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Abstract
Image super-resolution is a classic ill-posed computer vision and image processing problem,

addressing the question of how to reconstruct a high-resolution image from its low-resolution

counterpart. Current state-of-the-art methods have improved the performance of the single

image super-resolution task significantly by benefiting from machine learning and artificial

intelligence-powered algorithms, and more specifically, with the advent of Deep Learning-

based approaches.

Although these advances allow a machine to learn and have a better exploitation of an image

and its content, recent methods are still unable to constrain the plausible solution space based

on the available contextual information within an image. This limitation mostly results in

poor reconstructions, even for well-known types of objects and textures easily recognizable

for humans.

In this thesis, we aim at proving that the categorical prior, which characterizes the semantic

class of a region in an image (e.g., sky, building, plant), is crucial in super-resolution for

reaching a higher reconstruction quality. In particular, we propose several approaches to

improve the perceived image quality and generalization capability of deep learning-based

methods by studying and exploiting the context and semantic meaning of images. To prove the

effectiveness of this categorical information, we first propose a convolutional neural network-

based framework that is able to extract and use semantic information to super-resolve a given

image by using multitask learning, simultaneously for learning image super-resolution and

semantic segmentation. The proposed decoder is forced to explore categorical information

during training, as this setting employs only one shared deep network for both semantic

segmentation and super-resolution tasks.

We further investigate the possibility of using semantic information by a novel objective

function to introduce additional spatial control over the training process. We propose using

conventional perceptual losses in a more objective way and penalizing images at different

semantic levels using appropriate loss terms by benefiting from our new OBB (Object, Back-

ground, and Boundary) labels, generated from segmentation labels. We demonstrate that

our proposed method produces more realistic textures and sharper edges compared to other

state-of-the-art algorithms.

Then, we introduce a new test time adaptation-based technique to leverage high-resolution

images with perceptually similar context to a given test image to improve the reconstruction

quality. Contrary to perceptually driven approaches, we show that this approach generates

images with both greater perceptual quality and minimal changes to the PSNR/SSIM with

iii



Abstract

respect to the benchmark. We further validate this approach’s effectiveness by using a novel

numerical experiment analyzing the correlation between filters learned by our network and

what we define as “ideal” filters.

Finally, we present a generic solution to enable adapting all our previous contributions in

this thesis, as well as other recent super-resolution works trained on synthetic datasets, to

“real-world” super-resolution problem. Real-world super-resolution refers to super-resolving

images with real degradations caused by physical imaging systems, instead of low-resolution

images from simulated datasets assuming a simple and uniform degradation model (i.e.,

bicubic downsampling). We study and develop an image-to-image translator to map the

distribution of real low-resolution images to the well-understood distribution of bicubically

downsampled images. This translator is used as a plug-in to integrate real inputs into any

super-resolution framework trained on simulated datasets.

We carry out extensive qualitative and quantitative experiments for each mentioned contribu-

tion, including user studies, to compare our proposed approaches to state-of-the-art methods.

Keywords: super-resolution, neural network, deep learning, generative adversarial networks,

computer vision, image processing
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Résumé
La super-résolution est un problème classique de traitement d’image qui aborde la question de

comment reconstruire une image haute résolution à partir de son homologue basse résolution.

Les méthodes de l’état de l’art actuelles ont considérablement amélioré les performances de

la reconstruction en super-résolution grâce à l’apprentissage automatique et aux algorithmes

basés sur l’intelligence artificielle, et plus particulièrement avec l’avènement des approches

basées sur l’apprentissage profond.

Bien que ces avancées permettent à une machine d’apprendre et de mieux exploiter une image

et son contenu, les méthodes récentes sont encore incapables de contraindre l’espace de

solutions plausibles en fonction des informations contextuelles disponibles dans une image.

Cette limitation se traduit principalement par de mauvaises reconstructions, même pour des

types d’objets et de textures très connus, facilement reconnaissables par l’homme.

Dans cette thèse, nous visons à prouver que l’information préalable, qui caractérise la classe sé-

mantique d’une région dans une image (par exemple, ciel, bâtiment, plante), est cruciale pour

atteindre une qualité de reconstruction supérieure. En particulier, nous proposons plusieurs

approches pour améliorer la qualité de reconstruction perçue et la capacité de généralisation

des méthodes basées sur l’apprentissage profond en exploitant le contexte et la sémantique

des images. Pour étudier l’efficacité de ces informations caractéristiques, nous proposons tout

d’abord une solution basée sur un réseau de neurones convolutif qui bénéficie d’un objectif

d’apprentissage supplémentaire au cours de son processus d’apprentissage. Nous concevons

un décodeur super-résolution capable d’extraire et d’utiliser des informations sémantiques

pour reconstruire une version en super-résolution d’une image donnée en utilisant l’appren-

tissage multitâche, simultanément pour la super-résolution et la segmentation sémantique.

Le décodeur proposé est obligé d’explorer les informations caractéristiques pendant l’en-

traînement, car ce paramètre n’utilise qu’un seul réseau profond partagé pour les tâches de

segmentation sémantique et de super-résolution.

Nous étudions en outre la possibilité d’utiliser des informations sémantiques via une nou-

velle fonction de coûts, pour introduire un contrôle spatial supplémentaire sur le processus

d’apprentissage. Nous proposons d’utiliser les perceptual losses de manière plus objective et

de pénaliser les images à différents niveaux sémantiques en utilisant des coûts appropriés

en bénéficiant de nos nouveaux labels OBB (Object, Background, and Boundary), générés à

partir des labels de segmentation. Nous démontrons que notre méthode proposée produit des

textures plus réalistes et des bords plus nets par rapport à d’autres algorithmes de l’état de

l’art.
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Résumé

Ensuite, nous introduisons une nouvelle technique basée sur des adaptations durant le test

pour tirer parti des images haute résolution avec un contexte perceptuellement similaire à

une image de test donnée, afin d’améliorer la qualité de reconstruction. Contrairement aux

approches axées sur la perception, nous montrons que cette approche génère des images avec

à la fois une plus grande qualité perceptuelle et des changements minimes du PSNR/SSIM

par rapport au résultat de référence. Nous validons encore l’efficacité de cette approche en

utilisant une nouvelle expérience numérique analysant la corrélation entre les filtres appris

par notre réseau et ce que nous définissons comme des filtres “idéaux”.

Enfin, nous présentons une solution générale pour permettre d’adapter toutes nos contri-

butions précédentes dans cette thèse, ainsi que d’autres travaux récents de super-résolution

basés sur des données synthétiques, au problème de super-résolution “du monde réel”. La

super-résolution du monde réel fait référence à des images super-résolution avec des dé-

gradations réelles causées par des systèmes d’imagerie physique, au lieu des images basse-

résolution simulées à partir d’ensembles de données supposant un modèle de dégradation

simple et uniforme (par exemple, un sous-échantillonnage bicubique). Nous étudions et déve-

loppons une méthode de traduction d’image à image pour faire correspondre la distribution

des images réelles à basse-résolution à la distribution connue des images bicubiquement

sous-échantillonnées. Ce traducteur est utilisé comme un plug-in pour intégrer des entrées

réelles dans toutes les méthodes de super-résolution entraînées sur des bases de données

simulées.

Nous réalisons des expériences qualitatives et quantitatives approfondies pour chaque contri-

bution mentionnée, y compris des tests utilisateurs, afin de comparer nos solutions proposées

aux méthodes de l’état de l’art.

Mots clés : super-résolution, réseau de neurones, apprentissage profond, réseaux antagonistes

génératifs, vision par ordinateur, traitement d’image
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1 Introduction

1.1 Motivation

The quality of digital images is characterized by several parameters such as ambient noises,

artifacts, and motions; however, the primary and most important parameter affecting the

visual quality is the image resolution. Resolution is simply the amount of detail that an image

holds; it describes the image size as the number of pixels that it contains. The term “higher

resolutions” refers to having more pixels per centimeter, resulting in higher-quality and more

pleasant images. A lower resolution image has fewer pixels, and if those few pixels are shown

on a large screen, they become stretched and visible. To better understand this parameter’s

importance, an illustration of higher and lower resolution images is shown in Figure 1.1. In

this Figure, the 4K quality image provides details and contains sharp edges. Going towards

the SD image, fine details gradually disappear with the reduction of the number of pixels, and

square pixels become visible.

Due to the vital uses of digital images in many real-life computer vision applications such as

medical imaging, video surveillance, security, robotics, radar imaging systems, and media, the

5cm x 5cm 
crop 

50” 

4K TV Full-HD TV HD TV SD TV 

Figure 1.1 – An illustration of importance of image resolution for TV application. We show an
example of content appeared in a 5 × 5 centimeters crop of a 127 centimeters (50 inches) TV
(supporting up to 4K resolution), when the original content, e.g. streaming, have the following
resolutions: 4K (3840×2160), Full-HD (1920×1080), HD (1280×720), and SD (640×480).
Zoom in for the best view.
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-  More pixels 
-  Sharp edges 
-  Correct textures 
Extremely ill-posed 

Super-Resolution 
Decoder 

Single image or video 
input 

Generated SR image 

Y(t) = M(t) X(t) + N 

Figure 1.2 – An illustration of image super-resolution decoder and the observation model. Y
represents the captured image (LR), M is the overall transformation matrix, X represents the
real high-resolution scene (HR image), N is the noise naturally added during the acquisition
process, and the variable t represents the timestamp of the captured image.

challenge of enhancing the resolution of images or, i.e., capturing more information is in great

demand.

Currently, image quality is mostly limited to imaging hardware’s capability and deficiencies,

such as the quality and type of the sensor, sensor size, lenses, limitation in storage, etc. The

sensor type mostly varies between Charge-Coupled Device (CCD) and Complementary Metal-

Oxide-Semiconductor (CMOS); these technologies have their differences in how they capture

each frame. However, increasing the image resolution is done similarly for both: 1- Increasing

the sensor’s spatial size to include more pixels, or 2- Decreasing the size of each pixel to have

a higher number of pixels in a specific area. Increasing the sensor size is feasible and even

introduces more advantages such as allowing manufacturers to offer wider ISO ranges while

keeping noise low. However, it results in physically bigger devices and is not practical for

many applications, e.g., smartphones. Decreasing pixel size is also challenging as it requires

sophisticated manufacturing technologies resulting in higher development costs. Moreover,

smaller pixels may not directly result in a higher resolution; there is a principal limit to the

resolution of an optical system due to the physics of diffraction (Airy disk), which directly

affects the maximum sampling frequency. Also, using smaller pixel decreases the amount of

light that reaches a corresponding cell of the pixel on the sensor and increases the shot noise.

An alternative for improving imaging hardware is focusing on software improvement. This

solution is based on designing algorithms, either capable of encoding information using

fewer bits than the original representation (compression) or proposing methods to enhance

the resolution accurately by generating/reconstructing missing information, namely Super-

Resolution (SR) and the main focus of this thesis.

SR technology, benefiting from the new advances in computing units, such as graphic process-

ing unit (GPU) and image signal processor (ISP), provides a promising computational imaging

approach to increase the spatial resolution of images and generated higher resolution outputs

with various scaling factors. In particular, as illustrated in Figure 1.2, SR aims at solving the

2
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Upsampled by common  
TV technologies (x4) 

Up-sampled by our  
method (x4) 

SD content 

Figure 1.3 – An example of super-resolving an image with standard definition (SD) resolu-
tion; left: image upsampled by common TV technologies, right: image reconstructed by our
approach (SROBB, Chapter 2).

problem of recovering a high-resolution (HR) image from a low-resolution input image (LR)

or video sequence. This is a classic ill-posed problem that has been one of the most active

research areas since the work of Tsai and Huang [1] in 1984. Such software-based solution is

common and widely used in computer vision applications such as ultra-high definition TVs,

security and surveillance, low-resolution face recognition, remote sensing, medical imaging

and any other application in which more image details are required on demand. In Figure 1.3,

an example of SR application for TV technologies and media is shown.

The SR task, like many other fields of computer vision such as pose-estimation, image in-

painting, object detection, semantic segmentation, and etc., have been revolutionized by

the introduction of Deep Learning (DL). DL is a new part of the family of machine learning

methods. DL benefits from the strong capacity of neural networks to learn the hierarchical

representations of data/images. DL-based methods have proven significant superiority over

other classic machine learning and image processing algorithms in recent years.

Despite these advances in image SR, there are still many challenging open topics for convo-

lutional neural network (CNN)-based SR approaches, e.g., new architectures, new objective

functions for single and multi-frame decoders. One of the less investigated yet critical chal-

lenges of SR is the reconstruction faithful to the context and categorical priors. Despite the

strong ability of CNN-based methods to exploit this information, we observed minimal influ-

ence of images’ global context on the recent SR reconstruction results. In the following section,

we first discuss this limitation in more detail, alongside its different challenges. Finally, we

summarize how we address this challenge in the scope of this thesis.

For this Ph.D. thesis, we aim to propose fast, accurate, and robust SR approaches with an

additional focus on studying and benefiting from the local and global context of images to

increase the perceptive reconstruction quality.
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SR 
Decoder 

SR 
Decoder 

(Plant or wall?) 
prior 

prior 

low- 
resolution 

without 
prior 

with ‘plant’ 
prior 

with ‘wall’ 
prior 

Figure 1.4 – Context-aware image super-resolution. In this example, the low-resolution crop of
both ‘plant’ and ‘wall’ are similar to each other and their reconstructing without considering
this prior, or considering the wrong prior, results in unrealistic textures. The images are
generated by [2]. Zoom in for the best view.

1.2 Context-aware image super-resolution

There are many exciting challenges to face when developing SR methods for real-life applica-

tions. As humans, just by looking at a scene, our brains can quickly have an understanding

of it; we see what each region of the image is representing, what kind of objects are available,

even the texture of the materials are mostly guessed or recognized by us. Although recent

machine learning and computer vision advances, particularly DL-based methods, now allow

a machine to learn and have a better exploitation of image contents, unlike humans, SR

methods still cannot fully exploit the contextual information of a scene. It mostly results in

poor reconstructions, even for very well-known types of objects and textures, intuitively easy

to reconstruct, e.g., a car, a tree, or fabrics.

A visual example of this limitation is shown in Figure 1.4. In this example, a CNN-based

SR generator is trained in a supervised manner and under different settings; in the first

attempt, the generator is trained in a conventional way, and without any pre-knowledge about

categorical information; then, it was trained by having an additional segmentation map at the

input level, specifying the category of regions expected in the output image. Looking at the test

images in this example, we see that low-resolution crops of both ‘plant’ and ‘wall’ are visually

very similar. One could not recognize them without looking into the context around them. By

this experiment, we observe that their reconstruction results without considering this prior,

or considering the wrong prior, results in unrealistic textures. This experiment confirms that,

although the CNN-based generator had access to thousands of images of both trees and walls,

it could not learn and benefit from more global contextual information within images in a

conventional way.

Few studies such as [3, 4, 5] benefit from prior information for SR. Most recently, [2] uses an

additional segmentation network to estimate probability maps as prior knowledge and uses
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them in the existing SR networks. Their approach recovers more realistic textures faithful

to categorical priors; however, as an external segmentation network is required at the run-

time, their method is computationally expensive and not practical for real-life applications.

Another limitation of their method is relying on the segmentation network’s performance and

recognizing only a few categories of objects and backgrounds.

In this thesis, we aim to study and address some of the significant limitations of current SR

approaches to benefit fully from the context within images and introduce a novel methodology

and practical SR systems, which have a promising potential to be used in a large spectrum of

real-life applications. We study and develop several such approaches that can be summarized

as three main objectives:

• To develop a real-time SR generator capable of benefiting from categorical information

of input images to improve its reconstruction quality and with minimal affect on the

final computational cost and inference time of conventional approaches.

• To go one step further and benefit from external resources/images with perceptually

similar contents and context to reach superior perceptual qualities.

• To propose an efficient way of extending all previous ideas to be compatible with real-

world SR setting, where real images with real degradations need to be addressed instead

of artificially downsampled images by a uniform degradation, i.e., bicubic downsam-

pling kernel, commonly used in recent SR works.

In the next section, we summarize our main contributions to reach each mentioned objective.

1.3 Main contributions

The main contributions of this thesis focus on machine learning algorithms for single image

super-resolution (SISR) on RGB digital images. Each proposed contribution addresses part of

the challenges and objectives mentioned in Section 1.2. In this section, we summarize our

main contributions and the essence of these methods:

• We propose an end-to-end and easily reproducible framework that uses the concept

of multi-task learning during the training process to learn a CNN-based SR model in a

content-aware manner. Unlike previous work, the proposed method does not require

any prior information at the test time; therefore, its complexity remains practical for

real-time applications.

• We present a novel objective function for learning image SR, which enables additional

spatial control over reconstructing different regions of an image based on their own

categorical information.

5
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• We introduce a new method based on test time adaptation to the SR community. This

contribution leverages from images with similar contextual information to the test image

to reach a new perceptual quality level without significantly impacting the distortion

metrics such as PSNR or SSIM.

• We develop a generic CNN-based image-to-image translation network to integrate all

context-aware and other recent SR works into the real-world SR setting. We introduce a

“bicubic look-alike generator” that aims to map the distribution of real LR images to the

well-understood distribution of bicubically downsampled LR images. This generator is

used as a plug-in to adapt any SR method to real inputs (images with real degradations

caused by physical imaging systems.)

• To examine the effectiveness of the proposed frameworks and methods, extensive

qualitative and quantitative evaluations on both simulated and real data were conducted.

In this thesis, we designed and conducted user studies with more than 70 participants to

overcome the known reliability issue of quantitative measures in the SR task and prove

the superiority of our proposed methods in terms of reconstructing more appealing

images for humans.

1.4 Thesis outline

The remainder of this thesis is organized as follows:

• Chapter 2 presents some necessary backgrounds and mathematical formulation of SR

problem and conducts a brief review of the both conventional and state of the art SR

methods, alongside their important contributions.

• Chapter 3 proposes a novel SR framework based on multitask learning for both image

SR and semantic segmentation tasks. This chapter also discusses the importance of

semantic information within the SR task and introduces a boundary mask to discard

irrelevant information during the learning process.

• Chapter 4 introduces a new objective function for SR task, namely “Targeted perceptual

loss”, to give learning-based SR methods a meaningful spatial control over the image

generation process. Moreover, in this chapter, we study perceptual losses in general and

learn about their nature, e.g., how a pre-trained CNN-based network sees an image.

• Chapter 5 further investigates how overfitting/fine-tuning on some selected images can

be beneficial and change SR reconstructions for better or worse. In this chapter, we

finally introduce a novel numerical experiment in the field of SR, where we quantitatively

judge the learned weight and biases of a CNN-based network based on what we call

“ideal” filters.
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• Chapter 6 consists of our solution to integrate all our context-aware SR contributions

(chapter 2 to 6) and other states of the art SR work into the real-world SR setting, where

the downsampling kernel is real and not uniform (such as bicubic). In this chapter, we

also introduce “bicubic perceptual loss” which enables building such a framework.

• Finally, in Chapter 7, a brief summary of the thesis, its limitations, and future directions

conclude this thesis.
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2 Brief Image Super-Resolution Review

Image super-resolution (SR) has a long history in computer vision and image processing. With

the advent of Deep Learning (DL)-based approaches and the possibility of using powerful

hardware and large datasets to train such methods, this field has become a hot topic in

computer vision. As all the proposed methods in this thesis involve Neural Networks (NNs)

to some extent, the majority of this chapter focuses on reviewing NN-based approaches

(Section 2.2), including some conventional work, as well as important contributions of state of

the art SR methods. Before describing the NN-based background, in Section 2.1, we present

the problem formulation and some of its mathematical notations. In Section 2.3 and 2.4,

we briefly describe some of the conventional image datasets and evaluation metrics used in

recent SR work. Finally, we review the recent real-world SR problem related to real image

degradation in Section 2.5.

2.1 Problem formulation

The ultimate goal of SR methods is to recover the HR image corrupted by the limitations of the

optical imaging hardware; this is a typical example of an inverse problem where the original

image (HR) is reconstructed from the available stored data (LR image). The forward model of

this inverse problem can be summarized as a simple linear model; in the literature, its most

common form, by far, is defined as:

Y (t ) = M(t )X (t )+N , (2.1)

where Y is the captured image (mostly considered as LR image in this thesis), M is the overall

transformation matrix representing the imaging system, X represents the real high-resolution

scene (HR image), and N represents the deterioration by the white Gaussian noise, created

during the acquisition process. In this formula, the variable t represents the timestamp of the

captured image. All images in this formula are in the vector form.
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F H A 

D 

+ 

Real world scene 
(HR image) Motion Effect Camera Blur Effect Color Filter Effect 

Down-Sampling  
Effect 

LR image Additive 
Noise (N) 

Figure 2.1 – Block diagram of SR observation model. The low-resolution (LR) images are the
blurred, warped, decimated, and noisy version of a high-resolution (HR) image.

To construct the linear model M , we consider the three main aspects of the image formation

process, motion, optical blur, and the sampling process, and formulate it as follows:

M = D AHF, (2.2)

where F represents the intensity conserving, geometric warp operation capturing image

motion, H is the blurring operation due to the imaging system’s response to a point source

or point object, namely optical Point Spread Function (PSF), D represent downsampling

operation. Finally, A corresponds to the color filter effects (sampling operations specific to the

color space).

We emphasize that, although the significant advances in convolutional neural networks and

their way to solve inverse problems in recent years made the need for an accurate formulation

of the forward model less important, a better understanding of the problem and the forward

model is still crucial to be able to propose new directions and ideas to address the SR problem.

To this end, the general pipeline of the observation model M is shown in Figure 2.1. In the

following, we present each of these processes in more detail:

Motion (F ) it is one of the most important causes of degradation in the image-capturing

process as it is one of the main reasons for creating a blur effect in the final image. This effect

-namely motion blur, happens when either one or more existing objects, or the camera itself,

move significantly during integration time and result in a smeared image. The integration time

(t ), also known as the shutter speed, is the time during which the camera sensor can capture

light. The electronic shutters significantly reduce this effect but the issue is still noticeable in

case of severe movements.
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2.1. Problem formulation

This motion can be simplified and purely formulated as a 2D affine motion model, as all 3D

motions of objects/the scene finally induce a 2D motion in the image. The resulted image by

motion blur (I F ) can be formulated as [6]:

I F (x, y) =
∫ τ=t

0
I or g (uτ, vτ)dτ, where

(
x

y

)
= F (b)τ0

[
uτ

vτ

]
, (2.3)

where F (b)τ0 is representing the estimated motion of the object/scene in t and b being the

parameter chosen to describe the image transform corresponding to the object 3D motion.

Optical blur (H) this category of blurring effect is related to the physics behind the camera

hardware, creating the image formation process, such as the physical lenses and their thickness.

This blur can also happen by the camera being defocused. In the literature [6, 7, 8], H is mostly

modeled by 2D Gaussian blur as a first approximation.

As presented in [9], the atmosphere also adds an additional blurring effect and motion blur

into the observation model M . Taking this effect (Hatmospher e ) into account, M can be refor-

mulated in a more complex and accurate form as:

M
′ = D AHF Hatmospher e , (2.4)

The Hatmospher e effect is usually neglected in the literature [7] as it has a much less significant

impact on the captured image comparing to the H effect caused by the optical cameras and

imaging hardware themselves.

Sampling process (D A) this process can be divided into downsampling operation D and

color filter effect A, to distinguish between a down-sampling operation by the camera charge-

coupled device (CCD) array (by a scale factor of s) and the sampling operations specific to the

color space and creating the color image. CCD sensors are the primary technology used in the

digital imaging community. The final image resolution is determined by the characteristics of

the CCD array of the camera.

After building the forward model, explicitly or implicitly, a cost function needs to be defined

in order to finally estimate the original image/scene X . This definition is the main key to

assuring certain fidelity of how the final constructed image is close to the measured data.

Historically, based on algebraic or a statistical point of view, different cost functions have been

introduced; to our knowledge, the most common function is the least-square error, which

minimizes the L2 norm of the difference between the solution and the measured data. Based
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on this definition, the reconstructed image can be defined as:

X̂ = ar g mi nX ‖Y −M X ‖2
2 , (2.5)

This formulation provides the maximum likelihood of estimating the original image X for the

scenario where N is an additive white, zero-mean Gaussian [10].

To solve the SR problem, many classic works investigated different components of the obser-

vation model in detail and proposed various approaches based on trees structures, principal

component analysis, projections, gradient profiles, etc. However, the imprecise and complex

formulation of the observation model that maps the LR space into the HR space and the

inefficiency of forming this high-dimensional mapping, make these methods incapable of

reaching photo-realistic quality reconstructions.

Besides these methods, interpolation-based methods aim to produce the HR image by as-

suming that the observed low-resolution image is a direct downsampled version of the HR

image. These methods, such as bicubic interpolation and Lanczos resampling, are extremely

simple and fast. However, they suffer from severe blurring effects and the lack of fine texture

details. More powerful methods utilizing statistical image priors were also proposed to restore

fine structures; however, they are incapable of modeling complex and varying natural image

contexts.

The following section reviews CNN-based SR approaches and explains why this branch of

machine-learning approaches is becoming the dominant method for SR applications and is

the primary focus of this thesis.

2.2 CNN-based super-resolution

DL is a relatively new subset of the vast family of machine learning methods based on artificial

neural networks, aiming to learn the hierarchical representations of data. By benefiting from

the strong capacity of neural networks to address substantial unstructured data, DL-based

methods have proven significant superiority over other machine learning algorithms in various

AI fields such as computer vision [2], natural language processing, and speech recognition [3].

SR field was not an exception and has been revolutionized by the significant advances in con-

volutional neural networks (CNNs), benefiting from their strong capacity of extracting effective

high-level abstractions to map the LR space to HR space. Recent CNN-based SR methods

have resulted in better reconstructions of high-resolution pictures, both quantitatively and

qualitatively. Therefore, in this thesis, we focus more on CNN-based approaches.

In the remainder of this section, we present seminal CNN-based architectures, as well as
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5

the other [81] focuses on SR on smartphones. As is well-
known [77], the models target for distortion frequently pro-
duce visually unpleasing results, while the models target for
perceptual quality performs poorly on information fidelity.
Specifically, the PIRM divided the perception-distortion
plane into three regions according to thresholds on root
mean squared error (RMSE). In each region, the winning
algorithm is the one that achieves the best perceptual quality
[77], evaluated by NIQE [76] and Ma [66]. While in the
other sub-challenge [81], SR on smartphones, participants
are asked to perform SR with limited smartphone hardwares
(including CPU, GPU, RAM, etc.), and the evaluation met-
rics include PSNR, MS-SSIM and MOS testing. In this way,
PIRM encourages advanced research on the perception-
distortion tradeoff, and also drives lightweight and efficient
image enhancement on smartphones.

3 SUPERVISED SUPER-RESOLUTION

Nowadays researchers have proposed a variety of super-
resolution models with deep learning. These models fo-
cus on supervised SR, i.e., trained with both LR images
and corresponding HR images. Although the differences
between these models are very large, they are essentially
some combinations of a set of components such as model
frameworks, upsampling methods, network design, and
learning strategies. From this perspective, researchers com-
bine these components to build an integrated SR model for
fitting specific purposes. In this section, we concentrate on
modularly analyzing the fundamental components (as Fig.
1 shows) instead of introducing each model in isolation, and
summarizing their advantages and limitations.

3.1 Super-resolution Frameworks

Since image super-resolution is an ill-posed problem, how
to perform upsampling (i.e., generating HR output from LR
input) is the key problem. Although the architectures of
existing models vary widely, they can be attributed to four
model frameworks (as Fig. 2 shows), based on the employed
upsampling operations and their locations in the model.

3.1.1 Pre-upsampling Super-resolution
On account of the difficulty of directly learning the mapping
from low-dimensional space to high-dimensional space, uti-
lizing traditional upsampling algorithms to obtain higher-
resolution images and then refining them using deep neural
networks is a straightforward solution. Thus Dong et al.
[22], [23] firstly adopt the pre-upsampling SR framework
(as Fig. 2a shows) and propose SRCNN to learn an end-to-
end mapping from interpolated LR images to HR images.
Specifically, the LR images are upsampled to coarse HR
images with the desired size using traditional methods (e.g.,
bicubic interpolation), then deep CNNs are applied on these
images for reconstructing high-quality details.

Since the most difficult upsampling operation has been
completed, CNNs only need to refine the coarse images,
which significantly reduces the learning difficulty. In ad-
dition, these models can take interpolated images with
arbitrary sizes and scaling factors as input, and give re-
fined results with comparable performance to single-scale
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Fig. 2. Super-resolution model frameworks based on deep learning. The
cube size represents the output size. The gray ones denote predefined
upsampling, while the green, yellow and blue ones indicate learnable
upsampling, downsampling and convolutional layers, respectively. And
the blocks enclosed by dashed boxes represent stackable modules.

SR models [26]. Thus it has gradually become one of the
most popular frameworks [55], [56], [82], [83], and the main
differences between these models are the posterior model
design (Sec. 3.3) and learning strategies (Sec. 3.4). However,
the predefined upsampling often introduce side effects (e.g.,
noise amplification and blurring), and since most operations
are performed in high-dimensional space, the cost of time
and space is much higher than other frameworks [43], [84].

3.1.2 Post-upsampling Super-resolution
In order to improve the computational efficiency and make
full use of deep learning technology to increase resolution
automatically, researchers propose to perform most compu-
tation in low-dimensional space by replacing the predefined
upsampling with end-to-end learnable layers integrated at
the end of the models. In the pioneer works [43], [84]
of this framework, namely post-upsampling SR as Fig. 2b
shows, the LR input images are fed into deep CNNs without
increasing resolution, and end-to-end learnable upsampling
layers are applied at the end of the network.

(a)
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SR models [26]. Thus it has gradually become one of the
most popular frameworks [55], [56], [82], [83], and the main
differences between these models are the posterior model
design (Sec. 3.3) and learning strategies (Sec. 3.4). However,
the predefined upsampling often introduce side effects (e.g.,
noise amplification and blurring), and since most operations
are performed in high-dimensional space, the cost of time
and space is much higher than other frameworks [43], [84].

3.1.2 Post-upsampling Super-resolution
In order to improve the computational efficiency and make
full use of deep learning technology to increase resolution
automatically, researchers propose to perform most compu-
tation in low-dimensional space by replacing the predefined
upsampling with end-to-end learnable layers integrated at
the end of the models. In the pioneer works [43], [84]
of this framework, namely post-upsampling SR as Fig. 2b
shows, the LR input images are fed into deep CNNs without
increasing resolution, and end-to-end learnable upsampling
layers are applied at the end of the network.

(b)

Figure 2.2 – Examples of linear SR designs with: (a) Pre-upsampling, (b) Post-upsampling
methods. Figure taken from [17]

essential concepts related to conventional objective functions and SR evaluation metrics, that

we need to know for better understanding the basis CNN-based SR works. A closer related

work to each of our contributions is presented in its corresponding chapter.

2.2.1 Deep architectures for SR

This field has witnessed a variety of end-to-end deep network architectures in recent years; in

this section, we present some of the seminal architecture designs proposed for the SR task.

Linear designs

SRCNN [11] is the first architecture that used convolutional layers for the SR task and reached

successful high reconstruction quality. This design benefits from a simple structure, consisting

of only a single path for data flow without any skip connections, residual blocks, or multiple

branches. Generally, in this design category, the input image is sequentially passed from

several convolution layers stacked on top of each other to reach the final output layer. The

input image can initially be upsampled very early before passing through the network [11,

12, 13, 14] (pre-upsampling) or either upsample the features around the output layers of the

network (post-upsampling) in order to decrease the computational cost and dimensionality

of the problem [15, 16]. Figure 2.2 shows an example of pre-upsampling and Post-upsampling

methods in linear designs.

Residual networks

Using the concept of residual learning to reduce training difficulty and improve the learning

ability was first introduced in ResNet [18]. Later, this design was also widely used for SR

task and significantly boosted the reconstruction quality [19, 20, 21, 22]. This category uses

skip connections [23] to alleviate vanishing gradients, which enables designing very deep

networks [24]. In practice, this method’s implementation is done by adding skip (shortcut)

connections, mostly scaled by a learnable constant, and using either element-wise addition
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Figure 2.3 – The design of a residual network for SR task, introduced by SRGAN [19], (a) Using
short skip connection to construct a residual block, (b) Using series of residual block and long
skip connections to build the body of the SR feature extractor (upsampling block is not shown
in this figure).

or concatenation. Figure 2.3 shows an example of residual design used in SRGAN [19] work.

This work demonstrates the concept of residual blocks and skip-connections to facilitate the

training of CNN-based SR decoders.

Recursive networks

Recursive networks use recursively connected units of either convolutional layers (sharing

the same weights) or more complex units, such as residual blocks. The intuition behind the

recursive designs is to break down the harder SR problem into a set of simpler ones. Some of

the important examples of such designs are [25, 26, 27].

A seminal architecture using this method, shown in Figure 2.4, is DRCN [25]; this proposed

method uses the same convolutional layers, with the same weights and biases, multiple times.

As the layers are shared, the number of parameters remains the same for any number of

recursions. In particular, DRCN is contained of three sub-networks: an embedding network,

an inference network (based on recursive design), and a reconstruction network. The first

and last sub-networks are designed to map the color image into feature maps and convert the

final feature map back into RGB space, respectively. The inference network performs SR by

analyzing the input feature map by recursively applying a single unit, consisting of a single

layer convolution followed by a ReLU activation function. The spatial size of the feature map

is increased after each recursion. This work also shows how deeper network architectures

increase the performance of SR.

Progressive upsampling

Motivated by the difficulty of learning an SR model for large scaling factors (e.g., 8, 16) in

one single step, various works [28, 29] propose to perform SR image progressively in multiple
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Embedding network Inference network Reconstruction network

Input Output

Conv / ReLU Conv / ReLU Conv / ReLU Conv / ReLU

H－1 H0 Hd HD＋1

Filters W－1 Filters W0 Filters W Filters WD＋1

Conv / ReLU
Filters WD＋2

Figure 1: Architecture of our basic model. It consists of three parts: embedding network, inference network and reconstruction network.
Inference network has a recursive layer and its unfolded version is in Figure 2.

2. Related Work

2.1. Single-Image Super-Resolution

We apply DRCN to single-image super-resolution (SR)
[11, 7, 8]. Many SR methods have been proposed in the
computer vision community. Early methods use very fast
interpolations but yield poor results. Some of the more
powerful methods utilize statistical image priors [27, 12]
or internal patch recurrence [8, 10]. Recently, sophisticated
learning methods have been widely used to model a map-
ping from LR to HR patches. Many methods have paid at-
tention to find better regression functions from LR to HR
images. This is achieved with various techniques: neighbor
embedding [4, 19], sparse coding [31, 32, 28, 29], convolu-
tional neural network (CNN) [5] and random forest [23].

Among several recent learning-based successes, convo-
lutional neural network (SRCNN) [5] demonstrated the fea-
sibility of an end-to-end approach to SR. One possibility
to improve SRCNN is to simply stack more weight layers
as many times as possible. However, this significantly in-
creases the number of parameters and requires more data to
prevent overfitting. In this work, we seek to design a convo-
lutional network that models long-range pixel dependencies
with limited capacity. Our network recursively widens the
receptive field without increasing model capacity.

2.2. Recursive Neural Network in Computer Vision

Recursive neural networks, suitable for temporal and se-
quential data, have seen limited use on algorithms operating
on a single static image. Socher et al. [25] used a convo-
lutional network in a separate stage to first learn features
on RGB-Depth data, prior to hierarchical merging. In these
models, the input dimension is twice that of the output and
recursive convolutions are applied only two times. Similar
dimension reduction occurs in the recurrent convolutional

3	×	3	×	F	×	F	
Filters W

Conv / ReLU

# of recursions = D

Hd H1 H2 HD

Filters W
Conv / ReLU

Filters W
Conv / ReLU

Filters W
Conv / ReLU

Figure 2: Unfolding inference network. Left: A recursive layer
Right: Unfolded structure. The same filter W is applied to feature
maps recursively. Our model can utilize very large context without
adding new weight parameters.

neural networks used for semantic segmentation [22]. As
SR methods predict full-sized images, dimension reduction
is not allowed.

In Eigen et al. [6], recursive layers have the same input
and output dimension, but recursive convolutions resulted in
worse performances than a single convolution due to over-
fitting. To overcome overfitting, Liang and Hu [17] uses
a recurrent layer that takes feed-forward inputs into all un-
folded layers. They show that performance increases up to
three convolutions. Their network structure, designed for
object recognition, is the same as the existing CNN archi-
tectures.

Our network is similar to the above in the sense that
recursive or recurrent layers are used with convolutions.
We further increase the recursion depth and demonstrate
that very deep recursions can significantly boost the perfor-
mance for super-resolution. We apply the same convolution
up to 16 times (the previous maximum is three).

Figure 2.4 – Architecture of DRCN [25], an example of recursive networks. It consists of three
parts: embedding network, inference network, and reconstruction network. In the inference
network, the same filter W is applied to feature maps recursively. Figure taken from [25]
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explain general CNN architectures with the sparse coding the-
ory, which from today’s view may be somewhat unconvincing.
SCN combines these two important concepts innovatively and
gains both quantitative and qualitative improvements.

Learning to ensemble by NN: Different models specialize in
different image patterns of SISR. From the perspective of en-
semble learning, a better result can be acquired by adaptively
fusing various models with different purposes at the pixel level.
Motivated by this idea, MSCN was proposed by Liu et al. [82]
by developing an extra module in the form of a CNN, taking the
LR as input and outputting several tensors with the same shape
as the HR. These tensors can be viewed as adaptive elementwise
weights for each raw HR output. By selecting NNs as the raw
SR inference modules, the raw estimating parts and the fusing
part can be optimized jointly. However, in MSCN, the summa-
tion of coefficients at each pixel is not 1, which may be slightly
incongruous.

Deep architectures with progressive methodology: Increasing
SISR performance progressively has been extensively studied
previously, and many recent DL-based approaches also exploit
it from various perspectives. Here, we mainly discuss three novel
works within this scope: DEGREE [83], combining the progres-
sive property of ResNet with traditional subband reconstruction;
LapSRN [84], generating SR of different scales progressively;
and PixelSR [85], leveraging conditional autoregressive models
to generate SR pixel-by-pixel.

Compared with other deep architectures, ResNet is intriguing
for its progressive properties. Taking SRResNet for example,
one can observe that directly sending the representations pro-
duced by intermediate residual blocks to the final reconstruction
part will also yield a quite good raw HR estimator. The deeper
these representations are, the better the results that can be ob-
tained. A similar phenomenon of ResNet applied in recognition
is reported in [66]. DEGREE, proposed by Yang et al., combines
this progressive property of ResNet with the subband reconstruc-
tion of traditional SR methods [86]. The residues learned in each
residual block can be used to reconstruct high-frequency details,
resembling the signals from a certain high-frequency band. To
simulate subband reconstruction, a recursive residual block is
used. Compared with the traditional supervised subband recov-
ery methods that need to obtain subband ground truth by diverse
filters, this simulation with recursive ResNet avoids explicitly
estimating intermediate subband components, benefiting from
the end-to-end representation learning.

As mentioned above, models for small scale factors can be
used for a raw estimator of a large scale SISR. In the SISR
community, SISR under large scale factors (e.g.,×8) has been a
challenging problem for a long time. In such situations, plausible
priors are imposed to restrict the solution space. A straightfor-
ward way to address this is to gradually increase resolution by
adding extra supervision on the auxiliary SISR process of the
small scale. Based on this heuristic prior, LapSRN, proposed by
Lai et al., uses the Laplacian pyramid structure to reconstruct
HR outputs. LapSRN has two branches: the feature extraction
branch and the image reconstruction branch, as shown in Fig. 6.
At each scale, the image reconstruction branch estimates a raw
HR output of the present stage, and the feature extraction branch

Fig. 6. LapSRN architecture. Red arrows indicate the convolutional layer;
blue arrows indicate transposed convolutions (upsampling); green arrows denote
elementwise addition operators.

Fig. 7. Sketch of the pixel recursive SR architecture.

outputs a residue between the raw estimator and the correspond-
ing ground truth as well as extracts useful representations for the
next stage.

When faced with large scale factors with a severe loss of nec-
essary details, some researchers suggest that synthesizing ratio-
nal details can achieve better results. In this situation, deep gener-
ative models, which will be discussed in the next sections, could
be good choices. Compared with the traditional independent
point estimation of the lost information, conditional autoregres-
sive generative models using conditional maximum likelihood
estimation in directional graphical models gradually generate
high-resolution images based on the previously generated pixels.
PixelRNN [87] and PixelCNN [88] are recent representative au-
toregressive generative models. The current pixel in PixelRNN
and PixelCNN is explicitly dependent on the left and top pixels
that have already been generated. To implement such opera-
tions, novel network architectures are elaborated. PixelSR was
proposed by Dahl et al. and first applies conditional PixelCNN
to SISR. The overall architecture is shown in Fig. 7. The condi-
tioning CNN takes LR as input, which provides LR-conditional
information to the whole model, and the PixelCNN part is the

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 02,2020 at 10:48:07 UTC from IEEE Xplore.  Restrictions apply. 

Figure 2.5 – Architecture of LapSRN [28], an example of progressive upsampling design. Red,
blue and green arrows denote convolutional layers, upsampling layers, and element-wise
addition operators, respectively. Figure taken from [30].

steps, for example, upsampling the image with a scale factor of two, followed by an additional

upsampling with a scale factor of two (×16 as a result). Laplacian pyramid structure [28],

shown in Figre 2.5, is an important example of progressively reconstructing the sub-band

residuals of high-resolution images.

Densely connected networks

The idea of dense blocks was first proposed by [31] for the image classification task. Fol-

lowed by its success, many works were introduced in different computer vision tasks, SR task

included, based on the same idea of using densely connected CNN layers to improve the

performance [32, 33, 34]. The main motivation in such SR decoders is to provide an effective

way to combine the low and high-level features by propagating each layer’s feature maps into
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Fig. 3. Channel attention (CA). ⌦ denotes element-wise product

and can hardly achieve more performance gain. Inspired by previous works in
SRRestNet [21] and EDSR [10], we proposed residual group (RG) as the basic
module for deeper networks. A RG in the g-th group is formulated as

Fg = Hg (Fg�1) = Hg (Hg�1 (· · · H1 (F0) · · · )) , (6)

where Hg denotes the function of g-th RG. Fg�1 and Fg are the input and output
for g-th RG. We observe that simply stacking many RGs would fail to achieve
better performance. To solve the problem, the long skip connection (LSC) is
further introduced in RIR to stabilize the training of very deep network. LSC
also makes better performance possible with residual learning via

FDF = F0 + WLSCFG = F0 + WLSCHg (Hg�1 (· · · H1 (F0) · · · )) , (7)

where WLSC is the weight set to the Conv layer at the tail of RIR. The bias
term is omitted for simplicity. LSC can not only ease the flow of information
across RGs, but only make it possible for RIR to learning residual information
in a coarse level.

As discussed in Section 1, there are lots of abundant information in the
LR inputs and features and the goal of SR network is to recover more useful
information. The abundant low-frequency information can be bypassed through
identity-based skip connection. To make a further step towards residual learning,
we stack B residual channel attention blocks in each RG. The b-th residual
channel attention block (RCAB) in g-th RG can be formulated as

Fg,b = Hg,b (Fg,b�1) = Hg,b (Hg,b�1 (· · · Hg,1 (Fg�1) · · · )) , (8)

where Fg,b�1 and Fg,b are the input and output of the b-th RCAB in g-th RG.
The corresponding function is denoted with Hg,b. To make the main network
pay more attention to more informative features, a short skip connection (SSC)
is introduced to obtain the block output via

Fg = Fg�1 + WgFg,B = Fg�1 + WgHg,B (Hg,B�1 (· · · Hg,1 (Fg�1) · · · )) , (9)

where Wg is the weight set to the Conv layer at the tail of g-th RG. The SSC
further allows the main parts of network to learn residual information. With LSC
and SSC, more abundant low-frequency information is easier bypassed in the
training process. To make a further step towards more discriminative learning,
we pay more attention to channel-wise feature rescaling with channel attention.

Figure 2.6 – RCAN Channel attention [35]. HGP denotes the global pooling function, WD and
WU denote the set of weights of a Conv layer used as channel downscaling and upscaling,
respectively, with a scale of r , and the function f (.) is the sigmoid function. Figure taken
from [35].

all subsequent layers. [32] shows that this method results in richer feature representations

and improves the reconstruction performance.

Attention-based architectures

Most of the seminal CNN-based networks proposed for image SR task consider the same

importance for all spatial locations and channels and treat them in the same way. However,

selectively weighting only a subset of features at a given layer or location could intuitively have

benefits in several cases. Attention-based approaches are introduced to bring this flexibility

into computer vision tasks and particularly have shown significant improvements in the SR

task.

Residual Channel Attention Network (RCAN) [35] is an example of CNN-based SR approaches

using attention mechanisms. They propose a channel attention mechanism to adaptively

rescale channel-wise features by considering interdependencies among channels. In particu-

lar, in their design, each local residual block benefits from a channel attention mechanism

such that the filter activations are collapsed from h×w ×c to a vector with 1×1×c dimensions

(after passing through a bottleneck) that acts as a selective attention over channel maps (see

Figure 2.6).

In the next section, we review some of the essential cost functions used in the community for

this task.

2.2.2 Objective functions

Despite various architectures proposed for the image SR task, the behavior of CNN-based

methods is principally driven by their objective functions. The commonly used objective

function for the SR task is presented in the following subsections.
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Pixel-wise loss

The most used objective function for the SR task in the literature is the pixel-wise distance

between the super-resolved and the ground-truth HR images. This loss is commonly used in

two different forms:

• L1 loss (LM AE ) calculates the Mean Absolute Error (MAE) between the ground-truth

image and the reconstructed image. This loss can be formulated as:

LM AE (I ′, I ) = 1

hwc

∑
i , j ,k

∣∣I ′(i , j ,k)− I (i , j ,k)
∣∣ , (2.6)

where I denotes the original image, I ′ is the reconstructed image, and h, w , and c are

representing the height, width, and number of channels of the image, respectively.

• L2 loss (LMSE ) calculates the Mean Squared Error (MSE) between the ground-truth

image (I ) and the reconstructed image (I ′). This loss can be formulated as:

LMSE (I ′, I ) = 1

hwc

∑
i , j ,k

(
I ′i , j ,k − Ii , j ,k

)2
. (2.7)

Both L1 and L2 losses are among the most common metrics used to measure the accuracy for

continuous variables. As L2 loss calculates the square of the errors before averaging them, it

results in relatively high weight for large errors; therefore, it is known to be more advantageous

when specifically large errors are undesirable. However, in the SR task, L1 choice is getting

more popular than L2, as it is observed to produce fewer artifacts [36]. Figire 2.7 compares

two SR images reconstructed by using L1 and L2 losses. The most known drawback of using

either of these pixel-wise loss forms as a cost function is reconstructing over-smoothed images

due to the pixel-wise average of plausible solutions in the pixel space. To overcome this issue,

perceptual losses -presented in the following section, have been introduced into the SR task.

Perceptual loss

Perceptual-driven approaches added a remarkable improvement to image SR in terms of

visual quality. These loss functions are designed to optimize an SR model in a feature space

instead of pixel space and tackle the problem of blurred textures caused by optimization of

pixel-wise losses. The most known forms of perceptual losses are:

• Content loss (Lcontent ) or VGG loss (LV GG ). Based on the idea of perceptual similarity

[39], the content loss is proposed to minimize the error in a feature space using specific

layers of a pre-trained feature extractor, for example, VGG-19 [40]. The idea behind this

idea is to force the reconstructed image to be perceptually closer to the original (HR)
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Fig. 2: Results for super-resolution. Notice the grating artifacts on the black stripes of the wing and around the face of the girl produced
by `2.

(a) JPEG (b) `2 (c) `1 (d) Mix (e) JPEG (f) `2 (g) `1 (h) Mix

Fig. 3: Results for JPEG de-blocking. The insets are taken from the image in Figure 1. Notice the artifacts around the edges (a)-(c) and
how Mix (d) removes them better than either `1 or `2. Mix also outperforms the other metrics in the relatively flat regions, where the
blocketization is more apparent, e.g., (e)-(h).

introduced in Section IV-A. We generate the input patches
with two different strides. First, we use a stride of 8, which
causes the boundaries of the 8 ⇥ 8 DCT blocks to be aligned
in each 31⇥31 patch. We also use a stride of 7, which causes
the grid of blocks to be in different locations in each patch.
We found that the latter strategy better removes the JPEG
artifacts while producing sharper images, which is why we ran
all of our experiments with that configuration. Again, we only
compared the results of `1, `2, MS-SSIM, and Mix, see Table I.
Figure 3 shows that our loss function, Mix, outperforms `1
and `2 on uniform regions and that it attenuates the ringing
artifacts around the edge of the building better. More results
are shown in Figure 6.

More results and comparisons, both numerical and visual,
can be found in the supplementary material.

V. DISCUSSION

In this section we delve into a deeper analysis of the results.
Among other considerations, we look into the convergence
properties of the different losses, and we offer an interpretation
of the reasons some losses perform better than others.

A. Convergence of the loss functions

Table I highlights an unexpected result: even after conver-
gence, CNNs trained on one loss function can outperform
another network even based on the very loss with which the
second was trained. Consider, for instance, the two networks
trained with `1 and `2 respectively for joint denoising and
demosaicking: the table shows that the network trained with
`1 achieves a lower `2 loss than then network trained with
`2. Note that we ran the training multiple times with different
initializations. We hypothesize that this result may be related
to the smoothness and the local convexity properties of the two
measures: `2 gets stuck more easily in a local minimum, while
for `1 it may be easier to reach better minimum, both in terms

of `1 and `2—the “good” minima of the two should be related,
after all. To test this hypothesis, we ran an experiment in which
we take two networks trained with `1 and `2 respectively,
and train them again until they converge using the other loss.
Figure 7 shows the `2 loss computed on the testing set at
different training iterations for either network. The network
trained with `1 only (before epoch 1200 in the plot) achieves
a better `2 loss than the one trained with `2. However, after
switching the training loss functions, both networks yield a
lower `2 loss, confirming that the `2 network was previously
stuck in a local minimum. While the two networks achieve
a similar `2 loss, they converge to different regions of the
space of parameters. At visual inspection the network trained
with `2 first and `1 after produces results similar to those
of `1 alone; the output of the network trained with `1 first
and `2 after is still affected by splotchy artifacts in flat areas,
though it is better than `2 alone, see Figure 8. Specifically,
the network trained with `1 first and `2 afterwards achieves
an `2 loss of 0.3896 · 103, which is the lowest across all the
networks we trained, confirming that the network trained with
`2 alone had convergence issues. However, neither of these two
networks outperforms Mix on any of the perceptual metrics
we use, confirming that the advantage of the proposed loss
goes beyond convergence considerations. Table II shows the
complete evaluation of the two networks, where bold indicates
a result that is better than any of the results shown in Table I.

B. On the performance of SSIM and MS-SSIM

Table I also reveals that SSIM and MS-SSIM do not perform
as well as `1. This does not have to do with the convergence
properties of these losses. To investigate this, we trained
several SSIM networks with different �G’s and found that
smaller values of �G produce better results at edges, but worse
results in flat regions, while the opposite is true for larger
values, see Figure 9. This can be understood by looking at
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introduced in Section IV-A. We generate the input patches
with two different strides. First, we use a stride of 8, which
causes the boundaries of the 8 ⇥ 8 DCT blocks to be aligned
in each 31⇥31 patch. We also use a stride of 7, which causes
the grid of blocks to be in different locations in each patch.
We found that the latter strategy better removes the JPEG
artifacts while producing sharper images, which is why we ran
all of our experiments with that configuration. Again, we only
compared the results of `1, `2, MS-SSIM, and Mix, see Table I.
Figure 3 shows that our loss function, Mix, outperforms `1
and `2 on uniform regions and that it attenuates the ringing
artifacts around the edge of the building better. More results
are shown in Figure 6.

More results and comparisons, both numerical and visual,
can be found in the supplementary material.

V. DISCUSSION

In this section we delve into a deeper analysis of the results.
Among other considerations, we look into the convergence
properties of the different losses, and we offer an interpretation
of the reasons some losses perform better than others.

A. Convergence of the loss functions

Table I highlights an unexpected result: even after conver-
gence, CNNs trained on one loss function can outperform
another network even based on the very loss with which the
second was trained. Consider, for instance, the two networks
trained with `1 and `2 respectively for joint denoising and
demosaicking: the table shows that the network trained with
`1 achieves a lower `2 loss than then network trained with
`2. Note that we ran the training multiple times with different
initializations. We hypothesize that this result may be related
to the smoothness and the local convexity properties of the two
measures: `2 gets stuck more easily in a local minimum, while
for `1 it may be easier to reach better minimum, both in terms

of `1 and `2—the “good” minima of the two should be related,
after all. To test this hypothesis, we ran an experiment in which
we take two networks trained with `1 and `2 respectively,
and train them again until they converge using the other loss.
Figure 7 shows the `2 loss computed on the testing set at
different training iterations for either network. The network
trained with `1 only (before epoch 1200 in the plot) achieves
a better `2 loss than the one trained with `2. However, after
switching the training loss functions, both networks yield a
lower `2 loss, confirming that the `2 network was previously
stuck in a local minimum. While the two networks achieve
a similar `2 loss, they converge to different regions of the
space of parameters. At visual inspection the network trained
with `2 first and `1 after produces results similar to those
of `1 alone; the output of the network trained with `1 first
and `2 after is still affected by splotchy artifacts in flat areas,
though it is better than `2 alone, see Figure 8. Specifically,
the network trained with `1 first and `2 afterwards achieves
an `2 loss of 0.3896 · 103, which is the lowest across all the
networks we trained, confirming that the network trained with
`2 alone had convergence issues. However, neither of these two
networks outperforms Mix on any of the perceptual metrics
we use, confirming that the advantage of the proposed loss
goes beyond convergence considerations. Table II shows the
complete evaluation of the two networks, where bold indicates
a result that is better than any of the results shown in Table I.

B. On the performance of SSIM and MS-SSIM

Table I also reveals that SSIM and MS-SSIM do not perform
as well as `1. This does not have to do with the convergence
properties of these losses. To investigate this, we trained
several SSIM networks with different �G’s and found that
smaller values of �G produce better results at edges, but worse
results in flat regions, while the opposite is true for larger
values, see Figure 9. This can be understood by looking at

LR L2-loss L1-loss 

Figure 2.7 – Comparing L1 and L2 losses. Some artifacts, such as grating black edges around
the butterfly’s wing and the girl’s face, are noticeable when L2 loss is used as the training cost
function. Images are generated by [36]. Test images are from Set5 [37] and Set14 [38] datasets.

image instead of trying to match them in a pixel-wise manner (Figure. 2.8). The content

loss can be formulated as:

L(I ′, I ) = 1

lmn

√ ∑
i , j ,k

(
φ(d)

i , j ,k (I ′)−φ(d)
i , j ,k (I )

)2
, (2.8)

where φ(d) is the feature extractor, commonly VGG-19, returning l -th layer feature map,

and l , m and n are representing the dimensions of that layer. As previously mentioned,

I and I ′ stand for the original image and the reconstructed image, respectively. We

emphasize that different feature extractors, e.g., ResNet [18] could be used as φ, instead

of VGG.

• Texture matching loss (LTextur e ) [41] develops a similar approach and further explores

a patch-based texture loss. They use the idea of style transfer loss [42] for SR task and

propose computing LTextur e ) patch-wise during training, to encourage the reconstruc-

tion of similar textures between I ′ and I . As the effectiveness of using texture loss while

using content loss with the right setting and parameters seems to be insignificant in

many recent works [2, 19, 43], we do not further investigate or use this loss term in this

thesis.

In general, different perceptual approaches used different levels of features from the feature

extractor to restore the original image. To understand the meaning of this choice, first, we

need to know what each level of features represents; Figure 2.9 is an attempt to visualize VGG

feature maps by maximizing filter activations at different levels. In this figure, we can see

how shallow (low-level) features focus on local information such as edges, mid-level features
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Figure 2.8 – Optimization with perceptual losses.
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Figure 2.9 – VGG [40] architecture; visualzing low to high-level features.

represent textures, and finally, higher level features correspond to more semantic information

of the image. We discuss the advantage of this knowledge and how we could benefit from it in

more detail in Chapter 4.

In the remainder of this thesis, referring to perceptual loss (Lper c.) denotes specifically the

content loss (VGG-19 loss), as this is the most common type of this category of cost functions.

Adversarial loss

Considering the importance of adversarial losses and their new advances in SR task, we present

the idea behind the Generative Adversarial Networks (GANs), as well as the formulation of

adversarial loss in Section 2.2.3.
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Cycle Consistency Loss

Inspired by the CycleGAN [44], Cycle consistency loss was introduced in SR task [45] with the

main goal of constraining their pixel-level consistency. This has be done by not only mapping

the low-resolution image to the HR image, but also downsample the constructed image back

to another LR image, identical to the input, through another CNN. The cycle consistency loss

(Lc ycle ) can be summarized as:

Lc ycle (I ′LR , I LR ) = 1

hwc

√ ∑
i , j ,k

(
I ′LR

i , j ,k − I LR
i , j ,k

)2
, (2.9)

where I ′LR and I LR denote the final reconstructed image mapped back again to low-resolution

space and the input low resolution image, respectively.

2.2.3 Generative adversarial networks in SR

A generative adversarial network, in short GAN, proposed by [46], is a frameworks for es-

timating generative models via deep neural networks and an adversarial process, in which

simultaneously two models are trained to contest with each other: (1) a generative model G ,

with the goal of fooling (2) a discriminator D, that is trained to be able to distinguish data

from training samples (real) and generated data by model G (fake). The ultimate goal of this

framework is to have a final G which is able to generate new, synthetic instances of data

that can be passed for real samples, or at least superficially, be looking authentic to human

observers.

This class of machine learning frameworks achieved considerable success in recent years and

was used widely in many machine learning and computer vision applications, such as image

and video generation [47, 48], image/text to image translation [49, 50], photo inpainting [51],

voice generation [52], etc.

Recently, in terms of SR, two breakthroughs have been made and resulted in near-photorealistic

reconstructions in terms of perceived image quality: 1- perceptual losses (see Section 2.2.2),

2- Introducing the discriminator component of GANs to SR applications, which encourages

an SR decoder to favor solutions that resolve more realistic and natural images. Figure 2.10

illustrates the training procedure of a SR decoder, alongside with a discriminator. In the

following sub-sections, we discuss both the SR generator and discriminator, as well as various

objective functions to train them simultaneously, in more detail.
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Figure 2.10 – The structure of GANs, illustrating the training procedure of an SR decoder
alongside a discriminator.

Figure 4: Architecture of Generator and Discriminator Network with corresponding kernel size (k), number of feature maps
(n) and stride (s) indicated for each convolutional layer.

2.2. Perceptual loss function

The definition of our perceptual loss function lSR is crit-
ical for the performance of our generator network. While
lSR is commonly modeled based on the MSE [10, 48], we
improve on Johnson et al. [33] and Bruna et al. [5] and
design a loss function that assesses a solution with respect
to perceptually relevant characteristics. We formulate the
perceptual loss as the weighted sum of a content loss (lSR

X )
and an adversarial loss component as:

lSR = lSR
X|{z}

content loss

+ 10�3lSR
Gen| {z }

adversarial loss| {z }
perceptual loss (for VGG based content losses)

(3)

In the following we describe possible choices for the con-
tent loss lSR

X and the adversarial loss lSR
Gen.

2.2.1 Content loss

The pixel-wise MSE loss is calculated as:

lSR
MSE =

1

r2WH

rWX

x=1

rHX

y=1

(IHR
x,y � G✓G

(ILR)x,y)2 (4)

This is the most widely used optimization target for image
SR on which many state-of-the-art approaches rely [10,
48]. However, while achieving particularly high PSNR,
solutions of MSE optimization problems often lack high-

frequency content which results in perceptually unsatisfy-
ing solutions with overly smooth textures (c.f . Figure 2).

Instead of relying on pixel-wise losses we build on the
ideas of Gatys et al. [19], Bruna et al. [5] and Johnson et
al. [33] and use a loss function that is closer to perceptual
similarity. We define the VGG loss based on the ReLU
activation layers of the pre-trained 19 layer VGG network
described in Simonyan and Zisserman [49]. With �i,j we
indicate the feature map obtained by the j-th convolution
(after activation) before the i-th maxpooling layer within the
VGG19 network, which we consider given. We then define
the VGG loss as the euclidean distance between the feature
representations of a reconstructed image G✓G

(ILR) and the
reference image IHR:

lSR
V GG/i.j =

1

Wi,jHi,j

Wi,jX

x=1

Hi,jX

y=1

(�i,j(I
HR)x,y

� �i,j(G✓G
(ILR))x,y)2

(5)

Here Wi,j and Hi,j describe the dimensions of the
respective feature maps within the VGG network.

2.2.2 Adversarial loss

In addition to the content losses described so far, we also
add the generative component of our GAN to the perceptual
loss. This encourages our network to favor solutions that
reside on the manifold of natural images, by trying to

Figure 2.11 – The network architecture of the discriminator proposed by [19]. k denotes the
kernel size, n denotes the number of feature maps, and s is the stride for each convolutional
layer. Figure taken from [19].

Generator design

The generator tries to generate realistic images that fool the discriminator by benefiting from

an additional loss term, generated by the discriminator network. Therefore, only the objective

function of the generator is changed during the training process and its design does not

require any specific form, to be compatible with GAN settings. As a result, all generator

designs presented in Section 2.2.1 could be chosen based on their capabilities and be trained

simultaneously with a discriminator.

Discriminator

The discriminator in a GAN is simply a classifier; therefore, all DNN-based classifiers designs

could be used as discriminator network. A simple but yet effective network design for SR

discriminator is inspired by VGG [40] with few modifications such as using leaky ReLU activa-

tions and strided convolutions instead of pooling layers to decrease the spatial dimensions

of the image gradually. An example of discriminator network, proposed by [19] is shown in

Figure 2.11.
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Objective functions

Different formulations have been proposed to estimate both the generator loss (LG ) and

discriminator loss (LD ); SRGAN [19] proposed to use adversarial loss based on cross-entropy:

LG =−log
(
D(G(I LR ))

)
, (2.10)

where D is the discriminator, G is the SR generator, and I LR is the input image. Consequently,

the discriminator loss is formulated as:

LD =−log
(
D(I HR )

)− log
(
1−D(G(I LR ))

)
, (2.11)

where I HR can be a random HR image from ground-truth. To increase the stability and

reaching higher quality results, [45, 53] propose adversarial loss based on least square error,

instead of cross-entropy. Their formulation is given as:

L (l s)
G = (

D(G(I LR ))−1
)2

, (2.12)

L (l s)
D = (

D(I HR )−1
)2 + (

D(G(I LR )
)2

, (2.13)

To further enhance the GANs stability of learning, [54] introduced the Wasserstein GAN

(WGAN). In particular, WGAN proposes a loss function using Wasserstein distance (or earth

mover’s distance) with a smoother gradient, which results in learning regardless of whether

the generator is producing good images. Due to the problems caused by weight clipping in

WGAN design [55], the generator may still do not converge and produce low-quality images.

To overcome this issue, [55] proposes WGAN with a gradient penalty -namely WGAN-GP, to

enforce the Lipschitz constraint and claim to have a better performance than WGAN.

In terms of SR, [56] demonstrates the effectiveness of WGAN-GP to ensure more stable and

converging training, compared to original GAN, with minimal hyperparameter tuning.

In contrast to the mentioned contributions concerning specific terms for adversarial losses in

pixel space, [57] suggests to benefit from an additional discriminator in the feature domain.

This method is motivated by the argument that pixel-level discriminators have the tendency

to generate high-frequency noises, which are irrelevant to the input LR image. They show that

the proposed discriminator enforces the generator to captures more meaningful attributes of

original HR images. Another variation of GANs for SR is proposed by [43]; this work, namely

ESRGAN, use the idea from relativistic GAN, and its discriminator predicts relative realness
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Fig. 3. Representative test images from six super-resolution datasets used for comparing and evaluating algorithms.

3.9 GAN Models

Generative Adversarial Networks (GAN) [79], [80] employ
a game-theoretic approach where two components of the
model, namely a generator and discriminator, try to fool the
later. The generator creates SR images that a discriminator
cannot distinguish as a real HR image or an artificially
super-resolved output. In this manner, HR images with
better perceptual quality are generated. The corresponding
PSNR values are generally degraded, which highlights the
problem that prevalent quantitative measures in SR litera-
ture do not encapsulate perceptual soundness of generated
HR outputs. The super-resolution methods [47], [81] based
on the GAN framework are explained next.

3.9.1 SRGAN

Single image super-resolution by large up-scaling factors
is very challenging. SRGAN [47] proposed to use an ad-
versarial objective function that promotes super-resolved
outputs that lie close to the manifold of natural images.
The main highlight of their work is a multi-task loss for-
mulation that consists of three main parts: (1) a MSE loss
that encodes pixel-wise similarity, (2) a perceptual similarity
metric in terms of a distance metric defined over high-level
image representation (e.g., deep network features), and (3)
an adversarial loss that balances a min-max game between
a generator and a discriminator (standard GAN objective
[79]). The proposed framework basically favors outputs that
are perceptually similar to the high-dimensional images.
To quantify this capability, they introduce a new Mean
Opinion Score (MOS) which is assigned manually by hu-
man raters indicating bad/excellent quality of each super-
resolved image. Since other techniques generally learn to
optimize direct data dependent measures (such as pixel-
errors), [47] outperformed its competitors by a significant
margin on the perceptual quality metric.

3.9.2 EnhanceNet

This network design focuses on creating faithful texture
details in high-resolution super-resolved images [81]. A key
problem with regular image quality measures such as PSNR
is their noncompliance with the perceptual quality of an
image. This results in overly smoothed images that do not
have sharp textures. To overcome this problem, EnhanceNet
used two other loss terms beside the regular pixel-level
MSE loss: (a) the perceptual loss function was defined on the
intermediate feature representation of a pretrained network
[82] in the form of `1 distance. (b) the texture matching loss is
used to match the texture of low and high resolution images
and is quantified as the `1 loss between gram matrices com-
puted from deep features. The whole network architecture
is adversarialy trained where the SR network’s goal is to
fool a discriminator network.

The architecture used by EnhanceNet is based on the
Fully Convolutional Network [83] and residual learning
principle [29]. Their results showed that although best PSNR
is achieved when only a pixel level loss is used, the ad-
ditional loss terms and an adversarial training mechanism
lead to more realistic and perceptually better outputs. On
the downside, the proposed adversarial training could cre-
ate visible artifacts when super-resolving highly textured
regions. This limitation was addressed further by the recent
work on high perceptual quality SR [84].

3.9.3 SRFeat

[85] is another GAN-based Super-Resolution algorithm
with Feature Discrimination. This work focuses on the re-
alistic perception of the input image using an additional
discriminator that assists the generator to generate high-
frequency structural features rather than noisy artifacts. This
requisite is achieved by distinguishing between the features
of synthetic (machine generated) and the real images. This
network uses 9⇥9 convolutional layer to extract features.
Then, residual blocks similar to [14] with long-range skip
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3.9 GAN Models

Generative Adversarial Networks (GAN) [79], [80] employ
a game-theoretic approach where two components of the
model, namely a generator and discriminator, try to fool the
later. The generator creates SR images that a discriminator
cannot distinguish as a real HR image or an artificially
super-resolved output. In this manner, HR images with
better perceptual quality are generated. The corresponding
PSNR values are generally degraded, which highlights the
problem that prevalent quantitative measures in SR litera-
ture do not encapsulate perceptual soundness of generated
HR outputs. The super-resolution methods [47], [81] based
on the GAN framework are explained next.

3.9.1 SRGAN

Single image super-resolution by large up-scaling factors
is very challenging. SRGAN [47] proposed to use an ad-
versarial objective function that promotes super-resolved
outputs that lie close to the manifold of natural images.
The main highlight of their work is a multi-task loss for-
mulation that consists of three main parts: (1) a MSE loss
that encodes pixel-wise similarity, (2) a perceptual similarity
metric in terms of a distance metric defined over high-level
image representation (e.g., deep network features), and (3)
an adversarial loss that balances a min-max game between
a generator and a discriminator (standard GAN objective
[79]). The proposed framework basically favors outputs that
are perceptually similar to the high-dimensional images.
To quantify this capability, they introduce a new Mean
Opinion Score (MOS) which is assigned manually by hu-
man raters indicating bad/excellent quality of each super-
resolved image. Since other techniques generally learn to
optimize direct data dependent measures (such as pixel-
errors), [47] outperformed its competitors by a significant
margin on the perceptual quality metric.

3.9.2 EnhanceNet

This network design focuses on creating faithful texture
details in high-resolution super-resolved images [81]. A key
problem with regular image quality measures such as PSNR
is their noncompliance with the perceptual quality of an
image. This results in overly smoothed images that do not
have sharp textures. To overcome this problem, EnhanceNet
used two other loss terms beside the regular pixel-level
MSE loss: (a) the perceptual loss function was defined on the
intermediate feature representation of a pretrained network
[82] in the form of `1 distance. (b) the texture matching loss is
used to match the texture of low and high resolution images
and is quantified as the `1 loss between gram matrices com-
puted from deep features. The whole network architecture
is adversarialy trained where the SR network’s goal is to
fool a discriminator network.

The architecture used by EnhanceNet is based on the
Fully Convolutional Network [83] and residual learning
principle [29]. Their results showed that although best PSNR
is achieved when only a pixel level loss is used, the ad-
ditional loss terms and an adversarial training mechanism
lead to more realistic and perceptually better outputs. On
the downside, the proposed adversarial training could cre-
ate visible artifacts when super-resolving highly textured
regions. This limitation was addressed further by the recent
work on high perceptual quality SR [84].

3.9.3 SRFeat

[85] is another GAN-based Super-Resolution algorithm
with Feature Discrimination. This work focuses on the re-
alistic perception of the input image using an additional
discriminator that assists the generator to generate high-
frequency structural features rather than noisy artifacts. This
requisite is achieved by distinguishing between the features
of synthetic (machine generated) and the real images. This
network uses 9⇥9 convolutional layer to extract features.
Then, residual blocks similar to [14] with long-range skip
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Figure 2.12 – Some examples of test images from Se5 [37], Set14 [38], BSD100 [58], Ur-
ban100 [59], DIV2K [60], Manga109 [61], DPED [62], and RealSR [63] datasets, used for training
and evaluations.

instead of the absolute probability that input images are real or fake. The authors show that

the proposed method results in recovering more detailed textures.

2.3 Datasets

This section presents some of the most famous and publicly available benchmark datasets

introduced by the SR community. Some of the crucial ones, such as Set5 , Set14, DIV2K, and

RealSR are repeatedly used in this thesis for both qualitative and quantitative evaluations, as

well as user studies. Figure 2.12 contains some representative images from these datasets.

• Set 5 [37] is probably the most known dataset in SR; most of its images can be seen in

many SR articles used used for comparing and evaluating their proposed algorithms.

This dataset contains only five famous images: a baby, a bird, a butterfly, a head, and a

woman. These images are known by the same names in computer vision articles.

• Set 14 [38] is considered as a complementary test set to Set5, which consists of 14 more

images. Its relatively low number of images made this dataset very popular for SR

qualitative and quantitative evaluations.

• BSD100 [58] or the Berkeley Segmentation Dataset consists of 100 test images, including

different categories, such as buildings, animals, landscapes, food, humans, plants, etc.

• Urban100 [59] is a unique dataset because of its specific focus on the photographs of

human-made structures, e.g., buildings, towers, windows, etc. Images from urban100
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are very convenient for comparing edges and patterns in reconstructed images due to

their specific nature.

• DIV2K [60] is a more recent SR dataset containing relatively higher quality images than

previously mentioned datasets; all images have a 2K resolution. Their images are divided

into three sub-groups of training (800 images), testing (100 images), and validation (100

images) sets. Their test set’s ground-truth is not publicly available, but their training

and validation sets are widely used by recent SR works.

• Manga109 [61] is a dataset consisting of 109 art images, mostly created for comics

or graphic novels, by professional Japanese. These mangas were commercially made

available to the public only from the 1970s. The permission for the use of this dataset is

only granted for academic purposes and non-profit organizations.

• DPED [62] is a new large-scale dataset presented in 2017 and consists of real photos

captured from three types of smartphones and one high-end reflex camera. The goal of

introducing such a dataset was to fill the gap between the quality of images taken by

smartphone cameras and superior quality images taken by professional digital single-

lens reflex (DSLR) cameras. To capture images simultaneously from different devices,

but from the same scenes, four different devices were mounted on a single tripod and

were activated remotely by a wireless controller (Figure 2.13.a). The smartphones used

in this setup are iPhone 3GS, BlackBerry Passport, Sony Xperia Z, and the professional

camera is Canon 70D DSLR. An example of images taken from the same scene but with

different cameras is shown in Figure 2.13.b. These images were then re-aligned by using

SIFT [64] descriptor matching, followed by a non-linear transform and further cropping,

to address the problem of misalignment due to images taken from a slightly shifted

position. In total, over 22K photos are available in this dataset.

• RealSR [63] is one of the few datasets with real pairs of low and high-resolution images

(images of the same scenes with different resolutions). In all previously presented

datasets, the low-resolution images are generated by applying a uniform and simple

degradation such as bicubic downsampling to their original images. In the RealSR

dataset, LR and HR images are generated by taking two camera pictures of the same

scene and changing the camera’s focal length between the two pictures. Hence, both are

real images, but with the RealSR LR being degraded with the degradation from changing

the camera’s focal length (zooming out). In total, 559 images (459 images for training

and 100 images for testing) exists in the latest version of RealSR. Figure 2.14 illustrates

the registration process to create low and high-resolution pairs by only changing the

focal length of the camera. We present the importance of this dataset, as well as the

problem of real-world SR in Section 2.5 and Chapter 6, in more detail.
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(a)

(b)

Figure 2.13 – DPED dataset [62], (a) Setup used to capture images synchronously by different
hardware, (b) Examples of images from the same scenes, taken by four different cameras.
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Figure 3. Illustration of our image pair registration process.

SIFT [31] cannot always achieve pixel-wise registration, which is necessary for our dataset. To obtain accurate
image pair registration, we develop a pixel-wise registration algorithm which simultaneously considers luminance
adjustment. Denote by IH and IL the HR image and the LR image to be registered, our algorithm minimizes the
following objective function:

min
⌧

||↵C(⌧ � IL) + � � IH ||pp, (4)

where ⌧ is an affine transformation matrix, C is a cropping operation which makes the transformed IL have the
same size as IH , ↵ and � are luminance adjustment parameters, || · ||p is a robust Lp-norm (p  1), e.g., L1-norm.

The above objective function is solved in an iterative manner. At the beginning, according to Eq. (3), the
⌧ is initialized as a scaling transformation with scaling factor calculated as the ratio of two focal lengths. Let
I0L = C(⌧ � IL). With I0L and IH fixed, the parameters for luminance adjustment can be obtained by ↵ =
std(IH)/std(I0L) and � = mean(IH)�↵mean(I0L), which can ensure I0L having the same pixel mean and variance
as IH after luminance adjustment. Then we solve the affine transformation matrix ⌧ with ↵ and � fixed. Ac-
cording to [37, 58], the objective function w.r.t. ⌧ is nonlinear, which can be iteratively solved by a locally linear
approximation:

min
�⌧

||↵C(⌧ � IL) + � + ↵J�⌧ � IH ||pp, (5)

where J is the Jacobian matrix of C(⌧ � IL) w.r.t. ⌧ , and this objective function can be solved by an iteratively
reweighted least square problem (IRLS) as follows [8]:

min
�⌧

||w � (A�⌧ � b)||22, (6)

where A = ↵J, b = IH � (↵C(⌧ � IL) + �), w is the weight matrix and � denotes element-wise multiplication.
Then we can obtain:

�⌧ = (A0diag(w)2A)�1A0diag(w)2b, (7)

and ⌧ can be updated by: ⌧ = ⌧ + �⌧ .
We iteratively estimate the luminance adjustment parameters and the affine transformation matrix. The opti-

mization process converges within 5 iterations since our prior information of the scaling factor provides a good
initialization of ⌧ . After convergence, we can obtain the aligned LR image as IA

L = ↵C(⌧ � IL) + �.

4. Laplacian Pyramid based Kernel Prediction Network

In Section 3, we have constructed a new real-world super-resolution (RealSR) dataset, which consists of pixel-
wise aligned HR and LR image pairs {IH , IA

L} of size h ⇥ w. Now the problem turns to how to learn an effective
network to enhance IA

L to IH . For LR images in our RealSR dataset, the blur kernel varies with the depth in a

6

Figure 2.14 – The registration process of RealSR dataset; creating low-resolution and high-
resolution image pairs by changing the focal length of the camera. Figure taken from [63].
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2.4 Evaluation metrics

2.4.1 Full-reference distortion measures

The most popular examples for mathematical distortion measures are the PSNR and the SSIM:

PSNR

Peak Signal to Noise Ratio (PSNR) is most commonly used to measure the quality of recon-

struction in many computer vision tasks such as compression, image inpainting, etc. PSNR is

mostly defined by using the mean squared error (MSE):

PSN R = 10 . log10

(
max(I )2

LMSE (I ′, I )

)
, (2.14)

where max(.) is the function to find the maximum possible pixel value of the image, and

LMSE denotes the means squared error between reconstructed image I ′ and ground truth

image I (2.7).

SSIM

The Structural Similarity Index (SSIM) is another commonly used full reference metric to

measure the similarity between two images and estimate the perceived quality of SR. The

Full-reference term refers to the requirement of the original images as the reference to judge

the quality of the reconstructed image. The SSIM is calculated on various spatial windows

of the image and is based on three independent comparison measurements between the

ground-truth image and the reconstructed image: 1- structure, 2- luminance, and 3- contrast.

The final SSIM is then calculated as a weighted combination of these measures.

2.4.2 Learning-based metrics

As it is emphasized in [2, 19, 41], distortion metrics such as SSIM and PSNR, previously

discussed in this thesis, are not directly correlated to the human perception of image quality;

they show that GAN-based super-resolved images could have higher errors in terms of these

metrics while still generating more appealing and realistic images. Therefore, in this section we

present further attempts to propose more reliable metrics for SR and image quality assessment,

based on learning. These approaches range from full-reference measurements such as the

LPIPS metric to non-reference methods such as NIQE and PI.
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LPIPS

The Learned Perceptual Image Patch Similarity (LPIPS) metric [65] is recently introduced as

a reference-based image quality assessment metric, which seeks to estimate the perceptual

similarity between two images. This metric uses linearly calibrated off-the-shelf deep classifi-

cation networks trained on the very large Berkeley-Adobe Perceptual Patch Similarity (BAPPS)

dataset [65], including human perceptual judgments. However, as [66] also emphasizes, LPIPS

has a similar trend as distortion-based metrics, e.g., SSIM, and would not necessarily imply

photo-realistic images.

NIQE

Naturalness Image Quality Evaluator (NIQE) is a no-reference image quality score proposed

by [67]. This metric is an entirely blind image quality assessment. It only benefits from

statistical regularities learned from natural images and measurable deviations from these

regularities to estimate an index of quality. In particular, at the test time, this approach fits

a set of local features, extracted from predicted images, into a multivariate Gaussian (MVG)

model. The quality score is then calculated by finding the distance between MVG’s parameters

and the reference MVG’s parameters learned from a dataset of natural images.

PI

The Perception Index (PI) is proposed by the 2018 PIRM challenge [68] to introduce a more

correlated metric with human perception of reconstruction quality. Their proposed metric

is a linear combination of MA [69] and NIQE measurements. MA is a non-reference metric,

regressing three types of low-level statistical features extracted from predicted images to

estimate the perceptual quality. PI can be formulated as follows:

PI = 1

2
((10−M A) + N IQE) (2.15)

The proposed metric is claimed to be more reliable in terms of representing the perceptual

quality of the images by estimating the Spearman’s correlation coefficients between PI and the

ratings from 35 human observers.

2.4.3 User study

Despite various metrics proposed for SR quality assessment, we emphasize that finding a

reliable measurement is still an open challenge. Currently, the only way to reflect superior

reconstruction quality is through the mean opinion score (MOS) or user studies.

Different user study designs were proposed in recent works. In general, participants are either
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LR’ HR 
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Down-

sampling 
LR’ HR’ 

SR 
decoder HR <> 

Step 1: generating LR and HR pairs Step 2: Optimization process 

Figure 2.15 – The pipeline of conventional supervised approaches for image super-resolution;
during the first step, a dataset of low and high-resolution pairs is created using bicubic down-
sampling kernel. In the second step, a CNN-based decoder is trained in a supervised fashion
using the image dataset generated during the first step.

asked to choose their preferred choice among multiple images generated by different SR

methods or assign an integral score based on their perception of quality, e.g., rating from one

(for the worst quality) to five (for an excellent quality). This study can be done in controlled

ways (mostly in person, with a piece of specific equipment and fixed conditions), or in a

crowdsourcing way with less controlled conditions (but more participants).

In Chapter 4 and 6, include our own proposed procedure in detail to perform SR user studies.

2.5 Towards real-world super-resolution

In this section, we present the challenge of the real-world SR and some of the important

solutions proposed for this solution.

2.5.1 The challenge

Most of the existing state-of-the-art image SR methods are based on the assumption of having

a pre-defined and known downsampling operator such as the bicubic kernel. In other words,

they build a simulated dataset by using this uniform degradation (bicubic downsampling) and

train their method by these synthetic low and high-resolution image pairs (Figure 2.15).

To validate such approaches quantitatively, different synthetic test sets have been created

by the same approach and uniform degradation. Although current methods proved to have

outstanding results on such test sets, a significant drop in reconstruction quality has been

observed in real applications, where the downsampling kernels were unknown. As it can be

observed in Figure 2.16, this mismatch between the predefined kernel and real varying kernels

(depending on camera hardware, motion, noises, etc.) causes undesired artifacts at the output

level.
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Real-world application 
(original LR image) 

Upsampled bicubically 
(×4) 

RCAN, trained on bicubically 
downsampled images (×4) 

RCAN, trained on real 
LR-HR pairs (×4) 

Figure 2.16 – The real-word super-resolution challenge; comparing images generated by
bicubic kernel, original RCAN [35] method trained on artificially downsampled images, and
an extended version of RCAN trained on more realistic images of RealSR dataset [63].

2.5.2 Multiple-degradation handling approaches

To overcome the real-world degradation variations, different approaches have been proposed

in recent years; in the following, we outline some of the essential solutions:

Unsupervised / Weakly-supervised SR

To cope with the real-world SR problem and real LR-HR pairs, researchers focused more on

unsupervised and weakly-supervised approaches, in which unpaired low and high-resolution

pairs are sufficient to learn SR. An example of unsupervised approaches for SR is zero-shot SR

(ZSSR) [70]. The authors propose to estimate the degradation kernel from a single image by

using the proposed method by [71] at the test time and then use this kernel as well as some

augmentation techniques to generate a small training set. Finally, a CNN-based network is

trained specifically for this test image and predicts the final image.

[72] proposes a weakly supervised approach in two steps: 1- Learning an HR to LR mapping by

GANs and in an unpaired manner, then, 2- Training another generator to learn the mapping

from LR to HR, based on paired images generated by the first step. Authors validated this two-

step method for the face SR task and shown significant increases in the quality of reconstructed

images for real-world face images comparing to previous state-of-the-art works.

CinCGAN, proposed by [45], is another example of weakly supervised SR approaches. In

this attempt, the authors propose a cycle-in-cycle SR network to learn a round-trip mapping

consisting of mapping a real LR image into a noise-free LR image, then from noise-free LR to

HR, and finally mapped back again into the real (noisy) LR space. Their training objectives

include adversarial losses for each domain to match the target domain distribution and

mapping validity.

29



Chapter 2. Brief Image Super-Resolution Review

Real-world SR through ‘real’ data

As mentioned previously, there have been several attempts to create realistic low and high-

resolution images pairs, such as a two-step approach of [72], and CinCGAN [45]. Although

these approaches could improve the reconstruction quality of real SR, the datasets created by

them are still synthetic and not the same as real low-resolution images. In the remainder of

this section, we present some work that uses natural images for both high and low-resolution

images to overcome the real-world SR issue.

[45] proposes City100 dataset by studying the relationships between image resolution and

field-of-view of camera hardware and proposing novel data acquisition strategies (using DSLR

and smartphone cameras) to conduct a real-world dataset. This dataset set consists of only

100 image pairs. [73] uses optical zoom of cameras and solves the misalignment problem of

captures images by a contextual bilateral loss, to create another real high and low resolutions

pairs, namely SR-RAW dataset. Authors validate their approach in the specific application

of ×4 and ×8 computational zooming. Finally, RealSR [73] trains its network on a dataset

consisting of 559 real LR and HR images, built by taking two pictures of the same scene and

changing the camera’s focal length hardware between the two pictures. More detail of this

dataset is presented in Section 2.3.

To conclude this part, we should emphasize that works benefiting from ‘real’ data have experi-

mentally demonstrated the superiority, in terms of the reconstruction quality, compared to

using synthetic images for real-world SR problem.
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3 Extracting Image Context by Multi-
Task Learning

Knowing the context of an image helps humans easily recognize different types of objects and

textures in a scene. As emphasized in Chapter 1, this knowledge has already been proven to

be beneficial for image generation and super-resolution tasks, and shown to result in better

reconstruction quality, if used appropriately [2, 49, 74]. However, it has very limited practi-

cality as it requires such contextual information as an additional input at the test time. This

information is usually extracted by an additional segmentation/classification network and

injected into the final network as semantic maps to guide the reconstruction process. In this

chapter, we study the benefits of contextual information in more detail and aim to expand

this idea by addressing its main limitations; we focus on proving that a single SR decoder can

learn this categorical and contextual knowledge by using the concepts of multitask learning.

In particular, we demonstrate that a shared representation learned for two specific tasks

-semantic segmentation and super-resolution in this study, can significantly improve each

task’s quality, particularly the SR task in this work.

In the following, this chapter is presented in the form of an article. The research and all

experiments were performed by the first author (the author of this thesis). The manuscript was

also written by him and was further revised by other authors. The article was published in Neu-

rocomputing Journal (Volume 398, 2020, Pages 304-313 DOI: 10.1016/j.neucom.2019.07.107),

with the original title of Benefiting from Multitask Learning to Improve Single Image Super-

Resolution.
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Abstract

Despite significant progress toward super resolving more realistic images by deeper con-

volutional neural networks (CNNs), reconstructing fine and natural textures still remains a

challenging problem. Recent works on single image super resolution (SISR) are mostly based

on optimizing pixel and content wise similarity between recovered and high-resolution (HR)

images and do not benefit from recognizability of semantic classes. In this chapter, we intro-

duce a novel approach using categorical information to tackle the SISR problem; we present a

decoder architecture able to extract and use semantic information to super-resolve a given

image by using multitask learning, simultaneously for image super-resolution and semantic

segmentation. To explore categorical information during training, the proposed decoder

only employs one shared deep network for two task-specific output layers. At run-time only

layers resulting HR image are used and no segmentation label is required. Extensive percep-

tual experiments and a user study on images randomly selected from COCO-Stuff dataset

demonstrate the effectiveness of our proposed method and it outperforms the state-of-the-art

methods.

Keyword Single Image Super-Resolution, Multitask Learning, Recovering Realistic Textures,

Semantic Segmentation, Generative Adversarial Network

3.1 Introduction

Single image super-resolution (SISR) has many practical computer vision applications [75, 76,

77, 78], which aims at recovering high-resolution (HR) images from a set of prior examples of

paired low-resolution (LR) images. Although many SISR methods have been proposed in the

past decade, recovering high-frequency details and realistic textures in a plausible manner are

still challenging. Having said that, this problem is ill-posed, meaning each LR image might

correspond to many HR images and the space of plausible HR images scales up quadratically
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Figure 3.1 – The proposed single image super-resolution using multitask learning. This net-
work architecture enables reconstructing SR images in a content-aware manner; during
training (blue arrows), an additional objective function for semantic segmentation is used to
force the SR to learn categorical information. At run-time we only reconstruct the SR image
(orange arrows). In this work, we prove that learning semantic segmentation task in parallel
with SR task can improve the reconstruction quality of SR decoder. Results from left to right:
bicubic interpolation, SRResNet, SRGAN [19], and SRSEG (this work). Best viewed in color.

with the image magnification factor.

To tackle such an ill-posed problem numerous deep learning methods have been proposed

to learn mappings between LR and HR image pairs [12, 16, 25, 79]. These approaches use

various objective functions in a supervised manner to reach the current state-of-the-art.

Conventional pixel-wise Mean Squared Error (MSE) is the commonly used loss to minimize

pixel-wise similarity of the recovered HR image and the ground truth in an image space.

However, [19, 41] show that lower MSE does not necessarily reflect a perceptually better SR

result. Therefore, [80] proposed perceptual loss to optimize a SR model in a feature space

instead of pixel space. Significant progress has been recently achieved in SISR by applying

Generative Adversarial Networks (GANs) [2, 19, 81]; GANs are known for the ability to generate

more appealing and realistic images and have been used in different image synthesis-based

applications.

3.1.1 Does semantic information help?

Despite significant progress toward learning deep models to super resolve realistic images, the

proposed approaches still cannot fully reconstruct realistic textures; intuitively, it is expected

to have a better reconstruction quality for common and known types of textures, e.g., ground

soil and sea waves, but experiments show that the reconstruction quality is almost the same

for a known and an unknown type of texture, e.g., a fabric with a random pattern. Although

loss functions used in image SR, e.g., perceptual and adversarial losses, generate appealing
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super-resolved images, they try to match the global level statistics of images without retaining

the semantic details of the content. [2] shows that variety of different HR image patches could

have very similar LR counterparts, and as a consequence, similar SR images are reconstructed

for categorically different textures using current state-of-the-art methods. They also prove

that more realistic textures could be recovered by using an additional network to obtain prior

knowledge and afterward use it as a secondary input in SR decoder.

In this work, we prove that a single SR decoder is capable of learning this categorical knowledge

by using multitask learning. As [82] emphasizes, multitask learning improves generalization

by using the domain information contained in the training signals of related tasks. This im-

provement is the result of learning tasks in parallel while using a shared representation; in our

case, what is learned for semantic segmentation task can help improving the quality of SR task

and vice versa.

3.1.2 Our contribution

In this chapter, we propose a novel architecture to reconstruct SR images in a content-aware

manner, without requiring an additional network to predict the categorical knowledge. We

show that this can be done by benefiting from multitask learning simultaneously for SR and

semantic segmentation tasks. An overview of our proposed method is shown in Figure 3.1. We

add an additional segmentation output in a way that the same SR decoder learns to segment

the input image and generate a recovered image. We also introduce a novel boundary mask to

filter out unrelated segmentation losses related to imprecise segmentation labels. The seman-

tic segmentation task forces the network to learn the categorical knowledge. These categorical

priors learned by the network are characterizing the semantic classes of different regions in an

image and are the key to recover more realistic textures. Our approach outperforms quality of

recovering textures of state-of-the-art algorithms in both qualitative and user studies manner.

Our contributions can be summarized as follows:

• We propose a framework that uses segmentation labels during training to learn a CNN-

based SR model in a content-aware manner.

• We introduce a novel boundary mask to have an additional spatial control over categori-

cal information within training examples and their segmentation label, and filter out

their irrelevant information for SR task.

• Unlike existing approaches for content-aware SR, the proposed method does not re-

quire any semantic information at the test time. Therefore, neither segmentation label

nor additional computation is required at test time while benefiting from categorical

information.
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• Our method is trained end-to-end and is easily reproducible.

• Our experimental results, including an extensive user study, prove the effectiveness of

using multitask learning for SISR and semantic segmentation and show that SISR of

high perceptual quality can be achieved by using our proposed objective function.

In the remainder of this chapter, first, in Section 3.2, we review the related literature. Then, in

Section 3.3, we give a detailed explanation about our design including the used dataset and our

training parameters. In Section 3.4 we present experimental results and computational time,

and discuss the effectiveness of our proposed approach. Finally, we conclude this chapter in

Section 3.5 and also mention the future research directions.

3.2 Related work

3.2.1 Single image super-resolution

SISR has been widely studied for decades and many different approaches have been proposed;

from simple methods such as bicubic interpolation and Lanczos resampling [83], to dictionary

learning [84] and self-similarity [59, 85] approaches. With the advances of deep CNNs, the

state-of-the-art SISR methods have been built based on end-to-end deep neural networks and

achieved significantly superior performances, thus we only review relevant recent CNN-based

approaches.

An end-to-end CNN-based approach was proposed by [11] to learn the mapping of LR to HR

images. The concept of residual blocks and skip-connections [23, 25] were used by [19] to

facilitate the training of CNN-based decoders. A laplacian pyramid network was presented

in [28] to progressively reconstruct the sub-band residuals of high-resolution images. The

choice of the objective function plays a crucial role in the performance of optimization-based

methods. These works used various loss functions; the commonly used loss term is the pixel-

wise distance between the super-resolved and the ground-truth HR images for training the

networks [11, 12, 35, 41]. However, using those functions as the only optimization target leads

to blurry super-resolved images due to the pixel-wise average of possible solutions in the pixel

space.

A remarkable improvement in terms of the visual quality in SISR is the so-called perceptual

loss [80]. This loss function benefits from the idea of perceptual similarity [39] and seeks

to minimize the distance loss over feature maps extracted from a pre-trained network, e.g.,

VGG [40]. In a similar work, [86] proposes contextual loss to generate images with natural

image statistics, which focuses on the feature distribution rather than merely comparing the

appearance.

More recently, the concept generative adversarial network (GAN) [46] is used for image SR
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task, which achieves state-of-the-art results on various benchmarks in terms of reconstructing

more appealing and realistic images [2, 19, 41]. The intuition behind its excellent performance

is that GAN drives the image reconstruction towards the natural image manifold producing

perceptually more convincing solutions. Having said that, it also uses a discriminator to

distinguish between the generated and the original HR images, which is found to produce

more photo-realistic results.

3.2.2 Super-resolution faithful to semantic classes

Semantic information has been used in different studies for variant tasks; [87] proposed a

method to benefit from semantic segmentation for video deblurring. For image generation,

[74] used semantic label to produce an image with photographic appearance. [49] used the

same idea to perform image to image translation. The SISR method proposed by [2] is more

relevant to our work. They use an additional segmentation network to estimate probability

maps as prior knowledge and use them in existing SR networks. Their segmentation network

is pre-trained on the COCO dataset [88] and then fine-tuned on the ADE dataset [89]. They

show that it is possible to recover textures faithful to categorical priors estimated through the

pre-trained segmentation network, which generates intermediate conditions from the prior

and broadcasts the conditions to the SR network.

However, in this chapter, we do not have an additional segmentation network, instead our

SR method is built on multitask end-to-end deep networks with the shared feature extraction

parameters to learn semantic information. The intuition behind this proposed method is

that the model can exploit features for both tasks, such a model, during training, is forced to

explore categorical information while super-resolving the image. Therefore, the segmentation

labels would be used only during the training phase and no additional segmentation labels

would be required as the input at run-time.

3.3 Multitask learning for image super-resolution

Our ultimate goal is to train a SISR in a multitask manner, simultaneously for image SR and

semantic segmentation. Our proposed SR decoder only employs one shared deep network

and keeps two task-specific output layers during training to force the network learn semantic

information. If the network converges for both tasks, we can be sure that the parameters of

the shared feature extractor have explored categorical information while super-resolving the

image. In this section we present our proposed architecture and the objective function used

for training. We also introduce a novel boundary mask used to simplify the segmentation task.
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Figure 3.2 – Architecture of the decoder. We train the SR decoder (upper part) in a multitask
manner by introducing a segmentation extension (lower part). Feature extractor is shared
between both super-resolution and segmentation tasks. The segmentation extension is only
available during the training process and no segmentation label is used at the run-time. In
this schema, k, n and s correspond respectively to kernel size, number of feature maps, and
strides.

3.3.1 Architecture

Figure 3.2 shows the multitask architecture used during training; the upper part (first row)

shows SR generator, from the LR to HR image, while the lower part (second row) is the exten-

sion used to predict segmentation class probabilities. The role of segmentation extension

layers of our design is to force the feature extractor parameters learn categorical informa-

tion. These non-shared layers, generating segmentation probabilities, are not used during SR

run-time. Each part is presented in more details as follows:

• SR generator The generator network is a feed-forward CNN; the input image I LR is

passed through a convolution block followed by LeakyReLU activation layer. The output

is subsequently passed through 16 residual blocks with skip connections. Each block

has two convolutional layers with 3×3 filters and 64 feature maps, each one followed by

a batch normalization and LeakyReLU activation. The output of the final residual block,

concatenated with the features of the first convolutional layer, is inputted through two

upsampling stages. Each stage doubles the input image size. Finally, the result is passed

through a convolution stage to get the super-resolved image I SR . In this study, we only

investigate a scale factor of 4, but depending on the desired scaling, the number of

upsampling stages can be changed.

• Segmentation extension The segmentation extension uses the output of the SR gen-

erator feature extractor part, just before the first upsampling stage, and convert it to

a segmentation probability by passing it through two convolutional layers. The com-
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Low-Res Image 
(a)

Label Label (6x Zoomed) 

(b)

Figure 3.3 – An example showing the accuracy and resolution of a pixel-wise semantic seg-
mentation label (b) of a low resolution image (a). As both segmentation and super-resolution
networks share layers, the inaccurate segmentation labels result inaccurate edges in super-
resolved images.

putational complexity of this stage needs to be as limited as possible, as we wish that

shared-layers with SR generator learn categorical information and not only layers from

segmentation extension.

The parameters of the generator, for both segmentation and SR tasks, are obtained by min-

imizing the Ltot al loss function presented in Section 3.3.3. This loss function consists also

of a GAN [46]-based adversarial loss, which requires a discriminator network. This network

discriminates real HR images from generated SR samples. We define our discriminator archi-

tecture similar to [19]; it consists of multiple convolutional layers with the kernels increasing

by a factor of 2 from 64 to 512. We use Leaky ReLU and strided convolutions to reduce the

image dimension while doubling the number of features. The resulting 512 feature maps are

followed by two dense layers. Finally, the image is classified as real or fake by a final sigmoid

activation function.

3.3.2 Boundary mask

Although segmentation labels of available datasets, e.g., [90], to be used for segmentation task,

are created by an expensive labeling effort, they still lack of precision close to boundaries of

different classes as can be seen in Figure 3.3. Our experiments show that as shared features

are used for generating the SR image and segmentation probabilities, this lack of boundaries’

precision in segmentation labels affects the edges in the SR image too. Therefore, we use a

novel boundary mask (Mbound ar y ) to filter out any segmentation losses from areas close to

object boundaries from training images.

In order to generate such a boundary mask, first, we calculate the derivative of the segmen-

tation label to get the boundaries of different classes in the low resolution image. Then, we

compute the dilation of results with a disk of size d1 to create a thicker strip around edges of

each class. An example of converting the segmentation label to the boundary mask is shown

in Figure 3.4. In Section 3.4 the effectiveness of using such boundary masks is shown.
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Boundary 
detection + 

Morph. 
Operators 

Figure 3.4 – The boundary mask generation. The black pixels of the results represent areas
close to the edges while white pixels could be either background or foreground.

3.3.3 Loss function

We define the Ltot al as a combination of pixel-wise loss (LMSE ), perceptual loss (Lv g g ),

adversarial loss (Lad v ), and segmentation loss (Lseg ) filtered by our novel boundary mask

(Mbound ar y ) presented in Section 3.3.2. The overall loss function is given by:

Ltot al =αLMSE +βLv g g +γLad v +δMbound ar y .Lseg (3.1)

where α, β, γ, and δ are the corresponding weights of each loss term used to train our network.

In the following, we present each term in detail:

• Pixel-wise loss The most common loss in SR is the pixel-wise Mean Squared Error

(MSE) between the original image and the super-resolved image in the image space

[19, 41, 79]. However, using it alone mostly results in finding pixel-wise averages of

plausible solutions, which seems over-smoothed with poor perceptual qualities and

lack of high-frequency details such as textures [39, 91, 92].

• Perceptual loss [41] and [19] used the idea of measuring the perceptual similarity by

computing the distance of feature spaces of the images. First, both HR and SR images

are mapped into a feature space by a pre-trained model, VGG-16 [40] in our case. Then,

the perceptual loss is calculated by the L2 distance and using all 512 feature maps of

ReLU 4-1 layer of the VGG-16.

• Adversarial loss Inspired by [19] we add the discriminator component of the mentioned

GAN architecture to our design. This encourages our SR decoder to favor solutions that

resolve more realistic and natural images, by trying to trick the discriminator network.

It also results perceptually superior solutions to solutions obtained by minimizing

pixel-wise MSE and perceptual loss.

• Segmentation loss While using segmentation for SR application is new for the commu-

nity, semantic segmentation as a stand-alone task has been investigated for years. The

most commonly used loss function for the task of image segmentation is a pixel-wise

cross entropy loss (or log loss) [93, 94, 95]. In this work, we also use the cross entropy

loss function to examine each pixel individually and compare the class predictions
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(depth-wise pixel vector) to the one-hot encoded label; it measures the performance of

a pixel-wise classification model whose output is a probability value between zero and

one for each pixel and category.

3.3.4 Dataset

Training the proposed network in a supervised manner requires a considerable number of

training examples with ground-truths for both semantic segmentation and super resolution

tasks. Therefore the choices of datasets are limited to the ones with available segmentation

labels. We use a random sample of 60 thousand images from the COCO-Stuff database [90],

which contains semantic labels for 91 stuff classes for segmentation task. We only choose

images from five main background classes to be able to focus on texture quality and prove the

concept: sky, ground, buildings, plants, and water. Each one of them contains multiple sub

classes in COCO-Stuff dataset, e.g., water contains seas, lakes, rivers, etc. and plants contain

trees, bushes, leaves, etc., but in this work we consider them as a single class. Any other object

or background existing in an image is labeled as "others" (the sixth class). More than 12 thou-

sand images from each category were used to train our network. We obtained the LR images for

the SR task by downsampling the HR images of the same database using the MATLAB imresize

function with the bicubic kernel and downsampling factor 4 (all experiments were performed

with a scaling factor of ×4). For each image, we crop a random 82×82 HR sub image for training.

3.3.5 Training and parameters

In order to successfully converge to parameters compatible for both SR and the segmentation

task, the training was done in different steps; first, the generator was trained for 25 epochs

with only pixel-wise mean squared error as the loss function. Then the segmentation loss

function was added and training continued for 25 more epochs. Finally, the loss function

presented in Section 3.3.3 (including adversarial and perceptual losses) was used for 55 more

epochs. The weights of each term in loss function presented in Eq. A.1 were chosen as follows:

as proposed by [19], α, β, and γ were respectively fixed to 1.0, 2×10−6, and 1×10−3. δ were

tuned and fixed to 0.8. The Adam optimizer [96] was used for all the steps. The learning rate

was set to 1×10−3 and then was decayed by a factor of 10 every 20 epochs. We also alternately

optimized the discriminator with the setting proposed by [19].

As explained previously, to not consider a segmentation prediction error close to boundaries

of objects/backgrounds, the segmentation loss is filtered by a boundary mask as introduced in

Section 3.3.2. Figure 3.5 shows the segmentation prediction results of two training images; the

artifacts close to boundaries (imprecise edges and black strips around them) are the result of

applying a boundary mask. This mask makes the network not consider the class probabilities

around boundaries and have a random prediction on those areas.
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Figure 3.5 – Two examples of segmentation prediction results. The artifacts close to boundaries
(imprecise edges and black strips around them) are the result of applying boundary mask in a
way that the generator does not focus on class probabilities around boundaries and have a
random prediction on those areas.

3.4 Results and discussion

In this section, we first investigate the effectiveness of using the presented boundary mask in

the proposed approach. Then, we evaluate and discuss the benefits of introducing multitask

learning for SR task by performing qualitative experiments, an extensive user study, and an

ablation study. Finally, we discuss the computational time of the proposed approach.

3.4.1 Effectiveness of boundary masks

As explained previously in Section 3.3.2 in this work we use a novel boundary mask (Mbound ar y )

to filter out all segmentation losses from areas close to object boundaries during training. The

goal of this masking is to avoid forcing SR network to learn imprecise boundaries existing in

segmentation labels. Figure 3.6 shows the SR results comparing the effect of segmentation

mask; comparing Figure 3.6.c to 3.6.d shows the improvement in reconstructing sharper edges

using segmentation with mask rather than without mask. In this example, both Figures 3.6.c

and 3.6.d have the closest textures to the ground-truth comparing to Figure 3.6.b, however, the

object in the super-resolved image without using segmentation information has the sharpest

edges; this can be explained by the fact that we only considered background categories (“sky”,

“plant”, “buildings”, “ground”, and “water”) because of their specific appearance and to prove

the concept. All type of objects, e.g., giraffe in this example, are included in “Other” category,

therefore, no specific pattern is expected to be learnt for this category. As a future work, more

object categories can be added to the training examples.

3.4.2 Qualitative results

Standard benchmarks such as Set5 [37], Set14 [38], and BSD100 [58] mostly do not contain the

background categories studied in this research, therefore, first we evaluate our method on a

test set consisting of random images of the COCO-stuff dataset [90].

Figure 3.7 contains visual examples comparing different models. In order to have a fair

comparison, we re-trained the SRResNet [19], SFT-GAN [2], and SRGAN [19] methods on

the same dataset and with the same parameters as ours. The generator and discriminator
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(a) (b) (c) (d)

Figure 3.6 – (a) Ground-truth, (b) SRGAN, (c) SRSEG, (d) Masked-SRSEG. While SRGAN still has
the most accurate edges in this example, both masked and unmask SRSEG network constructs
more realistic textures in the background and are closer to ground-truth. All images are
cropped from Figure 3.3.a and zoomed by a factor of 6 (6×).

networks used in both SRGAN and our method are very similar (only layers resulting in

segmentation probability output differ), which helps to investigate the effectiveness of our

approach compared to the SRGAN, as the baseline. For RCAN, we used their pre-trained

models in [35]. The MATLAB imresize function with a bicubic kernel is used to produce LR

images.

The qualitative comparison shows that our method generates more realistic and natural

textures by benefiting from categorical information. Our experiment shows that the trained

model for both segmentation and SR tasks is generalized in a way that it reconstructs more

realistic background compared to the approaches using the same configuration and without

the segmentation objective.

As mentioned previously, to prove the concept, most of the test images contains specific

background categories, however, it still reconstructs competitive results for objects without

any labels during the training phase, e.g., the man with a tie in Figure 3.7. In some cases, we

could also observe that our method can result in a less precise boundaries as shown in Figure

3.8.

3.4.3 User experience

As [2, 19, 41] mentioned, the commonly used quantitative measurements for SR methods,

such as SSIM and PSNR, are not directly correlated to the perceptual quality; their experiments

show that GAN-based methods have lower PSNR and SSIM values compared to PSNR-oriented

approaches, however, they easily outperform them in terms of more appealing and closer

images to the HR images. Therefore, we did not use these evaluation metrics in this work.

To better investigate the effectiveness of multitask learning simultaneously for semantic

segmentation and SR, we perform a user study to compare the SRGAN [19] method and our

approach which is a an extended version of SRGAN with an additional segmentation output.
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Full Image 

HR Bicubic SRResNet SRGAN SRSEG (ours) RCAN SFT-GAN 

Figure 3.7 – Qualitative results on COCO-stuff dataset [90], focusing on object/background
textures. The test images include images with the same categories as the one used during
training (water, plant, building, sky, and ground). Cropped regions are zoomed in with a factor
of 5 to 10. Images from left to right: High resolution image, bicubic interpolation, SRResNet
[19], RCAN [35], SFT-GAN [2], SRGAN [19], and SRSEG (this work). Zoom in to have the best
view.
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HR SRGAN SRSEG 

Figure 3.8 – An example of a bad reconstruction of boundaries compared to the SRGAN [19]
method; this effect could be seen in some cases, specially in objects/backgrounds that have
not been from training classes.

We design our experiment in two stages; first stage quantifies the ability of our approaches

to reconstruct perceptually convincing images while we focus specifically on the quality of

texture reconstruction regarding to ground-truth (real HR image).

During the first stage, users were requested to vote for more appealing images between SRGAN

and our proposed method, SRSEG output pairs. In order to avoid random guesses in case of

similar qualities, a third choice as "Similar" was also introduced for each image. 22 persons

have participated in this experiment. 25 random images from COCO-Stuff [90] were presented

in a randomized fashion to each person. The pie chart shown in Figure 3.9.a illustrates that

the images reconstructed by our approach are more appealing to the users.

In the second stage, we focused only on enlarged texture patches, zoomed in with a factor of

8 to 10, mostly on parts of backgrounds that have been from training classes. The enlarged

images represent only a reconstructed texture and no object was included in the image. The

ground-truth was also shown to users. Each person was asked again to pick the texture closer

to the ground-truth. 25 pairs of textures in addition to their ground-truth were shown to 22

persons in this stage. The results of this stage is shown in Figure 3.9.b. These results confirm

that our approach reconstructs perceptually more convincing images for the users in terms

of both overall and texture qualities of resolved images. However, comparing the results of

the first and second stage of the user study shows that texture reconstruction quality of our

proposed approach is by a large margin better than the quality of its object reconstruction. As

a future work, adding more object categories to the training examples for both segmentation

and SR tasks could also improve the reconstruction quality of the class “Others” with a similar

margin.

3.4.4 Ablation study

Intuitively, by introducing additional segmentation task, our SR decoder extracts more specific

features for both image reconstruction and semantic segmentation. To investigate the compe-

tence of these new features and the effectiveness of our approach for image SR, we perform an

ablation study, by qualitatively comparing the reconstruction quality of our decoder, with and
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(a) (b)

Figure 3.9 – The evaluation results of our user studies, comparing SRSEG (our method) with
SRGAN [19]; (a) Focusing on visual quality of the resolved images, (b) Focusing only on
enlarged textures. Both textures and overall qualities of resolved images resolved by our
method are improved. Users prefer textures reconstructed by our proposed approach by a
large margin.

Sky Ground Building Plants Water 
Others 

(a) 

HR 
image 

(b) 

Figure 3.10 – Ablation study on different type of objects/backgrounds; comparing the recon-
struction quality of our decoder: (a) with the segmentation extension during training, (b)
without the segmentation extension. Zoom in for best view

without the segmentation extension. In Figure 3.10, we divide our results into different existing

categories during training (sky, ground, buildings, plants, and water), as well as undefined

categories in our dataset. We can see that the network trained with segmentation extension

generates more photo-realistic textures for the available segmentation categories, while having

competitive results for the other objects.

3.4.5 Results on standard benchmarks

During training, our approach focuses on optimizing the decoder by using an additional

segmentation extension and loss term for recognizing specific categories, such as sky, ground,

buildings, plants, and water. Even though many object and background categories are absent

during the training phase, our experiment shows that the model generalizes in a way that it
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SRCNN Bicubic RCAN SFT-GAN SRSEG 
(ours) 

SRGAN HR 
Original image 

Figure 3.11 – Sample results on the “baby” (top) and “baboon” (bottom) images from Set5 [37]
and Set14 [37] datasets, respectively. From left to right: HR image, bicubic, SRCNN [11],
RCAN [35], SFT-GAN [2], SRGAN [19], and SRSEG (ours). Zoom in for the best view.

reconstructs either more realistic or competitive results for undefined objects/backgrounds

as well. In this section, we evaluate the reconstruction quality of unknown objects, by using

Set5 [37] and Set14 [37] standard benchmarks, where unlike our training set, in most of the

images, outdoor background scenes are not present. Figure 3.11 compares the results of

our SR model on the “baby” and the “baboon” images to recent state-of-the-art methods

including bicubic, SRCNN [11], RCAN [35], SFT-GAN [2], and SRGAN [19]. In both images,

despite the fact that their categories were not existed during training, we could generate

more photo-realistic images compared to SRCNN and RCAN, while having competitive results

with SFT-GAN and SRGAN. Their results were obtained by using their online supplementary

materials.

3.4.6 Computational time

Our proposed method has similar running time to CNN-based SISR methods and faster than

method such as [2], which uses a second network to predict segmentation probabilities. As the

additional extension for segmentation, presented in this work, is removed at run-time and no

segmentation label is required as an input, the running time is not affected by our proposed

approach. However, using segmentation extension during the training phase increases our

training time with a factor of 1.3 compared to SRGAN.

In particular, our Tensorflow implementation runs at 20.24 FPS on a GeForce GTX 1080 Ti

graphic card to reconstruct HD images (1024×768) from their low-resolution counter-parts

(256×192) with a scale factor of 4.
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3.5 Conclusion and future work

In this work we presented a novel approach to use categorical information to tackle the SR

problem. We introduced a SR decoder only benefiting from one shared deep network to learn

simultaneously image SR and semantic segmentation by keeping two task-specific output

layers during training. We also introduced a novel boundary mask to filter out unrelated

segmentation losses caused by imprecise segmentation labels. We have conducted perceptual

experiments including a user study on images from COCO-Stuff dataset and demonstrated that

multitask learning can enable benefiting from semantic information in a single network and

improves the recovering quality. As a future work, additional object/background categories

can be introduced during the training in order to explore how it could affect the reconstruction

quality.
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4 Spatial Control Over Image Genera-
tion Process

As mentioned in Chapters 2 and 3, despite variant architectures proposed for the super-

resolution task, the behavior of optimization-based methods are principally driven by the

choice of the objective function. However, common SR objective functions do not take the

global semantic information within images into account and estimate a reconstruction er-

ror for an entire image spatially in the same way. This chapter introduces a novel objective

function that activates learning by benefiting from categorical information of input images;

it mainly focuses on perceptual losses and uses the novel OBB (Object, boundary, and back-

ground) labels to add additional spatial control over the learning process. This chapter partic-

ularly introduces a new targeted perceptual loss that appropriately penalizes each region of

the image during training, i.e., a suitable boundary loss for edges and texture loss for textures.

In the following, this chapter is presented in the form of an article. The research and all

experiments were performed by the first author (the author of this thesis). The manuscript

was also written by him and was further revised by other authors. The article was presented

at the ICCV 2019 conference and published in the Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019, pp. 2710-2719,

DOI: 10.1109/ICCV.2019.00280, with the original title of SROBB: Targeted Perceptual Loss for

Single Image Super-Resolution. The supporting information of this article can be found in

Appendix A.1.

49

https://ieeexplore.ieee.org/document/9010819


Chapter 4. Spatial Control Over Image Generation Process

SROBB: Targeted Perceptual Loss for Single Im-
age Super-Resolution

Authors: Mohammad Saeed Rad1, Behzad Bozorgtabar1, Urs-Viktor Marti2, Max Basler2,

Hazım Kemal Ekenel1, 3, Jean-Philippe Thiran1.

1 Signal Processing Laboratory 5, EPFL, Lausanne, Switzerland.
2 AI Lab, Swisscom AG, Lausanne, Switzerland.
3 Istanbul Technical University, Istanbul, Turkey.

abstract

By benefiting from perceptual losses, recent studies have improved significantly the per-

formance of the super-resolution task, where a high-resolution image is resolved from its

low-resolution counterpart. Although such objective functions generate near-photorealistic

results, their capability is limited, since they estimate the reconstruction error for an entire

image in the same way, without considering any semantic information. In this chapter, we

propose a novel method to benefit from perceptual loss in a more objective way. We optimize

a deep network-based decoder with a targeted objective function that penalizes images at

different semantic levels using the corresponding terms. In particular, the proposed method

leverages our proposed OBB (Object, Background and Boundary) labels, generated from seg-

mentation labels, to estimate a suitable perceptual loss for boundaries, while considering

texture similarity for backgrounds. We show that our proposed approach results in more

realistic textures and sharper edges, and outperforms other state-of-the-art algorithms in

terms of both qualitative results on standard benchmarks and results of extensive user studies.

Keyword Single Image Super-Resolution, Targeted Perceptual Loss, Image Semantic Meaning,

Generative Adversarial Network

4.1 Introduction

Single image super-resolution (SISR) aims at solving the problem of recovering a high-resolution

(HR) image from its low-resolution (LR) counterpart. SISR is a classic ill-posed problem that

has been one of the most active research areas since the work of Tsai and Huang [1] in 1984.

In recent years, this problem has been revolutionized by the significant advances in convolu-

tional neural networks (CNNs) and has resulted in better reconstructions of high-resolution

pictures than classical approaches [11, 25, 79]. More recently, another breakthrough has been

made in SISR by employing perceptual loss functions for training feed-forward networks,

50



4.1. Introduction
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Figure 4.1 – We propose a method for exploiting the segmentation labels during training to
resolve a high resolution image at different semantic levels considering their characteristics;
we optimize our SISR model by minimizing perceptual errors that correspond to edges only at
object boundaries and the texture on the background area, respectively. Results from left to
right: original image, super-resolved images using only pixel-wise loss function, pixel-wise
loss + perceptual loss function and pixel-wise loss + targeted perceptual loss function (ours),
respectively.

instead of using per-pixel loss functions, e.g., mean squared error (MSE) [19, 41, 80]. It tackled

the problem of blurred textures caused by optimization of MSE, and alongside with adversarial

loss [46], it resulted in near-photorealistic reconstruction in terms of perceived image quality.

[41] and [19] benefit from the idea of using perceptual similarity as a loss function; they

optimize their models by comparing the ground-truth and the predicted super-resolved image

(SR) in a deep feature domain by mapping both HR and SR images into a feature space using a

pre-trained classification network. Although this similarity measure in feature space, namely

the perceptual loss, has shown a great success in SISR, applying it as it is on a whole image,

without considering the semantic information, limits its capability.

To better understand this limitation, let us have a brief overview of the perceptual loss and

see what a pre-trained classification network optimizes; considering a pre-trained CNN, in

an early convolutional layer, each neuron has a receptive field with the size and shape of the

inputs that affects its output. Small kernels, which are commonly used by state-of-the-art

approaches, have also small receptive fields. As a result, they can only extract low-level spatial

information. Intuitively, each neuron captures relations between nearby inputs considering

their local spatial relations. These local relations are mostly presenting information about
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edges and blobs. As we proceed deeper in the network, the receptive field of each neuron

with respect to earlier layers becomes larger. Therefore, deep layers start to learn features

with global semantic meanings and abstract object information, and less fine-grained spatial

details, while still using small kernels. This fact has also been shown by [97, 98], where they

used some visualization techniques and investigated the internal working mechanism of the

VGG network [40] by visualization of the information kept in each CNN layer.

Regarding the perceptual function, state-of-the-art approaches use different levels of features

to restore the original image; this choice determines whether they focus on local information

such as edges, mid-level features such as textures or high-level features corresponding to

semantic information. In these works, perceptual loss has been calculated for an entire image

in the same way, meaning that the same level of features has been used either on edges,

foreground or on the image background. For example, minimizing the loss for details of

the edges inside a random texture, such as the texture of a tree, would force the network to

consider an unnecessary penalty and learn less informative features; the texture of a tree could

still be realistic in the SR image without having close edges to the HR image. On the other

hand, minimizing the loss by using mid-level features (more appropriate for the textures)

around edges would not intuitively create sharper edges and would only introduce “noisy”

losses.

To address the above issue, we propose a novel method to benefit from perceptual loss in a

more objective way. Figure 4.1 shows an overview of our proposed approach. In particular,

we use pixel-wise segmentation annotations to build our proposed OBB labels to be able to

find targeted perceptual features that can be used to minimize appropriate losses to different

image areas: e.g., edge loss for edges and textures’ loss for image textures during training. We

show that our approach using targeted perceptual loss outperforms other state-of-the-art

algorithms in terms of both qualitative results and user study experiments, and result in more

realistic textures and sharper edges.

4.2 Related work

In this section, we review relevant CNN-based SISR approaches. This field has witnessed

a variety of end-to-end deep network architectures: [25] formulated a recursive CNN and

showed how deeper network architectures increase the performance of SISR. [19, 33, 41] used

the concept of residual blocks [18] and skip-connections [23, 25] to facilitate the training of

CNN-based decoders. [24] improved their models by expanding the model size. [43] removed

batch normalization in conventional residual networks and used several skip connections

to improve the results of seminal work of [19]. Laplacian pyramid structure [28] has been

proposed to progressively reconstruct the sub-band residuals of high-resolution images. [27]

proposed a densely connected network that uses a memory block consisting of a recursive unit

and a gate unit, to explicitly mine persistent memory through an adaptive learning process.

[35] proposed a channel attention mechanism to adaptively rescale channel-wise features
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by considering the inter-dependencies among channels. Besides supervised learning, other

methods like unsupervised learning [45] and reinforcement learning [99] were also introduced

to solve the SR problem.

Despite variant architectures proposed for the SISR task, the behavior of optimization-based

methods is principally driven by the choice of the objective function. The objective functions

used by these works mostly contain a loss term with the pixel-wise distance between the

super-resolved and the ground-truth HR images. However, using this function alone leads to

blurry and over-smoothed super-resolved images due to the pixel-wise average of all plausible

solutions.

Perceptual-driven approaches added a remarkable improvement to image super-resolution

in terms of the visual quality. Based on the idea of perceptual similarity [39], perceptual loss

[80] is proposed to minimize the error in a feature space using specific layers of a pre-trained

feature extractor, for example VGG [40]. A number of recent papers have used this optimization

to generate images depending on high-level extracted features [100, 101, 102, 103, 104]. In a

similar work, contextual loss [86] is proposed to generate images with natural image statistics,

which focuses on the feature distribution rather than merely comparing the appearance. [19]

proposed to use adversarial loss in addition to the perceptual loss to favor outputs residing

on the manifold of natural images. The SR method in [41] develops a similar approach and

further explores a patch-based texture loss. Although these works generate near-photorealistic

results, they estimate the reconstruction error for an entire image in the same way, without

benefiting from any semantic information that could improve the visual quality.

Many studies such as [3, 4, 5] also benefit from prior information for SISR. Most recently, [2]

used an additional segmentation network to estimate probability maps as prior knowledge

and used them in the existing super-resolution networks. Their segmentation network is

pre-trained on the COCO dataset [88] and then is fine-tuned on the ADE dataset [89]. Their

approach recovers more realistic textures faithful to categorical priors; however, it requires a

segmentation map at test-time. In Chapter 3 of this thesis, we addressed this issue by propos-

ing a method based on multitask learning simultaneously for SR and semantic segmentation

tasks.

In this work, we investigate a novel way to exploit semantic information within an image,

yielding photo-realistic super-resolved images with fine-structures.

4.3 Methodology

Following recent approaches [2, 19, 105] for image and video super-resolution, we benefit

from deep networks with residual blocks to build-up our decoder. As explained previously, in

this chapter, we focus on the definition of the objective function used to train our network; we

introduce a loss function containing three terms: 1- Pixel-wise loss (MSE), 2- adversarial loss,

and 3- our novel targeted perceptual loss function. The MSE and adversarial loss terms are
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defined as follows:

• Pixel-wise loss It is by far the most commonly used loss function in SR. It calculates the

pixel-wise mean squared error (MSE) between the original image and the super-resolved

image in the image domain [11, 12, 41]. The main drawback of using it as a stand-alone

objective function is mostly resolving an over-smoothed reconstruction. The network

trained with the MSE loss seeks to find pixel-wise averages of plausible solutions, which

results in poor perceptual qualities and lack of high-frequency details in the edges and

textures.

• Adversarial loss Inspired by [19], we formulate our SR model in an adversarial setting,

which provides a feasible solution. In particular, we use an additional network (discrimi-

nator) that is alternatively trained to compete with our SR decoder. The generator (SR

decoder) tries to generate fake images to fool the discriminator, while the discriminator

aims at distinguishing the generated results from real HR images. This setting results in

perceptually superior solutions to the ones obtained by minimizing pixel-wise MSE and

classic perceptual losses. The discriminator used in this work is defined in more details

in Section 4.3.3.

Our proposed targeted perceptual loss is described in the following subsection.

4.3.1 Targeted perceptual loss

The state-of-the-art approaches such as [41] and [19] estimate perceptual similarity by com-

paring the ground-truth and the predicted super-resolved image in a deep feature domain

by mapping both HR and SR images into a feature space using a pre-trained classification

network, e.g., VGG [40]. The output of a specific convolutional layer is used as the feature

map. These approaches usually minimize the l2 distance of the feature maps. In order to

understand why minimizing this loss term in combination with adversarial and MSE losses

is effective and results in more photorealistic images, we investigate the nature of the CNN

layers used for the perceptual loss. Then, we propose a novel approach to take advantage of

the perceptual similarity in a targeted manner and reconstruct more appealing edges and

textures.

As explained previously, early layers of a CNN return low-level spatial information regarding

local relations, such as information about edges and blobs. As we proceed towards deeper

layers, we start to learn higher level features with more semantic meaning and abstract

object information, and less fine-grained spatial details from an image. In this fashion, mid-

level features are mostly representing textures and high-level features amount to the global

semantic meaning. Figure 4.2 shows the difference between shallow and deep layers of a

feature extractor, the VGG-16 in our case; two different layers, ReLU 1-2 and ReLU 4-1, are

used to compute the perceptual loss and reconstruct an image. We compare each case on an
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HR (a) (b) 
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E
dges 

Figure 4.2 – The effect of choosing different CNN layers to estimate the perceptual loss on
different regions of an image, e.g., edges and textures: (a) using a deeper convolutional layer
(mid-level features), ReLU 4-1 of VGG-16 [40] and, (b) using an early convolutional layer
(low-level features), ReLU 1-2 of the VGG-16 network.

edge and a texture region. In this figure, we can see using low-level features is more effective

for reconstructing edges, while mid-level features resolve closer textures to the original image.

The targeted loss function tries to favor more realistic textures around areas, where the type of

the textures seems to be important, e.g., a tree, while trying to resolve sharper edges around

boundary area. To do so, we first define three types of regions in an image: 1- background,

2- boundaries, and 3- objects, then, we compute the targeted perceptual loss for each region

using a different function.

• Background (Gb) We consider four classes as background: “sky”, “plant”, “ground” and

“water”. We chose these categories because of their specific appearance; the overall tex-

ture in areas with these labels are more important than local spatial relations and edges.

We compute mid-level CNN features to estimate the perceptual similarity between SR

and HR images. Here, we use the ReLU 4-3 layer of the VGG-16 for this purpose.

• Boundary (Ge ) All edges separating objects and the background are considered as

boundaries. With some pre-processing (explained in more detail in Section 4.3.2), we

broaden these edges to have a strip passing through all boundaries. We estimate the

feature distance of an early CNN layer between SR and HR images, which focuses more

on low-level spatial information, mainly edges and blobs. In particular, we minimize

the perceptual loss at the ReLU 2-2 layer of the VGG-16.

• Object (Go) Because of the huge variety of objects in the real world in terms of shapes

and textures, it is challenging to decide whether it is more appropriate to use features

from early or deeper layers for the perceptual loss function; for example, in an image

of a zebra, sharper edges are more important than the overall texture. Having said
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that, forcing the network to estimate the precise edges in a tree could mislead the

optimization procedure. Therefore, we do not consider any type of perceptual loss on

areas defined as objects by weighting them to zero and rely on the MSE and adversarial

losses. However, intuitively, resolving more realistic textures and sharper edges by the

“background” and “boundary” perceptual loss terms would result in more appealing

objects, as well.

To compute the perceptual loss for a specific image region, we make binary segmentation

masks of the semantic classes (having a pixel value of 1 for the class of interest and 0 else-

where). Each mask categorically represents a different region of an image and is element-wise

multiplied by the HR image and the estimated super-resolved image SR, respectively. In other

words, for a given category, the image is converted to a black image with only one visible

area on it, before being passed through the CNN feature extractor. Masking an image in this

way creates also new artificial boundaries between black regions and the visible class. As

a consequence, extracted features contain information about the artificial edges which do

not exist in a real image. As the same mask is applied on both HR and the reconstructed

image, the feature distance between these artificial edges will be close to zero and it does not

affect the total perceptual loss. We can conclude that all non-zero distances in feature space

between the masked HR and super-resolved image are corresponds to the contents of the

visible area of that image: corresponds to edges by using a mask for boundaries (M bound ar i es
OBB )

and corresponds to textures by using a mask for the background (M backg r ound
OBB ).

The overall targeted perceptual loss function is given as:

Lper c. =α ·Ge (I SR ◦M bound ar y
OBB , I HR ◦M bound ar y

OBB )

+β ·Gb(I SR ◦M backg r ound
OBB , I HR ◦M backg r ound

OBB )

+γ ·Go (4.1)

where α, β and γ are the corresponding weights of the loss terms used for the boundary,

background, and object, respectively. Ge (·), Gb(·) and Go(·) are the functions to calculate

feature space distances between any two given images for the boundaries, background, and

objects, respectively. In this equation, ◦ denotes element-wise multiplication. As discussed

earlier, we do not consider any perceptual loss for objects areas, therefore, we set γ directly to

zero. The value of other weights are discussed in detail in Section 4.4.1.

In the following subsection, we describe how to build a label indicating objects, the back-

ground, and boundaries for the training images. This labeling approach helps us to use

specific masks for each class of interest (M ob j ect
OBB , M backg r ound

OBB and M bound ar y
OBB ) and to guide

our proposed perceptual losses to focus on area of interest within the image.

56



4.3. Methodology

Class 
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Figure 4.3 – Constructing an OBB label. We assign each area to one of the “Object”, “Back-
ground” or “Boundary” classes based on their initial pixel-wise labels.

4.3.2 OBB: Object, background and boundary label

In order to make full use of the perceptual loss-based image super-resolution, we enforce

semantic details (where objects, the background, and boundaries appear on the image) via

our proposed targeted loss function. In addition, existing annotations for the segmentation

task, e.g., [90] only provide spatial information about objects and the background, and they do

not use classes representing the edge areas, namely boundaries in this paper. Therefore, we

propose our labeling approach (Figure 4.3) to provide a better spatial control of the semantic

information for the images.

To create such labels (OBB label), first, we calculate the derivative of the segmentation label in

the color-space to estimate the edges between object classes in the segmentation label as well

as the edges between objects and background of the image. In order to have a thicker strip

around all edges separating different classes, we compute the dilation with a disk of size d1.

We label the resulted area as “boundary” class, which covers boundaries between different

classes inside an image. In particular, we consider “sky”, “plant”, “ground”, and “water” classes

from the segmentation labels as the “Background”. All remaining object classes are considered

as the “object” class.

4.3.3 Architecture

For a fair comparison with the SRGAN method [19] and performing an ablation study of the

proposed targeted perceptual loss, we use the same SR decoder as the SRGAN. The generator

network is a feed-forward CNN. The input image I LR is passed through a convolution block

followed by a ReLU activation layer. The output is subsequently passed through 16 residual
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Figure 4.4 – Schematic diagram of the SR decoder. We train the SR decoder using the tar-
geted perceptual loss alongside with MSE and adversarial losses. In this schema, k, n and s
correspond to kernel size, number of feature maps and stride size, respectively.

blocks with skip connections. Each block has two convolutional layers with 3×3 filters and 64

channels feature maps, each one followed by a batch normalization and ReLU activation. The

output of the final residual block is concatenated with the features of the first convolutional

layer and is then passed through two upsampling blocks, where each one doubles the size

of the feature map. Finally, the result is filtered by a last convolution layer to get the super-

resolved image I SR . In this chapter, we use a scale factor of four; depending on the desired

scaling factor, the number of upsampling blocks could be modified. An overview of the

architecture is shown in Figure 6.4.

The discriminator network consists of multiple convolutional layers with an increasing number

of channels of the feature maps by a factor of 2, from 64 to 512. We use Leaky-ReLU and strided

convolutions to reduce the image dimension while doubling the number of features. The

resulting 512 feature maps are passed through two dense layers. Finally, the discriminator

network classifies the image as real or fake by the final sigmoid activation function.

4.4 Experimental results

In this section, first, we describe the training parameters and dataset in details, then we

evaluate our proposed method in terms of qualitative, quantitative, and running costs analysis.

4.4.1 Dataset and parameters

To create OBB labels, we use a random set of 50K images from the COCO-Stuff dataset [90],

which contains semantic labels of 91 classes for the segmentation task. In this work, we

considered landscapes with one or more of the “Sky”, “Plant”, “Ground”, and “Water” classes.

We group these classes into one “Background” class. We use our proposed technique in

Section 4.3.2 to convert pixel-wise segmentation annotations to OBB labels. In order to obtain
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SelfExSR LapSRN SRGAN SROBB HR image SRCNN Bicubic RCAN 

Figure 4.5 – Sample results on the “baby” (top) and “baboon” (bottom) images from Set5 [37]
and Set14 4.5 datasets, respectively. From left to right: bicubic, SRCNN [11], SelfExSR [59],
LapSRN [28], RCAN [35], SRGAN [19] and SROBB (ours), HR image, respectively.

LR images, we use the MATLAB imresize function with the bicubic kernel and the anti-aliasing

filter. All experiments were performed with a downsampling factor of four.

The training process was done in two steps; first, the SR decoder was pre-trained for 25 epochs

with only pixel-wise mean squared error as the loss function. Then the proposed targeted

perceptual loss function, as well as the adversarial loss were added and the training continued

for 55 more epochs. The weights of each term in the new targeted perceptual loss, α and

β, were set to 2×10−6 and 1.5×10−6, respectively. The weights of adversarial and MSE loss

function, as in [19], were set to 1.0 and 1×10−3, respectively. We set d1, the diameter of the

disk used to generate OBB labels, to 2.0. The Adam optimizer [96] was used during both steps.

The learning rate was set to 1×10−3 and then decayed by a factor of 10 every 20 epochs. We

also alternately optimized the discriminator with similar parameters to those proposed by

[19].

4.4.2 Qualitative results

Results on Set5 and Set14

Our approach focuses on optimizing the decoder with perceptual loss terms targeting bound-

aries and background by exploiting segmentation labels. Although, we do not apply the

perceptual losses specifically on objects regions, our experiment shows that the trained model

generalized in a way that it reconstructs more realistic objects compared to other approaches.

We evaluate the quality of object reconstruction by performing qualitative experiments on

two widely used benchmark datasets: Set5 [37] and Set14 [38], where unlike our training set,

in most of the images, outdoor background scenes are not present. Figure 4.5 compares the

results of our SR model on the “baby” and “baboon” images and the recent state-of-the-art
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methods including: bicubic, SRCNN [11], SelfExSR [59], LapSRN [28], RCAN [35] and SR-

GAN [19]. In the “baboon” image, we could generate more photo-realistic images with sharper

edges compared to other methods while having competitive results for the “baby” image with

SRGAN. Their results were obtained by using their online supplementary materials 1 2 3. More

qualitative results of Set5 and Set14 images are provided in the supplementary material.

Results on the COCO-Stuff dataset

We randomly chose a set of test images from the COCO-Stuff dataset [90]. In order to have a

fair comparison, we re-trained the SFT-GAN[2], ESRGAN [43] and SRGAN [19] methods on the

same dataset with the same parameters as ours. For the EnhanceNet and RCAN, we used their

pre-trained models by [41] and [35], respectively. The MATLAB imresize function with a bicubic

kernel is used to produce bicubic images. As illustrated in Figure 4.6, our method generates

more realistic and natural textures by benefiting from our proposed targeted perceptual loss.

Although ESRGAN produces very competitive results, it seems that their method is biased

towards over-sharpened edges, which sometime leads to an unrealistic reconstruction and

dissimilar to ground-truth.

4.4.3 Quantitative results

SSIM, PSNR and LPIPS

As it is shown in [2, 19, 41, 68], distortion metrics such as the Structural Similarity Index

(SSIM) [106] or the Peak Signal to Noise Ratio (PSNR) used as quantitative measurements, are

not directly correlated to the perceptual quality; they demonstrate that GAN-based super-

resolved images could have higher errors in terms of the PSNR and SSIM metrics, but still

generate more appealing images.

In addition, we used the perceptual similarity distance between the ground-truth and super-

resolved images. The Learned Perceptual Image Patch Similarity (LPIPS) metric [65] is a

recently introduced as a reference-based image quality assessment metric, which seeks to

estimate the perceptual similarity between two images. This metric uses linearly calibrated

off-the-shelf deep classification networks trained on the very large Berkeley-Adobe Perceptual

Patch Similarity (BAPPS) dataset [65], including human perceptual judgments. However, as

[66] also emphasizes, LPIPS has similar trend as distortion-based metrics, e.g., SSIM, and

would not necessarily imply photorealistic images.

Table 5.1 shows the SSIM, PSNR, and LPIPS values estimated between super-resolved images of

the “baby” and “baboon” and their HR counterparts, using bicubic interpolation, LapSRN [28],

SRGAN [19], and our method, respectively. Considering this table and the visual comparison

1https://github.com/jbhuang0604/SelfExSR
2https://github.com/phoenix104104/LapSRN
3https://twitter.app.box.com/s/lcue6vlrd01ljkdtdkhmfvk7vtjhetog
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Original Image 
Bicubic RCAN EnhanceNet SRGAN SROBB HR crop SFT-GAN 

Figure 4.6 – Qualitative results on a subset of the COCO-Stuff dataset [90] images. Cropped
regions are zoomed in with a factor of 2 to 5 to have a better comparison. Results from left to
right: bicubic, RCAN [35], EnhanceNet [41], SRGAN [19], SFT-GAN [2], ESRGAN [43], SROBB
(ours) and a high resolution image. Zoom in for the best view.
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Image Metric Bicubic LapSRN SRGAN SROBB

SSIM 0.936 0.951 0.899 0.905
baby PSNR 30.419 32.019 28.413 28.869

LPIPS 0.305 0.237 0.112 0.104

SSIM 0.645 0.677 0.615 0.607
baboon PSNR 20.277 20.622 19.147 18.660

LPIPS 0.632 0.537 0.220 0.245

Table 4.1 – Comparison of bicubic interpolation, LapSRN [28], SRGAN [19] and SROBB (ours)
for the “baby” and “baboon” images from Set5 and Set14 test sets. Best measures (SSIM, PSNR
[dB], LPIPS) are highlighted in bold. The visual comparison is shown in Figure 4.5.

of these images in Figure 4.5, we can infer that these metrics would not reflect superior

reconstruction quality. Therefore, in the following section, we focus on the user study as the

quantitative evaluation.

User study

We performed a user study to compare the reconstruction quality of different approaches

to see which images are more appealing to users. Five methods were used in the study: 1-

RCAN [35], 2- SRGAN [19], 3- SFT-GAN [2], 4- ESRGAN [43] and 5- SROBBB (ours). During the

experiment, high-resolution images as well as their five reconstructed counterparts obtained

by the mentioned approaches were shown to each user. Users were requested to vote for

more appealing images with respect to the ground-truth image. In order to avoid random

guesses in case of similar qualities, a choice as “Cannot decide” was also designed. Since

SFT-GAN uses a segmentation network trained on outdoor categories, for a fair comparison

with [2], we also used 35 images from COCO-Stuff [90], dedicated to outdoor scenes. All images

were presented in a randomized fashion to each person. In order to maximize the number

of participants, we created our online assessment tool for this purpose. In total, 46 persons

participated in the survey. Figure 6.8 illustrates that the images reconstructed by our approach

are more appealing to the users by a large margin. In terms of number of votes per method,

reconstructions by the SROBB got 617 votes, while ESRGAN, SFT-GAN, SRGAN and RCAN

methods got 436, 223, 201 and 33 votes, respectively. In addition, the “Cannot decide” choice

provided in the survey was chosen 100 times. In terms of the best images by majority of votes,

among 35 images, SROBB was a dominant choice in 15 images. These results confirm that our

approach reconstructs visually more convincing images compared to mentioned methods for

the users. Moreover, unlike SFT-GAN, the proposed approach do not require a segmentation

map during the test time, while it takes advantage of semantic information and produces

competitive results.
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Figure 4.7 – The results of the user study, comparing SROBB (ours) with RCAN [35], SRGAN [19],
ESRGAN [43] and SFT-GAN [2] methods. Our method produces visual results that are the
preferred choice for the users by a large margin in terms of: (a) percentage of votes, (b)
percentage of winning images by majority of votes.
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Figure 4.8 – The results of the ablation study showing the effect of the targeted perceptual loss;
more convincing results have been obtained by a large margin, in terms of: (a) percentage of
votes, (b) percentage of winning images by majority of the votes.

Ablation study

To better investigate the effectiveness of the proposed targeted perceptual loss, we performed

a second user study with similar conditions and procedure to the one in the previous section.

Specifically, we study the effect of our proposed targeted perceptual loss; we train our decoder

with three different objective functions: 1- pixel-wise MSE only; 2- pixel-wise loss and standard

perceptual loss similar to [19]; and 3- Pixel-wise loss and our proposed targeted perceptual

loss (SROBB). The adversarial loss term is also used for both 2 and 3. In total, 51 persons

participated in our ablation study survey. Figure 4.8 shows that users are more convinced

when the targeted perceptual loss is used instead of the commonly used perceptual loss. It got

1212 votes, while objective functions 1 and 2 got 49 and 417 votes, respectively. In addition,

the “Cannot decide” choice was chosen 107 times. In terms of the best images by majority of

votes, among 35 images, third objective function was a dominant choice in 30, while 1 and 2

won only in 5 images. Images reconstructed only by the pixel-wise loss had minority number

of votes, however, they got considerable number of votes for images in which the “sky” was

the main class. This can be explained by the over-smoothed nature of the clouds, which suits

distortion-based metrics.
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4.4.4 Inference time

Unlike existing approaches for content-aware SR, our method does not require any semantic

information at the input. Therefore, no additional computation is needed at the test time.

We reach an inference time of 31.2 frame per second, with a standard XGA output resolution

(1024×768 in pixels) on a single GeForce GTX 1080 Ti.

4.5 Conclusion

In this chapter, we introduced a novel targeted perceptual loss function for the CNN-based

single image super-resolution. The proposed objective function penalizes different regions

of an image with the relevant loss terms, meaning that using edges’ loss for the edges and

textures’ loss for textures during the training process. In addition, we introduce our OBB

labels, created from pixel-wise segmentation label, to provide a better spatial control of the

semantic information for the images. This allows our targeted perceptual loss to focus on the

semantic regions of an image. Experimental results verify that training with proposed targeted

perceptual loss yields perceptually more pleasing results, and outperforms the state-of-the-art

SR methods.
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5 Test-Time Adaptation Based on Per-
ceptual Similarity

In Chapters 3 and 4, we studied and showed how exploiting contextual information within

images could improve the reconstruction quality of super-resolution methods. In this chapter,

we go one step further and show that this information is not only beneficial for learning better

image representations during the training process; we demonstrate that it can also be used

to find complementary high-resolution references at the test time and benefit from them to

generate perceptually more appealing images. In particular, this chapter introduces a new

method based on test time adaptation to leverage perceptually similar images to test images

to reach higher reconstruction quality.

In the following, this chapter is presented in the form of an article. The research and all

experiments were performed by the first author (the author of this thesis). The manuscript

was also written by him and was further revised by other authors. The article is submitted to

Conference on Computer Vision and Pattern Recognition (CVPR 2021) for publication, with

the original title of Test-Time Adaptation for Super-Resolution: You Only Need to Overfit on

a Few More Images. The supporting information of this article can be found in Appendix A.2.
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Test-Time Adaptation for Super-Resolution: You
Only Need to Overfit on a Few More Images

Authors: Mohammad Saeed Rad1, Thomas Yu1, Behzad Bozorgtabar1, Jean-Philippe Thiran1.

1 Signal Processing Laboratory 5, EPFL, Lausanne, Switzerland.

Abstract

Existing reference (RF)-based super-resolution (SR) models try to improve perceptual qual-

ity in SR under the assumption of the availability of high-resolution RF images paired with

low-resolution (LR) inputs at testing. As the RF images should be similar in terms of content,

colors, contrast, etc. to the test image, this hinders the applicability in a real scenario. Other

approaches to increase the perceptual quality of images, including perceptual loss and ad-

versarial losses, tend to dramatically decrease fidelity to the ground-truth through significant

decreases in PSNR/SSIM. Addressing both issues, we propose a simple yet universal approach

to improve the perceptual quality of the HR prediction from a pre-trained SR network on a

given LR input by further fine-tuning the SR network on a subset of images from the training

dataset with similar patterns of activation as the initial HR prediction, with respect to the

filters of a feature extractor. In particular, we show the effects of fine-tuning on these images

in terms of the perceptual quality and PSNR/SSIM values. Contrary to perceptually driven

approaches, we demonstrate that the fine-tuned network produces a HR prediction with both

greater perceptual quality and minimal changes to the PSNR/SSIM with respect to the initial

HR prediction. Further, we present novel numerical experiments concerning the filters of SR

networks, where we show through filter correlation, that the filters of the fine-tuned network

from our method are closer to “ideal” filters, than those of the baseline network or a network

fine-tuned on random images.

Keyword: Test-Time Adaptation, Super-Resolution, Overfitting, Fine-Tuning

5.1 Introduction

Super-resolution (SR) is the ill-posed problem of transforming low-resolution (LR) images

(ILR ) to their high-resolution (HR) counterparts (IHR ) [17, 27, 79, 107, 108]. A common way to

model the interaction between LR and HR images can be formulated as ILR = (IHR ∗k) ↓s + N ,

where ∗ denotes convolution, k is the blur kernel, ↓s denotes downsampling by a factor s, and

N is noise. In this chapter, we focus on a common setting for SR, where the down-sampling

kernel is known and is a bicubic downscaling kernel [107].
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No fine-tuning 
Fine-tuned on the following images 

Figure 5.1 – We demonstrate how we can improve the perceptual quality of Super-Resolution
images produced by a generic SR network and a given LR image by fine-tuning the network
on specific images which activate the same filters of a pre-trained feature extractor as those
activated by the initial SR prediction. Left: Initial SR predictions from the baseline network,
right: Predictions from the network after fine-tuning for a few iterations on selected images by
our method. Zoom in for the best view.

In this setting, deep learning algorithms [35, 43, 109] have made remarkable progress in image

super-resolution that aim to obtain a IHR output from one of its ILR versions by leveraging the

power of deep convolutional neural networks. Going even further, in the field of RF-based SR,

an external high-resolution reference image is provided, where the reference image and IHR

share similar textures and qualities [110, 111, 112, 113]. In this way, the networks are trained

to leverage additional information from the reference HR image. This has the drawback of

assuming the existence of and finding HR images similar to a given LR image -in terms of

content, colors, contrast as well as the increased size of the networks trained to incorporate

the additional HR input.

In the SR literature, pixel-based metrics, which compare predicted HR images to the ground

truth HR image such as the peak signal to noise ratio (PSNR) or structural similarity index

(SSIM) are commonly used to judge the performance of SR methods [107]. However, it is

known that optimizing neural networks for PSNR, SSIM, or other pixel-based metrics generally

result in over-smoothed, perceptually unappealing HR images [19, 80, 114]. In fact, [114] shows

that there is a mathematical tradeoff between performance on these pixel-based metrics and

perceptual quality. However, we note that in theory, a perfect reconstruction would have the

highest performance on both pixel-based metrics and perceptual quality. Strategies to increase

perceptual quality include training networks with a perceptual loss [80], which computes the

distance between predicted and ground truth images in the feature space using a pre-trained

classification network. Generative adversarial networks (GANs) [46] are also used to improve

perceptual quality [2, 19, 41, 43, 49]. However, these approaches significantly decrease PSNR,
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Figure 5.2 – We demonstrate the effect of fine-tuning on images, which maximally activate
specific filters in a pre-trained classification network with respect to perceptual quality and
PSNR/SSIM values. The first column shows the initial HR predictions from the baseline
network while subsequent columns show predictions from the network after fine-tuning on
the images bordered by red at the top. Note that in each row, the network fine-tuned on the
image set which shares the filter of maximal activation with the initial HR prediction gives the
best perceptual quality without affecting the PSNR or SSIM significantly. Fine-tuning on image
sets which maximally activate different filters results in oversmoothing or image artifacts as
compared to the ground truth. Two best values are in blue. Please zoom in on the screen.
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SSIM and other pixel-based metrics with respect to trained networks using only the pixel-wise

losses [19, 80, 114].

In this chapter, inspired by RF-based SR and previous analysis of learned filters of classification

networks, we propose a novel method to increase the perceptual quality of the output of a

generic PSNR-based SR network on a given LR image without significantly affecting the PSNR

or SSIM. This is done through test-time adaptation of the generic SR network, to tailor it to

a given LR image used for testing. Concretely, given an input LR image and the SR network

pre-trained using only pixel-wise losses, e.g., L1, we first obtain the initial HR prediction from

the network. We then fine-tune the network on a few pairs of LR/HR images from the training

dataset, where the images are chosen by the similarity of their activations of filters from a

pre-trained classification network with respect to the corresponding activations of the initial

HR prediction. We show that the perceptual quality of the HR image from the fine-tuned

network increases without significantly decreasing the PSNR or SSIM values. Further, we

demonstrate that this does not contradict past studies on the trade-off between PSNR and

perceptual quality [19, 41], as this results from fine-tuning on images that activate the same

filters as the initial LR input. The fine-tuned SR network performs worse on images dissimilar

to the LR input; hence, overall performance is in conformity with the trade-off. As shown in

Fig. 5.2, our method can improve perceptual quality with minimal impact on PSNR/SSIM with

fine-tuning on images with similar activations as the LR input.

Our contributions are as follows:

• We propose a novel, test-time adaptation method to improve SR, which guides PSNR-

based SR networks toward perceptually more compelling images by fine-tuning on

selected images at the test-time, without significant impact on the PSNR or SSIM.

• To our knowledge, we are the first to investigate how overfitting/fine-tuning on se-

lected images, which differ by what filters in a pre-trained classification network they

maximally activate, can change SR reconstructions for better or worse.

• We also show, to our knowledge, novel numerical experiments in the field of SR, where

we quantitatively relate the filters of the pre-trained SR network, the fine-tuned network,

and an “ideal” SR network (ideal with respect to the given LR input) to show that our

method moves the filters of the pre-trained SR network closer to the “ideal” filters.

5.2 Overview of the approach

The overview of the proposed method is shown in Fig. 5.3; the task is to predict an HR image

from a given LR input by benefiting from a few more essential images with respect to the

pre-trained model. The pipeline can be split into three main steps: First, we construct a

reference dataset, namely the Activation dataset, containing essential images for further fine-

tuning. Second, we use a novel technique to choose relevant images from the Activation
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pixels of Top-M×K activation images 

LR 
SR 

Activated SR 

Figure 5.3 – The overview of the proposed method: First, the LR input is passed to the SR
network to generate an initial SR prediction. We then find the top M filters of the third layer of
the VGG [40] network which are activated by the initial SR prediction. Then, we fine-tune the
SR network on a set of M ∗K images chosen from the training data, which maximally activate
the same M filters. Finally, we pass the LR input to the fine-tuned SR network for the final SR
prediction. In this example, K = 1 and M = 5.

dataset. Finally, we fine-tune the pre-trained SR network on these images and produce the

final reconstruction. In what follows, let G , D denote the baseline SR network and the dataset

of paired LR and HR images used to train the SR network, respectively. We present each step

in detail as follows:

Construction of Activation dataset We first construct a reference dataset from the HR images

of D by extracting their corresponding activations from the third layer of the VGG classification

network [40]. For each channel in the third layer (conv3), we order (descending) the images by

the channel’s corresponding activation and take the top K images. As there are 256 channels

in the third layer, we form a reference dataset of 256×K HR images. We choose the third layer

as the features from this layer have been shown to be more discriminative [115, 116]. As an

example, in Fig. 5.4, we show for different filters in different layers of VGG19 [40], the top

nine images by filter activation from a subset of 50 thousand images from ImageNet [117]. We

further investigate the effectiveness of using other layers (conv2,4, and 5, in Appendix A.2).

Test-Time Adaptation of the SR network We obtain an initial HR prediction from passing LR

to G , which we call SR. We pass SR through the third layer of the VGG classification network

[40] and note the top M filters with the highest activations. From this list of filters, we can use

our reference dataset to define a set of M ×K images where for each of the M filters, we take

the top K images in our dataset in terms of activation of the filter. We then fine-tune G on this

set of images for a set number of epochs determined by performance on the validation set.
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5.3. Image activations in SR
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Filter #13 Filter #10 
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Figure 5.4 – Top 9 activated images from a subset of 50 thousand images from ImageNet [117]
for different filters in the conv1, conv3 and conv5 layers of VGG19 [40], respectively.

Prediction After fine-tuning G , we again pass the LR image to G to obtain our final HR predic-

tion, which we call activated SR. The activated SR image is perceptually more convincing than

the initial SR, without significant decreases in its PSNR and SSIM values.

5.3 Image activations in SR

In the machine learning/computer vision literature, analysis of the activations of neural

networks with respect to different inputs is often used for the purposes of understanding/in-

terpretability [118] and extraction of relevant features for downstream processing, for instance,

in unsupervised learning [115, 119]. In terms of SR, only perceptual loss uses this analysis by

matching the activations, with respect to a layer of a pre-trained classification network, of the

HR prediction and the ground-truth, showing the efficacy and importance of these features.

We go further by explicitly analyzing the activations of the third layer of VGG19 [40] with

respect to a large dataset of 50 thousand images. Then for each filter, we can assign a group of

images with the highest activations. As perceptual loss shows that constructing images based

on activations can improve perceptual quality, it stands to reason that fine-tuning a network

on images that also triggers specific filters can enhance SR reconstructions on images that

have similar activations with respect to those filters. Hence, in contrast to perceptual loss,

we are able to exploit the analysis of activations by enhancing the perceptual quality of SR

on a given LR input by using a set of images which are visually different from the LR input,

but similar in terms of activation. To the best of our knowledge, we are the first to create and

benefit from such a dataset for SR. Fig. 5.4 shows a few example images from the Activated

dataset; the detailed procedure of generating this dataset is presented in section 5.2.
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Figure 5.5 – The effects of fine-tuning as a function of the number of epochs. We show the
average change of PSNR and SSIM values over the test set, as well as explicit examples of
visual, PSNR, and SSIM evolution on two images. We see in image 2 that perceptual quality
can dramatically increase with fine-tuning, while image 6 is not affected significantly. Please
zoom in on the screen.

5.4 Overfitting: the good, the bad, and the ugly

Throughout this chapter, we have used the word “fine-tuning” for continuing the training of a

pre-trained SR network on a small set of images. Implicitly, this assumes that such training

has a beneficial effect for the purpose of the network, which is to perform SR on a given LR

image (“The good”). However, as seen in Fig. 5.2, such fine-tuning could also be labeled as

overfitting, since our method only improves reconstructions on images with similar patterns

of filter activation as the given LR image; other inputs can result in image artifacts and over

smoothing (“The bad”). That is, the fine-tuned network no longer generalizes to all image

classes. This can be understood in terms of the tradeoff between perceptual quality, and PSNR

established in [114]. We conjecture that we are able to gain perceptual quality with minimal

changes to PSNR/SSIM precisely because this gain occurs only on images similar in filter

activation to those used in the fine-tuning. As both PSNR and perceptual quality can decrease

in other images, the overall performance does not contravene the tradeoff. Thus, for a given

LR image, overfitting is actually good for improving SR reconstructions. However, we note that

the outcome of fine-tuning is dependent on the number of epochs of additional training (“The

ugly”). Further, while generalization of the network performance is clearly compromised, it

is possible for the fine-tuning to have no effect, good or bad, on different classes of images.

In Fig. 5.5, we show the effects of fine-tuning on visual quality, PSNR, and SSIM values as a

function of the number of epochs as well as how it can dramatically increase the perceptual

quality of some images while not affecting others.

It remains to address how overfitting using only a pixel-wise loss can improve perceptual
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Figure 5.6 – Image (a) is obtained by a pre-trained baseline with pixel-wise optimization on
a large dataset. Images (b,c) are obtained during the fine-tuning by our proposed method,
reaching almost the same PSNR. Image (d) is the ground truth. We see from comparing images
(b) and (c) that our method is guiding the SR network to a different local minimum with a
better perceptual quality, as the same loss is achieved but with dramatically different quality.

quality. We emphasize that the fine-tuning is done with only L1 loss; in contrast to perceptual

loss or adversarial losses used to improve perceptual quality, only pixel-wise metrics are used

in our approach. In Fig. 5.6, we show a diagram of our hypothesis that overfitting guides the

SR network to a local minimum, where the pixel-wise error is only slightly different, while

the perceptual quality is dramatically improved. As evidence, note that almost the same

PSNR is achieved on image b (during the pretraining of the network, before fine-tuning by our

approach) and image c (after fine-tuning), but image c is much sharper and realistic.

5.5 Experiments and results

5.5.1 Experimental settings

Generator architecture

While our method and experiments can generalize to arbitrary SR networks, we use an

EDSR [24] as our baseline generator, which we denote as G . EDSR performs better than

other conventional residual SR networks by eliminating some unnecessary modules e.g., batch

normalization. This makes it a good candidate to investigate the effectiveness of our proposed

approach as many other SR networks incorporate components designed for specific contri-

butions/improvements that may not strictly be necessary. The architecture consists of 32

residual blocks and 256 filters per convolutional layer (more details in Appendix A.2). We train

this network in a single step for 50 epochs, using the L1 loss function. For the training data, we

use a subset of 50 thousand images taken from Imagenet [117]. The Adam optimizer was used

for the optimization. The learning rate was set to 1e−3 and then decayed by a factor of ten

every 20 epochs.
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Figure 5.7 – The average correlations over the test-set images of the filters of the final layer of
feature extractor of G ′ and Gr and to the filters of Gper as a function of the number of epochs
of fine-tuning in red/blue respectively, with the correlation of the baseline as a dotted black
line. We see that the correlation of G ′ to Gper is higher than Gr and ; This is consistent with our
hypothesis that the proposed method of fine-tuning transforms the filters of the baseline to
be closer to the “ideal” filters for a particular image.

Fine-tuning/overfitting

Parameters: In order to force the fine-tuning to make changes to the filters of the network’

feature extractor rather than changing the last layers of the network, we freeze the convolu-

tional layers related to up-sampling, more specifically, the filters coming after the pixel-shuffle

layers. The images for fine-tuning are the random crops of 32×32 pixels from our constructed

dataset. We choose a relatively low learning rate of 1e −4 for gradual change.

K and M: We conduct sensitivity analysis to choose the best values for the number of images

per filter K and the number of filter M used for our test image. We tune these parameters

based on the perceptual quality of the generated images. The results of this work are produced

by setting the values of K and M to two and five, respectively (10 images in total). a more

detailed study can be found in Appendix A.2.

Stoppage condition: The criteria to stop the fine-tuning was basically defined based on

qualitative comparison of reconstructed images at different epochs where we could see at

epoch 30, the vast majority of the images from our validation set were perceptually more

convincing as compared to other epochs. However, considering Fig. 5.6, we can see this choice

can also be justified as this epoch also coincides with the beginning of a significant drop in

SSIM and PSNR values over all images on the test set.

Test-set

For our test-set, we randomly chose 100 images from the ImageNet dataset (non-overlapping

between activation and training datasets), as both our baseline network and the Activation

dataset are trained on/using a subset of 50,000 ImageNet images. As it is shown [120, 121] that

SR network quality drops when doing cross-dataset tests, therefore, we focus on showing a

proof of concept of improving a generic SR network on a generic dataset and do not add an

additional variable of different datasets to the mix.
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5.5.2 Filter selection analysis

In the following, we provide, to our knowledge, novel experiments and investigations into SR

networks, where we examine, at the level of the network’ filters, how the SR network changes

in response to our selective overfitting. For our experiments, we draw on [17], where authors

found that two networks trained from scratch for the same task can have different filter orders

and different filter patterns; however, fine-tuning a network to perform a different, but related

task preserved the filter orders and patterns of the original network. They further show that

the changes in filters by doing fine-tuning are gradual, by proposing to quantitatively assess

the similarities between the filters of two different instances of the same network through

correlation; concretely, given filter Fi , F j ,

ρi j =
(Fi −Fi )(F j −F j )√

‖Fi −Fi‖2

√
‖F j −F j‖2

(5.1)

where ρi j is the correlation index. We use this correlation index to quantitatively study

the changes in the filters of the SR network after fine-tuning. Given an LR image with HR

ground truth, let Gper denote the EDSR baseline which is fine-tuned on solely this LR image

to produce a perfect reconstruction. We can, in some sense, assume that Gper possesses the

ideal or optimal set of filters for super-resolving this LR image, as we overfit it on this image;

further, we verified that, consistent with [17], the overall structure/filter orders are preserved

from the baseline network, indicating that Gper is not simply memorizing the image within its

parameters.

Let G ′ denote the fine-tuned network produced from our method on this LR image. Let Gr and

denote the EDSR network fine-tuned on a set of random images. In Fig 5.7, we show the

average correlations of the filters of the final layer of G ′ and Gr and to the filters of Gper as a

function of the number of epochs of fine-tuning. The average was computed by constructing

G ′,Gr and ,Gper for each image in the test set, then taking the average correlation over the

images. We also show the correlation of the filters of the baseline G with Gper . We see that the

correlation of G ′ to Gper is generally higher than those of Gr and and G , including at 30 epochs,

which is the number that we use for our method. This provides evidence that our method of

fine-tuning in some sense brings the baseline closer to the "ideal" set of filters for a given LR

image.

5.5.3 Comparison to PSNR-based approaches

From the qualitative results in Fig. 5.2, we can observe that when we fine-tune the pre-trained

EDSR network using the images chosen through our method, namely activated-SR approach,

the perceptual quality increases with minimal impact on the PSNR/SSIM. This minimal impact

on the PSNR/SSIM has been also shown in Fig. 5.5, where we can see that over a test set of 100

images, the mean changes in PSNR/SSIM are minimal.

75



Chapter 5. Test-Time Adaptation Based on Perceptual Similarity

RCAN EDSR Activated SR 
(ours) 

HR image 

B
ab

y 
(S

et
5)

 
B

ab
oo

n 
(S

et
14

) 
11

90
82

 (B
S

D
10

0)
 

LapSRN 

17
50

32
 (B

S
D

10
0)

 

Figure 5.8 – Qualitative comparison to PSNR-based approaches. From left to right: Bicubic,
LapSRN [28], RCAN [35], EDSR [24], Activated-SR (ours), and HR image, tested on images from
Set 5 [37], Set14 [38] and BSD100 [58] testsets. We emphasize that our method is EDSR using
our test-time adapation method. We show results from other networks for comparison. Zoom
in for the best view.

In Fig. 5.8, we additionally compare our method to LapSRN [28], RCAN [35] and EDSR [24]

methods and by using test images from Set5 [37], Set14 [38] and BSD100 [58] standard datasets.

For a fair comparison, in this section, we only considered PSNR-based approaches as our

methods still relies only on minimizing the pixel-wise distance of the SR and ground-truth

images and does not benefit from any perceptual losses. This figures shows that activated-SR

images produced by out method have superior perceptual quality, while Table 5.1 confirms

that this increases had a minimal impact on the PSNR/SSIM over the whole test set.

5.5.4 Comparison to perceptual-based approaches

Finally, in Fig 5.9, we provide a comparison between SR network trained using our proposed

method and using perceptual losses (pixel-wise loss + vgg loss + adversarial loss, with the same

setting and discriminator as described in ESRGAN [43] work). We note that the perceptual loss

adds more sharpness than that of our method, but can also provide highly distorted textures.

In all cases, the images from our method are sharper/more detailed than those of the EDSR

baseline, without distorting the texture. This can be explained by the fact that optimizing

SR networks with only perceptual loss sometimes leads to the incitement of high frequency

details in image e.g., sharp edges, entailing over-sharpened images. Therefore, they do not

conform with the distortion based metrics.

On average, the decrease in PSNR and SSIM using perceptual loss is 628 and 355 percent
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5.6. Conclusion

Dataset Metric LapSRN RCAN EDSR Ours

Set5 SSIM 0.887 0.918 0.893 0.891
PSNR 31.56 32.61 32.41 32.40

Set14 SSIM 0.772 0.773 0.774 0.776
PSNR 28.20 28.86 28.81 28.70

BSD100 SSIM 0.742 0.815 0.802 0.819
PSNR 27.41 29.32 29.24 29.15

Table 5.1 – Comparison LapSRN [28], RCAN [35], EDSR [24], and activated-SR (ours) on various
test sets. We emphasize that our method is EDSR using our test-time adapation method. We
show the results from other methods for comparison. Considering Fig. 5.8 the proposed
method improves the perceptual quality of EDSR with minimal impact on the PSNR/SSIM.

larger, respectively, than the corresponding decreases using our method. Hence, our method

provides images with much greater fidelity to the ground truth, while increasing the perceptual

quality without distorted textures.

5.5.5 Inference time

We note that as our method fine-tunes the baseline network for every test image, this is

computationally more expensive than simply using the baseline network. However, we note

that relatively small patches of 32×32 pixels, and a small number of images (10 in our case)

used for fine-tuning still keeps the computation time practical for single image SR tasks; the

additional fine-tuning takes ∼13 seconds by using a GeForce GTX 1080Ti GPU, which results

in a total time of ∼14 seconds for a 2560×1920 pixel output.

5.6 Conclusion

In this chapter, we propose a novel approach to improve the perceptual quality of PSNR-based

SR methods. In our approach, given a pre-trained SR network and LR input, we use test-time

adaptation by fine-tuning the SR network on a subset of images from the training dataset with

similar activation patterns as the initial HR prediction, with respect to the filters of a feature

extractor. We show that the fine-tuned network produces an HR prediction with both greater

perceptual quality and minimal changes to the PSNR/SSIM, in contrast to perceptually driven

approaches. Further, in contrast to reference-based SR, we use only images from our proposed

activation dataset for fine-tuning, eliminating the issue with the availability of HR reference

images close to the input image. Finally, through numerical experiments novel to the field

of SR, we show that our fine-tuning can be interpreted as within the test-time adaptation

paradigm, where we update the model parameters to be closer to the parameters of an "ideal"

SR network, which is overfitted on the given LR input.
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Figure 5.9 – Comparing the proposed method and a perceptual-based approach [43]. In
general, the perceptual loss provides sharper edges but also more distorted textures, wheres
the proposed method provides images which are sharper and contain more details than the
baseline without distortion. In the table, we show that this is reflected in the decrease in the
PSNR/SSIM; using perceptual loss decreases the PSNR/SSIM relative to the baseline far more
than using our method.
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6 Integrating into Real-World SR

In previous chapters, we studied and proposed various methods to benefit from contextual

information within images to improve the reconstruction quality of learning-based super-

resolution methods. This chapter addresses the challenges of “real-world” super-resolution,

where the downsampling kernel is not bicubic and consists of a large variety of natural image

degradations. In particular, we focus on a generic solution to make all state of the art SR works

trained on synthetic datasets, including our context-aware SR contributions, compatible with

the real-world super-resolution setting.

In the following, this chapter is presented in the form of an article. The research and experi-

ments were mainly performed by the first author (the author of this thesis). The manuscript

was also written by him as the leading author and was further revised by other authors. The

article was presented at the WACV 2021 conference and published in the Proceedings of

the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2021, pp.

1590-1599, DOI: 10.1109/WACV48630.2021.00163 with the original title of Benefiting from

Bicubically Down-Sampled Images for Learning Real-World Image Super-Resolution. The

supporting information of this article can be found in Appendix A.3.
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Abstract

Super-resolution (SR) has traditionally been based on pairs of high-resolution images (HR)

and their low-resolution (LR) counterparts obtained artificially with bicubic downsampling.

However, in real-world SR, there is a large variety of realistic image degradations and an-

alytically modeling these realistic degradations can prove quite difficult. In this work, we

propose to handle real-world SR by splitting this ill-posed problem into two comparatively

more well-posed steps. First, we train a network to transform real LR images to the space of

bicubically downsampled images in a supervised manner, by using both real LR/HR pairs and

synthetic pairs. Second, we take a generic SR network trained on bicubically downsampled

images to super-resolve the transformed LR image. The first step of the pipeline addresses the

problem by registering the large variety of degraded images to a common, well understood

space of images. The second step then leverages the already impressive performance of SR on

bicubically downsampled images, sidestepping the issues of end-to-end training on datasets

with many different image degradations. We demonstrate the effectiveness of our proposed

method by comparing it to recent methods in real-world SR and show that our proposed

approach outperforms the state-of-the-art works in terms of both qualitative and quantitative

results, as well as results of an extensive user study conducted on several real image datasets.

Keyword: Real-world Super-Resolution, Generative Adversarial Networks, Deep Learning

6.1 Introduction

Super resolution is the generally, ill-posed problem of reconstructing high-resolution (HR)

images from their low-resolution (LR) counterparts. Generally SR methods restrict them-

selves to super-resolving LR images downsampled by a simple and uniform degradations (i.e,
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4× RealSR 4× RBSR (proposed) Ground-truth 

No ground-truth 
is available 

Original 

Figure 6.1 – An example SR produced by our system on a real-world LR image, for which no
higher resolution/ground-truth is available. Our method is compared against the RealSR [63]
method, a state-of-the-art of real SR method trained in a supervised way on real low-resolution
and high-resolution pairs. The low-resolution image is taken from HR images in the DIV2K
validation set [60].

bicubic downsampling) [17, 27, 79, 107, 108]. Although the performance of these methods

on artificially downsampled images are quite impressive [43, 109], applying these methods

on real-world SR images, with unknown degradations from cameras, cell-phones, etc. often

leads to poor results [63, 122]. The real-world SR problem is then to super-resolve LR images

downsampled by unknown, realistic image degradations [123].

Recent works try to resemble realistic degradations by acquisition instead of artificial down-

sampling, such as hardware binning, where LR corresponds to a coarser grid of photore-

ceptors [124], or camera focal length changes, which changes the apparent size of an object

in frame [63]. These approaches could propose very limited number of physically real low

and high-resolution pairs and their degradation models are limited to very few acquisition

hardwares.

As shown in [125], correct modeling of the image degradation is crucial for accurate super-

resolution. A general, analytical model for image degradation which is commonly assumed is

y = (x∗k) ↓s +N , where y is the LR image, x is the HR image, ∗ denotes convolution, k is the

blur kernel, N is noise, and ↓s denotes downsampling by a factor s. However, as can be seen in

Figure 6.2, these convolutional models are only approximations to the true, real degradations.

Recently, there has been a push to account for more realistic image degradations through

physical generation of datasets with real LR to HR pairs [63], synthetically generating real LR to

HR pairs through unsupervised learning or blind kernel estimation [122, 126], and simulating

more complex image degradation models such as in equation 1, with and without restrictions
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6 

Original image Estimated kernels from HR to real LR Estimated kernels from HR to bicubic LR 

Figure 6.2 – Downsampling kernels estimated patchwise on a RealSR [63] LR image and the
same image bicubically downsampled from the HR image. Estimations were done using least
squares optimization with regularization on the kernel using the LR and HR images, assuming
the standard degradation model of kernel convolution followed by subsampling. We can see
that the RealSR LR images are difficult to estimate with the standard image degradation model.

on k and ↓s [127, 128]. The pipelines of these approaches generally have the ultimate goal

of training an end-to-end network to take as input a “real" image and output a SR image.

Although these approaches result in better reconstruction quality, the real challenge of the

real-world LR to HR problem is not only limited to a lack of real LR and HR pairs; the large

variety of degraded images and the difficulty in accurately modeling the degradations makes

realistic SR even more ill-posed than SR based on bicubically down-sampled images [129].

Main idea We propose to address real world SR with a two-step approach, which we call Real

Bicubic Super-Resolution (RBSR). RBSR generally decomposes the difficult problem of real

world SR into two, sequential subproblems: 1- Transformation of the wide variety of real

LR images to a single, tractable LR space. 2- Use of generic, bicubic SR networks with the

transformed LR image as input.

We choose to transform real LR images to the common space of bicubically downsampled

images because of two main advantages. First, bicubic images are tractably generated with the

standard convolutional model of image degradation, therefore the inverse transform is less

ill-posed comparing to the cases of arbitrary/unknown degradations. Second, we can leverage

the already impressive performance of SR networks trained on bicubically downsampled

images, thanks to the availability of huge SR image datasets using bicubic kernels (see Figure

6.1).

In summary, our contributions are as follows:

1. We use a GAN to train a CNN-based image-to-image translation network, which we call

a “bicubic look-alike generator”, to map the distribution of real LR images to the easily

modeled and well understood distribution of bicubically downsampled LR images. We

use a SR network with the transformed LR image by our proposed bicubic look-alike

generator as input to solve the real-world super-resolution problem.
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2. To this end, and for the consistency of the bicubic look-alike generator, we propose a

novel copying mechanism, where the network is fed with identical, bicubically down-

sampled images as both input and ground-truth during training; this way, the network

loses its tendency to merely sharpen the input images, as realistic low-resolution images

usually seem to be much smoother.

3. We train our bicubic look-alike generator by using an extended version of perceptual

loss, where its feature extractor is specifically trained for SR task and on bicubically

downsampled images. The proposed “bicubic perceptual loss” is shown to have less

artifacts.

4. We demonstrate the effectiveness of the proposed two-step approach by comparing

it to an end-to-end setup, trained in the same setting. Furthermore, we show that our

proposed approach outperforms the state-of-the-art works in terms of both qualitative

and quantitative results, as well as results of an extensive user study conducted on

several real image datasets.

In essence, training models on paired datasets of real LR and HR pairs requires expensive

collection of big datasets; in addition, training a single model on multiple degradations for

SR is ill-posed/vulnerable to instability [129]. Training on synthetic datasets coming from

analytical degradation models have the benefit of much larger datasets and an easier task for

the network, at the cost of being less realistic. However, this approach still has the ill-posedness

problem of training on multiple degradations. In RBSR, we try to simultaneously keep the

added information from realistic LR images and the impressive performance of SR networks

on single, well-defined degradations.

6.2 Related work

The vast majority of prior work for Single image super-resolution (SISR) focuses on super-

resolving low-resolution images which are artificially generated by bicubic or Gaussian down-

sampling as the degradation model. We consider that recent research on addressing real-world

conditions can be broadly categorized into two groups. The first group proposes to physically

generate new, real LR and HR pairs and/or learn from real LR images in supervised and unsu-

pervised ways (Section 6.2.1). The second group extends the standard bicubic downsampling

model, usually by more complex blur kernels, and generates new, synthetic LR and HR pairs

(Section 6.2.2).

6.2.1 Real-World SR through real data

Some recent works [63, 130] propose to capture real LR/HR image pairs to train SR models

under realistic settings. However, the amount of such data is limited. The authors in [63, 130]

proposed to generate real, low-resolution images by taking two pictures of the same scene,
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with camera parameters all kept the same, except for a changing camera focal length. Hence,

the image degradation corresponds to "zooming" out of a scene. They generate a dataset of

real LR and HR pairs according to this procedure and show that bicubically trained SR models

perform poorly on super-resolving their dataset. Since this model’s image degradation can be

modeled as convolution with a spatially varying kernel, they propose to use a kernel prediction

network to super-resolve images. In [122], the authors perform unsupervised learning to train

a generative adversarial network (GAN) to map bicubically downsampled images to the space

of real LR images with two unpaired datasets of bicubically downsampled images and real

LR images. They then train a second, supervised network to super-resolve real LR images,

using the transformed bicubically downsampled images as the training data. In a similar work,

[72] trains a GAN on face datasets, for the specific face SR task, but their approach relies on

unrealistic blur-kernels.

In [131], the authors model image degradation as convolution over the whole image with

a single kernel, followed by downsampling. Given a LR image, they propose a method to

estimate the kernel used to downsample the image solely from subpatches of the image by

leveraging the self-similarity present in natural images. This is done by training a GAN, where

the generator produces the kernel and the discriminator is trained to distinguish between

crops of the original image and crops which are downsampled from original image using this

estimated kernel. This method relies on the accuracy of the standard convolutional model

of downsampling, which is shown to not hold for RealSR images in Figure 6.2. Further, the

estimation of the kernel and subsequent SR are quite time consuming in comparison to

supervised learning based methods; the calculation of the kernel alone for a 1000×1000 image

can take more than three minutes on a GTX 1080 TI. In addition, their method constrains the

size of the input images to be "large enough" since they need to downsample the input images

during training. In [45], the authors propose an unsupervised cycle-in-cycle GAN, where they

create one module for converting real LR images to denoised, deblurred LR images and one

module for SR using these Clean LR images. They then tune these networks simultaneously

in an end-to-end fashion, which causes this intermediate representation of the LR image to

deviate from their initial objective.

6.2.2 Real World SR through extended models

In [128], the authors extend the bicubic degradation model by modeling image degradation

as a convolution with an arbitrary blur kernel, followed by bicubic downsampling. They

embed the super-resolution in an alternating iterative scheme where analytical deblurring is

alternated with applying a SR network trained on bicubically downsampled images. Although

this method generalizes to arbitrary kernels, one has to provide the kernel and the number

of iterations as an input to the pipeline. In [127], the authors extend the bicubic degradation

model by modeling image degradation as a convolution with a Gaussian blur kernel, followed

by bicubic downsampling. They use an iterative scheme using only neural networks, where at

each iteration the pipeline produces both the SR image and an estimate of the corresponding
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Figure 6.3 – We propose a two-step pipeline for real world SR. First, we transform real LR
images to bicubically downsampled looking images through our bicubic look-alike generator.
We then pass the transformed image as input to a generic SR decoder trained on bicubically
downsampled images.

downsampling kernel. In [126], the authors also model image degradations as convolution

with a blur kernel followed by bicubic downsampling. They estimate the blur kernel using a pre-

existing blind deblurring method on a set of "real" images which are bicubically upsampled;

they use the same dataset of low quality cell-phone pictures used in [122]. They then train a

GAN to generate new, realistic blur kernels using the blindly estimated blur kernels. Finally,

they generate a large synthetic dataset using these kernels and train an end-to-end network

on this dataset to perform SR. These three methods all rely on an analytical model for image

degradation as well as being reliant on restrictive kernels or blind kernel estimation.

6.3 Methodology

6.3.1 Overall pipeline

RBSR consists of two steps; first, we use a Convolutional Neural Network (CNN)-based network,

namely the bicubic look-alike image generator, whose objective is to take as input the real LR

image and transform it into an image of the same size and content, but which looks as if it had

been downsampled bicubically rather than with a realistic degradation. We call this output

the bicubic look-alike image. Second, we use any generic SR network trained on bicubically

downsampled data to take as input the transformed LR image and output the SR image. Figure

6.3 shows an overview of our proposed pipeline. We restrict the upsampling factor to four. In

the following subsections, we describe each component of our pipeline in more details.
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Figure 6.4 – Schematic diagram of the bicubic-alike decoder. We train the decoder using our
new bicubic perceptual loss, alongside standard L1 and adversarial losses. In this schema, k,
n and s correspond to kernel size, number of feature maps and stride size, respectively.

6.3.2 Bicubic look-alike image generator

The bicubic look-alike image generator is a CNN, trained in a supervised manner. The main

objective of this network is to transform real LR images to bicubic look-alike images. In this

section, we present its architecture in detail. Then, we introduce a novel perceptual loss used

to train it. Finally, we also introduce a novel copying mechanism used during training to make

this transformation consistent.

Architecture

The architecture of the bicubic look-alike generator is shown in Figure 6.4. The generator is

a feed-forward CNN, consisting of convolutional layers and several residual blocks, which

has shown great capability in image-to-image translation tasks [132]. The real low-resolution

image I Real−LR is passed through the first convolutional layer with a ReLU activation function

with a 64 channel output. This output is subsequently passed through 8 residual blocks. Each

block has two convolutional layers with 3×3 filters and 64 channel feature maps. Each one

is followed by a ReLU activation. By using a long skip connection, the output of the final

residual block is concatenated with the features of the first convolutional layer. Finally, the

result is filtered by a last convolution layer to get the the 3-channel bicubic look-alike image

(I Bi cubi c−LR ).

Loss functions

In the bicubic look-alike generator, we use a loss function (Ltot al ) composed of three terms:

1- Pixel-wise loss (Lpi x.wi se ), 2- adversarial loss, and 3- our novel bicubic perceptual loss

function (Lbi c.per c.). The overall loss function is given by:

Ltot al =αLpi x.wi se +βLbi c.per c. +γLad v , (6.1)

where α, β and γ are the corresponding weights of each loss term used to train our network.
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In the following, we present each term in detail:

• Pixel-wise loss. We use the L1 norm of the difference between predicted and ground-truth

images as this has been shown to improve results compared to the L2 loss [36].

• Adversarial loss. This loss measures how well the image generator can fool a separate

discriminator network, which originally was proposed to reconstruct more realistic looking

images for different image generation tasks [19, 46]. However, in this work, as we are feeding

the discriminator with bicubically downsampled images as the “real data”, it results in images

which are indistinguishable from bicubically downsampled images. The discriminator network

used to calculate the adversarial loss is similar to the one presented in [19]; it consists of a series

of convolutional layers with the number of channels of the feature maps of each successive

layer increasing by a factor of two from that of the previous layer, up to 512 feature maps. The

result is then passed through two dense layers, and finally, by a sigmoid activation function.

The discriminator classifies the images as either “bicubically downsampled image” (real) or

“generated image”(fake).

• Bicubic perceptual loss. Perceptual loss functions [19, 80] tackle the problem of blurred

textures caused by optimization of using per-pixel loss functions and generally result in more

photo-realistic reconstructions. In this work, we take inspiration from this idea of perceptual

similarity by introducing a novel perceptual loss.

However, instead of using a pre-trained classification network, e.g. VGG [40] for the high-level

feature representation, we use a pre-trained SR network trained on bicubically down-sampled

LR/HR pairs. In particular, we use the output of the last residual block of our SR network,

presented in Section 6.3.3, to map both HR and SR images into a feature space and calculate

their distances. The bicubic perceptual loss term is formulated as:

Lbi c._per c. =
1

Wi , j Hi , j

Wi , j∑
x=1

Hi , j∑
y=1

(
φSR

k

(
I Bi cubi c−LR

)
−φSR

k

(
I T−LR))2

,

(6.2)

where Wi , j and Hi , j denote the dimensions of the respective feature maps. φSR
k indicates the

output feature map of the k-th residual block from the SR decoder and I T−LR denotes the

transformed LR image. We conjecture that using a SR feature extractor, which is specifically

trained for SR task and on bicubically down-sampled images, will better reflect features

corresponding to the characteristics of bicubically downsampled images than using a feature

extractor trained for image classification.

In Figure 6.5, we compare the effect of using the standard perceptual loss which uses a pre-

trained classification network versus our bicubic perceptual loss. Note that the standard
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(a) (b) (c) 

(d) (e) 

(a) (b) (c) 

(d) (e) 

Figure 6.5 – The effectiveness of using bicubic perceptual loss: (a) HR image, (b) Only L1 loss,
(c) perceptual loss, (d) bicubic perceptual loss, and (e) bicubic perceptual loss + adversarial
loss. Red boxes show how using bicubic perceptual loss (c) decreases artifacts comparing to
using conventional perceptual losses (d), while still producing sharper edges comparing to
only using L1 loss.

perceptual loss introduces artifacts in the transformed LR image which are avoided by the

bicubic perceptual loss. Further, we see that using the bicubic perceptual loss produces

sharper edges as compared to using just the L1 loss.

Copying mechanism

Bicubically downsampled images are in general seem to be much sharper than realistic low-

resolution images, therefore, training network by real LR images gives it this tendency to

merely sharpen the input images instead of learning bicubic characteristics. To address this

issue, we want the network to be consistent and apply minimal sharpening to already sharp

images. To this end, we utilize a novel copying mechanism, where the network is periodically

fed with identical, bicubically downsampled images as both input and output during training.

This is done in order to prevent the network from just learning to sharpen images, as this can

cause oversharpening or amplification of artifacts.

In Figure 6.6 we compare the outputs of the network trained with and without the copying

mechanism. We can see clearly that training without the copying mechanism results in severe

over-sharpening of the output image.
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Figure 6.6 – Example images generated without (a) and with (b) the copying mechanism during
training. We can clearly see that without the copying mechanism, resulting images suffer from
oversharpening and artifact amplification.

6.3.3 SR generator

The second step of our pipeline is to feed the output of our bicubic-like image generator as

the input to any SR network trained on bicubically downsampled images. For simplicity, we

use a network based on EDSR [24]. The EDSR architecture is composed of a series of residual

blocks bookended by convolutional layers. Crucially, batch normalization layers are removed

from these blocks for computational efficiency and artifact reduction. For simplicity, as well

as decreasing training/inference time, we only use 16 residual blocks, as compared to the 32

residual blocks used in EDSR. This generator is trained on DIV2K training images (track 1:

bicubically downsampled images and HR pairs) and by using the L1 loss function. We refer

the reader to Appendix A.3 for more details about the network architecture.

6.3.4 Training parameters

Bicubic look-alike generator For the training data, as input, we use 400 RealSR [63] and 400

DIV2K Track 2 [60] LR images. The RealSR dataset contains real LR-HR pairs, captured by

adjusting the focal length of a camera and taking pictures from the same scene. Track 2 images

are downsampled using unknown kernels. As the desired output is the bicubic look-alike

image, we use the bicubically downsampled RealSR and the bicubically downsampled DIV2K

(track 1) images as the ground truth for the training inputs. In addition, as described in

Section 6.3.2, we add 400 bicubically downsampled images from DIV2K, identical for both

input and ground-truth, to make the generator consistent and avoid oversharpening or artifact

amplification. We use the same 400 bicubically downsampled images from DIV2K as the real

input of the discriminator. At each epoch, we randomly cropped the training images into

128×128 patches. The mini-batch size in all the experiments was set to 16. The training

was done in two steps; first, the SR decoder was pre-trained for 1000 epochs with only the L1

pixel-wise loss function. Then the proposed bicubic perceptual loss function, as well as the
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adversarial loss, were added and the training continued for 3000 more epochs. The weights of

the L1 loss, bicubic perceptual loss and adversarial loss function (α, β and γ) were set to 1.0,

3.0, and 1.0 respectively. The Adam optimizer [96] was used during both steps. The learning

rate was set to 1×10−4 and then decayed by a factor of 10 every 800 epochs. We also alternately

optimized the discriminator with similar parameters to those proposed by [19].

SR generator The SR decoder is also trained in a single step for 4000 epochs and using the L1

loss function. For the training data, we only use track 1 images of DIV2K, which consists of 800

pairs of bicubically downsampled LR and HR images. Similar to the training of the bicubic

look-alike generator, the Adam optimizer was used for the optimization process. The learning

rate was set to 1×10−3 and then decayed by a factor of 10 every 1000 epochs.

End-to-end baseline To investigate the effectiveness of RBSR, which super-resolves a given

input in two steps, we also fine-tune the EDSR architecture with the same datasets used to

train the bicubic look-alike generator. This dataset consists of 400 RealSR and 400 DIV2K Track

2 LR and HR pairs. We further noticed that the inclusion of 400 bicubically downsampled

LR and HR pairs in this dataset adds more robustness to the performance. In order to keep

the same number of parameters as in the RBSR pipeline, we increase the number of residual

blocks of this end-to-end generator to 24. The training parameters used for this baseline is

similar to the ones used in [24].

6.4 Experimental results

In this section, we compare RBSR to several SOTA algorithms (CVPR 2019, ICCV 2019) in

real-world SR both qualitatively and quantitatively. We show standard distortion metrics

for the datasets with ground truth, and we show a comprehensive user study conducted

over six image datasets with varying image quality and degradations. In all cases, we use an

upsampling factor of four.

We emphasize that the distortion metrics are not directly correlated to the perceptual quality

as judged by human raters [2, 19, 41, 68]; the super-resolved images could have higher errors

in terms of the PSNR and SSIM metrics, but still generate more appealing images. Moreover,

the RealSR images represent only a limited group of realistic images from Nikon and Canon

cameras. Therefore, we validate the effectiveness of our approach by qualitative comparisons

and by an extensive user study in the following sections.

6.4.1 Test images

Lack of ground-truth in real-world SR

One of the main challenges of real-world SR is the lack of real low and high resolutions pairs,

for both training and testing. As mentioned previously, most of the known benchmarks in

super-resolution had no choice but using a known kernel to create a counterpart with lower
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Figure 6.7 – Qualitative results of ×4 SR on a subset of the DIV2k [60] (Rows 1-2), RealSR HR [63]
(Rows 3-4), TV Streams (Row 5), and DPED cell-phone images [62] (Row 6). Results from left to
right: bicubic, EDSR [24] fine-tuned with real LR and HR pairs, DPSR [128], RealSR [63], and
RBSR (ours). Please note that no ground-truth is available for these images. Zoom in for the
best view.
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Figure 6.8 – Results of the user study comprising forty one people, comparing EDSR [24], fine-
tuned with real LR and HR pairs, DPSR [128], RealSR [63], and RBSR (ours), on six different
datasets: DIV2K HR [60], RealSR [63] HR, RealSR LR, TV Stream images, DPED [62] Mobile
Phone images, and DIV2K Unknown Kernel LR.

resolution. To the best of our knowledge RealSR [63] is the only dataset with real images of the

same scenes with different resolutions: their LR and HR images are generated by taking two

camera pictures of the same scene, but changing the focal length of the camera between the

two pictures. Hence, both are real images, but with the RealSR LR being degraded with the

degradation from changing the focal length of the camera (zooming out). DIV2K Unknown

kernel LR images [60] is another attempt to create pairs of real low and high-resolutions images.

They generate synthetically real low and high resolution images by using unknown/random

degradation operators.

Images without ground-truth

In addition to RealSR LR and DIV2K Unknown kernel datasets, we also evaluate our method

on four datasets of real images, without having any ground-truth as it is the main focus of

real-world SR task: 1- RealSR [63] HR test images, 2- DIV2K HR [60] validation images (real), 3-

DPED [62] Mobile Phone images, 4- TV Stream images (unknown, depending on the original

content of the TV). The DPED Mobile Phone dataset is a dataset of real images where cell-

phones were used to take pictures of same scenes. The TV stream images are decoded images

from an actual TV channel stream at HD (1920×1080) resolution; our acquisition algorithm

captured one image every ten minutes over a period of two days, to ensure that our these test

images cover different types of content. We note that no information is available about their

type of degradations, as the original resolutions of the contents before streaming are unknown.

Further, we note that we only have the ground-truth high-resolution images for the DIV2K

Unknown Kernels images and the RealSR LR images.

6.4.2 Quantitative results

In this work, calculating distortion metrics such as PSNR and SSIM is not possible for test

images that truly reflect the real-world problem (original images from smartphones, TV

streams, etc.), as in real cases the downsampling operator is not known and therefore no
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ground-truth is available. RealSR [63] is the only dataset with physically produced high

and low-resolution image pairs. Readers can refer to Appendix A.3 to find PSNR, SSIM and

perception index (PI) metric evaluated by using this dataset.

6.4.3 Qualitative comparison

For the qualitative comparison, we compare the following real world SR algorithms: 1- RBSR

(Ours), 2- EDSR-real: the EDSR [24] network trained end-to-end on the same data/settings

as RBSR, 3- The pretrained RealSR network [63], and 4- The pre-trained DPSR network with

default settings for real-world SR [128]. We compare with the end-to-end EDSR network in

order to show the efficacy of splitting the problem into two steps. We compare to RealSR and

DPSR as they are two of the most recent state-of-the-art algorithms. We use their pre-trained

models along with the default settings for real images they provide1,2. In Figure 6.7, we show

qualitative results on a random subset of the image datasets described in the previous sections.

6.4.4 User study

We also conducted a user study comprising forty one people in order to gauge the perceptual

image quality of SR images using the image datasets described in the previous section. We

chose five images randomly from each dataset, with thirty total images. For each image, the

users were shown four SR versions of the image, each corresponding to the real-world SR

algorithms being compared. Users were asked to select which SR image felt more realistic

and appealing. The images were shown to users in a randomized manner. As the datasets

reflect a wide range of image quality, etc., we show the evaluations of the algorithms for each

dataset separately. Our metric of evaluation for the algorithms is the percent of votes won. We

show the results of the user study in Figure 6.8. We find that RBSR won the largest percent

of votes over all six image datasets individually. RBSR decisively won the largest percentage

of votes, by a margin of 10 to 55% from the second ranked algorithm, on the DIV2K HR, the

RealSR-HR, the RealSR-LR, and the TV stream image datasets. The second place algorithm on

these datasets alternated from RealSR, DPSR, and EDSR-Real, and RealSR respectively. We

note that on the RealSR-LR dataset, for which the RealSR algorithm is tailored and trained,

RBSR and EDSR-Real are the first and second place. This shows the efficacy of both the two

step approach of RBSR and introducing bicubically downsampled images into the training

dataset. On the DPED dataset, RBSR won by a small margin over DPSR.

6.5 Conclusion

In this work, we have shown that the challenges of super resolution on realistic images can be

partly alleviated by decomposing the SR pipeline into two sub-problems. First, is the conver-

1https://github.com/csjcai/RealSR
2https://github.com/cszn/DPSR
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sion of real LR images to bicubic look-alike images using our novel copying mechanism and

bicubic perceptual loss. Second, is the super-resolution of bicubically downsampled images.

Each sub-problem addresses a different aspect of the real-world SR problem. Converting real

low-resolution images to bicubic look-alike images allows us to handle and model the variety

of realistic image degradations. The super-resolution of bicubically downsampled images

allows for the application of state-of-the-art super-resolution models, which have achieved

impressive results on images with well defined degradations. We show that our approach

(RBSR) outperforms the SOTA in real-world SR both qualitatively and quantitatively using a

comprehensive user study over a variety of real image datasets.
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7.1 Thesis summary

In this thesis, we studied and developed several CNN-based methods for the SR task with the

main focus of benefiting from the context of images to improve SR reconstruction quality.

We proposed innovative solutions that address the majority of the current context-aware SR

works limitations. Majority of our contributions are suited for real-time applications, and can

run on moderate computational resources.

We first presented some previous works in Chapter 2 and reviewed relevant SR architectures,

seminal deep-learning techniques, SR image datasets, and available evaluation metrics for SR

that we used in our work. In Chapter 3, we introduced a novel approach to use categorical

information while doing SR, without any additional cost at the test time. We developed a

generator that only benefited from one shared deep network to learn simultaneously image

SR and semantic segmentation by keeping two task-specific output layers during training.

This chapter also introduced a novel boundary mask to discard unrelated segmentation losses

caused by imprecise segmentation labels. This chapter’s contributions have been validated by

perceptual experiments, including a user study on images from COCO-Stuff [90] dataset.

To ensure a meaningful spatial control over the training of CNN-based approaches, in Chap-

ter 4, we introduced a novel targeted perceptual loss function for SR task. This loss function

was designed to penalize different regions based on their categorical meaning, e.i., using edges’

loss for the edges and textures’ loss for textures. To making this spatial control possible, we

introduced the new OBB (Object, boundary, and background) labels created from pixel-wise

segmentation labels and injected additional semantic information into the training process.

Our extensive evaluations, including a user study, showed that training with proposed tar-

geted perceptual loss yields perceptually more pleasing results than four other state-of-the-art

works.

In this thesis, we further investigated how overfitting/fine-tuning on some selected images can

be beneficial for the SR task in Chapter 5. For the first time, we proposed a test-time adaptation
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technique to improve SR methods’ perceptual quality. Given a pre-trained SR network and

a low-resolution input, we proposed fine-tuning/overfitting the SR network on a subset of

images from the training dataset with similar activation patterns as the initial HR prediction,

with respect to the filters of a pre-trained feature extractor. We demonstrated that the fine-

tuned network produces perceptually more appealing predictions with minimal changes

to the PSNR and SSIM metrics (in contrast to perceptually driven approaches). We further

validated this hypothesis by a novel numerical experiment, where we quantitatively judged the

learned parameters of the fine-tuned network by comparing them to what we introduced as

“ideal” filters. Unlike reference-based SR, we used only images from our proposed activation

dataset for fine-tuning, eliminating the issue with the availability of high-resolution reference

images close to the input image.

In all our previously mentioned contributions, we used synthetic datasets based on the hy-

pothesis that downsampling kernel is uniform and known, i.e., bicubic downsampling kernel.

To address the problem of unknown blur and downsampling kernels in real scenarios, namely

real-world SR problem, in Chapter 6, proposed a generic solution to adapt all SR works trained

on synthetic datasets to the real-world SR setting. We decomposed the SR task on realistic

images into two sub-problems: First, converting the real LR images to bicubic look-alike

images using our CNN-based image-to-image translator, trained in a GAN setting. Second,

super-resolving images by any SR network trained on bicubically downsampled images. By

converting real low-resolution images to bicubic look-alike images, we could handle and

model various realistic image degradations. Moreover, this approach enabled re-using state-

of-the-art SR models, which have achieved impressive results on images with well-defined

degradations. We showed that this two-stage approach outperforms recent real-world SR

methods, both qualitatively and quantitatively, using a comprehensive user study over various

real image datasets.

In the end, we should emphasize that while context-aware SR methods usually require prior

information such as an additional segmentation map at the input, our proposed methods

mostly require minimal information only for the training stage and not at the test time. This

fact proved our contributions to be practical for real-case scenarios in the sense that they can

significantly improve the reconstruction quality without requiring more computational cost,

compared to conventional CNN-based approaches. Furthermore, our techniques are mostly

not only limited to the SR problem, but they are more general and can be applied to any image

generation tasks, such as image inpainting, face generation, etc.

7.2 Limitations

This research demonstrated that a learning-based method could benefit from categorical

and contextual information within images to improve its reconstruction quality. However,

extracting this information, even for humans, is not easy to obtain in some images. We can

encounter images, e.g., some abstract arts, that their context or even the type of available
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shapes and objects within them are not easily recognizable. In these cases, in case of a wrong

recognition by the SR network, it can lead to a biased reconstruction toward a wrong category.

This limitations could mostly affect the approach presented in Chapter 3, where specific

classes of objects and backgrounds were used in a multitask learning-based setting. In general,

the validations in this work were mostly done on random images of different datasets and

categories. Further investigations would be needed to study and evaluate the advantages and

disadvantages of context-aware methods on these specific images, where a depiction of visual

reality is not recognizable.

In this work, we also addressed the problem of the unknown blur kernel of real images, namely

the real-world SR problem; the essence of this problem is only shown by doing SR on images

that have not HR counterparts. Therefore, this approach was mostly validated through a user

study on images for which no ground-truth where available. This user study confirmed that

our approach could construct more appealing images for users compared to other state-of-

the-art approaches; however, we have no information about how this reconstruction is close to

the real scene and a hypothetical ground-truth. In other words, without having a ground-truth,

voters may find a ‘tree’ reconstructed by our method more realistic. However, it is not proven

that it is more closer to the actual tree in the real scene, comparing to reconstructions of other

methods. This limitation can become more significant in medical applications, where the

actual truth is indeed more important than what is called more ’realistic’ for observers.

7.3 Future work

In this thesis, we developed several approaches for SISR benefiting from contextual informa-

tion. In this section, we briefly describe some interesting and promising research directions,

which are worth investigating further based on the findings of this work.

New evaluation metrics: Despite recent advances in SR and achieving perceptually appealing

results, having a reliable and efficient evaluation metric still remains the biggest challenge

of this domain. As mentioned earlier, conventional image quality metrics such as SSIM and

PSNR -used commonly in many SR works as quantitative measurements, or even more recent

learning-based metrics such as LPIPS and NIQE, are not correlated to the actual perceptual

quality perceived by humans. Currently, the only way to reflect superior reconstruction quality

in a trustworthy way is through the mean opinion score or user studies. In Chapter 4, we

proved that penalizing our optimization process by considering categorical information leads

to higher reconstruction quality. From this result, we can also conclude that this new objective

function is reflecting the reconstruction quality better than other metrics previously used as

objective functions. This idea of creating a targeted metric, evaluating each area of image

based on its categorical information, would be definitely one of the future directions of this

work. To this end, a thorough study would be needed to find the correlation between the

output of this function and scores from extensive user studies.

Towards multi-frame super-resolution: In this thesis, we showed that we are able to recover
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more realistic images by benefiting from semantic information for the SISR task. The ideas

presented in Chapters 3 and 4 were only applied for single image SR, as we could benefit from

available datasets containing a considerable number of segmentation labels, e.g., [90] and

trained them in a supervised manner. As a future work, we aim to design new frameworks to

benefit from the same ideas for video sequences, where no available segmentation database

exists. We expect to improve the SR decoder’s performance by using semantic information

within video frames in addition to multi-frame information.

New objectives for multitask learning-based approaches: As we also emphasized previously,

multitask learning improves generalization by using the domain information contained in the

training signals of related tasks. This improvement is the result of learning tasks in parallel

while using a shared representation. In Chapter 3, we proved the effectiveness of multitask

learning for single image SR by learning an SR model simultaneously for single image SR

and semantic segmentation. As a future work, we aim at investigating the potential of using

multitask learning to improve video SR, specifically with more related and suitable tasks for

multi-frame SR, e.g., estimating motions in image sequences; simultaneously learning the

best optical flow representation relating two consecutive frames at time t and t −1 and video

SR.

Higher scale factors: In all our contributions, the majority of experiments focused on solving

the SR problem of a scale factor four (×4 SR). The main reason behind this choice was the

feasibility of comparing it to other state-of-the-art SR methods, where this scale factor is

the dominant choice. We believe that the categorical priors and different ideas presented in

this work would be even more effective and significant when performing SR for higher scale

factors, such as ×8, ×16 or ×16, where objects and textures become even more difficult to

recognize. We emphasize that in such extreme SR, recovering fine details and sharp edges

become much more challenging. Furthermore, the idea of proposing a framework capable

of handling arbitrary scale factors could be interesting for real-life applications where the

upscaling factors are unknown.
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A Appendix

A.1 Related to Chapter 4

In this secton, you find the supporting information of the article “SROBB: Targeted Perceptual

Loss for Single Image Super-Resolution”, presented in Chapter 4. In particular, first, we

provide additional qualitative and quantitative results on super-resolution benchmarks such

as Set5 [37], Set14 [38] and BSD100 [58]. Then, we present more details of our extensive user

study and the time span taken by the users for decision making.

A.1.1 Results on standard benchmarks

Quantitative results

In this subsection, we conduct an evaluation study based on the quantitative metrics. Ta-

ble A.3 summarizes the average of SSIM, PSNR and LPIPS values of the Set5 and Set14 images,

respectively. Because of the fact that the human eye is most sensitive to luma information, we

compute the PSNR and SSIM values only for the intensity (luma) channel in YCbCr space.

As also emphasized in the paper, these metrics would not reflect the reconstruction quality;

the reconstructed images using both our method and the SRGAN are not ranked first in terms

of mentioned metrics, however, they generate more realistic and appealing super-resolved

images comparing to the other methods. Therefore, here, we only present the qualitative

results on the BSD100 test set.

Qualitative results

In this part, we evaluate and compare the visual results of our method with SRGAN and bicubic

interpolation methods on random images from the BSD100 test set, as well as the images from

the Set5 and Set14 datasets, respectively. Figure A.1 corresponds to the reconstructed images

from the BSD100 dataset. Results on Set5 are shown in Figure A.2 while Figure A.3 shows some
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Testset Metric Bicubic SRCNN SelfExSR LapSRN SRGAN SROBB HR image

SSIM 0.811 0.863 0.862 0.884 0.848 0.817 1.0
Set5 PSNR 28.43 30.51 30.34 31.54 29.41 28.93 ∞

LPIPS 0.340 0.214 0.171 0.121 0.083 0.087 0.0

SSIM 0.704 0.756 0.757 0.772 0.739 0.678 1.0
Set14 PSNR 26.01 27.52 27.41 28.19 26.04 25.43 ∞

LPIPS 0.440 0.332 0.301 0.312 0.148 0.162 0.0

Table A.1 – Comparison of bicubic interpolation, SRCNN [11], SelfExSR [133], LapSRN [28],
SRGAN [19] and SROBB (ours) on the Set5 and Set14 test sets. Red color indicates the best
measures (SSIM, PSNR [dB], LPIPS) and blue color indicates the second bests. The visual
comparison of the images from these test sets are shown in Figures A.2 and A.3.

reconstructed images from the Set14. The upscaling factor of all images is set to four (Best

viewed in zoom in).

A.1.2 Details of the user study

Figure A.8 shows a screenshot of the survey that we used to evaluate our proposed method.

The subjects were shown five reconstructed images and were asked to choose the image that

looks more appealing to them. We also added the real high-resolution image in the same page

as the reference. We cropped each image vertically to be able to fit all versions of the same

image side by side within a single page. The height of the images are remained the same as the

original size.

Time span analysis for the user decision making In total, 51 persons participated in our abla-

tion study. Among them, eight persons have been subject to a new experimental setting, under

an additional controlled situation: we recorded the time span that each user spent to respond

each question. As each user has different speed to complete the survey, we normalized all

times to the average time by all users, 10:52 minutes (in average, 18.62 seconds per question).

Table A.2 shows the time that users spend to choose each of the following options: 1- the

reconstructed image only by pixel-wise loss, 2- pixel-wise loss and standard perceptual loss,

3- pixel-wise loss and targeted perceptual loss (this work), and finally, 4- the “Cannot decide”

option (The adversarial loss term is used for both 2 and 3). For images, where our method was

the preferred choice, the average time span taken by the users to make decision was relatively

shorter than other methods. We can conclude that, in cases where SROBB was not the winning

choice, the difference between the super-resolved images using different loss terms was less

significant, therefore, users had more difficulties to choose the best option. Meanwhile, users

seem to be more sure when they are voting in favor of reconstructed images by the SROBB

method. As a future work, to be able to validate this conclusion and to be sure that time
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SRGAN SROBB HR image Bicubic 

Figure A.1 – Qualitative results on random images from BSD100 [58] using bicubic interpola-
tion, SRGAN[19], SROBB (ours), respectively. Zoom in for the best view. [4× upscaling]
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SRGAN SROBB HR image Bicubic 

Figure A.2 – Qualitative results on the images from Set5 [37] using bicubic interpolation,
SRGAN[19], SROBB (ours), respectively. Zoom in for the best view. [4× upscaling]
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SRGAN SROBB HR image Bicubic 

Figure A.3 – Qualitative results on the images from Set14 [38], using bicubic interpolation,
SRGAN[19], SROBB (ours), respectively. Zoom in for the best view. [4× upscaling]
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Options Cannot decide Only pixel With perc- With targeted

-wise loss eptual loss perceptual loss

Average time 22.60 23.85 24.09 17.81

Table A.2 – The average of decision making duration [seconds] for users to choose the recon-
structed images of each method.

Figure A.4 – Example screenshot of our online survey, to perform a user study and compare our
method to state-of-the-art PSNR and GAN-based approaches. In total, 46 persons participated
in this survey and 1610 votes were obtained. Users selected the images produced by SROBB
(ours) 38.3% while ESRGAN, SFT-GAN, SRGAN, RCAN, and “Cannot decide” had 27.1%, 13.9%,
12.5%, 4.7%, and 8.3% of the votes, respectively. In total, in 42.9% of images we were the
winning choice by the majority of votes for SROBB.

span for decision making is not biased by the type of the image, this experiment needs to be

extended with significantly more number of images.
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A.2 Related to Chapter 5

In this section, you find the supporting information of the article “Test-Time Adaptation for

Super-Resolution: You Only Need to Overfit on a Few More Images”, presented in Chapter 6.

In particular, first, we present more detail about the training of our model, including the

generator’s architecture and fine-tuning parameters. Then, the effect of different convolu-

tional layers in our approach is investigated. Finally, we discuss our tuning method to find

appropriate values for K and M (these variables are introduced in Chapter 6).

A.2.1 Training details

Generator’s architecture The architecture of the generator, based on [24], is shown in Figure

A.5. The generator is a feed-forward CNN, consisting of convolutional layers and several

residual blocks; the low-resolution image I LR is passed through the first convolutional layer

with a ReLU activation function and a 64 channel output. This output is subsequently passed

through 32 residual blocks. Each block has two convolutional layers with 3×3 filters and

256 channel feature maps. Each one is followed by a ReLU activation. By using a long skip

connection, the output of the final residual block is concatenated with the features of the

first convolutional layer and is then passed through two upsampling blocks, where each one

doubles the size of the feature map. Finally, the result is filtered by the last convolutional layer

to get the super-resolved image I SR . This setup aims at upsampling with a scale factor of four;

the number of upsampling blocks could be modified based on different scaling factors.

Fine-tuning In Fig. A.5, the trainable convolutional layers are highlighted with the yellow

box; other parameters are frozen. This has be done specifically to force the fine-tuning to

make changes to the filters of the network’ feature extractor rather than manipulating the

upsampling layers of the network, thereby yielding a plausible solution. The fine-tuning is
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Figure A.5 – The network architecture of the generator. We highlight (yellow bounding box)
the feature extractor layers which have been trained during fine-tuning stage, while keeping
the other upsampling layers (purple bounding box) frozen.
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Figure A.6 – Differences in the perceptual quality obtained at different VGG network layers
including conv2, conv3, conv4, and conv5, respectively.

performed with the mini-batches of 4 images, corresponding to random crops of 32×32 pixels

from our constructed dataset. We choose a relatively low learning rate of 1e −4 for a gradual

change in the network parameters.

Baseline with perceptual loss The generator used in this setting is the same as our PSNR-

based approach.

The training is divided into two steps; first, the SR decoder was pre-trained with only the

pixel-wise cost function for 20 epochs. Then, for the second step, we continue the training for

35 more epochs with a new loss function containing three loss terms: 1- Pixel-wise loss (L1),

2- an adversarial loss (Lad v ), and 3- the perceptual loss function [80] (Lv g g ) using a layer of

the pretrained VGG-19 network [40]. The total loss can be formulated as follows:

Ltot al =αL1 +βLv g g +γLad v (A.1)

where α, β, γ and δ are the corresponding weights of the loss terms used to train our network,

and as proposed by [43], were set to 1e −2, 5e −3 and 1, respectively. The Adam optimizer [96]

was used during both steps. The learning rate was set to 1e −3 and then has been decayed by

a factor of 10 every 20 epochs. We also alternately optimized the discriminator with similar

architecture and settings to those proposed by [43].

A.2.2 Effect of different convolutional layers

In this section, we investigate the effectiveness of using different convolutional layers of the

VGG network in our approach. Specifically, we show results using the conv2, conv4, and conv5

layers in Fig. A.6. We base our selection on the visual/perceptual quality of the outputs. For
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example, we found that conv2 and conv5 produced suboptimal results compared to other

layers. Ultimately, based on the visual/perceptual quality, we chose to use the conv3 layer.

A.2.3 Best values for K and M

In this section, we go more into detail about how we chose the number of images per filter K

to construct our dataset used in the fine-tuning and the number of filters M to consider with

respect to the test image. We presented results using K = 2, M = 5. We tuned these parameters

based on the perceptual quality of the images generated by varying K and M over a range of

values. We focused on the best perceptual quality, as some decreases in PSNR/SSIM values are

expected. In Fig. A.7, we show the results for the combinations generated by K = 1,2,5,9 and

M = 1,2,5,10. We can observe that results obtained by very few images for fine-tuning (e.g.

K = 1 and M = 1) contain artefacts, while increasing both K and M results in more realistic and

appealing results (2 ≤ K , M ≤ 5). Finally, we note that increasing both K and M significantly

(K , M > 5) produces blurry images, toward same solution as the EDSR baseline.
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Figure A.7 – Differences in the perceptual quality obtained with different combinations of K
and M .
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A.3 Related to Chapter 6

In this secton, you find the supporting information of the article “Benefiting from Bicubi-

cally Down-Sampled Images for Learning Real-World Image Super-Resolution”, presented

in Chapter 6. In particular, in this section, we first use ESRGAN [43], and RCAN [35] methods

for the SR decoder as the second step of our proposed method (RBSR) to demonstrate the

generalization capability of the bicubic look-alike generator. Then, we provide a quantitative

analysis of the proposed approach by using the RealSR [63] test set images. In addition, we

present more details concerning the computational cost of the proposed method.

A.3.1 Generalization capabilities of the bicubic look-alike generator

Our proposed approach (RBSR) is a two step procedure. The first step transforms the real LR

image using the bicubic look-alike generator. The second step uses any generic SR decoder

trained on bicubically downsampled images, taking the transformed LR image as input. In

the paper, for the qualitative comparison and the user study, we used a pre-trained EDSR

network for this second step. Here, we show the robustness and generalizability of our two

step approach by replacing the EDSR network with pretrained ESRGAN and RCAN models.

To do so, we compare the results of these models on real LR images and our transformed LR

images obtained from the bicubic look-alike generator. Experimental results demonstrate that

these SR methods generate more plausible results with greater perceptual quality when fed

with transformed LR images instead of real LR images (see Figure A.8).

A.3.2 Quantitative results

In this work we tackle the real-world SR problem, where the downsampling operator is not

known and therefore no ground-truth is available. Hence, calculating distortion metrics such

as PSNR and SSIM is not possible for test images that truly reflect this problem (original images

from smartphones, TV streams, etc.). Although, as mentioned previously, RealSR [63] is the

only dataset with physically produced high and low-resolution image pairs and is the closest

existing dataset to real low and high resolution pairs.

Table A.3 shows the SSIM and PSNR values estimated between super-resolved images of

RealSR LR test images and their HR counterparts, using bicubic upsampling, EDSR-real [24],

the RealSR network [63], DPSR [128] and our proposed method. The training details of each

method is presented in Section 4.3 of the main manuscript. We also add the perception index

(PI) metric to our evaluation; this index combines two no-reference image quality measures of

Ma et al. [69] and NIQE [67] and was shown to have a higher correlation with human opinion

than other commonly used metrics [68]. As PI is a no-reference metric, it can be also used for

test images that have no ground-truth.

109



Appendix A.

without BLG with BLG without  BLG with BLG Original image Original image 

(a) RCAN [35]

without  BLG with BLG without  BLG with BLG Original image Original image 

(b) ESRGAN [43]

Figure A.8 – Comparison results of RCAN (a) and ESRGAN (2) methods on original images
from the RealSR dataset and our transformed LR images, generated by our bicubic look-alike
generator (BLG). Experimental results demonstrate that these SR methods generate more
plausible results with greater perceptual quality when fed with transformed LR images instead
of real LR images.

Dataset Method bicubic SRResNet RCAN EDSR-real DPSR RealSR RBSR

SSIM 0.77 0.79 0.80 0.81 0.79 0.81 0.82
RealSR PSNR 26.63 26.98 27.11 26.51 27.02 28.05 26.54

PI 9.28 9.06 9.19 7.94 9.12 8.97 7.76

DIV2K SSIM/PSNR - - - no ground-truth - - -
HR PI 10.02 9.62 9.81 9.01 9.36 9.19 8.48

DPED SSIM/PSNR - - - no ground-truth - - -
(cellphones) PI 10.24 9.91 10.02 9.62 9.73 9.55 7.92

TV SSIM/PSNR - - - no ground-truth - - -
Streams PI 11.52 10.71 10.64 10.04 11.19 10.32 10.15

Table A.3 – Comparison of bicubic interpolation, SRResNet [19], RCAN [35], EDSR [24],
DPSR [128], RealSR [63] and RBSR (ours) on different presented test sets. Best measures
(SSIM ↑, PSNR [dB] ↑, PI ↓) are highlighted in bold.
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Name Description SSIM PSNR

RBSRMSE only LMSE loss 0.788 27.69
RBSRE only L1 loss 0.792 27.95
RBSREP L1 +Lper ceptual 0.811 26.98
RBSREPA L1 +Lper ceptual +Lad ver sar i al 0.798 26.60
RBSREB A L1 +Lbi cubi c per ceptual +Lad ver sar i al 0.835 26.73
RBSR L1 +Lbi cubi c per ceptual +Lad ver sar i al+ Copying mechanism 0.820 26.54

Table A.4 – Comparing the effect of each proposed component of the bicubic look-alike
generator on LR and HR images of [63] test set. Best measures (SSIM ↑, PSNR [dB] ↑) are
highlighted in bold. As mentioned earlier, these metrics are not directly correlated to the
perceptual quality, therefore, we chose our best baseline based on qualitative comparison
shown in Figure 5 and Figure 6 of the manuscript, comparing RBSREPA to RBSREB A and
RBSREB A to RBSR, respectively.

A.3.3 Ablation study

In this section, we perform another study to investigate the effectiveness of each proposed

component of the bicubic look-alike generator. We compare the performance of our net-

work trained with the combinations of different settings such as different loss functions, and

trainings with and without copying mechanism. These setting are listed in Table A.4. We

calculate PSNR and SSIM for each setting on RealSR [63] test set, the only available dataset

with ground-truth for real-world SR task. For each setting, SSIM and PSNR values are calcu-

lated after upsampling the picture by a fixed ×4 SR decoder and comparing it to the RealSR

ground-truth.

As it is already emphasized in the Section 4 of the manuscript, the distortion metrics are not

directly correlated to the perceptual quality as judged by human raters, therefore, we chose

our best baseline based on qualitative comparisons such as Figure 5 and Figure 6 of the mains

manuscript. Our best baseline is then compared to state-of-the-art works on real-world SR

by an extensive user study, following the standard procedure of the ICCV AIM 2019 challenge

[123] on Real-world Super-Resolution.

A.3.4 Computational cost

In our paper, we compared our two step approach (RBSR), our end-to-end comparison (EDSR-

real), RealSR [63], and DPSR [128]. In terms of computational cost, both RealSR and DPSR

have different disadvantages. RealSR’s network calculations take place in the high-resolution

space, incurring a heavy memory overhead cost. For example, running the model on CPU

requires 19 GB of RAM for an image of size 1200×1200, which is the maximum possible. DPSR

is an iterative algorithm, requiring multiple forward passes and multiple deblurring steps

in order to converge to an acceptable solution; DPSR uses an iterative approach by default
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for real LR images. Hence, these two algorithms have either high memory overhead or high

computation time overhead. In contrast, RBSR requires two forward passes per input image.

The first network is relatively lightweight, as it operates exclusively in the LR space. The second

network can be any generic SR decoder for bicubically downsampled images. The complete

pipeline (using EDSR as the SR decoder) reconstructs 1024×768 pixel images at 26.9 FPS,

using a GeForce GTX 1080 Ti. Our end-to-end setting (EDSR-real) reconstructs the same size

images at 33.7 FPS using the same GPU.
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