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Abstract
This thesis presents results of studies of novel compounds modeling complex fundamental

physics phenomena. Cu2OSO4 is a copper based magnetic Mott Insulator system, where spin

half magnetic moments form a new type of lattice. These intrinsically quantum spins are

exhibiting atypical magnetic order and spin dynamics. The recent success in the growth of

large single crystals of Cu2OSO4 enabled to perform measurements probing its static and

fluctuating properties. The peculiarity of this sample is that its atoms are forming layers, with a

geometry close to the intensively studied Kagomé lattice, but with a third of its spins replaced

by dimers. This quantum magnetism system has been probed in its bulk, by the means of

heat capacity and DC-susceptibility measurements, revealing a transition to a magnetically

long range ordered state upon cooling, the details of which are revealed by neutron scattering.

Single crystal inelastic neutron scattering shed light on the spin-dynamics in the system, with

clear spin waves appearing as fluctuations around the peculiar ground state of the system:

a 120 degrees spin configuration where the magnetic moment of the spin-dimer causes the

sample to be globally ferrimagnetic. The presented results indicate that Cu2OSO4 represents

a new type of model lattice with frustrated interactions where interplay between magnetic

order, thermal and quantum fluctuations can be explored. The magnetic excitations of the

compound can be modeled by a yet-to-be-understood internal effective mean-field that no

simple magnetic coupling seems to reproduce.

K2Ni2(SO4)3 is another compound that allows for the existence of non-trivial topological

phases. This thesis presents results of the study of the unusual magnetic behavior of K2Ni2(SO4)3.

No clear sign of well-established magnetic long range order has been observed down to dilu-

tion temperatures. Neutron scattering reveals the details of the competition between frustra-

tion and fluctuations that prevent order from settling in. Low temperature spin excitations

take the form of a continuum at 500 mK, but also of broad, energy independent continua at

higher temperatures. Bulk and neutron scattering measurements are put in perspective and

linked together with a view to building up a better understanding of how quantum spin liquids

can be stabilized in general, and in particular in this model compound.

Finally, the last contribution of this thesis to the field of condensed matter physics regards the

establishment of a state-of-the-art technique to fit heat capacity and unit cell volume of sam-

ples to try and make the extraction of magnetic information from specific heat measurements

more robust. This newly-developed technique consists in modeling lattice contributions with
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Abstract

better accuracy by using data from multiple experimentally accessible quantities to consoli-

date the fitting scheme. This method has been cautiously applied to several compounds at the

forefront of research in experimental physics.

Key words quantum magnetism, frustrated magnetism, strongly correlated systems, mag-

netic order, Kagomé lattice, transition metal compounds, magnetic susceptibility, neutron

scattering, quantum spin liquids.
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Résumé
Cette thèse présente les résultats d’études poussées de composés novateurs modélisant des

phénomènes physiques jusqu’alors incompris. Cu2OSO4 est un aimant quantique dans lequel

des atomes de cuivre forment un nouveau type de réseau, tout en préservant son caractère

d’isolant de Mott. Le comportement intrinsèquement quantique des spins qui le constituent

résulte en un ordre magnétique et des propriétés dynamiques atypiques, qui ont pu être

mesurées grâce à la synthèse inédite de cristaux de ce composé. La particularité de cet échan-

tillon est que les atomes qui le composent forment des couches atomiques présentant une

géométrie similaire à celle du réseau Kagomé, avec cependant un tiers des atomes rempla-

cés par des dimères. Les proptiétés de cet aimant quantique ont été mesurées par plusieurs

expériences successives, notamment en mesurant sa chaleur spécifique et sa susceptibilité

magnétique, qui ont révélé que l’état fondamental à basse température est donné par un

arrangement magnétique de spins présentant un ordre magnétique longue portée (OMLP)

en dessous de 20 K. Les détails de la configuration de spin associée ont pu être identifiés

grâce à des mesures de diffusion neutronique. Des expériences de diffusion inélastique de

neutrons sur des monocristaux ont permis d’étudier en détail la dynamique des spins du

système, notamment avec l’observation d’ondes de spins, fluctuations autour de l’état OMLP,

lequel peut être décrit comme une configuration de spins à ∼ 120 degrés, dans laquelle les

moments magnétiques des dimères causent un moment ferrimagnétique résiduel de faible

intensité. L’ensemble des résultats obtenus indiquent que Cu2OSO4 constitue un nouveau

model jouet, où la conspiration entre interactions frustrées et fluctuations quantiques et

thermiques peuvent être étudiées. Les excitations de ce composé peuvent être modélisées par

un intéressant champ-moyen interne, dans un modèle effectif qu’aucun couplage magnétique

ne semble pouvoir décrire fidèlement.

K2Ni2(SO4)3 est un autre composé qui accueille des phases topologiques non triviales, dont

les propriétés magnétiques inhabituelles sont présentées dans cette thèse. Aucun signe in-

équivoque d’OMLP n’a été décelé en refroidissant jusqu’à des températures de dilution. La

diffusion neutronique révèle les details de la concurrence entre frustration et fluctuations qui

empêche l’OMLP de s’établir. Les excitations de spins à basse température correspondent à

un continuum de diffusion à forte dépendance angulaire à 500 mK, qui se transforment en

des continua de diffusion ne dépendant pas de l’énergie à des températures plus élevées. Les

analyses de mesures de laboratoire et de diffusion de neutrons sont combinées afin de pro-

gresser dans la compréhension des phénomènes stabilisant l’état de liquide de spin quantique.
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Résumé

Finalement, la dernière contribution de ce travail au domaine de la physique du solide

concerne l’établissement d’une méthode d’ajustement de données de chaleur spécifique,

afin de rendre leur analyse plus robuste. En combinant ces données avec celles du volume de

la cellule unitaire, une routine plus rigoureuse a pu être mise au point pour extraire l’entropie

magnétique de systèmes quantiques. Ce formalisme a été précautionneusement appliqué

à l’analyse de mesures effectuées sur des composés avant-gardistes dans le domaine de la

matière condensée.

Mots clés Magnétisme quantique, magnétisme frustré, systèmes d’électrons fortement cor-

rélés, ordre magnétique, réseau Kagomé, composés de métaux de transition, susceptibilité

magnétique, diffusion neutronique, liquides de spin quantiques.
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Sommario
La tesi raccoglie i risultati di una serie di studi condotti su dei nuovi composti che manifestano

fenomeni di fisica fondamentale ad oggi incompresi. Il Cu2OSO4 è un magnete quantistico in

cui gli atomi di rame formano un nuovo tipo di reticolo, pur mantenendo le caratteristiche di

un isolante di Mott. Il comportamento intrinsecamente quantistico degli spin che lo compon-

gono risulta in un ordine magnetico e delle proprietà dinamiche insoliti. Il recente successo

nella sintesi di grandi monocristalli di Cu2OSO4 ha permesso di effettuare delle misure che ne

sondano le proprietà. La peculiarità del campione è che i suoi atomi sono disposti in strati, con

una geometria analoga al più noto reticolo di Kagomé, in cui tuttavia un terzo degli spin sono

sostituiti da dimeri. Le proprietà di questo magnete quantistico sono state sondate in una serie

di esperimenti, in particolare per via di misure di calore specifico e suscettività magnetica DC,

le quali hanno rivelato che lo stato fondamentale a bassa temperatura possiede un ordine ma-

gnetico a lungo raggio al di sotto di 20K. I dettagli della configurazione di spin associata a tale

stato sono stati individuati grazie a misure di scattering di neutroni. Esperimenti di diffusione

anelastica di neutroni su monocristalli hanno permesso di studiare in dettaglio la dinamica di

spin del sistema, e di osservare delle onde di spin apparire come fluttuazioni intorno allo stato

fondamentale che può essere descritto come una configurazione di spin a 120 gradi, in cui i

momenti magnetici dei dimeri rendono il campione globalmente ferromagnetico. I risultati

qui esposti indicano che il Cu2OSO4 rappresenta un nuovo tipo di reticolo modello, e un buon

terreno per lo studio degli influssi reciproci tra interazioni frustrate e fluttuazioni quantistiche

e termiche. Gli stati eccitati del campione possono essere modellizzati da un campo-medio

effettivo che sembra non essere riprodotto da nessun accoppiamento magnetico semplice.

Il K2Ni2(SO4)3 è un altro composto che permette l’esistenza di fasi topologiche non triviali. La

tesi presenta risultati di uno studio sull’inusuale comportamento magnetico del K2Ni2(SO4)3.

Raffreddando il composto fino a temperature di diluizione non si sono osservati segni chiari

di ordine magnetico ben stabilito a lungo raggio. La diffusione di neutroni rivela in dettaglio la

concorrenza tra frustrazione e fluttuazioni che impedisce lo stabilirsi di un ordine magnetico.

Eccitazioni di spin a bassa temperatura prendono la forma di onde di spin a 500mk, ma si

trasformano in un continuo indipendente dall’energia a temperature più elevate. I risultati di

misure di laboratorio e di scattering di neutroni sono analizzati e interconnessi, con la visione

di costruire una migliore comprensione di come liquidi di spin quantistici possono essere

stabilizzati.
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Astratto

Infine, l’ultimo contributo di questa tesi al campo della fisica della materia condensata ri-

guarda lo sviluppo di una tecnica innovativa per l’adeguamento dei dati di calore specifico, al

fine di renderne il trattamento più robusto. Lo studio congiunto di questi dati e di quelli del

volume della cella unitaria ha permesso un’analisi più rigorosa dell’estrazione di informazione

magnetica di sistemi quantistici. Questo metodo è stato applicato con estrema cautela a

numerosi composti all’avanguardia nella ricerca in fisica sperimentale.

Parole chiave Magnetismo quantistico, magnetismo frustrato, sistemi elettronici fortemente

correlati, ordine magnetico, Kagomé, composti dei metalli di transizione, suscettività magneti-

ca, diffusione anelastica di neutroni, liquidi di spin quantistico.
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Zusammenfassung
Diese Arbeit stellt die Ergebnisse von Studien neuer Materialien vor, welche neue, bislang

unverstandene, fundamentale physikalische Phänomene modellieren. Cu2OSO4 ist ein Kupfer-

basierter Mott Isolator, in dem halbzahlige Spins eine neue Art von Gitter bilden. Diese intrin-

sischen Quantenspins weisen untypische magnetische Ordnungen und Spindynamiken auf.

Die jüngsten Erfolge bei der Züchtung von Cu2OSO4 Einkristallen ermöglichten die Messung

dieser statischen und fluktuierenden Eigenschaften. Die Besonderheit dieser Probe besteht

darin, dass ihre Atome Schichten bilden, deren Geometrie eng mit dem eingehend unter-

suchten Kagomé-Gitter verwandt ist, wobei jedoch ein Drittel der Spins durch Dimere ersetzt

wird. Bei der Untersuchung dieses quantenmagetischen Systems in seiner Bulk-Form mittels

Wärmekapazitäts- und DC-Suszeptibilitätsmessungen wurde während des Herunterkühlens

ein Übergang zu einem magnetisch langreichweitigen Zustand entdeckt, dessen genaue

Beschaffenheit mittels Neutronenstreuung wiederum näher untersucht wurde. Einkristall-

inelastische-Neutronenstreuung verschaffte Klarheit über die Spindynamiken im System,

wobei Spinwellen als Fluktuationen um den speziellen Grundzustand des Systems in Erschei-

nung traten, nämlich eine 120 Grad Spin-Konfiguration, bei der die magnetischen Momente

der Spin-Dimere zum Ferrimagnetismus der Probe führen. Die hier vorgestellten Ergebnisse

lassen darauf schliessen, dass Cu2OSO4 einen neuen Typ von Modellgitter mit frustrierten

Wechselwirkungen darstellt, mithilfe dessen die Wechselwirkungen zwischen magnetischer

Ordnung und thermischen und Quantenfluktuationen untersucht werden können. Die Anre-

gungen in diesem Material können durch ein interessantes internes Mean-Field modelliert

werden, welches durch keine einfache magnetische Kopplung reproduziert werden kann.

K2Ni2(SO4)3 ist eine weitere Verbindung, die die Existenz nicht-trivialer topologischer Pha-

sen zulässt. Diese Arbeit stellt die Ergebnisse der Untersuchungen zur ungewönlichen ma-

gnetischen Beschaffenheit von K2Ni2(SO4)3 vor. Sogar bei den niedrigen Temperaturen im

Mischungskryostat konnte kein eindeutiges Signal einer wohlbekannten magnetisch - lang-

reichweitigen Struktur beobachtet werden. Mithilfe von Neutronenstreuung konnten die

genaueren Zusammenhänge zwischen der konkurrierenden Frustration und Fluktuation,

welche eine weitere Ordnung verhindern, identifiziert werden. Spin-Anregungen bei tiefer

Temperatur treten sowohl wie eine Kontinua-Spinwellen Mischung bei 500 mK als auch wie

breite, Energie-unabhängige Kontinua bei höheren Temperaturen in Erscheinung. Bulk- und

Neutronenstreuungsmessungen dienen als Grundlage zum besseren Verständnis der Stabili-

sierungsmechanismen von Quantenspinflüssigkeiten.
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Zusammenfassung

Schliesslich besteht der letzte Beitrag dieser Arbeit zum Feld der Physik der kondensierten

Materie in der Entwicklung einer neuen Methode zum Fitten der Wärmekapazität und des

Volumens der Einheitszelle, indem die Gitterbeiträge mit besserer Genauigkeit modelliert

werden, sodass die magnetischen Beiträge aus spezifischen Wärmemessungen entsprechend

verlässlicher bestimmt werden können. Diese Methode wurde ebenso auf andere Materialien

angewandt, die Gegenstand hochaktueller Forschung in der Physik sind.

Schliessenwörter Quantenmagnetismus, Frustration, stark korreliert Elektronensysteme, ma-

gnetische Ordnung, Kagomé, Materiallen mit Übergangsmetallen, magnetische Suszeptibilität,

Neutronenstreuung, Quantenspinflüssigkeit
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Resumaziun
Questa dissertaziun presenta resultats da studias cun novas colligiaziuns da substanzas per

modellar fenomens fisics che ein tochen uss aunc buc capi. Cu2OSO4 ei in Mott Isolatur

sistem che sebasa sin irom, nua che spins e mez-spins fuorman in niev tip da reit. Quels

intrinsics spins da quantum muossan ina ordinaziun magnetica e dinamica da spin atipica.

Dacuort han ins cun success saviu crear gronds singuls cristals da Cu2OSO4 e cun quels saviu

miserar quellas qualitads staticas ed instabilas. La particularitad da quei material ei che ils

atoms fuorman stresas cun ina geometria semaglionta sco ils schi numnai Kagomé lattice,

denton ein in tierz dils spins remplazzai entras dimers. Quest sistem da quantum magnetism

ei vegnius testaus sco massa entira, sco mied dalla capacitad da temperature caulda e mesiras

da DC-sensibilitad. Quei ha mussau si che eid at ina trasnsiziun tier in stadi magnetic cun

in grond uorden sche ei vegn sferdentau, da quei che detagls ein vegni registrai ord mesiras

da dispersiun da neutrons. La inelastizitad dalla dispersiun da neutrons da singuls cristals

ha clarificau la dinamica da spins en il system, cun claras undas da spin che cumparan nua

che fluctuaziuns entuorn il stadi da basa dil sistem: ina 120 grads configuraziun da spin nua

che il mument magnetic dil spin-dimer procura che il material ei global ferrimagnetics. Ils

resultats presentai indicheschan che Cu2OSO4 representa in niev tip da reit sco model cun

frustradas interacziuns nua che la interacziun denter las ordinaziuns magneticas, thermalas e

flucutaziuns da quantum san vegnir eruidas. L’exitaciun d’in component thermic sa vegnir

modulaus d’ina interna mediana-reit che sa buc vegnir reproducida cun ina copulaziun sem-

pelmagnetica.

K2Ni2(SO4)3 ei ina autra cumponenta che lubescha l’existenza da buc-trivialas topologi-

cas fasas. Questa dissertaziun presenta resultats che sclareschan il cuntener magnetic da

K2Ni2(SO4)3. Negin sègn d’ina ordiaziun d’in spectrum grond magnetic ei vegnius obervaus

tier temperaturas rarificadas. Dispersiun da neutrons ha mussau ils detagls dalla cumpetiziun

denter frustraziun e fluctuaziun che ei involvada en la prevenziun dad uorden. Bassas tempe-

raturas meinan tier excitaziuns da spin en fuorma dad undas da spin tier 500mK, denton era

da largias cuntinuaziuns, independentas dad energia tier temperaturas aultas. La gronda part

e las mesiras da dispersiun da neutrons vegnan messas en perspectiva e ligiadas ensemmen

cun ina vesta per baghegiar si ina megliera capientscha per la stabilisaziun da liquids da

quantum spin.

Sco davos pass mira questa dissertaziun en il rom da fisica da condensada materia, nua che
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Resumaziun

ina moderna tecnica duei vegnir fabricada, che ei capabla da cumpigliar la capacitad da

temperatura cun la mesira d’il volumen dalla cella per empruvar da fabricar in pli robust

sistem dad extrahir magneticamein infurmaziuns pertucond temperaturas cauldas specificas,

cun modelar pli precis contribuziuns da reit. Questa metoda ei silsuenter vegnida duvrada

cun cauziun tier different materials impurtonts per la retscherca en la fisica experimentala.

Plaids-clav Mott isolatur, Kagomé, 120 grads configuraziun, frustraziun, liquids da quantum

spin, fisica da condensada materia, fisica experimentala.
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Abstracto
Esta tese apresenta os resultados de estudos de compostos inovadores que modelam fenóme-

nos físicos anteriormente mal compreendidos. O Cu2OSO4 é um isolante de Mott, e também

um ímã quântico no qual átomos de cobre formam um novo tipo de rede. O comportamento

intrinsecamente quântico dos spins que o constituem resulta numa ordem magnética e pro-

priedades dinâmicas atípicas, que podem ser medidas graças à nova síntese de cristais deste

composto. A particularidade desta amostra é que os seus átomos formam camadas atómicas,

tendo uma geometria semelhante à da rede de Kagome, mas com um terço dos átomos subs-

tituídos por dímeros. As propriedades deste ímã quântico foram medidas através de várias

experiências sucessivas medindo o calor específico e a susceptbilidade magnética. Ambos

revelaram que o estado fundamental do sistema é dado por uma disposição que mostra uma

ordem magnética de longo alcance (OMLA) com temperaturas abaixo de 20 K. Os detalhes

da configuração do spin foram identificados através de medidas de dispersão de nêutrons.

As experiências de dispersão de nêutrons inelásticos com monocristais tornaram possível

estudar de forma pormenorizada a dinâmica do sistema, com a observação de ondas de spin,

flutuações em torno do estado da OMLA que podem ser descritas como configuração de spins

com um ângulo de 120 graus, em que os momentos magnéticos dos dímeros resultam em um

momento magnético residual de pouca intensidade. Os resultados indicam que o Cu2OSO4

constitui um novo modelo, em que a conspiração entre interacções frustradas e flutuações

quânticas e térmicas podem ser estudadas. Os estados excitados deste composto podem

ser modelados por um interessante campo médio interno num padrão eficaz que nenhua

interação magnética parece ser capaz de descrever.

O K2Ni2(SO4)3 é outro composto que acolhe fases topológicas não triviais. Esta tese apresenta

o comportamento magnético incomum do K2Ni2(SO4)3. Nenhum sinal da OMLA foi detectado

por arrefecimento até temperaturas de diluição. A dispersão de nêutrons revela os detalhes

da competição entre a frustração e as flutuações que impedem o estabelecimento da OMLA.

As excitações de spins a baixa temperatura correspondem a um continuum de difusão com

dotação formada de ondas de spin a 500 mK, mas são transformadas numa difusão contínua

que não depende da energia em temperaturas mais elevadas. Os resultados do laborátorio são

combinados com resultados de disperção de nêutrons a fim de progredir na compreensão dos

fenómenos que estabilizam o estado de líquido de spin quântico.

Finalmente, a última contribuição deste trabalho para o domínio da física do estado sólido
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trata do estabelecimento dum método de ajuste de curvas adaptado aos dados de calor espe-

cífico, a fim de melhorar o tratamento para que ele se torne mais robusto. Ao combinar estes

dados com os do volume da célula unitária, uma análise mais rigorosa poderia ser feita para

extrair a entropia dum sistema quântico. Este método foi cuidadosamente aplicado à análise

das medidas de compostos novos no domínio da matéria condensada.

Palavras-chave magnetismo quântico, magnetismo frustrado, sistremas de electrões extrema-

mente interligados, ordem magnética, Kagomé, compostos de metais de transição, susceptibi-

lidade magnética, dispersão de nêutrons, líquidos de spin quânticos.
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Introduction

According to Moore’s law, which was stated in the second half of the twentieth century, the

number of transistors in integrated circuits doubles every two years. Transistors are the build-

ing block of any integrated circuit and Moore’s law thus directly translates into a more general

prediction on the size of computers. Ever since this statement was made, the law has been

wrongfully declared dead on many occasions. In recent times, the fact that the transistor size

started edging that of a single atom prompted expert to renew claims that the law is dead, and

its relevance is once again debated. In the 21st century and in the digital era, such integrated

systems play an always greater role in people’s everyday lives and collective behaviors: the

need for more energy efficient data storage and communication technology solutions appears

and limitations to Moore’s law could directly result in world-scale issues. Regardless of the

debate on whether Moore’s law is dead or not, one could say that size does not necessarily

matter, and a parallel can be drawn with cell phones, whose size has shifted from becoming

ever smaller, to now getting larger and larger again. Quite naturally, there is a clear reason for

that: with all the information that one can process in the digital era, it has been realized that

having high quality screens, and computing power, were among the most important features

that a cell phone should possess, and thus resulted in larger dimensions of the associated tools.

Similar to that, and independently of whether Moore’s law actually holds, an incredible focus

in the scientific community is put on energy optimization rather than pure size reduction of

transistors, and magnetism proved to be paramount when it came to developing new, more

energy efficient technologies. While the most recent transistor size is of the order of one

nanometer[1], physicists still extensively study magnetic skyrmions, a topologically protected,

thus very robust, quasi-particle made of a magnetic spin vortex, even though a skyrmion

typically occupies a space that is much larger than an atom, typically up to a hundred of

nanometers[2]. Recent research acknowledged the key importance of efficiency and, thus,

scientists put gargantuan efforts on trying to both lower the energy cost of device operations

and increase the effectiveness of data storage. Many of these promising attempts involve the

use of magnetic systems[3, 4, 5, 6, 7].

Such technological applications of magnetism are numerous; they form an almost never-

ending list. Many of these tools are quite far from being tangible applications of magnetism

that non scientists are used to encounter in their everyday lives. Examples include simple
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fridge magnets, compasses, or even magnetic levitation trains which are used to create a

significant part of the Japanese Shinkansen railway service. Applications of magnetism have

been sought ever since the phenomenon was discovered, even though they were far from

being properly understood. Although the notion of magnetism was already present before, e.g.

by observing the effects of lodestone, it is usually believed that Plato was the first to discover

the effects of magnetization in Europe in 427 BC. Humans quickly realized they could use a

compass to navigate and orient themselves, taking advantage of the Earth’s magnetic field.

Here again, it is quite hard to precisely determine the first recorded use of a compass, but

several mentions of its use in Europe start to appear around the twelfth century, with Alexander

Neckar and famous french trouvère Guiot de Provins both acknowledging its existence.

In the nineteenth century, a proper revolution of the understanding of magnetism occurred,

with many biological applications, such as Franz Mesmer’s animal magnetism used to treat

human health problems. Later in the century, experiments by Oersted, Ampère, Biot, Savart,

Faraday, Tesla, and many more shed considerable light on the nature of magnetism and the

way it is deeply linked to electricity. Arguably the apex of the discoveries in that century

was reached with the establishment of Maxwell’s equations governing the behavior of the

electromagnetic field and its interaction with matter[8].

New breakthroughs appeared also in the twentieth century, partially thanks to the then-recent

development of quantum physics, with in particular Louis Néel’s Nobel prize for his theories

on ferromagnetism and antiferromagnetism. Notably, Kamerlingh Onnes discovered a novel

property of a whole class of compounds, which, upon cooling, allowed for resistanceless

transport of electric charges, opening up a whole range of potential applications[9, 10, 11, 12].

Relatively soon after, the field of quantum magnetism was born and exploding, and the num-

ber of applications of quantum magnetism burst, leading to some very exotic examples[13].

Even more surprising contributions can be found on the internets, such as the flourishing

field of quantum magnetizers, offering healthcare solutions by realigning one’s inner self with

the full quantum realm.

Quite strikingly, in Louis Néel’s own Nobel prize lecture, he himself stated that the antifer-

romagnetic state was "interesting, but useless". Many contemporary applications proved

him wrong, with an example being the newly realized antiferromagnetic random-access

memory[14]. Overall, this view highlights the fact that, for various reasons -and quantum

magnetism is no exception-, two main branches of research philosophies in physics seem to

emerge: research in fundamental physics, considered as "interesting", and research in funda-

mental physics applications, considered as "not useless". The field of quantum magnetism

developed, naturally balancing the two branches. The fundamental side moved, among others,

towards the study of contemporary frustrated magnetism, quantum spin liquids, and so on,

whose applications are related to topological quantum computing, but are not yet available
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in scalable, commercialized systems. In any case, a necessary prerequisite to the study of

quantum magnets is to assess their fundamental magnetic properties. These properties take

the form of a zero Kelvin ground state, which sometimes presents magnetic order due to the

progressive weakening of thermal fluctuations and a spontaneous time-reversal symmetry

breaking that induces magnetic states. These states of matter can be studied using various

experimental methods and can be described by a theoretical Hamiltonian, describing the

interactions at play and different energy sources in the system. More often than not, it is

very difficult to build up a full description of a compound solely based on its static properties

and perturbations and fluctuations of the system provide significant information on a given

compound in an unambiguous way. This thesis deals with the order and dynamics in Kagomé

like compound Cu2OSO4 and other quantum magnets.

Thesis outline

This thesis describes experimental studies of different quantum magnets, and compares

experimental results with elements of theory that can model the measured compounds. The

work is divided in several parts, the first two of which elaborate on the notions of quantum

magnetism and experimental physics, which are required to perform and interpret real-life

experiments. A reader with adequate notions of quantum magnetism can thus directly read

the part presenting results, while a reader less familiar with the field of condensed matter

physics may find comfort in first thumbing through the first parts. The chapters containing

results have been ordered in terms of relative importance, relevance, and completeness of

the analysis, but can be read completely independently, in any order. The detailed content is

summarized in the following paragraphs.

• The first part discusses brief elements of quantum magnetism, explaining fundamental

properties of Mott insulators, and why the Heisenberg Hamiltonian turns out to be one

of the most relevant ways to describe condensed matter systems in real materials. It

discusses what are these magnetic interactions, which ground state they typically result

in, and what is their origin, with a brief explanation of the superexchange mechanism,

accounting for most of magnetic couplings in atoms with transition metal oxides com-

pounds. A final note presents the interest in frustrated physics, introducing the notion

of quantum spin liquid, its practical relevance, and contemporary problems in solid

state physics.

• The second part deals with presenting briefly the many different experimental tech-

niques that were used to actually extract physical information out of samples, in real

experiments. These techniques include DC-susceptibility, one of the most fundamental

ways of probing magnetic systems, as well as heat capacity, a common technique shed-

ding light on phase transitions that are frequently occurring in real materials. Several
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resonance techniques are also described, namely the Electron Spin Resonance (ESR)

and Muon Spin Rotation (µSR). These two techniques are local probes and µSR is one of

the tools that are the most sensitive to magnetic long range order. In the last chapters

of this section, scattering techniques are presented: X-ray scattering and its uses to

characterize and align samples, and naturally neutron scattering, which is one of the

most powerful ways of probing large systems of spins. Neutron scattering indeed proves

to be a remarkable tool allowing both to assess the details of the ground state of spin sys-

tems, and also the spin fluctuations that are fingerprints of the Hamiltonian describing

the fundamental physics hosted by a compound. Moreover, neutron scattering is com-

patible with many sample environments, enabling to explore multi-parameter phase

diagrams and to compare diligently results with different predictions from different

theories.

• The last part of this thesis describes results of measurements and theories modeling real

condensed matter systems.

– Cu2OSO4 is a compound that can be considered as a two-dimensional copper

based quantum magnet. The interesting physical properties of this system can

be described and linked to the magnetic lattice formed by the copper, spin half

atoms that interact with each other. Two inequivalent atomic positions give rise

to a complex magnetic lattice that can be described as a Kagomé lattice, with one

third of the atoms replaced by dimers. Neutron diffraction and bulk measurements

reveal that the system undergoes a transition to a state with magnetic long range

order, close the renowned 120◦ configuration, with a small ferrimagnetic com-

ponent. It appears that the scale of the interactions in the system places it very

close to a quantum transition to a magnetically disordered state, that could be

reached in practice by applying external pressure on the compound. The dynamics

of the system prove to be challenging to analyze, but confirm the decoupling of

Kagomé-like planes with each other and also confirms that the main interactions

in the system are within the plane. The best model that could be established

describes the magnons in the system as originating from a system similar to a one

dimensional chain, embedded in an external magnetic field at half saturation, with

in this case the field being generated by a ferromagnetic alignment of spins at the

dimer site.

– K2Ni2(SO4)3 is another very interesting quantum magnet. This system is consisting

of nickel based, spin one magnetic moments. Their collective effect does not show

any sign of magnetic long range order, down to a temperature of one and a half

Kelvin, and signs of frustrated and suppressed magnetic order start to appear at

lower temperatures. The magnetic lattice of the compound cannot be simply de-

scribed in terms of the commonly known lattices, but rather as two interconnected

trillium lattices. Nearest neighbor interaction does not suffice to create a simple
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lattice, and in order to tessellate properly the full compound, the cornerstone of the

compound appears to be loops involving ten different ions in a frustrated manner.

Neutron scattering, reveals that weak magnetic Bragg peaks appear at dilution tem-

perature, over a broader peak built up by short-range correlations, characteristic

signature of quantum spin-liquid physics. This evidence is accompanied by the

experimental observation of a continuous feature on top of a dispersive element

at the same temperature. It appears that the spin-liquid state survives down to

1.2 K, as confirmed by inelastic neutron scattering experiments on single crystal

that show clear diffuse scattering: energy independent features in the excitation

spectra, typical of short range correlated systems.

– The last chapter of the section deals with the presentation of a novel method to

analyze experimental data. Heat capacity data fits are indeed not always robust.

The use of unit cell volume information is hereby presented, with a view to making

the fitting scheme more robust, and applications to real condensed matter systems

are shown. One of the most useful quantities that can be obtained by this method

is the magnetic heat capacity, of which the integral corresponds to the magnetic

entropy of the system. Examples of the method and its uses are included, and

further improvements are mentioned for completeness.

5





Part IA brief review of (quantum)
magnetism

7





1 Transition metal atoms in a lattice

1.1 Crystal field splitting, quenching and effective spin

With the help of quantum physics and chemistry, the behavior of each atom in the periodical

table could be successfully worked out, starting from the simple case of the atom of hydrogen,

surrounded by a single electron. Even though it creates a complex many body physics problem,

the ground state of atoms with many more electrons in their cloud, and protons and neutrons

in their nuclei could also be reasonably well explained. The physical state of an electron is

described by several quantum numbers: the principal quantum number, n, an integer greater

or equal to one, the azimuthal quantum number l, describing the elctronic subshell, with

0 ≤ l ≤ n − 1, the magnetic quantum number ml, with −l ≤ ml ≤ l and the spin quantum

number ms = ±1/2. Most of the electronic properties of a single ion can be deduced, in

essence, by the so called Aufbau principle and the three Hund’s rules:

• Rule 1: In a given system, Pauli’s exclusion principle prevents two electrons from sharing

the same quantum numbers. The configuration with the lowest energy will be the one

maximizing the total spin.

• Rule 2: For a configuration with a given total spin, the configuration with the lowest

energy will be the one maximizing the total angular momentum.

• Rule 3: The spin orbit coupling interaction breaks the usual spherical symmetry, and

couples the total angular quantum number to the total spin quantum number. The

main two schemes are known as the jj scheme, mainly used to describe systems with

strong spin orbit coupling and the Russell-Saunders (LS) scheme, applicable to most

3d-transition metal elements. In the jj scheme, one first couples the orbital moment to

the spin moment before coupling each electron to each other. In the LS scheme, the

total spin S, and angular momentum, L, are calculated first, and then in a second step,

the spin-orbit coupling couples the total spin and angular moment to form the total

angular momentum J. If the electron shell is less than half filled, then J = L−S, otherwise

J = L+S above half filling.
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Chapter 1. Transition metal atoms in a lattice

1s
2s    2p
3s    3p    3d
4s    4p    4d    4f
5s    5p    5d    5f ...
6s    6p    6d    6f ...

Figure 1.1: Aufbau principle: filling of electron shells

The Aufbau principle explains how to establish the electronic configuration of an atom and is

schematically described in Fig. 1.1. The filling takes place as follows: with increasing order of

n+l, and for equal n+l values, electrons go first in sub-shells with the smallest values of n. This

filling of electrons corresponds to a full rotational symmetry of the Heisenberg Hamiltonian

describing the hydrogen atom, generalized to more complex atoms.

The spin orbit coupling is a relativistic effect, whose effect is partly encapsulated in the third

Hund’s rule, and that results in the breaking of the degeneracy of energy levels. This rule

dictates how to fill the electronic sub-shells depending on how the spin and orbital degrees of

freedom are coupled. The symmetry provided by the rotation-invariant symmetry can also

be broken by other effects than spin-orbit coupling. For instance, when placing atoms in a

lattice, the basic hypothesis of rotational invariance (used to establish the energy levels from

the original hydrogen atom Hamiltonian) is not valid anymore, meaning that the angular

momenta stop being valid quantum numbers and the theory needs to be adapted. Placing

atoms in a lattice is a mandatory step to explain many physical properties, ranging from

mechanical properties, thermal conduction, electronic conduction, and others originating

from effects linked to quantum magnetism, which we often find to be related to each other

at a capacity that depends on specific cases realized by specific materials. The splitting of

energy levels due to the fact that atoms are placed in an actual lattice forming a crystal is

called crystal field splitting. This splitting depends heavily on how the magnetic atoms are

surrounded by other atoms. In the case of copper atoms, a typical configuration is the so-

called octahedral environment. Another possible configuration, even though more rarely

achieved in real materials, is the trigonal bi-pyramid environment. Both these configurations

can be observed in Fig. 1.2b and Fig. 1.2a.

The crystal field splits the degenerate energy levels. This splitting is remarkably dependent

on the configuration and results in different energy levels for a trigonal-bipyramid and for

an octahedral configuration in two distinct fashions, presented in Fig. 1.3a and Fig. 1.3b[15].

Notably, in the case of a trigonal-pyramidal coordination, the highest energy state is given

by a single d-orbital, the z2 one. This plays a significant role since a copper atom in its most

10



1.1. Crystal field splitting, quenching and effective spin

(a) Trigonal bi-pyramid configuration. (b) Octahedral configuration.

Figure 1.2: Copper in blue, surrounded by oxygen, in red, in two possible material configura-
tion.

usual electronic configuration (3d9) is characterized by a single hole in agreement with Hund’s

rules. In the hole picture, the hole occupies the state with the highest possible energy, and

would thus lie in the z2 orbital. In the case of the most usual octahedral environment, two

possible candidates arise: namely the z2 and the x2-y2 orbitals. It can be proven that the lower

lying states form an effective triplet with L = 1[15], and the upper two states correspond to an

effective angular momentum of L = 0. This is referred to as quenching in the wider literature:

the effective angular momentum of the hole of a copper atom has no orbital angular momen-

tum, even though the Hund rules predict that it is finite. This results in a simpler picture and

spin state than that predicted by the sole use of Hund rules: J = L + S: with an effective state

corresponding to S = 1/2 and L = 0. This reveals how the crystal field modifies the ground

state of copper to modify it to a hole with an effective spin J equal to S. The oxydation state of

copper of course plays an important role in the final spin state of the ion, which can also be

influenced as it has been evidenced by its local coordination structure.

It has now been established that in real materials the Hund rules and the spherically symmetric

picture does not hold, but one should rather inspect the crystal structures and establish what

is the realized coordination of the magnetic atoms, on a case by case basis. Even so however,

due to constraint in the synthesis and in the atomic arrangements, more frequently than not,

the coordination structures are distorted. For instance, in the specific case of an octahedron, a

typical distortion consists in a compression, or elongation, in the apical direction. To keep the

volume of the octahedron constant to first order in the displacement, this is accompanied by

11
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Energy

dz2

dx2-y2dxy

dxz dyz

(a) Trigonal bi-pyramid splitting.

Energy

dz2 dx2-y2

dxy dxz dyz

(b) Octahedral splitting.

Figure 1.3: Crystal field splitting corresponding to two occurring copper environments in real
materials.

an elongation or compression of the in-plane octahedra, the apical direction referring to the

direction of the two atoms placed at the apex. For example, such an apical elongation results

in further splitting, as shown in Fig. 1.4.

Energy

dz2 dx2-y2

dxy dxz dyz

dx2-y2

dz2

dxy

dxz dyz

Figure 1.4: Distorted octahedron: elongation along apical direction results in further crystal
field splitting.

This splitting breaks the degeneracy of the two highest energy levels, and thus would favor the

occupation of the hole in the copper system in the x2-y2 or in the z2 orbitals for an elongated,

respectively compressed octahedron. This can be intuitively understood with the following

argument: an elongated octahedron separates the apical oxygen atoms further apart from the

central copper atom. Since the z2 orbital lies principally in the apical direction, this distortion

decreases the overlap between the pz orbital of the apical atom and the z2 orbital of the central

one. This results in a state with lower energy. A similar reasoning can be applied to the in-plane

atoms, and results in the energy of the x2-y2 being raised. This pictorial thinking is most of the

time not correct, as the proper physical effect at play creates bonding and anti-bonding states,

however, even though it does not provide the correct result for every possible distortion, it

often works as a rule of thumb. To capture the true breaking of the degeneracy, one rather

12



1.1. Crystal field splitting, quenching and effective spin

has to perform an actual hybridization computation[15]. This phenomenon can lead to the

so called orbital ordering where the orbitals form a periodic pattern. This typically occurs in

some classes of materials , the perovskites. A typical example of orbital ordering has been

confirmed in KCuF3 both experimentally[16] and theoretically[17].

13



Chapter 1. Transition metal atoms in a lattice

1.2 Superexchange: the microscopic origins of magnetism

In the case of 3d-transition metal ions, the valence electrons occupy the d-shell. Localized

d-electrons are typical of Mott insulating compounds, with exponentially suppressed d-d

orbital overlap. Direct exchange between magnetic atoms is thus practically precluded. The

basic mechanism responsible for the magnetic exchange is called the superexchange mech-

anism, and essentially corresponds to a virtual hopping from one transition metal site to

another, assisted by an intermediate atom called a ligand, typically oxygen in a 2p6 electronic

configuration: filled external shells. Electrons from the p orbital of the ligand hop to the next

transition metal site, creating a hole on the ligand, that is then in turn filled by an electron

coming from another transition metal atom, effectively moving an electron. This mechanism

is represented in Fig. 1.5.

Ion
dd

p

Ion

Ligand

1

4

2

3

Figure 1.5: Pictorial description of the superexchange mechanism: a ligand is used to hop
electrons with finite orbital overlap.

The quantum mechanical treatment of such a problem uses second order perturbation theory,

with a small but finite hopping used as perturbation. Since the first order vanishes, the second

order term accounts for the majority of the exchange mechanism. The equation one has to

use to compute the effective Hamiltonian is given in equation (2.5). An important concept in

that equation is the notion of intermediate state. Indeed, the dominant contribution to the

effective Hamiltonian is given by the following process: starting from a state |n〉 in the ground

state manifold, and transforming it to an excited state |k〉, and going back to a state from the

ground state manifold |m〉, and summing over all possible intermediate states. The energy

difference between the excited state and the ground state appears in the denominator of the

sum. For the process described in Fig. 1.5, a succession of hoppings leads to the intermediate

state: assume a transition metal atom with n electrons is placed on site i and another on site

j, the ligand starts with a full 2p6 orbital. The hopping scheme with intermediate state right

after step 2 is the following: d n
i p6 d n

j
1−→ d n

i p5 d n+1
j

2−→ d n+1
i p4 d n+1

j
3−→ d n+1

i p5 d n
j

4−→
dn

i p6dn
j . The intermediate state is given by a ligand deprived of two electrons, its energy is

characterized by the energy required to hop an electron from a p to a d orbital, called the

charge transfer energy and written ∆C T , and the (Coulombian) repulsion of the two holes

created on the ligand, Upp . In order to compute the whole effective Hamiltonian, one has to

take into account every possible hopping scheme. Another allowed contribution comes from

14



1.2. Superexchange: the microscopic origins of magnetism

a Hubbard-like hopping: moving an electron from site i to j, and then back. Introducing the

Coulomb repulsion of two electrons on a d orbital, the final effective model is a Heisenberg

Hamiltonian, with effective coupling given by equation (1.1).

Jeff = 2t2
dd

 1

Udd + 1
∆CT+ 1

2 Upp

 (1.1)

A similar reasoning can be applied to express tdd in function of ∆CT and tpd the hopping from

d to p orbitals: tdd = t2
pd/∆CT, finally providing a final form of the coupling stated in equation

(1.2).

Jeff = 2
t4

pd

∆2
CT

 1

Udd + 1
∆CT+ 1

2 Upp

 (1.2)

The situation described previously corresponds to an alignment of the px orbital of the ligand

with both transition metal ions orbitals. This corresponds to the situation where the ion-

ligand-ion angle is 180◦. However, depending on the geometry of the actual crystal, it can

happen that the orbitals of the ligand that overlap the most with the ones of the transition

ions are not the px orbitals. In a geometry with an angle of 90◦ degrees, the hopping mixes

electrons from the px and py orbitals. This plays a key role in favoring either ferromagnetic or

antiferromagnetic couplings. A ferromagnetic coupling tends to favor a parallel alignment of

spins, while an antiferromagnetic coupling favors an anti-parallel alignment. These couplings

will be described in more details in another section of this work. Indeed, the process described

in Fig. 1.5 with an 180◦ bond vastly favors antiferromagnetic interactions: if the spins on the

transition metal sites were parallel, the hopping labeled "1" in Fig. 1.5 would be authorized,

but then hopping the hopping labeled "2" in Fig. 1.5 would not happen due to the Pauli

exclusion principle, since it would create a state with two electrons with spin up in the same

state. Such considerations are the essence of the Goodenough-Kanamori-Anderson (GKA)

rules[18, 19, 20, 21]:

• If the mechanism responsible for the exchange is a direct hopping between d orbitals:

– If there is a finite overlap between the orbitals, and that the active orbitals are

half-filled, the exchange is antiferromagnetic and strong.

– If the orbitals are orthogonal and the hopping occurs between filled and empty

orbitals, then the exchange is ferromagnetic and weak.

• If the mechanism responsible for the exchange involves hopping through a ligand:

– If the orbitals of the two sites are occupied and overlap with the same orbital from

the ligand (180◦ configuration), the exchange is antiferromagnetic and strong.

– If only one of the orbitals of the two sites is occupied, and both orbital overlap with

the same ligand orbital, the exchange is ferromagnetic and weak.

– In the case where orthogonal p-orbitals of the ligand are used (90◦ configuration),

the exchange is ferromagnetic and weak.
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Chapter 1. Transition metal atoms in a lattice

In practice, a quick inspection of the crystal structure of a given compound can thus provide

considerable information on the potential couplings that are characteristic of the system.

Indeed, in a system where copper atoms would be connected by corner sharing octahedra,

one would expect that the coupling would be strong and antiferromagnetic. A simple way of

realizing a ferromagnetic coupling would be to connect the octahedra surrounding the copper

atoms by an edge sharing geometry, ensuring a copper-ligand-copper angle considerably

different from 180◦.
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2 Magnetic interactions

2.1 What are Mott insulators and why are they even interesting?

2.1.1 Context

Several elements of this section are inspired by Frédéric Mila’s lecture notes of a course taught

at EPFL, "Physique du Solide III et IV". The very first considerations of Mott Insulators came

after the band theory was established and its physical relevance demonstrated experimentally.

The Drude model was already a significant advancement on the way to explain properties of

real materials, such as conductivity and resistivity. It consisted in a kinetic theory modeling

the electrons as a gas, following a Maxwell distribution and colliding with each other with

a certain mean free path. It however failed to recognize the intrinsically quantum nature

of the electrons, and the need for a more advanced distribution appeared. This led to the

use of the Fermi-Dirac statistics that describes more truthfully the physics of systems with

quantum electrons. The band theory describes the behavior of such systems with electrons

in a periodic potential, and came as a natural solution of the Schrödinger equation. Most

properties of metals, insulators and semiconductors can be obtained from band theory. In

the end of the 80’s, due to the significant interest in superconductivity, many studies focused

on the properties of La2CuO4. Its band structure was calculated[22], and its number of free

electrons is odd, thus consistent with an expected metallic behavior. Moreover, its Fermi

energy is cutting through several bands, and the overlap between orbitals is consistent with

mobile electrons. Yet, measurements were pointing towards an insulating behavior. The

notion of Mott insulator reconciled both pictures.

The fundamental idea behind the Mott insulator picture is the following: one has to consider a

crystal made of hydrogen atoms forming a square lattice separated by a distance labeled a. The

unit cell contains one hydrogen atom and thus one electron. Band theory thus predicts that

such a compound should be a metal. For large values of a, the starting situation corresponds

to half filling: one electron per site. Moving a single electron creates one hole and one doubly
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Chapter 2. Magnetic interactions

occupied site. The energy balance equation thus reads as in equation (2.1).

∆E = E(H−)+E(H+)−2E(H) :=U (2.1)

Due to the Coulomb repulsion between the two electrons forming the H− ion, this quantity

is non negative, and usually labeled U. The system may try to delocalize the hole and the

doubly occupied site, gaining kinetic energy. If the width of the corresponding band is labeled

W, the hole and doubly occupied site will be located at the band minimum and gain each

an energy of W/2. This remains true even if the two do not delocalize in the exact same way.

The transfer integral, t, is non zero, between first neighbors and the resulting system can be

modeled truthfully by the tight binding approximation. The band width is W = 8t. The energy

of such a configuration is ∆c = U − W. In that expression, U does not depend on the distance

between atoms while W strongly depends on a. For values of a much larger than the Bohr

radius, the transfer integral starts to be exponentially small, and ∆c = U > 0, the system is

insulating. The system can undergo a transition by applying a pressure, this has been first

observed in V2O3 in the early 70’s[23]. The Mott insulator picture proved to be a starting point

for the very interesting Mott-Hubbard-Heisenberg theories, with Mott insulators differing

from the then-known insulators by a fundamental set of properties: their magnetic excitations.

2.1.2 Magnetism: Mott-Hubbard-Heisenberg

A major difference between Mott and band insulators regards magnetic excitations. Indeed, a

typical Mott insulator hosts magnetic excitations with low energy: each atom has one electron,

with spin that can be up or down. In the theoretical limit where the atoms are sufficiently well

separated, the ground state corresponds to all configurations with one electron per site and is

thus 2N degenerated, where N is the number of sites, and its energy is NE0, with E0 the energy

of an electron on a single site. As seen before, the first excited state corresponds to a state with

one hole and one doubly occupied site. Its degeneracy is N(N-1)2N−2 and its energy difference

U. The second excited state is the state with two holes and to doubly occupied sites. Moving

the atoms closer to each other results in a lifting of the ground state degeneracy. The minimal

model that describes the encapsulated physics is called the Hubbard model [24, 25, 26], and

its Hamiltonian is stated in equation (2.2).

H =−t
∑

<i , j>,σ
c†

i ,σc j ,σ+ c†
j ,σci ,σ+U

∑
i

ni ,↑ni ,↓ (2.2)

The first term is the so-called hopping term, and describes the transfer of electrons from

one site to one of its nearest-neighbor: <i,j>. It dominates the Hamiltonian if the atoms are

separated by a large-enough distance and the hopping term is small enough. The second

term is proportional to the Coulomb energy U, and is a counting term: it counts doubly

occupied sites. In order to determine what is the effective Hamiltonian, one has to perform a

perturbation theory that will describe the lifting of the ground state degeneracy. The kinetic
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2.1. What are Mott insulators and why are they even interesting?

term, shown in equation (2.3) plays the role of the small perturbation.

H0 =−t
∑

<i , j>,σ
c†

i ,σc j ,σ+ c†
j ,σci ,σ (2.3)

The first order of the degenerated perturbation theory predicts that the matrix elements of the

effective Hamiltonian are given by equation (2.4).

〈m|Heff |n〉 = 〈m|H0 |n〉 (2.4)

|m〉 and |n〉 refer to eigenvectors in the ground state manifold: they correspond to states with

a single electron per site. Since H0 creates a doubly occupied site, all the matrix elements

effectively vanish and the second order of the perturbation theory is needed. The second-

order-in-H0 matrix elements are written in equation (2.5)

〈m|Heff |n〉 =
∑
|k〉

′ 〈m|H0 |k〉〈k|H0 |n〉
E0 −Ek

(2.5)

The primed sum stands for a sum on all states |k〉 that are not in the ground state manifold,

with energy Ek. E0 is the ground state energy. H0 creates a doubly occupied state, thus Ek = U.∑
|k〉

′ |k〉〈k| is the identity of the doubly occupied subspace, it can be replaced by an equivalent

operator involving counting operators:
∑

j n j ,σn j ,−σ. It entails that the matrix element that

has to be computed becomes equation (2.6).

〈m|Heff |n〉 =− t 2

U

∑
j ,σ

∑
i ( j ),σ′,σ′′

〈m|c†
i ,σ′c j ,σ′n j ,σn j ,−σc†

j ,σ′′ci ,σ′′ |n〉 (2.6)

Four distinct terms contribute in a non-zero manner to the sum: σ′ =σ′′ =σ, σ′ =σ′′ =−σ,

σ′′ = −σ′ = σ and σ′′ = −σ′ = −σ. These four contributions can be recombined to give the

effective Hamiltonian presented in equation (2.7).

Heff =
2t 2

U

∑
j ,σ

(
c†

i ,−σci ,σc†
j ,σc j ,−σ−ni ,σn j ,−σ

)
(2.7)

Using the second quantization and the z axis as quantization axis, the spin operators can be

written as equation (2.8). 
Sz

i = 1
2

(
ni ,↑−ni ,↓

)
S+

i = c†
i ,↑ci ,↓

S−
i = c†

i ,↓ci ,↑

(2.8)

The spin density operators can be written as ni = ni ,↑ + ni ,↓. The Hamiltonian can be written

in its form presented in equation (2.9).

Heff =
4t 2

U

∑
<i , j>

(
Sz

i Sz
j +

1

2

(
S+

i S−
j +S+

j S−
i

)
− 1

4
ni n j

)
(2.9)
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Chapter 2. Magnetic interactions

Using the fact that the spin ladder operators can be written in terms of Sx and Sy , and that ni =

n j = 1 in the ground state manifold, the effective Hamiltonian can be finally written as (2.10).

Heff =
4t 2

U

∑
<i , j>

(
~Si ·~S j − 1

4

)
(2.10)

This is the famous Heisenberg model HHeis = J
∑

<i , j>~Si ·~S j , up to a constant, and with

a coupling J of 4t2/U. It appears that this specific value of the coupling favors anti-parallel

alignment of spins. This can be understood from the Pauli exclusion principle: if two neighbors

have the same spin, hopping between the two is precluded. On the contrary, hopping to create

a doubly occupied site is allowed for atoms with electrons with anti-parallel spins, hence

creating a favored antiferromagnetic configuration. The detailed behavior of each compound

can of course result in many different types of couplings. The goal of the previous section

was to establish the physical relevance of the Heisenberg Hamiltonian, in the specific case of

Mott insulators, whose study is a modern topic of quantum magnetism. The physical origin

of this direct exchange is the overlap between two atomic orbitals, and while it predicted an

antiferromagnetic in this simple model with hydrogen atoms and one free electron per lattice

site, it can also be accountable in other cases for ferromagnetic exchange.
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2.2. Heisenberg interactions

2.2 Heisenberg interactions

The Heisenberg Hamiltonian describes reasonably well numerous real interactions and is

derived from the Mott insulator picture, with hopping parameter t, and Coulomb repulsion

U. It turned out that in this simple derivation, the resulting coupling J is proportional to t2/U.

The sign of the coupling is favoring an antiparallel alignment of spins. This coupling is thus

called an antiferromagnetic coupling. However, the mechanism responsible for the sign can

be different, and it can also happen that this coupling is negative, favoring a parallel alignment

of spins, corresponding to the so-called ferromagnetic coupling. The Heisenberg Hamiltonian

is written in equation (2.11).

HHeis =
∑

(i , j ),α=x,y,z
Jαi j Sαi Sαj (2.11)

A couple of comments can be made regarding this cornerstone of condensed matter physics.

The sign of the coupling J, as mentioned before, plays an important role in the ground state of

the system. Moreover, the couplings can be anisotropic. Indeed, if Jx , Jy and Jz are equal, as in

the Hubbard model, the model is called isotropic. There are several important particular cases:

the Ising model, defined by Jx = Jy = 0, and the XY model, defined by Jz = 0. For the sake of

simplicity in many cases, only nearest neighbor interactions are considered. However, in real

materials, it is quite common to have further-neighbor interactions. The spin of the system can

also be different from a simple spin half which was supposed by the Hubbard model derived

from the Mott insulator picture. The next chapter describes how real materials can result in

different spin states, which may result in an enhancement of either the quantum or rather

the classical properties of a given system. Finally, the dimensionality of the system is quite

important. Indeed, the Mermin-Wagner[27] theorem has quite drastic implications on the

possibility of long range order, depending on the system dimensionality. This theorem states

that in the frame of systems with interactions that are sufficiently short range, continuous

symmetries, corresponding to the establishment of long range order, cannot be spontaneously

broken at finite temperature.

2.2.1 Ferromagnetism

The term ferromagnetism refers to the study of the case of a Heisenberg Hamiltonian with

negative coupling J. In the classical case, the spin can be represented as a vector pointing

in any direction, with a given norm. For ferromagnetic systems, the configuration of spins

achieving the minimum energy is that with all the spins aligned in one direction. There is

a very large symmetry, since the model is fully isotropic. This symmetry is not specific to

ferromagnets, but also many other magnets, such as antiferromagnets and ferrimagnets, de-

scribed in another section. In the case of a system consisting of N quantum spins, it can be

shown that the state with |G〉 := |m1 = S, ...,mN = S〉 is an eigenvector, and that this eigenvector

indeed minimizes the energy of the system: JS2 per site. The ground state degeneracy can be

obtained by considering that the S−
tot commutes with the Hamiltonian. Thus, applying S−

tot
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Chapter 2. Magnetic interactions

on |G〉 constructs a new state with the same energy. This process can be repeated until the

constructed state is |m1 =−S, ...,mN =−S〉. The ground state degeneracy is thus 2NS(S+1).

A typical physical property that can be measured on real samples is called the dynamical

structure factor, obtained from inelastic neutron scattering experiments. This notion will be

elaborated in another chapter, but what is important is that the dynamical structure factor is a

measurable quantity that, for magnetic systems, is a manifestation of the excitation spectrum

of the system: it actually corresponds to the expectation value of the spin-spin correlation

function. While many different Hamiltonians may lead to similar looking ground states, due

to competing interactions and anisotropies, the excitation spectrum of a given system is a

fingerprint of its Hamiltonian and, due to its complexity, is much closer to being a one-to-one

function. In practice the use of the result of neutron scattering experiments is widespread

to try and elucidate which Hamiltonian, and thus which physics governs a given compound:

understanding excited states of systems if hence paramount.

For ferromagnetic systems, it turns out that the state given by equation (2.12) is not an eigen-

state of the Hamiltonian. This state is usually called a spin flip because it corresponds to a

single spin flip at site i for S = 1/2.

|i 〉 = 1p
2S

|G〉 = |S ... S S −1 S ... S〉 (2.12)

Indeed, the state |i 〉 is an eigen state of Sz
i Sz

j but not of Sx
i Sx

j +Sy
i Sy

j . The solution to that problem

is to delocalize the spin flip over the whole real space. The spin flip is thus localized in the

reciprocal space. The state can be written as equation (2.13) with wave-vector k.

|k〉 = 1p
N

∑
i

e−i~k·~Ri |i 〉 (2.13)

This state has an energy given in equation (2.14), where the set of~τ-vectors refers to the set of

vectors going from one site to its neighbors.

E~k = E0 + JS
∑
~τ

(
1−ei~k·~τ

)
(2.14)

For~k =~0, the energy of the state is that of the ground state. This corresponds to a rotation of

the total spin. The dispersion relation, measured experimentally is given by the~k-dependence

of the energy of the state. For a square lattice, it can be found that E~k = E0 + JS
∑
α sin2

(
kαa

2

)
,

where a is the lattice parameter. The dispersion is quadratic close to zero, a typical feature

of ferromagnetic excitations. In order to better visualize what this mode corresponds to, one

can simply calculate the expectation value of Sz
i Sz

j and of Sx
i Sx

j +Sy
i Sy

j . The expectation value

of a quantum mechanical operator corresponds to the value that is expected to be measured

when measuring the associated physical quantity. The result is presented in equation (2.15).〈~k|Sx
i Sx

j +S y
i S y

j |~k〉 = 2S
N cos

(
~k · (~Ri −~R j

))
〈~k|Sz

i Sz
j |~k〉 = S2 − 2

N S
(2.15)
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E

k

Figure 2.1: Left: spinwave picture: rotating spins along the z-axis, associated to dispersion on
the right hand side.

It appears that the result of the z component is a constant, while the result in the xy-plane

depends on atomic sites i and j, in a oscillating manner, with a period proportional to 1/k.

This excitation and the dispersion relation are represented in Fig. 2.1. Since the spins are

precessing around the z-axis, this state is called a spinwave. The Goldstone theorem[28]

stipulates that since a continuous (rotational) symmetry is broken, there is a mode with energy

going to zero for vanishing wavevectors. The associated quasi-particle is called a magnon

(delocalized spin flip). Other states with low energy can be constructed in a similar fashion.

In particular, a state with several magnons can be obtained. However, this problem does not

have any analytical solution, except for a spin half system in one dimension, given by the

Bethe ansatz[29]. The process of creating a magnon can be written formally with Holestein-

Primakoff transformations[30]. This generalization provides a systematic way of constructing

spinwaves, with the same resulting energy, and also the possibility of constructing multi-

magnon states. This transformation involves approximations, the most important one being

that the number of magnons is much smaller than two times the spin. While in theory, this

harshly constraints the model and should mean that spin half systems cannot be described,

in practice this magnon picture works all the same. This formalism also enables to compute

the quantum corrections to the magnetization, confirming the Mermin-Wagner theorem:

the magnetization at finite temperature diverges in 1D and 2D and is only predicted to be

non-divergent in 3D.

In real materials, these ferromagnetic spinwaves have been measured multiple times in the

past. For example, a spectroscopic study[31] of EuO and EuS powder was used to determine the

exchange couplings in both systems and found a perfect agreement with the high temperature

series expansion predicting those values, and consistent with specific heat measurements.

Another typical example of 2D ferromagnet can be found in K2CuF4[32]. The authors measured

inelastic neutron scattering with low energy transfer and could successfully fit a magnon

spectrum to the data and find the detailed Heisenberg couplings, characteristic of the system.

2.2.2 Antiferromagnetism

Another common possibility for the Heisenberg Hamiltonian (2.11) is that of a non negative

coupling parameter J. In such cases, classically, the energy of the system is minimized for a
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configuration with each spin antiparallel to its neighbors. It appears that depending on the

lattice type, it may not be possible to satisfy this condition, even classically. This can be trivially

apprehended in the case of a lattice where loops of sites connected by a given coupling are

made of an odd number of sites, it is then impossible to satisfy such a condition. The system

needs to compromise. The field treating these complex problems is called frustrated physics

and will be discussed in more details in another chapter. For simple bipartite lattices, for

example the square lattice with nearest neighbor interaction, the classical ground state is thus

antiparallel spins, alternating in every direction. The quantum ground state is however more

complicated. It was debated for a long time, until neutron scattering proved in a measurement

that this state was achievable in real materials, whether the so-called Néel antiferromagnetic

state was physical. Indeed, the Néel state was measured first measured by Shull in MnO[33],

eventually leading to several Nobel prizes. The method consisted in taking advantage of the

magnetic moment of the neutron to diffract not only on the periodic crystal structure, but

also on the periodic magnetic structure. The magnetic structure periodicity is twice that of

the lattice in the real space, and thus lead to peaks at intermediate positions in the reciprocal

space, confirming the alternating up and down character of the magnetic structure.

By analogy to the classical case, consider the state given in equation (2.16). A and B denote

the two sub-lattices. A corresponds to the spins with |m〉 =+S and B with |m〉 =−S.

|N〉 = |m A
1 = S, ...,m A

N
2
= S,mB

1 =−S, ...,mB
N
2
=−S〉 (2.16)

It appears quite clearly that the transverse term in the Hamiltonian mixes states with S−1 at

some sites on sub-lattice A and S+1 at some other sites on sub-lattice B. Hence the state |N〉
is not even an eigenvector of the Hamiltonian. The solution to that problem is to use two

different Holstein-Primakoff transformations[30] on both A and B sub-lattices. This describes

small deviations around the ordered moment: +S on sites in A and -S on sites in B. The

Hamiltonian can then be written by keeping only terms in S and S2, and neglecting higher

order terms. The problem is that the Hamiltonian is not a sum of harmonic oscillators, it rather

couples the creation of magnons with momentum +~k and -~k. One needs to use Bogoliubov

transformations[34, 35] to decouple it in a sum of harmonic oscillators (2.17).

H =∑
~k ω~k

(
α†
~k
α~k + 1

2

)
− JS(S +1) zN

2

ω~k = JSz
√

1−γ2
~k

α~k = u~k a~k + v~k a†

−~k
u~k =

√
JSz+ω~k

2ω~k

v~k = sign
(
z~k

)√ JSz−ω~k
2ω~k

(2.17)

In that set of equations, a and a† are the usual magnon annihilation and creation operators,

z~k =∑
~τ cos~k ·~τ, z the coordination number, γ~k = z~k

z . The ground state of the system is given
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in equation (2.18).

|G .S.〉 =∏
~k

′ 1

u~k
exp

(
− v~k

u~k
a†
~k

a†

−~k

)
|0〉 (2.18)

The primed product means that one has to consider only vectors~k and~k ′ such that~k 6= −~k ′,
and |0〉 is the vacuum of the α~k operators. The collective excitations of antiferromagnets are

also called spin waves. The corrections to the magnetization can be calculated, and once

again, the results depends on the temperature and the dimensionality. At T = 0 K, there are

strong effects of quantum fluctuations, that result in a diverging magnetization in 1D. A similar

divergence can occur in 2D and 3D, depending on the details of the considered lattices in 2D

and 3D. For the square lattice and spin half moments, the correction to the magnetization

leads to a staggered magnetization of about 0.3[36]. At finite temperatures in 1D and 2D, the

magnetization diverges and there is no room for magnetic long range order.

There are a wide variety of antiferromagnets present in real compounds. MnO [33] is an

idiosyncratic example of one. Regarding the dispersion spectrum, a typical spin 1/2 square

lattice Heisenberg antiferromagnet has been realized in Sr2CuTeO6[37]. The inelastic spectra

of a polycrystalline sample was acquired and fitted to an excellent agreement with an antifer-

romagnetic Heisenberg Hamiltonian and presents a different slope than that of a ferromagnet.

Interactions that go further nearest neighbor can frustrate the system. In that case, frustration

arises from antiferromagnetic interactions that compete, effectively creating a configuration

that cannot be described classically by a collinear structure. This notion is paramount and

will be elaborated on in another section.

2.2.3 Ferrimagnetism

Ferromagnetic and antiferromagnetic interactions are two widespread schemes, accounting

for the majority of interactions in systems encapsulating Heisenberg physics. In these simple

cases, the name of the state is directly inherited from the name of the coupling. In some

systems, especially in systems with low crystalline symmetry, an additional complexity may

develop. For example in Ca3Co2O9, due to a low-symmetry space group, magnetic atoms of

cobalt are placed in two different oxygen surroundings. This difference induces an different

spin state on each Cobalt site. In that specific case, it turns out that the couplings are rather

Ising-like[38], and that one of the cobalt atoms has an effective spin of zero, making it a really

special case since it could be considered that the spin-zero atoms are out of the (magnetic)

picture. In some other compounds however, the resulting moment on the (magnetic) copper

site is different and finite. This has for example been observed in copper based compound

made of triangular motifs Cu2OSO4[39]. The resulting ground state is close to the non collinear

120◦ configuration, but with small finite resulting magnetization. In aome other examples,

a finite (non staggered) magnetization with antiferromagnetic couplings is created in an

even more compelling fashion. Yttrium iron garnet, Y3Fe5O12, is a good example of such

a material[40]. Neutron scattering studies revealed both the magnetic ground states, and

magnon dispersion. The ground state is made of collinear spins, however all moments do not
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experience the same quantum reductions, which results in a finite magnetization, pictorially

represented in Fig. 2.2. Such a state is called ferrimagnetic.

Figure 2.2: Ferrimagnet: the reduction of ordered moments leads to a different reduction to
the spin at different sites, creating a state with finite non staggered magnetization.

2.3 Anistotropies

2.3.1 Dzyaloshinskii-Moriya interaction

Aside of usual Heisenberg couplings, some other terms can play a significant role in the Hamil-

tonian: anisotropies. Anisotropies can help establish long range order at finite temperature

in low dimensional systems, in agreement with the Mermin-Wagner theorem. They may

break rotational degeneracy and usually create a gap in the excitation spectrum. This gap

can be closed by applying a magnetic field. For comparable energy scales, the effect will be a

competition of interactions, and once the field strength is high enough, the change is linear.

One of the most studied anisotropies involving spins on neighboring sites is the antisymmetric

exchange interaction, also known as the Dzyaloshinskii–Moriya Interaction (DMI) [41, 42]. It

takes the form of a term in the Hamiltonian shown in equation (2.19).

HDM = ~Dij ·
(
~Si ×~S j

)
(2.19)

The indices i and j denote two lattice sites, and ~Dij is the DM vector supported by the i-j

bond. This interaction can be derived from the relativistic spin-orbit coupling using second

order perturbation theory. The crystal symmetries and the exchange paths constrain the

direction of potential DM vectors[41]. In particular, a superexchange path with a center

of inversion cannot sustain a finite DM vector. Due to the form of the DM Hamiltonian

in equation (2.19), the DMI favors configuration with orthogonal spins. This introduces a

direct competition with the Heisenberg Hamiltonian that favors collinear structures. The DMI
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was among others instrumental in stabilizing non-collinear structures, including renowned

skyrmions[43]. Skyrmions were discovered in condensed matter systems in 2009 and can be

thought of as a spin vortex, an example of skyrmion can be seen in Fig. 2.3. The spin structure

is quite complex and is stabilized by the DMI. By substituting copper ions for other transition

metals with different spin orbit coupling in Cu2OSeO3, the stability of the skyrmion phase

could be increased[43].

Figure 2.3: Example of magnetic skyrmion: vortex of magnetic spins.

2.3.2 Other anisotropies

Many other forms of anisotropy exist in real materials, and can have effects on both the ground

states and excitation spectra of real materials. The case of Ising systems, which correspond to

a Heisenberg Hamiltonian with Sx = Sy = 0, is quite a drastic example of anisotropy. In practice

more subtle effects of anisotropy can occur. The Hamiltonian of the anisotropic exchange

interaction can be written in the form of equation (2.20).

Hanis = J z
i j

(
αx Sx

i Sx
j +αy S y

i S y
j +Sz

i Sz
j

)
(2.20)

αx = αy = 1 corresponds to the isotropic point. For copper atoms typically, an anisotropy of up

to 20% can occur.

Another typical term in the Hamiltonian associated to anisotropy is the magneto-crystalline

anisotropy stated in equation (2.21), also arising from the spin-orbit interaction: the motion

of the electrons on the orbitals couples to the crystal field.

Hanis =
∑

i

~Si Ai~Si (2.21)

Depending on the sign and values of A, either an easy-axis or easy-plane is created. Indeed,
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for Ai = diag(K2, 0, 0), the classical ground state corresponds to a moment perpendicular

to the x-axis, hence: the "easy-plane anisotropy" term. For Ai = diag(-K2, 0, 0), the most

energetically favorable configuration is that of spins aligned along the x-axis: "easy-axis

anisotropy". These anisotropies play an important role in breaking the ground state rotational

symmetry and selecting out a specific ground state configuration. This also creates a small gap

in the dispersion curves, and split otherwise-equivalent magnon branches[44] in a fashion

that is strongest at high symmetry points, close to Brillouin Zone centers.
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3 What is quantum magnetism?

3.1 Frustrated magnetism

Quantum magnetism has been studied for quite some time, ever since the notion of spin and

condensed matter physics was first theorized. The ferromagnetic state and its application has

been quite well understood and widespread, its uses are now numerous, even in the everyday

life[45]. On the other hand, the notion itself of antiferromagnet has been debated for some

time. Indeed, since the antiferromagnet state is itself not even the ground state of the antifer-

romagnetic Hamiltonian, Lev Landau was emitting strong doubts on Louis Neel’s hypothesis

of the existence of the state. Magnetic neutron scattering and MnO provided a proof that the

antiferromagnetic state could be realized in actual materials[33]. For various reasons: simple

chemistry placing different atoms thus with different spin states on a given lattice, differences

in the local environments of said atoms creating a different crystal field splitting and thus a

different effective spin, changes in the quantum reductions of the spins of magnetic ions, it is

possible to obtain an antiferromagnet with finite staggered magnetization in one direction[46],

or even simply different magnetic moments at different crystalline sites[47].

It appeared that the question of whether the physics of a system was dominated by quantum

or classical physics was of extremely high importance in many cases. Another playground

to explore this difference is that of the so-called frustrated magnetism. This sub-field of

condensed matter physics deals with the study of systems where the ground state of the

Hamiltonian cannot be simply found from classical considerations: minimizing the classical

energy. Indeed, in a purely ferromagnetic toy-model, the ground state is easily found, as it

turns out that both quantum and classical ground states coincide and that the energy of the

state reaches the theoretical lower bound. In some other cases, it can be practically impossible

to satisfy all interactions. Indeed, consider the case of three spins on a triangular unit, with

an antiferromagnetic interaction between all of them. It appears that once two of the three

spins are set, it is impossible to determine in what direction the third spin should point, as

any orientation would dissatisfy one of the other bonds. For quantum systems, the remaining

spin has to point either up or down, as shown in Fig. 3.1a, and the bond that links two parallel

spins is called frustrated. This highlights how antiferromagnetic interactions on triangular
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units are an effective cornerstone of geometrical frustration. While quantum magnetism is the

field aiming to study the effects of quantum physics in spin systems, frustrated magnetism is

different in the sense that the associated field of research deals with effects of frustration and

its exotic effects. The behavior of a classical system differs significantly from that of a quantum

system, and is represented in Fig. 3.1b. Indeed, a classical spin can point in any direction, the

arrangement of spins that minimizes the energy in that case is the 120◦ configuration, where

all spins form an angle of 120◦ with each other. In that spirit, all bonds, instead of just one

bond are frustrated. Both these states are associated to a very high degeneracy, which can

have drastic effects on the ground state properties.

?

(a) Frustration on a triangu-
lar unit

(b) One of the classical solu-
tion to frustration: one of the
120◦ configuration possibil-
ity.

Figure 3.1: Geometrical frustration.

Even though the triangular lattice[48] offers a convenient view of frustration, it appears that

there is no specific need to change to a new lattice to induce frustration. Indeed, a simple

one dimensional chain with competing first second nearest neighbor interactions (shown

in Fig. 3.2b) can be frustrated, if both the first nearest neighbor interaction and the second

nearest neighbor interactions are antiferromagnetic[49]. The same comments stand true for

the square lattice[50].

There are other theoretical lattices whose relevance has been evidenced experimentally by

finding materials realizing them. The triangular lattice, which can be viewed as a square lattice

with cross-square-unit couplings is the simplest of possible frustrated lattices but more com-

plex lattices also exist. In two dimensions, another important lattice is the so-called Kagomé

lattice[51] represented in Fig. 3.2a. Its name relates to its supposed Japanese origin: the motif

it represents has been used in netting for centuries. Here again, the elementary building block

is the triangular unit. These units are arranged in a specific pattern, creating a lattice where

each site has four neighbors, two thirds of the triangular lattice, this has consequences that

will be mentioned in another section.
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J

(a) THe Kagomé lattice.

Jn
Jnn

(b) Next-nearest-neighbor chains.

Figure 3.2: Other geometrically frustrated lattices.

Quite intuitively, frustration exists outside of purely two dimensional lattices as well. The

diamond[52] and saw-tooth chains[53, 54] are simple examples of frustrated lattices in quasi

one dimension. Here again, both motifs exhibit a combination of triangular building blocks:

the saw-tooth chain consists in a chain of corner sharing triangles, and the diamond chain in

a chain of corner sharing diamonds, each diamond consisting of two edge sharing triangles.

In quantum physics, the dimension of systems is paramount: Mermin-Wagner theorem states

that no magnetic long range order can settle at finite temperature without anisotropy one and

two dimensions. Therefore, even though more complicated and thus both computationally

more expensive and harder to grasp theoretically, the question of frustration in three dimen-

sional lattices is of major importance. However, generating an equivalent of the triangular

lattice in three dimensions does not appear straightforward. Several solutions to this problem

exist: the Kagomé slabs[55], a superimposition of Kagomé planes, is one of them. Two other

generalizations of the Kagomé lattice in three dimensions are quite common: the pyrochlore

lattice[56, 57] and the hyperkagomé[58] lattices. The pyrochlore lattice encapsulates the rich

physics of spin ices, and spin liquids, and has been realized in numerous compounds, forming

a hot topic of the contemporary highly frustrated magnetism physics.

In the field of frustrated physics, when compounds do order magnetically, it is very frequent

that the ordering temperature is quite different from the characteristic temperature of the

dominant couplings in the systems, roughly given by the Curie-Weiss temperature. The high-

temperature part of the DC-susceptibility can be modeled by the Curie-Weiss law, stated in
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equation (3.1), and is represented in red, in Fig. 9.6.

χ(T ) =C /(T −ΘCW)+χ0 (3.1)

Where ΘCW is the Curie-Weiss temperature, directly linked to the couplings in the system:

ΘCW = S(S+1)

3

∑
R J(R)

kB
. C =µ2

eff/8 can be related to the effective moment of the sample, andχ0

is a temperature independent diamagnetic background term. In the case of a spin half system,

with Landé g factor of 2, the effective moment is expected to be 1.7 µB. Several phenomena

can be accountable for a change in that value: the g-factor can be (slightly) different from two

(ideally confirmed by ESR measurements), and can be anisotropic, the spin state also might

be different from S = 1/2. For simple antiferromagnetic systems the Curie Weiss temperature,

ΘCW can happen to be negative. This is of course not associated to a transition at a negative

temperature, but rather a fingerprint of the relation between the Curie-Weiss temperature and

the couplings in a system: ΘCW is simply the sum of the couplings. For an antiferromagnet

(and depending on the sign convention), the coupling has a negative sign, and thus ΘCW is

negative, but one still expects a transition at a temperature whose order of magnitude is that

of the Curie-Weiss temperature. In frustrated systems however, due to various reasons, the

transition to long range order can happen at a temperature much smaller than the Curie-Weiss

temperature. By analogy to the collinear Néel state, the transition temperature is called the

Néel temperature, TN. Even though its actual relevance is debated, a widely used quantity

showing how strongly the frustration suppresses the long range order is the frustration ratio,

f[59], stated in equation (3.2).

f = |ΘCW|
TN

(3.2)

Several compounds[60] present very high frustration ratios, the theoretical maximum being

of course infinite, since some compounds could theoretically never undergo a transition

to a long-range ordered phase. Experts tend to agree on the fact that a frustration ratio

greater than five corresponds to highly frustrated physics. There are however limits to this

consideration, for example the frustrated square lattice, which would have a small frustration

ratio is one of the stereotypical example of frustration: this ratio is more a rule of thumb

than an exact measurement of frustration. As mentioned earlier, quantum spins behave

intrinsically very differently from classical ones. Moreover, in order to minimize the energy

of the antiferromagnetic Heisenberg Hamiltonian on the triangular lattice, quantum spins

do not necessarily have to choose between pointing up or down. They can also create an

entangled state, a singlet, which lowers the energy of the system. This notion is the basic idea

behind the mathematical construction of the Resonating Valence Bond State (RVB), and the

spin liquid states[61]. The RVB state consists in the quantum superposition of all possible

lattice coverings of singlets. This superimposition prevents long range order at zero Kelvin.

Moreover, the degeneracy of the states is extremely high, thus the possible excitations are

exhibiting an even higher degeneracy.
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3.2. Spin liquids

3.2 Spin liquids

As mentioned in the previous paragraph, the combination of quantum fluctuations, geometri-

cal frustration, and lattices based on triangular building blocks, gave rise to a novel ground

state manifold: the spin-liquids. This naming comes from the liquid state of matter, where

atoms experience strong short range correlations, but close to no long-range order settles in

the system. In a similar fashion and thanks to singlets, that act as highly short-range correlated

building blocks, spin-liquids also present magnetic short range order and correlations, and no

long range order: exponentially suppressed long range correlations. The spins keep fluctuating

strongly down to zero Kelvin. Fig. 3.3 presents a comparison of the energy per spin of classical

antiferromagnetic Néel state to the dimerized, fully quantum picture, for different lattices: the

one dimensional chain, the square lattice, the triangular lattice, and the Kagomé lattice[62].

The energies per site shown in the quantum case correspond to simple calculations on the

representative state that is shown, a quantum superposition of all equivalent coverings of

the lattice with a detailed quantum calculation would result in a state with lower energy, this

however does not change the conclusions that can be obtained from this reasoning.

It appears that in one dimension, frustration is not needed to achieve and identify, such

states of matter, presenting fractional excitations: breaking apart a spin-1 boson, but rather

forming two spin half entities obeying the Fermi-Dirac statistics[63, 64, 65]. In that scheme,

a continuum of excitations is visible and is explained by a combination of two fractionnal

spin half excitations, which are effectively the two dimensional equivalent of one dimensional

spinons. These excitations are bound and can be viewed as conventional magnons. Indeed,

the energy of a dimer is lower than that of the Néel state. In two dimensions, Néel order

appears to prevail. In other planar lattices, the situation is less clear: the triangular lattices

exhibits exactly the same energy per site for both quantum and classical ground states, and the

Kagomé lattice indicates an energetic preference for the quantum ground state. Hence, this

argument does not seem conclusive in the case of the triangular lattice but reveals how the

coordination of a given lattice plays a role: the lower the coordination, the likelier is a lattice to

favor a dimerized state. Both thermal and quantum fluctuations may act to move the ground

state in one or the other manifold, however at zero Kelvin, only quantum fluctuations are able

to perturb the spins in the required manner, and are maximal for spin half spins: explaining

the early historical focus on spin half systems to find actual realizations of such physics. In

1973, P.W. Anderson formally stated the Resonating Valence Bond (RVB) state[66], in a study of

the frustrated triangular lattice.

An important point can be made regarding usual the statistical physics: in principle, at a

given temperature, one only thinks that populated states are those with energy smaller than

the temperature of the system. This is most of the time right, since the states with energy

higher than the temperature of the system are exponentially suppressed. However, in highly

frustrated systems, the degeneracy scales with systems sizes and may be exponential as well:

the RVB state on the Kagomé lattice consists in 2N /3+1 different coverings. In that case, states
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Cl=-J/2
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Figure 3.3: Pictorial representation of the classical (left hand side) and quantum (right hand
side) ground states of the Heisenberg Hamiltonian on several lattices: a 1D chain(top), the
square lattice (second row), the triangular lattice (third row), and the Kagomé lattice (fourth
row). The energy per spin of each state is indicated.

with "high" energy can actually dominate the behavior of the systems, the massive degeneracy,

compensating their exponential suppression in the partition function. This phenomenon is

often called fluctuations domination, and is of course temperature dependent. The lower the

temperature, the larger must be the degeneracy. In many frustrated cases, at arbitrarily small

temperatures, the properties of the systems are determined by the ground state properties

exclusively, and thus present usual magnetic long-range order. The "delay" in the transition

temperature can be attributed to frustration and the high degeneracy of states, giving some

credit to the idea of frustration ratio.

The experimental search for spin liquid states saw a burst[67] in the proposed number of

candidates around 2005, when the first actual realization of a compound hosting a spin liquid

ground state was synthesized and measured[68] in Herbertsmithite. This material is made of

decoupled Kagomé planes formed by spin half atoms of copper. Examples also appeared in two
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dimensions, on the frustrated square lattice [69, 70]. Some limitations quickly became clear.

For example, distortions of the perfect triangular geometry can perturb the high symmetry

required to stabilize the RVB state. In Herbertsmithite, it appeared that chemical poisoning

was also a real experimental limitation: even though it has been established theoretically

that the Kagomé lattice hosts a spin liquid as a ground state[71], it is quite frequent when

synthesizing Herbertsmithite that copper atoms are replaced by zinc, creating vacancies and

faults in the magnetic lattice, making the analysis of results hard to attribute to either the spin

liquid behavior or chemically -accidentally- induced disorder. Finding spin liquids nowadays

remains a hot topic dragging considerable attention[72]. Recent research includes, but is not

limited to, a search of spin liquids in three dimensions and with spins higher than spin half.

In the vast field of research dedicated to the study of the spin liquid state, it appears that a

distinction has to be made between quantum and classical spin liquids. In the case of classical

spin liquids, a large ground state degeneracy typically exists, and thermal fluctuations can

drive a transition between the distinct ground states. This typically results for example in

a spin ice system. For many of such systems, at very low temperatures, stray fields become

important and cause the spins either to order or to form a spin glass. On the other hand, the

quantum spin liquid also corresponds to a highly fluctuating state, with fluctuations finding

their origin in the quantum realm: the commutation relations of spin operators give rise to

quantum fluctuations, which can be strong and can occur at 0 K, and prevent the stabilization

of long range order. These states cannot be associated to broken symmetries and can thus not

be described by the usual Laundau theory of phase transitions.
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4 Magnetometry

When trying to assess the quantum phase diagram of a novel compound, many techniques

can be used. Among the most used ones are DC and AC temperature dependent and field

dependent magnetization, and also heat capacity. Heat capacity measurements are particu-

larly well suited to confirm second order-phase transitions, for example, transitions to a state

with magnetic long range order. Measurements performed with magnetometers are extremely

well suited to study magnetic phase transitions of both first and second order. One of the

most basic experiments that can be done when analyzing magnetic properties of a compound

is called magnetometry. The idea of magnetometry is to measure the magnetization of a

sample, at different experimental conditions: in an external field, at different temperatures

and also possibly at different applied pressures. This field is quite well established and several

commercial companies, such as Quantum Design and Cryogenic limited propose fully inte-

grated measurement systems such as the Magnetic Properties Measurement System (MPMS),

Physical Properties Measurement System (PPMS, which can also measure physical properties

other than magnetization). A wide variety of magnetometers exists, ranging from Hall probes

and torque measurements to more accurate Superconducting QUantum Interference Device

(SQUID) based techniques. The latter are among the most precise ways of determining the

magnetization of magnetic samples and are often a part of many condensed matter physics

laboratories.

4.1 Superconducting Quantum Interference Devices

The Superconducting Quantum Interference Device (SQUID) relies on the principle of the

Josepshon junction. A loop using a superconducting material, typically niobium, with two

insulating Josephson junctions, typically made of aluminum oxide. A current I is applied and

flows through that loop. If no external field is applied, then the current splits equally between

the two branches as I/2. In the case of displacement of a nearby external field, for example

due to the movement of a magnetic dipole moment close to the SQUID, a screening current

will appear, Is , and a magnetic field is induced that cancels the external magnetic flux. In

order to create a counterbalancing magnetic flux, the current flows in the loop, resulting in a
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current of I/2+Is in one of the two branches and I/2-Is in the other. This functioning principle

is illustrated in Fig. 4.1.

I

Josephson 
junctions

I/2 I/2

Is

Figure 4.1: Basic design of a SQUID: two Josephson junctions and an applied current I. Is is
the current created to compensate for the external flux.

Once the current in either loop exceeds Ic , the critical current of the Josephson junction, a

voltage appears across the junction, as shown in Fig. 4.2a. Moreover, the flux in each loop has

to be quantized, and equal to an integer number times the flux quantumΦ0 = 2.067 10−15 Wb,

with 1T = 1 Wb/m2. If the external flux is greater thanΦ0(n+1/2) for some integer n, instead

of trying to cancel the flux, the induced current tries to force the new flux to beΦ0(n+1). The

sign of the induced current thus changes and the total current I/2+Is thus decreases until the

total flux reachesΦ0(n+1). If the input current I is greater than Ic , then the measured electric

potential difference between each end of the loop is a periodic function of the field, with

period equal toΦ0, as shown in Fig. 4.2b.

There are therefore two options to effectively measure the magnetic field creating the change

of flux. The first option is to simply count how many quanta of flux are necessary to stabilize

the system. However, it turns out that another method provides better accuracy: instead, the

idea is to work at a specific voltage-flux and voltage-current working point, and effectively

change the induced current to balance the change of flux in the sample. This working point is

chosen in such a way that the derivative of the voltage with respect to both flux and current is

maximum, which enables to maximize the accuracy. A real SQUID is often used in an actual

instrument in the way described in Fig. 4.3.

A detection coil is placed near the sample. The change of flux at the sample position is

transmitted to another coil, placed next to the SQUID. The loop itself is placed next to a

compensation loop, that is controlled through a pre-amplification system. The use of a lock-
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I

V

Ic

Working point

(a) V-I curve of a Josephson junction. Once the current
reaches Ic , a voltage develops.

Working point

V

Φ

Φ0

(b) Periodicity of the loop voltage in function of the ap-
plied flux.

Figure 4.2: Voltage developing at a Josephson junction in function of applied current and
external magnetic flux.

in and many different resistance ranges result in precise and adaptive measurements. The

sensitivity of such a SQUID can go down to 10−7 emu, much smaller than the Eath’s magnetic

field.

4.2 Magnetometers

The basic measurement principle is to translate the sample in a set of coils. Assuming that,

to first the order, the sample is a perfect magnetic dipole (typical samples are much smaller

than the detection coil), the theoretical voltage observed for a sample going through a given

set of coils can be calculated. Fig. 4.4a shows the signal measured when moving a magnetic

dipole through a given set of loops. The two loops in the middle are hosting a current flowing

in one direction. The current flows in the two other loops in the opposite direction. In practice,

all of it is made of a single wire, with one current and different loops are present to make

the gradiometer work in one way or the other. The individual contributions are indicated in

blue and red for the two loops, and the total signal is represented in purple. The exact shape

depends on the sample geometry but the measured curve can nonetheless be fitted to extract

the value of the magnetic moment. The vertical axis refers to the field direction. In practice,

during a measurement, the sample is moved up and down in the loops, which allows to correct

for a potential SQUID drift.
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Figure 4.3: Schematic portraying the conventional use of a SQUID: pick-up loop, cryostat, and
compensation loop.

4.3 Vibrating Sample Magnetometers

The Vibrating Sample Magnetometer (VSM) takes advantage of a geometry of loops that

differs from that of the SQUID. Instead of four loops, only two are used. Fig. 4.4b presents

how the combined use of two loops with currents flowing in opposite directions result in

an area where the measured response to the sample displacement is linear. By having an

oscillating movement (typically 10−100 Hz) of the sample in this region, the response is thus

also oscillating. The amplitude of oscillation is mathematically connected to the magnetization

of the sample. The accuracy of VSM is slightly lower than that of the SQUID. Both instruments

enable to measure quantum phase diagrams in function of temperature and magnetic fields.

Commercial solutions routinely propose options to measure with a DC field of up to 14 T

and down to 2 K. A wide variety of options also include cryogen-free, re-condensing systems.

Since the magnetometers are so accurate, shielding from the surrounding magnetic fields,

including the earth’s, is paramount. The sample holders are also typically made of plastic, with

small, assumed temperature independent diamagnetic component. Samples are usually fixed

using GE varnish, low temperature grease, or are wrapped in teflon tape. The samples are then

placed in long straws, providing a homogeneous background or fixed onto a plastic plate.
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4.3. Vibrating Sample Magnetometers

Signal

Position

(a) SQUID configuration: second order gradiometer: two
current loops are circulating in one direction, in the middle
and the two outer loops are circulating in the opposite
direction.

Position

Signal

Quasi linear 
regime

(b) VSM configuration: first order gradiometer: two current
loops are circulating in opposite direction, creating a linear
region in between the two loops.

Figure 4.4: Signal measured when passing a magnetic dipole through a set of coils, with current
flowing in one direction (blue), in the other, (red) and the total, measured signal (purple).
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5 Heat Capacity measurements

5.1 Principle

Heat capacity is a measurable quantity that is really practical to observe second order phase

transitions. In practice, heat capacity measurements are slightly less adequate to identify first

order phase transitions even though it can still be used for such purpose. Many magnetic

systems undergo structural first order phases transitions that reduce the symmetry of the

system and help magnetic order to be stabilized, or simply modify its details when already

settled[73].

The heat capacity is defined as the quantity of energy that has to be furnished to a system to

increase its temperature by one Kelvin per unit mass, and is stated in equation (5.1).

cp,V = 1

m

(
∂Q

∂T

)
p,V

(5.1)

When undergoing a phase transition, a system requires additional energy to change its internal

structure, and energy is not exclusively converted into a temperature rise. Once the phase

transition point is passed, the system no longer reorganizes and the available energy is used

exclusively to heat the sample. This is the fundamental physical mechanism explaining why a

phase transition creates a peak in the specific heat. Even though in theory a transition could

be very sharp, in practice peaks can be broaden by a variety of effects. The simplest of effects

is due to the intrinsic behavior of the observed phase transition. In the Landau theory of

phase transitions, a critical exponent describes how the heat capacity diverges in the vicinity

of the transition. Depending on the universality class of the transition, this exponent may

take different values, and thus result in different peak widths. Additionally to that, other phe-

nomena can be at play, such as: impurities, non uniformity of the structure, slightly different

temperatures of different parts of the system during the measurement, and so on. In order

to acquire the heat capacity experimentally, several techniques are commonly used such as:

the relaxation method, the Alternative Current (AC) method and the long range method. The

Physical Properties Measurement System (PPMS) uses a variation of the heat pulse method,

called the relaxation method, particularly suitable for measurements of crystalline samples.
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Chapter 5. Heat Capacity measurements

5.2 Measurements in practice

In a first step, the heat capacity of the sample, Cs can be computed using equation (5.2). In

that equation, Ke refers to the heat conductivity of the weak link, and C0 is the specific heat

without the sample. Indeed, the sample is placed on a plate that contributes to the total

heat capacity as a rather systematic background. However, an additional contribution to the

measured signal comes from the amount and shape of the grease that is used, which varies

from experiment to experiment. Each heat capacity measurement is thus preceded by an

"empty puck" measurement of the so-called addenda, in order to subtract this signal and

discriminate between signal coming from the grease and from the sample. Coefficient Ke can

be deduced from the heat added to the system, ∆P , by the following mathematical relation:

Ke =∆P/∆T .

Cs = Ke (a1τ1 +a2τ2)−C0 (5.2)

The sample can be either a powder, pressed into a pellet, or a single crystal, placed on a

holder. The typical sample mass is of the order of one milligram. The holder is made of a

material with high thermal conductivity, and is equipped with a thermometer and heater.

The whole system is embedded in a thermal reservoir, kept at a constant temperature and

typically made of copper, and connected to the sample plate through a weak link. The sample

is fixed onto the sample holder with low temperature grease. The grease facilitates the thermal

contact between holder and sample, but also creates a background signal, its use it typically

restricted to the least possible amount. The whole system is placed under vacuum with a view

to preventing heat losses through convection, as shown in Fig. 5.1. Ideally, the heat capacity

of the grease is negligible, and its heat conductivity is a lot higher than that of the weak link.

Under these hypothesis, the heat provided by the heater can be assumed to be fully transfered

to the sample first, and then in a second process dissipated through the weak link.

During a measurement, the sample is heated for a certain time, until its temperature is steady

and reaches a balance between supplied heat from the heater and losses through the weak

link. Fig. 5.2 summarizes this process.

It is however practically faster to heat the sample and measure only the beginning of the

heating curve. Based on that principle, the steady state temperature can be computed from

fitting a model to the data. A similar process can be performed for the temperature relaxation

part. The formula describing the temperature change is given by equation (5.3), where T

stands for the temperature, ∆T , the total temperature rise, t the time, τ1 and τ2 relaxation

constants, and a1 and a2 are amplitude coefficients.

T (t ) = T0 +∆T
(
a1e−

t
τ1 +a2e−

t
τ2

)
(5.3)

The lowering of the temperature is fitted with equation (5.3), which allows to extract experi-
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Sample

Sample holder

Heater Thermometer

Heat reservoir

Weak link

Grease

Figure 5.1: Schematic of a PPMS heat capacity measurement stage

mental values of a1, a2, τ1 and τ2.

The temperature of the temperature reservoir is then modified to a new T0, and the process is

repeated. The measurement can also be done in an external magnetic field. Since the method

is based on the thermal relaxation of the sample, and since the relaxation depends on the

temperature, the measurement time varies substantially across the whole temperature range,

which should be kept in mind when planning experiments.

5.3 Applications

The heat capacity is closely related to entropy. The mathematical relation between these

quantities is stated in equation (5.4), where S is the entropy.

CV = T

(
∂S

∂T

)
V

(5.4)

When a phase transition occurs, as mentioned previously, some energy is used to reorganize

the internal structure of the material. This can be associated to a non negligible change of the

atomic structure and in particular its symmetry, giving rise to a structural phase transition.
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P

0 tt0

T

T0 tt0

ΔT

Figure 5.2: Top: power in the heater for heat capacity measurements. The heating is main-
tained for a time t0 until the steady state is reached. Bottom: the temperature gradually
increases after t0, then the heater is switched off, and the temperature relaxes down to its
initial value.

More interestingly, in the case of magnetism and a usual second order phase transition to a

state exhibiting magnetic long range order, the spin of each atom freezes and some entropy

is locked in the transition, in order to orient the spins as they are frozen into a given state.

The amount of entropy required depends on the spin value, and can be expressed as S =

kb ln(2S +1). In contrast with non frustrated systems, where it is quite common to capture the

whole entropy in the transition in a rather sharp peak occurring at a temperature close to that

of the transition in frustrated systems, it is quite common to have a significant contribution of

the heat capacity explained the correlations building up in the system, over a wide temperature

range, and sometimes less than 20% of the total entropy purely associated to the ordering of

spins[39]. In the case of a highly frustrated system, these correlations develop over a wide

range of temperatures, due to the fact that the characteristic interactions in the system are

comparable to thermal fluctuations.

Another quite instrumental application of the measurement of heat capacity took place in

the frame of the study of the so-called spin ice systems [74]. Dy2Ti2O7 hosts such physics. Its

name comes from water ice. In the usual water ice (Ih) obtained by transition of liquid ice
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below 273.15 K at standard atmospheric pressure. Atoms settle in a structure showing a long

range order, and geometrical frustration leads to O-H bond distances to vary significantly,

giving rise to the ice rules: out of the four hydrogen surrounding an oxygen atom, two are

sitting closer to the central atom than the other two. Since the tetrahedra are corner sharing,

there are six ways of satisfying these rules. In the case of spin ice, these tetrahedra are also

present and corner linked, with magnetic atoms at the corners. There are similar ice-rules with

spins pointing either in or out of the tetrahedra. In a similar fashion, no long range magnetic

order arises, and the magnetic spin orientation plays the same role as the atomic position

in ice, with the "two in two out" state: two spins pointing inside the tetrahedron and two

pointing outside. This high macroscopic state degeneracy gives rise to an extensive entropy,

and thus the existence of a residual entropy, as evidenced by Pauling[75]. A similar residual

entropy has been evidenced in several spin ice systems. The phenomenon has been studied

and has resulted in the observation of magnetic monopoles in Ho2Ti2O7[76], in the form of

spin excitations of the system.
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6 Resonance techniques

Resonance techniques are spectroscopy methods frequently used in condensed matter physics.

It can be split into three subcategories: Electron Spin Resonance (ESR), also known as Electron

Paramagnetic Resonance (EPR), Nuclear Magnetic Resonance (NMR), and Muon Spin Rotation

(µSR), also named Muon Spin Resonance for its similarities with the other two techniques.

These three spectroscopy techniques share in common that they are local techniques, and are

sensitive to magnetic fields. They are thus a powerful tool to study magnetism in compounds,

and act as a local probe. Additionally, all these techniques are quite sensitive to chemical

environments. The main difference between these three ways of probing matter are the

time scales of the fluctuations actually probed, their degree of sensitivity to small magnetic

moments, and the size and geometry of possible externals magnetic fields involved. Last but

not least, another non negligible difference is the fact that while ESR and NMR can be both

performed in a regular laboratory, µSR requires the production of an intense muon beam, and

is thus only available at a few dedicated large scale facilities. The physical mechanisms on

which NMR and ESR are based are analogous so only ESR and µSR will be described in more

details.

51



Chapter 6. Resonance techniques

6.1 Electron Spin Resonance

ESR stands for the Electron Spin Resonance technique, which is a measurement taking ad-

vantage of the ability of electrons to absorb and re-emit the energy coming from an electro-

magnetic wave, when placed in an external magnetic field. In the case of Nuclear Magnetic

Resonance, it is the spin of the spin of the atomic nuclei that plays this role, instead of that

of the electron. Only unpaired electrons can behave in such a way, thus this method is very

useful to study transition metal based compounds. The other name of the technique, Elec-

tron Paramagnetic Resonance implies that paramagnets can be studied, however, ferro and

antiferromagnetic spin resonance do exist and can be studied using the same principles and

experimental setups.

The basic principle on which ESR relies is the Zeeman splitting[77]: when embedded in an

external magnetic field B0, the degenerate energy levels of a spin S split into 2S + 1 states,

according to their mS quantum number: -S, -S+1, ..., S-1, S. The splitting is proportional to the

field strength B0. In the case of an ion with a single unpaired electron, there are two resulting

energy levels, corresponding to mS = +1/2 and mS = -1/2, as summarized in Fig. 6.1 The

B0 = 0 B0 ≠ 0 Magnetic �eld

Energy ms = +1/2 

ms = -1/2 

∆E = E+1/2- E+1/2

Figure 6.1: Zeeman splitting scheme of an ion with a single unpaired electron, resulting in two
states: mS = +1/2 and mS = -1/2.

resulting splitting is given by the magnetic energy and can be written mSgµB B0, where mS is

the spin quantum number, g the Landé factor[78], µB the bohr magnetron, 9.2741·10−24 J ·
T−1. The electrons in the system can occupy these two electronic levels. The macroscopic dis-

tribution of the electrons is given by the Maxwell-Boltzmann distribution shown in equation

(6.1), where kB is the Boltzmann constant and T the temperature.

n (mS =+1/2)

n (mS =−1/2)
= exp

(
−E (mS =+1/2)−E (mS =−1/2)

kB T

)
= exp

(
− ∆E

kB T

)
(6.1)
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6.1. Electron Spin Resonance

This implies that the mS =−1/2 state is populated by more electrons than the other level. At

298 K, and in a field of 3350 Gauss, the ratio between the two populations is 0.998, meaning

that the perturbation induced by the field is small.

In the presence of an external electromagnetic wave of frequency ν, perpendicular to the first

magnetic field pulse, and of much smaller intensity, a photon can be absorbed if its energy hν

is equal to the difference between the mS=+1/2 and the mS=-1/2 energy levels: gµB B0. The

resonance condition thus reads as in equation 6.2, where h is the Planck constant, h = 6.6261 ·
10−34J·s.

hν= gµB B0 (6.2)

For optical transitions in general, with more than two states, the Fermi Golden rule implies

that the only allowed transitions are the ones with ∆S = 0 and ∆mS = ± 1, the other transitions

being forbidden, unless in the specific case of a system mixing quantum states[79]. The

resonance condition can be reformulated using the gyromagnetic ratio of the electron as

shown in equation (6.3).

ν= γe B0 (6.3)

In practice, a measurement consists in acquiring a set of resonance spectra. An experiment

can be performed as in typical NMR, by fixing the magnetic field H, and varying the electro-

magnetic wave’s frequency, ν. However, in most typical ESR modern setups, the frequency

is fixed, and the magnetic field is varied. A standard result of an experiment is thus what is

shown in Fig. 6.2. The majority of ESR spectrometers use a magnetic field oscillating about a

mean value: B = B0 + B1cos(ω t). The Taylor expansion of the absorption signal to first order

thus reads as in equation (6.4).

A = A(B0)+
(

d A

dB

)
0

cos(ωt ). (6.4)

This justifies the relevance of considering the derivative of the absorbance. The usefulness

of these spectra can be better apprehended by considering the Bloch equations, governing

the time evolution of the magnetization, M(t) = (Mx (t), My (t), Mz (t)). The set of equation can

be found in equation (6.5). In that set of equations, B(t) = (B1cos(ωt), -B1sin(ωt), B0). The

z component of the applied field B(t) is split into two: a time independent one, B0 and an

oscillating one, with amplitude B1. The two relaxation times defined in equation (6.5) are the

key components of the model, for both ESR and NMR. T1 describes the longitudinal relaxation

in the field, and T2 the transversal relaxation. These two relaxations correspond to the fact

that when applying an additional field, the spins of the magnetic atoms align in that field. In

a second step, the system relaxes to go back to its original state with characteristic time T1,

and if the field direction is not exactly that of the moments, an additional Larmor precession
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Figure 6.2: Signal measured by ESR: absorbance curve and its first derivative. The frequency is
kept constant and the field is swept.

occurs, of characteristic time T2.

d Mx (t )

d t
= γe (M(t )×B(t ))x − Mx (t )

T2

d My (t )

d t
= γe (M(t )×B(t ))y −

My (t )

T2

d Mz (t )

d t
= γe (M(t )×B(t ))z − Mz (t )−M0

T1

(6.5)

T1 is often associated to the spin-lattice relaxation, and is the result of the change of energy of

the spins, released to the surrounding system, to go back to the thermodynamic equilibrium.

T2 is called the spin-spin relaxation. The spin echo method consists in the application of

two pulses, at ninety degrees, separated by a short time period. It gives the possibility to

separate inhomogeneity coming from macroscopic dephasing from that originating from a
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6.1. Electron Spin Resonance

local dephasing due to true spin-spin relaxation. These inhomogeneities are induced by the

local inhomogeneities in the magnetic field that result in slightly different Larmor frequencies,

causing a different precession period about the z-axis. After a mathematical treatment of

equations (6.5) called the rotating reference frame, one obtains equation (6.6). Despite this

naming, it should not be understood that the apparatus produces a rotating field: the field is

oscillating linearly.

d M

d t
=

 −ΩSMy −Mx /T2

ΩSMx −ω1Mz −My /T2

ω1My − (Mz −M0)/T1

 (6.6)

The Bloch equations withΩS= ω0 −ω and ω1 = γB1 can be solved and the obtained results are

visible in equation (6.7).

Mx = M0ω1
ΩST 2

2

1+Ω2
ST 2

2 +ω2
1T1T2

My =−M0ω1
T2

1+Ω2
ST 2

2 +ω2
1T1T2

Mz = M0
1+Ω2

ST 2
2

1+Ω2
ST 2

2 +ω2
1T1T2

(6.7)

By measuring Mx , My and Mz , the different characteristic of a physical system can be fitted

and extracted. The value of the resonance field gives information on the Landé g factor of the

magnetic ion. The area below the absorbance curve is proportional to the number of spins

contributing to the signal, the half-width-half-maximum of the absorbance curve provides

insights on the interactions between the spins.

The ESR instruments use a microwave cavity and a lock-in amplifier, in order to obtain the

best possible accuracy. With a view to detecting a signal, an ESR device typically needs about

1012 spins participating. Since a spin half carries a moment of 2.1·10−27 emu, this means that

a moment of 2·10−15 emu can be detected, which is 7 orders of magnitude more sensitive

than a SQUID, that can detect moments of about 5·10−8 emu. When compared to NMR, the

sensitivity that can be achieved is the same, however, due to the fact that the magnetization

depends on the gyromagnetic ratios, it turns out that ESR requires a lot less sample than NMR:

a decent signal can be obtained with a couple of nanograms, whereas the NMR technique

requires measuring a micro-gram or milligram sample.

Due to the intrinsic local character of the technique, ESR, probes with greater accuracy the

susceptibility of materials than a SQUID in the sense that in the case of a low susceptibility,

the signal may be dominated by impurity coming from the sample. ESR is able to discriminate

between the two signals, whereas a SQUID can only measure the total contribution[80]. The

same comment applies to NMR: a diverging susceptibility could be attributed to an impurity in

spin half, copper based Kagomé system Herbertsmithite[81] in which a suspected spin liquid

ground state has been both theorized and measured. In some cases, it appeared that a substi-

tution of paramagnetic copper at zinc sites hindered the stabilization of spin liquids, or at least

could be associated to a macroscopic divergence of the magnetic susceptibility. In order to

separate collective from local magnetic susceptibility, resonance techniques were successfully

used and this resulted in the identification of a small and finite intrinsic susceptibility that

could be obtained from the NMR line shift. ESR proves to be useful also in the study of antifer-
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romagnets, for example δ-[EDT-CONMe2]2AsF6, a quasi-1D charge ordered antiferromagnet.

In this compound magnetic atoms are placed in chains with a complicated magnetic lattice

involving three main couplings, including inter-chain coupling. ESR helped to reveal that a

combination of the effects of the coupling between the frustrated chains combined to defects

restores a three dimensional order[82]. Another compelling use of ESR also took place in the

study of the spin lattice interaction in the quasi-one dimensional helimagnet LiCu2O2[83].

ESR was essential in the study of the field dependence of the compound: measuring around a

critical transition and establishing a spin gap of 1.4 meV in zero field. It helped establishing a

comprehensive model for magnons in the system.
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6.2. Muon Spin Rotation

6.2 Muon Spin Rotation

The idea behind muon spin rotation, also called µSR is to take advantage of the muon that,

once implanted in a sample, has a spin rotating around the local fields present in the com-

pound. Certain figures in this work are inspired from a book by prof. Blundell[84]. The muons

can be implanted into a sample, they are stopped easily by matter, so the thickness of the

sample plays an important role in the experiments. The muon has a magnetic moment antipar-

allel to its momentum and decays radioactively with a lifetime of 2.2 µs. Muons are typically

produced by the following process: a high energy proton beam collides onto a graphite target.

A wide variety of reactions between the incoming protons and the target produce pions[85],

as shown in equation (6.8).

p +p → p +n +π+ p +n → p +n +π0

p +p → p +p +π0 p +n → p +p +π−

p +p → d +π+ p +n → n +n +π+

p +p → p +p +π++π− p +n → p +n +π++π−

p +p → p +p +π0 +π0 p +n → p +n +π0 +π0

p +p → n +n +π++π+ p +n → n +n +π++π0

p +p → n +p +π++π0 p +n → d +π−+π+

p +p → d +π++π0 p +n → d +π0 +π0

p +n → p +p +π−+π0

(6.8)

Such pions decay into a muon and a neutrino, through equation (6.9). This pion has a lifetime

of 27 ns.
π+ −→µ++νµ
π− −→µ−+ ν̄µ

(6.9)

The obtained muon can be collected and guided towards the sample, thanks to the regular

combination of dipolar and quadrupolar magnets. While penetrating into a sample, the

muon loses kinetic energy in less than a tenth of a nanosecond an settles in interstitial sites.

The precise knowledge of the so-called muon stopping sites is a whole field of research in

itself, and can involve a lot of computations, using Density Functional theory (DFT)[86]. In

order to investigate thin films, several facilities offer a low energy muons option, providing

muons[87] of energy comprised between 0.5 and 30 keV allowing to investigate 1-300 nm thin

films[88, 89, 90], rather than millimeter thick samples.

The muon has a mass and magnetic moment between that of the proton and that of the

electron, its gyromagnetic ratio is 13.5 kHz/G. This value has to be compared to 2800 and 4.26

for the electron and proton respectively. This gives muSR experiments a great sensitivity to low

magnetic moments, smaller than one Bohr magnetron, and access to a fluctuation window

of 10−5 to 10−11 seconds. The muons implanted in a sample share the same momentum

direction and decay radioactively into a positron and two neutrinos, as shown in equation
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(6.10).

µ+ −→ e++νe + ν̄µ
µ− −→ e−+ ν̄e +νµ

(6.10)

The muon decays on average at the end of its lifetime and the products of its decay can be

detected. In practice, it is very hard to measure neutrinos in conventional detectors since they

interact very weakly with matter, but it is quite easy to detect positrons. The decay is heavily

non anisotropic, as represented in Fig. 6.3.

Figure 6.3: Muon decay: positron emission direction underlying the asymmetry. The purple
arrow describes the muon spin direction and the black arrows the possible emitted positrons.

The positrons are in majority emitted in the direction of the muon spin (antiparallel to its

momentum). In the presence of any magnetic field, applied or internal, the spin of the muon

precesses with a characteristic frequency proportional to the gyromagnetic ratio γµ as stated

in equation (6.11), where B is the magnetic field.

f = γµ

2π
B (6.11)

One can thus place detectors, labeled forward and backward, with respect to the initial muon

momentum, and define the asymmetry function as in equation (6.12), where t is the time, NB

the number of positrons collected in the backward detector, and NF the number of positrons
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collected in the forward detector. A is the total asymmetry.

A(t ) = NB (t )−NF (t )

NB (t )+NF (t )
(6.12)

As a function of time, the number of detected positrons decays with time, but since the total

asymmetry is normalised, it is expected to oscillate. The positron counts in any detector

globally decays exponentially. Due to the anisotropic decay of the muon, more positrons are

detected by the detector in the direction in which points the spin of the muon.
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Figure 6.4: Rotation of a muon spin in a magnetic field H. The forward and backward detector
are shown on the second line. The third line shows the asymmetry in function of time.

Fig. 6.4 underlines the idea behind a muSR measurement. In a first step the muon is implanted

in the sample and reaches a stopping site, at t = 0. Due to the presence of a field, its spin rotates.

After some time, given on average by the muon lifetime, the muon decays into a positron,

measured by the detector. This is a statistical process which is repeated for all muons directed

at the sample. When a muon decays with its spin perpendicular to its initial direction, both

forward and backwards detectors record a positron with the same probability. If the muon is

given enough time to rotate 180 degrees, then the forward detectors record more positrons

than the backward one. Globally, the total number of measured positrons decays exponentially,

due to the exponential decay of the muon. The asymmetry function is normalized and thus

theoretically oscillates as a cosine function (Fig. 6.4, third row). The measured signal, G, is

given by equation (6.13).

G(t ) = 1

3
+ 2

3
cos

(
γµB t

)
(6.13)

This is the case when a single field is dominant in a system, and equation (6.13) models what
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happens in a real material, when applying a field larger than all other relevant fields in a

given sample. When no external field is applied, a wide variety of internal fields can combine

effects. Indeed, each nuclear spin has a moment, creating a small field with arbitrary direction

in which implanted muons can precess. A very small external magnetic field of a couple of

Gauss is sufficient to quench these internal fields but their effect is worth mentioning, even

from a pedagogical point of view. Indeed, since muons stop at different sites, muSR is greatly

sensitive to local environments. In magnetically long range ordered systems, several magnetic

atoms can create different local fields, depending on the magnetic structure. For instance, a

ferromagnet creates a rather homogeneous field, while a helicoidal structure results in many

different fields. The total measured signal is a combination of all these contributions from

individual fields. Since the measured signal for one field is a cosine with frequency propor-

tional to the field, the sum of signals presented in Fig. 6.5 is acquired. In that figure, one

can observe a superposition of oscillating curves with many different oscillating frequencies,

corresponding to the different local fields present in the sample.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t/

-1

-1/3

0

1/3

1

G
(t)

Figure 6.5: Overlay of muon asymmetries for a Gaussian distribution of local fields.

In the specific case of a field taking values according to a Gaussian distribution, the total signal

takes the form of the Kubo-Toyabe function stated in equation (6.14). The static Kubo-Toyabe

function is represented in Fig. 6.6. The function starts from its maximum and then rapidly

decreases to reach its minimum at time t =
p

3/∆, where ∆/γµ is the standard deviation of the

distribution of fields.

Such a behavior had been measured for example in skyrmion compound MnSi[91], and also

the heavy fermion system with non-Fermi-liquid behavior CeCu5.9Au0.1[92]. This shape can be
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understood as coming from the fact that, while many different cosine functions are combined

with different frequencies, they all share the same phase, so the limit for small times converges

to 1, while the limit for large times averages to a finite value.

G(t ) = 1

3
+ 2

3

(
1−∆2t 2)exp

(−∆2t 2/2
)

(6.14)
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Figure 6.6: Kubo-Toyabe curve arising from a normal distribution of static fields, normally
distributed around zero, with standard deviation ∆/γµ.

The Kubo-Toyabe distribution describes the case of muons stopping in an environment

of normally distributed fields, with an average of zero field. The distribution of fields can

however be different, and may for example follow a Lorentzian distribution, rather than a

normal distribution. The distribution can even be some mixture of Gaussian and Lorentzian.

This gave rise to the stretched exponential Kubo-Toyabe function given in equation (6.15),

where β corresponds to the stretching exponent. If β= 1, the distribution is purely Lorentzian,

and purely Gaussian if β= 2.

G(t ) = 1

3
+ 2

3

(
1− (λt )β

)
exp

(
− (λt )β

β

)
(6.15)

In magnetically ordered systems, the average magnetic field, BL is typically finite. The behavior

of the observed asymmetry is more complex and presented in Fig. 6.7, in function of the ratio

of the field strength divided by the distribution width. For high values of fields, the long time

limit averages to one, significantly different from the 1/3 value characteristic of the zero-field

Kubo-Toyabe limit.

Unlike zero kelvin moments, which can only experience quantum fluctuations, at finite tem-

perature, in almost every system the spins experience at least thermal fluctuations. Depending
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Figure 6.7: Kubo-Toyabe distribution for gaussian-distributed field with center BL and standard
deviation ∆/γµ. The shape of the function depends on the ratio γµB/∆.

on how the fluctuations are occurring (time scale and distribution), a very different asymmetry

can be measured. In the strong collision approximation, it is assumed that the field changes

its magnitude and orientation with a fluctuation rate ν: after "collision", the new field is

arbitrarily chosen from a probability distribution, completely disregarding its former state:

this is a Markov process. A general equation for sufficiently fast fluctuations, when ν > 3∆ is

given by equation (6.16) which is the so-called Abragam formula in zero field.

G(t ) = exp

(
−2
∆2

ν2 [exp(−νt )−1+νt ]

)
(6.16)

In the quasi-static limit, where ν¿∆, the asymmetry takes the form given in equation (6.17).

G(t ) = 1

3
exp

(
−2

3
νt

)
+ 2

3

(
1−∆2t 2)exp

(
−∆

2t 2

2

)
(6.17)

In resonance techniques, the notion of motional narrowing is important. The muons spins

rotate in the local fields. These fields can be very inhomogeneous and vary from point to point

creating a finite range of oscillating frequencies. Diffusing entities in this scheme then feel

lower variations of the fields than if they were stationary (due to the central limit theorem):

this phenomenon is called motional narrowing. For a Gaussian distribution of fields, in the

extreme motional narrowing limit, the asymmetry can be described by equation (6.18).
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6.2. Muon Spin Rotation

G(t ) = exp

(
−2σ2

ν
t

)
(6.18)

The quasi-static limit and the extreme motional narrowing limits are represented in Fig. 6.8.

The extreme motional narrowing describes well the thermal fluctuations of magnetic spins in

paramagnetic samples.
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Figure 6.8: Extreme motional narrowing (in black) and quasi-static limit (blue) asymmetries.
The numbers are indicating values of the ν/∆ ratio, corresponding to the strength of the
fluctuation rate, relative to the width of the (Gaussian) distribution of magnetic fields.

In real materials, these local fields can arise from either nuclear moments, as seen before,

long range ordered moments, a dipolar or hyperfine field, or even a demagnetization field, an

applied field or a combination of these. In practice the instruments are not always well cali-

brated, and a significant influence from sample environment, sample position, and detector

efficiency can result in an experimental normalization factor, α that enters calculations as in

equation (6.19), with α 6= 1. The proper value of alpha is determined at the beginning of each

experiment by applying a large transverse field.

G(t ) = NF −αNB

NF +αNB
(6.19)

It was mentioned that muSR has been used to measure the relaxation of MnSi[91], and that

a gaussian distribution of field was believed to be found to be responsible for the Kubo-
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Toyabe-like observed behavior of the asymmetry, similar to CeCu5.9Au0.1[92]. Researchers

managed to track the oscillating signal in ferromagnet β-UB2C[93] and study the criticality in

the system from the muSR data. Another example of useful information that can be obtained

from muSR data concerns superconductivity: in a type II superconductor it is possible to

obtain the London penetration depth from muSR measurements[94]. Muons spectroscopy is

a probe extremely sensitive to local fields and can be used to unveil a subtle transition from

2D magnetic order to 3D magnetic order[95], or conversely to help to resolve the absence of

magnetic long range order[62] and try and reconcile observations of spin liquid behavior in

Kagomé compound Herbertsmithite.
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7 X-ray techniques

X-ray techniques group the set of measurements that are performed with photons on samples.

Several techniques are quite useful for basic characterization of samples: purity assessment,

determination of number of phases, crystal orientation, twinning, while others give deep

insight on the nature of the compound: space group determination, lattice parameters, atomic

positions, strain and stress, particle size, and so on. The most basic structural properties of

a compound can be established from X-ray diffraction of a powder sample. In the frame of

quantum magnetism, where one wants to measure direction-dependent properties on a large

single crystal, or a co-alignment of single crystals, using neutron scattering, it is quite common

to use a Laue diffractometer in combination with a single crystal diffractometer, in order to

fully characterize the orientation of the crystals beforehand.
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Chapter 7. X-ray techniques

7.1 Basic elements of X-ray diffraction

The whole idea behind X-ray diffraction comes from the Bragg’s law[96]. A crystalline com-

pound is made of lattice planes and an incoming X-ray, pictured as a wave, scatters on the

sample.

{d

θ θ

Figure 7.1: Incoming wave diffracting on an atomic lattice. Part of the wave is reflected (green)
and part of it is transmitted (black). The transmitted wave in turn transmits and reflects on
the next atomic plane. The diffraction angle, θ is indicated.

Fig. 7.1 shows a typical diffraction configuration. Lattice planes are separated by a given

distance d. The incoming wave is characterized by an angle θ, and the outgoing wave is

scattered at the same angle. Part of the incoming wave is transmitted, while the other is

scattered. This process repeats for the scattered wave. Depending on the incoming wave

angle θ, the phase difference in the outgoing waves may create constructive, destructive or no

interferences. This is the essence of Bragg’s law stated in equation (7.1), which stipulates that

if the difference of optical paths between waves is a multiple of the wavelength, a constructive

interference, i.e., a peak, is measured.

2d sinθ = nλ (7.1)

This behavior is illustrated in Fig. 7.2. This figure shows two examples: Fig. 7.2a shows the

case where the optical path is proportional to the frequency of the wave, and Fig. 7.2b the

case where it is not. In both cases, the incoming wave is shown in blue, and the first vertical

red line corresponds to the first lattice plane. Part of the wave is scattered, with a phase shift,

shown in green, and part of it is transmitted, without any phase shift, shown in blue. The same

process occurs at the next lattice plane. In the case the interlayer distance is fulfilling Bragg’s

condition, the phase change of the wave obtained from the scattering of the wave transmitted

at the first lattice plane is such that it is constructively interfering with the first scattered wave,
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7.1. Basic elements of X-ray diffraction

as shown in Fig. 7.2a this is not the case if Bragg’s condition is not fulfilled, as shown in Fig.

7.2b where the waves are out of phase. The total contribution to a detector comes from the

contribution of a supposed infinite number of lattice planes. Each and every time a crystal

satisfies Bragg’s condition, a spike in the recored intensity appears, indicating that a family of

lattice planes is creating constructive interferences. The subtlety when doing crystallography

is that these planes are actually made of any periodic unit, which can be atoms, but also whole

unit cells: each dark spot in Fig. 7.1 does not necessarily represent a single given atom. Indeed,

diffraction is the result of the scattering on a periodic object and it does not matter what

are the inner constituents of this periodic object, at least not to when it comes to predicting

peak positions. The arrangement of atoms within unit cells contributes to the intensity of

the given reflection in the diffraction pattern. The position of the atoms within the unit cell

contribute to the so-called structure factor of the peak, which is the main contribution to

the intensity of measured peaks. The actual quantity describing the intensity of a given peak

and is called the structure factor because it arises from the crystal structure of the compound.

This quantity takes a slightly different form for neutrons and is discussed in more details and

written explicitly in another chapter. The most important piece of information being that it

is derived thanks to global translational symmetry, and depends mainly on atomic positions

and atomic (thermal) displacements, due to phonons. Constructive and destructive waves

may combine in a way that a peak associated to a certain family of lattice planes is forbidden

(destructive interference) according to space group rules: this effect is called a systematic

absence. A real measurement can be performed on either a powder or on single crystals. A

powder consists in a collection of randomly oriented microscopic single crystals.
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(a) Fullfilling Bragg’s criteria: constructive interference.
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(b) Not fullfilling Bragg’s criteria: no constructive interference.

Figure 7.2: Interference between transmitted and scattered wave with Bragg’s condition being
fulfilled or not.
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7.1. Basic elements of X-ray diffraction

Since the wave picture has been introduced for the X-ray photons, it is worth mentioning the

definition of the scattering vector. The incoming wave can be represented by a wave vector

ki of length 2π/λi and the outgoing wave by a wave vector k f , with Q = k f −ki the scattering

vector. Such a vector can be seen in Fig. 7.3.

2θ

ki

kf

Q

Figure 7.3: Definition of the scattering vector Q, in terms of incoming and outgoing wave
vectors, ki and k f .
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7.2 Powder X-ray diffraction

In the field of quantum magnetism, large single crystals are often required, as the neutron

scattering cross section is small and the measurement of a signal with good statistics needs a

significant counting time. However, for many different compounds, obtaining a high quality

powder is a prerequisite to the growth of single crystals[97], and quite often, obtaining single

crystals proves to be experimentally challenging and impossible. Hopefully this does not

preclude from studying novel materials, since a lot of information can be extracted from

powder measurements. Most of the information that can be extracted relies on the powder

averaging principle. High quality powders are produced from polycristalline materials which

are then grained into powders. The powder grown by various methods can contain grains

of different size which would create anomalies in the measurements. This is why when

preparing a sample, unless measuring nanoparticles, one grinds in a mortar the result of a

growth process. In some cases and to guarantee purity of the sample, the powder may be

obtained from grinding large single crystals. Once a homogeneous powder is obtained, it can

be reasonably assumed that the measured substance contains an arbitrary large number of

crystallites, and that every crystalline orientation is represented.

The powder can be placed in a capillary, or layed down on a flat surface, typically a glass plate,

giving low, amorphous background. If air or water sensitive, the capillary can be sealed, or the

sample embedded in grease, preventing contact with air, and contributing to the signal in low

amounts. Temperature control of the sample stage is usually ensured by a nitrogen jet, down

to 80 K, or a Helium jet, down to 5 K. Due to the fact that X-rays do not penetrate deeply into

matter, it is hard experimentally to measure below 5 K, and not typically available. Indeed,

most sample environments require bulky sub-parts.

2θ1

2θ2

Sample

Incident beam

Di�raction cones

Debye-Scherrer 

rings

Figure 7.4: Incoming X-ray beam scattering on a polycrystalline sample. Several crystalline
orientations correspond to different two theta angles. This creates Debye-Scherrer cones.
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7.2. Powder X-ray diffraction

Fig. 7.4 shows how Debye-Scherrer cones are created. When the incoming beam hits the

sample, X-ray get scattered. Since many crystallites are fulfilling Bragg’s equation for different

angles, a cone of scattering opens up, with angle associated to the 2θ of each crystallite. These

cones intersect a 1D detector as lines or a flat 2D detector as circles. The radius of these circles

can then be directly linked to the d-spacing of the associated lattice plane family.

There exists two ways of producing X-rays for such scattering experiments. The most common

way is with an X-ray tube. This presents the advantage of being available for in-house X-ray

sources and setups. However, since this type of X-ray production is based on the transition-

emission lines of an element, typically copper, it is quite frequent to have an incoming beam

containing photons of different wavelengths. The functioning principle of a typical laboratory

X-ray source can be seen in Fig. 7.5.

X-
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Figure 7.5: X-ray tube, incident and diffracted beam optics, detector, and sample stage. The
sample stage is fixed, while a goniometer platform rotates both the source and the detector.

The source is a X-ray tube, that can be rotated around the sample stage thanks to a goniome-

ter platform. The detector is also mobile. Both incident and diffracted beam paths can be

equipped with various optical elements. These include a monochromator, divergence slits, a

beam attenuator, beam masks, anti scatter slits, Soller slits and collimators.

Another way of obtaining an X-ray beam is from a synchrotron: electrons are accelerated up to

99.9% the speed of light. When deflected by a magnetic field, the electron will adopt a curved

trajectory and emit X-rays. After passing through the beam-line optics, these X-rays are used

to measure X-ray diffraction (and other types of X-ray scattering) on samples.
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The collected pattern contains information on the crystal structure and on the atomic place-

ment, and is convoluted to an instrumental resolution that broadens peaks. In order to refine

and fit an atomic model to the data, one typically uses a software, of which the Fullprof

suite[98] is a good example. In a few words, one can mainly perform two tasks. The first one

is called a LeBail fit[99] (LBF). All structural information embedded in the peak intensity is

discarded. The only relevant information that is kept is the peak position. With the known

space group, the unit cell parameters and profile parameters are refined to match the mea-

sured powder diffraction pattern. A more advanced method available in the Fullprof suite

deals with the determination of atomic positions and is the so-called Rietveld refinement[100].

The method consists in simulating the diffractogram from a crystalline model of the sample.

The model takes into account various parameters such as: instrumental peak shape, crystal

structure, atomic positions within the unit cell, absorption coefficients, preferred orientation,

and so on. Once all the desired parameters have been selected, a fitting is performed, with

a weighted reliability factor, defined as in equation (7.2), where wi is the weight of the ith

measurement, and I exp
i and I cal

i the measured and calculated intensities.

Rwp =

√√√√√∑
i wi

(
I exp

i − I cal
i

)2∑
i wi I exp 2

i

(7.2)

Rwp corresponds to a weighted reliability factor that compares the difference between the

modeled and measured data. For a perfect simulation the reliability still depends on the signal

to noise ratio. One can determine the minimum of the reliability factor, R0, with the ratio

Rwp/R0 going to one.

A typical example of this analysis can be seen in a copper based system[39], where the authors

measured synchrotron powder diffraction and could track the evolution of lattice parameters

with temperatures. The observed regular lattice contraction down to a temperature of 50

K. The systems undergoes a magnetic transition to a state with long range order at 20 K.

They successfully used the LeBail method to keep track of the magnetic effects on the lattice

close to 20 K: magnetic order, which sets in, affects the position of the atoms and a weak,

but clear, magnetostriction was reported. In some other cases, it can lead to even more

remarkable macroscopic properties. This phenomenon has indeed been observed in the frame

of multiferroic compounds: in orthorhombic manganites[101] a colossal magnetostriction

effect was observed and correlated to a finite polarization of the sample.
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7.3 Single crystal X-ray diffractometer

If single crystals of a given compound are available, measuring X-ray scattering on single

crystal often provides more insight on the crystalline symmetries than measuring on pow-

der. Equivalent reflections can be collected and consistency checks between them can be

performed. Modern single crystal diffractometers are equipped with lights and rotating stages,

and enable to fully resolve the morphology of a given crystal. This provides a method far more

unequivocal and consistent than using a Laue diffractometer (described in the next section).

A picture of a single crystal diffractometer can be seen in Fig. 7.6.

Figure 7.6: X-ray tube, collimator, nitrogen jet, sample goniometer and detector.

On the left hand side, encapsulated in a metal frame, stands a molybdenum tube which is the

X-ray source. The beam is directed towards the right hand side and goes through a collimator.

The other metallic tube is guiding nitrogen to cool the sample to the desired temperature,

down to a base temperature of 80 K. The sample is glued on a pin, typically with plasticine. A

very thin beam stop ensures that the incoming beam does not damage the detector, without

loosing too many scattered photons. The crystal and detector can be both rotated, allowing for

the collection of multiple configurations, necessary step to properly refine the crystal structure

of a compound, including all the atomic positions. Indeed, many compounds contain tens of
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inequivalent atomic positions, which generates many inequivalent positional and thermal

parameters that have to be refined. Having a large number of independent measured quanti-

ties is thus paramount to obtain publication quality results. Quite frequently however, when a

compound is already quite well known, the precise knowledge of the inner structure of the

unit cell is not desired anymore. A popular goal for an experiment is thus the determination

of the morphology of a crystal. Many crystals naturally present facets, the knowledge of the

orientation of a crystal is the first step of the measurement of a direction-dependent physical

quantity. Fig. 7.7. present the results of a morphology identification of a K2Ni2(SO4)3 crystal.

Figure 7.7: Facet identification of a K2Ni2(SO4)3 crystal.

After having collected about 200 images by rotating the sample, the unit cell of this specific

K2Ni2(SO4)3 crystal could be reconstructed. Moreover, the knowledge of the relative angles

allowed to additionally identify clear facets and assign them simple Miller indices. The (1̄00)

facet and the (11̄1̄) are both having their normal vectors in the plane of the picture, and, as

theoretically predicted, differ by an angle of 125◦. Many other facets have been spotted, as

indicated directly on the figure. In several different cases the indexing process gives unreliable

results: for example in the case of an orthorhombic space group with lattice parameters barely

different from one another. In some other cases, the crystal cannot be detached from its holder,

and the diffractometer can then not be used at all. In such cases, the use of a complimentary

tool, a Laue diffractometer, proves to be extremely efficient.
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7.4 Laue diffractometer

The Laue diffraction is a method that consists in obtaining diffraction images from a white

beam of either X-rays or neutrons, scattered on a non moving single crystal. For practical

purposes: flux (X-rays are easier to generate), and safety (neutrons are hard to stop), X-rays

Laue instruments are more widespread, since they can be installed in a regular laboratory.

The white beam of X-rays contains photons with a wide range of wavelengths. This beam is

typically generated by a tube on which a certain voltage and current are applied. An example

of choice in the Laue diffractometer at EPFL are tungsten tube on which is applied a voltage of

40 kV and a current of 10 mA. Quite naturally many settings exist depending on the machine

and objectives. The electrons are decelerating on the anode and produce photons through

Bremsstrahlung. Synchrotron photons can even go beyond the X-ray range, providing an even

wider range of available wavelengths.

The detectors are two-dimensional, and can be either a CCD detector, or an image plate (stim-

ulated photoluminescence). Two configurations are possible: transmission and reflection. In

the transmission geometry, the measured signal comes from photons transmitted through

the sample, while in the reflection geometry, the measurement comes from backscattered

X-rays. The advantage of using the reflection geometry is that since X-rays interact strongly

with matter, it is more suited for large single crystals. Scattering in the Laue geometry may

be considered as represented in Fig. 7.3. The method consists in considering only elastic

processes, meaning that ki and k f have the same norm. The direction in which the scattered

photons interact constructively are given by the Laue condition: the scattering vector has

to coincide with a reciprocal lattice node. The possible outgoing wave vectors thus form a

sphere of radius 2π/λ, called the Ewald sphere. Since the crystal is not moving, the reciprocal

lattice points are also fixed, and it is convenient to think of potential scattering as the locus of

the tip of the scattering vector Q. By taking into account all the different wavelengths in the

incoming white beam, a family of Ewald spheres have to be used to satisfy the Laue condition.

All the reciprocal lattice points in that sphere can thus be reached and appear in the measured

diffraction pattern. Once a pattern is measured, a typical way of analyzing the image is by

comparison to a well known, generated pattern. Several softwares allow to do this, including

OrientExpress and QLaue.

Fig. 7.8 shows an example of how to use Laue measurements, QLaue, and what information

can be extracted from it. The figure shows in balck and white the acquired Laue pattern of a

specific crystal orientation of Cu2OSO4, a monoclinic system. The blue dots correspond to the

pattern calculated by the software. Since the theoretical pattern matches the measured one, it

can be concluded that the facet perpendicular to the beam (referred to as "X axis") is the (001)

facet. Moreover, the horizontal axis can be identified as the [0 -1 0] direction. This work is

paramount for neutron scattering spectroscopic studies where, most of the time, the limiting

factor is the mass of the sample, directly proportional to the measurement time. Knowing

the morphology of crystals of the same compound enables to create co-alignments made
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Figure 7.8: Laue pattern imported in QLaue: identifying crystal facets.

of several distinct crystals glued on the same support and aligned together with a similar

orientation in order to create an higher effective mass than that of individual crystals, playing

a key role in reducing measurement time. A picture of such a co-alignment can be seen in Fig.

7.9, where a set of five crystals of Cu2OSO4 were co-aligned, to provide a sample with total

mass of 747 mg, whereas the biggest crystal was weighing 175 mg.

Figure 7.9: Co-alingment of crystals of Cu2OSO4. The crystals(in black) are co-aligned on top
of aluminum posts. The brass-made base encapsulates goniometers, whose screws enable for
fine tuning of the each of the orientation of each crystal.
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8.1 Brief elements of scattering theory

The explanations on neutron scattering are based on a set of typewritten notes written by Prof.

Kim Lefmann, distributed by Prof. Henrik M. Rønnow in the frame of one of his lectures on

condensed matter physics. Neutrons are electrically neutral particles of the same mass as

the proton, that interact weakly with matter. Since they are chargeless, they interact weakly

with magnetic fields. A neutron however, does possess a magnetic moment[102], making it

sensitive to the local magnetic moments present in typical condensed matter systems, as

shown in equation (8.1).

µn =−γnµN (8.1)

Where γn =−1.91 rad s−1 T−1 is the gyromagnetic ratio of the neutron, and µN = 5.05 J/T the

nuclear magneton. The fact that neutrons interact weakly with matter enables to perform

perturbative expansion studies and obtain quantitative agreements between experiments and

theory. On the contrary to X-rays, neutrons primarily interact with the nucleus, in a fashion

that depends greatly on the details of the content on the nucleus. In that aspect, neutron

present the great advantage over X-rays that they are able to resolve light elements, like

hydrogen, even when placed close to heavy elements, for example uranium. The probability

of interaction of a neutron with a nucleus also presents an isotopic effect[103]. The neutron

has a magnetic moment of a spin half, antiparallel to its nuclear spin. Unlike the neutron-

nucleus interaction which is mediated by the nuclear force, the interaction of neutrons with

the electronic clouds is a process involving the electromagnetic force, and is less significant.

This is why the magnetic signal obtained from neutron scattering is in many cases far less

strong than the one obtained from nuclear scattering. There are roughly five main reasons

why neutrons are a very interesting tool to probe solid state systems:

• They are useful to study magnetism in great details, with the full power of potential

polarization analysis.

• Thermal neutrons are produced at an energy of 25 meV, that is perfectly suited to study
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with sufficient resolution crystal structures and their excitations.

• They are enabling quantitative comparisons between experiments and theory.

• They are penetrating matter easily, and thus it is possible to study samples in extreme

conditions: very low temperatures (millikelvin), high magnetic fields (several to tens of

Teslas), and high pressures (several gigapascals).

• Isotopes of the same atom present very different neutron scattering interactions. For

example, naturally abundant boron absorb neutrons, but it is quite easy, even though

expensive, to simply isotopically replace the natural boron with another isotope, not

absorbing. Moreover, since different isotopes scatter neutrons very differently, this also

opened up the idea of using isotopic replacements as markers, as has been performed

with deuterium-hydrogen substitution. Additionally, light atoms in crystal structures

can be resolved, even when mixed with other heavy atoms.

The neutron behaves as any other particle, and in particular, can be considered in the particle-

wave duality realm. The neutron is a particle that can be considered as a propagating plane

wave, with a certain wavelength. The relation between its wavelength and energy is given in

equation (8.2).

λ= 2π~
mv

(8.2)

Since most physical processes happen in the reciprocal space, it is also quite convenient to

define the neutron wave number, k, by k = 2π/λ, with E = ~k2

2m . When plugging the actual

numbers of the Planck constant, and the neutron mass, the following constants appear:

E[meV] = 2.072 k2, k in [Å−1] and E[meV] = 81.81 / λ2, λ in [Å]. The study of neutron scattering

requires a bit of terminology. The first important notion is that of the cross section, usually

noted σ, defined in equation (8.3)

σ= surface perpendicular to beam direction ·# of scattered neutrons per second

# of incoming neutrons on a surface per second
(8.3)

The cross section naturally describes how well a given sample scatters neutrons, and its unit

is that of an area. When performing condensed matter physics experiments, recording the

energy and direction of the outgoing neutrons is paramount. This induces the need for an

angle-dependent and an energy difference-dependent cross section, namely the differential

scattering cross section and the partial differential scattering cross section. The former is

defined in equation (8.4) while the latter is defined in equation (8.5).

dσ

dΩ
= surf. perp. to beam direction

# of inc. neutrons on a surf. per sec.
· # of scatt. neutrons per sec. in dΩ

dΩ
(8.4)
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d2σ

dΩdEf
= surf. perp. to beam direction

# of inc. neutrons on a surf. per sec.
·# of scatt. neutrons per sec. in dΩwith energy in[Ef;E+dEf]

dΩdEf
(8.5)

When integrating over the whole solid angle, one recovers the full scattering cross section:

σ =
∫

dσ

dΩ
dΩ, and similarly:

dσ

dΩ
=

∫
d2σ

dΩdEf
dEf. The processes considering only Ef = Ei is

called elastic scattering, while the process that is the integral over all energy and retains only

the angular dependence of the scattering, the differential scattering cross section, is called

diffraction. There is a subtle difference between the two of them, even though the majority of

the measured signal comes from nuclear scattering, even in diffraction.

In the wave picture, an incoming neutron is described by a wavefunction ψi given in equation

(8.6), where A is a normalization constant, and ~ki the neutron wavenumber, related to its

velocity by v = ~ki

mn
.

ψi (~r ) = 1

A
exp

(
i~ki ·~r

)
(8.6)

When scattering on a single nucleus located at position ~r j , the outgoing neutron can be

modeled by a spherical wave, with waveform given in equation 8.7.

ψi (~r ) =ψi
(
~r j

) −b j∣∣~r −~r j
∣∣ exp

(
i~k f

∣∣~r −~r j
∣∣) (8.7)

The quantity b j has a unit of length, and is nucleus dependent, it is called the scattering length.

In the specific case of elastic scattering, defined by
∣∣∣∣∣∣~ki

∣∣∣∣∣∣= ∣∣∣∣∣∣~kf

∣∣∣∣∣∣, it can be proven that
dσ

dΩ
= b2

j

and thus that σ= 4πb2
j .

The scattering from several nuclei, located at a set of positions
{
~r j

}
results in the total differen-

tial cross section stated in equation 8.8, with~q =~ki −~kf, called the scattering vector. The final

form comes from the interference between the scattered waves on each nuclei, a pictorial

representation of vector ~q is shown in Fig. 8.1. There is a debate in the community on the sign

of the scattering vector. The chosen convention here is widely used by spectroscopists and

slightly less popular among diffraction experts.

dσ

dΩ

∣∣∣∣
nucl

=
∣∣∣∣∣∑

j
exp

(−2W j
)

bj exp
(
i~q ·~r j

)∣∣∣∣∣
2

(8.8)

There is an additional term in equation (8.8), exp
(−2W j

)
, called the Debye-Waller term. This

term arises from the fact that atoms are actually moving due to phonons, and relates to the

mean square atomic displacement: Wj =−1
2 〈~q ·~uj〉, where ~u j is the displacement of atom at

site j. Even though this displacement is related to phonons, it is non zero at low temperature
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because of zero point fluctuations and evolves with temperature.

q

2θ

θ θ

ki kf

Figure 8.1: Definition of the scattering vector Q, in terms of incoming and outgoing wave
vectors, ki and k f , the scattering angle, 2θ is indicated.

In the case of elastic scattering,
∣∣∣∣∣∣~ki

∣∣∣∣∣∣= ∣∣∣∣∣∣~kf

∣∣∣∣∣∣ := k. It entails, that
∣∣∣∣~q∣∣∣∣= 2ksin(θ). This equation

together with an additional equation q = 2π/d that holds information on the sample, form a

set of equations that are equivalent to the Bragg equation for scattering. In a typical diffraction

or elastic experiment, the use of θ as a scattering variable is thus widespread. For inelastic

processes, however, it is quite handy to add another quantity, the energy transfer, that directly

relates to the change in energy between the incoming and outgoing neutron, and can be

straightforwardly linked to the difference of the norms of their wavenumber, as shown in

equation (8.9).

∆E = ~ω= ~
(
k2

i −k2
f

)
2mn

(8.9)

More details about inelastic scattering will be given in another section, treating the full quan-

tum cross section of the scattering.

The nuclear spin of each nucleus can be varying with time, there can be also non negligible

variations due to the fact that different isotopes of the same element are present in the sample,

or because different elements are considered. This results in a static disorder responsible

for the so-called incoherent scattering. It can be assumed that the scattering length at site

j has a time dependent value, bj = 〈b〉+δbj, where 〈b〉 is the average (stochastic) value of

the scattering length and δbj its variance. It is moreover assumed that the variation are not

correlated between sites: 〈δbiδbj〉 = 0, i 6= j. The final result for the differential cross section is
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8.2. Quantum scattering processes

given in equation (8.10), where σinc,i = 4π〈(δb)2〉.〈
dσ

dΩ

〉
= σinc,i +σinc, j

4π
+ ∣∣〈bi 〉exp

(
i~q ·~ri

)+〈
b j

〉
exp

(
i~q ·~r j

)∣∣2 (8.10)

The so-called incoherent scattering appears to be direction-independent, and contributes

in the form of a background at every angle, while the right hand-side term in equation (8.10)

is angle dependent. The incoherent scattering is a considerable, atom dependent, source of

background. While in many cases the scattering cross section is dominated by the coherent

signal, it can happen, for example in the case of vanadium and hydrogen atoms, that the

incoherent scattering is more intense than the coherent scattering. In the case of vanadium,

the coherent scattering length is close to zero, effectively making it close to impossible to see

Bragg peaks of pure vanadium. Importantly, samples (or glues) containing hydrogen are thus

usually avoided (or deuterated) to get rid of this large background.

8.2 Quantum scattering processes

In order to grasp the effects of magnetic scattering, one has to go through the quantum

mechanical treatment of the neutron scattering cross section, stated in equation (8.11), estab-

lished thanks to the Fermi golden-rule[104].

dσ

dΩ
= Y 2 kf

ki

( mn

2π~2

)2 ∣∣〈ψi|V̂ |ψf
〉∣∣2

(8.11)

Y is a normalization constant ensuring the plane waves are normalized, and operator V is the

interaction potential, which can be describing nuclear as well as magnetic scattering. Nuclear

scattering is described by the Fermi pseudo-potential[105] in equation (8.12).

V̂ (~r ) =∑
j

2π~2

mn
b jδ

(
~r −~r j

)
(8.12)

In the case of inelastic scattering, the neutron can transfer energy to the sample. It is thus

important to also consider initial (before the neutron hits) and final (once the neutron is

scattered) sample states: |λi 〉, |λ f 〉. The suited cross section is the partial differential cross

section, stated in equation (8.13).

d 2σ

dΩdEf

∣∣∣∣
λi→λf

= kf

ki

( mn

2π~2

)2 ∣∣〈λiψi|V̂ |ψfλf
〉∣∣2

δ
(
Eλi −Eλf +~ω

)
(8.13)

8.2.1 Diffraction from a crystal

A crystal is described by a unit cell and a set of inequivalent atomic positions. The unit cell and

lattice parameters describe how tessellation creates the whole lattice. The atomic positions
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are the minimum set of parameters that one needs to describe the compound arrangement of

atoms within the unit cell. In every case but in that of very low symmetry (triclinic space group

P1 ), the symmetry operators of a given space group generate more atoms than the number of

inequivalent lattice positions. Each atomic position in a compound,~ri,j can thus be described

as the sum of a vector pointing to its unit cell,~Ri with another vector, describing the relative

position in the unit cell,~∆j:~ri,j =~Ri +~∆j. The translational symmetry enables us to rewrite the

differential cross section to take this symmetry into account, as in equation (8.14).

dσ

dΩ

∣∣∣∣
nucl.el.

= N
(2π)3

V0
exp(−2W )

∣∣FN(~q)
∣∣2 ∑

~τ

δ(~q −~τ) (8.14)

Here~τ is any reciprocal lattice vector, and FN(~q) =∑
i

bi exp
(
i~q ·~∆i

)
is the nuclear structure

factor. Equation (8.14) encapsulates all the elements required to understand diffraction data.

The last term, δ(~q −~τ) is responsible for the presence of peaks in diffraction patterns, it is a

reformulation of Bragg’s law. The nuclear structure factor, describes how intense is a given

peak, and depends on the details of the atomic positions with the unit cell.

A single crystal consists in a stacking of lattice planes. In a typical single crystal diffraction

experiment, the crystal is placed within the desired sample environment and placed in the

beam. One or several detectors are placed to detect outgoing neutrons. For a given orientation

of the crystal, Bragg law describes at which angles a peak is expected to be observed. The

crystal, or detectors, are then moved to change the scattering condition. The only accessible

reflections are the ones in the scattering plane defined by the source-sample and sample-

detector vectors. This strongly constrains the set of reflections that can be accessed, and even

though four-circles geometry instruments exists, enabling to rotate the crystal in all three

dimensions and access the full reciprocal lattice, when looking for preliminary information

about a sample, it is more handy to start by performing powder diffraction.

8.2.2 Diffraction from a powder

In the field of crystal synthesis, it happens that most crystal growth processes require the

preparation of a high quality powder sample. Moreover, the purest powders are always ob-

tained from crushing crystals to ensure that the contamination is as low as possible, and

the stoichiometry remains the expected one throughout the whole sample. Additionally, as

mentioned previously, a powder experiment presents the advantage of accessing all scattering

planes at once, without having to rotate the sample. Indeed, a powder sample effectively

behaves as a infinitely large number of small single crystals with as many different orientations.

Rotating the detector then simply corresponds to changing the angular range that is measured.

Another important parameter that can be changed in actual experiments is the wavelength

of the incoming neutrons λi (in the case of monochromatic beams): this impacts what is the

maximum reachable 2θ angle. It is always required to balance the resolution, which strongly

depends on λi , with the flux of neutrons. Another typical setup for experiments is the time of

flight configuration. Instead of creating a monochromatic beam, a white beam containing a
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wide range of frequencies is sent to the sample, all the neutrons being synchronized before

the sample at a certain time, in a pulse. As many detectors as possible surround the scattering

area, trying to record every scattered neutron. The time-of-flight of the recorded neutrons

is analyzed and each detector corresponds to a given scattering angle. In this setup there is

therefore no need to rotate any element.

8.3 Magnetic scattering

Magnetic scattering takes into account the interaction between the neutron and the magnetic

field created by the electrons in the outer electronic shells. The interaction term is given by

the Zeeman Hamiltonian: HZ = −µ · ~B = −γµNσ̂ · ~B , with ~B being the field of a single spin,

assumed to be a dipole: ~B =µ0/(4π)∇× (
~µe ×~r /r 3), with µe =−gµBs j . The total interaction is

written in equation (8.15).

V̂ =∑
j

µ0

4π
gµBγµNσ̂ ·∇×

(
sj ×

(
r− r j

)∣∣r− r j
∣∣3

)
(8.15)

A usual trick to obtain an expression for the neutron scattering cross section is to use the

Fourier representation of the rotational operator: ∇×
(s× r

r 3

)
= 1

2π2

∫
q̂′×(

s× q̂′)exp
(
i q′ · r

)
d 3q′.

A number of mathematical operations follow, but what is important here is that the quantity

that enters the equation is~q× (
~s ×~q)

. This quantity is actually the projection of the spin,~s on

the direction perpendicular to ~q :~s⊥. This has the drastic consequence, often mentioned in

neutron scattering literature and experiments, that the only component of the spin perpendic-

ular to the scattering vector is accessible. The partial differential cross section that has to be

computed is stated in equation (8.16)

d 2σ

dΩdE f
= ki

k f

(µ0

4π

)2 ( mN

2π~2

)2 (
gµBγµN

)2 ∑
λi ,λ f ,σi ,σ f

pλi pσi

×
∣∣∣∣∣
〈

k f λ f σ f

∣∣∣∣∣∑
j
σ ·∇×

(
s j ×

(
r − r j

)∣∣r − r j
∣∣3

)∣∣∣∣∣kiλiσi

〉∣∣∣∣∣
2

δ
(
~ω+Eλi −Eλ f

) (8.16)

Additionally to keeping track of the sample state before and after the scattering, and the

neutron wavenumber, it is required to also record the spin state of the neutron, σi , f . pλi and

pσi describe the probability for the individual states. For unpolarized neutrons, p↑=p↓ = 1/2,

and the sum can be carried out to finally yield the final magnetic cross section that reads as in

equation (8.17).

d 2σ

dΩdEf
= (

γr0
)2 kf

ki

[ g

2
F (q)

]2 ∑
αβ

(
δαβ− q̂αq̂β

)
× ∑
λiλf

pλi

∑
j , j ′

〈
λi

∣∣∣exp
(−i~q ·~r j

)
~sαj

∣∣∣λf

〉〈
λf

∣∣∣exp
(
i~q ·~r j ′

)
~sβj ′

∣∣∣λi

〉
× δ

(
~ω−Eλi −Eλf

)
(8.17)
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In this complicated equation, F (~q) =
∫

exp(i~q ·~r )s(~r )d 3~r is the magnetic form factor, where

s(~r ) is the spin density. This term is maximal at q = 0 and decays for finite values of q, and is the

main reason why magnetism is predominantly present at low values of q (in most cases). The

sum upon α and β accounts for the fact that only the component of the spin perpendicular to

the scattering vector is accessible. λi , f correspond to the state of the sample, and finally, the

last term, δ
(
~ω−Eλi −Eλf

)
ensures that the energy is conserved.

In the case of diffraction, the equation can be simplified to become equation (8.18).

dσ

dΩ

∣∣∣∣
el. mag.

= (
γr0

)2
[ g

2
F (q)

]2
exp(−2W )×

∣∣∣∣∣∑
j

exp
(−i~q ·~r j

)〈
~s j ,⊥

〉∣∣∣∣∣
2

(8.18)

This equation can be applied to two cases of interest: the diffraction on paramagnetic struc-

tures (8.19), where spins fluctuate in an uncorrelated fashion, and the diffraction on magneti-

cally ordered states(8.20).

dσ

dΩ

∣∣∣∣
el. paramag.

= 2

3
N

(
γr0

)2
[ g

2
F (q)

]2
exp(−2W )s(s +1) (8.19)

The paramagnetic cross section does not present any q-dependence, except for the Debye-

Waller factor, W, coming from the phonons, and the magnetic form factor. This is a q-

dependent background term.

dσ

dΩ

∣∣∣∣
el. mag. ord.

= (
γr0

)2
[ g

2
F (q)

]2
exp(−2W )

N (2π)3

V0

∣∣FM(~q)
∣∣2 ∑

~τ

δ(~q −~τ− ~Q) (8.20)

In equation 8.20 FM(~q) = ∑
i

exp
(−i~q ·~∆i

)〈
~si ,⊥

〉
are the magnetic structure factor, ~∆i is the

relative positions of atoms within the unit cell, and ~Q is the ordering vector of the magnetic

structure. It appears that, similarly to the periodic nuclear structure that creates structural

Bragg peaks, the last term in equation (8.20) is responsible for the creation of purely magnetic

Bragg peaks. Depending on the ordering vector ~Q, these magnetic peaks can coincide with

nuclear ones (~Q =~0), but may also appear at incommensurate positions (~Q 6=~0). The intensity

of such peaks is given by the magnetic structure factor, very similarly to the nuclear structure

factor for nuclear peaks.

8.4 Neutron spectroscopy

Spectroscopy refers to the study of inelastic processes, and is used, among others, to study

magnetic excitations in materials. A typical excitation is a spin wave, but the partial differential

cross section enables to study phenomena that are not limited to excitations in ordered sys-

tems. Starting with equation (8.17) the Dirac function encapsulating the energy conservation

84



8.4. Neutron spectroscopy

can be transformed into an integral of an exponential and then interpreted as the time evolu-

tion of the Hamiltonian, yielding the final formula for inelastic magnetic scattering, presented

in equation (8.21)

(
d 2σ

dΩdEf

)
magn.

= (
γr0

)2 kf

ki

[ g

2
F (q)

]2
exp(−2W )

∑
αβ

(
δαβ− q̂αq̂β

)
× N

1

2π~

∫ ∞

−∞
d t exp(−iωt )

∑
j ′

exp
(
i~q · (~r j

))〈
sα0 (0)sβj ′(t )

〉 (8.21)

This equation reflects the fact that the quantity measured by inelastic neutron scattering is

the Fourier transform of the spin-spin correlation function: it gives access to both time and

space correlations. The second line in equation (8.21) is called the dynamic structure factor,

and usually written S(Q,ω): Sαβ(~q ,ω) = 1

2π~

∫ ∞

−∞
d t exp(−iωt )

∑
j

exp
(
i~q ·~r j

)〈
~sα0 (0)~sβj (t )

〉
. An

important property that it obeys is called the sum rule, stated in equation (8.22), relating the

total intensity measured to S, the spin of the system.∫ ∞

−∞

∑
α,β,~q

Sαβ(~q ,ω)dω= 1

~
N S(S +1) (8.22)

A typical neutron scattering instrument is the so-called triple axis spectrometer (TAS). A

pictorial description of the instrument layout can be found in Fig. 8.2.

Neutron guide
Virtual source

Diaphragms

Beryllium �lter

Collimators

Detector

Monitor
Analyser

Beam stopMonitor

Sample

Collimator
Monochromator

Figure 8.2: Example of a triple axis spectrometer.
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The name triple axis comes from the fact that three axes can be moved. Essentially, this kind

of instrument selects an incoming ki , and through the sample rotation and analyzer angle,

enables of choosing both the relative direction and magnitude of k f , providing an option to

aim for any point in the (Q,E) space. Kinematic conditions as well as instrument geometries

and sample parameters of course constrain this accessible space but the general principle of

functioning remains the same. The other kind of spectrometer consists in a very large array of

detector tubes, replacing the single analyzer shown here in Fig. 8.2. The incoming neutrons

arrive at a defined Ei thanks to a combination of choppers, and the angular information as

well as the time-of-flights of neutrons are used to back-engineer the scattering vector and

energy of each neutron. In this kind of geometry, the detector banks are too massive to be

move but give access to hundreds, if not thousands of (Q,E) points at once. This is called direct

time-of-flight. The indirect time-of-flight geometry also exists and consists in fixing the energy

of the outgoing neutrons, rather than the energy of the incoming neutrons.

8.5 Polarized neutron scattering

It has been supposed in the previous discussion that neutrons are unpolarized, with an

equal probability of having spin up and spin down neutrons. In practice however, one

can take advantage of the spin of the neutrons to study condensed matter systems. It

can indeed be used to conduct for example spherical neutron polarimetry. This technique

uses elastic scattering to determine with great accuracy the direction of the moments of

antiferromagnets[106](ferromagnets tend to depolarize neutron beams). It can also be used

for inelastic signals to distinguish longitudinal from transverse magnetic excitations[107].

Several polarization analysis can be considered.

In many cases, it is sufficient to analyze the polarization of the outgoing neutron along the

same axis as the polarization of the incoming neutron. This is called longitudinal polarization

analysis. The essence of the idea is to separate the processes in two categories: the spin-flip

and non-spin-flip channels. A non-spin-flip process is associated to a spin up sent at the

sample, and a spin up detected, or inversely, a impinging spin down, and a detected spin

down. The spin-flip channel corresponds to a change in the spin: up-to-down, or down-to-up.

For nuclear scattering, the coherent scattering manifests itself purely in the non-spin-flip

(NSF) channel, while the spin incoherent scattering is split in between the NSF channel (one

third), and the spin-flip (SF) channel (two thirds). The cross sections for nuclear scattering are

summarized in equation 8.23.(
dσ

dΩ

)
++

=
(

dσ

dΩ

)
−−

=
(

dσ

dΩ

)
coh+II

+ 1

3

(
dσ

dΩ

)
inc(

dσ

dΩ

)
+−

=
(

dσ

dΩ

)
−+

= 2

3

(
dσ

dΩ

)
inc

(8.23)

The advantages of these techniques appear already in a striking fashion: the different cross
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sections help to discriminate between background and signal. In the very common case of

magnetic scattering, one only accesses the component of the moments perpendicular to the

magnetic moment. There is one more subtlety at play, since the polarization direction is a

priori not related to the moment direction. It happens that the component of the moment

parallel to the polarization axis contributes to the NSF channel, and conversely, the component

perpendicular to the polarization axis contributes to the SF channel[108]. For disordered

moments, the cross sections are stated in equation(
dσ

dΩ

)
++

=
(

dσ

dΩ

)
−−

∝ 1−
(
~̂Q · ~̂Pi

)2

(
dσ

dΩ

)
+−

=
(

dσ

dΩ

)
−+

∝ 1+
(
~̂Q · ~̂Pi

)2
(8.24)

In the case of a long range ordered system, the cross sections are more complicated and(
dσ

dΩ

)
++

6=
(

dσ

dΩ

)
−−

, but the principle remains the same: by measuring the four different

scattering cross sections, one can dis-intricate signal coming from the magnetic channel,

from the incoherent channel and from spin coherent. The use of such techniques has been

instrumental in the separation of broad, magnetic signal from incoherent background in

frustrated systems[109]. An example of an actual instrument (D7 at the ILL) can be found

in Fig. 8.3. The monochromator is responsible for the monochromatic beam which is then

collimated and filtered to avoid high harmonics. The wide array of analyzers and detectors

is indicated, collecting scattered neutrons. Several polarization elements can be placed on

the beam path, such as spin flippers, or beam polarizing elements. Three main techniques

are used to produce a polarized beam: filters, using preferential absorption by polarized 3He

nuclei, polarizing mirrors using preferential reflections, or polarizing crystals, such as Heusler

crystals (Cu2MnAl) using preferential Bragg reflections. Once generated, the polarized beam is

manipulated with adiabatic or non adiabatic techniques. Examples of adiabatic manipulations

of the polarization include guide fields and field rotators. The Drabkin spin flipper and the

Dabbs foil are example of non-adiabatic spin-flippers. For example a Dabbs foil uses a current

loop generating a field that rotates the polarization of the beam by 180◦.
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Figure 8.3: Example of neutron scattering instrument: D7 at the Institut Laue Langevin:
polarized diffractometer.
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9 Cu2OSO4: a playground for low di-
mensional quantum magnetism

As mentioned before, the notion of spin liquid was introduced by P.W. Anderson in 1973, in or-

der to solve the complex problem of the ground state of the spin half Heisenberg Hamiltonian

on the triangular lattice[110, 111]. Further studies actually evidenced that the state with lowest

energy for that system exhibits magnetic-long-range order, in the form fo the so-called 120◦

configuration[112]. This state is both the quantum and classical ground state of the system.

The hunt for quantum spin liquids extended to other systems and models than the simple

triangular lattice[113, 114]. The Kagomé lattice attracted considerable attention from both the

experimental[115, 116, 117, 118], and theoretical sides[119, 120, 121]. The square lattice with

second nearest neighbor interactions can be viewed as a triangular lattice, in the same type of

thinking, the Kagomé lattice can be though of as a triangular lattice, with missing interstitial

sites, effectively lowering the coordination of the lattice: each site neighbors four sites instead

of six. It has been theoretically postulated that the ground state of the spin half Kagomé Heisen-

berg antiferromagnetic Hamiltonian is the long sought-for spin liquid[122, 123, 124] and it is

still debated whether the excitation spectrum is expected to be gapped or not [125, 126, 127].

Numerous attempts tried to discover compounds hosting this rich Kagomé physics [128,

129, 130, 131, 132] and up to date, Herbertsmithite[133] remains one of the best candidates.

Another notable candidate of a Kagomé magnetic lattice has been long studied in mineral

Jarosite[134], studied for over three decades. It turns out that numerous candidates failed

to reproduce the simple Kagomé model: because of further neighbor interactions[135], non-

negligible out-of-plane couplings, significant antisymmetric Dzyaloshinskii-Moriya interac-

tion (DM)[136, 137], structural distortions, or chemical poisoning. These significant deviations

from the model perturb the extremely high degeneracy required to obtain a quantum-spin-

liquid and result in a ground state with magnetic-long-range order.

Even though order prevails, the question of whether or not, and to what extent, some of the

quantum spin liquids properties can survive and coexist with ordered states still is relevant.

This burning question of frustrated magnetism does not have, to-date, a clear and well defined

answer, and goes way beyond Kagomé systems[138]. It is thus interesting to study lattices
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created from triangular buildings blocks, other than the pure triangular and Kagomé lattices.

In that context, the study of Cu2OSO4[139], a mineral named dolerophanite, also known as

copper oxysulfate, has been carried out. The magnetic lattice describing the arrangement of

copper atoms in the compound can be described by a quasi-two-dimensional combination

of triangular motifs. The compound can be described as a Kagomé lattice, with one third

of the atoms replaced by a pair of atoms (dimers) with S = 1. Another way of characterizing

the compound is to state that it consists of chains, coupled by pairs of spins giving rise to a

frustrated triangular model.

As evidenced in a further section, the spin pairs seem to align in a ferromagnetic fashion,

meaning that the compound can be described as a Kagomé lattice with S = 1/2 for two-thirds

of the sites, and S = 1 on the remaining 1/3 of the sites.

No previous successful single crystal growth has been published, and previous powder studies

reported [140, 141] the DC susceptibility of the compound and found evidence for a transition

to a state with magnetic-long-range order at 20 K. The DM interaction in the system has

been estimated by careful analysis of Electron Spin Resonance (ESR) data[142]. Based on bulk

measurements, an canted antiferromagnetic ground state has been proposed[143]. The growth

process of single crystals of Cu2OSO4, and the details of the ground state of the compound

are presented, obtained from DC-susceptibility, heat capacity, and also X-ray and neutron

scattering. Many results presented here are already published in a peer-reviewed article[39].

9.1 Synthesis process

Single crystals of Cu2OSO4 were grown by chemical vapor transport (CVT), by Arnaud Magrez[39].

A very high quality polycrystalline sample has been synthesized using anhydrous CuSO4 as

precursor, placed in a quartz ampoule. The ampoule has been placed in a muffle furnace

and heated up to a temperature of 740 ◦C. Two chemical transport agents have been encapsu-

lated in a quartz ampoule at ambient temperature: Cl2 and NiBr2, as well as a small quantity

of the Cu2OSO4 powder. Both ampoules were placed in a two-zone gradient furnace. The

best temperatures for the charge and the growth zone were respectively 650 ◦C and 550 ◦C.

After five weeks, several semi-transparent, dark-brown crystals were visible. A typical set of

dimensions for the obtained crystal is 4x2x0.5 mm3. An example of crystal is shown in Fig. 9.1a.

Most of the crystals present regular facets. Some of these facets could be identified thanks

to a combination of X-ray Laue measurements, shown in Fig. 9.1b, as well as single crystal

diffraction. In the majority of cases, one could identify a (001) facet, with one of the edges

being the b* axis. This identification has been instrumental in measuring crystal direction-

dependent properties. The purity of the compound has been established thanks to single

crystal X-ray diffraction. A given representative crystal is rotated in the beam of X-rays, and
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one diffraction pattern is recorded at each angle. The combination of all patterns gives a three

dimensional view of the purity of the crystal: it is used both to refine the unit cell parameters

and verify at the same time that a reasonable amount of outliers are observed. Because of

the surface-character of X-ray measurements, this is of course not a definitive proof that the

bulk of the crystals is a single crystal but is nevertheless a solid first step towards ensuring

decent crystal quality. In a second step, the surface deterioration, and the orientation of the

sample can be determined using X-ray Laue scattering. Once the orientations of the crystals

are known, one can glue the crystals together onto the same sample holder, as shown in Fig.

9.1c.

(a) Example of single crystal with typical dimen-
sions.

(b) Laue pattern confirming crystal ori-
entation and surface state.

(c) Example of co-alignment of
samples for neutron scattering.

Figure 9.1: Example of single crystal (left), with dimensions. The Laue pattern (middle) in
the center confirms the surface is rather clean, and the orientation of the sample. Several
crystals can then be co-aligned by gluing them on top of aluminum posts (right) to increase
the signal-to-noise ratio of the neutron scattering signal.

The solid brass base ensures good thermal contact with the temperature controller. This

setup is optimized for experiments above 1.2 K, temperature at which the aluminum becomes

superconductor. The crystals, at the very top, are mounted on aluminum posts. For this range

of temperature, the thermal conductivity of aluminum, as well as the presence of an exchange

gas -a couple of millibars of Helium- surrounding the sample, are enough to thermalize prop-

erly in a reasonable time the sample: it takes a couple of minutes. Aluminum is a material

providing rather low neutron scattering background, compared to copper, and also known

and easily recognizable inelastic features: phonons, and thus can be disentangled from the

signal coming from the sample in a rather straightforward manner. The aluminum posts

are mounted on small brass platforms, effectively machined to act as goniometers. With the

help of a set of ingeniously placed screws, these platforms provide a control and a possibility

to correct with high precision -less than a degree- the relative orientation of each of the six

crystals mounted on the holder. With a view to minimizing undesired elements in the beam,

it is quite important to try an get rid of absorbing elements, or those that create strong inco-
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herent scattering. Of that class is hydrogen, one of the strongest incoherent scatterers, which

happens to enter in significant amounts the composition of most glues, in particular widely

used low temperature GE-varnish[144]. In order to minimize undesired signals, it has been

chosen to use cytop, an almost hydrogen free glue[145, 146]. The aluminum posts have been

carved out of a substantial amount of matter, to try and reduce the background as much as

possible. The crystal placement has been thought through to minimize the horizontal spread,

contributing in an undesirable manner to the resolution by broadening features. Each crystal

is also slightly offset vertically from one another to try and optimize for the vertical dimension

of the neutron beam: typically two to four centimeters. Slits made of an absorbing material

(Boral) are typically mounted on the instrument to narrow the beam size both vertically and

horizontally.
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9.2 Bulk measurements: a potential ferrimagnet

9.2.1 X-ray diffraction and crystal structure

According to a previous study[139], the compound synthesizes in a crystal structure described

at room temperature by a monoclinic space group: C 2/m (space group number twelve), with

lattice parameters given by a = 9.355(10) Å, b = 6.312(5) Å, c = 7.628(5) Å, α = γ = 90◦, and β

= 122.29(2)◦. The unit cell contains two inequivalent copper sites. The details of the atomic

placements of atoms are to be discussed in another section.

The crystal structure thus appears to be a relatively low symmetry one. Even in this case, the

question of whether there is a transition to another structure when cooling down the sample

is of great importance. Indeed, a symmetry lowering, or even a simple distortion of the sample

can impact severely the symmetry of the exchange paths in the sample and perturb perfect

Heisenberg couplings, or the delicate equilibrium that is necessary to stabilize the spin-liquid

state. In order to determine the behavior of the nuclear structure in function of temperature,

temperature dependent synchrotron X-ray diffraction on a powder sample was carried out at

the material science MS-X04SA beam line at the Swiss Light Source (SLS) at the Paul Scherrer

Institut (PSI) in Switzerland. The powder was packed in a 0.5 millimeter capillary, slightly

wider than the usual 0.3 millimeters one. This was necessary because of the high stickiness

of the obtained powder. The target energy was 21.99 keV, corresponding to a wavelength of

0.5637 Å. Each temperature was measured for roughly 10 minutes. The temperature was

controlled thanks to a helium jet and a heater, giving a base temperature near 5 K. The sample

was consisting in a few milligrams of powder obtained from crushing in small pieces in a agate

mortar several single crystals. The grinding was performed in a constantly-flushed nitrogen

glove bag to ensure that no contamination resulted of the contact between the sample the

water in the air. The capillary was sealed by fire. The dependence of lattice parameters and the

unit-cell volume could be extracted thanks to a LeBail fit (LBF), carried out using the Fullprof

suite, and is shown in Fig. 9.2.

It appears that the usual global thermal contraction of the lattice was observed down to a

temperature of 50 K, with an observable minimum of the lattice parameters a and b around 60

K. This non-monotonic dependence of the lattice parameters may find its origins in the slow

build-up of magnetic correlations coupling to the lattice, similar to what has already been

reported in multiferroic compound HoMnO3[147], explained in that case by a magnetoelastic

origin.
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Figure 9.2: Lattice parameters of Cu2OSO4 obtained from LeBail fit of powder diffraction data.96
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Evidence for such magnetoelastic couplings in Cu2OSO4 have been identified in the low-

temperature variations of lattice parameters for temperatures below the magnetic transition,

confirmed by neutron diffraction and visible in Fig. 9.3.
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Figure 9.3: Relative change in lattice parameters of Cu2OSO4 obtained from LeBail fit of
powder neutron diffraction data. The black dot is the normalization point.

A thermal diffractogram, set of diffraction patterns measured at many different temperatures

was measured at the D20 diffractometer in the Institut Laue Langevin neutron source (ILL) in

Grenoble, France. The sample consisted of 1.5 grams of high quality powder obtained from

crushed small single crystals in a Helium glove box, sealed in a vanadium can with indium wire

and helium acting as exchange gas. The high resolution option with neutron take-off angle of

90◦ degrees and a wavelength of 2.41 Å was used. Four hour measurements were taken at a

base temperature of 1.5 K and at 30 K, intermediate temperature points were obtained using

a ramp, with approximately 0.45 K between subsequent runs. The relative change in lattice

parameters was established by normalizing data to the data measured at 29 K, indicated as a

black square in Fig. 9.3. It can be observed that there is a small change in lattice parameters

from 30 K to 20 K, and that a sizable change occurs when decreasing the temperature below 20

K, which corresponds to the magnetic transition to a state exhibiting magnetic-long-range

order. The lattice contraction is anisotropic, but does not significantly change the magnetic

lattice.
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9.2.2 Structure and lattice

The magnetic lattice inherited from the crystal structure of dolerophanite is quite complex and

deserves some clarification. The magnetic arrangement of copper atoms is based on two non

equivalent atomic positions, with a total of eight atoms per unit cell. The atoms are placed in

the crystallographic ab-plane, with atoms from inequivalent site 1, labeled Cu1, exactly in the

plane, while atoms constructed from inequivalent position 2, labeled Cu2 are shifted slightly

out-of-plane, symmetrically above and below. Fig. 9.4b. shows how the different planes are

then connected by sulfur tetrahedra[148].

(a) Kagomé planes arising from looking at the
Cu2OSO4 crystal structure from a special angle.

(b) Atoms of copper oxysulfate viewed from the b-axis.

Figure 9.4: Crystal structure of copper oxysulfate. Blue and green atoms are inequivalent
copper positions. The Kagomé layers are apparent when looking at the structure from a
direction close to c* (left). The right-hand side picture reveals how blue copper atoms are
shadowing each other in the picture on the left, as well as the magnetic decoupling between
two consecutive layers, caused by intercalation of sulfur tetrahedra.

The placement of Cu1 and Cu2 ions in the planes is quasi two-dimensional, and can be de-

scribed either as Cu1 chains along the crystallographic b-axis, interconnected by Cu2 dimers

in a frustrated zig-zag pattern; or as a Kagomé lattice, with a third of the sites replaced by Cu2.

Fig. 9.4a reveals the Kagomé planes that arise when shadowing one of the out-of-plane Cu2

atom by the other. To achieve this, one has to tilt the point-of-view by an angle of 8.5◦ from the

c* direction. Fig. 9.12b shows how the lattice appears when looking from the crystallographic

c* direction. A concise discussion about exchange paths giving rise to the potential couplings

in the systems seems to be required and is the focus of another chapter dealing with inelastic

neutron scattering experiments and modeling.

What is in essence important to realize is that there are plausible exchange paths linking Cu1
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atoms with each other within the Kagomé plane, and also exchange paths linking Cu2 to Cu2

atoms, as well as paths connecting the two sublattices. Moreover, it does not appear that any

simple superexchange path connects atoms between Kagomé like layers, without involving

sulfur atoms. It is thus expected that these give rise to weaker couplings, because the orbital

overlaps involving sulfur orbitals should be less significant. This tends to confirm the validity

of a rather two dimensional model. A careful analysis of bond angles and distances is necessary

to claim more and is to be discussed in the analysis of the inelastic neutron scattering results.

Another point worth mentioning is that of the geometry. It appears that the Kagomé-like lattice

is actually very close to a perfect Kagomé, in the sense that its triangular unit constituents are

nor deformed, nor twisted, which is a typical problem of Kagomé systems[149] and triangular

units in general. Additionally, it seems that even though a sizable magnetoelastic coupling

has been observed, it is not associated to significant deviations from the original Kagomé-like

structure.
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9.2.3 Heat capacity

Heat capacity Cp was measured by Markus Kriener at the Riken Center for Emergent Matter

Science in Japan, using the specific heat option of a Physical Properties Measurement System

(PPMS, Quantum design, inc.) on a powder sample, pressed to form a pellet of mass 1.2

milligrams. The sample as well as the addenda were measured from 2 K to 200 K in zero field.

Subtraction of the addenda signal provides a complete view of the sample’s self heat capacity,

from 2 K to 200 K in zero field as well as in a field of 9 T. The results can be observed in Fig.

9.5a.

(a) Specific heat in function of temperature in zero field (blue)
and in 9T (red). The yellow curve shows the modeling of the
lattice contribution, and purple the subtraction, account-
ing for magnetic heat capacity, divided by temperature.
The inset shows a zoom on the low temperature part where
the fitted lattice contribution differs significantly from the
measured signal.

(b) Recovered entropy as a function of temperature, plateau-
ing to the entropy of a spin half system. The red shading
corresponds to the confidence interval.

Figure 9.5: Measured heat capacity on a Cu2OSO4 pellet(left), extracted magnetic en-
tropy(right).

The figure shows the specific heat per copper atom in zero field (in blue), and in a field of

9 T (in red). The yellow curve is a fit to a lattice model that results in the separation of the

contribution of the specific heat that is coming purely from magnetic processes. The purple

curve shows this magnetic specific heat, divided by the temperature. The inset is a zoom on

the contribution at temperatures lower than 90 K, showing the sensible difference between

measured data and the modeled contribution.

Fig. 9.5b shows the total magnetic entropy in function of temperature, with error-bars corre-

sponding the the red area. The horizontal red line is a guide-to-the-eye, showing for reference

the entropy expected for a purely spin-half system.
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It appears that Cp above 70 K is similar for both fields, increasing monotonically with tem-

perature. In the zero field data, a sharp Λ-like peak is observed around 20 K, indicative of a

magnetic transition towards a state exhibiting magnetic long range order, which is confirmed

by other experimental data presented in the next sections. The peak shifts to a slightly higher

temperature in a field of 9 T, and its intensity seems to be marginally reduced.

In order to disentangle the purely magnetic contribution to the heat capacity, Cmag, with a view

to extracting the corresponding transition entropy, Smag, the lattice effects have been modeled

using the hypothesis that the high temperature data is of exclusive lattice origin. Indeed,

the differences between in-field and zero field data indicate that the effect of magnetism is

irrelevant above 70 K, and that thus, magnetic correlations do not contribute in a significant

way to the total, measured heat capacity. The full lattice model has been determined taking

into account contributions from Einstein en Debye branches, as is routinely done for many

compounds[150]. There are subtleties when this method is applied to magnetic systems

that are the topic of a whole chapter of this thesis. Dolerophanite has been modeled using

contributions from one Debye branch (CD ) and several Einstein branches (CE ,i ). In order to

maximize the accuracy of the results, and since both the heat capacity and the volume of the

unit cell derive from the same physical quantity: the internal energy of the system, a combined

fit was used to obtain reasonable parameters. The volume of the unit cell is obtained from the

X-ray measurements. The total lattice contribution is given by equation (9.1)

Cp =CD +∑
i

CE ,i (9.1)

With the Debye contribution written in equation (9.2)

CD = 9nD R

(
T

ΘD

)3 ∫ ΘD /T

0

x4ex

(ex −1)2 d x (9.2)

And the Einstein contribution stated in equation (9.3).

CE = 3nE R
y2e y

(e y −1)2 , y ≡ΘE /T (9.3)

R is the gas constant[151], 8.31 J mol−1 K−1. ΘD andΘE stand respectively for the Debye and

Einstein temperatures. nD and nE are the Debye and Einstein weights, describing the relative

importance of each branch. Their sum, nD + nE accounts for the total number of atoms per

formula unit. The Debye and Einstein contribution can be explicitly related to the internal

energy of a solid. The relation between the energy and the unit cell volume[152, 153, 154] can

be found in equation (9.4).

V (T ) = γU (T )/K0 +V0 (9.4)

V0 stands for the volume of the unit cell at zero Kelvin, K0 is the bulk modulus, and γ the

Grüneisen parameter. The dependence of the internal energy U(T) on the temperature can be
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written, using Einstein and Debye terms, as in equation(9.5).

U (T ) =UD(T )+UE(T ) (9.5)

With the Debye contribution written as follows and is shown in equation (9.6).

UD(T ) = 9nD kBT

(
T

ΘD

)3 ∫ ΘD/T

0

x3

ex −1
d x (9.6)

And the Einstein component written in equation (9.7).

UE(T ) = 3

2
kB

∑
i

nE,iΘE,i coth(
ΘE,i

2T
) (9.7)

The best result obtained from a combined fitting of both unit cell volume and heat capacity

yields the following Debye and Einstein temperatures: ΘD = 171 K, ΘE,1 = 245 K and ΘE,2 =

939 K. These results are obtained with a Debye weight of nD = 1, and two Einstein branches,

with respective weights of nE,1 = 3 and nE,2 = 4. In order to fit the lattice model onto the data,

only points associated to a temperature that is larger than 70 K have been used, with a view to

making sure that there is no more contribution from magnetic correlations to the measured

heat capacity. As mentioned before, this temperature has been chosen because it corresponds

to a significant overlap of in-field versus zero field data, and the robustness of the results does

not depend strongly on the chosen range, as long as the starting temperature is at least 70 K.

The fitted volume of the unit cell at 0 K has been found to be V0 = 373.65 Å3. The result of the

fit can be observed in Fig. 9.2

Fig. 9.5a shows on the right axis the obtained magnetic heat capacity, divided by the temper-

ature Cmag/T, in zero field. Fig. 9.5b reveals the corresponding magnetic entropy, obtained

by integrating the magnetic heat capacity over temperature. The magnetic entropy reaches

saturation, with a saturated value of 101(19)% of R ln 2 per formula unit. This is in excellent

agreement with the entropy recovered by a system with two degrees of freedom. A similar

analysis was performed on the in-field data and confirmed that the field does not signifi-

cantly change the results. The magnetic contribution to the entropy can be separated in two

categories: between the short range correlations, in green, in Fig. 9.5a, and the transition,

in blue in Fig. 9.5a. The entropy from the transition accounts for the thermal energy used

to reorganize the internal degrees of freedom that are the spins, while the entropy in green

develops in a rather wide peak, over a large range of temperatures, compatible with the onset

of magnetic correlations over the whole temperature range. It has been estimated that 18(5)%

of the magnetic entropy contributes to the phase transition, and the rest takes the form of

correlations.
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9.2.4 DC susceptibility and magnetization

Fig. 9.6 shows the inverse of the DC-susceptibility, measured on a single crystal in a field of

0.1 T. Several single crystals have been used to confirm the results. The presented data used

a single crystal of 25.1 milligrams. The measurements were done using a combination of

Vibration Sample Magnetomer (VSM) included in the PPMS instrument, as well as a SQUID

magnetometer, part of a Magnetic Properties Measurement System (MPMS, Quantum Design,

inc.)
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Figure 9.6: Inverse susceptibility, corrected for the constant component of DC susceptibility
in function of temperature, measured on a single crystal along the three crystallographic
directions. The red line corresponds to Curie-Weiss fits, performed at high temperature.

The DC-susceptibility has been measured along the three most relevant crystallographic

directions: the a- and b-axes, which are spanning the Kagomé plane, and the c*-axis, direction

along which the planes are stacked. The fitted values of the Curie Weiss temperatureΘCW, the

diamagnetic background χ0 and the effective moment µeff are presented in table 9.1.

direction ΘCW [K] χ0 µeff [µB ]
a -71(4) 5.4e-05 1.91(25)
b -75(1) 4.7e-04 2.23(25)
c* -70(1) -7.6e-05 2.11(11)

Table 9.1: Results of Curie-Weiss fits for measurements along the a-, b- and c*-axes

103



Chapter 9. Cu2OSO4: a playground for low dimensional quantum magnetism

The starting temperatures for the fits of the Curie-Weiss fits presented in the form of red lines

in Fig. 9.6 have been checked to have no effect on the fit results: fits were performed on

many different temperature ranges, and fit results are selected in a region of temperature

providing so-to-say constant values of the resulting parameters, ensuring fit stability. The

Curie-Weiss temperature appears to be isotropic, within its errorbars, and negative. This is

indicative of a predominant antiferromagnetic interaction in the system. The slope of the

linear Curie-Weiss part given by parameter C, is anisotropic, indicative of a slightly anisotropic

g-tensor, with easy axis along the crystallographic b-axis. Below 20 K, the susceptibility de-

velops rapidly to a non-negligible value. This indicates a transition to a long-range ordered

state, with a ferromagnetic component. The magnetization of the sample was measured in

function of temperature with two protocols: cooling down to base temperature in a field,

and then measuring by increasing the temperature (Field Cooled Warming (FC)), but also

by cooling down in zero field, and then again, measuring when increasing the temperature

(Zero Field Cooled Warming (ZFC)). When cooled in a field, the field strength and direction

that were used are the same as those of the measurement field. A finite field cooled - zero

field cooled splitting was observed below the transition temperature, which is typical of the

opening of a small hysteresis. The transition is occurring at a temperature much lower than

the Curie-Weiss temperature. This suppression of the transition for a given range of tempera-

tures is indicating that the establishment of magnetic-long-range order is suppressed. This is

typically due to a combined effect of both frustration and fluctuations in a low dimensional

system. Fig. 9.7 shows the difference in magnetic susceptibility between FC and ZFC protocols.

The presented magnetization has been measured along the crystallographic b-axis, only direc-

tion developing a strong magnetization below 20 K. Different values of field have been used

for the measurement: H = 5 mT, H = 10 mT, H = 20 mT, H = 50 mT.

The susceptibility along other relevant crystallographic axes (a and c*) have also been mea-

sured, and are shown in Fig. 9.8. The inset shows a zoom on the susceptibility below 20 K.

The magnetic susceptibility measured along the a and c*-axes show a similar temperature

dependence to the one measured along the b-axis, but with a much lower value of projected

zero Kelvin limit. This is evidenced in the inset of Fig. 9.8. It has actually been found that the

component developed is due to a misalignment of the crystal when measuring: achieving

a precision of less than a degree is actually close to impossible on such small crystals, and

the measured signal along other relevant directions picks up a partial contribution from the

b-axis: they are still one or more order of magnitude less intense. Additionally, gluing the

crystal with a low-background glue limits the force that maintains the crystal in place. It has

been observed that the crystal tends to rotate to align its b-axis in the applied field. This also

explains why the alignment, despite the best efforts, is not perfect.
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Figure 9.7: Magnetization measured on a single crystal along the crystallographic b-axis, for
different values of the measurement field strengths, highlighting Field Cooled - Zero Field
Cooled splitting for small fields. The strongest splitting occurs for a field strength of 5 mT.

Fig. 9.9 shows fixed-temperature magnetization measured along the crystallographic b-axis

and the a- and c*-axes in the inset. For temperatures greater than 20 K, the curves are linear,

which corresponds to the usual paramagnetic response: thermal fluctuations are dominating,

the field aligns the spins, but a very high field is required to reach full theoretical moment,

the greater the temperature, the larger the field needs to be. Below 20 K, a small hysteresis

opens up. This corresponds to the transition to a magnetically long-range ordered state that

was evidenced with other measurements. The field required to saturate the magnetization

increases when lowering the temperature, reaching 40 mT at 2 K. No comparable hysteresis

has been observed along other crystallographic directions (a (which shows a way smaller

hysteresis, due to misalignment) and c*). The hysteresis is yet another indication of a non-

negligible ferromagnetic component of the ground state, with a moment of '1/4 µB aligned

with the crystallographic b-axis. The hysteresis curve happens to be slightly asymmetric and

presents a weak time dependence: it is wider when measured on the PPMS in the scanning

field mode, while on the MPMS, where a steady, stabilized field is waited for at each field,

sometimes taking up to minutes, the hysteresis is narrower: it seems that the ferromagnetic

component is thus relatively soft. This exchange-bias like phenomenon may reflect the fact

that the resulting state is a ferrimagnetic ground state, stabilized by competing ferromagnetic

and antiferromagnetic interactions. The exchange bias is the result of the coupling between

sub-units from both interaction types. Fig. 9.10 shows the behavior of the magnetization for

high values of applied field, up to 14 T, measured on a single crystal, along the crystallographic
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Figure 9.8: Susceptibility measured on a single crystal along the crystallographic a, b and
c*-axes, in a field of 0.1 T. The inset shows how the susceptibility develop below 20 K, with its
most significant contribution clearly along the b-axis.

b-axis. The inset shows the results of the measurement along the a and c* crystallographic

axes. There is no transition detected up to 14 T. The value of the moment reached at 14 T,

and 2 K is 0.32 µB per copper atom. The linear slope observed at 2K is indicative of slowly

rotating moments that are gradually aligning in the field. The M-H curves acquire a curvature

for higher temperatures. The base temperature data could be extrapolated to calculate at

which field the moments would be reaching a fully polarized state. The calculated slope is

of 3.56 mµBT−1, with an intercept of 0.267 µB. This would correspond to an external applied

field of 205 T, along the crystallographic b-axis. It remains possible, however that the system

undergoes a brutal transition to the field polarized state. This happens in the case of the

so-called spin flop transition[155, 156]. In that scenario, usually occurring when a magnetic

field is applied parallel to collinear, antiferromagnetic moments, the energy of the system

cannot be lowered significantly by a small deviation of spins around their zero Kelvin positions.

When the external applied magnetic field is strong enough, it overcomes the anisotropy energy

that was constraining the moments and the spin rotate rapidly "in plane", by ninety degrees,

still presenting an antiferromagnetic alignment. In that configuration, only the Zeeman energy

from the external field and the anisotropy are frustrated. In a second step, the spins then slowly

rotate to align with the field, and reach the field (fully) polarized state. Since this corresponds

to a jump in the M-H curve, the saturation field has to be lower or equal to the predicted

one. The inset of Fig. 9.10 shows the behavior of the magnetization at 2 K, with an applied

field along the crystallographic a- and c*-axes. It appears that the magnetization along the
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Figure 9.9: Isothermal magnetization curves, with applied field parallel to the crystallographic
b-axis. The inset shows, for comparison the same data along the crystallographic a and c*-axes.

crystallographic c*-axis is purely linear, confirming the zero component of the magnetization

in the c*-direction. The spins are simply aligning in the field. The same behavior is observed

along the crystallographic a-direction, however it seems that the measurement also picks up a

small component from the crystallographic b-axis. Reaching one µB by applying a field along

the crystallographic c*-axis would require applying a field of 183 T, by linear extrapolation.

Since the measurement along the crystallographic a-axis is influenced by the behavior along

the crystallographic b-axis, it is hard to get such a conclusion, however, simple eyeballation of

the curve would lead to a value around 200 T as well.
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Figure 9.10: Isothermal magnetization curves, for large values of fields, along the b-axis. The
inset shows measurement results along the a and c*-axes at base temperature.
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9.3 Neutron diffraction unveils 120◦ magnetic order

In order to determine with certainty the details of the magnetic ground state, neutron scat-

tering diffraction was performed on a powdered sample. Fig. 9.11 shows the results of the

measurements. One can see the data measured at a base temperature of 1.5 K, presented in

blue.
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Figure 9.11: Refinement of neutron scattering data measured at the D20 powder diffractometer
at a base temperature of 1.5 K (red). The result of the fit of the magnetic model is shown in
purple. The purely magnetic signal has been obtained by subtracting data measured above the
transition from the base temperature data and is shown in yellow. The inset show the result of
the magnetic refinement of data measured in the magnetic sector at the ZEBRA single crystal
diffractometer, with Irreps Γ1 at a base temperature of 1.5 K. The graph shows the observed
structure factors vs the calculated structure factors. The best fit shows a reasonable qualitative
agreement between the data and the model
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9.3. Neutron diffraction unveils 120◦ magnetic order

The part of the signal originating from purely magnetic scattering could be separated by

measuring a similar pattern with similarly high statistics above the transition temperature, at

30 K, where the phonons are already frozen. The result of the subtraction is shown in yellow in

Fig. 9.11. This pattern shows a negative background due to the reduction of paramagnetic

scattering. Several peaks appear with a clear positive intensity. On the other hand, many other

peaks are presenting up-down features: this is typical of a system whose lattice parameters

change by a small amount, slightly changing the peak position. The relevant parameter in

the subtracted pattern is thus more than ever the integrated intensity. The up-down feature

is asymmetric for most peaks, showing that some intensity is present, and the maximum is

placed either left or right of the peak position, indicative of asymmetric lattice parameter

changes: one or several lattice parameter is reducing while one or the others are increasing.

All of the separated magnetic intensity is located on top of a nuclear position. This is indicative

of a magnetic propagation vector of~k = (0 0 0). The analysis of the magnetic data was car-

ried out using magnetic symmetry analysis software BasIreps[157, 158, 159] on this magnetic

propagation vector, for Wykoff sites 4e (Cu1) and 4i (Cu2), with space group C2/m. Table 9.2

shows the predicted possible irreducible representations (Irreps) written as Γ1−Γ4. Irreducible

representation analysis relies on the position of magnetic atoms and on the magnetic propaga-

tion vector. Basis vector of the allowed magnetic structure, as well as transformations linking

magnetic moments on sites are given as a result of the symmetry analysis. Basis vectors com-

ponents are written as (u,v,w) for the site 1, and (r,s,t) for the site 2, and specifies how magnetic

moments on symmetry equivalent sites x,y,z and -x,y,-z are constrained and transformed by

the different predicted Irreps.

Cu1 : x,y,z Cu1 : -x,y,-z Cu2 : x,y,z Cu2 : -x,y,-z
Γ1 (u,v,w) (-u,v,-w) (0 s 0) (0 s 0)
Γ2 (r 0 t) (-r 0 -t)
Γ3 (u, v, w) (u, -v, w) (r 0 t) (r 0 t)
Γ4 (0 s 0) (0 -s 0)

Table 9.2: Basis functions for irreducible representation (Irreps) Γν for magnetic propagation
vector ~k = (0 0 0). The only relevant components are the real part, since the imaginary
component vanishes. The indicated symmetry operations enable to construct both copper
sites by application of the shown operator.

Here again, the Fullprof software was used[157] to perform the magnetic refinements. In a

first step, paramagnetic data, measured at 30 K, was refined to verify and adjust the atomic

structure. The scale factor from that refinement was then kept to a fixed number and used

to perform the refinement of the subtracted data, purely magnetic. For both experiments on

ZEBRA and D20, the paramagnetic and ordered phase data were measured with similarly high

statistics. By subtracting the two patterns, one effectively eliminates the nuclear component,

thus technically increasing the focus that the fit puts on the magnetic part, contributing to

significantly reducing the errorbars on the fitted magnetic moment components. Ideally, this

subtraction is performed between temperatures at which the phonons are already frozen,
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meaning the Debye-Waller factor is constant and no peak broadening is observed. In practice,

even if that situation is true, lattice parameters can still vary by a small amount, creating

up-down features. The refinement processes the integrated intensity of a given peak so it does

not matter that peaks appear as heartbeat-like curves, since the information on the magnetic

contribution is held in the integrated intensity.

The experiment on ZEBRA used the four-circle geometry to access a wide range of nuclear

reflections of a single crystal. The crystal used for the experiment turned out to present a

rather strong mosaic behavior with up to three different crystallites that were identified as con-

tributing to the signal, with an angular spread of up to two degrees (peak-center to peak-center

angular distance). This did not enable a systematic collection of intensity for Bragg-nuclear

reflections in all of the reciprocal space directions, despite using a combination of the four

circle geometry to the advantage of the experiment and the two dimensional detector of

ZEBRA. A total of 55 reflections were used to collect nuclear intensity at a temperature of 25 K.

This data has been used to refine the nuclear structure. A total of 42 inequivalent reflections

overlapping with the ones used for the crystal structure were collected at a base temperature

of 1.5 K to study magnetic scattering and refine the magnetic structure. The result of the

refinement of the most conclusive magnetic model is presented in the inset of Fig. 9.11. The

selected irrep is Γ1 on both inequivalent copper sites.

Several combinations of irreps have been tried. Γ2 and Γ4 are not defined on copper site 1, and

it turns out that it is not possible to obtain a stable magnetic refinement when using any of

these two possibilities on site 2. Slightly more generally, it appears that no refinement could be

performed using Γµ on site 1, and Γν on site 2, with µ 6= ν. Indeed, all these combinations have

been tried and fail to produce a solution converging to a local minimum of any goodness-of-fit

metric, but rather strongly diverging. This leaves only two possible combinations available: Γ1

or Γ3 on each site. It appears that using Γ3 does not fit properly all the magnetic peaks with no

up-down feature, main signature of magnetism in the sample, Γ3 has thus been discarded. The

best refinement is obtained by using Γ1 on both sites. Fig. 9.11 shows in purple a prediction of

the base temperature data, using as input the result of both magnetic and nuclear fits. The

associated ground state is shown explicitly in Fig. 9.12.

Fig. 9.12a. shows the resulting magnetic ground state when observing the crystal structure

form the crystallographic b-axis, while Fig. 9.12b shows the in-plane configuration of mo-

ments. Table 9.3 contains the result of the fits of Irrep Γ1 on both copper sites. The second line

in the table indicates the components of the magnetic moments when forcing the moments

to be in the ab-plane. This slightly reduces the total moment along the crystallographic b-axis.

When setting the Irreps coefficients to the result obtained from refining the magnetic data

obtained from the powder diffraction experiment, one can constrain the refinement of the

single crystal experiment carried out at ZEBRA, which then gives free parameters that can be
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9.3. Neutron diffraction unveils 120◦ magnetic order

(a) Magnetic structure of the Cu2OSO4 viewed from the b-axis. (b) Magnetic structure of Cu2OSO4 viewed from the
c*-axis.

Figure 9.12: Magnetic ground state of dolerophanite, showing long-range order. Spins on
the Cu2 position are parallel and along the b-axis, while those at the Cu1 position alternate
both left and right of the a-axis, and up and down of the ab-plane. The spins do not alternate
between planes. This creates a state with a small effective moment along the b-axis, all the
moments along a and c* being canceled by symmetry.

u v w s
∣∣∣∣~µCu1

∣∣∣∣ ∣∣∣∣~µCu2

∣∣∣∣
[µB ] [µB ] [µB ] [µB ] [µB ] [µB ]

w 6= 0 0.83(5) -0.47(4) 0.30(9) 0.86(5) 0.98(4) 0.86(5)
w = 0 0.70(4) -0.45(5) 0 0.91(6) 0.83(8) 0.91(6)

Table 9.3: Fit result using Γ1 to model the magnetic ground state of Dolerophanite. There is
no guarantee that moments should have out-of-plane components. The last row corresponds
to moments constrained to be lying in the ab-plane.

reasonably adjusted and lead to a magnetic structure in agreement with that obtained from

refinement of the D20 data.

The magnetic structure consists in a ferromagnetic alignment of spins on the Cu2 sites, with

moments constrained by symmetry to lie along the crystallographic b-axis. The moments

on copper site 1 are non-collinear, and alternating along the crystallographic a- and c-axes

in a fashion that cancels moments in these two directions, contributing to a finite moment

exclusively along the crystallographic b-axis. The moments on the Cu1 sites can be described

as an alternating, non-collinear, antiferromagnetic chain. It corresponds to the configuration

that would satisfy the Hamiltonian of a regular antiferromagnetic chain, embedded in an

external magnetic field, with field direction along the chain, and a field strength of half the

field fully polarizing the spins of the sample. The Cu2 dimers can be viewed as acting as a

link between the different copper chains. Each triangular unit forms a structure consisting in
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four spins, approximately creating a 120◦ configuration. The net moment along the crystallo-

graphic a- and c-directions cancels out, resulting in a net moment along the crystallographic

b-axis. By using the values of the moments given by best-fitting Irrep Γ1, provided in table

9.3, the moment along the crystallographic b-axis has been estimated to 0.23(3) µB, which

effectively corresponds to a quarter of the sum of the moments on Cu1 and Cu2. This value is

in perfect agreement with the previously measured magnetization curves at base temperature

presented in Fig. 9.9.

In order to study the way magnetic order sets in the system, temperature dependent neu-

tron diffraction was carried out on the D20 diffractometer. Using the LBF technique, one

can extract the lattice parameters temperature dependence. This change is presented in Fig.

9.3. The evolution of lattice parameters in function of temperature is consistent with a weak

magneto-elastic effect occurring at, and below the same temperature as the transition to a

magnetically long-range ordered state. Fig. 9.13 shows the temperature dependence of the

magnetic moments from both copper sites in Cu2OSO4.
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Figure 9.13: Temperature dependence of magnetic moments in Dolerophanite, obtained from
refining data at finite temperature with Irrep Γ1. Solid lines correspond to a power-law fit
used to model the critical behavior of the moments: µ(T ) ∝ (TN −T )2β. To better model the
behavior, the fitting was performed on a restrained temperature range (black and cyan data
points).

Irrep Γ1 has been used to fit the temperature dependent data in a cyclic refinement. Critical

114



9.3. Neutron diffraction unveils 120◦ magnetic order

behavior was modeled using equation(9.8).

µ(T ) ∝ (TN −T )2β (9.8)

Fitting has been restrained to a temperature range close to the transition, to better model the

critical description, only valid in the vicinity of the phase transition. In Fig. 9.13 data in black

and cyan markers correspond to data used for the fit, which yields TN = 19.7 (07) K, shared by

the two sites, and β = 0.11(1) for site 1 and β = 0.24(2) for site 2. These critical exponents are

very different, showing that both inequivalent sites, despite ordering at the same temeprature,

may order in a very different way.
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9.4 Discussion on static properties of Cu2OSO4

Materials with magnetic spins on the Kagomé lattice have long been at the forefront of the

research in experimental condensed matter physics. For a long time, Herbertsmithite was one

of only candidates exhibiting a regular Kagomé lattice and its physics, with the realization of

a spin liquid state. Multiple studies concluded that small perturbations to ideal conditions

quickly destabilized the spin-liquid physics. In that context, copper oxysulfate presents an new

lattice, two dimensional, offering multiple possibilities to study the stability of spin-liquids, the

delicate balance between long-range order and quantum fluctuations. In that spirit, Cu2OSO4

can be considered as a playground where significant perturbations to the Kagomé lattice can

help quantify the effects of fluctuations and strong frustration -denoted by its finite frustration

ratio |ΘCW|/TN ∼ 3.75- and provide better understanding on their experimental and theoreti-

cal effects on the quantum spin-liquid state.

The magnetic structure determined by means of neutron scattering is supported by the analy-

sis of the crystal structure and exchange paths. There exists a Cu2 - O - Cu2 exchange path,

connecting the two closest Cu2 ions with an oxygen atom, used as ligand. According to the

Goodenough-Kanamori-Andreson rule, the Cu2 - O - Cu2 bond angle of ∼ 93.0◦ appears to

be supporting weak ferromagnetism, associated to a coupling noted J22 < 0. The interactions

along the chain, involving the two closest Cu1 ions, can be associated partly to a Cu1 - O -

Cu1 exchange path with bond angle of 114.9◦. GKA rules predict that such an angle favors

dominant antiferromagnetic interactions combined into a coupling noted, J11 > 0. There are

exchange paths that couple copper atoms from the chains to other copper atoms from the

dimer. Two symmetry inequivalent superexchange paths may be responsible for that coupling.

One of them forms a Cu1 - O - Cu2 angle of 104.9◦, while the other is of 117.3◦. Once more, GKA

rules predict that these couplings are antiferromagnetic. They are noted J21a > 0 and J21b > 0.

Many other exchange paths exist, but none of them links copper atoms with the mediation

of a single oxygen atom, giving rise to regular superexchange with a single ligand. Additional

exchange paths, in-plane or out-of-plane involve hopping spins through (at least) a sulfur

tetrahedron. These Cu - O - S - O - Cu super-superexchange paths help creating a coupling

that connects Cu2 atoms of the dimer across Kagomé units, J2nn, as well as an out-of-plane

coupling, connecting planes with each other. It is quite possible that this predicted weak

coupling is responsible for the establishment of magnetic order by effectively increasing the di-

mensionality of the systems, in accordance with the Mermin-Wagner theorem (copper atoms

usually present no single ion anisotropy[160, 161, 162], even though it has been evidenced that

it can in practice happen[163].). Estimating the relative strength of that coupling, with respect

to the dominant in-plane interaction is a task that can be performed correctly by neutron

scattering spectroscopic studies, and a precise modeling of measured dispersion relations.

The long range order can be settling in two dimensional systems when a considerable source

of anisotropy is relevant. Even though it has been mentioned that copper atoms usually do
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not produce sizable singe ion anisotropy, it is now quite established that another anisotropy

mechanism plays a role in many copper-containing systems. It has been experimentally

evidenced that a non negligible Dzyaloshinskii-Moriya interaction (DMI) is present in the

system[164], supported by careful symmetry analysis of the crystal structure. Its intensity

has been estimated to be D ∼ 7 K. The relative importance of this antisymmetric interaction

can be estimated by taking the Curie-Weiss temperature as a measurement of the interaction

strength in the system, one obtains D/J & 0.1. It has been predicted that in the case of the

Kagomé lattice, DMI anisotropy may induce a quantum phase transition stabilizing the 120◦

order above Dc = 0.1J [165, 166]. These two relative orders of magnitudes tend to suggest that

the DMI may be responsible for the establishment of the 120◦ in copper oxysulfate, and that

subsequently, the system locates itself close to a quantum phase transition. Such a transition

could potentially be reached by tuning external parameters, such as the pressure of the system,

or chemical substitution.

A small, time dependent and asymmetrical hysteresis has been noted to open up at low temper-

atures. The time dependent character was observed by a significant difference between results

obtained from measurements with a ramping field showing the hysteresis, while measurement

with a settled field at each field-point showed little to no hysteresis. This time dependence

deserves further studies, and the asymmetry of the hysteresis has been tentatively attributed

to the exchange bias phenomenon, consistent with a potential couplings between sub-units

from both ferromagnetic and antiferromagnetic interactions.

To summarize, from bulk measurements and neutron diffraction, a solid understanding of

static properties of the ground state of dolerophanite could be built up. It has been confirmed

that the compound retains its structural properties down to temperatures as low as 1.5 K,

and that the spin half picture models the susceptibility and heat capacity data with good

agreement. The Curie-Weiss temperatures are rather isotropic, pointing towards Heisenberg

interactions, and are of the order of 70 K, considerably higher than the transition temperature.

This indicates a competition between interactions in the system, resulting in the suppression

of long range order for a wide temperature range. Long range order does get established below

20 K, with neutron scattering revealing the details of the magnetic ground state, corresponding

to the 120◦ state. It is quite interesting that this specific ground state is selected, even though

the model is far away from an ideal Kagomé or triangular lattice: one third of the sites is

replaced by a set of ferromagnetic dimers. Finally, the relatively small entropy associated to

the transition, most of it being encapsulated in correlations, suggests that subtle dynamical

effects may take place in the system, associated to the formation of ferromagnetic dimers,

120◦ triangles, and relative alignment of such sub-units. Inelastic neutron scattering studies

have been performed and are detailed in the next section, shedding even more light on the

system.
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9.5 Spin dynamics: two decoupled sub-lattices and a mean field

In quantum magnetism, the process of describing faithfully the physics governing a given

compound most of the time comprises the essential step of finding a Hamiltonian describing

the magnetism in the sample[167]. In order to try and establish the proper Hamiltonian that

describes the physics of copper oxysulfate, the most natural tool that comes to mind is inelastic

neutron scattering. This type of measurement gives access to the dynamical structure factor at

several different reciprocal lattice points, and for different energy transfer values[168, 169, 170].

The results of these experiments provide a way of probing spin excitations in quantum mag-

nets, that can then be described by a model and in many cases are related to spin waves. In this

specific case, experiments have been carried out on a co-alignment of five Cu2OSO4 crystals,

that accounted for a total sample mass of around 700 milligrams. The measurements were

carried out using triple axis spectrometers: the EIGER and IN22 spectrometers at SINQ, PSI

and at the ILL in Grenoble, using thermal neutrons and giving optimized energy resolution

and flux for energy transfers of about 10 meV, and the TASP triple axis, at SINQ, PSI, using cold

neutrons and giving more insights on lower values of energy transfer. In a regular experiment,

the sample is oriented in a scattering plane, defined by two inequivalent and non parallel

lattice reflections. Barring kinematic conditions restrictions and instrument design, virtually

any point in the reciprocal lattice defined by a linear combination of these two reflections

can be reached. Several scattering planes have been studied. For practical reasons, due to

the shapes of the crystals and their usable facets, the (2L K -L) scattering plane has been the

most studied. It contains the [0 K 0] direction, which is that of the chains of Cu1 atoms, the

perpendicular direction however [2L 0 -L] is not in the Kagomé plane, but rather corresponds

to a mixture between the in-plane, perpendicular direction, and the out-of-plane direction.

The Kagomé plane is the crystallographic ab-plane, and has thus little physical sense. Indeed,

Dolerophanite is a monoclinic compound, implying that in the usual choice of unit cell, the

crystallographic b* and b-axes are parallel to each other, however the a and a*-axes are not.

Since actual physical processes take place in the reciprocal lattice rather than in the direct one,

trying to measure the ab*-plane makes little sense. It appears that the a* direction is roughly

that of the projection of the Cu1-Cu2 nearest neighbor bond, projected on the plane perpen-

dicular to b, while the c* direction is perpendicular to the Kagomé planes. Since there are clear,

bright, and well defined excitations in the [0K0] direction (shown below), this motivated the

choice of the [0K0] as a reference, and the subsequent choice of the (HK0) plane to study the

in plane dispersion and the (0KL) scattering plane to elucidate the out-of-plane scattering.
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9.5.1 Experimental evidence for magnons

Results are presented in Fig. 9.14. Fig. 9.14a and Fig. 9.14b show measured spin wave disper-

sions along the chain direction. The red dots correspond to fits of individual scans by Gaussian

functions that enable to track the position of the spin wave modes in the (Q,E) space.

(a) Data measured at EIGER. (b) Data measured at TASP.
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(c) Sinusoidal fits of fitted spin wave modes.

Figure 9.14: Inelastic neutron scattering data consisting of constant energy scans. The x axis is
expressed in reciprocal lattice units. The red dots correspond to the position of gaussian curves
fitted to each individual scan. The color corresponds to the neutron normalized intensity.

It appears that two modes of excitation are clearly visible and dispersive in the [0K0] direction.

The lower mode is gapped, and reaches its maximum at the Brillouin Zone Center, and is

repeated two times for a single Brillouin Zone. The upper mode presents a different periodicity,

double of that of the lower mode. Moreover it reaches its minimum at the zone center and

maximum at the zone boundary. The inelastic neutron scattering scans could be well fitted, as

shown in Fig. 9.14 and the position of the mode could be fitted as well.

Fig. 9.14c. shows sinusoidal fits of the obtained spin wave dispersion. These fits yields the
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following parameters: J = 1.57 ± 0.29 meV for the upper mode, J = 0.67 ± 0.08 meV for the lower

mode and a gap of ∆= 1.94±0.06 meV for the lower mode and ∆= 8.28±0.20 meV for the

upper mode. The upper mode seems to present the same periodicity as the one expected for

the J1 coupling, linking Cu1 atoms. The lower mode’s period is half of that of the upper mode,

which would be consistent with a coupling linking atoms separated by twice the distance of

atoms in the Cu1 chain. This distance is consistent with a coupling between Cu2 atoms from

the dimers, across the whole Kagomé unit.
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(b) Temperature dependence of the center of the gaussian
peak position fitted to four different constant Q cuts.

Figure 9.15: Temperature dependence of different constant Q cuts.

Fig. 9.15 shows that these scans are temperature dependent, with peaks that vanish at the tran-

sition temperature, confirming their magnetic origin. It seems that the temperature narrows

down the bandwidth of the excitation, in a similar fashion to hard-core bosons[171, 172, 173].

Fig. 9.16 shows the result of scans along the direction perpendicular to the Kagomé planes

for a representative direction. Fig. 9.16a shows the data measured in the [02L] direction for

different values of L, and in red and green the respective fits of the dispersion. Fig. 9.16b and

Fig. 9.16c present sinusoidal fits of the obtained dispersions.

It has thus been shown that when fitting such observed features to a dispersive out-of-plane

excitation, one obtains an upper bound on the strength of the potential coupling responsible

for that dispersion. It can hence be concluded that the planes can be thought of as magnetically

decoupled, since the two couplings between them have been estimated to J = 0.45 ± 0.13

meV for the upper mode and J = 0.11 ± 0.04 meV for the lower mode. Indeed, in that crystal

structure, the planes are stacked along the c*-crystallographic axis, so measurements along

[01L] and [02L] exhibiting a very small dispersion in the L-direction reasonably leads to the
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(a) Representative inelastic neutron scattering data of
Dolerophanite in the out-of-plane direction. The
color scale corresponds to the normalized neutron
counts.
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(b) Fits of the lower mode.
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(c) Fits of the upper mode.

Figure 9.16: Inelastic neutron scattering data in the [02L] direction, representative of out-of-
plane scattering.

conclusion that the compound is mostly two dimensional, with the main dispersion in the

ab-plane. The periodicity of the observed modes is consistent with a coupling that would link

atoms separated by a distance of half a unit cell. Such a bond distance is in full agreement

with interactions supported by bonds between atoms from two different Kagomé planes.
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(a) Representative inelastic neutron scattering data of
Dolerophanite in the Kagomé plane, perpendicular
to the Cu1 chain. The color scale corresponds to
the normalized neutron counts.
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(b) Fits of the lower mode.
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(c) Fits of the upper mode.

Figure 9.17: Inelastic neutron scattering data in the [H20] direction, representative of in-plane
scattering, perpendicular to the Cu1 chains.

There is also evidence for dispersive features in the [H00] direction, as presented in Fig. 9.17.

The observed features along [H00] are clearly dispersive. The intensity is presented as a

color scale in Fig. 9.17a. The two excitation modes, already visible in the [0K0] direction

are dispersing in the [H00] direction. The results of the fit of the lower and upper mode are

presented in Fig. 9.17b and Fig. 9.17c respectively. A sinusoidal fit provides the following

values for the potential couplings: J = 0.44 ± 0.13 meV for the upper mode and J = 0.41 ± 0.06

meV for the lower mode. The mode periodicity is consistent with having a coupling linking two

atoms separated by half a unit cell in the [H00] direction. The only atoms separated by such a

distance in the [H00] direction are neighboring Cu1 atoms from neighboring Cu1 chains.
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9.5. Spin dynamics: two decoupled sub-lattices and a mean field

9.5.2 Modelling

The excitations and periodicity observed along the [0K0] direction are consistent with a

coupling between atoms separated by half a unit cell for the higher mode, and a full unit

cell for the lower mode. This naturally tends to associate the higher mode to a coupling that

would be hosted by the Cu1-Cu1 nearest-neighbor bond, predicted to be antiferromagnetic by

inspection of the superexchange path. The lower mode could be associated to a different bond

length: it could be a second nearest neighbor Cu1 interaction, or a dimer-dimer interaction

between Cu2 atoms across Kagomé units. Despite best efforts using the spinW MATLAB

package[174], providing a way of computing numerically spin wave spectra from linear spin

wave theory[175, 176, 177], it seems that no simple spin wave model with interactions between

Cu1 and Cu2 sub-lattices describes truthfully the excitations along the [0K0] direction. Indeed,

no scheme of coupling seems to reproduce the fact that the maximum of the dispersion of the

lower mode is reached at the Brillouin Zone Center, with a periodicity such that the maximum

is also reached at the Zone Boundary. However, this type of mode shows a surprising similarity

to the dispersion of an antiferromagnetic chain embedded in a magnetic field[178, 179, 180,

181, 182]. That magnetic field would here be generated by the effects of the spins of the Cu1

atoms. At the level of the modeling, the magnetic field exerted by Cu1 on Cu2 would thus be

the same as the one exerted by Cu2 on Cu1, the field being thus staggered. The lower mode

would thus be described by a coupling between Cu2 atoms across Kagomé units, called J2nn,

the effect of the magnetic field exerted by atoms of the Cu1 chain produces an effective mean

field that aligns the spins ferromagnetically along the crystallographic b-axis. In this coupling

scheme, the Cu1 atoms are coupled by a strong J1 nearest neighbor interaction, and embedded

in the reciprocal mean field generated by Cu2 atoms. An appropriate field strength is thus

the field corresponding to approximately half the saturation field, creating the 120◦ degree

configuration. Additional couplings have been added to stabilize both the magnetic structure

and the upper mode dispersion: a Jcross coupling, linking Cu1 atoms diagonally across the

Kagomé units, and a J2 coupling, creating an interaction between Cu1 atoms from neighboring

chains. This complex coupling scheme has been summarized in Fig. 9.18.
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Chapter 9. Cu2OSO4: a playground for low dimensional quantum magnetism

Figure 9.18: Coupling scheme best describing magnetic excitations in the Cu2OSO4 along
the crystallographic b-axis. Cu1 atoms are shown in blue and Cu2 atoms are shown in red.
The main couplings are J1 (purple) and J2nn (cyan). The other couplings are stabilizing the
magnetic structure that is shown by the arrows. The view shows the ab-plane in which lie most
of the couplings. Jin couples Cu2 atoms in the dimer with each other and there is no other
out-of-plane coupling. The magnetic field is applied along the crystallographic b-axis.
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9.5. Spin dynamics: two decoupled sub-lattices and a mean field

The g-tensor has been slightly modified to push the higher mode to higher energies so that

it lies in the correct, experimentally measured energy range. The current model can be

characterized as a model with two decoupled sub-lattices made of Cu1 and Cu2 atoms, coupled

through a mean field. The predicted dispersion around the magnetic ground state can be seen

in Fig. 9.19 and matches the experimental dispersion to a very satisfactory qualitative level

and in decent quantitative agreement.

Figure 9.19: Excitations along the [0K0] chain predicted by mean field model of Cu2OSO4 with
the following parameters: J1 = 5 meV, J2nn = 1.25 meV, J2 = 2.5 meV, Jcross = -2.5 meV, Jin = -0.005
meV, and a field of 6 T in the crystallographic b direction.

The presented curve corresponds to the following values of coupling parameters: J1 = 5 meV,

J2nn = 1.25 meV, J2 = 2.5 meV, Jcross = -2.5 meV, Jin = -0.005 meV. A very small ferromagnetic

coupling Jin has been introduced for the sake of calculations stability. The ground state has

been calculated by optimization of the energy by steepest decent and the excitations have

been predicted by linear spin wave theory. J1 is assumed to be the dominant interaction since

it seems to be the strongest from superexchange paths considerations. The second important

coupling is J2nn that creates the lower excitation mode. The coupling between Cu1 chains

and Cu2 atoms has been replaced with a mean-field. This explains why the model does not

truthfully represent the dispersion in other directions. When considering the case of a quan-

tum interaction between sub-lattices and no mean field, a line of zeroes appeared as a mode

predicted by the spin wave theory: this is a hint that the system is close in parameter space to

a point where spin wave theory breaks down and cannot describe the physics correctly.

The next step to fully model quantum interactions in the problem is to change the model
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Chapter 9. Cu2OSO4: a playground for low dimensional quantum magnetism

to replace this mean field by an interaction that couples the two sub-lattices. Unfortunately

no such coupling could be identified. It is worthwhile noting that the key ingredient in this

mean field model is the presence of a virtual field along the crystallographic b direction. For

that reason, magnetic excitations of the compound in other directions cannot be truthfully

obtained from the model and are thus not presented.

126



10 K2Ni2(SO4)3: frustration at its finest

10.1 Indications of 3D, S=1 quantum spin liquid

As previously mentioned, the search for spin liquids has been a burning issue of condensed

matter physics[183, 184, 185] with the focus of low-dimensional systems without magnetic

long-range order[186, 187, 188, 64]. The most promising realizations were found in quasi two

dimensional antiferromagnetic systems, where considerable frustration coming from com-

peting antiferromagnetic interactions suppresses the long range order. Such realizations are

found in triangular system YbMgGaO4[189], and in famously known Herbertsmithite[190, 191].

Three dimensional structures supporting spin-liquids candidates started to appear, such as in

Na4Ir3O8, whose structure can be described as a hyper-Kagomé model. In that compound,

no evidence for long range order was observed down to 20 mK[192], pointing to a certain

ubiquity of quantum spin liquids. A single compound has been evidenced as being a 3D

lattice with a spin half quantum spin liquid ground state: PbCuTe2O6[193]. Most efforts were

concentrated on spin half systems, but more recent contribution also demonstrated that

spin one systems, in the likes of NaGa2S4 may also be a fruitful playground to explore this

physics[194], by the means of biquadratic contributions. Novel physics, such as the Kitaev

model has also been realized with a lot of emphasis put on α-RuCl3 and its field stabilized

spin liquid ground state[195, 196]. An important example of three dimensional lattices that

proved to challenge the rich quantum spin liquid physics is the trillium lattice where atoms

are placed in equilateral corner-sharing triangles with complete three dimensional geome-

try. Previous work on MnSi, a compound realizing this lattice evidenced a pressure induced

quantum phase transition with non-Fermi liquid behavior above the transition[197, 198].

Further developments proved that even though the trillium lattice presents the key ingre-

dient of geometrical frustration, the system still develops magnetic long-range order [199, 200].

K2Ni2(SO4)3 belongs to a family of sulfates of the langbeinite type K2TM2(SO4)3 realizing

interconnected trillium lattices, which have been studied due to their ferroelectric behavior

and related structural transition[201]. At high temperatures all the members of the langbeinite
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family exhibit a high-symmetry cubic structure (space group P213) while at low temperatures

some of them sustain a transition to an orthorombic phase (space group P212121), ranging

from 125 K in TM = Co to 457 K in TM = Ca. On the other hand K2Ni2(SO4)3 does not show

any indication of the structural transition, in accordance with the observed dependence of

distortions on ionic radius[201].

First single crystals of the compound were synthesized using the Bridgman method[202]. This

opened the way for intensive studies of this interesting compound: nickel atoms typically

carry a spin one and the non centrosymmetric space group allows for non-trivial topological

spin configurations(similar to the observed skyrmions in MnSi[203] and Cu2OSeO3[204]).

Fingerprints of spin liquids can be detected in many ways, none of them however being a

smoking gun signaling with certainty that the spin liquid is the ground state. A combination

of techniques is typically used to show the absence of magnetic long-range order: this usually

consists in a combination of susceptibility measurements, muSR, and neutron scattering.

In that context being able to grow single crystals of the compound is paramount, since it

opens up the possibility of measuring directional dependent inelastic neutron scattering and

the potentiality of looking for continuous diffuse scattering patterns that have already been

revealed in 1D and 2D systems[205].
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10.1. Indications of 3D, S=1 quantum spin liquid

10.1.1 Structure

It has been evidenced that in the frame of the study of spin-liquids, an essential ingredient on

which physics relies may take the form of geometrical frustration. Compounds with complex

lattices present many inequivalent bonds, exchange paths, and thus many inequivalent cou-

plings. This asymmetry gives rise to complicated frustration patterns that are typically not

balanced enough to break long range order, which prevails when cooling the system to a cold

enough temperature. This comment also holds for complex, three dimensional interactions:

in real compounds, one does not really control which couplings are relevant and more often

than not, three dimensional compounds end up presenting couplings poisoning the precise

equilibrium required to stabilize the spin liquid phase. This is why main searches focused

on systems of lower dimensionality. Three dimensional lattices such as the pyrochlore lattice

gained a lot of traction since they are remarkably well behaved in terms of couplings. In that

context, K2Ni2(SO4)3 appears to be both promising but at the same time already non-trivial.

Indeed, its crystal structure is described by a very high symmetry, non centrosymmetric, P213

cubic space group. Table 10.1 shows all the inequivalent positions necessary to construct the

unit cell of K2Ni2(SO4)3, with fractional coordinates X, Y, Z. Both nickel and both potassium

atoms are placed at highly symmetrical positions, while oxygen atoms are occupying less

symmetrical positions.

Atom label Oxydation state Wyckoff position X Y Z
K1 K1+ 4 a 0.8149(2) 0.8149(2) 0.8149(2)
K2 K1+ 4 a 0.0488(2) 0.0488(2) 0.0488(2)
Ni1 Ni2+ 4 a 0.3354(1) 0.3354(1) 0.3354(1)
Ni2 Ni2+ 4 a 0.5992(1) 0.5992(1) 0.5992(1)
S1 S6+ 12 b 0.2171(2) 0.3764(2) 0.0191(2)
O1 O2- 12 b 0.3079(6) 0.2731(6) 0.9616(6)
O2 O2- 12 b 0.0756(6) 0.3293(6) 0.0035(6)
O3 O2- 12 b 0.2410(7) 0.5013(7) 0.9415(7)
O4 O2- 12 b 0.2465(6) 0.4050(7) 0.1614(6)

Table 10.1: Inequivalent atomic positions in K2Ni2(SO4)3.

The unit cell is however described by two inequivalent Nickel ions, and the formed mag-

netic lattice develops in a complex three dimensional structure. The two crystallographically

nonequivalent Ni2+ ions form an intricate 3-D magnetic lattice in which individual NiO6

octahedra are separated and connected by SO4 tetrahedra, as shown in Fig. 10.1.

Fig. 10.1a shows the crystal structure with atoms in the first unit-cell, there are eight nickel

atoms, with two inequivalent positions, and thus four symmetry operators creating the whole
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Chapter 10. K2Ni2(SO4)3: frustration at its finest

(a) Magnetic lattice of K2Ni2(SO4)3. (b) Zoom on nearest neigh-
bour Ni - Ni exchange path
in K2Ni2(SO4)3.

(c) Other Ni - Ni exchange paths.

Figure 10.1: View of the crystal structure of K2Ni2(SO4)3. A full unit cell is shown (left). The
nickel atoms are shown in brown, oxygen atoms in red, and sulfur atom in yellow. The solid
line corresponds to the limits of the unit cell. The simplest examples of Ni - Ni exchange paths
are also shown (middle), as well as more complex ones (right).

unit cell. Fig. 10.1b shows how nearest neighbor interactions are formed in the compound:

it is supported by a Ni - O - S - O - Ni exchange path. In one instance there are three sym-

metrically identical bridges between Ni1 and Ni2 while in other there are double and single

bridges, such as shown in Fig. 10.1c. Without a prior knowledge of the strength of individual

magnetic interactions it is hard to classify this material and hypothesize whether it belongs

to a ’standard’ 3-D material or maybe the reduction of the effective dimensionality and/or

geometrical frustration plays some role to lower the complexity of the lattice to form a simpler

one, both from the dimensionality and from the couplings point of view. From the purely

magnetic lattice point of view, a list of bonds could be extracted from the crystal structure.

These bonds can be classified according to their lengths, and are shown in Table 10.2. It

appears that the main characteristic distances can be grouped in five different classes that can

be associated to five different Heisenberg couplings labeled: J1, J2, J3, J4, J5. These classes of

bonds are presented in Fig. 10.2.

Label J1 J2 J3 J4 J5

Distance [Å] 4.429 4.901 6.084 6.121 6.127

Table 10.2: Bond lengths in K2Ni2(SO4)3.

The effects of the different bonds can be apprehended from these images. The gray and purple

atoms are nickel atoms created by the two crystallographically inequivalent positions. Fig.
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10.1. Indications of 3D, S=1 quantum spin liquid

(a) J1 bond in K2Ni2(SO4)3. (b) J2 bond in K2Ni2(SO4)3. (c) J3 bond in K2Ni2(SO4)3.

(d) J4 bond in K2Ni2(SO4)3. (e) J5 bond in K2Ni2(SO4)3.

Figure 10.2: Nearest neighbor magnetic bonds in K2Ni2(SO4)3. Only the magnetic (nickel)
atoms are shown, colors correspond to different inequivalent sites. The black, solid line is the
unit-cell, the structure is viewed from the crystallographic a-axis.

10.2a shows that the J1 coupling indeed is the nearest neighbor bond, however using only

this bond does not form a lattice. Fig. 10.2b and Fig 10.2d show other bonds that create

couplings linking the whole lattice. Finally, Fig. 10.2c and Fig. 10.2e show other bonds

that link atoms exclusively within a single sublattice, formed by atoms from only one of the

two crystallographically inequivalent positions. As a final note, Density Functional Theory

(DFT+U) calculations with the Generalized Gradient Approximation (GGA) indicate that the

bond supporting strongest, and antiferromagnetic interaction is the J4 bond, which should

thus be thought of as the primary source of magnetic interaction in the system, in any kind

of modeling. J4 connects the two trillium lattices formed by couplings J3 and J5, and would

lead to antiferromagnetic order if it was the sole source of magnetic interaction in the system.

The trillium lattices are made of triangular units, arranged in a corner-sharing fashion in

a three dimensional pattern. It is the main source of frustration in the system. A single

trillium lattice has been theoretically predicted to not be frustrated enough to have a spin-

liquid ground state[206, 207]. In this system, two trillium lattices are interconnected through
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another interaction, which has been predicted by DFT+U calculations to be the strongest, and

antiferromagnetic, seconded by the two antiferromagnetic trillium interactions. It can also be

noted that the coupling associated to the nearest neighbor bond is not the strongest one, this

can be explained by the variety of exchange paths linking the nearest neighbor nickel atoms,

resulting in a reduction of the coupling strength due to quantum-mechanical interference

between the different paths.
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10.1. Indications of 3D, S=1 quantum spin liquid

10.1.2 Heat Capacity

The specific heat Cp was measured from a base temperature of 85 mK to 50 K. The mea-

surements were carried out on a powder sample pressed into a pellet, using a combination

of PPMS, and in-house dilution fridge heat capacity measurement system. The results are

presented in Fig. 10.3. Fig. 10.3a shows the raw data, in black the zero field measurement, in

red the measurements with an applied field of 1 T, and in blue with a field of 3 T.

(a) Heat capacity of K2Ni2(SO4)3. (b) Heat capacity of K2Mg2(SO4)3.

(c) Purely magnetic heat capacity from K2Ni2(SO4)3 (d) Purely magnetic heat capacity from K2Ni2(SO4)3, log-log scale

Figure 10.3: Subtraction of non magnetic analogue K2Mg2(SO4)3 heat capacity to separate
magnetic heat capacity from K2Ni2(SO4)3, the different colors refer to different field strengths:
0 T (black), 1 T (red), 3 T (blue).

A small peak was detected in the heat capacity, around 1.14 K. Moreover, this peak is sup-

pressed by a magnetic field, pointing towards its magnetic origin. Additionally, another feature

appears in the form of a very broad peak, with maximum located around 5 K. With a view to try
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and separate the magnetic heat capacity from the lattice specific heat, a similar measurement

was carried out on non-magnetic K2Mg2(SO4)3, whose result is presented in Fig. 10.3b. The

chemical substitution of nickel by magnesium does not change the symmetry of the com-

pound, but has the effect of removing any magnetism taking place in the system, magnesium

being a non magnetic ion. The obtained heat capacity can then be subtracted from the one

of the parent compound, after re-normalizing to take into account the fact that the atomic

masses are slightly different, and thus the phonon contribution differ accordingly. The results

of the obtained heat capacity are presented in Fig. 10.3c and in Fig. 10.3d on a log-log scale. It

is quite clear that both peaks identified in the unsubtracted data remain a major feature of the

subtracted heat capacity, and are thus of confirmed magnetic origin.

Single crystal growth opened up possibilities for new measurements and direction dependent

measurements. The heat capacity was thus once again measured, at the Helmoltz-Zentrum

Dresden-Rossendorf. The results are presented in Fig. 10.4.

Figure 10.4: Single crystal heat capacity of K2Ni2(SO4)3.

The single crystal heat capacity turns out to be very conclusive. It appears that the peak previ-

ously observed in the powder measurement is once again present in the single crystal data.

More importantly, another sharp peak appeared at 740 mK. This is indicative of a potential

transition to a long-range-ordered phase, that could be observed and confirmed by other

measurement methods. It appears that the area of the peak is still quite small, indication

that if long-range-order is confirmed, it should be quite weak, and that significant correla-
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10.1. Indications of 3D, S=1 quantum spin liquid

tions participate in the magnetic entropy. Finally, the log-log representation behavior of the

magnetic specific heat, shown in Fig. 10.3d matches a power-law behavior, with a quadratic

temperature dependence. This phenomenon has been observed in numerous long range

order-suppressed systems, among others quantum spin-liquids candidates[208, 209, 210, 211]

and differs considerably from the cubic temperature dependence observed and expected

in systems presenting an antiferromagnetic ground state[194, 212, 200, 213, 201]. The low

temperature part of the purely magnetic specific heat could be fitted with a polynomial form

so that the model overlaps with a data up to 10 K. This enables to calculate the total recovered

entropy which, at 50 K, corresponds to 98% of the entropy expected for a spin one system.

The convergence of the entropy towards the expected value shows that there is little room

for residual entropy that could be associated to a high degeneracy of frozen states. The dif-

ference between single crystal and powder heat capacity can be explained by mainly two

theories, at least for the peak at 1.14 K, which seems to be completely absent from the powder

measurement. A first theory may attribute the observed peaks to an impurity phase. The

second hypothesis is that they are intrinsically related to the magnetic phase observed at

low temperatures, and that the temperature resolution in the powder experiment was not

sufficient to fully resolve the very sharp peaks.

The power law used to describe the low temperature data remains a good description of data

obtained from measurements in external applied field strengths of up to 14 T, without a visible

crossover to gapped polarized state that has been evidenced in YbMgGaO4[214]. This detailed

analysis of the heat capacity data has been performed by Dr. Ivica Živković.
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10.1.3 Magnetization - Susceptibility

The DC-susceptibility has been measured on a powder sample using a MPMS, with a field

of 0.1 T. The results are shown in Fig. 10.5. The data presented in black is the inverse DC-

susceptibility, and the red solid line corresponds to the Curie-Weiss fit.

(a) Inverse DC-susceptibilty of K2Ni2(SO4)3 (black) and
Curie-Weiss fit (solid red line).
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(b) DC-susceptibilty of K2Ni2(SO4)3 (black) and Curie-Weiss
fit (solid red line).

Figure 10.5: DC-susceptibility of K2Ni2(SO4)3.

Fig. 10.5a shows the inverse DC-susceptibility, together with the inverse Curie-Weiss fits. An

excellent agreement is obtained at high temperatures, and small deviations appear to be more

clearly visible in the low temperature DC-susceptibility, presented in Fig. 10.5b. Starting at a

temperature of 50 K and lower, the sample susceptibility starts to develop slower than the ideal

Curie-Weiss, but with no anomaly whatsoever down to 100 mK. The results of the fit yield a

Curie-Weiss temperature ofΘCW = -14.9 K, and an effective moment of µeff = 3.24 µB, obtained

for a Landé g-factor of 2.28. This value of the effective moment is fully consistent with that of a

S = 1 system. No feature at temperature similar to the ones corresponding to peaks observed

in the heat capacity are detected, and thus no obvious transition to a magnetically long-range

ordered phase can be identified solely from this data. The negative sign of Curie-Weiss tem-

perature confirms that antiferromagnetic interactions play a significant role in the system.

AC susceptibility at low temperatures has also been measured by Dr. Ivica Živković’s intern,

using an AC magnetometer that was developed in the Laboratory for Quantum Magnetism,

and then the AC-susceptibility measurement was reproduced on another instrument. The

results are presented in Fig. 10.6, where the inset shows a zoom on data close to 1.5 K where

confirmation measurements showed evidence for a peak.

No indication of any kind of ordering has been observed down to a temperature of 100 mK
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Figure 10.6: AC susceptibility at low temperatures for K2Ni2(SO4)3(red), the black curve is a
guide to the eye presenting 1/T free spin behavior. The inset shows the details of a peak that
did not appear in the first measurement, located above 1.5 K.

except for the peak above 1.5 K. Here again, Fig. 10.6 shows that the susceptibility develops

slower than an inverse temperature law, and that this increase in the paramagnetic response

cannot be attributed to free spins, since the sample response is smaller than a 1/T contribution

coming from hypothetical free spins.

Additional measurements on single crystals confirmed the behavior inferred from the powder

measurements, and were carried out with fields in the [111], [110], and [100] directions. No

significant change between the measured DC-susceptibility could be observed, and the Curie

Weiss temperature fitted to each of the data showed a fairly isotropic behavior.
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10.1.4 ESR

In order to confirm or disprove the absence of magnetic long range order in the system,

Electron Spin Resonance was carried out on a powder sample of high purity of K2Ni2(SO4)3.

Measurements were carried out by Balint Nafradi at EPFL. The results of the ESR linewidth

can be observed in Fig. 10.7. Even though ESR does not reveal any sign for a transition to a

Figure 10.7: Temperature dependence of the ESR linewidth of K2Ni2(SO4)3.

magnetically long range ordered state, the measurement does confirm that the g-factor of the

sample is 2.28, reinforcing the argument from DC-susceptibility that the results are consistent

with a spin 1 system. Additionally, the ESR linewidth starts to increase significantly for tem-

peratures lower than 100 K, which has not yet been attributed to any physical mechanism. A

broad linewidth is typically associated to a state that is decaying fast (as opposed to a state

with narrow linewidth which is decaying faster). For a given system, a broadening may occur

due to the interaction with neighboring spins, a more detailed analysis is required.
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10.1. Indications of 3D, S=1 quantum spin liquid

10.1.5 muSR and the absence of magnetic long range order

The establishment of magnetic-long-range order in the system at this point is thus everything

but sure. Indeed, even though heat capacity points towards one or several transitions occur-

ring around one Kelvin, dedicated magnetic measurements did not show any conclusive sign

of a magnetic transition. Muons being an tool with extreme sensibility to magnetism, and

fairly easy to combine with dilution fridges experiments, muSR is thus a must-do experiment

to confirm or disprove the potential quantum spin-liquid behavior of the compound. MuSR

has indeed been used by many different peers with this view[215, 216, 217, 218, 219, 220].

The first experiments took place at the ISIS muon source. The sample consisted in a large

amount of high purity powder and was cooled down to base temperature of 280 mK, then

heated back up to 10 K. No wiggles, characteristic of the rotations of the muon spins around

the local magnetic fields were ever observed while cooling down to 280 mK. Moreover, no

wiggles were observed in any measurement at any different constant temperature, but only

relaxing curves, corresponding to an exponential decay. This means that long range ordered

static moments are not obviously visible in the sample. All measurements using the 3He

cooling system enable to measure the low temperature muon asymmetry spectra, while the

Variable Temperature Insert (VTI) allowed for measurements at higher temperatures: up to

100 K. Results for some representative temperatures are shown in Fig. 10.8a for the 3He fridge

and for the VTI in Fig. 10.8b, both in zero field.
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(a) Muon asymmetry of K2Ni2(SO4)3 measured in 3He probe.
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(b) Muon asymmetry of K2Ni2(SO4)3 measured in Variable
Temperture Insert.

Figure 10.8: Zero field muon asymmetry of K2Ni2(SO4)3. Solid lines indicate a modeling (fit) of
the relaxation data.

On the qualitative side of the measurements, it can be mentioned that the relaxation rate is

obviously decreasing with temperature. Further analysis is required to confirm this result.
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In a second step longitudinal field experiments were performed. Indeed, one way to look

for static moments is to study the evolution of the relaxation rate with a longitudinal field,

since random distributions of static moments, being of nuclear or electronic origins may

contribute to facilitate the relaxation : these moments can be decoupled by applying a given

strength of longitudinal field. Quite naturally, the dynamics of spins can also contribute to

the relaxation, however, these time dependent processes typically involve applying a larger

field. By applying a longitudinal field, one can check if the static moments are dominating.

The results of longitudinal field measurements are presented in Fig. 10.9.
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Figure 10.9: Longitudinal field dependence of K2Ni2(SO4)3 muSR asymmetry at 10 K.

It appears that the muSR asymmetries do not exhibit noticeable changes in relaxation rate

upon application of longitudinal fields of up to 2000 G, the relaxation rate remaining prac-

tically the same, there is thus no evidence for static moments. The slow decreasing in the

relaxation rate for large fields can be explained by instrument calibration.

Another fingerprint of static moments, if frozen, is an effect similar to the eventual Knight

shift observed in Nuclear Magnetic Resonance[221, 222, 223, 224], occurring when looking at

transverse field measurements. A transverse field of 20 G has been applied and studied from

0.3 K to 5 K. No significant shift in the muon asymmetry can be observed. This means that

there is no evidence for frozen static moments. The results can be seen in Fig. 10.10.
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Figure 10.10: Transverse field dependence of K2Ni2(SO4)3 muSR asymmetry. Solid lines
correspond to fits to an oscillating function, attenuated by an exponential: no significant shift
is observed.

A general formula of the muon spin relaxation rate used to model the asymmetry in the

absence of static moments or transverse fields creating wiggles in the muon asymmetry is

written as in equation (10.1).

A(t ) = A exp(−(λt )β)+B exp(−λbg t ) (10.1)

Where λ is the relaxation rate, β the stretching exponent, λbg the background relaxation, and

A and B respectively the relaxing and baseline (background) coefficients. Several methods

have been used to try and fit the data:

1. Simple exponential, free constant background

2. Stretched exponential, free constant background

3. Stretched exponential, shared constant background

4. Stretched exponential, simple exponential background
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These fitting methods have been used to fit both 3He fridge and VTI data. Regardless of our

choice of fitting schemes, there is a peak in λ around T=1.4 K, which corresponds to the

temperature found by the specific heat.

The fits giving the best results have been obtained by the following routine. The 10 K tempera-

ture has been chosen as reference for several reasons. First, the 3He probe had problems to

stabilize the temperature around 1.6 K, up to 2.3 K. The VTI set temperature was differing by

generally 0.3 K from the sample temperature (below 10 K). 10 K was the first point for which

the sample temperature recorded using VTI was close to one of the sample temperatures

recorded when using the 3He probe. Moreover, T = 10 K corresponds to a region in which λ is

still decreasing, but not varying too rapidly. So one can have good confidence in the fact that

the value of λ obtained from fitting the VTI data can be used as value expected for the 3He

probe data, due to the small difference in temperatures. A strategy to obtain consistent results

between VTI and 3He probe is the following.

1. Use the data measured in the VTI lowest temperature.

2. Fit to find single exponential background.

3. Fix a single exponential background.

4. Fit all VTI points

5. Use the 3He data at 10 K.

6. Free the background amplitude coefficient, while at the same time fixing the relaxation

rate and stretching exponent as equal to the values found for the VTI.

7. Fit 3He data at 10 K.

8. Fix background coefficients and set as free the relaxation rate and stretching exponent.

9. Fit all Helium 3 temperature points.

The relaxation curves obtained by this procedure can be seen in Fig. 10.11, where the relax-

ations rates obtained with the two different measurements were set to match, but the data

overlap also continues to higher temperatures. Representative fits of low temperature data are

shown in Fig. 10.8.

A divergence occurs at 1.4 K which is an indication that the physics changes around this point.

It appears quite strikingly that there is a large discrepancy between the fitted relaxation rates

obtained from the VTI and fridge data. This discrepancy is believed to be due to temperature

calibrations, explaining the overlap of finite to diverging values. The data from the Helium
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Figure 10.11: Relaxation rate in K2Ni2(SO4)3 showing a clear peak at 1.5 K.

3 fridge does not fully diverge, this is believed to be due to a lack of statistics, but more

importantly, as was evidenced further, due to a modeling issue.

Indeed, measurements at PSI, where muons give access to a shorter time scale, and also

lower temperatures were performed by our collaborators in a second step. The experi-

ments were carried out on a high quality powder sample, down to a base temperature

of 20 mK. No significant fingerprint of large ordered moments has been observed, simi-

larly to what has been reported form the aforementioned experiments at ISIS. Data and

fits to the data can be seen in Fig. 10.12. The data has been modeled with two different

asymmetry functions: one describing the low temperature behavior of the system, given by

Alow temp(t) = A0

(
f e−(λ1t)β1 + (1− f)e−(λ2t)β2

)
+ABG and another function describing the high

temperature data: Ahigh temp(t) = A0 e−(λt)β +ABG. These correspond to the usual stretched

exponential modeling with a constant background. It appeared that the low temperature data,

down to 20 mK, is better described by the sum of two stretched exponential functions. In order

not to over-constrain the fit, parameters f and β1 have been fixed to 0.5 and 1 respectively. The

two relaxing components then describe both the dynamics due to sporadic spinon excitations
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Figure 10.12: muSR measurements carried out at PSI with corresponding analysis. a) show
measured data with the model. b) shows a comparison between models. c) and d) show the
temperature dependence of fit parameters.

and a partial order of the sample. This partial order would be due to the existence of a sporad-

ically incomplete covering of the lattice by singlets that leaves some spins unpaired. These

isolated spins would then survive a certain time, much shorter than the average muon lifetime.

Fig. 10.12 shows the result of the fits. The fact that the two-asymmetry function models better

the low temperature data is showcased in sub-figure b). The temperature dependence of the

different fit parameters is shown in panels c) and d). Parameters in green correspond to data

measured in a dilution fridge, whereas parameters in blue correspond to data measured in a

VTI. Circles and triangles correspond to data modeled with the low temperature asymmetry

functions while diamonds correspond to results obtained modeled using the high temper-

ature asymmetry function. The fact that the low temperature asymmetry function models

better the low temperature data is shown in sub-panel b): and a significant overlap (over

a wide temperature range) of the fit parameters obtained by the two methods can also be

observed in sub-panels c) and d), confirming the validity of the models. At high temperature,

the stretched exponent reaches a plateau at one, effectively turning the low temperature

asymmetry equation into the high temperature one. The saturation of the stretched exponent

at low temperatures at the value of two is characteristic of a specific type of a correlated spin

system based on spin-singlets[225].

The results are quite interesting and point towards a highly dynamical ground state with

potential partial ordering. It thus seems that there is some room for magnetic long range order,

but that it is strongly suppressed by the system to a point where even muons arguably detect its

presence. More experiments are thus required to characterize fully the low temperature state

of the system. Neutron scattering stands out as the natural tool to perform such additional
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investigations.
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10.2 Frustration-suppressed magnetic long range order

10.2.1 Elements of a magnetic ground state

In order to study the potential magnetic ground state of K2Ni2(SO4)3, several neutron scatter-

ing experiments have been carried out, the first of which was performed at the DNS instrument,

in the FRMII neutron scattering center in Munich.

DNS

DNS is a polarized neutron scattering instrument, with a time-of-flight neutron scattering

option that was available at the time of the experiment. The goal of the measurement was

thus two-fold: using the polarized diffraction option to separate nuclear from magnetic signal

at the base temperature, and start studying the inelastic spectrum associated to the magnetic

excitations of the compound. A dilution fridge with a base temperature of 500 mK was used,

the sample was placed in a can with exchange Helium gas to ensure reasonable temperature

thermalization. After collecting several high statistics pattern at different temperatures, the

nuclear coherent, the magnetic and the spin incoherent cross sections could be separated. The

measurements were repeated at 0.5 K, 17 K, and 80 K, in order to keep track of the observed

signal and study its temperature evolution. The results of the base temperature data are shown

in Fig. 10.13.
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Figure 10.13: Base temperature (500 mK) separation of cross section of K2Ni2(SO4)3 diffraction
pattern. The inset shows a y-axis log scale to apprehend fully the ratios between cross sections.

146



10.2. Frustration-suppressed magnetic long range order

Fig. 10.13 shows that as expected, the nuclear coherent scattering is dominant in the sample.

It originates from the scattering of neutrons on the crystal structure. The results of a fit of the

nuclear structure, using the Fullprof suite can be seen in Fig. 10.14. The room temperature

space group has been used, and even though the fitted pattern (in red) matches fairly well

the measured data points (in blue) with a small difference (in yellow), the peaks are so broad

that there is room for a structural transition to another phase with space group and lattice

parameters that would be confirmed by peak splittings. In that case, these splittings may just

be small enough not to be resolved properly by this measurement.
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Figure 10.14: Base temperature (500 mK) separation of cross section of K2Ni2(SO4)3 diffraction
pattern: nuclear coherent scattering and fit of the data.

More importantly, the purely magnetic scattering could be separated thanks to the polariza-

tion analysis. The magnetic signal is presented in Fig. 10.15. Fig. 10.15a shows the magnetic

cross-section, the solid curve corresponding to a Reverse Monte-Carlo (RMC) fit of the data. In

essence, RMC fits spin orientations, fixing the spin positions, in order to match a given diffuse

scattering data set. The quantity that is minimized throughout the refinement is not given by

the energy of the system, but rather by the square of the deviation of the difference between

experimental and modeled data. In that sense, the spinvert software[226] does not model

magnetic interactions, but rather magnetic correlations. A typical outcome of the system

is given by the spin-pair correlation function, which is a measure of how spin correlations

change in function of the distance between spins. Fig. 10.15b shows the pair correlation

function associated to the RMC fit. The data presents strong peaks around Q = 1 and 2 Å−1

which have been ignored by the fit: they are located at strong nuclear peaks positions and

most probably correspond to a small error in the flipping ratio, main parameter responsible
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for the proper separation of nuclear and magnetic intensities. Aside of these nuclear peaks,

the magnetic scattering presents a broad peak up to 1 Å−1, and another one located at 1.75

Å−1, much less intense. One could arguably claim that many peaks are observed, slightly

above the strong broad peak at low Q. This deserve further studies and is addressed by another

experiment. The main conclusion that can be obtained from this data is that there is no sharp

magnetic peak, that would be associated with magnetic long range order, but rather broad

features. Diffraction measures the time-integral of the dynamic structure factor, meaning that

these observed peaks may find their origins in fluctuations of the sample, which could take

the form of diffuse scattering, magnetic continua, or spin waves. The pair correlation function

obtained by the Reverse Monte-Carlo fit shows an oscillation, which can be understood as

confirming that the system is globally antiferromagnetic. The amplitude of the positive and

negative peaks are different, which suggests a level of competition between interaction in the

system, each maxima corresponding to a different nickel - nickel interaction distance.
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Figure 10.15: Magnetic scattering in K2Ni2(SO4)3 at 500 mK.

The temperature dependence of the magnetic scattering has been studied with measurements

at various temperatures, presented in Fig. 10.16. The data at a base temperature of 500 mK is

shown in blue, at 17 K in red, and at 80 K in black. It appears that the broad peak of magnetic

origin is still present at 17 K, however with reduced intensity. The same comment can be made

for the other peak, which has an even lower intensity. At 80 K, the broad peaks seem to have

completely disappeared.

The purely magnetic scattering at 80 K does not show any indication of neither long-range, nor

short range magnetic order. Its dependence on momentum can be reasonably well matched

to that of the square of the magnetic form factor of a Ni2+ ion, as shown in Fig. 10.17, in full

agreement with paramagnetic moments.
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Figure 10.16: Temperature dependence of magnetic scattering in K2Ni2(SO4)3.
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Figure 10.17: Magnetic scattering of K2Ni2(SO4)3 at 80 K (blue) and square of Ni2+ magnetic
form factor (red solid line).
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The final measurement that was carried out at DNS corresponds to time-of-flight inelastic

neutron scattering. The inelastic spectrum collected at 500 mK is shown in Fig. 10.18.

Figure 10.18: Powder inelastic neutron scattering in K2Ni2(SO4)3.

This inelastic spectrum, even though measured on powder, turns out to be quite informative.

It appears that bright, dispersive features are observed as originating from the elastic line at

positions below 1 Å.1 and around 1.7 Å−1. These positions are fully consistent with the signal

measured in the diffraction data, showing broad peaks located at the same positions. The

upper limit of the spin excitation is about 1.8 meV, consistent with the order of magnitude

of the Curie-Weiss temperatures obtained from the DC-susceptibility fits. A careful analysis

seems to expose the gapless nature of the excitation spectrum, as shown in Fig. 10.19.

Indeed, this analysis consists in the observation of the energy dependence of the measured

integrated intensity for two different Q ranges. In particular, Fig. 10.19 shows for a narrow

integration range given by 0.65 < Q < 0.85 Å−1, a continuum of excitations is observable down

to the elastic line, in complete accordance with the power law behavior observed in the low

temperature heat capacity data. Moreover, the observed dispersion spectrum seems to be

quite sharp, and may very well correspond to spinwave related features. Spinwaves are the

typical inelastic entities observed in magnetically long range ordered systems, and correspond

to perturbations around the ordered ground state. It is therefore extremely peculiar for such

spin wave to appear without ordering, and one thus has to look for signs of magnetic order.

The intensity observed in the powder averaged data seems to point towards more than just

the usual spinwave picture, indeed, such a continuum of intensity would be consistent with a

spinon-like behavior that is a signature of disordered magnetic states and cannot be predicted

by usual spinwave theory. In order to address that issue, another diffraction experiment was

performed, at the WISH beam line in the ISIS facility, the spin wave spectra being ideally
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Figure 10.19: Energy dependence of the integrated intensity, for two different Q-ranges.

measured on a single crystal to confirm couplings in an unequivocal way.
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WISH

In the general theory of magnetism, a critical notion is that of the magnetic propagation vector,

describing how to obtain the magnetic unit cell from the crystalline unit cell. Magnetic propa-

gation vectors with small norms show potentially many magnetic peaks at lower values of Q

than those of the nuclear peak at lowest Q, depending on the details of the magnetic structure

factor. It can thus be stated that the magnetism associated to short magnetic propagation

vectors shows interesting contributions at low values of the modulus of the scattering vector.

Even though the experiment at DNS provided many important information about potential

ordering at 500 mK, it lacked a crucial component required for a more detailed quantitative

analysis: good resolution in the low q range. The WISH diffractometer at the ISIS neutron

source in Didcot UK is a time-of-flight diffractometer. Its great advantage is the presence

of ten detector banks placed around the sample, allowing for great resolution in q, for both

nuclear and magnetic scattering. Unlike on DNS there is no polarized option that helps to

separate intrinsic magnetism from nuclear scattering but both the accessible q-space and the

q-resolution are much greater and hopefully provide much more insight on low-q phenomena.

The measurements were carried out using a dilution fridge and one bar of helium acting as

exchange gas in the sample can to thermalize the sample, allowing for measurements at up to

1.3 K, and a VTI to verify potential structural transitions at higher temperatures.
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Figure 10.20: Zoom on low Q neutron diffraction in K2Ni2(SO4)3.

The low temperature data presented in Fig. 10.20 shows a clear broad background peak

with maximum around the same position as the one detected in the DNS data. However,

additionally, many more peaks can be observed on top of the broad maximum, and also

152



10.2. Frustration-suppressed magnetic long range order

other peaks at lower values of q. These peaks are located at a position where they cannot be

attributed to purely nuclear peaks and have to be of some magnetic origin. Their intensity

is very small, relative to that of the broad peak which confirms that the magnetic order is

originating from a frustrated configuration and is very weak. These peaks disappear with

temperature as shown in Fig. 10.21. This figure show a comparison of 90 mK data with data

measured with a thermometer indicating the same temperature but without exchange gas.

In the absence of exchange gas, the sample is not able to thermalize properly, so the actual

sample temperature is effectively higher than the temperature recorded by the thermometer,

and corresponds to an unknown temperature. In this case, the broad, diffuse background is

clearly visible, and the small magnetic peaks disappeared.
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Figure 10.21: Zoom on low Q neutron diffraction in K2Ni2(SO4)3.The curve without exchange
gas (dark red) has been shifted for clarity and corresponds to effective high temperature since
the sample is not thermalized.

The temperature dependent data does not show any convincing sign of transition to any

other nuclear space group. A slight shift appears to happen for some peaks, but no peak

splitting is observed. The analysis of the magnetic data proves to be more complicated. Using

the k-search algorithm in the Fullprof suite the magnetic propagation vectors creating the

observed magnetic Bragg peaks could be identified. The results are presented in Fig. 10.22.
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Figure 10.22: Zoom on low Q diffraction in K2Ni2(SO4)3. The blue data is the measurement,
and the red curve corresponds to a LBF using several propagation vectors: (1/3 0 0), (1/3 1/3
0) and (1/3 1/3 1/3). The difference is shown in yellow.
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The data is shown in blue and the red curve corresponds to a LeBail fit using three different

magnetic propagation vectors at the same time: (1/3 0 0), (1/3 1/3 0) and (1/3 1/3 1/3). A

combination of these three vectors is necessary to describe all observed peaks, as shown in

Table 10.3. The magnetic ordering vectors are of the 3-sublattice type. The origin of this is yet

to be understood.

Peak position |Q| [Å−1] Nuclear peak Magnetic propagation vector
0.3018 ( 0 0 0) (1/3 1/3 0)
0.3696 ( 0 0 0) (1/3 1/3 1/3)
0.4267 ( 1 0 0) (-1/3 0 0)
0.4771 ( 0 1 0) (-1/3 -1/3 0)
0.5226 ( 0 0 1) (-1/3 -1/3 -1/3)
0.6034 ( 1 1 0) (-1/3 -1/3 0)
0.6400 ( 1 0 0) (0 0 0) (purely nuclear)
0.6746 ( 0 1 0) (1/3 0 0)
0.7075 ( 0 0 1) (1/3 1/3 0)
0.7390 ( 1 1 1) (-1/3 -1/3 -1/3)
0.7982 ( -1 0 1) (1/3 1/3 0)
0.8533 ( 1 0 0) (1/3 0 0)
0.8796 ( -1 -1 1) (1/3 1/3 0)
0.8796 ( 0 0 1) (1/3 0 1/3)
0.9051 ( 1 1 0) (0 0 0) (purely nuclear)
0.9051 ( 1 0 0) (1/3 1/3 1/3)
0.9299 ( 0 -1 1) (1/3 0 0)
0.9540 ( 1 -1 0) (-1/3 -1/3 0)
1.0006 ( 1 1 1) (-1/3 0 0)
1.0450 ( 1 -1 1) (-1/3 -1/3 -1/3)
1.0666 ( 2 0 0) (-1/3 0 0)
1.0666 ( 1 1 0) (1/3 0 0)
1.0877 ( 0 2 0) (0 -1/3 -1/3)
1.0877 ( 1 0 1) (1/3 1/3 0)

Table 10.3: Magnetic propagation vectors required to construct magnetic Bragg peaks ob-
served in neutron diffraction patterns of K2Ni2(SO4)3.

By modeling the broad contribution to the magnetic signal originating from short range order

correlations, one can try and extract a bound on the magnetic moment strength. It can thus

be estimated that the static contribution to the intensity amounts to roughly 11% of the total

magnetic intensity. This value can nonetheless be use to still conclude that the long range

order is evidently suppressed and supports the theory that the ordered state in the compound

is dominated by spin fluctuations and that this state is located close to a quantum critical

point.
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10.2.2 Diffuse scattering

A single crystal inelastic neutron scattering experiment was carried out at the LET spectrome-

ter at the ISIS neutron source in Didcot, UK. The sample consists in a co-alignment of four

different crystals co-aligned on aluminum posts. Each individual crystal weighs about 100

mg, accounting for a total sample mass of 450 mg. A picture of the sample can be seen in Fig.

10.23.

Figure 10.23: Co-alignment of four crystals of K2Ni2(SO4)3, used for an inelastic neutron
scattering experiment at LET.

The data, measured at 2 K, is presented in Fig. 10.24. Fig. 10.24a shows a representative

constant energy slice with evidence for broad, diffuse scattering peaks. This diffuse scattering

pattern is confirmed in a constant-q cut, presented in Fig. 10.24b. The observed features

appear to be broad and energy independent, with an energy scale of 1.5 meV.
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10.2. Frustration-suppressed magnetic long range order

(a) Constant energy slide of inelastic neutron scattering
data in K2Ni2(SO4)3.

(b) Constant q cut of inelastic neutron scattering data in K2Ni2(SO4)3.

Figure 10.24: Neutron spectroscopy results on K2Ni2(SO4)3.
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The positions of the measured features qualitatively agree with the calculations from the

Pseudofermion Functional Renormalization Group (PFFRG). The PFFRG computations were

performed by Johannes Reuter and his team. PFFRG is based on a fermionic formulation

of the Hamiltonian, with spin one operators represented by two spin half operators. Many

body physics is then used, with typical treatments using Feynmann diagrams, an infrared

frequency cutoff, and vertices undergoing a renormalization group flow with the standard

functional renormalization group scheme. The main result is given by the zero-frequency part

of the magnetic susceptibility that is momentum dependent, and that can be linked to the

dynamical structure factor using the Kramers-Kronig relations. PFFRG predicts a spin-liquid

behavior at finite temperature and a weak magnetic ground state at zero Kelvin. The results

are presented in Fig. 10.25. Fig. 10.25a shows the result of the PFFRG computation, while Fig.

10.25b shows the structure factor calculations associated to an antiferromagnetic, frustrated

exchange coupling J4. This is the bond that DFT calculations predict to be the one hosting

the strongest interaction. Several scattering features appear to be predicted correctly by the

structure factor of spins coupled by this J4 bond, but the details do not match perfectly. This

simple model tends to indicate that the J4 bond is indeed relevant, a couple of other bonds

have been tried with no success, this work would be better performed by Reverse Monte Carlo

than choosing the strength of the exchanges empirically. In order to gain more insight on

the couplings in the system, one should try to acquire single crystal inelastic data at dilution

temperature, and verify results from the DNS experiment predicting spinons and continu-

ous excitations. The shape and Q-dependence of such continuous excitations will certainly

provide crucial information on the couplings responsible for the ground state of the system

including the small long range ordered component, the strong dynamical part, and also the

complex excitation spectrum. In principle, applying an external field in an inelastic neutron

scattering experiment may give important information on what is the manifestation of the

long range ordered component of the ground state in the spectrum.
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(a) PFFRG calculations. (b) Structure factor predicted by antiferromagnetic loop of J4
bond. K2Ni2(SO4)3.

Figure 10.25: Computations trying to model observed inelastic spectrum in K2Ni2(SO4)3.
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10.2.3 Dispersive excitations and continua

In order to study the dispersive and potentially gapped character of the magnetic excitations

in the system, inelastic neutron scattering was carried out on a single crystal of 105 mg of

K2Ni2(SO4)3, at the IN5 spectrometer at the ILL neutron source in Grenoble. The crystal was

placed in a dilution fridge, giving access to scattering at a base temperature of 50 mK. The

results are presented in Fig. 10.26.
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(a) Neutron scattering cross section of K2Ni2(SO4)3 in a
selected direction.

(b) Powder average of inelastic neutron scattering data measured
at 50 mK of K2Ni2(SO4)3, subtracted from 30 K data.

Figure 10.26: Inelastic neutron scattering results on K2Ni2(SO4)3 at 50 mK.

Figure 10.26a shows the observed inelastic features along a selected direction of interest. It

appears that a clear dispersive feature is observed, reaching its maximum at 0.6 meV, and

emerging from the elastic line at a position similar to the observed features in the DNS and in

the WISH data. The intensity of the excitations looks to be continuous all the way up to 0.6

meV. The intensity above 0.6 meV is significantly smaller, but quite notably, not completely

suppressed. It indeed seems that there is some other continuum of intensity present up to

1.5 meV, energy above which the excitation does not seem to survive. This is seen in a better

fashion in the powder averaged data, shown in Fig. 10.26b, where the 30 K powder averaged

data has been used as background and subtracted. The dispersion looks strikingly similar to

the dispersion already acquired in the DNS experiment, with an energy scale of 1.5 meV and

highlighting the importance of the 0.6 - 1.5 meV energy range. Moreover, a clear line of very

intense scattering above 0.5 meV is visible, and may be associated to singlets populating the

system. The q-dependence of this feature is very interesting and should be further studied.

Overall, these new results have not yet been analyzed in details but certainly show very

interesting features of the physics at play in th system and deserve a full, in-depth dedicated
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study.
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10.2.4 Discussion on K2Ni2(SO4)3

Numerous experiments were carried out on K2Ni2(SO4)3 and all of them seem to point towards

the same direction: the low temperature ground state of K2Ni2(SO4)3 shows hints of long range

order, strongly suppressed by the quantum fluctuations of its spin-one nickel constituents.

Low temperature heat capacity, muSR, and diffuse neutron scattering data show compelling

evidence of strong frustration and spin-liquid like behavior of the ground state, even though

neutron diffraction reveals unambiguously that a very weak static magnetic moments settles

at dilution temperature.

Application of a magnetic field seems to liberate the system from the static component and

drive the system in a pure quantum spin liquid state, similar to the field induced stabilization

of quantum spin liquids in α-RuCl3[227]. This hypothesis may be tested by measuring in field

neutron diffraction, confirming the disappearance of the static contribution from the long

range ordered moments to the magnetic cross section.

This novel three dimensional compound, based on two interconnected trillium lattices thus

shows a configuration of magnetic moments that successfully hosts a quantum spin liquid

ground state at low temperature, with several questions remaining unanswered: what are

the details of the magnetic structure of the weak static moment observed in zero field? What

are the details of the dispersion spectrum at dilution temperature? Can it be described by a

spinon model? Does the spin wave picture describe faithfully the observed excitations, similar

to spin liquids in one dimension, where spin waves "only" fail to describe the continuum?
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11 Combining heat capacity and X-rays:
a new way to investigate spins sys-
tems
As discussed in previous chapters, the heat capacity offers a unique way of obtaining nu-

merous insights on condensed matter systems. Indeed it overcomes local effects, inhomo-

geneity for example, and grabs also collective information on the investigated system. Heat

capacity is sensitive to first and second order phase transitions, and is thus a remarkable

tool, helping to establish the phase diagrams of various compounds. It was for example

instrumental in determining the crystalline electric field in CeMg3[228], in the determina-

tion of residual entropy in spin ice systems[229], or even in the study of high temperature

superconductivity[230, 231, 232, 233, 234]. The need for specific heat data analysis is thus

really present, even more since measuring it is quite simple, as it is typically performed on

small samples, of less than five milligrams. Powders of this size can be obtained fairly easily,

or at least more easily than obtaining sizable single crystals. Small single crystals are also

way easier to obtain than millimeter-sized chunks of single crystal, and very relevant for heat

capacity measurements that only required a couple of milligrams of sample.

There are three main possibilities to extract purely magnetic information from a heat capacity

measurement. One of them implies fitting heat capacity at high temperature (compared to

the magnetic energy scale) with a given lattice model. Alternatively one can measure a non

magnetic analogue, and correct the heat capacity by re-normalizing to a new phonon mass.

Lastly, one can use Density Functional Theory (DFT) to predict the phonon dispersion of a

given lattice, and thus predict the phononic contribution to the heat capacity.

In a first step such experimentally educated methods are described through the Debye and

Einstein models, and how the internal energy of a solid can be described by such models.

From the internal energy the heat capacity and the unit cell volume can both de derived and

predicted. In a second step, the measurements of non magnetic analogues and how this infor-

mation can be used to analyze condensed matter systems are discussed. The relation between

magnetic entropy and heat capacity is finally discussed, with numerous examples coming

from research at the forefront of condensed matter physics. Finally, numerical methods and
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their predictions are discussed and compared to other modeling methods: the case of non

magnetic silicon is presented, as well as the study of MnF2, a strongly correlated magnetic

system. These two basic examples are complimented by measurements of the heat capacity

and comparison between the numerical and experimental results. Room for improvements

of the method and further numerical aspects are also discussed, in order to provide a robust

systematic way of analyzing the data. The work on the combination of heat capacity and

volume of the unit cell to better determine phonon parameters of a sample is an exclusive

work, while the last part on numerical calculations has only been supervised, hence the small

emphasis put on it.
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11.1 Experimentally educated methods

11.1.1 Theory: Debye and Einstein

Both the heat capacity and the unit cell volume can be estimated using the internal energy of a

solid, U. The relation between the energy and the unit cell volume is stated in equation (11.1).

V (T ) = γU (T )/K0 +V0 (11.1)

This temperature dependent equation denotes the fact that the unit cell volume has the

same temperature dependence as the internal energy, up to a factor given by the ratio of the

Grüneisen parameter γ, divided by the bulk modulus K0 plus an offset, called V0, playing the

most important role for the unit cell volume at zero Kelvin. The relationship between the

energy and the heat capacity is even simpler and is stated in equation (11.2).

Cp =
(
∂U

∂T

)
p

(11.2)

Thus the determination of the internal energy of a solid appears yet once again paramount. In

the simplest approximation, only the contribution coming from the quantized vibrations of

the lattice, the phonons, is considered. This contribution is dominant at high temperatures

(∝T3), whereas the purely electronic contribution is more relevant at very low temperatures

(linear in T). The internal energy from the phonons is given by equation 11.3.

U =∑
~k

∑
p
〈n~kp〉~ω~kp (11.3)

In that equation,~k is the phonon momentum, p its polarization, 〈n~kp〉 the occupation factor

of such a phonon, and ~ω~kp its associated energy. The brackets stand for thermal equilibrium

using a distribution function. The Debye and Einstein model consists of an set of approxi-

mations used to model the dispersion relations, i.e., the dependence of the phonon energy

on the momentum. Indeed, even though this quantity can be predicted theoretically -this

is the topic of another section-, remarkable predictions can often be made by using drastic,

yet realistic simplifications[235, 236]. In the Debye model, the phonon dispersion relations

are linearly depending on the temperature, with a finite slope, directly related to the Debye

temperature. This models best acoustic modes, which can be present up to a number of

three: one longitudinal, and two transverse. The other interesting modes of a lattice are the

optical modes, They present relatively lower dispersion, and in the Einstein model, they cor-

respond to a flat band, located at a certain energy transfer defined by the Einstein temperature.
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The internal energy can be separated in its Debye and Einstein contributions, as specified in

equation (11.4).

U (T ) =UD(T )+UE(T ) (11.4)

The Debye contribution is explicitly written in equation (11.5), and the Einstein contribution

is stated in equation (11.6).

UD(T) = 9
∑

i
nD,ikBT

(
T

ΘD,i

)3 ∫ ΘD,i/T

0

x3

ex −1
dx (11.5)

UE(T) = 3

2
kB

∑
j

nE,jΘE,j coth

(
ΘE,j

2T

)
(11.6)

This set of equation has direct implications on the mathematical description of heat capacity.

Heat Capacity

The lattice contribution to the specific heat can thus be expressed as the sum of the Debye

contributions, noted CD,i[237, 238], with i = 1,2,3 and the Einstein contributions CE,j, with j =

1, 2, ..., N - 3, where N is the number of atoms per unit cell, as in equation (11.7).

Cp =∑
i

CD,i +
∑

j
CE,j (11.7)

The details of the Debye contribution are given in equation (11.8).

CD,i(T) = 9nD,iR

(
T

ΘD,i

)3 ∫ ΘD,i/T

0

x4ex

(ex −1)2 dx (11.8)

The explicit form of the Einstein component is shown in equation (11.9).

CE,j(T) = 3nE,jR
y2ey

(ey −1)2 ,y ≡ΘE,j/T (11.9)

In this set of equations, R stands for the gas constant, and the Debye and Einstein temperatures
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are written as ΘD and ΘE respectively. There is a sum rule, accounting for the total weights

of the Debye and Einstein branches respectively, written as nD,i and nE,j respectively. The

rule stipulates that the total weight of both contributions has to match the total number of

atoms in the unit cell. In a typical fit routine, the heat capacity is measured, for a wide range of

temperature, but only the high temperature part is used to fit Debye and Einstein temperatures.

Indeed, the lower temperature data often contains contributions from magnetic transitions, in

the form of a sharpΛ-like peak, or broad peaks, associated to correlations building up. Once

the fit has been performed, one can subtract the fitted specific heat from the experimental

data, which corresponds to the purely magnetic heat capacity. This heat capacity is related to

the entropy of the system by equation (11.10).

Smag =
∫

T

Cp,mag

T
dT (11.10)

In systems dominated by a given quantized spin S, thus corresponding to a 2S+1 level system,

the total entropy expected to be recovered by a system is given by equation (11.11).

Smag = Rln(2(S+1)) (11.11)

Even though this fitting can be performed on a set of data with many different points, there is

no well defined way of determining which Debye and Einstein weights are reasonable. The way

a typical fit is performed is the following: first one establishes all the configurations allowed for

integer values of the weights, and satisfying the sum rule. In a second step, the fit is performed

for these fixed values with many different random initial conditions. Finally, only physical

solutions are retained: heat capacity cannot be negative, and the obtained parameters have

to be weakly dependent on the chosen temperature range for the fit. There are still many

solutions left, even though the fits do not necessarily converge for each choice of weights.

The user can then choose a solution of his liking, a typical choice being to retain solutions

that predict an entropy close to that of an expected spin S system. Of course, this solution

cannot be used to make strong claims on the spin state of the system, but should rather be

viewed as a self consistency check. In order to try and make the fit process more robust,

one can use additional information from the volume of the unit cell. Indeed, this quantity is

related to the internal energy of the solid, which means it can be modeled by a Debye and

Einstein approximation as well. Moreover, on the experimental side, obtaining the lattice

parameters of a sample is not considerably time nor resource-expensive[239, 240]. Many

in-house, laboratory X-ray diffractometers exist, providing temperature control from room

temperature to several Kelvins. Synchrotron measurements are always more precise, as they

use a beam made of a single and well-defined wavelength, but are not required. Extracting

lattice parameters from a diffraction pattern is one of the simplest tasks, since one only has to
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do a LeBail Fit (LBF) to extract peak positions. Finally, this is also compatible with neutron

scattering experiments, offering a rather simple way of double checking results from sole heat

capacity fits.

Unit cell volume

The volume of the unit cell is related to the internal energy by equation (11.1)[152, 153, 154].

This set of equations can be used as well as the heat capacity formulae to fit the Einstein

and Debye temperatures. As a starting point, the initial version of the developed code only

contained one Debye branch, leaving obvious room for improvement. The fitting is performed

by taking as input both heat capacity and unit cell volume data, with a possible correction

factor for the fitting weights. Traditionally, the fit weights are taken as the inverse of the square

of the measured standard deviation. This intuitively gives great importance to measurements

that are more precise. When combining two different data sets, the typical uncertainty of one

measurement may however be very different from that of the other, and since the measured

quantities are also different, there is no guarantee that measurements with higher uncertainty

are actually of lesser quality. To reflect that when the fitting is performed, the possibility

of scaling the measurement uncertainty of the whole set of unit cell volume data has been

introduced. Quite naturally, this leaves a free parameter for the user to choose, but since this

method is intended to be a confirmation method, confirming the magnetic data is consistent

with a certain expected spin, this is deemed to be a reasonable decision to make in the overall

fitting scheme. In that regard, another option has been implemented to the overall fitting

scheme: the possibility of taking the expected value of entropy as a fit parameter. This option

enables the user to specify the expected entropy, with a certain weight, so that the fit converges

to a solution that corresponds to the required magnetic entropy, with the strength of the

requirement corresponding to the weight of the desired entropy.

11.1.2 Chemical substitution

Another solution to the problem of extracting the heat capacity from a sample uses the non

magnetic analogue route. This solution is based on the idea that it is a magnetic ion that

induces a magnetic phase transition in a sample, detected by specific heat. However, if a non

magnetic element substitutes the magnetic ion, the magnetic transition does not happen and

hence can obviously not be measured by heat capacity. If, additionally, the crystal structure

remains the same, the contribution of the lattice to the heat capacity has to also be similar, up

to the mass of the atoms, resulting in different phononic constants. This method has been used

with some success[241, 242, 243] and presents the advantage of getting rid of the uncertainty

of models and numerical fits artifacts. It is however not possible for every compound to just

substitute out the magnetic element, and even when it is indeed feasible, the obtained crystal

structure sometimes does change significantly. Any correction due to strong deviations from

the original crystal structure presents the disadvantages of introducing again modeling and

numerical uncertainties in the studies.
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11.1.3 Results

MoOPO4

The notion of fitting the heat capacity with one Debye branch and several Einstein branches,

using the total magnetic entropy as a guide to the goodness-of-fit, was first used in 2017[237].

This study was performed in the frame of the study of MoOPO4, an orbitally quenched insula-

tor. The authors used two Einstein branches and one Debye branch, and found an excellent

agreement between the entropy recovered by the system and that of a two levels system. Cross

checking these predictions with effective moments from DC-susceptibility measurements,

the consistency of the fit was claimed. Errorbars were small, and left little room to misinter-

pretation from the mathematical point of view. From the point of view of physics, however,

it appeared that this method was systematically producing solutions with large Debye tem-

peratures, which brings up a question mark: the Debye contribution and the Einstein ones

are valid for high temperature, compared to the interactions in the system. Within this high

temperature region, the Debye contribution is expected to be more relevant at temperatures

lower than the Einstein ones, simply because the Debye term is proportional to T3, while the

Einstein term explains the heat capacity behavior at extremely high temperatures, mainly

responsible recovering the Dulong-Petit law. With the obviousness of the overwhelming im-

portance of the Devye term, tt was thus felt that a more robust way of fitting the data was

needed, which is why later uses of that method combine heat capacity information with unit

cell volume data.

Cu2OSO4

Another example of use of that method took place in copper oxysulfate, Cu2OSO4, as discussed

in chapter 9, dedicated to this material. The information is repeated here for the sake of

grouping. This compound is a copper based Kagomé compound, presenting a transition to a

magnetically long range ordered state at 20 K. This manifests in the form of a sharp Λ peak

in the heat capacity, that shows a weak magnetic field dependence. The lattice parameters

were measured by synchrotron X-ray diffraction at many different temperatures, enabling to

provide both a complete view of high temperature heat capacity and unit cell volume.

Fig. 11.1a shows the measured heat capacity in zero field (blue), and in 14 T (red) on a powder

sample. The yellow curve shows the result of the fit of the lattice model, for temperatures

above 80 K. The inset shows a y-axis logarithmic scale zoom on the heat capacity to better

grasp that the magnetic field effects are not present above 80 K. The purple curve shows the

subtraction of the fitted heat capacity from the experimental data, divided by the temperature.

The blue and green shadings correspond to the part of the entropy that are respectively locked

in the transition and by correlations. The green area shows a strong temperature dependence

up to 70 K. Fig. 11.1b corresponds to the magnetic entropy, plateauing to the value of a S = 1/2.

The red shading corresponds to the uncertainty. Fig. 11.1c shows the result of the fit of the

unit cell volume, in red, and the extracted data in blue. The help of the unit cell volume helped
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selecting the final configuration, with one Debye branch with weight nD = 1 and a Debye

temperature ofΘD = 171 K, and two Einstein branches, with weights nE1 = 3 and nE2 = 4 and

temperaturesΘE1 = 245 K andΘE2 = 939 K. This is again fully consistent with DC-susceptibility

measurements on the sample, in agreement with a spin half system.

K2Ni2(SO4)3

K2Ni2(SO4)3 is a nickel based, three dimensional, S = 1 spin liquid candidate. In this complex

quantum magnet, the heat capacity was measured down to dilution temperature. It happens

that chemical substitution was possible, and resulting in a compound with similar structure

to the parent compound. Such a substitution consists in a replacement of nickel atoms by

non magnetic magnesium atoms. The measured heat capacity for different values of field

is shown in Fig. 10.3a, that of non magnetic analogue K2Mg2(SO4)3 is shown in Fig. 10.3b

and the subtraction is shown in Fig. 10.3c. The resulting heat capacity could be integrated to

extract the overall spin, but its most interesting feature remains its low temperature behavior,

corresponding to a T2 law, often observed in other spin-liquid candidates[244]. This result is

visible in the log-log plot of the extracted magnetic heat capacity and shown in Fig. 10.3d.
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(a) Heat capacity of copper oxysulfate (b) Temperarture dependence of the magnetic entropy of copper
oxysulfate
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(c) Unit cell volume of copper oxysulfate.

Figure 11.1: Result of combined fitting of heat capacity and unit cell volume for copper
oxysulfate.
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Co4−xNixNb2O9

Last but not least, this method was used to investigate potential ferroelectric materials mem-

ber of the nickel-doped cobalt niobate family: Co4−xNixNb2O9. The parent compound is a

known ferroelectric material, with a weakly non collinear antiferromagnetic ground state

below a transition temperature of 27.4 K. It has been predicted that Nickel substitution in

this compound may enhance both the magnetic transition temperature and the ferroelectric

coupling strength. In order to study the ferroelectric coupling strength in two members of this

family, labeled CN1 for x = 1, and CN2 for x = 2, it was first required to probe the spin configu-

ration of the ground state. Neutron scattering was carried out on a powder sample of both

compounds, and gave access to the ground state configuration, the transition temperature,

and the values of lattice parameters at several temperatures. Fig. 11.2 shows data and analysis

for samples of CN1 in the middle panel, and CN2 in the right one. The left panel corresponds

to CN0, the parent compound, which was used as a sanity check since it is quite known from

the literature[245].

Figure 11.2: Heat capacity of Co4−xNixNb2O9 for x = 0 (left), x = 1 (middle), x = 2 (right).

Results presented in Fig. 11.2 correspond to the heat capacity measurements in blue, and the

lattice model in black (top row). The insets shows the magnetic field dependence of peaks,

confirming their magnetic origin. It appears that CN1 undergoes a magnetic transition at 31

K, slightly above CN0, and CN2 also shows a transition to a long range ordered state, at 47

K[238]. The bottom row in Fig. 11.2 corresponds to the subtraction providing the magnetic

heat capacity divided by temperature. The blue curve shows the integral, the magnetic entropy

plateauing to R ln 4, R(0.75 ln 4 + 0.25 ln 3) and R(0.5 ln 4 + 0.5 ln 3) for CN0, CN1, and CN2

respectively. These values of the entropy are consistent with a spin 3/2 for the Cobalt and a

spin 1 for the Nickel atom, in their respective proportions. The red dashed lines show the

uncertainty on the fit showing good confidence in the final value of the entropy. These fits are
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obtained using one Debye and one Einstein branch, with respective weights of 5 and 10 for

both CN1 and CN2. The associated Debye and Einstein temperatures areΘD = 1083(16) K and

ΘE = 312.5(1.5) K for CN1 and ΘD = 1047(65) K and ΘE = 322.5(10) K for CN2. These results

have been consolidated by performing the usual combined fit where not only heat capacity

data is used, but also the unit cell volume. The result of the fit of the unit cell volume is shown

in Fig. 11.3.

Figure 11.3: Unit cell volume of Co4−xNixNb2O9 for x = 1 (left) and x = 2 (right).

In Fig. 11.3, the experimental data is shown in red, obtained from refining neutron diffraction

patterns. The black curve corresponds to the result of the fit from the combined fitting method.

Fig 11.4 shows the stability checks that were performed to ensure that the fit was actually

physical.
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Fig. 11.4 shows for CN1 on the left hand side and for CN2 on the right hand side, the stability

of some relevant parameters of the fit. In order to fit the heat capacity, one has to first select a

temperature range over which the fit has to be performed. The basic rule is to try and keep the

highest temperature points. However, in practice, in many heat capacity experiments, one

has to change to a new grease to fix the sample above 200 K. This induces a contamination

of the sample’s own specific heat, and even though this should be subtracted from careful

addenda measurements, it is frequently far from being perfect. This is the reason why many

specific heat measurements stop around 200 K. The starting temperature for the fit can also

not be too low, otherwise one risks using data mixing lattice contributions with some part of

the magnetic entropy.

Figure 11.4: Entropy of Co4−xNixNb2O9 for x = 1 (left) and x = 2 (right).

A good consistency check that can be performed is thus to vary the fit range, typically only

the lower temperature bound and check how this impacts the resulting entropy: a starting

temperature that is too low results in failing to capture the whole magnetic entropy from

the sample. It is expected that then, there is a region in the parameter space where the ob-

tained parameters (entropy, and Debye and Einstein temperatures) are rather constant, with

reasonable errorbars. Finally, when increasing too much the starting temperature of the fit,

it is expected that, at some point, too few measurement points are used and the fits start
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to be unstable, with large uncertainties in the obtained parameters. This is exactly what is

happening in Fig. 11.4, where only the entropy is shown, for simplicity (and not the Debye or

Einstein temperatures). The graphs in the top row show that for both compounds, the fit is

providing a rather stable and reasonable entropy, for a certain range of parameters, and finally,

when increasing too much, the fits become unstable. The left hand side of the graphs shows

that when changing (by increasing) the starting temperature of the fit from 60 K to 100 K, the

resulting entropy also changes (and increases). This is indicative that the starting temperature

of the fit is too low, and that it impacts the resulting parameters. The graphs in the second

row present all the temperature-dependent entropy curves for both compounds. The green

rectangle shows the region of parameters for which the fit is considered stable.

A method helping to extract spin information from heat capacity measurements has been

developed by fitting a model lattice. The fit routine has been made more robust by adding

additional information and constraints from the volume of the unit cell. An ideal solution

would be to confirm this way of fitting the data works more simple compounds, where the

lattice contributions can be predicted, for example from Density Functional Theory (DFT).

These results were obtained by Xavier Boraley during his master thesis, supervised by Virgile Y.

Favre, and are briefly mentioned thereafter, for completeness.

175



Chapter 11. Combining heat capacity and X-rays: a new way to investigate spins systems

11.2 Calculations predicting heat capacity

11.2.1 Density Functional Theory

As mentioned before, an ideal solution to the heat capacity problem is to model theoreti-

cally compounds with a method predicting Debye and Einstein temperatures, weights, and

thus contributions with reasonable confidence. This study needs to involve many different

approximations, as the many body systems that have to be solved are both non trivial and

computationally very expensive, the number of states of a spin half system increasing as 2N , N

being the number of simulated sites. One such vastly used method is the Density Functional

Theory (DFT). DFT involves a way of simplifying the Schrödinger equation in the frame of

many-body physics. The basic hypothesis of the theory states that the Hamiltonian of the

system contains four different terms: the kinetic energy, and interactions between electrons

and ion: ion-ion (repulsive), electron-electron (repulsive), and the ion-electron (attractive).

The Born-Oppenheimer approximation splits the ionic and electronic contributions and as-

sumes they can be computed separately. Electrons being much lighter than ions, they are

usually treated as a different object, simplifying further the quantum mechanical problem.

Then the Hohenberg-Kohn theorem establishes that the electron density can be used as sole

parameter of the total energy. Another important simplification regards getting rid of the

numerically expensive many-body parts of the problems. In order to achieve that, the system

is modeled as a system of non interacting single particles, with different wave functions, as-

suming both real and approximated states have the same ground state energy. This is also

known as the Kohn-Sham hypothesis, effectively creating an approximation term that contains

all the non-easily computed part. This is the so-called exchange correlation functional. There

exists a variety of exchange correlation functional forms that capture certain notions of real

systems, with the most complex forms being more computationally expensive, quite naturally.

• The Local Density Approximation (LDA): in this approximation, the exchange-correlation

only depends on the electron density. This is the simplest possible approximation, and

usually fails to capture the correct behavior of strongly correlated systems.

• Generalized Gradient Approximation (GGA): computationally more expensive than LDA,

the GGA exchange-correlation adds a gradient density to the computation, and usually

results in better accuracy.

• Hybrid functional: in this approximation, the exchange-correlation is split into two

parts, one of them being the GGA approximation, and the other being an exact exchange.

The exact exchange does present an explicit dependence on the density matrix, which

results in a higher computational cost.
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• Fully non local functional: unlike other exchange correlation functional forms, the

fully non local functional also uses unoccupied states in the computations. This also

increases the numerical complexity of the system.

There are numerous technical points that are not addressed in details here, such as the notions

of k-points and supercell. In short, using Fourier transforms helps simplifying the problem,

but still keeps an infinite number of wave functions that have to be computed. The k-points

are reciprocal space points at which one chooses to calculate a finite number of these wave-

functions. The wavefunction is assumed to vary slowly in k, which implies that computing

at a single k gives a valid description in the vicinity of the selected point and that indeed, the

space can be split into a k-grid. The notion of supercell is related and consists in a grouping

of N unit cells. When applying periodic boundary conditions, the system effectively behaves

as a system with more atoms and thus computations are more accurate, at the expense of

computation time. For larger unit cells, the k-grid can be reduced. This still does not solve

the problem that there is an infinite number of wavefunctions to be computed. To solve that

problem, a cutoff energy is introduced. This energy is the threshold above which a plane wave

is considered as not contributing to the band theory. This is of course a strong hypothesis

and it should be remembered that once conclusions are drawn, it is reasonable to check that

the energy cutoff does not change results significantly. The last often-used approximation

is that of the pseudo potential. It simplifies the rapidly oscillating wavefunction close to the

ionic cores by a much more monotonic one, effectively reducing the number of plane waves

required to calculate the system with reasonable accuracy.

The DFT computational method can be used for various systems. The most interesting systems

for magnetic heat capacity applications are silicon and MnF2. Silicon is non-magnetic, cheap,

an readily measurable and studied. Predicting its phonon spectrum should be straightforward

and verifying the heat capacity fits and unit cell volume should be straightforward. MnF2 is

one of the simplest antiferromagnetic compounds, and is thus a good toy-compound to verify

magnetic properties predictions.
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11.2.2 Silicon

The convergence of the DFT calculations for silicon was ensured by verifying the total energy

convergence with different energy cutoffs, grids and k-point grid. An energy cutoff of 650 eV

was selected, and the k-point grid size was a cube of seven units. Fig. 11.5 shows the results of

calculated and measured specific heat. The calculations were performed using the phonopy

package[246]. Heat capacity was measured using the heat capacity measurement option of a

PPMS.

Figure 11.5: Heat capacity measured in blue and red (with errorbars), the green solid line
shows the result predicted by DFT, the red solid line corresponds to scaled numerical results.
The inset shows a y-axis log-scale of the same figure, zoomed in to highlight low temperature
differences.

The green curve shows the result of the calculation, obtained from calculating the phonon

dispersion. It has been determined that there is some uncertainty both on the obtained

temperature and on the obtained heat capacity. The DFT generated data was thus scaled. In

order to determine the best scaling parameters, a parameter space search was carried out,

trying to minimize the difference between measured and calculated heat capacities. This

introduced a cost function that has to be minimized, stated in equation (11.12). The results of

this minimization can be observed in Fig. 11.6.

∑
i=T

(
CpT

Phonopy −CpT
Measured

CpT
Measured

)2

(11.12)
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Figure 11.6: Cost function result of scaling parameters to minimize difference between calcu-
lated and measured silicon heat capacity.

A clear minimum appears around a scaling parameter of 1.04 for the temperature, and 0.97 for

the heat capacity. These corrections lead to the red curve in Fig. 11.5. The deviation at low

temperature has been attributed to a doping effect coming from the Boron in the sample. For

a non negligible doping indeed, one expects such a low temperature correction to the heat

capacity coming from the electronic component. Unfortunately, it turns out that silicon is

best modeled by several Debye branches, which the fitting routine does not tolerate, so this

did not give opportunity for comparison, but still confirmed that the heat capacity can be

computed by DFT in a simple system, in good agreement with measurements.
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11.2.3 MnF2

The heat capacity of MnF2 has already been reported in the literature[247], and presents

the sign of a transition to a magnetically long range ordered state at at transition tempera-

ture of 67.3 K. In order to compute the heat capacity using DFT, the GGA of Perdew-Burke-

Ernzerhof[248] exchange correlation functional form was used. Initial computations did not

meet any success, since the magnetism in Mn atoms involves 3d electrons, typically strongly

correlated to local magnetic fields, out of the scope of what can be performed with standard

DFT. The spin polarizations have been added to the simulation but simple DFT calculations

still fail to reproduce the reported band structure, density of states, and thus heat capacity of

the sample. Instead, a DFT+U method was used, correcting the energies. Here again, the heat

capacity was measured, on a sample of 1.75 milligram of MnF2 using the heat capacity option

of the PPMS. The results are presented in Fig. 11.7.

Figure 11.7: Heat capacity measured in blue (with errorbars), the green solid line shows the
result predicted by DFT, using the DFT+U method with GGA.

Fig. 11.7. shows in blue the measured data. The magnetic peak is clearly observed below

70 K. The green, solid line is the calculated heat capacity. It is quite straightforward to see

that the model completely fails to reproduce the experimental data. Even in the case of a

strong contribution of the magnetism to the heat capacity, it seems unrealistic that such a

difference could happen, since the difference between the DFT predicted solution and the

experimental data does not appears to change significantly up to 250 K. Possible reasons for

this failure include, but are not limited to, a problem with the exchange correlation, which

should be chosen more carefully, but more importantly, a lack of precision in the computation.
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Indeed, the space group of MnF2 is tetragonal, which has a much lower symmetry than

cubic silicon. This subtle difference directly translates in numerical expenses: one should

try to run the calculations with a bigger supercell and more k-points. Far reaching is this

approach, more work is needed to investigate and perfect the original idea. One of the

principal shortcomings of this modeling of the theory is that it is extremely computationally

expensive, particularly so as the system symmetry is low. The main problem from the physics

side is that the theory relies on the choice of a proper exchange correlation function, which

turns out to be an approximation to the exact quantum theory and that these approximations

tend to not describe magnetic systems properly due to the interaction between electrons in

such systems. More advanced methods such as DFT+U have been developed in that regard.
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The work presented in this thesis is twofold. On the one hand, the primary goal of the research

is quite naturally to progress in the field by deepening the understanding that the general

community has of physics, and in particular, of quantum magnetism. On the other hand, and

on a more personal level, it can be realized quickly when reading this thesis that a substantial

part of it is dedicated to the description of the fundamental theoretical and experimental

background that is a prerequisite to understand and carry out the measurements and the

reasoning exposed in this thesis. This reflects the fact that this PhD and this thesis work was

not limited to the sole understanding and manipulation of physical phenomena. The author,

being relatively unfamiliar with experimental physics, also had to dwell on many concepts. In

that view, the content of this thesis can be considered as relatively self-contained, and should

be understood by any student with reasonable knowledge of the field of physics in general,

and not condensed matter physics in particular.

A brief overview of magnetism has thus been portrayed: many of the interesting quantum

magnetism compounds are indeed insulators. The origins of the magnetic exchange have

also been demonstrated, and the fundamental ground states associated to the very commonly

realized Heisenberg Hamiltonian have been shown. It has been stressed that the contemporary

field of frustrated physics is an extensive playground to test the knowledge of fundamental

physics with many phenomena occurring, ranging from competition between classical and

quantum ground states on the triangular lattice, to the fully quantum picture of quantum spin

liquids. In a second step, emphasis has been placed on the experimental means of probing

systems and verifying their expected properties, including Josephson junction based SQUID

magnetometers, Heat Capacity measurement systems, muon spin rotation, and of course,

neutron scattering, which, by taking advantage of the magnetic moment of the neutron re-

mains to-date one of the best ways of confirming experimentally magnetic ground states and

observing spin dynamics.

All these fundamental tools have been applied to actual systems and many measurements

were carried out. In particular, it has been evidenced that Cu2OSO4 is modeled by a Kagomé-

like lattice of spin half copper atoms -a third of which are replaced by dimers- and retains its

structure down to one Kelvin, undergoing a second order phase transition to a state featuring
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magnetic long range order at 20 K. The ground state can be characterized as a ferromagnetic

configuration of spins close to the 120◦ configuration, which differs significantly from the pre-

dicted spin-liquid ground state of the Kagomé lattice, but is still close to the classical ground

state of the triangular lattice. Curie-Weiss temperatures, obtained by fits of DC-susceptibility

high temperature data confirm that frustration is important in the sample, and reported DM

interaction in the sample place it on the verge of a quantum phase transition to a disordered,

spin-liquid phase. Inelastic neutron scattering on single crystals has been carried out and

unveils the directional dependent character of spin excitations in the system. Despite the best

efforts, a fully quantum model to describe these fluctuation processes could not be established

but significant information could be extracted. The gaped spectrum and the ground state mag-

netic structure are both consistent with a magnetic field originating from the dimers canting

the other spins, then forming an alternating antigerromagnetic chain, close to half saturation.

Kagomé layers are connected by weak couplings, compared to both in plane couplings. In the

current scheme, lattices formed by the two crystallographically inequivalent copper atoms

are decoupled, and the effect of one onto the other is modeled by this mean-field. In a typical

fully quantum model, one should replace this effective mean-field by a genuine magnetic

interaction that has yet to be found.

Another system that was studied extensively is the spin liquid candidate K2Ni2(SO4)3. In this

compound, it has been evidenced that no clear sign of magnetic ordering can be observed

down to 20 mK and dilution temperatures: the DC-susceptibility shows a rather isotropic be-

havior, varying slightly slower than the Curie-Weiss fit at low temperature. While heat capacity

measurements do suggest soupçons of transitions, neither the DC susceptibility, nor muSR,

nor the neutron diffraction showed clear signs of magnetic order. muSR data showed the low

temperature ground state is quite dynamical. Polarized and unpolarized neutron diffraction

revealed the presence of a broad correlated peak of confirmed magnetic origin at low values

of inverse d-spacing. A high-resolution diffraction experiment revealed that magnetic peaks

appear on top of this broad contribution coming from short range order. These peaks are of ex-

tremely low intensity compared to that of the short range order contribution, confirming that

the long range order has to go through hindrances and is not realized in a straightforward way.

The magnetic structure has been found to be described by three distinct magnetic propagation

vectors: (1/3 0 0), (1/3 1/3 0), and (1/3 1/3 1/3). The details of the ground state configuration

have however not been refined yet, since too many free parameters in the model do not allow

to obtain a sensible physical information out of the possible model refinements. The main

candidate reasons for the obstacles to long range order are the geometrical frustration and

the quantum fluctuations. The details of magnetic couplings in the system are yet-to-be

revealed, however, inelastic neutron scattering experiments indicate that the excitations of

the magnetic ground states are dispersive and that they show a continuum. This character

of the excitation spectrum is lost at higher temperatures, already at 2 K, where it takes the

form of broad scattering, diffuse, and roughly energy independent, typical of spin-liquid states.
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The last contribution of this thesis to the field of quantum magnetism is of slightly less funda-

mental relevance, and is more technical. A tentative fit routine has been established, in order

to fit the heat capacity of magnetic materials. Indeed, subtracting the lattice contribution

from the total heat capacity opens up the possibility of extracting the purely magnetic entropy

of a system, which can be linked to its spin state. Heat capacity data is typically hard to fit,

since its high temperature part hardly changes when exploring the parameter space in the

model. To try and make this fit more robust, a combined fit also utilizing the unit-cell volume

has been implemented and applied to many different spin systems, with reasonable success.

In order to confirm these results, a theoretical work has been started to predict the fits that are

performed and verify the effectiveness of the method. Magnetic systems are computationally

expensive to model, and the study has not yet provided clear conclusions.

Overall, as is often the case in science when trying to solve a problem by answering a set of

questions, many more deep and fascinating questions arise. This thesis leaves the reader

with a significant number of them, and it is hoped that it will trigger the interest of physicists

to further study frustrated physics, quantum magnetism, and condensed matter physics in

general.

185





Bibliography

[1] Hesameddin Ilatikhameneh, Tarek Ameen, Bozidar Novakovic, Yaohua Tan, Gerhard

Klimeck, and Rajib Rahman. Saving moore’s law down to 1 nm channels with anisotropic

effective mass. Scientific Reports, 6(1):31501, Aug 2016. ISSN 2045-2322. doi: 10.1038/

srep31501. URL https://doi.org/10.1038/srep31501.

[2] Nguyen Duy Khanh, Taro Nakajima, Xiuzhen Yu, Shang Gao, Kiyou Shibata, Max

Hirschberger, Yuichi Yamasaki, Hajime Sagayama, Hironori Nakao, Licong Peng, Kiyomi

Nakajima, Rina Takagi, Taka-hisa Arima, Yoshinori Tokura, and Shinichiro Seki. Nano-

metric square skyrmion lattice in a centrosymmetric tetragonal magnet. Nature Nan-

otechnology, 15(6):444–449, Jun 2020. ISSN 1748-3395. doi: 10.1038/s41565-020-0684-7.

URL https://doi.org/10.1038/s41565-020-0684-7.

[3] C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing.

All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett., 99:047601,

Jul 2007. doi: 10.1103/PhysRevLett.99.047601. URL https://link.aps.org/doi/10.1103/

PhysRevLett.99.047601.

[4] Andrei Kirilyuk, Alexey V. Kimel, and Theo Rasing. Ultrafast optical manipulation of

magnetic order. Rev. Mod. Phys., 82:2731–2784, Sep 2010. doi: 10.1103/RevModPhys.82.

2731. URL https://link.aps.org/doi/10.1103/RevModPhys.82.2731.

[5] Fredrik Hansteen, Alexey Kimel, Andrei Kirilyuk, and Theo Rasing. Femtosecond photo-

magnetic switching of spins in ferrimagnetic garnet films. Phys. Rev. Lett., 95:047402,

Jul 2005. doi: 10.1103/PhysRevLett.95.047402. URL https://link.aps.org/doi/10.1103/

PhysRevLett.95.047402.

[6] Cuixiu Zheng, Mykola Dvornik, Chengjie Wang, Dun Xiao, Yaowen Liu, Zongzhi Zhang,

Yan Zhou, Hamid Mazraati, Martina Ahlberg, Ahmad A. Awad, and Johan Åkerman.

Tuning magnetic droplets in nanocontact spin-torque oscillators using electric fields.

Phys. Rev. Applied, 14:054001, Nov 2020. doi: 10.1103/PhysRevApplied.14.054001. URL

https://link.aps.org/doi/10.1103/PhysRevApplied.14.054001.

[7] Mohammad Zahedinejad, Ahmad A. Awad, Shreyas Muralidhar, Roman Khymyn,

Himanshu Fulara, Hamid Mazraati, Mykola Dvornik, and Johan Åkerman. Two-

dimensional mutually synchronized spin hall nano-oscillator arrays for neuromor-

187

https://doi.org/10.1038/srep31501
https://doi.org/10.1038/s41565-020-0684-7
https://link.aps.org/doi/10.1103/PhysRevLett.99.047601
https://link.aps.org/doi/10.1103/PhysRevLett.99.047601
https://link.aps.org/doi/10.1103/RevModPhys.82.2731
https://link.aps.org/doi/10.1103/PhysRevLett.95.047402
https://link.aps.org/doi/10.1103/PhysRevLett.95.047402
https://link.aps.org/doi/10.1103/PhysRevApplied.14.054001


Bibliography

phic computing. Nature Nanotechnology, 15(1):47–52, Jan 2020. ISSN 1748-3395. doi:

10.1038/s41565-019-0593-9. URL https://doi.org/10.1038/s41565-019-0593-9.

[8] J.C. Maxwell. On physical lines of force. Philosophical Magazine, 90(sup1):11–23, 2010.

doi: 10.1080/14786431003659180. URL https://doi.org/10.1080/14786431003659180.

[9] B. Lake, H. M. Rønnow, N. B. Christensen, G. Aeppli, K. Lefmann, D. F. McMorrow,

P. Vorderwisch, P. Smeibidl, N. Mangkorntong, T. Sasagawa, M. Nohara, H. Takagi, and

T. E. Mason. Antiferromagnetic order induced by an applied magnetic field in a high-

temperature superconductor. Nature, 415(6869):299–302, Jan 2002. ISSN 1476-4687.

doi: 10.1038/415299a. URL https://doi.org/10.1038/415299a.

[10] N. B. Christensen, D. F. McMorrow, H. M. Rønnow, B. Lake, S. M. Hayden, G. Aeppli, T. G.

Perring, M. Mangkorntong, M. Nohara, and H. Takagi. Dispersive excitations in the high-

temperature superconductor La2−x Srx Cuo4. Phys. Rev. Lett., 93:147002, Sep 2004. doi:

10.1103/PhysRevLett.93.147002. URL https://link.aps.org/doi/10.1103/PhysRevLett.93.

147002.

[11] B. Vignolle, S. M. Hayden, D. F. McMorrow, H. M. Rønnow, B. Lake, C. D. Frost, and

T. G. Perring. Two energy scales in the spin excitations of the high-temperature super-

conductor la2-xsrxcuo4. Nature Physics, 3(3):163–167, Mar 2007. ISSN 1745-2481. doi:

10.1038/nphys546. URL https://doi.org/10.1038/nphys546.

[12] J. Chang, Ch. Niedermayer, R. Gilardi, N. B. Christensen, H. M. Rønnow, D. F. McMorrow,

M. Ay, J. Stahn, O. Sobolev, A. Hiess, S. Pailhes, C. Baines, N. Momono, M. Oda, M. Ido,

and J. Mesot. Tuning competing orders in la2−x srx cuo4 cuprate superconductors by the

application of an external magnetic field. Phys. Rev. B, 78:104525, Sep 2008. doi: 10.

1103/PhysRevB.78.104525. URL https://link.aps.org/doi/10.1103/PhysRevB.78.104525.

[13] Applied Technology Council. Earthquake damage evaluation data for California. Tech-

nical report, Seismic Safety Commission, Applied Technology Council (ATC), California,

1985.

[14] Tobias Kosub, Martin Kopte, Ruben Hühne, Patrick Appel, Brendan Shields, Patrick

Maletinsky, René Hübner, Maciej Oskar Liedke, Jürgen Fassbender, Oliver G. Schmidt,

and Denys Makarov. Purely antiferromagnetic magnetoelectric random access mem-

ory. Nature Communications, 8(1):13985, Jan 2017. ISSN 2041-1723. doi: 10.1038/

ncomms13985. URL https://doi.org/10.1038/ncomms13985.

[15] Daniel I. Khomskii. Transition Metal Compounds. Cambridge University Press, 2014.

doi: 10.1017/CBO9781139096782.

[16] N. Binggeli and M. Altarelli. Orbital ordering, jahn-teller distortion, and resonant x-ray

scattering in kcuf3. Phys. Rev. B, 70:085117, Aug 2004. doi: 10.1103/PhysRevB.70.085117.

URL https://link.aps.org/doi/10.1103/PhysRevB.70.085117.

188

https://doi.org/10.1038/s41565-019-0593-9
https://doi.org/10.1080/14786431003659180
https://doi.org/10.1038/415299a
https://link.aps.org/doi/10.1103/PhysRevLett.93.147002
https://link.aps.org/doi/10.1103/PhysRevLett.93.147002
https://doi.org/10.1038/nphys546
https://link.aps.org/doi/10.1103/PhysRevB.78.104525
https://doi.org/10.1038/ncomms13985
https://link.aps.org/doi/10.1103/PhysRevB.70.085117


Bibliography

[17] E. Pavarini, E. Koch, and A. I. Lichtenstein. Mechanism for orbital ordering in kcuf3.

Phys. Rev. Lett., 101:266405, Dec 2008. doi: 10.1103/PhysRevLett.101.266405. URL

https://link.aps.org/doi/10.1103/PhysRevLett.101.266405.

[18] P. W. Anderson. Antiferromagnetism. theory of superexchange interaction. Phys. Rev.,

79:350–356, Jul 1950. doi: 10.1103/PhysRev.79.350. URL https://link.aps.org/doi/10.

1103/PhysRev.79.350.

[19] Junjiro Kanamori. Superexchange interaction and symmetry properties of electron

orbitals. Journal of Physics and Chemistry of Solids, 10(2):87 – 98, 1959. ISSN 0022-3697.

doi: https://doi.org/10.1016/0022-3697(59)90061-7. URL http://www.sciencedirect.

com/science/article/pii/0022369759900617.

[20] John B. Goodenough. An interpretation of the magnetic properties of the perovskite-

type mixed crystals la1-xsrxcoo3-λ. Journal of Physics and Chemistry of Solids, 6(2):287 –

297, 1958. ISSN 0022-3697. doi: https://doi.org/10.1016/0022-3697(58)90107-0. URL

http://www.sciencedirect.com/science/article/pii/0022369758901070.

[21] John B. Goodenough. Theory of the role of covalence in the perovskite-type manganites

[La,m(II)]Mno3. Phys. Rev., 100:564–573, Oct 1955. doi: 10.1103/PhysRev.100.564. URL

https://link.aps.org/doi/10.1103/PhysRev.100.564.

[22] L. F. Mattheiss. Electronic band properties and superconductivity in La 2 - y X y CuO 4.

Physical Review Letters, 58(10):1028–1030, March 1987. ISSN 0031-9007. doi: 10.1103/

PhysRevLett.58.1028. URL https://link.aps.org/doi/10.1103/PhysRevLett.58.1028.

[23] P.D. Dernier. The crystal structure of V2O3 and (V0.962Cr0.0382)2O3 near the metal-

insulator transition. Journal of Physics and Chemistry of Solids, 31(11):2569–2575,

November 1970. ISSN 0022-3697. doi: 10.1016/0022-3697(70)90076-4. URL http:

//www.sciencedirect.com/science/article/pii/0022369770900764.

[24] John Hubbard. Electron correlations in narrow energy bands. 26 November 1963, 276

(1365):20, November 1963. doi: https://doi.org/10.1098/rspa.1963.0204.

[25] Martin C. Gutzwiller. Effect of Correlation on the Ferromagnetism of Transition Metals.

Physical Review Letters, 10(5):159–162, March 1963. ISSN 0031-9007. doi: 10.1103/

PhysRevLett.10.159. URL https://link.aps.org/doi/10.1103/PhysRevLett.10.159.

[26] Junjiro Kanamori. Electron Correlation and Ferromagnetism of Transition Metals.

Progress of Theoretical Physics, 30(3):275–289, September 1963. ISSN 0033-068X. doi:

10.1143/PTP.30.275. URL https://academic.oup.com/ptp/article-lookup/doi/10.1143/

PTP.30.275.

[27] N. D. Mermin and H. Wagner. Absence of Ferromagnetism or Antiferromagnetism in

One- or Two-Dimensional Isotropic Heisenberg Models. Physical Review Letters, 17(22):

1133–1136, November 1966. ISSN 0031-9007. doi: 10.1103/PhysRevLett.17.1133. URL

https://link.aps.org/doi/10.1103/PhysRevLett.17.1133.

189

https://link.aps.org/doi/10.1103/PhysRevLett.101.266405
https://link.aps.org/doi/10.1103/PhysRev.79.350
https://link.aps.org/doi/10.1103/PhysRev.79.350
http://www.sciencedirect.com/science/article/pii/0022369759900617
http://www.sciencedirect.com/science/article/pii/0022369759900617
http://www.sciencedirect.com/science/article/pii/0022369758901070
https://link.aps.org/doi/10.1103/PhysRev.100.564
https://link.aps.org/doi/10.1103/PhysRevLett.58.1028
http://www.sciencedirect.com/science/article/pii/0022369770900764
http://www.sciencedirect.com/science/article/pii/0022369770900764
https://link.aps.org/doi/10.1103/PhysRevLett.10.159
https://academic.oup.com/ptp/article-lookup/doi/10.1143/PTP.30.275
https://academic.oup.com/ptp/article-lookup/doi/10.1143/PTP.30.275
https://link.aps.org/doi/10.1103/PhysRevLett.17.1133


Bibliography

[28] J. Goldstone. Field theories with « superconductor » solutions. Il Nuovo Cimento

(1955-1965), 19(1):154–164, Jan 1961. ISSN 1827-6121. doi: 10.1007/BF02812722. URL

https://doi.org/10.1007/BF02812722.

[29] Hans Bethe. Zur Theorie der Metalle. Zeitschrift für Physik, page 22, 1931.

[30] T. Holstein and H. Primakoff. Field Dependence of the Intrinsic Domain Magnetization

of a Ferromagnet. Physical Review, 58(12):1098–1113, December 1940. ISSN 0031-899X.

doi: 10.1103/PhysRev.58.1098. URL https://link.aps.org/doi/10.1103/PhysRev.58.1098.

[31] L. Passell, O. W. Dietrich, and J. Als-Nielsen. Neutron scattering from the Heisenberg

ferromagnets EuO and EuS. I. The exchange interactions. Physical Review B, 14(11):

4897–4907, December 1976. ISSN 0556-2805. doi: 10.1103/PhysRevB.14.4897. URL

https://link.aps.org/doi/10.1103/PhysRevB.14.4897.

[32] F. Moussa, B. Hennion, J. Moss, and G. Pepy. Measurements of spin waves in K2CuF4

in the low energy range. Solid State Communications, 27(2):141–144, July 1978. ISSN

00381098. doi: 10.1016/0038-1098(78)90819-0. URL https://linkinghub.elsevier.com/

retrieve/pii/0038109878908190.

[33] C. G. Shull, W. A. Strauser, and E. O. Wollan. Neutron Diffraction by Paramagnetic and

Antiferromagnetic Substances. Physical Review, 83(2):333–345, July 1951. ISSN 0031-

899X. doi: 10.1103/PhysRev.83.333. URL https://link.aps.org/doi/10.1103/PhysRev.83.

333.

[34] J. G. Valatin. Comments on the theory of superconductivity. Il Nuovo Cimento, 7(6):

843–857, March 1958. ISSN 0029-6341, 1827-6121. doi: 10.1007/BF02745589. URL

http://link.springer.com/10.1007/BF02745589.

[35] N. N. Bogoljubov. On a new method in the theory of superconductivity. Il Nuovo Cimento,

7(6):794–805, March 1958. ISSN 0029-6341, 1827-6121. doi: 10.1007/BF02745585. URL

http://link.springer.com/10.1007/BF02745585.

[36] Andreas Lüscher and Andreas M. Läuchli. Exact diagonalization study of the antiferro-

magnetic spin- 1 2 Heisenberg model on the square lattice in a magnetic field. Physical

Review B, 79(19):195102, May 2009. ISSN 1098-0121, 1550-235X. doi: 10.1103/PhysRevB.

79.195102. URL https://link.aps.org/doi/10.1103/PhysRevB.79.195102.

[37] P. Babkevich, Vamshi M. Katukuri, B. Fak, S. Rols, T. Fennell, D. Paji, H. Tanaka, T. Pardini,

R. R. P. Singh, A. Mitrushchenkov, O. V. Yazyev, and H. M. Ronnow. Magnetic Excitations

and Electronic Interactions in Sr 2 CuTeO 6 : A Spin- 1 / 2 Square Lattice Heisenberg

Antiferromagnet. Physical Review Letters, 117(23):237203, December 2016. ISSN 0031-

9007, 1079-7114. doi: 10.1103/PhysRevLett.117.237203. URL https://link.aps.org/doi/

10.1103/PhysRevLett.117.237203.

[38] Brett Leedahl. Origin of Ising magnetism in Ca3Co2O6 unveiled by orbital imaging.

Nature Communications, page 7, 2019.

190

https://doi.org/10.1007/BF02812722
https://link.aps.org/doi/10.1103/PhysRev.58.1098
https://link.aps.org/doi/10.1103/PhysRevB.14.4897
https://linkinghub.elsevier.com/retrieve/pii/0038109878908190
https://linkinghub.elsevier.com/retrieve/pii/0038109878908190
https://link.aps.org/doi/10.1103/PhysRev.83.333
https://link.aps.org/doi/10.1103/PhysRev.83.333
http://link.springer.com/10.1007/BF02745589
http://link.springer.com/10.1007/BF02745585
https://link.aps.org/doi/10.1103/PhysRevB.79.195102
https://link.aps.org/doi/10.1103/PhysRevLett.117.237203
https://link.aps.org/doi/10.1103/PhysRevLett.117.237203


Bibliography

[39] Virgile Yves Favre, Gregory S. Tucker, Clemens Ritter, Romain Sibille, Pascal Manuel,

Matthias D. Frontzek, Markus Kriener, Lin Yang, Helmuth Berger, Arnaud Magrez, Nicola
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