p <
0.01) in the final phase.

Hand motion is easier and preferred by users according
to questionnaire results: the personal feedback question-
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Fig. 3: Survey results relative to the user’s preferred body segment
(questions in Table I).

naire responses provide insights about the users’ preferred
body parts to be used in the proposed task (Fig. 3). The
question on control easiness Q1 showed a clear preference
towards the use of the hand. Out of the 18 total participants,
13 reported the hand to be the easiest body segment to
use, 4 chose the torso and only 1 chose the arm. In terms
of comfort (question Q2), the hand segment was again the
most popular choice with 8 subjects, closely followed by
the torso. The arm was identified as the most comfortable
segment by 3 subjects only. Finally, the question about the
preferred body segment Q3 provided a summary of what
we observed about easiness and comfort. 10 participants
preferred the hand and 6 preferred the torso, with a minority
of 2 participants selecting the arm as their preferred body part
to use. These results are a good indicator of the performance
we observed in the teleoperation task. Most subjects who
preferred to use the hand stated in Q4 that their choice was
due to a higher sensitivity, easiness of use, and precision.
The 6 people who preferred the torso argued that it felt
more natural, comfortable, immersive, and it provided a more
realistic experience.

Arm group showed more variable motion: we analyzed
the subjects’ movements during the calibration phase and
evaluated analogies and differences in their motion. We
quantified how the Euler angles of the IMU correlate with the
angles of the simulated drone using the Pearson correlation
coefficient α. For each body part, we computed six alpha
values. Let φb, θb, ψb the body roll, pitch, and yaw and
φd, θd the drone roll and pitch. The correlation between the
quantity Xb and Yd is:

αXb,Yd
=
cov(Xb, Yd)

σXb
σYd

(1)

where X ∈ {φ, θ, ψ}, Y ∈ {φ, θ}. The coefficient α is an
indicator of how a subject decided to control a specific degree
of freedom of the robot. If, for example, a high αψb,ψd

is
observed between the drone pitch ψd and the torso flexion
ψb, the user imitated the drone pitch by flexing their torso.

The correlation of the different features varies significantly
across conditions as a representation of the participants’
instinctive motion patterns (Fig. 4A). Torso group highly
employed torso rotation and bending to control the roll,
and flexion/extension to control the pitch. Similarly, Hand
group controlled the drone roll using hand pronation and
deviation, and its pitch using flexion/extension. Visualizing
the correlation in 2D, these common patterns appear like
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Fig. 4: Intra-groups agreement in terms of correlation between body
segments motion and drone motion. Ellipses show three standard
deviations of a bivariate Gaussian fit. (A) Pearson α coefficient
for the three Euler angles, for drone roll (x axis) and drone pitch
(y axis). (B) PCA compression of the three datasets, confirming
the higher motion variability in Arm group. (C) Average Euclidean
distance between data points (∗∗p < 0.01, ∗p < 0.05).

closely aggregated clusters with a short Euclidean distance
between data points (d̄ in Fig. 4A). Contrarily, for Arm
group we could not identify a clear pattern, as a lower
intra-group agreement was observed. The projection of the
three datasets on a 2-dimensional manifold using Principal
Component Analysis (PCA) confirmed the presence of two
compact clusters for Torso group and Hand group, and a
larger one for Arm group (Fig. 4B). We found a significantly
higher distance in the principal components data points
for Arm group (d̄PCA

= 0.41 ± 0.075) than both Hand
(d̄PCH

= 0.15±0.03, p < 0.01), and Torso groups (d̄PCT
=

0.06± 0.075, pAT , pHT < 0.01) (Fig. 4B,C).
Hand has the highest dexterity, torso has the lowest: the

mobility and speed of motion acquisition resulted in large
differences between the considered body parts (Fig. 5).

For mobility evaluation, we considered the difference be-
tween the average maximum angle and average minimum an-
gle reached during the five repetitions of the movements (Fig.
5A). For the roll and pitch cases, the mobility of the hand
was significantly higher than the others, followed by the
arm in the roll case and by the torso in the pitch case. In
terms of yaw motion, the arm significantly outperformed the
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Fig. 5: Mobility and speed of motion of the three body segments
over their three degrees of freedom and average value. The hand
shows a higher dexterity compared to arm and torso. (∗∗p < 0.01,
∗p < 0.05)

remaining body parts. On average, the hand showed to have
the largest mobility (mobH = 141.6±24.9◦), the arm scored
second (mobA = 106.7± 20.4◦, pHA < 0.01) and the torso
last (mobT = 90.9± 14.5◦, pHT < 0.01, pAT = 0.013).

For angular speed evaluation, we computed the difference
between the average maximum and average minimum an-
gular speed during the five fast repetitions of the move-
ments (Fig. 5B). The hand speed was always significantly
higher. The Hand group achieved the highest average speed
(sH = 1121.3 ± 351.9◦/s), Arm group followed (sA =
372.6 ± 111.9◦/s, pHA < 0.01), and Torso group was the
slowest (sT = 285.5±72.3◦/s, pHT < 0.01, pAT = 0.019).

Hardware validation: we assessed the ability to transfer
the teleoperation skills acquired during the simulation to a
real drone through a hardware test. We recruited one more
participant to control the flight of a quadrotor [25] using each
BoMI through a path consisting of three obstacles for two
runs (Fig. 6). The quadrotor was controlled through ROS
from a ground control station to mimic fixed-wing dynamics
and fly at a constant speed of 0.3m/s. During the test, no
obstacle collisions occurred. The experiment showed that it
is possible to transfer teleoperation skills for the considered
set of BoMIs to the teleoperation of a real drone.

IV. DISCUSSION

In this study, we compared spontaneous body motion
strategies to control drones [10], [12] with alternative mo-
tion strategies and quantified their intuitiveness in terms of
performance and user experience. Also, we found in our
participants’ motion a set of characteristics that correlate with
these metrics and could provide a possible explanation for
our results. Here, we summarize our main findings.

Our performance test showed that basing the interface on
different body segments is a condition affecting significantly
the users’ precision (Fig. 2). Arm group was the least precise,
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Fig. 6: Hardware validation scenario. (A) Crazyflie quadrotor with
micro-camera for FPV video streaming. (B) Participant instru-
mented with IMU for teleoperation (Hand interface). (C) Segment
of the trajectory of the drone using the three interfaces (Unity3D
rendering).

with a 77% higher error in hitting the waypoints. Torso
group and Hand group performed similarly in the initial stage
of the experiment (Fig. 2B), but while the Torso group’s
average error dropped by 20% with practice, the Hand
group could improve their performance by 54%, showing
a better learning capacity (Fig. 2C). This result proves that
spontaneous motion patterns provide sub-optimal interfaces
that can be outperformed by choosing the motion features
heuristically. In summary, we show that humans are not able
to identify the best body segment to control a robot with
their body relying on their spontaneous motion.

The users’ responses to our feedback survey align with
the performance test. 56% of the subjects preferred the hand
interface, 33% the torso ad only 11% the arm (Fig. 3).
Specifically, users preferring the hand considered it more
sensitive and precise, while the torso was, on average, con-
sidered a more natural and immersive option. Interestingly,
two subjects preferred the arm interface despite the lower
achieved performance. Despite being the preferred option,
some participants noticed that the hand-based HRI could
become tiring in the long term. These data show that the
user’s feedback can be a good predictor of performance and
that the quality of a wearable interface is complex to measure
as it depends on a set of factors. People consider different
aspects of the teleoperation experience when choosing their
preferred alternative: some focus on performance and others
on the sense of presence and immersion.

By studying the participants’ body motion, we provided
two possible explanations for the aforementioned findings.
We first observed the motion of the three groups to control
the drone. While the Torso group and the Hand group moved

in a very consistent way, i.e., controlling the same degrees
of freedom of the robot with similar body gestures, for
the Arm group it was not possible to identify a dominant
motion pattern (Fig. 4). Compressing human-drone motion
correlation data with PCA, torso and hand users appear ag-
gregated, while arm users presented a much higher variability
(583% compared to Torso group and by 173% compared to
Hand group). This intra-group inconsistency could be due
to a higher difficulty for the participants to decide how
to move and translate in a lower interface’s effectiveness.
This observation correlates with the higher performance in
the initial stage of teleoperation for the Torso group and
Hand group, but does not explain the higher learning effect
observed in hand users.

The second analysis is related to the motion capabilities
of the various body segment (Fig. 5). The higher mobility
for the hand segment is known from the literature [26].
However, since a high variability in segment mobility has
been observed in terms of age and gender [27], we decided
to measure it on our subjects. We showed that the hand’s
available mobility was on average 33% larger than the arm
and 56% larger than the torso, and its angular speed almost
three times higher than the arm and almost four times higher
than the torso. This higher dexterity might contribute to
the improved performance of the hand interface, and to
the perceived responsiveness when controlling the drone.
Mobility analysis has already been proposed as a method
for BoMI implementation, but its use is limited to shoulder
motion for rehabilitation purposes [28].

In summary, we demonstrated that the observation of
users’ spontaneous motion is not sufficient to design optimal
motion-based HRIs. Our heuristic solution based on hand
motion showed to achieve lower errors during teleoperation
and better user feedback, while a second one based on
arm motion provided poorer results. Nonetheless, selecting
features based on spontaneous motion could help to develop
more immersive interfaces. Our experiments suggest that the
evaluation of additional variables, such as biomechanical
(segment mobility) and behavioral (intra-group agreement)
aspects could be additional predictors of the intuitiveness of
an interface, and thus facilitate its design.

Finally, we extended our previous framework to generate
a personalized BoMI using only an IMU, freeing ourselves
from using a motion capture system. This extension allows
naive and expert users to teleoperate a fixed-wing drone
with their preferred body motion in a matter of minutes.
The method has been tested extensively in simulation and
qualitatively in hardware, to assess the skill transferability to
the teleoperation of a real drone (Fig. 6).

Our research opens several interesting future investiga-
tions. First, this study is limited to a single robotic mor-
phology and a single task: users’ performance and feedback
might change when controlling different robots. Also, re-
search shows that humans tend to employ motion synergies
rather than single-limb movements to achieve functional
motion [29]. Allowing the control of robots through gestures
involving multiple body segments could unveil new insights



into the effects of synergistic motion over HRI intuitiveness.

V. CONCLUSION

In this paper, we describe new insights concerning the
effectiveness of data-driven approaches for the implemen-
tation of BoMIs for telerobotics. We show that commonly
adopted methods, based on the observation of users’ pre-
ferred motion patterns, might lead to sub-optimal results for
the teleoperation of mobile robots, such as fixed-wing drones.
By identifying possible alternative biomechanical and be-
havioral elements correlated to the HRI performance, our
work represents a step towards a better understanding of the
human factors affecting the efficiency of wearable telerobotic
interfaces and could facilitate their implementation for future
applications.
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