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Tyger! Tyger! Burning bright

In the forests of the night:

What immortal hand or eye

Could frame thy fearful symmetry?

— William Blake

To my family, friends and colleagues.
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Abstract

Theoretical and computational approaches to the study of materials and molecules

have, over the last few decades, progressed at an exponential rate. Yet, the possibility

of producing numerical predictions that are on par with experimental measurements

is to date still hindered by a major computational barrier. In this context, machine-

learning methods have emerged as an effective strategy to overcome this barrier by

means of statistical approximations that rely only on the knowledge of the atomic

coordinates of the system. The quality of these approximations strongly depends on

the adoption of mathematical representations of the atomic structure that mirror the

physical behaviour of the learning target. In this thesis, we make use of this general

principle to tackle some particularly tricky aspects in the data-driven prediction of

materials properties.

The first part addresses the problem of interpolating physical tensors, such as any

quantity that follows a set of prescribed transformation rules under a three-dimensional

rotation of the system. We derive mathematical representations of the atomic struc-

tures that satisfy the symmetry of spherical harmonics. This family of atomistic

features can be used to efficiently regress the irreducible spherical decomposition

of any Cartesian tensor. We benchmark the method on the optical series of water

oligomers, the dielectric response of liquid water, as well as high-end polarizabilities

of heterogeneous molecular datasets. Taking the crystal polymorphs of paracetamol

as an example, we finally discuss the possibility of computing the Raman spectrum

on top of predicted values of polarizabilities.

The second part of the thesis makes use of the symmetry-adapted representations

previously introduced to address the challenging problem of learning and predicting

scalar fields, such as the electronic charge density of a system. The main difficulty is

associated with the decomposition of the field on a multi-centered non-orthogonal

basis, which comes along with the derivation of a specifically designed regression

algorithm. Making the electron density decomposition compatible with auxiliary

basis sets commonly used in quantum-chemistry codes, we show the capability of the
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method to perform highly transferable predictions for arbitrarily complex molecules,

that scale linearly with the system size.

The last part of the thesis addresses the problem of incorporating a long-range de-

scription within state-of-the-art local machine-learning schemes. This is done by

deriving a family of representations where a smooth Coulomb-like potential asso-

ciated with the distribution of atoms is evaluated at the local scale. In particular, a

suitable combination of long-range and local features makes it possible to design a

learning framework that shows an asymptotic behaviour that allows us to capture

repulsion, electrostatic, polarization and dispersion phenomena, on an equal footing.

The method performance is tested on the binding energy of organic dimers, the mu-

tual polarization between a water molecule and a metallic surface of lithium, and the

dielectric response of peptidic chains.

By and large, this research study shows how a wise interplay between a totally agnos-

tic learning method and a physically grounded approximation allows us to predict

arbitrarily complex atomistic properties, paving the way to the accurate simulation

of materials over time and length scales that are not accessible by first-principles

methods.

Keywords: machine learning, atomic-scale representations, tensorial properties, elec-

tron densities, long-range interactions.



Riassunto

Durante gli ultimi decenni, gli approcci computazionali dedicati allo studio di materi-

ali si sono sviluppati ad una velocità esponenziale. Tuttavia, la possibilità di ottenere

predizioni numeriche che siano comparabili con le misurazioni sperimentali è ad oggi

ancora ostacolata da una considerevole barriera computazionale. In questo contesto,

i metodi di apprendimento automatico si sono rivelati una strategia efficace per super-

are questa barriera attraverso approssimazioni statistiche che si affidano all’esclusiva

conoscenza delle coordinate atomiche del sistema. La qualità di queste approssi-

mazioni dipende fortemente dall’adozione di rappresentazioni matematiche della

struttura atomica che riflettono il comportamento fisico della proprietà in oggetto. In

questo lavoro di tesi, questo principio generale viene impiegato per affrontare alcuni

aspetti particolarmente complessi nell’apprendimento automatico delle proprietà dei

materiali.

La prima parte della tesi tratta il problema dell’interpolazione di tensori fisici, os-

sia qualsiasi quantità che segue precise regole di trasformazione in seguito a una

rotazione tridimensionale del sistema. Abbiamo derivato rappresentazioni matem-

atiche della struttura atomica che soddisfano la simmetria delle armoniche sferiche.

Questa famiglia di caratteristiche atomiche possono essere utilizzate per eseguire

la regressione della decomposizione irriducibile di qualsiasi tensore Cartesiano. Il

metodo viene messo alla prova sulla serie ottica di oligomeri d’acqua, sulla risposta

dielettrica dell’acqua liquida e su polarizzabilità di alto livello di un insieme eteroge-

neo di molecole. Abbiamo infine discusso la possibilità di calcolare lo spettro Raman

sulla base dei valori di polarizzabilità predetti.

La seconda parte della tesi ricorre alle rappresentazioni adattate alla simmetria prece-

dentemente introdotte per affrontare il problema relativo alla predizione della densità

elettronica di un sistema. La difficoltà principale è associata alla decomposizione

del campo scalare su una base a molti centri, la quale porta con sé la derivazione di

un algoritmo di regressione specifico. Rendendo la decomposizione della densità

compatibile con le basi ausiliare comunemente usate nei codici di chimica quantis-

tica, abbiamo dimostrato la capacità del metodo di realizzare predizioni altamente
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trasferibili per molecole arbitrariamente complesse.

La terza e ultima parte della tesi tratta il problema di incorporare una descizione a

lungo raggio all’interno di schemi locali di apprendimento. Abbiamo derivato una

famiglia di rappresentazioni atomiche in cui un potenziale Coulombiano viene cal-

colato sulla scala locale. Una combinazione di caratteristiche locali e non-locali, in

particolare, rende possibile uno schema di apprendimento che possiede un com-

portamento asintotico capace di predire effetti elettrostatici, di polarizazzione e di

dispersione. Abbiamo dimostrato l’efficacia del metodo per le energie di legame di

dimeri organici, la mutua polarizzazione tra una molecola d’acqua e una superficie

metallica di litio, e la risposta dielettrica di catene proteiche.

Nel complesso, questo studio di ricerca mostra come una saggia combinazione di

metodi agnostici di apprendimento e approssimazioni fisicamente fondate permetta

di predire qualsiasi proprietà atomistica, aprendo la strada a simulazioni accurate dei

materiali che hanno luogo su scale di tempo e di lunghezza non accessibili attraverso

metodi ai primi principi.

Parole chiave: apprendimento automatico, rappresentazioni su scala atomica, propri-

età tensoriali, densità elettroniche, interazioni a lungo raggio.
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1 Introduction

Computational materials science is a constantly evolving field of research that tar-

gets the simulation of molecular and materials properties by borrowing theories and

numerical methods from chemistry, physics and applied mathematics. Although

constantly progressing, the theory underlying the prediction of physical quantities

in solids, liquids and molecular systems has reached an advanced state. Yet, per-

forming reliable and accurate simulations that can be compared with experimental

measurements still presents a major computational barrier. This chapter introduces

an overview of the machine-learning methods that can be used for overcoming this

barrier by means of data-driven predictions. By focusing the attention on the level of

physical insight that can be incorporated within the construction of mathematical

representations of the atomic structure, it provides the general context and motivation

for the research presented in this thesis.

1.1 The electronic structure problem

The major hurdle when addressing the atomic scale simulations of a material consists

in dealing with its quantum nature. For any given instantaneous configuration of

the atomic nuclei, the quantum-mechanical problem consists in solving the time-

independent Schrödinger equation for a system of N electrons, i.e.,

ĤeΨk = EkΨk , (1.1)

with Ĥe the electronic Hamiltonian operator, while Ψk and Ek are the spectrum of

electronic wave-functions and energies that satisfy the eigenvalue problem. Given

its many-body character, solving this equation for an arbitrary number of electrons

represents a particularly difficult task, and exact solutions can only be found for a

handful of simple cases. For this reason, it comes as no surprise that the development

1



2 Chapter 1

of approximated methods for solving Eq. (1.1) has driven the theoretical research in

chemistry, molecular physics and materials science for half of a century [1].

1.1.1 Density functional theory

Among the possible methods, density functional theory (DFT) is by far the most widely

adopted approach to compute the electronic properties of a system. The theory is

grounded on the remarkable realization that knowing the electron density ne (r ) of the

system is sufficient to uniquely determine its ground-state properties [2]. This feature

represents a tremendous computational advantage, because one can in principle

entirely forget about the N -body wave-function Ψ and simply design a minimization

algorithm of the ground-state electronic energy E0 as a functional of the electron

density ne (r ). The major problem of DFT consists in deriving accurate approximations

for this functional dependence, whose exact form is still unknown. In spite of the

extensive theoretical investigation put in place by the scientific community, the search

for accurate density functionals has proven to be exceedingly difficult, especially

for the kinetic energy contribution to the electronic energy [3]. This fundamental

issue of the theory has led to a reformulation of DFT as an effective single-particle

theory, i.e., the Kohn-Sham DFT (KS-DFT) approach, where the notion of wave-

function is restored within the definition of the electron density [4]. While KS-DFT

has been broadly successful in predicting a wide variety of materials properties, the

dimensionality of the problem depends, unlike to a pure DFT approach, on the

number of electrons N of the system. This implies that, similarly to other wave-

function based methods for solving the Schrödinger equation, common KS-DFT

implementations present an unfavorable scaling of the computational cost with the

system size (∼ N 3), thus hindering the application of the method to arbitrarily large

and complex systems.

1.2 The problem of thermodynamic convergence

The calculation of electronic properties is not the only computational bottleneck in

the simulation of materials. Most of measurable physical observables come in fact as a

thermodynamic average over the instantaneous atomistic configurations of the system

at a given temperature T . In this context, the most popular computational strategy to

simulate the thermodynamics of a system is the ab-initio molecular dynamics (AIMD)

method. In AIMD, the statistical ensemble of atomistic configurations is obtained

simulating the dynamics of the atomic nuclei driven by the quantum forces that can

be computed from the solution of the electronic-structure problem [5]. Whenever
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the quantum nature of the nuclei can be neglected, this dynamics can be propagated

over finite time-steps, of the order of 1 femtosecond, in accordance to Newton’s laws.

From a numerical point of view, the discrete character of the propagation forbids

the simulation of any actual realistic trajectory [6]. Instead, specific algorithms are

designed to obtain a simulated trajectory that satisfies the constraint of a constant

phase-space distribution function (Liouville’s theorem), guaranteeing a consistent

calculation of the statistical averages [7]. Unfortunately, the amount of statistics that

needs to be collected to convergence any thermodynamic property typically involves

very long trajectories that can encompass a simulation time of several nanoseconds,

therefore limiting the applicability of AIMD to relatively small systems (∼100 atoms).

1.2.1 Thermodynamic integration

This problem is greatly worsened whenever one is interested in predicting the thermo-

dynamic stability of the system in terms of a free-energy difference∆F between two

thermodynamic states A and B . In this circumstance, a thermodynamic integration

(TI) needs to be performed along the path that adiabatically connects the initial state

A to the final state B , so that any free energy difference can in principle be computed

as follows,

∆F (A → B) =
∫ 1

0
dλ

〈
dU (λ)

dλ

〉
λ

. (1.2)

Here, U (λ) represents a suitable parametrization of the system potential energy as a

function of the coupling parameter λ that modulates the transition between the two

states, while 〈·〉λ is the canonical ensemble average computed over the Boltzmann

distribution defined by U (λ). In practice, this implies that the path of adiabatic

connection needs to be sampled by computing several thermodynamic averages, one

for each λ-point of the quadrature grid chosen to perform the integral of Eq. (1.2).

These kind of calculations are particularly demanding, for instance, when considering

ab initio solvation free-energies, where the TI path involves a smooth embedding of a

solute molecule from a fixed position in the gas-phase to a fixed position in the liquid

solvent [8].

1.3 Machine learning at the atomic scale

According to the previous discussion, the extensive application of AIMD simula-

tions to the calculation of quantum-level thermodynamic quantities is limited by

the major computational burden associated with solving the Schrödinger equation
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at each molecular dynamics step. Machine learning (ML) methods have recently

emerged as an extremely successful strategy to sidestep the solution of the electronic

structure problem, paving the way to the calculation of a number of electronic and

thermodynamic properties that would be otherwise not accessible by other existing

approaches [9–13].

The main idea behind the application of ML at the atomic scale is to provide a method

to inexpensively interpolate the value of a given physical quantity over a representative

set of reference data. The distinctive character of these data-driven interpolations is

that they do not rely on any prior knowledge on the behaviour of the target property.

Any atomic-scale ML model is in fact asked to find the hidden and arbitrarily complex

relationship between the target property and the atomic coordinates of the system by

means of a completely general regression framework. This aspect is in stark contrast

with common fitting strategies of potential energy surfaces that make use of system-

dependent functional forms for describing the interaction between the atoms of the

material [14].

To produce accurate predictions within the vast chemical and conformational space

spanned by the atomistic configurations, ML models typically require to map the

spatial coordinates into a suitable structural representation of the system that lives in

an arbitrarily complex feature space [15]. The interplay between the complexity of the

structural representation and the complexity of the learning algorithm is the crucial

aspect that determines the capability of ML methods to yield accurate predictions

using a finite amount of training data. In particular, endowing the structural repre-

sentation with a certain level of physical insight usually comes along with enhancing

the learning power of the method, especially when the regression is carried out using

linear functional forms. Conversely, highly non-linear learning algorithms such as

deep neural networks (DNN) can often be used in conjunction with representations

of the system built as a simple manipulation of the atomic coordinates, e.g., that are

trivially related to pairwise interatomic distances [16–19].

The great learning power of DNN is due to the large number of parameters that control

the correlation between the input structure and physical target. Although beneficial

in many cases, this flexibility usually requires to limit the possibility of overfitting by

training the model on a large amount of reference calculations [20]. Moreover, the

high complexity of the DNN architecture makes it hard to rationalize the learning

performance and suggest possible strategies to improve the prediction accuracy. The

need for ML models that are both data-efficient and that can provide some physical

insight on the underlying interpolation process has therefore motivated part of the

scientific community to rely on a different learning paradigm.
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1.3.1 Gaussian process regression

Gaussian process regression (GPR) represents a non-parametric statistical approxi-

mation theory that offers a more transparent and controllable learning framework

than DNN. Within GPR, a property y is assumed to behave as a stochastic variable dis-

tributed according to a Gaussian probability of zero mean and covariance k ≡ 〈y, y ′〉.
Upon performing a set of (noisy) observations y ≡ {yn} of the target property for a

set of independent input structures {An}, the regression problem is then formulated

on the question of finding the posterior probability distribution P (y |y) associated

with observing a value y for a new input A, conditioned on the observations y pre-

viously carried out [21]. From Bayes’ theorem, P (y |y) results to be in turn Gaussian

distributed; its expectation value and variance are respecively given by〈
y(A)

〉
P (y |y) = kT (A) · [K +η21

]−1 · y = kT (A) · x({yn}) (1.3)

and

〈y(A), y(A)〉P (y |y) = k(A, A)−kT (A) · [K +η−11
] ·k(A) , (1.4)

with k(A) ≡ {k(A, An)} the vector of covariance functions between the new and refer-

ence observations, K ≡ {k(An , An′)} the covariance matrix of the reference observa-

tions and η the intrinsic Gaussian noise of these observations. The whole point of

the application of GPR to the prediction of physical quantities is to use the atomic

coordinates of the system to provide a good prior approximation for the covariance

function k, usually called kernel. According to Eq. (1.3), once a kernel approximation

is computed the learning exercise can be performed at the cost of a simple matrix

inversion, and the predicted value is obtained as a linear combination of the kernels

k(A) weighted by the regression coefficients x . In this respect, setting a value for the

Gaussian noise η provides a lower-bound to the eigenvalues of the kernel matrix K ,

which has the ultimate effect of regularizing the solution of the regression problem.

Importantly, in the absence of reference values for the target quantity, the variance of

Eq. (1.4) can be used to estimate the intrinsic uncertainty of the GPR predictions and

assess the reliability of the learning exercise.

Relying on a matrix inversion, the cost of performing a GPR exercise scales cubically

with the problem dimensionality N . Whenever this scaling becomes a computational

bottleneck of the method, a dimensionality reduction can be adopted, which aims

at projecting the problem in a smaller, sparse set M < N that best represents the

starting conformational space of dimension N . This procedure is known as the subset

of regressors (SoR) approximation [22], and it is grounded on the assumption that a
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given kernel matrix K N N can be approximated as

K N N ≈ K N M K −1
M M K T

N M , (1.5)

with K N M the kernel matrix that couples the reference and sparse points, while K M M

the full rank kernel matrix associated with the sparse set. From Eq. (1.5), an analogous

derivation to that outlined in the previous paragraph can be carried out, which yields

the following prediction formula:〈
y(A)

〉
P (y |y) = kT

M (A) ·[K T
N M K N M +η2K M M

]−1
K N M y N = kT

M (A) ·x M ({yn}) . (1.6)

Note that the information brought by the entire training set is still included in the

definition of the regression weights, and that the original GPR formula of Eq. (1.3) can

be easily recovered for M = N .

Being a symmetric and positive-definite correlation function, a kernel can always be

represented as an inner product defined in a possibly infinite dimensional space of

functions (Mercer’s theorem [21]). In practice, however, knowing the underlying space

of functions is not needed to compute a kernel approximation, whose definition can

solely rely on the notion of similarity between a pair of input structures [23, 24]. One

of the most popular examples of this is the Gaussian kernel, i.e.,

k(A, A′) = exp

(
−

∥∥A − A′∥∥2

2σ2

)
, (1.7)

with
∥∥A − A′∥∥ measuring the Euclidean distance between the inputs on a given feature

space, while the parameter σ reflects the standard deviation of the inputs similarity.

Gaussian kernels have found applications in the prediction of numerous quantum-

mechanical properties, going from electronic energies [25, 26] and densities [27, 28],

density-functionals [29, 30], atomic forces [31], electric multipoles [32] and molecular

polarizabilities [33], often outperforming DNN when training the model on a small

amount of reference data. Their success is mainly due to their infinite smoothness,

meaning that Eq. (1.7) is infinitely differentiatable in a mean-square sense [21]. The

importance of smoothness in statistical approximations of physical quantities is

well understood in terms of the fact that small variations of the atomic coordinates

typically correspond to small variations of the value of the target property. As we will

see in the following sections, this concept has also greatly inspired the construction of

smooth structural representations of the system, that can either be used to compute

kernel similarity measures as the one of Eq. (1.7), or enter the construction of linear

regression models.
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1.3.2 Linear regression models

It is particularly instructive to draw the connection between GPR and linear regression

models. Here, and for the rest of the thesis, we will extensively rely on Dirac notation

commonly used in quantum mechanics, so that bras 〈·| and kets |·〉 are interpreted

as abstract representations and brakets 〈·|·〉 are used to identify inner products. As

detailed in Appendix A, this choice leaves us the freedom of adopting any arbitrary

complete basis to compute an abstract structural representation |A〉 of the system A

and to perform the integrals and summations that underlie the definition of inner

products. Borrowing Dirac notation, a linear model to predict a property y for an

input A is written as follows,

y(A) = 〈w |A〉 , (1.8)

where 〈w | is an abstract vector for the regression weights we wish to learn. The

usual approach for finding the weight vector is to minimize a quadratic loss function

computed over N reference observations {yn}, i.e.,

`(w) =
N∑

n=1

(
yn −〈w |An〉

)2 +λ〈w |w〉 , (1.9)

where the regularization parameter λ introduces a penalty for high-norm weight

vectors, preventing from overfitting the model on the training data. `(w) attains its

maximum at

|w〉 =
(
Ĉ +λÎ

)−1
N∑

n=1
|An〉 yn , (1.10)

with Ĉ the projector operator of the model covariance, i.e., Ĉ =
∑N

n=1 |An〉〈An |.

This construction in which one handles the representation |A〉 explicitly is often called

the primal formulation. There is in fact another, complementary formulation, called

the dual, which appears to be totally equivalent to GPR. In the dual formulation one

does not handle the representation |A〉 explicitly but rather the similarity (kernel)

between two inputs, k(A, A′). In this case, the loss function takes the form

`(x) =
N∑

n=1

(
yn −kT (An)x

)2 +ηxT K x , (1.11)

and minimizing with respect to x leads exactly to the GPR regression formula already

reported in Eq. (1.3). Importantly, when computing the kernel as an inner product

within a finite and known feature space, i.e., k(A, A′) =
〈

A
∣∣A′〉, the primal and dual
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formulations are formally equivalent, and the choice of which to use is a purely

practical question. Constructing a primal model requires inversion of the covariance

matrix C , while the dual requires inversion of the kernel matrix K . If the feature space

is larger than the training set then the dual approach is more convenient (kernel trick).

Of course, the real utility of the kernel trick becomes apparent when the kernel is a

complex, non-linear function for which the feature space is unknown and/or infinite-

dimensional, as in Eq. (1.7). In these circumstances, working in the dual makes it

possible to formulate regression as a linear problem, where reference configurations

are used to define a basis for the target and all the complexity of the input space

representation is contained in the definition of the kernel function.

1.4 Physics-enhanced machine learning

Thinking in terms of linear regression models, either in the primal or in the dual for-

mulation, streamlines the connection between the learning target y and the structural

representation |A〉 in terms of a one-to-one mapping y ∼ |A〉. In this respect, it comes

as no surprise that maximizing both the prediction accuracy and the data efficiency

of the regression model comes along with the adoption of representations that mirror

some general physical properties associated with the learning target.

1.4.1 The importance of locality

The statistical approximation of electronic energies is the prototypical example where

the representation can be constructed to follow the physics of the learning target. In

this case, a concept that has greatly inspired theoretical developments is that of locality.

The local nature of the target reflects the fact that the response of a system to far-field

perturbations is typically governed by screening phenomena that limit the spatial

extent over which the effect of these perturbations can be propagated – a concept first

introduced by Walter Kohn as the nearsightedness of electronic matter [34, 35]. Local

representations are typically defined by means of finite spherical environments of a

given cutoff radius rc that are used to spatially limit the structural information around

the atoms of the system. Crucially, this construction implies that the electronic energy

is implicitly broken down in the sum of atomic contributions ei , that, individually,

encode the local many-body nature of the target [36]. Within a linear model, for

instance, we would write

E(A) = 〈w |A〉 = 〈w |
(

N∑
i =1

|Ai 〉
)

=
N∑

i =1
〈w |Ai 〉 =

N∑
i =1

ei , (1.12)
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with |Ai 〉 indicating the abstract representation of the local environment of the atom i .

This additivity property of the energy prediction carries a twofold advantage: on one

hand, it enables a great transferability of the learning model across systems that share

similar atomic environments within the selected cutoff radius rc, in fact limiting the

possibility of overfitting the model on the training configurations [10], and, on the

other hand, it guarantees that the extensivity of target is automatically satisfied, so

that the energy of two non-interacting systems A and B is given by the sum of the

energies of the individual systems, i.e., E(A+B) = E(A)+E(B).

1.4.2 The importance of symmetry

A similarly important aspect in the construction of efficient structural representa-

tions is that of symmetry [37]. Enforcing the expected physical symmetries of the

target has the obvious advantage of letting the regression focus on the chemical and

structural variability of the dataset, thus avoiding to waste a great amount of refer-

ence calculations in learning a piece of information that can be encoded a priori

within the structural representation. The simplest example of this is the invariance of

most electron-structure properties to permutation of identical atoms. Internal coor-

dinates representations such as Coulomb matrices [38], where the atomic structure

is mapped to a list of pairwise Coulomb interactions Zi Z j /ri j between the atoms,

or similar bag-of-bonds (BoB) descriptors [39], for instance, suffer from the lack of

permutational invariance and would require to average the representation over all the

possible permutations of identical atomic pairs [40]. However, because of the unfa-

vorable (exponential) scaling of the number of these permutations with the system

size, the problem can be more effectively circumvented by adopting stochastic sorting

algorithms of the feature vector components [41].

The need for representations that are naturally endowed with permutational symmetry

has favoured the development of smooth functions of the atomic coordinates that

are inherently defined to solely depend on the chemical species (H, C, O, ...) rather

than on the identity of the atoms involved. Symmetry functions [36], for instance,

are defined as a smooth representation of the internal coordinates of the system by

collecting, for any given atom, the contributions coming for all the atomic neighbours

of a given chemical species. A similar construction can be found in any field-based

representation that is derived from the sum of species-dependent Gaussian functions

centered on the atomic positions [27, 31, 42, 43]. For example, a generic atom-density

representation would be constructed starting from the following real-space definition,
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ρa(x) =
∑
j∈a

exp

(
−|x − r j |2

2σ2

)
, (1.13)

with a labeling the chemical species of the atoms j and σ defining the Gaussian width

that modulates the spatial resolution of atomic field. It is worth noticing that the

inherent smoothness of this class of field-derived representations is also important to

limit the fluctuations of the machine-learning predictions in response to an arbitrary

variation of the atomic coordinates. In fact, even though representations based on

internal coordinates are also a smooth function of atomic positions, including a

posteriori the permutational symmetry by sorting carries the major drawback of

introducing derivative discontinuities that damage the function regularity needed to

effectively predict the target quantity for arbitrarily distorted structures [44].

Of course, swapping the label of identical atoms is not the only symmetry relationship

that can be attributed to the ground-state properties of a system. Assuming that no ex-

ternal field is introduced, any molecule or material lives in fact in a homogeneous and

isotropic three-dimensional space; this implies that spatial symmetries such as rigid

translations, rotations and reflections about a mirror plane, need to be considered

when constructing any machine learning model. While using representations based

on internal coordinates carries the advantage of having these symmetries naturally

built-in, representations constructed as smooth functions of the atomic positions,

such as the one of Eq. (1.13), typically require to explicitly introduce these symmetries

by performing prescribed integral operations [45]. These are presented in details in

the following section.

1.5 Atom density representations

To exemplify the inclusion of spatial symmetries within the machine-learning model,

we consider here the case of atom density representations as derived in Ref. [45]. The

rationale behind this construction is particularly relevant for our discussion, as it

underpins the general concepts by which the original methods presented in this thesis

are derived.



Introduction 11

1.5.1 Translational symmetry

Let us start by considering a general atom density field as the one reported in Eq. (1.13).

Borrowing Dirac notation (Appendix A), this can be defined as follows,〈
ax

∣∣ρ〉≡∑
j
δaa j gσ(x − r j ) , (1.14)

with gσ a Gaussian function of width σ and 〈ax | indicating the species-dependent

real space basis over which the abstract density state
∣∣ρ〉

of the atomic structure is

projected. To introduce the invariance of the representation under translations, hence

assuming that no external field is applied to the system, one can consider the two-

body correlation function that arises upon performing the integral over all possible

continuous translation operators t̂ that are applied to the product of two atomic

densities
∣∣ρ〉

, i.e.,∫
d t̂ 〈a1x1| t̂

∣∣ρ〉〈a2x2| t̂
∣∣ρ〉

=
∑
i j
δa1aiδa2a j

∫
d t gσ1 (x1 − r i + t )gσ2 (x2 − r j + t )

=
∑
i j
δa1aiδa2a j gσ

(
(x1 −x2)− (r i − r j )

)
=

∑
i j
δa1aiδa2a j gσ

(
x − r i j

)
(1.15)

where we defined x = x1 − x2 and r i j = r i − r j in the last equality. Note that while

the final pairwise Gaussian gσ comes from the convolution properties of Gaussian

functions, so that σ =
√
σ2

1 +σ2
2, any pair of localized functions about the atomic

positions would lead to a similar result. Unsurprisingly, introducing the invariance of

the representation under translations therefore corresponds to fix the origin of the

reference frame about the atoms of the system. In view of designing a local regression

model for the prediction of physical quantities, one can then proceed to single out an

atom-centered representation that relies on the following definition:〈
ax

∣∣ρi
〉≡∑

j
δaa j gσ(x − r i j ) . (1.16)

The actual localization of the representation about the atom i can be performed by

applying to Eq. (1.16) a more or less smooth cutoff function of radius rc. From now

on, we will therefore refer to
∣∣ρi

〉
as an abstract local density representation of the

atomic structure centered about the atom i , thus always implying the inclusion of the

translational symmetry.
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1.5.2 2-body invariants

Unlike translational invariance, adapting the representation to the symmetries of the

O(3) group, namely three-dimensional rotations and reflections, is less trivial, and it

strongly depends on the nature of the learning target. If one is interested in learning

electronic energies, as well as any other scalar quantity, the rotational symmetry can

be introduced by averaging the representation over all the possible three-dimensional

rotations R̂ that are defined by the triplet of Euler angles (α,β,γ) over 8π2. In doing so,

we will make extensive use of spherical harmonics 〈x̂ |lm〉 ≡ Y l
m(x̂) as a complete basis

to represent angular correlations over the unit sphere, so that the actual regression

features of the machine-learning model will be always identified by the spherical

harmonics expansion coefficients of the symmetry-adapted structural representation.

For example, performing the rotational average on Eq. (1.16) yields a rotationally

invariant representation of the kind

〈
ax

∣∣ρi
〉

=
1

8π2

∫
dR̂ 〈ax | R̂ ∣∣ρi

〉
= 〈x̂ |00〉〈ax00

∣∣ρi
〉

, (1.17)

where
〈

ax00
∣∣ρi

〉
expresses the spherically symmetric components of the species-

dependent density about the atom i . Note that, from here on, we will always use an

overline notation to concisely indicate the result of the rotational average.

The isotropic density components
〈

ax00
∣∣ρi

〉
can directly be used in a regression to

represent 2-body radial correlations. However, the real challenge in the interpolation

of electronic energies, as well as of any other scalar physical observable, consists in

representing the complicated many-body structural correlations that are encoded in

the outcome of a quantum-mechanical calculation. For this reason, correlations of

higher order must be introduced.

1.5.3 3-body invariants

Correlations beyond 2-body can be obtained by applying the rotational average on

the tensor products of Eq. (1.16) with itself. At order ν+1 in body-correlations, we can

then generally write

〈
a1x1; a2x2; ...; aνxν

∣∣∣ρ⊗ν
i

〉
=

1

8π2

∫
dR̂ 〈a1x1| R̂

∣∣ρi
〉〈a2x2| R̂

∣∣ρi
〉

...〈aνxν| R̂
∣∣ρi

〉
.

(1.18)

A particularly important case, illustrated in Fig. 1.1, is the one of ν = 2, corresponding

to 3-body correlations. In this case, the rotational average of a pair of spherical
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Figure 1.1 – 3-body correlations arise from the rotational average of a pair of smeared
atomic densities sampled in a local environment of a given atom i .

harmonics components yields an expansion over Legendre polynomials Pl , which has

the role of representing the angular correlation between two points x1 and x2 located

within a spherical environment of the central atom i :

〈
a1x1; a2x2

∣∣∣ρ⊗2
i

〉
=

1

8π2

∫
dR̂ 〈a1x1| R̂

∣∣ρi
〉〈a2x2| R̂

∣∣ρi
〉

=
1

8π2

∞∑
l=0

[∑
m

〈
a1x1l m

∣∣ρi
〉? 〈

a2x2lm
∣∣ρi

〉] 8π2

2l +1

∑
m′

〈
x̂1

∣∣l m′〉〈
lm′∣∣x̂2

〉
=

1

4π

∞∑
l=0

[∑
m

〈
a1x1lm

∣∣ρi
〉? 〈

a2x2l m
∣∣ρi

〉]
Pl (x̂1 · x̂2)

=
1

4π

∞∑
l=0

〈
a1x1l ; a2x2l

∣∣∣ρ⊗2
i

〉
Pl (x̂1 · x̂2) ,

(1.19)

where we used the spherical harmonics addition theorem,

Pl (x̂1 · x̂2) =
4π

2l +1

∑
m′

〈
x̂1

∣∣lm′〉〈
lm′∣∣x̂2

〉
. (1.20)

In the last equality of Eq. (1.19), the 3-body rotationally invariant coefficients that can

be used as regression features are defined as follows,〈
a1x1l ; a2x2l

∣∣∣ρ⊗2
i

〉
=

∑
m

〈
a1x1l m

∣∣ρi
〉? 〈

a2x2lm
∣∣ρi

〉
, (1.21)

with
〈

axl m
∣∣ρi

〉
the spherical harmonic projections of the atom-density field. The

calculation of these projections typically requires to expand the representation over

an orthogonal radial basis 〈n|x〉 ≡ Rn(x), so that, in practice, one has to deal with

the discretized set of orthogonal projections
〈

anl m
∣∣ρi

〉
=

∫ ∞
0 d xx2 〈n|x〉〈axlm

∣∣ρi
〉

.
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Analytical formulas for the calculation of
〈

anl m
∣∣ρi

〉
, that have extensively been used

to produce the results of this thesis, are detailed in Appendix B.

In practice, the spherical harmonics expansion has to be truncated at a certain cutoff

value lmax that determines the accuracy by which angular correlations in real space

are represented. In this regard, the local nature of the representation plays a crucial

role: single-centered spherical harmonics expansions of arbitrarily extended three-

dimensional fields are known to converge very slowly, so that their practical calculation

becomes numerically affordable only when the field is spatially localized around the

expansion center [46]. As a final remark, note that the structural features of Eq. (1.21)

are, by construction, also invariant under inversion operations about the atomic

center, so that the final representation is adapted to the symmetries of the O(3) group.

1.5.4 4-body invariants

As a final example, we consider the case of 4-body invariants. From Eq. (1.18), these

are generally defined as〈
a1x1; a2x2; a3x3

∣∣∣ρ⊗3
i

〉
=

1

8π2

∫
dR̂ 〈a1x1| R̂

∣∣ρi
〉〈a2x2| R̂

∣∣ρi
〉〈a3x3| R̂

∣∣ρi
〉

. (1.22)

x1

x2
x3ω1

ω2

ω3

Figure 1.2 – 4-body angular correlations are uniquely identified by a triplet of angles.

Introducing an additional order in density-correlations implies that the effect of the

rotational average cannot simply be represented through an expansion over Legendre

polynomials. As illustrated in Fig. 1.2, given the triplet of versors (x̂1, x̂2, x̂3) that

identify the position on the unit sphere of 3 points around the central atom, 4-body

angular correlations are uniquely determined by a triplet of angles (ω1,ω2,ω3) that

define the relative orientation of the three versors. For instance, given (êx , ê y , êz)
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the Cartesian unit vectors, any triplet (x̂1, x̂2, x̂3) that preserves the internal angles

(ω1,ω2,ω3) can be defined applying a rigid rotation to the following stencil,
x̂1 = êz

x̂2 = sinω1 êx +cosω1 êz

x̂3 = sinω2
(
cosω3 êx + sinω3 ê y

)+cosω2 êz .

(1.23)

Thanks to this realization, the rotationally invariant expansion of Eq. (1.22) can be

conveniently written as〈
a1x1; a2x2; a3x3

∣∣∣ρ⊗3
i

〉
=

∑
l1l2l3

〈
a1x1l1; a2x2l2; a3x3l3

∣∣∣ρ⊗3
i

〉
〈ω1ω2ω3|l1l2l3〉 . (1.24)

As in the description of molecular correlations in theories of dipolar fluids [47], the

rotationally invariant angular functions 〈ω1ω2ω3|l1l2l3〉 are defined by coupling a

triplet of spherical harmonics via the Wigner-3J symbols:

〈ω1ω2ω3|l1l2l3〉 =
∑

m′
1m′

2m′
3

(
l1 l2 l3

m′
1 m′

2 m′
3

)〈
x̂1

∣∣l1m′
1

〉〈
x̂2

∣∣l2m′
2

〉〈
x̂3

∣∣l3m′
3

〉
. (1.25)

Similarly, the rotationally invariant expansion coefficients come from the coupling of

a triplet of atom density spherical harmonics components:

〈
a1x1l1; a2x2l2; a3x3l3

∣∣∣ρ⊗3
i

〉
=

∑
m1m2m3

(
l1 l2 l3

m1 m2 m3

)
〈

a1x1l1m1
∣∣ρi

〉〈
a2x2l2m2

∣∣ρi
〉〈

a3x3l3m3
∣∣ρi

〉
.

(1.26)

When compared with their 3-body counterparts, these coefficients are not necessarily

invariant under inversion symmetry: applying an inversion operation î to the system

would in fact bring a factor (−1)l1+l2+l3 that might or not cause a change of sign

depending on the parity of the combination of angular momenta. This is coherent

with the fact that the triplet of versors exemplified in Fig. 1.2 leaves total freedom

on the handedness of the real space representation. If one is interested in learning

physical quantities that are invariant under inversion of the atomic structure, such as

the electronic energy of a system, then only the coefficients for which the combination

of angular momenta l1+ l2+ l3 is even need to be retained. Conversely, learning chiral

properties of the system call for structural representations that change sign under an

inversion operation, so that one should only retain the 4-body coefficients that realize

an odd combination of angular momenta. For instance, the prediction of circular

dichroism absorption spectra [48] is a clear example of a property that would require

to adopt a chiral representation of the atomic structure [49].
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1.5.5 Kernel trick and non-linearity

Upon the substitution x → n, the discretized set of invariant features previously

derived correspond to the local environment representations that underlie the smooth

overlap of atomic positions (SOAP) method [42], namely the SOAP power spectrum and

bispectrum. In the notation of Bartók et al. [42] and De et al. [23], these correspond to

pa1a2
n1n2l ≡

〈
a1n1l ; a2n2l

∣∣∣ρ⊗2
i

〉
, ba1a2a3

n1n2n3l1l2l3
≡

〈
a1n1l ; a2n2l ; a2n3l

∣∣∣ρ⊗3
i

〉
. (1.27)

In particular, the contraction of the 3-body representation over the feature space

defined by the rotational invariant basis 〈a1n1l ; a2n2l | yields the popular SOAP kernel

routinely used in machine-learning applications [50, 51]. For any pair of atomic

environments i and j belonging to any pair of structures A and B , a SOAP kernel can

then be computed as follows,

k(Ai ,B j ) =
〈
ρ⊗2

i (A)
∣∣∣ρ⊗2

j (B)
〉

=
∑

a1a2n1n2l

〈
ρ⊗2

i (A)
∣∣∣a1n1l ; a2n2l

〉〈
a1n1l ; a2n2l

∣∣∣ρ⊗2
j (B)

〉
.

(1.28)

In this context, a crucial application of the kernel trick consists in elevating the SOAP

kernel to an integer power ζ, which underlies non-linear representations that are built

as the tensor product of the rotationally invariant 3-body expansion coefficients, i.e.,∣∣∣∣(ρ⊗2
i

)⊗ζ〉
=

∣∣∣ρ⊗2
i

〉
⊗

∣∣∣ρ⊗2
i

〉
⊗ ...⊗

∣∣∣ρ⊗2
i

〉
︸ ︷︷ ︸

ζ times

. (1.29)

For ζ = 2, for instance, the kernel trick reads as follows,

k(ζ=2)(Ai ,B j ) =

〈(
ρ⊗2

i

)⊗2
(A)

∣∣∣∣(ρ⊗2
j

)⊗2
(B)

〉
=

〈
ρ⊗2

i (A)
∣∣∣ρ⊗2

j (B)
〉2

= k2(Ai ,B j ) . (1.30)

This choice has been widely exploited to improve the accuracy of machine-learning

predictions [50, 52]. The reason for this improvement can be attributed to the higher

order of atomic correlations that are introduced upon taking the tensor products

of the 3-body representation with itself. However, because each of the individual

representations is rotationally invariant, it is easy to show that this is only partially

correct, as the angular information associated with correlations beyond 3-body would

necessarily be missing [53].
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1.5.6 The importance of being many-body

Representations that are truly many-body need to be constructed following the recipe

of Eq. (1.18). In this regard, one should consider that the actual calculation of many-

body atom density representations is hindered by the exponential scaling of the

number of combinations between the angular momentum components that need to

be coupled when performing the rotational average. Remarkably, efficient recursive

evaluation schemes have recently been proposed to overcome this obstacle [54], that

could be used in the near future to entirely bypass the need for non-linear kernels

similar to the one of Eq. (1.30). As a related aspect, one should also consider that

increasing the body-order of structural correlations can be essential to guarantee the

injective relationship between the physical target and the machine-learning represen-

tation, meaning that structures with different physical observables should always be

associated with distinct atomistic representations. It was in fact a widespread belief

that 3-body representations such as the one of Eq. (1.19) could always be used to

distinguish any pair of different atomic environments, a belief that has only recently

been proven wrong using specifically designed structural manifolds [55].

1.6 Research outline

This thesis is part of a general effort towards the derivation of machine-learning

models of molecules and materials that can be used to predict a large variety of

quantum-mechanical observables, including scalars, tensors and scalar fields, while

also presenting a consistent description of long-range interactions. Following the line

of thought introduced in the previous sections, the challenge of obtaining models that

are at the same time highly transferable across systems of different nature and size,

and that can yield accurate predictions using a relatively small amount of training

data, is addressed by deriving mathematical representations of the atomic structure

that satisfy some stringent physical principles. The thesis achievements are divided in

three parts, each of which contains chapters that, individually, are adapted from the

articles published by the candidate during his doctoral studies.

The first part addresses the problem of learning tensorial properties, such as po-

larizabilities, electronic multipoles and dielectric responses. When compared to

scalar quantities, physical tensors carry the additional complexity of following pre-

scribed transformation rules upon a three-dimensional rotation of the system, which

ultimately requires one to design representations of the atomic structure that are

covariant, rather than invariant, under rotations. Chapter 2 tackles this problem by

deriving a class of symmetry-adapted representations and kernels that generalize
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the SOAP construction to include spherical harmonics covariance properties [56].

Chapter 3 shows how this class of tensorial features can be used in practice to learn

any physical tensor that is decomposed in its irreducible spherical components (ISCs),

demonstrating the effectiveness of the method in predicting the optical response se-

ries of water oligomers and the electronic dielectric properties of liquid water [57]. In

Chapter 4, these achievements are fully exploited within a learning model that is able

to readily interpolate coupled-cluster-level molecular polarizabilities across a very

heterogeneous dataset [58]. Finally, Chapter 5 shows how disposing of accurate polar-

izability predictions associated with an entire molecular dynamics trajectory enables

the calculation of Raman spectra in different crystal polymorphs of paracetamol [59].

The second part of the thesis discusses the possibility of predicting electronic-structure

properties by building on the symmetry-adapted regression method previously in-

troduced. Chapter 6, in particular, introduces a learning framework that is able to

regress electronic charge densities, as well as any three-dimensional scalar field that

can be expanded on a multi-centered spherical harmonics basis [60]. In Chapter 7,

the accuracy of the model is greatly increased by making the electron density calcula-

tions coherent with state-of-the-art resolution of the identity (RI) schemes commonly

used in quantum-chemistry [61]. In both chapters, we will see how the local and

symmetry-adapted nature of the learning model comes along with highly transferable

predictions across broad chemical and conformational spaces, opening the door to

inexpensive electron density calculations that scale linearly with the system size.

The last part of the thesis addresses the long-standing problem of overcoming the

nearsighted nature of local machine-learning representations, which neglect, by con-

struction, any long-range effect that occurs farther than the cutoff distance used to

define the spatial extent of the atomic environments. In Chapter 8, this is done by

deriving a method that incorporates the long-range information of the system via

Coulomb-like potential representations, while still preserving a certain degree of

transferability [43]. Finally, Chapter 9 reports an improved version of the method,

where density and potential features are combined in a single multi-scale represen-

tation, that is flexible enough to learn both local and non-local effects on an equal

footing, embracing Pauli repulsion, electrostatics, polarization and dispersion inter-

actions [62]. Crucially, when applied to the regression of potential energy surfaces,

the method proposed can also be put under rigorous formal correspondence with

the multipole expansion of long-range interactions, in fact entirely bypassing the

need of adopting arbitrary electrostatic baselines of the electronic energy, as well

as any intermediate machine-learning model that targets the prediction of atomic

partial-charges and multipoles.
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2 Symmetry-adapted representations

The importance of endowing structural representations with prescribed spatial sym-

metries is entirely manifested when considering the implications of learning tensorial

properties, or, similarly, any quantity that is not invariant under a rigid rotation or

reflection of the atomic structure, such as atomic forces, dipoles, multipoles and

polarizabilities. This chapter defines the problem of tensor learning and provides the

theoretical background that has led to the development of symmetry-adapted repre-

sentations within linear and kernel-based regression models. Sections and figures are

adapted the following book contribution:

A. Grisafi, D. M. Wilkins, M. J. Willatt and M. Ceriotti, “Atomic-Scale Representation and Statistical

Learning of Tensorial Properties”, in Machine Learning in Chemistry, Vol. 1326, edited by E. O. Pyzer-

Knapp and T. Laino (American Chemical Society, Washington, DC, Jan.2019), pp. 1–21. Copyright ©

2019 American Chemical Society. AG contributed to writing the manuscript and produced the figures

for the examples reported.

2.1 Covariant transformations

Let us start by considering the prototypical case of a Cartesian tensor y ≡ yαβ... of

rank r , with the combination of indices {αβ...} running over a number of Cartesian

components equal to 3r . Given any arbitrary distorted atomic structure with no partic-

ular internal symmetry, we are interested in characterizing the transformations of the

tensor under only three families of symmetry operations (viz., translations, rotations

and reflections). Since these symmetry operations do not affect the internal geometry

of an atomic structure, we can think equivalently in terms of active transformations, in

which the system undergoes the symmetry operation and the reference frame remains

fixed, or in terms of passive transformations, in which the reference frame undergoes

the symmetry operation and the system remains fixed. In the following, we summarize

21
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the symmetry operations by adopting an active picture and assume the system is not

subjected to an external field.

Translations. Any physical property of an atomic structure A remains unchanged

under a rigid translation t̂ of atomic positions, that is,

yαβ...(t̂ A) = yαβ...(A) . (2.1)

Rotations. Under the application of a rigid rotation R̂ to an atomic structure A, we

assume that each Cartesian component of the tensor undergoes a covariant linear

transformation. Using Einstein notation for convenience, and representing by R the

rotation matrix corresponding to R̂, the rotated tensor is

yαβ...(R̂ A) = Rαα′Rββ′ × ...× yα′β′...(A) . (2.2)

Reflections. Applying a reflection operator Q̂ to an atomic structure A through any

mirror plane leads to the following reflected tensor,

yαβ...(Q̂ A) = Qαα′Qββ′ × ...× yα′β′...(A) . (2.3)

2.2 Covariant representations

In general terms, a primitive representation that mirrors a tensor of a given rank r

could formally be built by considering∣∣A;αβ...
〉

= |A〉⊗ |α〉⊗ ∣∣β〉⊗ ... , (2.4)

where |A〉 is an arbitrary description of the system, while |α〉 represents a set of

Cartesian axes which is rigidly attached to the system. When using this primitive

representation in a linear regression model, the tensor component corresponding to

αβ... would be

yαβ...(A) =
〈

w
∣∣A;αβ...

〉
, (2.5)

or

yαβ...(A) =
〈

wαβ...
∣∣A;αβ...

〉
. (2.6)

After minimizing the primal-space loss function of Eq. (1.9), however, the former

possibility would lead to a model that predicts every component to be the same, while
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Figure 2.1 – Provided that one can define a local reference system, it is possible to
learn tensorial properties by aligning the system into a fixed reference frame.

the latter would ignore the known correlations between different components.

To address these problems, one should adapt the primitive descriptor so that it fulfills

each of the symmetries detailed in Eqs. (2.1-2.3). Since the Cartesian basis vectors

are invariant under translations, Eq. 2.1 implies the core representation should itself

be invariant under translations. Following the same procedure as in Sec. 1.5.1 one

can construct a core representation that is invariant under translations by integrating

an arbitrary representation over the translation operator t̂ . One can then proceed to

consider the transformations under SO(3) group operations, namely rotations. Eq. 2.2

implies that a covariant representation for
∣∣A;αβ...

〉
, namely

∣∣∣A;αβ...
〉

, should satisfy

the invariance relationship[
Î ⊗ R̂ ⊗ R̂ ⊗ ...

]∣∣∣(R̂ A
)

;αβ...
〉

=
∣∣∣A;αβ...

〉
, (2.7)

for any rotation R̂. Starting from the primitive definition of Eq. 2.4, there are a variety

of ways to enforce this invariance relationship. One possibility is to use∣∣∣A;αβ...
〉
≡ [

Î ⊗ R̂A→⊗ R̂A→⊗ ...
]∣∣(R̂A→A

)
;αβ...

〉
(2.8)

where the operator R̂A→ is defined to rotate A into a specified orientation which is

common to all the molecules of the dataset (Fig. 2.1).

This works under the assumption that it is always possible to define a unique (and

therefore unambiguous) internal reference frame to rotate A into a specified orien-

tation, which might be possible when the system involved has a particularly rigid

internal structure. A more general strategy, which does not require any assumption on
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the molecular geometry to be made, consists in considering the covariant integration

over the operator R̂ (Haar integration),∣∣∣A;αβ...
〉
≡

∫
dR̂

[
Î ⊗ R̂ ⊗ R̂ ⊗ ...

]∣∣(R̂ A
)

;αβ...
〉

. (2.9)

On the top of this definition, the requirement that a representation be covariant in

O(3), including the reflection symmetry of the tensor as in Eq. 2.3, means that im-

proper rotations must be included, i.e., Ŝ = R̂ × {Î ,Q̂}, with Q̂ representing a reflection

operator. This is done by a simple linear combination of the SO(3) representation

with its reflected counterpart with respect to any arbitrary mirror plane of the system;

that is,∣∣∣A;αβ...
〉

O(3)
=

∣∣∣A;αβ...
〉
+ [

Î ⊗Q̂ ⊗Q̂ ⊗ ...
]∣∣∣(Q̂ A

)
;αβ...

〉
. (2.10)

Upon this procedure, any other reflection operation is automatically included.

2.3 Covariant regression

Having shown how to build a symmetry-adapted representation of the system, let

us see the implications of this procedure for linear regression. Using a symmetry-

adapted representation in a linear regression model leads to the following solution for

the regression weight,

|w〉 =
N∑

n=1

∑
αβ...

(
Ĉ +ηÎ

)−1
∣∣∣An ;αβ...

〉
yαβ...(n), (2.11)

where the covariance is

Ĉ =
N∑

n=1

∑
αβ...

∣∣∣An ;αβ...
〉〈

An ;αβ...
∣∣∣ . (2.12)

Note that the solution for the linear regression weight does not change when the

training structures and corresponding tensors simultaneously undergo a symmetry

operation that the representation has been adapted to. In other words, the same

model results regardless of the arbitrary orientation of structures in the training set.

When moving to the dual, we find the kernel to be

kα
′β′...

αβ... (A,B) =
〈

B ;α′β′...
∣∣∣A;αβ...

〉
. (2.13)
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From Eq. (2.9), this corresponds to considering the following Haar integration:∫
dR̂

∫
dR̂ ′ 〈R̂ A

∣∣R̂ ′B
〉

(RR ′)αα′(RR ′)ββ′ ... (2.14)

As stressed in the Introduction, performing the linear regression in the dual space

should lead to a formally-equivalent model to that resulting from the primal formu-

lation described above; yet, computing this kernel appears to be more complicated

than Eq. (2.9) since it involves two integrations over rotations. If, however, we assume

the core representation |A〉 undergoes a unitary transformation when the system is

rotated, which is implied by the absence of an external field, the construction of a

symmetry-adapted kernel reduces to performing a single integral over rotation:

kα
′β′...

αβ... (A,B) =
∫

dR̂ 〈A| R̂ |B〉 Rαα′ Rββ′ ... . (2.15)

Note that upon defining a collective tensorial index {αβ...}, a kernel matrix of size

3r N ×3r N can be constructed by stacking together each of the 3r ×3r vector-valued

correlation functions. Then, a covariant tensorial prediction of the property of interest

can be carried out according to the GPR prescription of Eq. 1.3. The symmetry-adapted

kernel of Eq. (2.15) is just a generalization of the covariant kernels that have been

introduced by De Vita and collaborators [31] in the context of learning the quantum

atomic forces of a system.

It is instructive to compare the symmetry-adapted kernel definition of Eq. 2.15 to

the kernel that one gets from the aligned descriptors of Eq. 2.8. In this case, building

a kernel function on the top of this descriptor effectively means carrying out the

structural comparison in a common reference frame where the two molecules are

mutually aligned. One can then conveniently learn the tensor of interest component-

by-component through a much simpler scalar regression framework. For the simple

case of rank-1 tensors, for instance, we would get,

k(A,B) = 〈B |R̂B→A|A〉RB→A, (2.16)

where we have defined the best alignment operator as R̂B→A = R̂B→R̂T
A→. This strat-

egy has been successfully used in the learning of electronic multipoles of organic

molecules [63] as well as for predicting optical response functions of water molecules

in their liquid environments [33]. For the latter example, a representation of the

best-alignment structural comparison is reported in Fig. 2.2.

This method for tensor learning has the clear drawback of relying on the definition of a

rigid molecular geometry, for which an internal reference frame can be effectively used
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Figure 2.2 – Representation of the reciprocal alignment between water environments.

to perform the procedure of best alignment. Conversely, covariant kernel functions

carries the great advantage to implicitly carry out both the structural comparison

and the geometric alignment of two molecules simultaneously, neglecting any prior

consideration about the internal structure of the molecule at hand.

2.4 Spherical representation

The family of symmetry-adapted descriptors previously introduced can be effectively

used, in principle, to predict any Cartesian tensor of arbitrary rank. However, we

should notice that having a tensor product for each additional Cartesian axis makes

the cost of the regression scale unfavorably with the tensor rank, producing a global

kernel matrix of dimension (3r )2. In fact, it is well established that a more natural

representation of Cartesian tensors is given by their irreducible spherical components

(ISCs) [64]. As described in Stone [64], the transformation matrix from Cartesian to

spherical tensors can be found recursively, starting from the known transformation

for rank-2 tensors.

Upon trivial manipulations, that might account for the non-symmetric nature of the

tensor, each ISC transforms separately as spherical harmonics
∣∣λµ〉

. Spherical har-

monics form a complete basis set of the SO(3) group. In particular, each λ-component

of the tensor spans an orthogonal subspace of dimension 2λ+1. For instance, the 9

components of a rank-2 tensor separate out into a term (proportional to the trace)

that transforms like a scalar |00〉, three terms that transform like a vector
∣∣1µ〉

, and

five terms that transform like
∣∣2µ〉

. When using a spherical representation, the ker-

nel matrix is block diagonal, which greatly reduces the number of non-zero entries,

and makes it possible to learn separately the different components. An additional

advantage is that the possible symmetry of the tensor can be naturally incorporated

by retaining only the spherical components λ that have the same parity as the tensor

rank r . For instance, the λ = 1 component of a symmetric rank-2 tensor vanishes iden-
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tically, meaning that only the 6 surviving elements of the tensor need to be considered

when doing the regression. Especially for high rank tensors, this property means that

the number of components can be cut down significantly.

In light of the discussion carried out for Cartesian tensors, it is straightforward to

realize how a symmetry-adapted representation that transforms covariantly with

spherical harmonics of order λ should look. Since each ISC is effectively a vector of

dimension 2λ+1, we can first write a primitive representation as∣∣A;λµ
〉

= |A〉⊗ ∣∣λµ〉
, (2.17)

where
∣∣λµ〉

is an angular momentum state of order λ, such that
〈

x̂
∣∣λµ〉

= Y λ
µ (x̂). Its

symmetry-adapted counterpart, which is covariant in R̂, is∣∣∣A;λµ
〉

=
∫

dR̂ R̂ |A〉⊗ R̂
∣∣λµ〉

. (2.18)

Crucially, a tensorial kernel function built on the top of this representation would

transform under rotations as the Wigner-D matrix of order λ, Dλ
µµ′ = 〈λµ|R̂|λµ′〉:

kλµµ′(A,B) =
〈

A;λµ
∣∣∣B ;λµ′

〉
=

∫
dR̂ 〈A| R̂ |B〉Dλ

µµ′(R̂) , (2.19)

a result that has been first introduced in Ref. [57] as the spherical tensor generalization

of the covariant kernel prescription of Ref. [31]. Finally, since the parity of
∣∣λµ〉

with

respect to the inversion operator î is determined by λ, a spherical tensor descriptor

that is covariant in O(3) can be obtained by considering∣∣∣A;λµ
〉

O(3)
=

∣∣∣A;λµ
〉
+ (−1)λ

∣∣∣(î A
)
λµ

〉
. (2.20)

2.5 λ-SOAP representations

We now proceed to characterize the exact functional form of a symmetry-adapted

representation of order λ which can be used to carry out a covariant prediction of

any property that transforms as a spherical harmonic. By merging the general ideas

previously discussed with the atom density construction already reported in the

Sec. 1.5, we derive a family of λ-SOAP representations and kernels that recover the

popular SOAP method of Bartók et al. [42] as the special λ = 0 limit.
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2.5.1 2-body covariants

Let us start considering the definition of Eq. (2.18) for building an abstract spheri-

cal tensor representation of order λ. At the second order in structural correlations,

replacing the abstract state |A〉 with the environmental state
∣∣ρi

〉
in Eq. (2.18) reads∣∣∣ρ⊗1

i ;λµ
〉

=
1

8π2

∫
dR̂ R̂

∣∣ρi
〉⊗ R̂

∣∣λµ〉
. (2.21)

When represented in real space, the previous representation carries a formal resem-

blance with the scalar 3-body representation of Eq. (1.19). This time, however, because

one of the fields is given by
∣∣λµ〉

, the effect of the rotational average is to single out

the density expansion coefficients that transform covariantly with the spherical har-

monics of order λ, i.e.,〈
ax ; x̂ ′

∣∣∣ρ⊗1
i ;λµ

〉
=

1

8π2

∫
dR̂ 〈ax | R̂ ∣∣ρi

〉〈
x̂ ′∣∣ R̂

∣∣λµ〉
=

1

4π

〈
axλµ

∣∣ρi
〉

Pλ(x̂ · x̂ ′) ,
(2.22)

with Pλ the Legendre polynomial that expresses the angular correlation between

the point x where the atom density is evaluated and the versor x̂ ′ that is used to

evaluate the angular momentum ket
∣∣λµ〉

. The covariance property of the real space

representation is therefore entirely included in theλ spherical harmonics components

of the local atom density,
〈

axλµ
∣∣ρi

〉
, recovering theλ = 0 limit as

〈
ax00

∣∣ρi
〉

. Note that

the covariance of the 2-body representation under inversion symmetry is naturally

included in the definition of the coefficients
〈

axλµ
∣∣ρi

〉
, so that the representation of

Eq. (2.22) is automatically covariant within the O(3) manifold.

2.5.2 3-body covariants

Extending the definition of Eq. (2.21), the inclusion of 3-body structural correlations

within an abstract spherical tensor representation implies to deal with an additional

tensor product with the environmental ket
∣∣ρi

〉
:∣∣∣ρ⊗2

i ;λµ
〉

=
1

8π2

∫
dR̂ R̂

∣∣ρi
〉⊗ R̂

∣∣ρi
〉⊗ R̂

∣∣λµ〉
. (2.23)

Its real-space representation is illustrated in Fig. 2.3. In this case, the effect of the

rotational average is more convoluted than the one previously reported, and it carries

formal analogies with the scalar 4-body structural representation of Eq. (1.24). Fol-

lowing the same rationale outlined in Sec. 1.5.4, the correlation function in real space
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Figure 2.3 – Illustration of the real-space construction of 3-body density-correlations
that are endowed with the rotational symmetry of spherical harmonics.

results as an expansion over rotational invariant functions of the kind 〈ω1ω2ω3|l1l2λ〉,
with (ω1,ω2,ω3) the triplet of angles that uniquely defines the reciprocal orientation

of three versors (x̂1, x̂2, x̂3) on the unit sphere. In particular, we get〈
a1x1; a2x2; x̂3

∣∣∣ρ⊗2
i ;λµ

〉
=

1

8π2

∫
dR̂ 〈a1x1| R̂

∣∣ρi
〉〈a2x2| R̂

∣∣ρi
〉〈x̂3| R̂

∣∣λµ〉
=

∑
l1l2

〈
a1x1l1; a2x2l2

∣∣∣ρ⊗2
i ;λµ

〉
〈ω1ω2ω3|l1l2λ〉 .

(2.24)

As for the 2-body case, the 3-body expansion coefficients
〈

a1x1l1; a2x2l2

∣∣∣ρ⊗2
i ;λµ

〉
play

the role of expressing the covariance of the representation under rotations. Their exact

definition comes from the combination of density angular momentum components

that are compatible with the spherical tensor of order λ:〈
a1x1l1; a2x2l2

∣∣∣ρ⊗2
i ;λµ

〉
=

∑
m1m2

〈
l1m1, l2m2

∣∣λµ〉〈
a1x1l1m1

∣∣ρi
〉? 〈

a2x2l2m2
∣∣ρi

〉
,

(2.25)

with
〈

l1m1, l2m2
∣∣λµ〉

the Clebsch-Gordan (CG) coefficients that realize the combina-

tion of angular momenta. As in the quantum-theory of angular momentum, the pair

of states |l1m1〉 and |l2m2〉 must satisfy the triangular relation |l1 − l2| ≤ λ≤ |l1 + l2|.
This makes clear that the λ = 0 limit of Eq. (1.19) is immediately recovered by asking

for the two angular momenta states to be the same, consistently with the properties

of CG-coefficients 〈l1m1, l2m2|00〉 ∼ δl1l2δm1m2 , i.e.,〈
a1x1l1; a2x2l2

∣∣∣ρ⊗2
i ;00

〉
= δl1l2

∑
m1m2

δm1m2

〈
a1r1l1m1

∣∣ρi
〉? 〈

a2r2l2m2
∣∣ρi

〉
. (2.26)

Extending the discussion already carried out in Sec. 1.5.4, the application of an in-
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version operator î to the atomic coordinates of the system implies that the covariant

coefficients of Eq. (2.25) transform as〈
a1x1l1; a2x2l2

∣∣∣∣(îρi
)⊗2

;λµ

〉
= (−1)l1+l1

〈
a1x1l1; a2x2l2

∣∣∣ρ⊗2
i ;λµ

〉
. (2.27)

As a result, representations that are O(3)-covariant with spherical tensors of order λ

can be obtained by retaining only the components for which the combination l1 + l2

has the same parity as λ, i.e., for which l1 + l2 +λ is even. Representations of this kind

can straightforwardly be used to learn the ISCs of any symmetric Cartesian tensor, as

well as of any other property that follows spherical harmonics transformations. The

irreducible decomposition of asymmetric tensors, on the other hand, include ISCs

that have an opposite parity under inversion symmetry, thus requiring to retain the

only combinations of density angular momenta for which l1 + l2 +λ is odd. This is

the case, for instance, when asking to regress the response of the electronic energy

to an applied magnetic field, as it comes from the definition of chemical shielding

tensors that enter NMR solid-state spectroscopy [65]. Ultimately, this observation is

consistent with the fact that the magnetic field behaves like a pseudo-vector, i.e., it

preserves its direction under an inversion operation applied to the reference frame.

2.6 λ-SOAP kernels

The previous Section discusses the construction of representations that follow spher-

ical harmonics transformations. The set of 3-body tensorial features reported in

Eq. (2.25), in particular, underlie the definition of the λ-SOAP kernel first introduced

in Ref. [57] starting from the prescription of Eq. (2.19). Considering the inner product

of a pair of λ-SOAP representations, a λ-SOAP kernel can be computed as follows

kλµµ′(Ai ,B j ) =
〈
ρ⊗2

i (A);λµ
∣∣∣ρ⊗2

j (B);λµ′
〉

=
∑

a1a2n1n2l1l2

〈
ρ⊗2

i (A);λµ
∣∣∣a1n1l1; a2n2l2

〉〈
a1n1l1; a2n2l2

∣∣∣ρ⊗2
j (B);λµ′

〉
,

(2.28)

where we once again relied on the substitution x → n to discretize the radial degrees

of freedom by expansion over an orthogonal basis (Appendix B).

When addressing the practical calculation of λ-SOAP representations, it is often more

convenient to use real spherical harmonics [66], as this implies that the kernel of

Eq. (2.28) is purely real. In fact, what one finds upon replacing
∣∣λµ〉

with a real

spherical harmonic is that the components of Eq. (2.25) are either purely real or purely
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imaginary, depending on whether the combination l1+ l2+λ is even or odd. For µ> 0,

for example, λ-SOAP coefficients computed using real spherical harmonics satisfy〈
a1n1l1; a2n2l2

∣∣∣ρ⊗2
i ;λµ

〉?
= (−1)l1+l2+λ

〈
a1n1l1; a2n2l2

∣∣∣ρ⊗2
i ;λµ

〉
. (2.29)

One can therefore discard all imaginary components to enforce the covariance of the

representation under inversion.

2.6.1 Non-linearity

As already discussed in Sec 1.5.5, another crucial aspect to improve the regression

performance is to incorporate non-linearities in the construction of the representation.

For instance, tensor products of the scalar representation introduce higher body-order

correlations, in a way that can be easily implemented in a kernel framework by raising

the kernel to an integer power. When working with tensorial representations, however,

one has to be careful to avoid breaking the covariant transformation properties of

the feature vector. Taking products of
∣∣∣ρ⊗2

i ;λµ
〉

kets would require re-projecting

the product onto the irreducible representations of the group, which would be as

cumbersome as increasing the body-order ν. One obvious solution to this problem

is to multiply the tensorial kernel of order λ by its scalar and rotationally invariant

counterpart, which can then be raised to an integer power ζ without breaking the

tensorial nature of the kernel. This procedure consists in considering

kλ
ζ (Ai ,B j ) = kλ(Ai ,B j )

(
k0(Ai ,B j )

)ζ−1
, (2.30)

which underlies a representation that is built as the following tensor product

∣∣∣ρ⊗2
i ;λµ

〉
⊗
ζ−1∏ ∣∣∣ρ⊗2

i ;00
〉

. (2.31)

For ζ = 1, one recovers the original tensorial kernel, while a non-linear behavior is

introduced for ζ> 1. A considerable improvement of the learning power is usually

obtained when using ζ = 2, while negligible further improvement is observed for ζ> 2.

These considerations also apply to the use of fully non-linear ML models like a neural

network. To guarantee that the prediction of the model is consistent with the group

covariances, the tensorialλ-SOAP features must enter the network at the last layer, and

all the previous non-linear layers can only contribute to different linear combinations

of the tensorial features. Similar ideas have already been implemented in the context

of generalizing the construction of spherical convolutional neural networks [67].





3 Prediction of optical responses

This chapter provides a series of examples that demonstrate how symmetry-adapted

representations and λ-SOAP kernels can be used for the prediction of optical response

tensors of arbitrary rank, both for molecular and condensed-phase systems. An open-

source implementation of the method can be found in the TENSOAP package [68].

Sections and figures are adapted from the following article:

A. Grisafi, D. M. Wilkins, G. Csányi and M. Ceriotti, “Symmetry-Adapted Machine Learning for Tensorial

Properties of Atomistic Systems”, Physical Review Letters 120, 036002 (2018). Copyright © 2018 by

American Physical Society. All rights reserved. AG contributed to deriving and implementing the

λ-SOAP method, collecting the results, running the reference calculations for the liquid water dataset,

writing the manuscript and producing the figures for the examples reported.

3.1 Optical response series

The computational simulation of absorption and scattering spectra, such as infrared,

Rayleigh, Raman, sum frequency generation (SFG) and second harmonic scattering

(SHS), all require as ingredients the optical response tensors that modulate the sus-

ceptibility of the system to the electric field of the incoming radiation. The optical

response series of a system is generally defined as the derivatives of the electronic

energy U with an applied electric field E :

T r
i j k... ≡

∂r U

∂Ei∂E j∂Ek ...
, (3.1)

with r the tensor rank and i j k... labeling the Cartesian components of the tensor. We

aim to demonstrate that tensors as the ones of Eq. (3.1) can be efficiently regressed

using the 3-body λ-SOAP kernel of Eq. (2.28). To show this, we consider the dipole
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moment µ (r = 1), the polarizabilityα (r = 2) and first hyperpolarizability β (r = 3) as

prototypical examples of tensors of increasing rank.

3.2 Cartesian to spherical transformation

The simplest tensor is given by the dipole moment, whose Cartesian components can

directly be mapped to the ones of λ = 1 real spherical harmonics, i.e., {µx ,µy ,µz} =

{µ−1,µ+1,µ0}, and, as such, can straightforwardly be learned using a λ-SOAP represen-

tation of corresponding order. The interpolation ofα and β is instead more involved,

as it requires to first decompose them in the corresponding irreducibile spherical

components (ISCs). Due to the symmetry with respect to permutations of Cartesian

indices – which is implied by the definition of Eq. (3.1) – α corresponds to an irre-

ducible representation involving λ = 0 and λ = 2 spherical components only, while β is

mapped to ISCs corresponding to λ = 1 and λ = 3. Note that, especially for β, working

in the spherical representation implies a massive simplification of the learning task,

since the number of components to be regressed goes from 27 fully coupled Cartesian

elements to just 10 spherical elements that are decoupled in 3 elements for λ = 1 and

7 elements for λ = 3. Explicit transformation matrices between symmetric Cartesian

tensors and (complex) spherical tensors can be found in Ref. [64] both for r =2 and

r = 3. For r = 2, for example, we have,

λ = 0 λ = 2

µ 0 −2 −1 0 +1 +2

xx (1) −1/
p

3 1/2 0 −1/
p

6 0 1/2

x y (2) 0 −i /2 0 0 0 i /2

xz (2) 0 0 1/2 0 −1/2 0

y y (1) −1/
p

3 −1/2 0 −1/
p

6 0 −1/2

y z (2) 0 0 −i /2 0 −i /2 0

zz (1) −1/
p

3 0 0 2/
p

6 0 0

with the number in parenthesis representing the multiplicity M of the Cartesian com-

ponent, i.e., the symmetry of the rank-2 matrix. To compute their inverses straight-

forwardly by taking the conjugate Hermitian, we chose the transformation matrices

between the Cartesian and spherical tensor representations to be unitary. This is

possible if the multiplicity M is taken into account by multiplying both the rows of

the transformation matrix and the Cartesian tensor components by
p

M . Once the

learning has been carried out, the predicted spherical tensors can be transformed

back into the Cartesian representation and the resulting components are divided byp
M to obtain the predicted Cartesian tensor.
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3.3 Definition of tensorial errors

In order to quantify the error when learning tensorial properties in a way that measures

the capability of the method to capture their magnitude and geometric symmetries, we

compute separately for each ISC the root mean square error (RMSE) in the prediction

ελ =

√√√√ 1

N

N∑
i =1

∥∥∥T λ
pred(i )−T λ

ref(i )
∥∥∥2

, (3.2)

as compared with the intrinsic variability of the property

σλ =

√√√√ 1

N −1

N∑
i =1

∥∥T λ(i )ref −〈T λ
ref〉

∥∥2
, (3.3)

where N is the number of reference tensors used for testing the predictions and ‖·‖
indicates the Frobenius norm. This choice reflects the definition of the loss functions

reported in Eqs. (1.9) and (1.11). Note that, for λ > 0, the tensor average 〈T λ
ref〉 is

assumed to be statistically vanishing and we hence only compute it for λ = 0. In fact,

only the scalar components of the tensor are expected to be normally distributed

about an average value 〈T 0
ref〉. Importantly, when computed across the training data,

this average can be used as a baseline value to facilitate the learning exercise by letting

the regression to solely focus on the fluctuations of the property about the average.

Therefore, while a kernel-based prediction for λ> 0 simply reads as

T λ
pred(A) =

∑
I

kλ(A, AI ) · xλ(AI ) , (3.4)

predictions for λ = 0 also require to add the scalar average of the tensor back:

T 0
pred(A) =

∑
I

k0(A, AI )x0(AI )+〈T 0
ref〉 . (3.5)

3.4 Water oligomers response series

As a first example, we consider a dataset made of 1000 flexible and arbitrarily oriented

water molecules in vacuum, for which the optical response series (µ,α,β) is computed

from Eq. (3.1) using high-end quantum chemical methods. 3-bodyλ-SOAP kernels are

computed centering the representation on the only oxygen atom, as the corresponding

environment provides, for this simple system, a complete description of the molecular

structure. Figure 3.1-a) shows the learning curves (the test error ε as a function of the
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Figure 3.1 – Learning curves of the ISCs of dipole µ (λ = 1), polarizabilityα (λ = 0,2)
and hyperpolarizability β (λ = 1,3) for water monomer (left), water dimer (center) and
Zundel cation (right). For all cases the testing data set consists of 500 independent
configurations. Arrows with symbols indicate the intrinsic standard deviation of the
testing data set. λ-SOAP kernels have been computed with an environment cutoff of 4
Å for the monomer and H5O+

2 , and 5 Å for the water dimer.

number of training structures) for all the ISCs of the optical series. Without explicitly

using information on the orientation of water molecules, the λ-SOAP framework can

easily achieve an error below 5% for all components using only 100 training points.

By following the same rationale discussed in Sec. 1.4.1, a natural approach to extend

the λ-SOAP framework to complex molecules, and eventually to condensed phases,

involves decomposing the global properties of the system into atom-centered terms.

When working in the dual formulation, an atom-centered decomposition is equivalent

to learning the system’s properties using a single global kernel that is built as the sum

of all possible local similarities between two configurations,

K λ(A,B) =
1

nAnB

nA∑
i =1

nB∑
j =1

kλ(Ai ,B j ), (3.6)

with Ai representing the i th environment of the configuration A, while kλ(Ai ,B j ) is

the tensorial kernel that compares the i th local environment of the configuration A

with the j th local environment of the configuration B . Considering a water dimer as

an example, we take the two oxygen atoms as centers of the representation (so that

n = 2), and allow all of the surrounding atoms (H and O) to contribute to the smoothed

atom density. From Eq. (3.6), a global tensor property of a dimer A is then predicted
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as an average of individual monomer responses, e.g.,

αλ(A) =
∑
B

K λ(A,B) · xλ(B) =
∑
B

[
1

2

∑
i∈O

1

2

∑
j∈O

kλ(Ai ,B j )

]
· xλ(B)

=
1

2

∑
i∈O

[∑
B

1

2

∑
j∈O

kλ(Ai ,B j ) · xλ(B)

]
=

1

2

∑
i∈O

αλ(Ai ) .

(3.7)
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Figure 3.2 – Difference between the monomer contributions to the isotropic compo-
nent ofα as obtained by λ-SOAP, and the value obtained by direct quantum chemical
calculation of the individual monomer polarizabilities, as a function of the distance
between the oxygen atoms.

With 500 training samples, both the isotropic and anisotropic components of the

dimer polarizability can be learned with a RMSE below 10% of the intrinsic variance

(Fig. 3.1-b)). As shown in the Fig. 3.2, when the two molecules are far apart the

monomer polarizabilities predicted using Eq. (3.7) converge to the values computed

separately for the two monomers. Thus, the discrepancy observed when the molecular

separation is small can be seen as the two-body correction to the dielectric response

function of individual monomers.

As the next step, we consider the case of the Zundel cation H2O+
5 . Being both charged

and chemically active, this system would be difficult to describe in terms of separate

molecular contributions. Fig. 3.1-c) compares the learning curves for µ, α and β,

obtained using a spherical cutoff of 4 Å around each oxygen atom. Note that although

each environment encompasses the entire molecule, learning with atom-centered
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Figure 3.3 – Learning curves of the Zundel cation dielectric response series µ,α and
β as decomposed in their anisotropic (λ> 0) spherical tensor components. Full and
dashed lines refer to predictions that are carried out with λ-SOAP kernel functions
that are covariant in SO(3) and O(3) respectively.

environments implies enforcing the covariance condition at the level of O atoms,

which better captures the physics of the problem. The errors for all components are

well below 5% with 500 training samples, showing that λ-SOAP kernels are well suited

to extend the method to systems which are intrinsically not separable into smaller

molecular units.

All the previous results were obtained using λ-SOAP representations that are covariant

within the SO(3) manifold. In this regard, it is instructive to consider what happens if

one introduces the covariance of the representation under inversion. The comparison

between representations that are adapted in SO(3) and O(3) is reported in Fig. 3.3

taking the Zundel cation as an example. For all the anisotropic ISCs of the optical

series, we observe a systematic improvement of the regression performance when

endowing the kernel with inversion symmetry. This improvement is particularly

pronounced for few training points, while it gets smaller for larger training set sizes,

where the symmetry under inversion is eventually learned from data. This observation

highlights the deep connection between symmetry-adapted structural representations

and the efficiency of the machine-learning model in data-poor regimes.

3.5 Dielectric response of liquid water

In order to test the robustness and generality of the λ-SOAP approach, we consider

the prediction of the dielectric response tensor ε of instantaneous configurations
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of condensed phase water. Simulating the liquid bulk with 3D periodic boundary

conditions, the electronic dielectric tensor can be computed as

ε = 1+ 4π

Ω

dP

dE
. (3.8)

withΩ the cell volume and P the macroscopic polarization of the system across the

cell. When making use of Eq. (3.8) to compute ε by finite differences, one should

consider that the polarization P is ill-defined for periodic systems. In fact, accord-

ing to the modern theory of polarization [69], the value of P in a periodic system is

only defined up to a polarization quantum, so that only differences of polarization

are physically meaningful. For this reason, we make use of the finite electric field

method of Umari and Pasquareallo [70], as implemented in Quantum Espresso [71],

which allows us to consistently estimate the derivative of Eq. (3.8) by computing the

polarization of the system using the Berry phase approach [72]. Using this method, we

compute ε for 1000 different snapshots of a 32-molecule path integral simulation [73]

of room-temperature q-TIP4P/f water [74].

101 102
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Figure 3.4 – Learning curves of the IST components of water dielectric response tensors
ε, through direct learning (red and green lines) and indirect learning going through
the CM relation. The testing data set consists of 500 independent configurations.
Arrows indicate the intrinsic standard deviation of the testing samples. Crosses show
the predictions for 5 ice Ih structures using the ML model trained on liquid water.

Fig. 3.4 shows how an O-centered, rc = 4 Å, λ-SOAP kernel allows us to learn directly

both the isotropic and anisotropic components of εwith a RMSE well below 0.01 a.u.

with just 500 training samples. Interestingly, the regression is much more effective if

performed on the effective molecular polarizability as obtained from the Clausius-
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Mossotti (CM) relation:

α =
Ω

n
(ε−1) · (ε+2)−1 . (3.9)

This underscores the importance of reducing the impact of non-local effects – which

appear in the definition of ε through the volume and macroscopic field effects – when

applying a machine-learning strategy that is based on an atom-centered decomposi-

tion. Indeed, a similar performance can be obtained by learning ε if rc is increased to

5 Å, so that the macroscopic information is captured by the kernel (Fig. 3.5).

Figure 3.5 – Comparison between the learning of the isotropic component ε0 at
three different environment cutoffs rc. (left) direct learning. (right) indirect learning
through CM molecular polarizability.

In Fig. 3.4, we also show the errors for predicting the dielectric constant of 5 proton-

disordered configurations of ice Ih [75] using the model trained on liquid water. Direct

predictions of ε are less accurate than what is seen for the liquid. When going through

the local CM response, however, the accuracy becomes comparable, underscoring the

transferability of the ML model, and the ease with which it can be applied to solids.



4 Prediction of accurate polarizabilities

Having shown the capability of λ-SOAP representations to learn tensorial properties

in a symmetry-adapted fashion, we now test the accuracy of our predictions in a more

challenging and useful scenario. In this chapter, we show how the λ-SOAP approach

can be used for the regression of coupled-cluster-level polarizabilities across a very

heterogeneous molecular dataset, yielding inexpensive tensorial predictions that

present an accuracy comparable, if not larger, to the one of density functional theory.

Sections and figures are adapted from the following article:

D. M. Wilkins, A. Grisafi, Y. Yang, K. U. Lao, R. A. DiStasio and M. Ceriotti, “Accurate molecular polariz-

abilities with coupled cluster theory and machine learning”, Proceeding in the National Academy of

Science 116, 3401–3406 (2019). Copyright © 2019 National Academy of Sciences. AG contributed to

re-implementing an improved version of the λ-SOAP method and to writing the manuscript.

4.1 Accurate polarizabilities from first principles

The dipole polarizability α is a fundamental quantity of interest that underlies in-

duction and dispersion interactions [76, 77], Raman and sum frequency generation

(SFG) spectroscopy [78–81], and represents a key ingredient in the development of

next-generation polarizable force fields [32, 82–84]. Beyond the toy examples reported

in the previous Chapter, accurate and reliable polarizabilities can be quite difficult

to compute [85]. This is primarily due to the fact that α is a response property that

is particularly sensitive to the quantum mechanical description of the underlying

electronic structure. As such, non-trivial electron correlation effects and basis set

incompleteness errors must be simultaneously accounted for. For these reasons, it is

important to provide benchmark values forα that go beyond the accuracy of relatively

cheap quantum chemical methods such as density functional theory (DFT). In this

regard, linear-response coupled-cluster theory [86–88] including single and double
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excitations (LR-CCSD) has been shown to provide considerably more accurate and

reliable predictions for the polarizability of a system when used in conjunction with a

sufficiently large (diffuse) basis set [89–92]. However, such a prediction is accompa-

nied by a substantially larger computational cost (scaling with the sixth power of the

system size), which can become quite prohibitive even when treating molecules with

as few as 10−15 atoms.

Machine-learning methods have already shown that an accuracy on par with (or

even better than) DFT can be achieved in the prediction of many molecular prop-

erties [23, 93], and that DFT [94] or coupled-cluster [10] accuracy can be reached

more easily when using a less accurate but more computationally efficient electronic

structure method as a stepping stone. We aim to demonstrate that the application of

a symmetry-adapted regression framework that makes use of λ-SOAP kernels can be

used to predictαwith a similar level of accuracy. To do so, we present comprehensive,

coupled-cluster level benchmarks for the polarizabilities of the ∼ 7,000 small organic

molecules contained in the QM7b database [95].

4.2 Electronic structure calculations

The QM7b database is made of 7,211 molecules (containing H, C, N, O, S, Cl atoms) and

is based on a systematic enumeration of small organic compounds [38, 96]. Including

a rich diversity of chemical groups, it represents a challenging test of the accuracy

associated with DFT and quantum chemical methodologies. For this dataset, we

computed DFT-based molecular polarizabilities by (numerical) differentiation of the

molecular dipole moment µ, with respect to an external electric field E, using the

hybrid B3LYP [97]. Reference molecular polarizabilities were instead obtained using

LR-CCSD [98]. To account for basis set incompleteness error, which can be even more

important than higher-order electron correlation effects in an accurate and reliable

determination ofα [90–92, 99], we employed the d-aug-cc-pVDZ basis set [100] for all

calculations herein. To enable comparisons between molecules of different sizes, all

error estimates are computed based on polarizabilites divided by the number of atoms

ni of each molecule. On the QM7b database, the popular B3LYP hybrid DFT functional

predicts α with a root mean square error (RMSE) of 0.404 a.u. with respect to the

reference LR-CCSD values. These errors, which include both scalar and anisotropic

contributions, are quite substantial and correspond to 18.3% of the intrinsic variability

within the QM7b database, defined as the coupled-cluster standard deviation σCCSD

of the full Cartesian tensor.
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Figure 4.1 – Error in learning the λ = 0 and λ = 2 components of the per-atom po-
larizability for the QM7b dataset, with different percentages of the λ-SOAP features
retained in calculating the kernels.

4.3 Learning model

3-body λ-SOAP representations were computed using an environment cutoff of rc =

4Å, an angular cutoff of lmax = 6 and nmax = 8 radial functions for both the scalar

(λ = 0) and tensorial (λ = 2) ISCs of α. Especially for λ = 2, this implies that the

number of structural features, defined by the basis 〈a1n1l1; a2n2l2| used to compute

the λ-SOAP representation, is quite large, comprising several tens of thousands of

components. To limit the feature-space size, we adopt the farthest point sampling

(FPS) sorting algorithm, which allows us to retain the most diverse λ-SOAP features

based on their reciprocal Euclidean distances [101]. Upon this procedure, we retain

the most significant 400 features, amounting to ∼2% of the 16,128 components in the

original λ = 0 representation and ∼0.7% of the 59,904 components in the original λ = 2

representation. As exemplified in Fig. 4.1, the rationale behind this choice is justified

by the rapid drop of the prediction error with the number of features retained. In fact,

even if only 10 components of the representation are kept, amounting to 0.06% for

λ = 0 and 0.02% for λ = 2, then the error in predicting the polarizability is ∼15%, which

is comparable to the error incurred when using DFT to predict the CCSD polarizability.

This massive reduction of the feature space size carries the obvious advantage of

greatly speeding up the calculation of the λ-SOAP kernel when computing the inner

product of Eq. (2.28). Finally, we adopt the prescription of Eq. (2.30) with ζ = 2 to

enhance the non-linear character of the tensorial kernels.
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Figure 4.2 – Learning curves for the per-atom polarizabilities of the molecules in the
QM7b database, calculated using either CCSD or DFT, as well as for the difference
(∆) between the two. The testing set consists of 1,811 molecules, and the right-hand
axis shows the RMSE as a fraction of the intrinsic variability of the CCSD polarizabil-
ity σCCSD.

4.4 Learning performance

The highly accurate reference CCSD calculations and the symmetry-adapted learning

framework previously defined lay the foundation for a transferable model to predict

molecular polarizabilities (AlphaML). We first test the regression performance by

computing learning curves on both the DFT and CCSD polarizabilities. We used up

to 5,400 structures for training, while predictions were tested on the remaining 1,811

structures. The structures were added to the training set starting from the most diverse

configurations, according to the FPS algorithm. This procedure is representative of an

efficient learning strategy that aims to obtain uniform accuracy with the minimum

number of reference calculations [10]. We report ML errors in terms of the percentage

of the intrinsic variability of the CCSD dataset (σCCSD = 2.216 a.u. per atom), so as to

provide a direct measure of the learning performance. As illustrated by the learning

curves in Fig. 4.2, using up to 75% of the QM7b database for training yields a 2.5%

RMSE with respect to σCCSD in predicting CCSD polarizabilities. To get a clearer idea

of the accuracy associated with these ML-based predictions, one can compare these

values against hybrid DFT. Using the same metric, the intrinsic error of DFT is 18%

of σCCSD in the prediction of CCSD polarizabilities. This demonstrates that a ML-

based model based on λ-SOAP kernels can yield polarizabilities with an accuracy

that is approximately one order of magnitude greater than DFT. At the same time,

the corresponding DFT polarizabilities can be learned with an error of 3.2% of σCCSD.

As seen in other cases [10, 94], highly accurate quantum chemistry calculations are
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smoother and slightly easier to learn than more approximate methods like DFT.

The AlphaML model can also be trained to evaluate the correction between different

levels of theory, a correction commonly referred to as∆-learning that is often found

to result in much smaller error than learning the raw quantity itself [10, 94]. For

instance, the use of DFT as a baseline to learn CCSD polarizabilities reduces the error

by an additional factor of 2 relative to the direct learning of αCCSD (see Fig. 4.2). ∆-

learning therefore provides a way to further reduce the prediction error at the cost of

performing a baseline DFT calculation.

4.5 Extrapolation to larger molecules

As already exemplified in Eq. (3.7), our definition of the kernel as an average of envi-

ronmental kernels means that the polarizabilities predicted by AlphaML are given as a

sum of predicted polarizabilities for each environment [10]. This feature allows one to

predictα for larger molecules. To test the behavior of the AlphaML in this extrapola-

tive regime, we trained this model on the entire QM7b database, and then predicted

the polarizabilities in a showcase dataset of 52 large molecules, which includes amino

acids, nucleobases, drug molecules, carbohydrates, and 23 isomers of C8Hn , as shown

in the Figure below:

Figure 4.3 – Names and chemical structures of the 52 molecules included in the
showcase dataset. The numbers refer to the position of each molecule in the dataset
and are used for reference in the text and other figures.
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Method RMSE RMSE(λ = 0) RMSE(λ = 2)
CCSD/DFT 0.573 0.348 0.456
CCSD/ML 0.244 0.120 0.212
DFT/ML 0.302 0.143 0.266

∆(CCSD-DFT)/ML 0.181 0.083 0.161

Table 4.1 – RMSE in the prediction of the per-atom polarizabilities of the 52 showcase
molecules. CCSD/DFT denotes the discrepancy between CCSD and DFT values, while
CCSD/ML and DFT/ML give the errors in predicting CCSD and DFT polarizabilities us-
ing AlphaML.∆(CCSD-DFT)/ML gives the error in predicting the differences between
the CCSD and DFT polarizabilities. All ML predictions are based on training on the
full QM7b database. The total RMSE is expressed in a.u. per atom and broken down
into the errors associated with the scalar (λ = 0) and tensorial (λ = 2) components ofα.

In Table 4.1, we show the RMSE errors in predicting α for the showcase molecules

using AlphaML, as well as the error made when using DFT to approximate CCSD.

Table 4.1 also breaks down the error into the λ = 0 and λ = 2 components ofα; with an

error in the anisotropic response comparable to that in the trace, this demonstrates

that AlphaML learns both components with similar efficiency. As seen in the previous

section, we again note that using the AlphaML model to predict CCSD polarizabilities

is more accurate than simply using DFT. However, the use of DFT as the baseline in

the ∆-learning sense leads to a further reduction of ∼ 20−30% in the error. While

AlphaML predicts CCSD polarizabilities of the showcase molecules with better-than-

DFT accuracy, we observe a substantial decrease in accuracy, which is to be expected

when the model is extrapolated to the larger molecules in the showcase dataset.

We can investigate the performance of AlphaML in more detail by analyzing the er-

rors of individual molecules in the showcase dataset. Fig. 4.4 shows that the errors

are actually very small for most molecules. Large errors occur predominantly for

highly-polarizable compounds, particularly those that show a large degree of conju-

gation, such as long-chain alkenes and the purine nucleobases. For these systems,

the underlying electronic structure is characterized by a high degree of delocaliza-

tion, which requires larger cutoffs and more complex reference molecules to ensure

accurate predictions. The ML predictions for the tensorial component of the po-

larizability, α(2), tend to be slightly less accurate than the DFT reference, except for

the highly-polarizable alkenes, for which AlphaML dramatically outperforms DFT.

Sulfur-containing structures, which are poorly represented in QM7b, also exhibit

comparatively large errors.

The large discrepancy between DFT, CCSD, and AlphaML observed for alkenes (like

octatetraene) reflects the non-local and collective nature of the underlying physics in
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Figure 4.4 – RMSE made in approximating the λ = 0 (bottom panel) and λ = 2 (top
panel) components of the per-atom polarizability in the showcase dataset. The x-axis
corresponds to the numerical indices provided in the showcase molecule key in the
SI, and the vertical lines show the partitioning of the dataset into the different groups
outlined in the same figure. Red squares show the ML error, blue circles the error
made in using DFT to approximate CCSD, and black crosses the error made when
∆-learning the CCSD correction with respect to DFT.

these systems, as well as the inherent local structure of the AlphaML model. For DFT

and CCSD, the narrowing HOMO-LUMO gaps in conjugated hydrocarbons leads to

near-metallic states which are known to exhibit strong multi-reference character [105].

As such, these systems represent a significant challenge for electronic structure meth-

ods (like DFT and CCSD) that are not explicitly based on a multi-reference wave-

function. In practice, this leads to divergent polarizabilities [106, 107], and methods

like CCSD are no longer reliable as the source of reference quantum chemical data

for machine learning. A machine-learning framework like AlphaML, which relies on

local atomic environments to represent structures, tacitly disregards any collective

(non-local) behavior that extends beyond the range of the local domains and the size

of the molecules included in the training set.

As shown in Fig. 4.5, the per-carbon polarizabilities predicted by AlphaML there-
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Figure 4.5 – Polarizability per carbon atom (α/nC ) vs. number of carbons (nC ) for
the series of s-trans alkenes (from C6H8 to C22H24) and acenes (from benzene to
pentacene), as well as fullerene (C60). The reference CCSD results for anthracene
and tetracene were taken from Ref. [102], and that for C60 from Ref. [103]. The green
squares (and error bars) indicate the experimental measurements for C60 [104]. Results
are provided from DFT and CCSD calculations, as well as the corresponding AlphaML
models.

fore saturate to a constant value for the s-trans alkenes and acenes that are larger

than those included in the QM7b dataset, i.e., hexatriene and benzene, respectively.

Although this is a limitation when trying to learn collective and non-local physics,

the local structure of AlphaML is also instrumental for obtaining the accurate and

transferable predictions that we demonstrated on the showcase dataset. Even when it

comes to challenging, conjugated systems with a vanishing HOMO-LUMO gap, the

predictions of AlphaML are stable and completely avoid the unphysical and divergent

predictions of more costly (but far from reference) quantum mechanical methods like

DFT and CCSD. For molecules with a sizable gap (like C60), the non-locality is less

pathological and AlphaML performs remarkably well. For this prototypical nanotech-

nological system, machine-learning predictions are within 10% of DFT and CCSD

results, and within the range of experimental values, despite the extrapolation to a

system size that one order of magnitude larger than the molecules in the training set.
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Figure 4.6 – Predicted atomic contributions to the total CCSD polarizability tensor
for a selection of showcase molecules. The ellipsoids are aligned along the principal
axes of αi , and their extent is proportional to the square root of the corresponding
eigenvalue. The principal axes are shown, and are colored based on whether the
corresponding eigenvalues are positive (black) or negative (red). See the figure key
above (which is not drawn to scale) for additional details.

4.6 Atomic polarizabilities

The atom-centered structure of AlphaML provides a natural additive decomposition

of α into a sum of local atomic terms, αi , which can be used to better understand

how different functional groups contribute to the molecular polarizability. Unlike

other methods for decomposing the polarizability, such as an atoms-in-molecules

scheme [108] or a self-consistent decomposition [109], the approach used in this sec-

tion does not require any additional calculations on top of the molecular polarizability,

as the atom-centered polarizabilities are obtained as a byproduct of the local nature

of the λ-SOAP scheme. When interpreting theαi , one should keep in mind that each

term corresponds to the contribution from the entire atom-centered environment,

and the way that the polarizability is split between neighboring atoms is entirely induc-

tive, reflecting the interplay between data, structure (as represented by the kernels),

and regression, rather than explicit physicochemical considerations. For instance, a

few atoms within the showcase dataset (in particular several H environments) have

αi with negative eigenvalues, which reflects the fact that they reduce the dielectric
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response of the functional group to which they belong.

With this in mind, one can recognize physically-meaningful features in the magnitude

and anisotropy of the αi . Fig. 4.6 depicts eight representative examples. Compar-

ing saturated and unsaturated hydrocarbons, e.g., 2,3-dimethylhexane, cis-4-octene

and octatetraene, one sees that AlphaML predicts the contribution from the unsat-

urated carbon atoms to be large and very anisotropic, which is consistent with the

higher degree of electron delocalization along conjugated molecules. Similarly large

and anisotropic contributions are associated with aromatic systems, as seen in gua-

nine and the indole ring of tryptophan. Oxygen atoms are associated with a very

anisotropic αi ; a large fraction of the polarizability of OH and COOH groups is as-

signed to the environments centered around nearby H and C atoms, but O atoms

systematically contribute a further anisotropic term, oriented perpendicularly to the

highly-polarizable lone pairs (see for instance fructose as well as the carboxyl group

in the amino acids). The sulfur-centered environments in cysteine and methionine

have the largest contribution to the total polarizability in the showcase set, and ex-

hibit a strongly anisotropic response. All of these examples suggest that AlphaML

can utilize relatively local structural information to determine an atom-centered de-

composition ofα that encodes non-trivial quantum mechanical contributions from

each functional group (or moiety) contained within a given molecule. It is this ability

to predict such an environment-dependent decomposition of α that underlies the

observed better-than-DFT performance of AlphaML when faced with the often insur-

mountable challenge of transferability to a sector of chemical compound space which

contains molecules that are quite distinct and notably larger than those included in

the training set.



5 Prediction of Raman spectra

One of the major applications of a machine-learning model that can yield accurate

polarizabilities of a system is the computational simulation of Raman spectra. This

chapter addresses the calculation of the Raman spectra of paracetamol in its molec-

ular and crystal forms, as obtained from the predicted polarizability time series of a

simulated molecular dynamics trajectory. In doing so, we also adopt an uncertainty

estimation procedure that allows us to propagate the error made on the polarizabil-

ities to the predicted Raman intensities. Sections and figures are adapted from the

following article:

N. Raimbault, A. Grisafi, M. Ceriotti and M. Rossi, “Using Gaussian process regression to simulate the

vibrational Raman spectra of molecular crystals”, New Journal of Physics 21, 105001 (2019). Copyright ©

2019 Institute of Physics. AG contributed to performing the polarizability predictions using the λ-SOAP

method and to writing the manuscript.

5.1 Simulation of vibrational Raman spectra

Vibrational Raman spectra are widely used to monitor phase transitions, as well as

for the identification of global and local structural patterns [110–112]. These kind

of spectra represent the perfect example of a physical observable that requires the

knowledge of the response of the system to electric field perturbations. In particular,

any technique used to simulate this property requires the calculation of several in-

stances of the polarizability tensor (in molecules) or the dielectric susceptibility (in

crystals). For simplicity, we will refer to the polarizability tensorα all throughout, but

one should keep in mind that for solids the quantity of interest is rather the dielectric

tensor of the system. As discussed in Ref. [59] and others [113, 114], the vibrational Ra-

man spectrum can be calculated using several approximations, the simplest of which

is the harmonic approximation. Here, we focus on a linear-response time-correlation
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formalism, which is suited to take into account the anharmonicity of the potential

energy surface. In this case, the Raman intensity can be obtained from the Fourier

transform of the static polarizability autocorrelation function at thermodynamic equi-

librium [115]. In particular, the so-called powder spectrum intensity is given by a

combination of isotropic and anisotropic contributions as I (ω) = Iiso(ω)+ 7
3 Ianiso(ω),

with

Iiso(ω) =
n

2π

∫ +∞

−∞
d te−iωt 〈ᾱ(0)ᾱ(t )〉

Ianiso(ω) =
n

2π

∫ +∞

−∞
d te−iωt 1

10
〈Tr[α̃(0) · α̃(t )]〉 ,

(5.1)

where n is the number of atoms in the system, the brackets 〈·〉 denote an ensemble

average and Tr is the trace. ᾱ and α̃ are the Cartesian isotropic and anisotropic parts of

the polarizability tensor, defined as ᾱ = (αxx+αy y +αzz )/3 and α̃ =α−ᾱ1, respectively.

Computing anharmonic vibrational Raman spectra as in Eq. (5.1) can be a powerful

tool to identify structural fingerprints in molecular crystals [116, 117]. Within this

formalism, it is necessary to calculate ab initio molecular dynamics trajectories and

compute α for subsequent atomic configuration, employing, for instance, density-

functional perturbation theory (DFPT) [118–121]. These calculations are computation-

ally demanding, not only because of the tens of thousands of force evaluations that

need to be performed to provide sufficient statistical sampling, but also because each

DFPT calculation is typically four times more expensive than a force evaluation [117].

Furthermore, while there are several empirical potentials available that can be used to

simulate the dynamics of molecular crystals [122], empirical models of theα are rare

and often poorly transferable [123]. The possibility of exploiting a machine-learning

model that is able to inexpensively predict accurate polarizability tensors at each step

of the molecular dynamics simulation is therefore particularly attractive. A similar

strategy have been adopted, for instance, in the context of computing the Raman

intensity of liquid water by means of a DNN architecture that is suitable to predict the

polarizability of the system in terms of effective molecular contributions [124].

5.2 Dataset generation and model definition

In this study, we do not address the problem of obtaining forces; instead, we only

predict the Raman intensities associated with precomputed ab initio trajectories. We

test our method on a single paracetamol molecule in vacuum, as well as on the first

and second crystal polymorphs of paracetamol, as represented in Fig. 5.1. The ab

initio calculations were performed using the FHI-aims package [125] with light basis
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a) b) c)

Figure 5.1 – The systems considered in this work: (a) Isolated Paracetamol molecule.
(b) Paracetamol crystal form I (monoclinic). (c) Paracetamol crystal form II (or-
thorhombic).

set settings for all atomic species. AIMD trajectories were obtained using the PBE

functional with many-body dispersion corrections [126, 127], employing a time step

of 0.5 fs. The polarizability tensors were instead obtained every 1 fs, extending the

DFPT calculations already carried out in Refs. [59, 116]. For each system, we ran

20 picoseconds of simulation in the NVT ensemble at 300 K, which is mainly used

to train and validate the machine-learning model, and 15 picoseconds in the NVE

ensemble, which is instead used to test the accuracy of the Raman spectra predictions.

The construction of a symmetry-adapted GPR (SA-GPR) model that is suited to learn

α in a covariant fashion mirrors the discussion already carried out in Chapter 4. In

particular, 3-body λ-SOAP kernels with ζ = 2 and a cutoff of rc = 4 Å are used to learn

the ISCs ofα in terms of a λ = 0 component, proportional to the trace ᾱ, and a λ = 2

component that is linearly related to the anistropic Cartesian tensor α̃.

5.3 Covariant vs. component-wise regression

Taking the paracetamol molecule as an example, it is instructive to compare the

performance of SA-GPR against a standard GPR model that measures the structural

similarity between configurations by means of the best-alignment prescription already

discussed in Chapter 2. In the latter case, the reciprocal alignment of the molecules is

performed adopting the Kabsch algorithm [128], which is known to work particularly

well for relatively rigid molecules. Upon this procedure, we place each molecule in

a box of 6×4×2.5 Å and build a smooth representation of the atomic structure as a

species-dependent density field ρa(x) sampled on a uniform three-dimensional grid

of spacing δ = 0.5 Å. Similarly to the SOAP construction, the density field comes from
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the sum of Gaussian functions centered on the atomic positions:

ρa(x) =
∑
i∈a

exp

(
−|x − r i |2

2σ2

)
, (5.2)

with the Gaussian width chosen as σ = 0.5 Å and a labels the chemical species. A

2D slice of ρa(x) is represented in Fig. 5.2. For each structure A, the actual feature

Figure 5.2 – 2D view of the smooth density field of a paracetamol molecule. Blue (red)
points indicate a low (high) density.

vector is constructed from the point-by-point concatenation of the species-dependent

densities of Eq. (5.2), i.e., u(A) ≡ {ρa(x ; A)}. Finally, the structural similarity between

any pair of molecules A and B is measured using a Gaussian kernel analogous to the

one already introduced in Eq. (1.7), i.e.,

k(A,B) = exp

(
−‖u(A)−u(B)‖2

2d 2

)
, (5.3)

where the Euclidean distance ‖u(A)−u(B)‖ is computed through the point-by-point

difference of the feature vectors on the 3D-grid. The adimensional hyperparameter

that modulates the kernel similarity is optimized as d = 10.

Upon the best-alignment procedure, the kernel of Eq. (5.3) can be used to learn the

polarizability tensorα component by component. The learning performance is tested

on a FPS sub-selection of the NVT trajectory that comprises 2000 molecular config-

urations. In particular, 500 randomly selected molecules, out of the total of 2000,
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Figure 5.3 – % RMSE associated with the prediction of each of the six distinct com-
ponents of the molecular polarizability tensor as a function of the number training
configurations N . (left) Component-wise GPR results using a Gaussian kernel. (right)
SA-GPR results with λ-SOAP kernels.

are retained for testing the accuracy of the α-predictions, while the other 1500 are

used for training. Fig. 5.3 compares the learning performance of the component-wise

regression model against the SA-GPR framework. The learning of all the Cartesian

polarizability components follow a similar slope, but they are predicted with different

accuracy due to the strong anisotropy of the dielectric response of the paracetamol

molecule at the given orientation. Because of the π-conjugation of the system in the

molecular plane, in particular, the system appears much more polarizable along the

x-axis rather than along other directions, making it harder to regress the correspond-

ing variations across the dataset. The αxx component presents the largest error, going

down to 17% of the intrinsic variation with 1500 training points. The best learning

performance is instead obtained for the αy z component, where the prediction error

can be brought down to about 6% RMSE. When using the SA-GPR model, the possibil-

ity to learn the irreducible spherical components of α in a covariant fashion yields

predictions that are systematically more accurate than the GPR ones. In fact, all the

Cartesian components show an accuracy that is more than doubled at any training set

size, with an error on the αxx and αy z components of 6% and 2% RMSE respectively.

These results underscore the importance of adopting an atom-centered symmetry-

adapted approach even when the system presents enough structural rigidity to enable

the practical application of a global kernel similarity measure. From here on, we will

hence only report results associated with the SA-GPR model.
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5.4 Uncertainty estimation and error propagation

Beyond a direct comparison with the quantum-mechanical reference calculations, it

is important to dispose of a method to estimate the learning uncertainty associated

with the predicted polarizability components. In fact, one would like to propagate

the expected error that incurs in the prediction ofα to the actual Raman intensity, in

order to obtain a quantitative measure of the reliability of the predicted spectra. In the

particular case of GPR, the uncertainty estimate can be computed a priori from the

GPR intrinsic variance of Eq. (1.4). This strategy is however not very practical because

of its computational expense, so that other kind of methods such as bootstrapping

or subsampling can rather be used to estimate the prediction errors [129]. Moreover,

propagating the error to the Raman spectrum would be difficult to carry out on top of

the GPR intrinsic variance.

In this work, NRS subselections of the training dataset are considered to generate an

ensemble of predictions for the polarizability. From these, NRS Raman spectra are

computed by Fourier transforming the time series of each model in the ensemble.

Finally, the average and the standard deviation of the predicted spectra over the NRS

subselections would give the final Raman spectrum prediction and the propagated

estimated error respectively. The downside of this approach is that this model works

under the assumption that the training data correspond to independently distributed

samples. This is of course not true in general, so that one needs to correct the model

to take into account for the underlying correlations. Following Ref. [129], a maximum

likelihood recipe can be adopted to linearly scale the variance of the predictions by a

constant factor ν2. The calibration of this scaling factor is carried out by computing

the actual prediction errors of the polarizabilites over a suitably selected validation

set Nval, for which the reference polarizabilities are known, and then considering

ν2 =
1

Nval

Nval∑
j =1

∥∥αpred( j )−αref( j )
∥∥2

σ2( j )
, (5.4)

where σ2( j ) are the variances of the predicted polarizabilities. Once the value of ν has

been determined, each polarizability prediction of a given training model k can be

updated as follows:

α′
k = ᾱ+ν(αk − ᾱ) , (5.5)

where ᾱ is the predicted polarizability averaged over the NRS models. This scaling

procedure guarantees that the variance of the models is consistent with the outcome

of the likelihood maximization. By computing the Raman spectrum for each scaled
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model k, the propagated uncertainty estimation associated with the spectra will

automatically take into account the calibration of the variance.

5.5 Raman spectrum of a paracetamol molecule

By making use of the subsampling strategy previously described, we first test the

quality of our predictions on the paracetamol molecule using a committee model

made of 16 different training sets. In particular, each training set is obtained by a

random subselection of 2000 configurations over a total of 2500 FPS configurations

extracted from the NVT ensemble. Upon computing the (calibrated) predictions of the

polarizability tensor over the full NVE trajectory, the Raman intensity for each member

of the committee model was computed as in Eq. (5.1), and the average prediction and

estimated error were computed as described in the previous Section. Fig. 5.4 shows

excellent results of the predicted spectrum for the entire range of frequencies, with

error estimates that are in fact negligibly small. This is in agreement with the high

accuracy already reported in Fig. 5.3 when testing the actual prediction error on the

individual Cartesian components ofα.
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Figure 5.4 – (black line) Raman spectrum prediction of the paracetamol molecule in
vacuum. (blue line) reference ab initio Raman spectrum. (shaded area) uncertainty
estimate.

5.6 Raman spectrum of a paracetamol crystal

We now consider the more challenging case of predicting the spectrum of the first

crystal polymorph of paracetamol, as represented in Fig. 5.1-(b). The training set

is built by considering a random selection of 2500 configurations extracted from a

NVT trajectory, so that to uniformly sample the underlying canonical distribution.
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For this example, we rely on a two-step procedure. We first consider the sum of the

polarizability predictions associated with the individual monomers of the molecular

crystal within the unit cell, i.e.,αmol =
∑4

I =1αI . Then,αmol is used as a baseline value

for the prediction of α. In doing so, the regression framework is mainly asked to

learn the variations of the polarizability tensor associated with the intermolecular

interactions between the monomers. As shown by the learning curves in Fig. 5.5,

centeringα about the sum of the molecular polarizabilities has the effect of greatly

improving the accaracy of model, especially when using few training data.
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Figure 5.5 – Learning curves for the full polarizability Cartesian tensor of paracetamol
crystal form I. Predictions are tested within the NVT ensemble. (full lines) Plain SA-
GPR predictions. (dashed lines) SA-GPR predictions obtained using the predicted
αmol as a baseline.

To perform the Raman predictions, we once again define a committee model made of

16 random subselections, each of which contains 80% of the training set. Using the

baseline strategy previously introduced, the polarizabilities of the full NVE trajectory

are predicted and the associated Raman spectra computed. Figure 5.6 shows the

prediction results and the corresponding estimated error. In this case, we find that

the estimated variance computed over the committee members has to be increased

by roughly an order of magnitude, i.e., ν2 = 10.9 in Eq. (5.4), meaning that the 16

subselections are strongly correlated to each other. One can observe that the excellent

agreement between the reference and predicted spectrum at low frequencies is con-

sistent with a negligible estimated error, while larger discrepancies and error bars can

be observed in the more challenging high-frequency domain.
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Figure 5.6 – (black line) Raman spectrum prediction of paracetamol crystal form I.
(shaded area) error estimate. (blue line) Reference ab initio Raman spectrum.

5.7 Extrapolation to other crystal polymorphs

Thanks to the already discussed additive nature of the λ-SOAP predictions, one can

think of predicting the polarizability of the crystal form II (Fig. 5.1-(c)) with the model

trained on form I only. Since different polymorphic forms are mainly distinguished

by the different intermolecular interactions, major difficulties in this extrapolation

procedure are expected to be associated with the low-frequency (intermolecular)

modes of the molecular crystal. To put this idea to the test, we trained SA-GPR on

form I using the same committee model as before, and made predictions for a NVE

trajectory of form II.
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Figure 5.7 – Comparison between DFPT and SA-GPR time series for three Cartesian
components ofα.
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We find that the error in the prediction of the polarizability tensor is mostly associ-

ated to an offset in the time series of some of the Cartesian components (Fig. 5.7).

Interestingly, because the Raman intensity comes from the Fourier transform of the

time series, these offsets do not have a substantial impact on the predicted spectrum.

As shown in Fig. 5.8, the general lineshape is in agreement with the reference ab

initio spectrum, even though the error in the intensities is overall larger than for the

direct prediction of the first crystal polymorph. As expected, high frequencies are this

time better described and that errors are more pronounced at low frequencies. This

suggests that the model can accurately reproduce changes in polarizability associated

with intramolecular vibrations, while it is less effective in predicting low-frequency

components that are specific to the molecular packing of form II.

0 50 100 150

I(
ω

)

SA-GPR
ab initio

1300 1400

wavenumber (cm
-1

)

3100 3200

Paracetamol II

Figure 5.8 – (black line) Raman spectrum prediction of paracetamol crystal form II
upon learning the polarizability on form I. (shaded area) error estimate. (blue line)
Reference ab initio Raman spectrum.
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6 Machine learning of electron densi-
ties

In the first part of this thesis we derived a class of symmetry-adapted representations of

the atomic structure and showed how they can be used to efficiently regress electronic

response tensors. In this chapter, we show that the same class of representations

can also be used within a learning framework that is specifically designed to regress

three-dimensional scalar fields. Taking the electron density of a system as an example,

we underscore the importance of adopting a multi-centered basis to expand the scalar

field in order to predict each electron-density component in a data-efficient and highly

transferable fashion. Sections and figures are adapted from the following article:

A. Grisafi, A. Fabrizio, B. Meyer, D. M. Wilkins, C. Corminboeuf and M. Ceriotti, “Transferable Machine-

Learning Model of the Electron Density”, ACS Central Science 5, 57–64 (2019). Copyright © 2019

American Chemical Society. AG contributed to deriving and implementing the symmetry-adapted

scalar-field regression framework, to carry out the electron-density predictions, to produce the figures

and to writing the manuscript.

6.1 Electronic charge density

The electron density ne (r ) is a fundamental property of atoms, molecules and con-

densed phases of matter. It is generally defined as the integral of the electronic

probability distribution over N −1 degrees of freedom:

ne (r ) =
∫

dr 1

∫
dr 2 ...

∫
dr N−1 |ΨN (r 1,r 2, ...,r N )|2 , (6.1)

with ΨN the many-body wave-function for a system of N electrons. ne (r ) can be

measured directly by high-resolution electron diffraction [130, 131] and transmission

electron microscopy [132], and can be analyzed to identify covalent and non-covalent

patterns [133–137]. Based on density-functional theory (DFT), in the framework of the
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first Hohenberg-Kohn theorem [4], knowledge of ne (r ) gives access, in principle, to any

ground-state property. Especially for large systems, however, the computation of ne (r )

requires considerable effort, involving the solution of an electronic structure problem

with a more or less approximate level of theory. Sidestepping these calculations

and directly accessing the ground-state electron density for a given configuration of

atoms would have broad implications, including real-time visualization of chemical

fingerprints, acceleration of DFT calculations by providing an estimate of the self-

consistent ne (r ) that is closer to the functional minimum, and the analysis of X-ray

crystallographic experiments.

The first machine-learning model that has been proposed to bypass the quantum-

mechanical calculation of ne (r ) consists in making use of the Hohenberg-Kohn map-

ping to learn the electron density on a basis of plane-waves [27, 28]. Although success-

ful, the choice of adopting a global basis set to decompose the density field carries

the downside of limiting the transferability of the model to relatively small and rigid

systems. Another approach, that can instead achieve a certain degree of transferability

between different systems, exploits a representation of the atomic environment that

can be used to directly learn and predict the electronic density on a three-dimensional

grid around the molecule [138, 139]. While free of any basis-set decomposition er-

ror, representing the density field on a large number of grid points, rather than on a

small set of basis set coefficients, has the disadvantage of dramatically increasing the

computational effort. In this study, we show how to interpolate the electron density

of a system by combining a local multi-centered basis set to represent ne (r ) with

the symmetry-adapted structural representations already adopted in the context of

tensors learning. In the process, we derive a completely general regression framework

that makes use of λ-SOAP kernels to predict any three-dimensional scalar field in a

strictly linear-scaling and highly transferable manner.

6.2 Multi-centered spherical harmonics expansion

The problem of decomposing the electronic charge density of a system on atom-

centered contributions has long been known in the context of determining ne (r ) from

experimental X-ray diffraction data [140–144]. One of the most widely used methods

is the multipole model proposed by Stewart [145] and by Hansen and Coppens [146],

which models the valence charge density with both spherical and anisotropic compo-

nents that are specific of the nature of the molecular fragments involved.

To tackle the problem of decomposing the density field in such a way that it can be

effectively regressed through λ-SOAP kernels, we adopt an approach that is similar
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in spirit to the aforementioned multipolar expansion, but that does not rely on any

prior knowledge of discrete molecular fragments. Instead, we adopt a multi-centered

basis set decomposition analogous to the one commonly used in quantum chemistry

for representing the molecular orbitals of a system [147]. In particular, we expand

ne (r ) over a non-orthogonal basis made of radial functions and spherical harmonics

centered on the atomic positions. For a system of nat atoms, we write

ne (r ) =
nat∑
i =1

λcut(ai )∑
λ=0

ncut(ai ,λ)∑
n=1

λ∑
µ=−λ

c i
nλµ Rai

λn (|r − r i |)Yλµ

(
r − r i

|r − r i |
)

, (6.2)

where c i
nλµ are the non-orthogonal coefficients that realize the multi-centered expan-

sion. Here, the angular cutoff λcut depends on the species ai of the atom i , while the

number ncut and type of radial functions Rai
λn depend both on the species ai and on

the angular momentum λ. Note that Eq. (6.2) realizes a decomposition of ne (r ) in

effective atomic contributions without making use of any prior knowledge about the

molecular conformation and identity. As such, it provides the optimal representation

of the target that can be regressed via a machine-learning model that relies on the

definition of local atomic environments.

6.3 Regression of three-dimensional scalar fields

In order to learn the density decomposition of Eq. (6.2) through a local and symmetry

adapted representation of the atomic coordinates, we now make the assumption

that the expansion coefficients c i
nλµ arise from the outcome of a sparse SA-GPR pre-

diction. In particular, we assume that the covariance of order λ of each coefficient

under rotation and inversion operations is expressed by λ-SOAP representations of

corresponding order. In so doing, each set of coefficients with different atomic species

a, radial channels n and angular orders λ are approximated as follows,

c i
nλµ ≈

M∑
j =1
δai a j

λ∑
µ′=−λ

kλµµ′(Ai , A j ) x j
nλµ′ , (6.3)

with x j
nλµ′ the set of (covariant) regression weights we wish to learn and kλ

µµ′ a λ-SOAP

kernel. Here, j runs over a set of M atomic environments that are selected to best

represent the local structural and chemical diversity across the dataset, according to

the sparse GPR framework already outlined in Sec. 1.3.1. Note that since the kernel kλ
µµ′

does not depend on the type of radial functions Rai
λn , the deltas δai a j are introduced to

only couple those environments that are centered on atoms that belong to the same

chemical species.
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The determination of the regression weights x j
nλµ′ follows the minimization of a loss

function that describes the collective error in representing the real-space density field

of N training molecules. Using the compact notation φai
nλµ ≡ Rai

nλYλµ to indicate the

multi-centered basis functions, we have

`(x M ) =
N∑

A=1

∫
dr

∣∣∣∣∣ne (A;r )− ∑
i∈A

∑
nλµ

c i
nλµ(x M ) φai

nλµ(r − r i )

∣∣∣∣∣
2

+ηxT
M K M M x M (6.4)

with η accounting for the intrinsic noise of the training densities. The subscript M

labels the fact that the dimension of the weight vector x M and kernel matrix K M M

is determined by the number of sparse atomic environments M , times the number

of basis functions associated with the corresponding chemical species, i.e., { j nλµ}.

Upon substituting the prediction ansatz of Eq. (6.3) into Eq. (6.4), minimization of the

loss function with respect to x M yields the following regression formula:

x M =
(
K T

N M SN N K N M +ηK M M
)−1

K T
N M w N . (6.5)

Here, the vector w N contains the projections 〈φ|ne〉 of the N reference densities on

the basis functions,

w i
nλµ =

∫
dr ne (r ) φai

nλµ(r − r i ) , (6.6)

while SN N is the block-diagonal matrix containing the spatial overlap 〈φ|φ′〉 between

the basis functions of each training molecule,

Si ′n′λ′µ′
i nλµ =

∫
dr φ

ai ′
n′λ′µ′(r − r i ′) φ

ai
nλµ(r − r i ) . (6.7)

Finally, the rectangular matrix K N M contains the symmetry-adapted kernels that

couple the atomic environments of the N training molecules with the ones of the

representative sparse set M . If these were chosen to correspond to the ones of the N

training densities, then K N M = K M M = K N N , and Eq. (6.5) simplifies to

x N =
(
K N N SN N +η1N N

)−1 w N . (6.8)

In fact, Eq. (6.5) expresses a sparse approximation to the Equation above that allows

us to massively cut down the kernel dimensionality by projecting the problem on a

reduced set M of most representative atomic environments.
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6.4 The curse of non-orthogonality

From the previous discussion, once the regression weights x M are determined accord-

ing to Eq. (6.5), the covariant prediction of the density expansion coefficients c i
nλµ is

obtained as in Eq. (6.3). At this point, one could ask why not addressing the regression

of the different families of expansion coefficients separately, rather than using the full

density ne (r ) as a learning target. In fact, one could simply obtain the training expan-

sion coefficients as c = S−1w and design an independent covariant regression for each

set of coefficients that belong to different atomic species a, angular ordersλ and radial

channels n. The downside of this approach is that the error made in the prediction of

each family {aλn} would sum up in an uncontrollable way when reconstructing the

density field. This is because the non-orthogonal nature of the basis functions φai
nλµ

implies that the different families of coefficients are necessarily correlated to each

other, so that the regression must deal with all the density components at once.

If the basis functions were orthogonal, then S = 1, and the problem of learning ne (r )

could be conveniently recast into the problem of learning each set of (uncorrelated)

orthogonal projections c = w separately. This is exactly what is done in Ref. [27], where

the electron density is expanded on a plane-wave basis e i k ·r and a separate regression

problem is solved for each distinct set of Fourier components n̂e (k). Although this

framework is undoubtedly more convenient than having to deal with all the set of

density components simultaneously, the fact that each Fourier component depends

on the density of the entire system carries the major drawback of hindering the

transferability of the method across highly heterogeneous datasets. Conversely, the

atom-centered nature of the basis functions φai
nλµ can be exploited to transfer the

information encoded in the density projections w across atomic environments that

share a similar nature – the same principle that underlies the construction of local

machine-learning representations.

A further downside brought by the non-orthogonality of the basis functions is the fact

that the λ-SOAP kernel neglects, by construction, the statistical correlations between

different families {aλn} of coefficients. As already discussed in Sec. 1.3.1, any kernel is

in fact interpreted as a prior for the statistical correlations of the quantity we wish to

predict, i.e., the expansion coefficients c i
nλµ in this case. As such, it should therefore

be able to couple different pairs of atomic species (a, a′), radial channels (n,n′) and

angular orders (λ,λ′). Building covariant kernel functions that satisfy these criteria is

in principle possible, but it would also imply dealing with a formulation that is way

more convoluted and expensive to compute with respect to λ-SOAP.
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6.4.1 The Löwdin approach

The aforementioned issues associated with the use of a non-orthogonal basis to

represent ne (r ) would be entirely resolved if one used as learning targets the density

projections that arise from the following orthogonalization procedure: w̃ = S−1/2w .

This kind of orthogonal transformation is known in quantum chemistry as Löwdin

orthogonalization [148], and it is typically adopted to work in the basis of atomic

natural orbitals (ANOs) [149]. In contrast to other hierarchical orthogonalization

algorithms, such as Gram-Schmidt, orthogonalizing the basis functions using S−1/2

carries the advantage of preserving both the covariant and local nature of the density

projections w̃ about the atoms of the system. While this may sound as the optimal

scenario to deal with, one should however notice that, upon the orthogonalization

procedure, the projections w̃ not only include information about the density field,

but also encode the transformation of the basis functions that is induced by the S−1/2

operator. As a result, the regression would carry the additional burden of describing

the system-dependent variations of the basis functions across the dataset, which

would make the learning of ne (r ) both more challenging and data hungry. For this

reason, while we do not disregard the Löwdin approach as a valuable strategy to tackle

the problem of density-learning, from here on we will only refer to the non-orthogonal

regression approach previously derived.

6.5 Dataset generation and error definition

We test our density-learning model on the valence electron density of 1000 molecules

of ethene (C2H4), ethane (C2H6), butadiene (C4H6) and butane (C4H10), computed at

the DFT/PBE/SBKJC-LFK level [150, 151] with SBKJC effective core potentials [152].

The basis functions chosen for the density expansion correspond to Gaussian type

orbitals (GTOs), routinely used in quantum chemistry codes. This choice allows us to

compute analytically the spatial overlap S between basis functions by relying on well-

known transformations between spherical and Cartesian Gaussian functions [153].

The projections of the reference DFT densities on GTOs are instead computed numer-

ically as follows,

w i
nλµ =

∫
d s s2Rai

λn(s) Y ?λµ(ŝ) ne (r i + s) , (6.9)

with s = r − r i . In particular, the integration of the spherical harmonics on the unit

sphere is performed using the Lebedev quadrature with 2030 points [154], while the

radial integral is computed with an equispaced radial mesh of 200 points spanning a

distance of 6 Å from the central atom i .
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Upon reconstructing the real space density on uniform Cartesian grids of 0.1 Bohr of

spacing, the percentage error ε(%) incurred in the approximation of ne (r ) is measured

all throughout as the integrated absolute difference with respect to the DFT density,

as a fraction of the number of electrons Ne :

ερ(%) = 100× 1

Ne

∑
k

∣∣ne (r k )−nDFT
e (r k )

∣∣ (6.10)

6.6 Basis set optimization

When using a multi-centred expansion, one can easily encounter ill-conditioning

issues consisting in a lowering of the rank of the overlap matrix S. The standard

strategy to avoid these problems involves the contraction of the radial functions Rn(r )

into a smaller set of optimized functions R ′
n(r ). For each chemical species a and

angular order λ, this contraction reads as the following linear combination,

R ′
aλn(r ) =

∑
n′

Cnn′Raλn′(r ) , (6.11)

with Cnn′ the rectangular matrix that realize the basis set contraction. In our case, for

each atomic species (C and H), we considered angular functions up to λcut = 3 and 12

primitive radial functions that are contracted down to a total of 4 optimized functions.

The contraction is optimized in such a way that both the percentage density error ε(%)

associated with the solution of the linear problem c = S−1w and the condition-number

ω of the overlap matrix S are simultaneously minimized [155]. In particular, we found

that a good compromise for the optimization of the contraction matrix C 12×4 consists

in using ε(%)+0.1log10(ω)/Ne as a minimization target.

The table included in Figure 6.1 reports the basis set errors ερ(%) averaged over each of

the individual C2 and C4 datasets, as compared with the superposition of the isolated

atomic densities, i.e., the protoatomic density. Clearly, the optimized multi-centered

expansion of Eq. (6.2) yields a representation of ne (r ) that is about 20 times more

accurate than the protoatomic density, obtaining a mean absolute error that is ∼1%

of the electronic charge. A visual representation of this comparison is also shown in

Figure 6.1 for a given configuration of butane, where it is apparent that the small basis

set error is concentrated in the C–C bond regions.
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BASIS SET DECOMPOSITIONPROATOMIC 

ερ= 17.30% ερ= 1.23%

〈ερ〉(%) C2H4 C2H6 C4H6 C4H10

Proatomic 18.06 19.23 16.79 18.13
Basis Set 1.04 1.14 0.98 1.19

Figure 6.1 – Density errors at different level of representation: (left) superposition of
isolated atomic densities, (right) optimized basis set. Red and blue isosurfaces refer
to an error of ±0.005 Bohr−3 respectively. The Table reports the proatomic and basis
set decomposition errors averaged over the dataset of C2 and C4 molecules.

6.7 Angular spectrum of the valence density

From the optimal basis set decomposition previously discussed, it is instructive to

single out the contributions to ne (r ) carried by each angular order λ, i.e.,

nλ
e (r ) =

nat∑
i =1

∑
n∈{ai ,λ}

λ∑
µ=−λ

c i
nλµφ

ai
nλµ(r − r i ) (6.12)

As exemplified in Fig. 6.2, while the isotropic λ = 0 functions determine the general

shape of the density, the λ = 1 functions primarily describe the gradient of electroneg-

ativity in the region close to C–H bonds. Furthermore, the λ = 2 functions describe

the charge modulation associated with the C–C bonds along the main chain as well

as the π-cloud along the conjugated backbone, while the λ = 3 functions act as a

further modulation that captures the non-trivial anisotropy. The Figure also shows

the λ-spectrum of the valence charge density computed as the collective contribution

to the electron-density variability carried by each angular order λ and atomic type a,

i.e.,

σλ(a) =

√〈 ∑
i∈a

∑
n∈{a,λ}

∣∣c i
λn −〈

c i
λn

〉∣∣2
〉

(6.13)

where the average 〈·〉 is computed on the entire the dataset. After having subtracted
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C H C H C H C H
ethaneethene butadiene  butane

λ = 0 λ = 1

λ = 2 λ = 3

Figure 6.2 – (left) representation of the angular momentum decomposition of the
electron density. Red and blue isosurfaces refer to ±0.01 Bohr−3 respectively. (right)
angular momentum spectrum σλ(a) in arbitrary units of the valence electron density
of C2 and C4 datasets. The isotropic contributions λ = 0 express the collective vari-
ations with respect to the dataset’s mean value, while the mean is statistically zero
for λ> 0.

the mean spherical contribution of pure λ = 0 character, the λ = 1 components largely

dominate the charge density variability associated with hydrogen atoms. As previously

demonstrated [156], functions with λ = 2 symmetry also carry a substantial contribu-

tion, particularly for the carbon atoms of alkenes, while λ = 3 functions appear to be

dominant for carbon atoms of alkanes and almost irrelevant for hydrogen atoms in all

the four molecules. Note that in comparison to an atom-centered expansion of the

wave-function Ψ, the choice of using a larger basis set is justified by the greater com-

plexity in describing an electron density field rather than the Ne/2 occupied molecular

orbitals defined as the eigen-solutions of an effective single-particle Hamiltonian. In

fact, the squaring of Ψ that yields ne (r ) introduces components with up to twice the

maximum λ used to expand the wave-function.

6.8 Learning performance

Having analyzed the variability of the electron density when expanded over an opti-

mized multi-centered basis, we now proceed to test the learning performance associ-

ated with the symmetry-adapted sparse-GPR formulation of Eq. (6.5). Following the

choice of basis functions previously described, we generated λ-SOAP kernels up to

λ = 3 using a cutoff of rc = 4.5 Å and a non-linearity degree of ζ = 2. For all the spherical

orders λ, the feature space is reduced down to the 500 principal components obtained

from the diagonalization of the covariance matrix defined in space of data points.

The number M of reference environments has been fixed to the 1500 most diverse,

FPS-selected, environments contained in each dataset. Learning curves are then
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obtained by varying the number of training molecules up to 800 randomly selected

configurations out of the total of 1000. The remaining 200 molecules for each of these

random selections are used to estimate the error in the density prediction.

The difficulty of the learning exercise largely depends on the structural flexibility of

the molecules. Small, rigid systems such as ethene and ethane require little training,

and could be equivalently learned through a machine-learning framework based on a

pairwise comparison of aligned molecules. Butadiene data, containing both cis and

trans conformers, as well as distorted configurations approaching the isomerization

transition-state, poses a more significant challenge, due to an extended conjugated

system that makes the electronic structure very sensitive to small molecular defor-

mations. The case of butane is also particularly challenging because of the broad

spectrum of intramolecular non-covalent interactions spanned by the many different

conformers contained in the dataset. Being fully flexible, this kind of system is ex-

pected to benefit most from a ML scheme that can adapt its kernel similarity measure

to different orientations of molecular sub-units.

101 102 1000

trainingmolecules

1
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C4H6

C4H10

Figure 6.3 – Learning curves for C2 and C4 molecules expressed as the % mean abso-
lute error of the predicted SA-GPR densities as a function of the number of training
molecules.

Fig. 6.3 shows the performance of the method in terms of prediction accuracy of the

electron density as a function of the number of training molecules. The prediction

errors of ethene and ethane saturate to the limit set by the basis set representation,

which is around 1% for all molecules, with as few as 10 training points. As expected,

given the greater flexibility, learning the charge density of butadiene and butane is

more challenging, requiring the inclusion of more than 100 training structures in order
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to approach the basis set limit. Overall, the prediction accuracy that we can possibly

achieve using this dataset is therefore limited by the error incurred in the basis set

decomposition of the scalar field.

6.9 Indirect energy prediction

When obtaining the reference densities from a density-functional calculation, the

regression framework previously discussed can in principle be used to indirectly com-

pute the energy of the system by feeding the functional back with the predicted ne (r ).

As a benchmark for this application, we evaluated the PBE exchange-correlation func-

tional EXC[ne ] used for the reference quantum-mechanical calculations. Depending

on the gradient of the density, this quantity is very sensitive to small density variations,

especially those localized around the atomic nuclei.

DIRECT LEARNINGINDIRECT LEARNING
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Figure 6.4 – Root mean square errors of the PBE exchange-correlation energies indi-
rectly predicted from the SA-GPR densities and directly predicted via a scalar SOAP
kernel, as a function of the number of training molecules. Dashed lines refer to the
error carried by the basis set representation.

Fig. 6.4 shows the root mean square error for the exchange-correlation energies εXC.

Using the full set of 800 training molecules, we reach a RMSE of 0.9 and 1.7 kcal/mol for

ethene and ethane, 1.9 kcal/mol for butadiene and 3.5 kcal/mol for butane, basically

matching the basis set limit. It is clear that the ML scheme has the potential to reach

higher accuracy with a small number of reference configurations, but a significant

reduction of the basis set error is necessary to reach chemical accuracy (roughly 1

kcal/mol RMSE) in the prediction of EXC. At the same time, it is not obvious that

computing EXC indirectly, by first predicting ne (r ), is the most effective strategy to

obtain a machine-learning model of DFT energetics. As shown in the Figure, applying
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a direct, scalar regression based on conventional SOAP kernels to learn the relationship

between the molecular structure and EXC leads to vastly superior performance while

requiring a much simpler machine-learning model.

6.10 Linear-scaling extrapolation

While incremental improvements of the underlying density representation framework

are desirable to use the predicted density as the basis of DFT calculations, we can

already demonstrate the potential of our SA-GPR scheme in terms of transferability of

the model. From the prediction formula of Eq. (6.3), it is clear that no assumption is

made about the identity of the molecule for which the electron density is predicted.

Practically speaking, the regression weights x j
nλµ are associated with representative

environments that could be taken from any kind of compound, not necessarily the

same as that for which the density is being predicted. As long as the training set is

capable of describing different chemical environments, and contains local configura-

tions similar to the ones of our prediction target, accurate densities can be obtained

simply by computing the kernels between the atomic environments of an arbitrarily

large molecule and the subset of representative environments M . The cost of this

prediction is proportional to the number of environments, making this method of

evaluating the electron density strictly linear scaling in the size of the target molecule.

QM ML ML − QM

ερ = 1.81%

ερ = 1.41%

Figure 6.5 – Extrapolation results for the valence electron density of one octane (top)
and one octatetraene (bottom) conformer. (left) DFT density isosurface at 0.25, 0.1,
0.01 Bohr−3, (middle) SA-GPR prediction isosurface at 0.25, 0.1, 0.01 Bohr−3, (right)
machine-learning error, red and blue isosurfaces refer to ± 0.005 Bohr−3 respectively.
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As a proof of concept of this extrapolation procedure, we use environments and train-

ing information from the butadiene and butane configurations already discussed to

predict the electron density of similar molecules that are twice as large, namely octate-

traene (C8H10) and octane (C8H18), respectively. For both octane and octatetraene, the

extrapolation is carried out on a challenging dataset made of the 100 FPS structures

extracted from the 300K replica of a long replica-exchange MD run. When learning

on the full dataset of butadiene and butane, we obtain a low density mean absolute

error of 1.8% for octatetraene and of 1.4% for octane. As shown in Fig. 6.5 for two

representative configurations, the linear-scaling predictions accurately reproduce the

structure of the electron density for both octane and octatetraene. Because of the high

sensitivity of the electronic π-cloud to the molecular identity and configuration, major

difficulties arise in predicting the electron density of octatetraene, particularly in the

middle regions, for which no analogous examples are contained in the butadiene

training dataset.

It is important to stress that the transferability of the method is due to the fact that, on

a local scale, the larger molecules are similar to those used for training. Therefore, the

prediction is effectively an interpolation in the space of local environments. This is

emphasized by the observation that the optimal extrapolation accuracy is obtained

using a λ-SOAP cutoff of rcut = 3 Å, versus a value of rcut = 4.5 Å that was optimal for

same-molecule predictions. On a scale larger than 3 Å, the C8 environments differ

substantially from those in the corresponding C4 compound, which negatively affects

the transferability of the model. Ideally, as the training dataset is extended to include

larger and larger molecules, this locality constraint can be relaxed until no substantial

difference can be appreciated between the prediction accuracy of the interpolated

and extrapolated density.





7 Density learning with quantum-
chemical accuracy

In the previous chapter, we have seen how to construct a highly transferable regres-

sion model of the electron density of a system that makes use of symmetry-adapted

λ-SOAP representations. As demonstrated by the examples provided, the model is not

limited by the learning accuracy, but rather by the quality of the basis set decomposi-

tion of the scalar field. In this chapter, we show how to solve this issue by adopting

density-fitted auxiliary basis functions that are routinely used in quantum-chemical

applications. Crucially, this methodological advancement allows us to push the accu-

racy of the electron-density predictions up to the level of state-of-the-art all-electron

calculations. An open source implementation of the method can be found in the

SALTED package [157]. Sections and figures are largely based on the following article:

A. Fabrizio, A. Grisafi, B. Meyer, M. Ceriotti and C. Corminboeuf, “Electron density learning of non-

covalent systems”, Chemical Science 10, 9424 (2019). Copyright © 2019 The Royal Society of Chemistry.

AG contributed to enhance the density-learning implementation by making it both faster and memory-

saving, produced the density-learning results and contributed to writing the manuscript.

7.1 Electron density in single-particle theories

When solving the Schrödinger equation using an effective single-particle theory, such

as the Kohn-Sham DFT approach, the electron density ne (r ) of a system can be simply

computed as a sum over the single-electron probability distributions associated with

the occupied molecular orbitals (MOs), ψk (r ). In finite molecular systems, each MO

is typically expanded over a basis of atomic orbitals (AOs), χν(r ), which resemble the

Slater-type functions that solve the Schrödinger equation for the isolated hydrogen

atom. In particular, the coefficients c̃k
ν of this expansion represent the variational

parameters of the quantum-chemical calculation that are used to minimize the many-

body electronic energy. As a result, the variationally optimized ne (r ) is written as an

77
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expansion over pairs of one-center atomic orbitals,

ne (r ) =
MOs∑

k∈occ.

∣∣ψk (r )
∣∣2 =

MOs∑
k∈occ.

∣∣∣∣∣AOs∑
ν

c̃k
νχν(r )

∣∣∣∣∣
2

=
AOs∑
νν′

(
MOs∑

k∈occ.
c̃k
ν c̃k?

ν′

)
χν(r )χ?ν′(r ) =

AOs∑
νν′

Dνν′χν(r )χ?ν′(r ) ,

(7.1)

where the expansion weights Dνν′ are defined as the elements of the one-electron

reduced density matrix. From Eq. (7.1), all the electronic energy contributions that

depend on the electron density of the system can be computed from knowledge of

Dνν′ . The Hartree energy, in particular, is a universal functional of ne (r ) that can be

computed as the following two-center four-electron integral:

EH[ne ] =
1

2

∫
dr

∫
dr ′ne (r )

1

|r − r ′|ne (r ′)

=
1

2

AOs∑
ν1ν2

AOs∑
ν3ν4

Dν1ν2 D?ν3ν4

∫
dr

∫
dr ′χν1 (r )χ?ν2

(r )
1

|r − r ′|χ
?
ν3

(r ′)χν4 (r ′) .
(7.2)

Because of the slow decay of the Coulomb operator, the calculation of the integral

above presents an unfavorable scaling with the system size and it therefore represents

a computational bottleneck of any effective single-particle approximation of the

electronic wave-function.

7.2 Resolution of the identity auxiliary basis

To alleviate the cost of computing the Hartree energy, specialized basis sets have been

designed to represent ne (r ) as a linear expansion that is formally equivalent to the

one introduced in Eq. (6.2), i.e.,

ne (r ) ≈∑
k

ckφk (r ) , (7.3)

with φk (r ) some optimized auxiliary functions and k ≡ {i nλµ} a compact index for

the basis set labels. This approximation to the ab initio density of Eq. (7.1) is known

as the resolution of the identity (RI) approximation, and it has long been used to

sidestep the four-electron integral of Eq. (7.2) [158–164]. The determination of the RI

coefficients ck , in particular, comes from the minimization of the error∆H incurred

in representing the Hartree energy using the approximation of Eq. (7.3), i.e.,

∆H[c] =
1

2

∫
dr

∫
dr ′

(∑
k

ckφk (r )−ne (r )

)
1

|r − r ′|

(∑
k

ckφk (r ′)−ne (r ′)

)
, (7.4)
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which yields the optimal density-fitted coefficients as a linear transformation of the

one-electron reduced density matrix:

ck =
∑
νν′

dνν′
k Dνν′ . (7.5)

Here, the RI transformation matrix dνν′
k is defined by the multiplication of the in-

verse of the RI-Coulomb matrix J with the three-electron integral that expresses the

Coulomb-coupling of a pair of AOs with the RI-auxiliary basis functions:

dνν′
k =

∑
k ′

[
J−1]

kk ′

∫
dr

∫
dr ′χν(r )χν′(r )

1

|r − r ′|φk ′(r ′) , (7.6)

with the RI-Coulomb matrix defined as

Jkk ′ =
∫

dr
∫

dr ′φk (r )
1

|r − r ′|φk ′(r ′) . (7.7)

Upon the procedure previously described, a quantum-chemical RI-calculation can be

carried out at the price of making an error in the Hartree energy equal to Eq. (7.4). This

possibility not only allows us to speed up the generation of the reference calculations,

but it also provides an accurate and well-conditioned basis for the regression of ne (r )

that can in principle be used to predict state-of-the-art electron densities.

7.3 Mean spherical baseline

When compared with the density decomposition adopted in the previous Chapter,

the RI-auxiliary basis carries the further advantage of describing the full, rather than

pseudo-valence, ne (r ). The direct application of the scalar-field regression framework

discussed in Sec. 6.3 to the all-electron density of a molecule would imply that a

great portion of the learning effort is spent on capturing the core-electron density

peaks close to the atomic nuclei. Given that the behaviour of these peaks is mostly

determined by the nuclear charge [165], they encode a piece of information that

is merely constant across the dataset. Therefore, it is convenient to set a baseline

value to the reference densities and let the regression focuses on the sole chemically

driven fluctuations of ne (r ). Here, the baseline is chosen such as considering, for

each atomic type a and radial function n, the average of the spherical components

of the density over the training set, i.e., c̄an00. These average components build up

an effective density field n̄e (r ) given by the superposition of spherically symmetric

contributions. One can then build a sparse vector c̄ that has the spherical components

c̄an00 as the only non-zero entries, and use it to compute the basis set projections of
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n̄e (r ) as w̄ = Sc̄ . The resulting vector of baselined density projections ∆w = w − w̄
can then be used as the actual learning target. Once the learning is carried out as

in Eq. (6.5), the interpolated RI-density can finally be obtained by adding the mean

spherical density components c̄an00 back to the predicted differences of expansion

coefficients∆c . Note that the recipe just discussed represents the scalar field analog

of the baseline strategy already seen in the context of predicting the isotropic (λ = 0)

ISC of the polarizability tensor.

7.4 Bio-fragment dataset

In this study, we consider a dataset of molecular dimers selected from the side-chain

side-chain interaction (SSI) subset of the BioFragment Database (BFDb) [166]. The

original set is made of 3558 dimers formed by amino-acids side-chain fragments

taken from 47 different protein structures. Dimers with more than 25 atoms as well

as those containing sulfur atoms were not considered. While the total number of

sulfur-containing structures is too small to enable the machine-learning model to

accurately capture its rich chemistry, the inclusion of the larger systems does not

increase dramatically the chemical diversity of the dataset. The final dataset contains

a total of 2291 dimers.

Figure 7.1 – Ternary diagram representation of the symmetry-adapted perturbation
theory (SAPT) attractive components of the dimer interaction energies for the 2291
systems considered in this work. The values are taken from Ref. [166].

As shown in Fig. 7.1, the complete set of 2291 dimers spans a large variety of dominant

interaction types, ranging from purely dispersion dominated complexes (in blue)
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to mixed-influence (green and yellow) to hydrogen-bonded and charged systems

(red). We retain the same classification criteria as in the original database to attribute

the nature of the dominant interaction. For each dimer, the reference all-electron

density has been computed at the DFT/ωB97X-D level using the JK-fit cc-pVQZ basis

set [163], henceforth RI-cc-pVQZ, where the resolution of the identitiy approximation

is adopted for both the Coulomb and exchange potential (JK). This implies that

auxiliary functions up to λ = 5 are included for the C, N and O atoms, while auxiliary

functions up to λ = 4 are used for hydrogens.

7.5 Learning results

λ-SOAP kernels are once again generated with a radial cutoff of rc=4 Å and a non-

linearity degree of ζ = 2. The training set for the density-learning model was chosen by

randomly picking 2000 dimers out of a total of 2291. The remaining 291 were used to

test the accuracy of the predictions. Given the tremendous number of possible atomic

environments (∼40 000) associated with such a chemically diverse database, a subset

of M representative environments was selected via FPS to reduce the dimensionality of

the regression problem. To assess the consequences of this dimensionality reduction,

the learning exercise was performed on three different sizes M = {100,500,1000}.

The collective error made in the density-predictions is measured as the cumulative

integrated mean absolute difference expressed as a fraction of the total number of

electrons included in the test set, i.e.,

ε(%) = 100× 1∑
A Ne(A)

∑
A

∫
dr

∣∣∣nML
e (A;r )−nQM

e (A;r )
∣∣∣ . (7.8)

Figure 7.2 summarizes the performance of the machine learning algorithm, expressed

in terms of the mean absolute difference between the predicted and ab-initio densities

reconstructed on the RI auxiliary-basis. As shown in the first panel of Fig. 7.2, 100

training dimers were sufficient to reach saturation of the density error around 0.5% for

M=100. This result already outperforms the level of accuracy reached in our previous

work, which is remarkable given the large chemical diversity of the dataset and the

consideration of all-electron densities. Learning curves obtained with M=500 and

M=1000 show steeper slopes, approaching saturation at about 2000 training dimers

with errors that were reduced to ∼0.2-0.3% of the cumulative electronic charge. The

predicted full-electron densities are hence five times more accurate than the valence-

only predictions (∼1%) reported in Ref. [60]. The second panel of Fig. 7.2 reports a

more detailed analysis of the M=1000 learning curve as a function of the nature of

the dominant interaction between the monomers. Specifically, stronger non-local
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Figure 7.2 – Learning curves. (left) weighted mean absolute percentage error (ερ(%))
of the predicted SA-GPR densities as a function of the number of training dimers. The
weights correspond to the number of electrons in each dimer and the normalization is
defined by the total number of electrons. Color code reflects the number of reference
environments. (right) ερ(%) of the predicted SA-GPR densities (M=1000) divided per
dominant contribution to the interaction energy according to Ref. [166].

character in the interaction yields a larger error. This is especially prevalent for dimers

dominated by electrostatic interactions, which are characterized by errors that are

twice as large as those found in other regimes. The origin of this slow convergence

arises from two factors. First, only about 20% of the dimers are dominantly bound

by electrostatics. The priority of the regression model is thus to minimize the error

on the other classes. Second, there is a fundamental dichotomy between the local

nature of our symmetry-adapted learning scheme and the long-range nature of the

interactions. In this respect, a global ML representation of the density field would be

more suitable, but this would imply renouncing the scalability and transferability of

the model.

7.6 Density-derived interaction indexes

The fundamental advantage of setting the electron density as the machine-learning

target is the broad spectrum of chemical properties that are directly derivable from

ne (r ). For instance, the predicted charge densities are the key ingredient in density-

dependent scalar fields aimed at visualizing and characterizing interactions between

atoms and molecules in real space [137]. Routinely used examples include the quan-
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tum theory of atoms in molecules (QTAIM) [167, 168], the density overlap region

indicator (DORI) [136], and the non-covalent interaction (NCI) index [135, 169]. Fig-

ure 7.3 shows an example of the DORI indicator for representative dimers. Compared

to the rather featureless ne (r ), DORI reveals fine details of electronic structure, which

constitute a more sensitive probe for the quality of the machine-learning predictions.

In particular, it reveals density overlaps (or clashes) associated with bonding and

non-covalent regions on equal footing through the behavior of the local wave-vector,

∇ne (r )/ne (r ) [170–172].

London
Dispersion

Mixed
Regime

Electrostatics
Ab-initio

(RI-cc-pVQZ)
SA-GPR
Predicted

Ab-initio
(RI-cc-pVQZ)

SA-GPR
Predicted

SA-GPR
Predicted

Ab-initio
(RI-cc-pVQZ)

sgn(λ2)ρ(r)

Figure 7.3 – DORI maps of representative dimers for each type of dominant inter-
action (DORI isovalue: 0.9). Isosurfaces are color-coded [135] with sg n(λ2)ne (r ) in
the range from attractive -0.02 a.u. (red) to repulsive 0.02 a.u. (blue). In particu-
lar, sg n(λ2)ne (r ) < 0 characterizes covalent bonds or strongly attractive NCIs (e.g.,
H-bonds); sg n(λ2)ne (r ) ∼ 0 indicates weak attractive interactions (van der Waals);
sg n(λ2)ne (r ) > 0 repulsive NCIs (e.g., steric clashes).

As shown in the Figure, the intra- and intermolecular DORI domains obtained with

the SA-GPR densities are indistinguishable from those in the ab initio maps. This

performance is especially impressive for the density clashes associated with low

density values, as is typical for the non-covalent domains. All the features are well

captured by the predicted densities ranging from large and delocalized basins typical

of the van der Waals complexes (in green) to the compact and directional domains

typical of electrostatic interactions, to intramolecular steric clashes, e.g., phenol,
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mixed regime. Overall, these results illustrate that the residual 0.2% error does not

significantly affect the density amplitude in the valence and intermolecular regions

that are accurately described by the SA-GPR model. The highest amplitude errors are

concentrated near the nuclei in the region dominated by the core-density fluctuations.

7.7 Electrostatic potential

The versatility of the machine-learning prediction is further illustrated by using the

predicted densities to compute the molecular electrostatic potential (ESP) for the

same representative dimers (Figure 7.4). ESP maps based on predicted densities agree

quantitatively with the ab initio reference and correctly attribute the sign and magni-

tude of the electrostatic potential in all regions of space. Importantly, the accuracy

of the ESP magnitude remains largely independent of the dominant interaction type.

This is especially relevant for charged dimers (electrostatics) as it demonstrates that

despite slower convergence of the learning curve for this category, the achieved accu-

racy of the model is sufficient to describe the key features of the electrostatic potential.

London
Dispersion

Mixed
Regime

Electrostatics
Ab-initio

(RI-cc-pVQZ)
SA-GPR
Predicted

Ab-initio
(RI-cc-pVQZ)

SA-GPR
Predicted

SA-GPR
Predicted

Ab-initio
(RI-cc-pVQZ)

Figure 7.4 – Electrostatic potential (ESP) maps of representative dimers for each type
of dominant interaction (density isovalue: 0.05 e− Bohr−3). ESP potential is given in
Hartree atomic units (a.u.).
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Ab-initio
(RI-cc-pVQZ)

SA-GPR
Predicted

ESP (kcal/mol)

7.5

-7.5

4.5

1.5

-4.5

-1.5

Ab-Initio Stacking Interaction Energy

PHE

TYR

TRP

ESP (kcal/mol)

7.5

-7.5

4.5

1.5

-4.5

-1.5

Predicted Stacking Interaction Energy

PHE

TYR

TRP

-8.35 kcal/mol

-8.39 kcal/mol

-9.35 kcal/mol

-11.28 kcal/mol

-9.30 kcal/mol

-11.21 kcal/mol

Figure 7.5 – (left) Electrostatic potential maps 3.25 Å above the plane of the tryptophan
(TRP) side-chain. The van der Waals volume of TRP is represented in transparency.
(Right) Stacking interaction energies of TRP with the phenylalanine (PHE), tyrosin
(TYR) and tryptophan (TRP) side-chains computed as detailed in Ref. [173].

The most widespread applications of ESP maps exploit qualitative information, e.g.,

identification of the molecular regions most prone to electrophilic/nucleophilic attack,

but the electrostatic potentials can be related to quantitative properties such as the

degree of acidity of hydrogen bonds and the magnitude of binding energies [173–176].

As a concrete example related to structure-based drug design, we used a recent model

that estimates the strength of the stacking interactions between heterocycles and

aromatic amino acid side-chains directly from the ESP maps [173]. This model derives

the stacking energies of drug-like heterocycles from the maximum and mean value

of their ESP within a surface delimited by molecular van der Waals volume (at 3.25

Å above the molecular plane). Following this procedure, we used the ESP derived from

the ML predicted densities to compute the binding energies between a representative



86 Chapter 7

heterocycle included in our dataset, the tryptophan side-chain, and the three aromatic

amino acid side-chains (Figure 7.5).

Comparison between ab initio and ML predicted stacking interaction energies shows

that the deviations in the ESP maps lead to minor errors on the order of 0.05 kcal/mol.

The largest deviations in the ESP would appear further away from the molecule,

beyond the region exploited for the computation of the energy descriptors, i.e., the

sum of the atomic van der Waals radii. This behavior can be understood in relation

to the propagation of the error made in the density predictions δne (r ) to the Fourier

components of the electrostatic potential δV̂ (k) = 4πδn̂e (k)/k2. In particular, the

error associated with the slow-varying components of ne (r ) is greatly amplified as

k → 0, yielding predictions of V (r ) that show larger errors in the smooth far-field

regions.

7.8 Electrostatic energy

Integration of the electrostatic potential with the all-electron density field gives access

to the ab-initio electrostatic energy of any given molecule. This is defined as follows

Uele[ne ] =
1

2

∑
i j 6=i

Zi Z j

|R j −R i |
+ 1

2

∫
dr

∫
dr ′ ne (r )ne (r ′)

|r − r ′| −∑
i

Zi

∫
dr

ne (r )

|r −R i |
. (7.9)

The first term corresponds to the (exact) nuclear repulsion energy, the second term

to the Hartree energy UH already encountered, while the third term to the electron-

nucleus interaction energy Uen.

7.8.1 Basis set error

The computation of UH from the RI electron density follows the density-fitting strategy

already seen. Since the RI approximation has been derived to explicitly minimize

the error on electron repulsion integrals, the error associated with the calculation of

the RI Hartree energy (Eq. (7.2)) is negligibly small when compared with its ab-initio

counterpart, i.e., ∼ 10−6 kcal/mol. Conversely, the RI construction is not optimized to

give minimal error on the electron-nucleus energy Uen. As shown in Appendix D, the

calculation of this term is simple enough to be carried out analytically. The resulting RI

basis set error is enormous, of the order of ∼1 kcal/mol per electron. While this error

is way too large for any reasonable application, the systematic nature of this basis set

driven error is such that it perfectly cancels out when considering electrostatic energy

differences, rather than absolute energies. In our particular case, the ultimate goal
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consists in using ne (r ) to predict the electrostatic interaction between the monomers

(which we will label as A and B) included in each molecular dimer, i.e., Uint = Udimer −
UA −UB. In this scenario, the error incurred in the RI representation of Uen does not

affect the interaction energy, implying that our predictions of Uint can be directly

compared with the ab initio electrostatic interaction energies.

7.8.2 Prediction error

When computing Uele on top of the predicted ne (r ), another crucial error cancellation

occurs between the individual predictions of UH and Uen . In fact, the two (opposite)

terms screen each other out, guaranteeing that the final prediction error δUele is

greatly attenuated with respect to the error associated with the individual predictions

δUH and δUen. Formally, the effect of the reciprocal screening on the ML prediction

can be understood by considering that, at the first order in the density error δne (r ),

the error made in the total electrostatic energy reads as follows,

δUele[ne ] = δUH[ne ]+δUen[ne ]

≈
∫

dr
∫

dr ′ δne (r )n0
e (r ′)

|r − r ′| −
N∑

i =1
Zi

∫
dr

δne (r )

|r −R i |

=
∫

dr δne (r )

[∫
dr ′

(
n0

e (r ′)
|r − r ′| −

N∑
i =1

Zi
δ(r ′− r )

|r ′−R i |

)]
=

∫
dr δne (r )V 0(r ) ,

(7.10)

with n0
e (r ) and V 0(r ) the ab initio electron density and electrostatic potential, respec-

tively.

To effectively predict the electrostatic interaction energies within our dataset, a global

learning exercise that contains both the 2000 selected dimers and the corresponding

non-interacting monomers has been performed. This procedure has the advantage

that the predictions for the dimers and the monomers included in the test set is carried

out by using the same set of regression weights x M . As a consequence, the discrepan-

cies in the prediction accuracy between dimers and monomers are supposed to be

linearly comparable in the definition of the SOAP representation. Learning curves

for the density-based predictions of Uele are reported in Fig. 7.6. As shown in the first

panel of the Figure, as few as 10 training structures are enough to bring the error made

on the individual predictions of the monomers and dimers well below the intrinsic

variability of Uele within the test set. At this training set size, the resulting electrostatic

interaction energy shows a large error compensation between monomers and dimers
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Figure 7.6 – (left) Root mean square error (RMSE) of the electrostatic energy for the
dimers, the sum of the monomers and their difference (interaction) as a function of
the number of dimers in the training set. Dashed lines correspond to the standard
deviation of the target property within the test set. (right) Absolute error of the
interaction electrostatic energy Uint for each dimer in the test set divided per dominant
interaction type.

predictions, with an error that is roughly equivalent to the intrinsic variability of Uint

within the test set. Increasing the number of training structures results in a quick

saturation of the interaction energy error at about 0.3 kcal/mol per atom. The absolute

distribution of errors across the test set is reported in the second panel of Fig. 7.6.

Overall, we find that, especially for the electrostatic-driven configurations, the density-

based prediction of the molecular electrostatic interaction between the monomers

is well above the chemical accuracy of ∼1 kcal/mol. These results underscore, once

again, that the indirect calculation of the system’s energetics through the prediction of

ne (r ) represents a very challenging task, which would be better tackled by a learning

model that is specifically constructed to predict Uint directly.

7.9 Density extrapolation on polypeptides

If, on the one hand, our ML model requires further optimization to deliver predictions

of ne (r ) that enable the calculation of chemically-accurate interaction energies, on the

other hand, its inherent transferability can be exploited to provide access to density

information of large macromolecules, at the sole price of training the model on a

sufficiently heterogeneous and chemically diverse dataset. The predictive power of

this extrapolation procedure is demonstrated by using the machine-learning model

exclusively trained on the 2291 BFDb dimers to predict the electron density of 8

polypeptides taken from the Protein DataBank (PDB) [177]. The performance of the

ML model for each macromolecules, labelled by their PBD ID, is reported in Figure 7.7.
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Figure 7.7 – Weighted mean absolute percentage error (ερ(%)) of the predicted densi-
ties extrapolated for 8 biologically relevant peptides (protein databank ID).

Overall, the predictions lead to a low average error of only 1.5% for the 8 polypeptides,

which is in line with the highest density errors obtained on the BFDb test set. Rele-

vantly, the largest discrepancies are obtained for 3WNE, which is the only cyclopeptide

of the set. The origin of these differences can be understood by performing a more

detailed analysis on a representative polypeptide, the leu-enkephalin (4OLR). The

errors in this percentage range do not affect the density-based properties, such as

the spatial analysis of the intramolecular interactions with scalar fields (Figure 7.8

top right panel). Yet, most of the discrepancies occur along the amino acid backbone

(Figure 7.8 lower panels), which is especially sensitive for the more strained 3WNE cy-

clopeptide. Although similar chemical environments were included in the training set,

the error is determined by the lack of an explicit peptide bond motif and cyclopeptides

in the training set. While this limitation could be addressed by ad hoc modification

of the training set, the overall performance of the machine-learning model is rather

exceptional as it provides in only a few minutes electron densities of DFT quality for

large and complex molecular systems.
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Figure 7.8 – (top left) predicted electron density of enkephalin (PBD ID: 4OLR) at three
isovalues: 0.25, 0.1, and 0.01 e− Bohr−3 . (top right) DORI map of enkephalin (DORI
isovalue: 0.9) colored by sg n(λ2)ne (r ) in the range from -0.02 a.u. (red) to 0.02 a.u.
(blue) (lower left) density difference between predicted and ab-initio electron density
(isovalues ± 0.01e− Bohr−3). (lower right) density difference between predicted and
ab-initio electron density of 3WNE (isovalues ± 0.01e− Bohr−3).
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8 Incorporating long-range physics in
atomic-scale machine learning

During the previous chapters, we underscored the importance of three-dimensional

symmetries in constructing structural representations of the system and demon-

strated their effectiveness in predicting a broad variety of physical observables, in-

cluding scalars, tensors and scalar fields. All throughout the dissertation, we reported

examples that show how the inherent local nature of the machine-learning model

plays a crucial role for transferring the information learned in a neighbourhood of the

system’s atoms across chemically heterogeneous datasets of varying structural com-

plexity. The assumption that lies underneath these results consists in neglecting the

effect of long-range and non-local phenomena, such as those related to electrostatics,

dispersion and quantum coherence. While this assumption is in many cases valid to

a first approximation, there are several contexts in molecular and material science

where long-range effects play a leading role in the determining the system’s properties.

In this chapter, we show how to tackle this problem by deriving a representation of

the system where the non-local structural information is evaluated at the local scale,

thus preserving the atom-centered and additive nature of the predictions. By doing so,

we provide a conceptual framework to incorporate long-range physics into atomistic

machine learning, that entirely bypasses the ad hoc prescriptions commonly adopted

to circumvent the nearsightedness of local representation. Sections and figures are

adapted from the following article:

A. Grisafi and M. Ceriotti, “Incorporating long-range physics in atomic-scale machine learning”, The

Journal of Chemical Physics 151, 204105 (2019), with the permission of AIP Publishing. AG contributed

to deriving and implementing the LODE method, to produce the results and figures reported and to

writing the manuscript.
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8.1 Long-range effects in materials science

Long-range phenomena are ubiquitous in materials science [178]. The prototypi-

cal example is given by electrolyte solutions, where the pathologically slow decay of

Coulomb interactions, ∼ 1/r , between the ions of the system has a macroscopic influ-

ence on the instantaneous properties of the material. At thermodynamic equilibrium,

the Coulomb potential is exponentially screened by the statistical distribution of ions,

so that, in practice, the spatial extent of correlations in the liquid is determined by the

characteristic screening length λ of the electrolyte. This screening effect is associated

with an average electrostatic potential that decays monotonically in the regime of low

ionic concentrations (Debye-Hückel theory [179]), and that appears as a dumped oscil-

lation beyond a critical concentration value c0 [180, 181]. In contrast to the screening

properties of dilute electrolytes, where the Debye screening length λD is predicted

to decrease with the ionic concentration (λD ∝ c−1/2), values of c > c0 are associated

with screening lengthsλ that increase with the electrolyte concentration [182]. This be-

haviour has been experimentally observed in a large variety of electrolyte solutions for

concentrations c & 0.5M, finding that the electrostatic screening can take place over a

length scale that can reach up to ∼ 120 times the expected value of λD [183]. When

considering polar solvents like water, this scenario is made even more complicated

by the fact that the ionic electric field introduces a long-range dipolar correlation

between the solvent molecules [184–187], which have been experimentally found to

occur over nanometric scales [188]. Finally, while the thermodynamic properties of

pure liquid water can be well reproduced by means of a local (short-range) model,

the properties of vapour phases can dependent substantially on the inclusion of a

long-range description [189].

Of course, water and ionic systems do not represent the only scenario where long-

range effects can be manifested. In the context of electrochemical simulations, for

instance, the spontaneous [190, 191], or externally induced [192–195] polarization of

an electrodic interface between a metallic surface and a liquid medium is yet another

example where non-local effects play a crucial role. Moreover, while electrostatic

and polarization phenomena are both examples of interactions that can be repre-

sented by means of classical physics, there are a series of long-range effects that have

an intrinsic quantum nature. These include dispersion interactions [196], ∼ 1/r 6,

responsible for the stabilization of molecular crystals and biomolecules [197, 198],

quantum delocalization effects that are associated with large polarizabilities [58] and

nanoscopic charge-transfer phenomena [199], as well as geometric properties of the

wave-function that determine the anomalous quantum Hall conductivity [200] and

the behaviour of topological insulators [201].
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8.2 Machine learning of long-range phenomena

According to the previous discussion, long-range effects occur in many physical con-

texts and can influence the statistical correlations between the atoms of the system

over several nanometers. In these circumstances, the local nature of the atomic envi-

ronments commonly used in machine-learning approximations, such as symmetry

functions [202], SOAP [42], SNAP [203], MTP [204], ACE [205] and NICE [54], reflects a

fundamental limit to the accuracy of the regression model.

When it comes to electronic energies, the problem of including long-range effects

can be tackled by explicitly separating the local quantum many-body contribution to

the total energy from a more or less parametrized reference term that includes the

long-range properties of the system (∆-learning). This can be done either by using

inexpensive methods, e.g., Hartree-Fock and density functional tight binding, as a

baseline for the learning exercise [94, 206, 207], or by directly subtracting the classical

electrostatic contribution to the total energy [25, 208]. ∆-learning approaches have

also found applications in the description of the cohesive energy in homogeneous

and isotropic bulk systems, where the long-range dispersion tails of the interatomic

potential are introduced by means of van der Waals corrections [11, 209].

A different approach to tackle the problem involves a two-step process, where a

parallel regression is performed to predict, in turn, the ingredients that enter the

calculation of the long-range interaction. This is the case, for instance, of the partial

charges and atomic multipoles that determine the long-range electrostatics of the

system [32, 63, 210–213]. More sophisticated models rely instead on a charge equili-

bration scheme that makes use of predicted atomic electronegativities to compute

the partial charges of the system by minimizing a quadratic functional form of the

electrostatic energy [214–216].

Beyond electronic energies, the breakdown of a local machine learning model is

particularly pronounced when dealing with intrinsically non-local quantities like

the dielectric response of a condensed-phase medium [57]. This non-locality has

to do both with the effect of the far-field electrostatics [217], and to the topological

geometric nature of the macroscopic polarization of an infinitely extended (periodic)

material [69]. In this case, the problem can possibly be bypassed by adopting specific

physical prescriptions. Examples of this have already been shown in Sec. 3.5, where

the dielectric tensor ε of liquid water is learned indirectly by building a model for an

effective molecular polarizability that is mapped to ε through the Clausius-Mossotti

relationship [217]. In the context of reproducing the autocorrelation function of the

macroscopic polarization of liquid water, another strategy has instead been adopted,
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where the selected learning targets are the positions of the Wannier centers [218] that

are used to recast the electron density of the system into a set of point-charges [219].

Finally, when addressing the prediction of the dipole moment in molecular systems,

combining a tensorial representation, such as λ = 1 SOAP, with a model that explicitly

breaks down the dipole in its classical atomic contributions, i.e., µ =
∑

i qi r i , has

demonstrated to be essential to capture the non-local character of the dipole in

zwitterionic molecular chains [220].

By and large, the learning models previously described tackle the problem of including

long-range phenomena by making use of an ad hoc definition of the electrostatic

energy, or dielectric response, in terms of local atomic quantities. Although successful,

these kind of approaches have the downside of being very system dependent and,

as such, hardly transferable across systems that have a different nature. Capturing

long-range effects without any prior assumption on the nature of the learning target

is a difficult task to accomplish with the methods currently available. Most of the

approaches that have explicitly attempted to do so, such as Coulomb kernels [38],

many-body tensor representations [221], or multi-scale wavelet invariants [222], are

built upon a global representation of the system rather than on an additive atom-

centred model. In what follows, we propose a simple, yet elegant, solution to this

problem, where the non-local character of the target property is incorporated through

an atomic Coulomb-like potential field evaluated at the local scale.

Figure 8.1 – Schematic representation of the construction of potential-field represen-
tation for p = 1. Top: 1D atomic chain; bottom: hypothetical 2D system. (left) Atoms
are represented by their position in Cartesian coordinates.(middle) the structure is
represented as an atom-density field; each element is associated with a separate chan-
nel, represented by color coding. (right) the atomic potential field generated by the
decorated atom density.
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8.3 Long-distance equivariant representations

Let us start from the formal definition of a global atom-density representation, as

already reported in Eq. (1.13), i.e.,
〈

ax
∣∣ρ〉

=
∑

i gσ(x − r i )δai a . We now introduce a

generic potential-field representation through the following integral transformation

applied to the density field:

〈
ax

∣∣V (p)〉 =
∫

d x ′
〈

ax ′∣∣ρ〉
|x ′−x |p . (8.1)

The rationale behind this transformation is that, whereas
〈

ax
∣∣ρ〉

contains information

only about the atoms in the vicinity of x , the non-local nature of the potential fields〈
ax

∣∣V (p)
〉

can be used to encode information about all atoms of the system, with an

asymptotic dependence on the position of the i -th atom that follows an algebraic

decay |x − r i |−p . A graphical representation of this construction is reported in Fig. 8.1

for the special case of p = 1. The physical significance of the potential field
∣∣V (p)

〉
becomes obvious when considering specific interatomic interactions. For instance, if

we replaced the atom-density field with an actual charge density, the p = 1 case would

correspond to the electrostatic potential of the system. Similarly, under a different

interpretation of the atom-density field, the p = 6 case recalls the asymptotic limit

of the exchange-correlation energy per particle [223] that underlies the definition of

dispersion interactions [196].

Given the translational invariant nature of the non-local kernel
∣∣x ′−x

∣∣−p , imposing

the translational symmetry to Eq. (8.1) follows a derivation similar to the one reported

in Sec. 1.5.1. In particular, one can build a two-body correlation function that comes

from the translational convolution of the tensor product between
∣∣V (p)

〉
and an atom

density representation
∣∣ρ〉

, i.e.,

〈
a1x1; a2x2

∣∣ρ⊗V (p)〉
t̂ =

∫
d t̂ 〈a1x1| t̂

∣∣ρ〉〈a2x2| t̂
∣∣V (p)〉

=
∑
i j
δai a1δa j a2

∫
d t gσ1 (x1 − r i + t )

∫
d x3

gσ2 (x3 − r j )

|x2 −x3 + t |p

=
∑
i j
δai a1δa j a2

∫
d s

1

|x2 − s|p
∫

d t gσ1 (x1 − r i + t )gσ2 (s − r j + t )

=
∑
i j
δai a1δa j a2

∫
d s

gσ((x1 − s)− (r i − r j ))

|x2 − s|p

=
∑
i j
δai a1δa j a2

∫
d x ′ gσ(x ′− r i j )

|x ′−x |p ,

(8.2)
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where we used the twofold change of variables s → x3 + t and x ′ → x1 − s, and we set

r i j = r i − r j and x = x1 −x2 in the last equality. Note that, once again, the width σ of

the Gaussian function gσ(x ′−r i j ) is defined from the Gaussian convolution properties

as σ =
√
σ2

1 +σ2
2. Proceeding as in Sec. 1.5.1, from Eq. (8.2) we can then single out an

atom-centered representation defined as follows:

〈
ax

∣∣∣V (p)
i

〉
=

∫
d x ′

∑
j δa j a gσ(x ′− r i j )

|x ′−x |p =
∫

d x ′
〈

ax ′∣∣ρi
〉

|x ′−x |p . (8.3)

Similarly to the atom-density case, the potential-field information can be localized in

a neighbourhood of the central atom i using a cutoff function of radius rc. Especially

for small values of p, however, the integral of Eq. (8.3) introduces a substantially non-

local behavior in the definition of the potential field, which makes the atom-centered

representation aware of the structural variations that occur over the entire system.

In other words, thanks to the algebraic decay of the potential tails, the representa-

tion
〈

ax
∣∣∣V (p)

i

〉
can in principle depend on the positions of atoms that are located

arbitrarily far from r i , in fact beyond the selected cutoff distance rc. In this regard,

the construction previously introduced lies in between a global and local description

of the system, as it incorporates the far-field information while still retaining the

atom-centered and additive nature characteristic of transferable learning models.

From of Eq. (8.3), the derivation of potential-field representations of arbitrary body-

order ν that are adapted to rotational and inversion symmetry follows the very same

discussion reported in Sec. 1.5 for the atom-density case. We will refer from now

on to the resulting class of atomistic representations as the long-distance equivari-

ant (LODE) framework. In the following, we will focus on the important case of p = 1.

8.3.1 2-body LODE and points-charge limit

2-body (ν = 1) spherical invariants come from performing the rotational average on

Eq. (8.3). In this case, it is particularly instructive to take the δ-Dirac limit correspond-

ing to σ→ 0 in the definition of the atom-density field, i.e.,

〈
ax

∣∣V ⊗1
i

〉→∑
j
δa j a1

1∣∣x − r i j
∣∣ , (8.4)

which yields the 2-body invariant features〈
ax00

∣∣∣V ⊗1
i

〉
→∑

j
δa j a min

[
1

x
,

1

ri j

]
. (8.5)
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Clearly, Eq. (8.5) simply sums up pairwise Coulomb interaction terms of the kind 1/ri j

over all atoms outside the region over which the potential-field is computed. Ignoring

the contribution from the atoms within the cutoff, that can be better characterized by

other atomic structure representations, a linear model built on these features is hence

equivalent to a fixed point-charge electrostatic model. In particular, upon promoting

the valence of the central atom i in the feature space, the linear regression weights

associated with each pair of chemical species ai and a j can be interpreted as the

product of atomic charges qai and qa j . While this construction is very revealing, it is

clear that its descriptive power carries the same limitations of the fixed points-charge

models routinely used in atomistic simulations [83].

8.3.2 3-body LODE features

Following the same derivation of Sec. 1.5.3, increasing the order of structural correla-

tions up to 3-body (ν = 2) yields the following rotational invariant features:〈
a1x1l ; a2x2l

∣∣∣V ⊗2
i

〉
=

∑
m

〈a1x1lm|Vi 〉? 〈a2x2l m|Vi 〉 , (8.6)

with 〈axlm|Vi 〉 the spherical harmonics components of the potential field. Its real-

space counterpart underlies a construction that is schematically represented in Fig. 8.2.

The extension to higher body-orders ν> 2 and/or to rotationally covariant representa-

tions of a given spherical-tensor order λ> 0 is straightforward based on the analogous

density-based counterparts. Note that it is also possible to compute representations

that combine different values of p, and even p = 0, corresponding to the atom-density

field. These possibilities are investigated in more details in the next chapter.

Figure 8.2 – 3-body LODE correlations arise from the rotational average of a pair of
smeared Coulomb potentials sampled in a local environment of a given atom i .
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8.4 Calculation of potential harmonics projections

The calculation of the LODE features of Eq. (8.6) requires to first compute the spherical

harmonics projections of the potential field, 〈axlm|Vi 〉. As for the density case, it

is convenient to expand the radial degrees of freedom over orthogonal radial func-

tions Rn(r ), so that in practice one is required to compute coefficients of the kind

〈anl m|Vi 〉. As presented in details in Appendix C, for molecules and clusters the

spherical harmonics projections 〈anl m|Vi 〉 can be computed conveniently in real

space, by numerical integration on appropriate atom-centred grids. For a bulk (infi-

nite) systems, described by a periodically-repeated supercell, the slow decay of the

Coulomb potential would instead make the real-space computation prohibitive. This

is exactly the same problem one faces when evaluating electrostatic interactions in

the condensed phase, and fortunately it has long been solved, e.g., with the many tech-

niques based on the use of a plane-waves auxiliary basis [224]. Consider in particular

the plane-wave definition as 〈x |k〉 ≡ e i k ·x , with k representing the wave-vectors that

are compatible with the simulation box. Starting from a smooth, Gaussian atom den-

sity, means that in practice one needs only a manageable number of plane waves. In

particular, the width σ of the Gaussian density determines the minimum wavelength

that should be introduced in the the plane-wave expansion, so that k-vectors only

need to be generated within a sphere of radius kmax of the order of 2π/σ. In order to

evaluate the orthogonal potential projections, it is then enough to include the identity

resolution
∑

k |k〉〈k | within the definition of the coefficients 〈anl m|Vi 〉, i.e.,

〈anl m|Vi 〉 =
∑
k 6=0

〈nlm|k〉〈ak |Vi 〉

=
∑
k 6=0

[
4π i l Inl (k)Y ?lm(k̂)

][
1

Ω

(∑
j
δa j ae−i k ·r i j

)
4π

k2
e− k2σ2

2

] (8.7)

whereΩ the volume of the simulation box, and k and k̂ are, respectively, the modulus

and direction of the wavevector. As detailed in Appendix C, the bracket 〈nlm|k〉
realizes the expansion in plane waves of the local environment basis, and can be

computed analytically once and for all if the radial functions are taken to be Gaussian

type orbitals. Conversely, 〈ak |Vi 〉 represent the Fourier components of the potential

generated by the Gaussian density of type a for the entire system, and can be readily

computed analytically [5]. As a result, the geometric local nature of the representation

of Eq. (8.7) is formally factorized from its system-dependent global character. In

fact, Eq. (8.7) could also be used to compute efficiently the coefficients of the atom-

density expansion that enter, for instance, the SOAP framework. Note that the k=0
component can be safely excluded from the sum of Eq. (8.7): this is in fact equivalent to

the application of a charge-neutrality constraint while solving the regression problem.



Incorporating long-range physics in atomic-scale machine learning 101

8.5 Random gas of point charges

We begin testing the LODE representations by considering a toy system made of

randomly distributed point-charges in a cubic box that is infinitely repeated in the

three dimensions using periodic boundary conditions. The number of positive charges

is equal to the number of negative charges, so that the system is overall neutral. To

limit the amplitude of energy fluctuations, we discard configurations in which two

charges are closer together than 2.5 Å. Following these prescriptions, we generate a

total of 2000 configurations, each of which contains 64 atoms in cubic boxes spanning

a broad range of densities, with side lengths between 12 and 20 Å. For each of these

configurations, we compute the electrostatic energy using the Ewald method, as

implemented in LAMMPS [225]. Fig. 8.3 compares the learning performance obtained

using a 3-body SOAP (ν = 2) representation with different cutoffs, to the one obtained

using 2-body (ν = 1) and 3-body (ν = 2) LODE features. A Gaussian width of σ=1.0 Å

has been used to construct the atom-density that enters both representations.
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Figure 8.3 – (left) snapshot of a random gas configuration of sodium chloride. (right)
Learning curves in kcal/mol for the electrostatic energy of an idealized random gas of
point charges. The model is trained on 1500 randomly selected configurations and
tested on other 500 independent configurations. (black full and dashed lines) Local
SOAP results at environment cutoffs of 3, 6 and 9 Å. (blue lines) LODE(ν = 1) results at
an environment cutoff of 2 Å and Gaussian smearing of 0.5 and 1.0 Å, and LODE(ν = 2)
results with a cutoff of 3 Å and 1.0 Å.

The figure clearly demonstrates the inefficiency of a local model when attempting

to learn a property that is dominated by long-range effects. Given that the training

set contains few configurations with atoms closer than 3 Å, the model with rc=3 Å is

almost completely ineffective. Even increasing the cutoff up to 9 Å, a SOAP model

barely reaches an accuracy of about 20% RMSE when using the maximum number of

training structures, corresponding to an error larger than 100 kcal/mol. On the other

hand, upon promoting the species of the central atom to the feature space, a linear

model built using the 2-body LODE (ν = 1) representation yields an error that is one
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order of magnitude smaller, ∼ 10 kcal/mol, by using a handful of training points. This

is not surprising, since the functional form of Eq. (8.5) is formally equivalent to the

fixed point-charges interaction as the Gaussian smearing of the atomic density tends

to zero (σ→ 0). In fact, chemically accurate predictions with ∼ 0.1 kcal/mol RMSE

can be obtained under halving the Gaussian width down to σ = 0.5 Å. A 3-body LODE

(ν = 2) model, although initially less effective, possesses sufficient descriptive power

to reach, and then overcome, the accuracy of the linear ν = 1,σ = 1 Å model. This

simple example highlights the fundamental difficulty in incorporating long-range

physics with a conventional local structure representation, and demonstrates that the

LODE features can, on their own, be used as a very efficient description to predict the

electrostatic energy of a system of fixed point charges.

8.6 Binding curves of charged dimers

We now consider a more realistic scenario, namely the problem of predicting the

binding curves of a dataset of organic molecular dimers that carry an electric charge.

We extract 661 different dimers containing H, C, N and O atoms from the BioFragment

Database (BFDb) [166], where at least one of the two monomers in each dimer config-

uration has a net charge. This choice ensures that we focus the exercise on a problem

for which permanent electrostatic interactions play a prominent role. Contrary to the

toy system previously discussed, however, one cannot expect that a fixed point-charge

model would suffice to predict the binding curves. The dataset contains a multitude of

chemical moieties, including neutral polar fragments, highly polarizable groups, and

provides a realistic assessment of how well a LODE model can perform in practice. For

each of the 661 dimers, we consider 13 configurations where the reciprocal distance

between the two monomers, defined as the distance between their geometric centers,

spans an interval that can go from a minimum of ∼3 Å to a maximum of ∼8 Å. For each

of these configurations, unrelaxed binding curves are computed at the DFT/B3LYP

level using the FHI-aims quantum-chemistry package [125]. The training dataset is

defined by considering the binding curves of the first 600 dimers out of the total of

661, while predictions are tested on the remaining 61. We also include the isolated

monomers in the training set, so that the ML model has knowledge of the dissociation

limit, and compute a few additional reference energies at larger separations, which

are however not used for training. SOAP and LODE representations are defined within

spherical environments of rc = 3.0 Å, while the Gaussian width of the density field is

chosen to be σ=0.3 and 1.0 Å respectively.

Before carrying out the learning exercise, the reference DFT energies are baselined

with respect to the monomer energies, so that the model only has to reproduce the
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Figure 8.4 – Comparison of reference and predicted binding curves of six molecular
dimers. (black dots) DFT reference calculations, (red lines) local SOAP predictions,
(green lines) combined SOAP and LODE(1) predictions, (blue lines) combined SOAP
and LODE(2) predictions. Full lines and shaded background represent the range of
distances that is comparable to the geometries included in the training set. Dashed
lines refer to predictions carried out in an extrapolative (long-range) regime. Panels
(a,c) correspond to repulsive charge-charge interactions, panels (b,e) correspond to
attractive charge-charge interactions, panel (d) corresponds to an attractive charge-
dipole interaction and panel (f) to repulsive charge-dipole interaction.

interaction energies between the two molecules. Upon this baselining, we find that

optimal SOAP performances correspond to a RMSE ∼20%, whereas a suitable combi-

nation between SOAP and LODE(ν = 2) allows us to bring the error down to ∼4%. This

substantial improvement can be justified by the large discrepancy between the SOAP

and SOAP+LODE accuracy in representing the interaction between the monomers

at intermediate and large distance. To clarify the issue further, we plot in Fig. 8.4

the predicted binding curves of 6 test dimers, against the reference DFT calculations.

We observe that a SOAP-based local description is overall able to capture the short-

range interactions with good accuracy. However, it becomes less and less effective

as the distance between the monomers increases, to the point of being completely

blind to changes in interatomic distances when the environments cutoff distance

is overcome. Note that the performance of the local model at small separations is

degraded substantially by the inclusion of fully dissociated dimers in the training set,

because the representation cannot distinguish these configurations from those barely

beyond the cutoff distance, that correspond to a non-zero value of the binding curve.

The SOAP+LODE multiscale description, in contrast, can recognize the changes in

separation between the monomers, leading to a smooth asymptotic behavior of the

predicted binding curve. Although a linear model incorporating LODE(ν = 1) allows
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us to halve the error made by SOAP down to ∼10%, it is not sufficiently expressive

to achieve predictive accuracy - particularly for binding curves that involve neutral

monomers that do not have a 1/r asymptotic behavior. This limitation can be ad-

dressed, on one side, by increasing the body-order of the LODE descriptor to ν = 2, and,

on the other side, by considering non-linear kernels of the form
(
kSOAP(2)

i j +kLODE(2)
i j

)2
.

The resulting model is able to accurately predict the binding curves in the entire do-

main of distances, demonstrating its transferability across a vast spectrum of different

chemical species and intermolecular configurations. This is particularly remarkable,

as the SOAP(ν =2)⊕LODE(ν = 2) model does not only predict accurately systems that

are dominated by monopole electrostatics (Fig. 8.4 -(a,b,c,e)), but also systems in

which only one of the molecules is charged, and so interactions involve polarization

as well as charge-dipole electrostatics (Fig. 8.4 -(d,f)).

101 102

training dimers

101

102

%
 R

M
SE

SOAP
SOAP + baseline
SOAP + mean-baseline
SOAP + LODE(1)
SOAP + LODE(2)

Figure 8.5 – Learning curves for the binding energies of the molecular dimers. The
model is trained on a maximum of 600 binding trajectories and predictions are tested
on an additional 61 independent binding trajectories. (black line) SOAP results ob-
tained with rcut =3 Å and σ =0.3 Å. (red line) SOAP results obtained with rcut =3 Å and
σ =0.3 Å upon baselining the binding curves with the electrostatic interaction ener-
gies coming from the Mulliken partial charges of the isolated monomers. (gray line)
SOAP results obtained with rcut =3 Å and σ =0.3 Å upon baselining the binding curves
with the electrostatic interaction energies coming from the fixed partial charges of
the isolated monomers obtained by averaging the Mulliken charges over the entire
dataset. (green line) SOAP+LODE(1) multiscale results obtained with rcut =3 Å and
σ =1.0 Å for the LODE representation. (blue line) SOAP+LODE(2) multiscale results
obtained with rcut =3 Å and σ =1.0 Å for the LODE representation.

In order to verify how a LODE-based model compares with a treatment of electrostatics

based on machine-learning atomic partial charges, we performed a Mulliken popula-

tion analysis to compute the partial charges of each isolated monomer included in
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the dataset, and used these partial charges to compute the classical electrostatic inter-

action between the monomers. Asymptotically, this term exactly represents the per-

manent electrostatic interaction between the monomers and it can therefore be used

as an excellent baseline value for the binding curves. As shown in Fig. 8.5, we find that,

using this baselining, a local SOAP description can be used to reach a similar learning

accuracy (∼4% RMSE) to the one obtained through the SOAP(ν = 2)⊕LODE(ν = 2)

multiscale approach. This result highlights the capability of the LODE(ν = 2) repre-

sentation to describe environment-dependent electrostatic effects beyond a model

of fixed point charges. In fact, the performance of a SOAP model baselined on the

electrostatic energy of fixed atomic charges equal to the mean of Mulliken partial

charges performs only marginally better than a purely local model.

8.7 Dielectric response of liquid water

As a final example, we revisit the problem already discussed in Sec. 3.5 of constructing

a model of the electronic dielectric tensor ε of liquid water. In that context, we argued

that a local model was inefficient in learning the dielectric response because of its

non-local nature, and showed that using the Clausius-Mossotti relationship to map ε

to effective molecular polarizabilities was greatly improving the model. Here, LODE

learning performances are only tested for the isotropic component of the tensor

ε0 = Tr[ε], which was shown to be most sensitive to the collective nature of the physics

of dielectrics. Similarly to the case of the BFDb, we use a non-linear kernel that

combines a SOAP representations computed using an optimal Gaussian width of

σ=0.3 Å, and LODE(ν = 2) features constructed starting from a Gaussian density of

σ=1.0 Å. Figure 8.6 reports results obtained when learning on 800 randomly selected

structures and predicting on other 200 independent configurations.

When relying upon a local description of rc=3 Å, LODE features perform much better

than a local description. In this case, however, we observe a substantial improvement

of the performance of SOAP when increasing the size of the local environments,

eventually overcoming the accuracy of a LODE-based model with a radial cutoff of

rc=6 Å. This might be a consequence of a less pronounced contribution of long-range

tails, or of the fact that a cutoff of 6 Å encompasses the entirety of the supercell,

and therefore effectively provides a complete description of the input space of this

specific dataset. Optimal ML predictions can be obtained when combining the fine-

grained local description of SOAP at rc=3 Å with the coarse-grained and non-local

description of LODE at the same cutoff. This behaviour highlights the multiscale

character of ε, meaning that both the local many-body information and the long-

range electrostatic effects need to be considered to get accurate predictions. It is
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Figure 8.6 – Learning curves for the isotropic component of the electronic dielectric
tensor ε of liquid water. The model is trained on up to 800 randomly selected configu-
rations and tested on other 200 independent configurations. (black full and dashed
lines) SOAP results with rc= 3, 4 and 6 Å. (red line) LODE results with rc=3 Å. (blue line)
combined results of SOAP and LODE, both using rc=3 Å.

also important to stress that a combination of SOAP and LODE is not only beneficial

in terms of learning performance. The formal similarity with methods to evaluate

empirical potentials separating long-range and short-range interactions suggests that

by choosing judiciously the local cutoff and the density smearing it might be possible

to evaluate SOAP⊕LODE at a lower cost than a SOAP model with a very large cutoff

distance.



9 Multi-scale equivariant representa-
tions with consistent electrostatics

The LODE framework introduced in the previous chapter represents a novel paradigm

in the regression of physical quantities that attempts to incorporate a consistent

description of long-range effects within state-of-the-art local machine-learning ap-

proximations. In this chapter, this concept is fully generalized thanks to a symmetry-

adapted combination of atom-density and potential-field representations of the sys-

tem that allows us to treat a broad spectrum of short-range and long-range phenom-

ena, such as Pauli repulsion, dispersion, polarization and electrostatic effects, on an

equal footing. The derived class of multi-scale equivariant features not only shows a

greater accuracy than a pure potential-based method, but it is also suitable to map

the electrostatic energy of the system to a functional form that resembles the classical

multipolar description of long-range interactions, realizing the optimal balance be-

tween physics-based and data-driven models. An open-source implementation of the

method can be found in the TENSOAP package [68]. Sections and figures are largely

based on the following article:

A. Grisafi, J. Nigam and M. Ceriotti, “Multi-scale approach for the prediction of atomic scale proper-

ties”, Chemical Science 12, 2078-2090, (2021). Copyright © 2021 The Royal Society of Chemistry. AG

contributed to deriving and implementing the multiscale LODE method, to produce results and figures

associated with the water-carbon dioxide and organic dimers examples reported and to writing the

manuscript.

9.1 Multi-scale equivariant representations

During the discussion carried out in the previous chapter, we have shown that a multi-

scale learning model that can treat both local and non-local effects can be obtained by

combining structural descriptions of short-range interatomic correlations, equivalent

to SOAP [42], with long-distance equivariants (LODE) features [43]. Here, we introduce

107
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a more explicit multi-scale approach, that couples
∣∣ρi

〉
and |Vi 〉 terms in a unified

representation that is adapted to the symmetries of the O(3) group. In this regard,

consider the following tensor product that is averaged over all the possible improper

rotations Ŝ = î k R̂, with R̂ rotation operators and î k inversion operators, as∫
dŜ Ŝ

∣∣ρi
〉⊗ . . . Ŝ

∣∣ρi
〉︸ ︷︷ ︸

ν times

⊗ Ŝ |Vi 〉⊗ . . . Ŝ |Vi 〉︸ ︷︷ ︸
ν′ times

⊗Ŝ
∣∣λµ〉⊗ Ŝ |σ〉 , (9.1)

Within this construction, the ket
∣∣λµ〉

has the role of making the resulting features

transform as a Y µ

λ
spherical harmonics, paving the way to the regression of tensorial

properties, while |σ〉 indicates the parity of the structural representation under in-

version, leaving the freedom to treat both polar (σ = 1) and pseudo-tensors (σ = −1).

Clearly, Eq. (9.1) corresponds to the λ-SOAP framework for ν′ = 0, while it represents

the tensorial extension of LODE features for ν = 0. In what follows, we will restrict the

discussion to the hybrid density-potential case ν = 1 and ν′ = 1, i.e.,∣∣∣ρi ; Vi ; λµ; σ
〉

=
∫

dŜ Ŝ
∣∣ρi

〉⊗ Ŝ |Vi 〉⊗ Ŝ
∣∣λµ〉⊗ Ŝ |σ〉 , (9.2)

where we used the short-hand notation
∣∣∣ρi ; Vi ; λµ; σ

〉
to indicate that the representa-

tion follows the symmetries of the O(3) manifold. As sketched in the figure below, its

real-space representation underlies 3-body structural correlations where one point

of the density-field is coupled with one point of the potential-field about the central

atom, together with a spherical harmonic rigidly attached to the frame of reference.

* * *

Figure 9.1 – A schematic real-space representation of Eq. (9.1) for ν = 1 and ν′ = 1.
Different representations of an atomic environment are combined as tensor products,
i.e., evaluated at different points, and averaged over all possible rotations of the
system. Including also a set of spherical harmonics makes it possible to build ML
models endowed with an equivariant behavior.
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9.2 Linear models for electrostatic interactions

Linear models are notoriously useful to reveal the physical meaning of a structural

representation. For example, they can be used to draw the connection between

short-range density correlations (ν′ = 0) and the body-order expansion of interatomic

potentials [45, 53, 205, 226], as well as to relate the LODE(ν = 0,ν′ = 1) features to a

fixed point-charge electrostatic model [43]. In this section, we use this idea to show

that even though neither the atom density
∣∣ρi

〉
nor the associated potential field

|Vi 〉 correspond to actual physical quantities, the multi-scale combination of the two

entails formal similarities with the physics of long-range interactions. In particular,

we show that the simplest multi-scale LODE(ν = 1,ν′ = 1) defined in Eq. (9.2) can be

put under formal correspondence with a multipolar expansion for the electrostatic

energy of a system [76]. This connection is demonstrated both analytically and with

numerical benchmarks.

9.2.1 Analytical connection with the multipole expansion

Consider the scalar (λ = 0) and polar (σ = 1) limits within the multi-scale abstract

representation of Eq. (9.2), i.e.,
∣∣∣ρi ;Vi

〉
. This can be used to build a linear regression

model for the electronic energy U of a system A, that is approximated through the

following atom-centered decomposition,

U (A) ≈
N∑

i =1
Ui (A) =

N∑
i =1

〈
w

∣∣∣ρi (A);Vi (A)
〉

=
N∑

i =1

∑
a1a2

lmax∑
l=0

∫ rc

0
d x1 x2

1

∫ rc

0
d x2 x2

2 〈w |a1x1l ; a2x2l〉
〈

a1x1l ; a2x2l
∣∣∣ρi (A);Vi (A)

〉
.

(9.3)

In the last equality, the linear problem is projected on the rotationally invariant basis

〈a1x1l ; a2x2l | already encountered to represent 3-body structural correlations, so

that 〈w |a1x1l ; a2x2l〉 are the regression weights to be determined, while the actual

multi-scale representation of the system is given by:〈
a1x1l ; a2x2l

∣∣∣ρi (A);Vi (A)
〉

=
∑
m

〈
a1x1lm

∣∣ρi (A)
〉〈a2x2lm|Vi (A)〉? . (9.4)

We aim to prove that the functional form of Eq. (9.3) can be used to model rigorously

a multipolar expansion of the long-range contributions to U .

To see this, let us start by separating the near-field from the far-field potential in the
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definition of the atom-centered potential field |Vi 〉, that is,

〈ax |Vi 〉 =
〈

ax
∣∣V <

i

〉+〈
ax

∣∣V >
i

〉
=

∫
d x ′

〈
ax ′∣∣ρ<

i

〉
|x −x ′| +

∫
d x ′

〈
ax ′∣∣ρ>

i

〉
|x −x ′| , (9.5)

where ρ<
i and ρ>

i are the atomic densities located inside and outside the i -th spherical

environment of radius rc. While the near-field term contributes to a piece of infor-

mation that is similar to that included in
∣∣ρi

〉
, the far-field contribution determines

the effect of the density beyond rc. Upon this splitting, we can in turn partition each

atom-centred contribution to the energy prediction in range separated terms, i.e.,

Ui = U<
i +U>

i . Focusing in particular on the long-range contribution, we have:

U>
i =

∑
a1a2

lmax∑
l=0

∫ rc

0
d x1 x2

1

∫ rc

0
d x2 x2

2 〈w |a1x1l ; a2x2l〉∑
m

〈
a1x1lm

∣∣ρ<
i

〉〈
a2x2l m

∣∣V >
i

〉? .

(9.6)

Using the Laplace expansion of the Coulomb operator, the spherical harmonics com-

ponents of the far-field potential can be explicitly written as follows:

〈
a2x2lm

∣∣V >
i

〉? =
4π

2l +1

∫ ∞

r+
c

d xx2 〈
ρ>

i

∣∣a2xlm
〉 x l

2

x l+1
. (9.7)

Finally, plugging this expression into Eq. (9.6), one sees that the long-range contribu-

tion to the energy prediction can be formally rewritten as

U>
i =

∑
a1a2

lmax∑
l=0

∫ ∞

r+
c

d x
x2

x l+1

∑
m

〈
ρ>

i

∣∣a2xlm
〉〈

a1a2; lm
∣∣M<

i (w)
〉

=
∑

a1a2

∫
|x |>rc

d x
〈
ρ>

i

∣∣a2x
〉[

lmax∑
l=0

1

x l+1

∑
m

〈x̂ |lm〉〈a1a2; l m
∣∣M<

i (w)
〉]

=
∑

a1a2

∫
|x |>rc

d x
〈
ρ>

i

∣∣a2x
〉〈

a1a2; x
∣∣V <

i (w)
〉

.

(9.8)

Eq. (9.8) shares a striking resemblance with the expression for the interaction of a far-

field charge density ρ>
i with the multipole expansion (represented in square brackets)

of the electrostatic potential V <
i generated by a localized charge distribution [227].

To write this expression, we relied on a definition of the atom-centered spherical

multipoles M<
i that reads as a non-linear transformation of the inner cutoff density

distribution ρ<
i through the fitting parameters w :

〈
a1a2; lm

∣∣M<
i (w)

〉
=

4π

2l +1

∫ rc

0
d x2 x2

2 x l
2

∫ rc

0
d x1 x2

1 〈w |a1x1l ; a2x2l〉〈a1x1lm
∣∣ρ<

i

〉
.
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(9.9)

Crucially, however, ρi and Vi are not physical quantities, but are just a representation

of the spatial arrangement of atoms. In fact, atoms in the far-field respond in a way

that depends only on their chemical nature, while the local multipoles are modulated

in a highly flexible, non-trivial fashion by the distribution of atoms in the local envi-

ronment. The form of Eq. (9.9) also hints at how changing the representation would

affect this derivation. Increasing the density order ν would bring a more flexible,

higher-body-order dependence of the local multipoles on the distribution of atoms in

the vicinity of the central atom i , while increasing ν′ would bring a more complicated

dependency on the distribution of atoms in the far-field, leading to a linear regression

limit that does not match formally the electrostatic multipole expansion.

As we shall see in what follows, the formal equivalence previously outlined underpins

the ability of multi-scale LODE features to model accurately several kinds of interac-

tions. For instance, a fixed point-charge interaction model can be obtained under

truncating the expansion at lmax = 0 and taking the limits of vanishing cutoff radius

(rc → 0) and δ-like atom-density distributions (σ→ 0), i.e.,

U>
i =

∑
a1a2

∫ ∞

r+
c

d x
x2

x

〈
ρ>

i

∣∣a2x00
〉〈

a1a2;00
∣∣M<

i (w)
〉

rc→0−→ ∑
a2

∫ ∞

0+
d x

x2

x

〈
ρ>

i

∣∣a2x00
〉〈

a j a2;00
∣∣M<

i (w)
〉

σ→0−→ ∑
a2

∫ ∞

0+
d x

x2

x

(∑
j 6=i
δa j a2

δ(x − ri j )

x2

)〈
ai a2;00

∣∣M<
i (w)

〉
=

∑
j 6=i

〈
ai a j ;00

∣∣M<
i (w)

〉
ri j

,

(9.10)

where we considered that the only atom inside the cutoff is the central atom i and

we made use of the properties of Dirac-δ distribution functions. If one interprets〈
ai a j ;00

∣∣M<
i (w)

〉
as the product of the partial charges of the two species qai , and qa j ,

this form is equivalent to a simple Coulomb interaction between fixed point-charges.

In this regard, while relaxing the cutoff constraint would make the atomic charges

dependent on the chemical environment, hence matching a flexible point-charge

model, including multipoles for l > 0 makes it possible to represent the structural

anisotropy of the electrostatic interaction.
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9.2.2 A toy model for multipolar interactions

To show this, we analyze the performance of the method in representing the long-

range interaction between a H2O and a CO2 molecule. We build a dataset made of

33 non-degenerate reciprocal orientations between the two molecules, and learn

the corresponding interaction within the far-field regime defined by an intermolec-

ular distance that goes from 6.5 to 9 Å between the molecular center of mass. The

regression is performed using a LODE(1,1) model built using a cutoff rc = 3 Å, so

that we can unambiguously interpret our results in terms of the long-range energy

formula reported in Eq. (9.8). We then extrapolate the predicted interaction profile

in the asymptotic regime of R > 9 Å, verifying how the model converges towards the

dissociated limit of R →∞, which is also included in the training set.

Figure 9.2 – Extrapolated interaction profiles for a given configuration of H2O and CO2

at different angular cutoff values lmax. Left and right panels show the results of the
asymptotic extrapolation when centring the representation on the oxygen atom of
H2O and the carbon atom of CO2 respectively.

According to our construction, the cutoff value lmax chosen to define the angular reso-

lution of the representation determines the number of multipoles that are included

within the expansion of Eq. (9.7). In Fig 9.2 we report the results of the extrapolation

for a highly symmetric reciprocal orientation at increasing angular cutoffs lmax. We

also compare different choices for the possible atomic centres that contribute to the

energy prediction: in panel (a) we express the energy in terms of a single environ-

ment centred on the oxygen atom of the H2O molecule; in panel (b) we use a single

environment centred on the carbon atom of CO2. As one would expect from a classi-

cal interpretation of the long-range energy, the binding profile for the selected test

configuration is solely determined by the interaction between the dipole moment of

the water molecule and the quadrupole moment of CO2, while the interaction term
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associated with the quadrupole moment of H2O vanishes for symmetry reasons. This

is reflected in the sharp transition of the prediction accuracy when crossing a critical

angular cutoff lmax. When centring the local environment on the water molecule

(Fig. 9.2-a)), truncating the expansion at lmax = 1 is enough to reproduce the inter-

action between the dipolar potential of water and the atom-density distribution of

the CO2 molecule. Conversely, when centring the representation on carbon dioxide

(Fig. 9.2-b)), the H2O atom-density in the far-field can only interact with a CO2 po-

tential that is quadrupolar in nature, requiring an angular cutoff of at least lmax = 2.

Fig. 9.3 reports what happens when centering the LODE(1,1) representation on all the

QM

Figure 9.3 – Extrapolated interaction profiles for a highly symmetric configuration of
H2O and CO2 at different angular cutoff values lmax. Results are obtained centring the
representation on the all the atoms of the system.

atoms of the system. Interestingly, for this particular highly symmetric configuration,

using an angular cutoff of lmax = 0 suffices to obtain an accurate asymptotic profile,

underlying a model that can be interpreted through the fixed point-charge limit de-

rived in Eq. (9.10). Overall, these results remark the distinction between a learning

model for the electrostatic energy that relies on the definition of molecular multipoles

(Fig. 9.2), and a model that is instead based on atomic multipoles (Fig. 9.3). In this

regard, it is worth stressing that in contrast to other learning models that explicitly

target the prediction of the actual ab initio atomic multipoles [32], our data-driven

definition of atomic (or molecular) multipoles only needs to be interpreted in the

sense of providing a formal connection with a functional form for the long-range

electrostatic energy that resembles the one of multipole interactions.
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To prove the relationship between a fixed point-charge model and the lmax = 0 trunca-

tion of the LODE(1,1) representation, we fitted the partial charges associated with the

H, C and O atomic species by numerically minimizing the discrepancy between the

training interaction energies and the interatomic Coulomb energies
∑

j>i qai qa j /ri j .

This minimization yields optimal charges that correspond to qH =0.24e, qC =0.96e and

q0 = −0.49e, guaranteeing the global eletroneutrality of the system. The final error is

101 102

R [Å]

0.3

0.2

0.1

0.0
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Figure 9.4 – Asymptotic prediction errors of a representative CO2/H2O configuration
obtained at different levels of theory. Green and blue lines correspond to lmax = 0 and
lmax = 1 LODE(1,1) models while the orange line refers to a fixed point-charges model.

reported in Figure 9.4 for a representative configuration of the dataset that does not

have any particular symmetry. The aforementioned relationship is apparent by the

almost perfect agreement between the two models. As shown in the figure, increasing

the order of the expansion has the beneficial effect to go beyond a fixed point-charge

model, which is shown to improve the accuracy of the prediction particularly in the

intermediate distance range. For this simple toy problem, in particular, truncating the

atom-centered expansion at lmax = 1 allows us to achieve almost perfect predictions.

9.3 Beyond electrostatics

The discussion carried out during the previous section reflects the capability of the

multi-scale LODE representation to regress electrostatic energies in a physically con-

sistent fashion. However, the data-driven nature of the method implies that its appli-

cability is not limited to the prediction of electrostatic properties. In this section we

present three examples to demonstrate that even in their simplest form, this family of

multi-scale features is suitable to address the complexity of challenging, real-life atom-



Multi-scale equivariant representations with consistent electrostatics 115

istic modelling problems, and physics well beyond that of permanent electrostatics.

For the sake of comparing our approach with a local machine-learning scheme, the

LODE(ν = 1,ν′ = 1) results will be reported all throughout against the ones obtained

using the SOAP(ν = 2) method of Ref. [42].

9.3.1 Binding energies of organic dimers

We start by testing the ability of multi-scale LODE to describe different kinds of molec-

ular interactions. To this end, we consider the interaction energy between the 2291

pairs of organic molecules already used in the context of charge-density learning [60].

For each dimer configuration, binding curves are generated by considering 12 rigid

displacements in steps of 0.25 Å along the direction that joins the geometric centres of

the two molecules. Then, unrelaxed binding energies are computed at the DFT/PBE0

level using the Tkatchenko-Scheffler self-consistent van der Waals method [228] as

implemented in the FHI-aims package[125]. For each binding trajectory, we also

include in the training set the dissociated limit of vanishing interaction energy, where

the two monomers are infinitely far apart. The dataset so generated includes all the

possible spectrum of interactions, spanning pure dispersion, induced polarization

and permanent electrostatics. In order to better rationalize the learning capability of

such a large variety of molecular interactions, we choose to partition the molecules in

the dataset in three independent classes, namely, 1) molecules carrying a net charge,

2) neutral molecules that contain heteroatoms (N, O), and can therefore exhibit a

substantial polarity 3) neutral molecules containing only C and H, that are considered

apolar and interacting mostly through dispersive interactions. Considering all the pos-

sible combinations of these kinds of molecules partitions the dimers into six classes,

i.e., 184 charged-charged (CC), 267 charged-polar (CP), 210 charged-apolar (CA), 161

polar-polar (PP), 418 polar-apolar (PA) and 1051 apolar-apolar (AA) interactions. For

each of the six classes, several, randomly selected binding curves are held out of the

training set, to test the accuracy of our predictions. The remaining curves are used

to fit one separate linear model for each class, using either local SOAP features or

multi-scale LODE(ν = 1,ν′ = 1) features using a cutoff of rc = 3 Å. In order to also assess

the reliability of our predictions, we use a calibrated committee estimator [129] for

the model uncertainty, which allows us to determine error bars for the binding curves.

8 random subselections of 80% of the total number of training configurations were

are considered to construct the committee model. The internal validation set is then

defined by selecting the training structures that are absent from at least 25% of the

committee members.

Figure 9.5 shows characteristic interaction profiles for the six different classes of
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Figure 9.5 – Median-error binding curves (in eV) for six different classes of intermolec-
ular interactions. (black lines) quantum-mechanical calculations. (green lines) local
ρ⊗ρ predictions. (blue lines) multiscale ρ⊗V predictions.

molecular pairs. The configurations reported are those that exhibit median integrated

errors within the test set of each class. The root mean square errors associated with

the predictions over the entire test sets of each class are listed in Table 9.1.

RMSE/eV
class ntrain STD/eV ρ⊗ρ ρ⊗V V ⊗V
CC 100 1.86 0.72 0.049 0.058
CP 200 0.379 0.25 0.074 0.092
CA 150 0.083 0.056 0.041 0.034
PP 100 0.131 0.10 0.062 0.125
PA 350 0.046 0.032 0.013 0.021
AA 950 0.063 0.026 0.004 0.006

Table 9.1 – Prediction performance expressed in terms of the RMSE over all the points
of the binding curves, for the six classes of interactions and ρ⊗ρ, ρ⊗V and V ⊗V
models. For each class we also indicate the number of training samples, and the
characteristic energy scale, expressed in terms of the standard deviation of the energies
in the test set.

The results clearly show that while SOAP(2) is limited by the nearsightedness of the

local environments, the LODE(1,1) multi-scale model is able to predict both the short

and the long-range behaviour of the binding profiles on an equal footing. What is

particularly remarkable is the fact that a simple, linear model can capture accurately
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different kinds of interactions, that occur on wildly different energy scales and asymp-

totic behavior: the typical binding energy of charged dimers is of the order of several

eV, and has a 1/r tail, while the typical interaction energy of two apolar molecules is

of the order of a few tens of meV, and decays roughly as 1/r 6. A LODE(ν′ = 2) model

also allows us to predict the binding curves beyond the 3 Å cutoff, but usually yields

50-100% larger errors than those observed with LODE(1,1). The multi-scale nature of

LODE(ν = 1,ν′ = 1) yields a better balance of short and long-range descriptions, and is

sufficiently flexible to be adapted to the description of systems that are not dominated

by permanent electrostatics, even though interactions between charged fragments

are considerably easier to learn, in comparison to the others. We also observe that the

uncertainty model works reliably, as the predicted curves always fall within the esti-

mated error bar. Larger uncertainties are found for interaction classes that have few

representative samples in the training set, such as those associated with polar-polar

molecular pairs (Fig 9.5-d)).
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Figure 9.6 – Learning curves for the 6 classes of molecular interactions computed
using the LODE(1,1) representation. The curves indicate that all interactions can be
learned with comparable efficiency and that the accuracy of the model is limited by
the small number of available reference structures. Interactions between charged
molecules, that have a formal connection with the form of the multi-scale features,
can be learned effectively with a small number of training samples.

The learning curves, plotted in Figure 9.6, provide insights into the performance of

LODE(1,1) for different kinds of interactions. CC dimers are learned with excellent rel-

ative accuracy – which is unsurprising given the formal connection with the multipole

expansion. All other classes of interactions yield a relative accuracy for a given training

set size which is an order of magnitude worse (with the exception of AA interactions,

whose learning performance is intermediate). However, learning curves show no
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sign of saturation [229], reflecting the fact that multi-scale features have sufficient

flexibility to provide accurate predictions, but that the lack of a natural connection

to the underlying physics would require a larger train set size. This is consistent with

the considerations we made in the previous section based on the simple H2O/CO2

example.

9.3.2 Induced polarization on a metal surface

The previous example proves that linear LODE(1,1) models capture a wide class of

molecular interactions, ranging from pure dispersion to permanent electrostatics.

Beyond molecular systems, however, a large number of phenomena occur in solid

state physics that are driven by long-range effects, and involve more subtle, self-

consistent interactions between far-away atoms. A particularly relevant example is

represented by the induced macroscopic polarization that a metallic material un-

dergoes in response to an external electric field, which underlies fundamentally and

technologically important phenomena for surface science and nanostructures [230–

232]. Physics-based modelling of these kinds of systems usually exploits the fact

that, for a perfectly-conductive surface, the interaction is equivalent to that between

the polar molecule and the mirror image, relative to the surface plane, of its charge

distribution, with an additional inversion of polarity [233]. It would not appear at

all obvious that our atom-centred framework, which does not include an explicit

response of the far-field atom density to the local data-driven multipole, can capture

the physics of a phenomenon associated with the polarization of electrons that are

delocalized over the entire extension of the metallic solid.

z

LODE(1,1)

SOAP(2)

QM

Figure 9.7 – Predicted binding curve of a test water-lithium configuration. (black dots)
reference DFT calculations. (green line) SOAP(2) predictions. (blue line) LODE(1,1)
predictions.
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To benchmark the performance of multi-scale LODE in this challenging scenario we

consider the interaction of a slab of bcc lithium with a water molecule that is located

at various distances from the (100)-surface. We start by selecting 81 water molecule

configurations, differing in their internal geometry or in their spatial orientation

relative to the surface. For each of these configurations, 31 rigid displacements are

performed along the (100)-direction, spanning a range of distances between 0.5 Å

and 8 Å from the lithium surface. Using this dataset we compute unrelaxed binding

energies at the DFT/PBE level using the FHI-aims package[125]. We converge the

slab size along the periodic x y-plane, minimizing the self-interaction between the

periodic images of the water molecule, resulting in a 5×5 unit cell repetitions and a

k-points sampling of 4×4×1 Å−1. We set the slab extension along the non-periodic

z-direction so that the Fermi energy is converged within 10 meV, resulting in a total

of 13 layers. To remove the spurious interactions along the z-axis, we set a large

vacuum space of roughly 80 Å in conjunction with a correction suitable to screen the

dipolar potential [234]. Following these prescriptions, we obtain attractive potential

profiles for all molecular geometries and orientation, consistently with the interaction

between the dipolar field of the water molecule and the induced metal polarization.
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Figure 9.8 – Learning curves for the binding energy of water-lithium slab interaction.
The energies of 75 slab-water molecule trajectories were learnt with SOAP (green) and
LODE(1,1) (blue). Error in predictions on the 6 test trajectories is shown here.

For this example, we construct
∣∣ρi

〉
and |Vi 〉 representations within spherical environ-

ments of rc = 4 Å with a Gaussian-density width ofσ = 0.3 Å. In this case, computing the

potential projections in reciprocal space would be very expensive because of the large

number of plane-waves that arise from having to deal with a huge vacuum space along

z. For this reason, we rely on a plain Ewald method to break down the calculation of

〈anl m|Vi 〉 in a short-range, screened contribution computable in real space, and a
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long-range, smooth contribution computable in reciprocal space (see Appendix C.3

for more details). The regression model is trained on 75 lithium-water binding curves

while the remaining 6 are used for testing the accuracy of our predictions. Figure 9.7

shows a comparison between a local SOAP model and a multi-scale LODE(1,1) model

in learning the interaction energy of the metal slab and the water molecule for one

representative test trajectory. We observe that SOAP is able to capture the short-range

interactions but becomes increasingly ineffective as the water molecule moves out-

side the atomic environment, leading to an overall error of about 19 RMSE%. This

is in sharp contrast to the performance of the multi-scale representation, which can

capture both the effects of electrostatic induction at a large distance and the Pauli-like

repulsion at short range with the same level of accuracy, halving the prediction error

to about 9%. A comparison between the SOAP(2) and LODE(1,1) learning curves is

reported in Fig. 9.8.

To further investigate what aspects of the physics of the molecule-surface interaction

can be captured by the model, we perform a Mulliken population analysis on the

reference DFT calculations, to extract the polarization vector of the water molecule in

response to the interaction with the metal, i.e., PW =µW −µW
0 , where µW and µW

0 are

the dipole moment of the water molecule in the lithium-slab system and in vacuum

respectively. Physically, the polarization PW involves the response of water’s electrons

to the rearrangement of the electronic charge in the surface triggered by the dipolar

field, and so it involves explicitly a back-reaction. Furthermore, the polarization shows

both a (usually larger) component along the z-axis, and a tangential component in

the x y-plane. To account for the vectorial nature of PW , we take advantage of the

tensorial extension of the multiscale model reported in Eq. (9.2). To single out the

long-range nature of the polarization interaction, we restrict the regression of PW

to water configurations that are more than 4.5 Å far from the surface. Our dataset

contains 1215 such configurations, out of which we randomly select 1000 for training,

while the remaining 215 are retained for testing.

Results are shown in Figure 9.9. Given that the training set contains no structures

within the local descriptor cutoff, it comes as no surprise that a pure density-based

tensor model entirely fails to learn the long-range polarization induced on the water

molecule. Making use of the tensorial extension of the multiscale model of Eq. (9.2),

in contrast, allows us to effectively learn the polarization vector PW , showing an

error that decreases to ∼20 %RMSE at the maximum training set size available. This

example provides a compelling demonstration of the ability of LODE(1,1) to embrace

effects that go well-beyond permanent electrostatics.
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Figure 9.9 – Learning curves for the induced polarization of the water molecule due
to interaction with image charges in the metal slab, computed only for separations
greater than 4.5Å. The error is computed as a fraction of the intrinsic variability of the
test set of 215 configurations. Contrary to the local model (green), a linear LODE(1,1)
model (blue) can learn this self-consistent polarization, with no significant reduction
of the learning rate up to 1000 training configurations.

9.3.3 Response functions of oligopeptides

As a final example, we consider the challenging task of predicting the polarizabilty of

a dataset of poly-aminoacids. Dielectric response functions are strongly affected by

long-range correlations, because of the cooperative nature of the underlying physical

mechanism. Poor transferability of local models between structures of different sizes

has been observed for molecular dipole moments [220], polarizability [58], and the

electronic dielectric constant of bulk water [57]. For this purpose, we use a training

set composed of 27428 conformers of single aminoacids and 370 dipeptides, testing

the predictions of the model on a smaller test set containing 30 dipeptides, 20 tripep-

tides, 16 tetrapeptides and 10 pentapeptide configurations. Reference polarizability

calculations are carried out with the Gaussian16 quantum-chemistry code using the

double-hybrid DFT functional PWPB95-D3 and the aug-cc-pVDZ basis set [235]. We

compute the multi-scale LODE(1,1) features and their local counterparts using a Gaus-

sian width of σ =0.3 Å and a spherical environment cutoff of rc =4 Å. This data set is

interesting, because it combines large structural variability with tens of thousands

of distorted aminoacid configurations with longer-range interactions described by

a few hundred dipeptide conformers. We consider three models: a linear
∣∣∣ρ⊗V

〉
multi-scale model; a square kernel model, that is equivalent to using a quadratic

functional of the SOAP features,

∣∣∣∣[ρ⊗2
i

]⊗2
〉

, which partially incorporates 4 and 5-body
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correlations and enhance the many-body character of the representation at the local

scale [55]; a weighted combination of the two.

102 103 104
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Figure 9.10 – Learning curves for the λ = 0 component of the polarizability tensor of
a database of polypeptide conformers. (green curve) non-linear kernel model which

underlies a density-based

∣∣∣∣[ρ⊗2
i

]⊗2
〉

representation. (blue curve) linear kernel model

based on
∣∣∣ρ⊗V

〉
. (red curve) optimal linear combination of the two.

The learning curves for the trace (λ = 0) of the polarizability tensor, shown in Fig. 9.10,

are very revealing of the behavior of these three models. The

∣∣∣∣[ρ⊗2
i

]⊗2
〉

model, which

disregards any non-local behavior beyond the atomic environment, is initially very

efficient, but saturates to an error of 0.06a.u.. In contrast, equipped with non-local

information, the LODE(1,1) representation reduces the error of prediction to 0.05a.u.,

but is initially much less effective. This is not due to the lack of higher-order local

density correlations: a linear SOAP model performs well, despite showing saturation

due to its local nature. We interpret the lackluster performance of the LODE model

in the data-poor regime as an indication of the dominant role played by short-range

effects in this diverse dataset, which can be learned more effectively by a nearsighted

kernel, similarly to what observed in Refs.[10, 236, 237]. Inspired by those works, we

build a tunable kernel model based on a weighted sum of the local and the LODE

kernels, that can be optimized to reflect the relative importance of the different

ranges. We optimize the weight by cross-validation at the largest train size, obtaining

a reduction of 50% of the test error, down to 0.028a.u.

An analysis of the test error which separates the contributions from oligopeptides



Multi-scale equivariant representations with consistent electrostatics 123

Figure 9.11 – Absolute RMSE in learning the λ = 0 spherical tensor of polarizability of
polypeptides as a function of the peptide length. The model was trained on 27428
single-amino acids and 370 dipeptides. The error was computed on 30 dipeptides, 20
tripeptides, 16 tetrapeptides and 10 pentapeptides respectively.

of different length, shown in Fig. 9.11, is consistent with this interpretation of the

learning curves. All models show an error that increases with the size of the molecule,

because there are interactions that are just not described at the smaller train set size.

However, the purely local model shows by far the worst extrapolative performance,

while multi-scale models – in particular the one combining a non-linear local kernel

and LODE features – show both a smaller overall error, and a saturation of the error

for tetra and penta-peptides. This example illustrates the different approaches to

achieve a multi-scale description of atomic-scale systems: the LODE(1,1) features offer

simplicity and physical interpretability, while a multi-kernel model makes it possible

to optimize in a data-driven manner the balance between local and long-ranged

correlations.





10 Conclusions and perspectives

The work presented in this thesis demonstrates how the statistical approximation of

atomic-scale properties can benefit from the adoption of mathematical representa-

tions of the atomic structure that are grounded in physical principles. We tackled

three classes of fundamental problems in atomistic machine learning: i) deriving a

symmetry-adapted structural representation that is suitable to learn physical tensors

of arbitrary rank, ii) designing a regression algorithm able to predict scalar fields,

such as the electron density of a system, in a linear-scaling and highly transferable

fashion, iii) incorporating a long-range description within a local featurization of

the system, that, by construction, encodes the structural information within finite

spherical environments centered about the atomic positions.

We first derived a family of λ-SOAP features and kernels that follows the same trans-

formation rules as spherical harmonics, and showed how to use them within a GPR

framework that is naturally adapted to the symmetries of the O(3) group. Deriving

representations that follow different covariance relationships, such as those of discrete

translational symmetries or point-group symmetries, is straightforward following the

rationale of the construction outlined. Thanks to a prior decomposition over irre-

ducible spherical components, we were able to recast the problem of interpolating

tensorial properties into multiple independent regression tasks, each of which can be

performed using the proper λ-SOAP kernel. When compared with its Cartesian coun-

terpart [31, 32], tackling the problem of tensor-learning in the space of ISCs carries a

massive advantage, as it allows us, on the one hand, to reduce the dimensionality of

the problem, and, on the other hand, to exploit the possible symmetry of the tensor by

discarding those ISCs that have a different parity than the tensor rank. The proposed

SA-GPR method finds a natural application in the regression of dielectric response

properties, and, as a consequence, it paves the way to the inexpensive calculation of

any derived scattering and absorption spectra. As a relevant example, we focused the
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attention on the accurate prediction of the polarizability of a system, showing that

an accuracy greater than, or equal to, DFT can be achieved upon training the model

on high-end coupled-cluster calculations. We then investigated the possibility of

computing the vibrational Raman spectrum of a molecular crystal of paracetamol as a

post-processing to the polarizability prediction, obtaining remarkable extrapolations

of the line-shapes and absorption intensities across different crystal polymorphs.

The SA-GPR method has already been applied by other researchers to the prediction

of the dipole moment of a system [220], as well as to compute the infrared and Ra-

man spectrum of liquid water [238]. An important future application of the method

will involve the computational simulation of sum-frequency generation (SFG) spec-

tra, where a combination of both dipole and polarizability predictions is needed to

compute the scattering intensity associated with the non-linear optical response of

atomistic surfaces, e.g., electrochemical interfaces [239]. An additional field of ap-

plication, not covered during our dissertation, is the one associated with the use of

tensorial features that have an opposite parity under inversion symmetry. These kind

of applications include, for example, the prediction of the pseudo-scalars and vectors

that define the chiral response in circular dichroism spectroscopies [49], the asym-

metric chemical shielding tensors that determine the peaks shape and position in

solid-state NMR experiments [65], and the frequency-dependent polarizabilities that

enter an ab initio calculation of the van der Waals dispersion coefficients [240]. An-

other application with immense potential is related to the calculation of the building

blocks of electronic-structure methods, such as the matrix elements of single-particle

Hamiltonians, 〈a| Ĥ |b〉, written in an atom-centered, spherical harmonics basis. In

this case, the problem carries a twofold complication: i) each matrix element trans-

forms under rotations as a product of two spherical harmonics, according to the

Slater-Koster rules [241], ii) the prediction of off-centered matrix elements call for a

structural representation that is centered about atomic pairs, rather than on individual

atoms. A tentative solution has already been proposed within a deep neural network

context, which however requires to learn the rotational symmetry of the Hamiltonian

via a massive dataset augmentation [242].

As a non-trivial application of the SA-GPR framework, we showed how to regress elec-

tronic charge density fields represented on a basis of spherical harmonics centered

on the atomic positions. The challenge of dealing with a non-orthogonal basis has

been tackled by deriving a regression algorithm that predicts each individual family

of atomic density coefficients while still having the entire scalar field as the learning

target. The computational burden carried by the coupling of λ-SOAP kernels with

the overlap matrix between basis functions is compensated by the acquired trans-

ferability of the learning model across similar chemical environments. We showed
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that this transferability opens the door to the atom-wise prediction of the electron

density of molecules that are much larger than those used to train the model, such as

hydrocarbons and peptides, relying on the same “divide-and-conquer” principle that

underlies linear-scaling quantum-chemistry approaches [243]. Importantly, while

the prediction of ne (r ) allows us to access quantities such as electrostatic potentials

and non-covalent interaction indexes, we found that using the electron density to

indirectly predict the energy of the system yields poor performance when compared

to a direct interpolation of U . In fact, the non-linear functional dependence of the

electronic energy from the electron density greatly amplifies the error incurred in

the statistical approximation of ne (r ), making it hard to apply an indirect ne (r ) →U

approach beyond relatively simple structural manifolds [27].

The training effort carried out for the bio-fragment molecular dataset introduced

in Chapter 7 has recently been exploited to predict the electron density of a full

protein [244]. Although remarkable, this example underscores the importance of en-

larging even further the spectrum of environments to be used as a representative basis

of the structural and chemical diversity spanned by the local atomic configurations. In

this regard, the current implementation of the method presents a technical bottleneck

related to the prohibitive computational cost associated with the inversion of large

regression matrices. This issue could in principle be bypassed by direct numerical

minimization of the loss function of the problem, or implementing the alternative

Löwdin approach already discussed in Chapter 6. Being generally applicable to the

regression of any scalar field, the method has also been applied by other researchers

to the prediction of the on-top pair density tha can be used to visualize electronic

correlations [245]. A further development will involve the prediction of the electron

density in the condensed-phase, which carries the additional complexity of treating

the overlap between basis functions that belong to different periodic images of the

unit cell. Crucially, this technical advancement could give access to accurate X-ray

intensities that enter the determination of the atomic structure in crystallographic

scattering experiments [156]. In addition, a possible application would concern the

prediction of the spatially-resolved density of states of a material at the Fermi energy,

which is the fundamental ingredient for the first-principles calculation of scanning

tunneling microscopy (STM) images [246].

The desired transferability of the machine-learning model, which is implied by the

local nature of the structural representation, forbids that long-range and/or non-local

effects can be accurately captured. During this thesis, we encountered a clear man-

ifestation of this problem when predicting the dielectric tensor of liquid water, as

well as when trying to predict the polarizability of highly conjugated molecules. In

the last part of the thesis, we proposed a solution by constructing a Coulomb-like
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potential field generated by a smooth density representation of the atomic positions,

that can be evaluated in a finite local environment of the system’s atoms. In doing so,

we derived a long-distance equivariant (LODE) representation that retains the additive

and atom-centered nature of the learning model, while still presenting a description

of long-range effects brought by the algebraic tails, ∼ 1/r , of the potential field. We

demonstrated that such a model can accurately capture the long-range nature of elec-

trostatic interactions and describe the non-local character of the dielectric response

of liquid water. We then showed that a suitable combination between density and

potential features allows us to build a multi-scale version of LODE that is flexible

enough to represent arbitrary interactions, including the polarization of a metallic

surface and the dielectric response of peptidic chains. Importantly, such a combined

density-potential representation presents also some analytical limits that allows us to

rationalize the asymptotic prediction of the binding energy between two systems in

terms of well-established multipolar interaction terms.

The main difficulty associated with the description of long-range phenomena is to

find the balance between a functional form that is flexible enough to describe arbitrary

interactions, and one that maps naturally onto the physics of the problem. On the

one hand, a too general structural representation is prone to overfitting and requires

enormous amounts of training data, as it appears when increasing by brute force the

cutoff of a local featurization [10, 43, 236], or when adopting a global representation

of the system [221]. On the other hand, pushing too far the physical consistency of

the regression model makes the learning effort very system-specific and limits its

broad applicability across diverse structural and chemical patterns. In the future,

drawing the fine line between these two limits will be essential to assess up to which

extent we can effectively use LODE features within a highly transferable machine-

learning model. If successful, its application could potentially solve a broad class of

problems in the data-driven simulation of materials that are to date still hindered

by a lack of a long-range description. For example, a current open problem in the

simulation of electrochemical interfaces consists in including a sufficiently large

portion of electrolyte solution that is able to perfectly screen the surface charge

collected at the electrode [195, 247]. In fact, while one can adopt suitable continuum

models to represent the solution [248], the explicit simulation of such a system is

way too expensive to carry out by first-principles and it would necessarily require

to perform a physically consistent extrapolation of the metal-electrolyte interaction

that extends well beyond the length scales that can be spanned by the reference

calculations.

In perspective, the presented achievements will be integrated within efficient and

reliable statistical approximation programs that can be interfaced with state-of-the-art
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molecular dynamics engines. The possibility of performing high-end simulations at

a cost that is at least an order of magnitude smaller than the one of first-principles

methods will lead to the accurate modeling of systems over time and length scales that

cannot be reached by standard ab initio approaches. To this end, the great challenge

of enlarging either the simulation box or the molecular size without disregarding the

importance of long-range phenomena will be addressed by the inclusion of LODE-

derived features as a generally transferable correction term that is added to a local,

many-body representation of the atomic structure. A related important aspect will

consists in assessing the reliability of the data-driven predictions within those size

regimes that forbid any direct comparison with quantum-level calculations. While

suitable error estimations can be implemented for this purpose, disposing of a tool

to readily access electronic-structure properties beyond energies and atomic forces

will also be of tremendous help to pinpoint the deficiencies of the statistical approxi-

mation. For example, accessing scalar fields such as the electron density will enable

one to assess up to which extent the machine-learning model is able to reproduce the

overall electro-neutrality of the system, as well as to highlight any unphysical parti-

tioning of the electronic charge over the molecular space. When it comes to the time

domain, the possibility of simulating sufficiently long trajectories that meet thermody-

namic convergence criteria will finally lay the groundwork for a direct comparison of

computer simulations with experimental results. First and foremost, this comparison

will be made through absorption and scattering spectra, for which the inexpensive

prediction of electronic response tensors will be an essential cornerstone.





A Dirac notation for structural represen-
tations

A mathematical representation of the atomic structure can be interpreted as a unique

characterization of the system’s state that lives in an abstract Hilbert space. For this

reason, we find convenient to rely on the Dirac notation routinely used in quantum

mechanics. Using this notation, the abstract state of a generic structure A is indicated

as a ket |A〉. The representation of this state on a given complete basis X is then

interpreted as the projection of |A〉 on the bra 〈X |, which is indicated by the braket

〈X |A〉 = 〈A|X 〉?. This construction leaves us the freedom of introducing an arbitrary

transformation of the abstract state |A〉, without necessarily specify the kind of basis

chosen to represent the state of the system. For example, one could generically refer

to a rotation of the system as R̂ |A〉, with R̂ a rotation operator. Conversely, one could

consider to apply the rotation operator to the basis as 〈X | R̂, leaving the state |A〉
unchanged. When considering the braket 〈X | R̂ |A〉, the two distinct pathways can be

interpreted in terms of a passive rotation of the reference frame, when the operator

R̂ is applied to the bra, or to an active rotation of the system, when the operator R̂ is

applied to the ket.

Another advantage of Dirac notation is apparent when considering the kernel defined

by the inner product k(A,B) = 〈A|B〉. This definition has in fact a standalone meaning

as a distance (similarity) measure between A and B , regardless from the kind of

representation adopted. In this case, including a generic operator within the braket,

e.g., k(A,B) = 〈A| R̂ |B〉, would conveniently indicate that the similarity between A and

B is measured either by comparing |A〉 with respect to a rotation of 〈B |, or viceversa.

Note that a representation of the kernel on a given complete basis X can be obtained

upon including the resolution of the identity within the braket:

k(A,B) = 〈A|B〉 = 〈A|
(∑

X
|X 〉〈X |

)
|B〉 =

∑
X
〈A|X 〉〈X |B〉 . (A.1)
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To give a practical example of the use of this notation in the construction of structural

representations, consider the abstract state |A〉 ≡ ∣∣ρ;V
〉

, withρ and V a generic density

and potential field derived from the atomic coordinates. As in the standard Dirac

notation, the semicolon stands for the fact that the representation lives in the tensor

product of
∣∣ρ〉

and |V 〉, i.e.,
∣∣ρ;V

〉
=

∣∣ρ〉⊗|V 〉. Projecting such an abstract description

of the system on a given basis would read, for instance,〈
x ;k

∣∣ρ;V
〉

= (〈x |⊗〈k |)(∣∣ρ〉⊗|V 〉) =
〈

x
∣∣ρ〉〈k |V 〉 , (A.2)

with 〈x | and 〈k | indicating the basis of positions and momenta that are used to repre-

sent the density and potential fields,
〈

x
∣∣ρ〉≡ ρ(x) and 〈k |V 〉 ≡V (k), respectively. As a

result, the kernel that is derived from this representation is written as

k(A,B) =
〈
ρ(A);V (A)

∣∣ρ(B);V (B)
〉

=
〈
ρ(A);V (A)

∣∣(∫ d x |x〉〈x |⊗∑
k
|k〉〈k |

)∣∣ρ(B);V (B)
〉

=
∫

d x
∑
k

〈
ρ(A);V (A)

∣∣x ;k
〉〈

x ;k
∣∣ρ(B);V (B)

〉
.

(A.3)

Note that this notation also allows us to transparently perform any change of vari-

able. For example, expressing the density field in reciprocal space from its real-space

counterpart reads

〈
k
∣∣ρ〉

= 〈k |
(∫

d x |x〉〈x |
)∣∣ρ〉

=
∫

d x 〈k |x〉〈x
∣∣ρ〉

, (A.4)

where the integral underlies a Fourier transform and 〈k |x〉 ≡ e−i k ·x is a plane wave.



B Calculation of SOAP coefficients

Consider to compute the orthogonal projections
〈

anl m
∣∣ρi

〉
associated with the atom-

centered expansion of the atom-density field, where n stands for a discrete set of

orthogonal radial functions Rn(x) that are defined within the spherical cutoff rc. From

the real-space definition of the density field
〈

ax
∣∣ρi

〉
as a superposition of Gaussian

functions centered on the atomic positions (Eq. (1.13)), the spherical harmonics

projection can be carried out analytically [249], leading to

〈
anl m

∣∣ρi
〉

=
∑
j∈a

〈
lm

∣∣r̂ i j
〉

exp

{
−|ri − r j |2

2σ2

}∫ ∞

0
dx x2 〈n|x〉exp

{
− x2

2σ2

}
ιl

(xri j

σ2

)
,

(B.1)

where the sum over j runs over the neighboring atoms of a given type a, and ιl repre-

sents a modified spherical Bessel function of the first kind. Under suitable choices

of the functions 〈n|x〉 ≡ Rn(r ), the radial integration can be carried out analytically,

too. One possibility is to start with non-orthogonal Gaussian type functions, R̃k (x),

reminiscent of the Gaussian-type orbitals commonly used in quantum chemistry:

R̃k (x) = Nk xk exp

{
−1

2

(
x

σk

)2}
, (B.2)

where Nk is a normalization factor, such that
∫ ∞

0 dr x2R̃2
k (x) = 1. The set of Gaussian

widths {σk } can be chosen to uniformly span the radial interval [0,rc]. In our case, we

considerσk = rc max(
p

k,1)/nmax. The explicit formula of the primitive radial integrals
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is ∫ ∞

0
dx x2 R̃k (x) e− x2

2σ2 ιl

(xri

σ2

)
=

Nk 2− 1
2 (1+l−k)

(
1

σ2
+ 1

σ2
k

)− 3+l+k
2 Γ( 3+l+k

2 )

Γ( 3
2 + l )

( ri

σ2

)l

1F1

(
3+ l +k

2
,

3

2
+ l ;

1

2

σ2
k r 2

i

σ4 +σ2
kσ

2

)
,

(B.3)

where Γ is the Gamma function, while 1F1 is the confluent hypergeometric function

of the first kind. These integrals can be finally orthogonalized by applying the Löwdin

orthogonalization matrix S−1/2, with S the overlap between primitive functions, i.e.,

Skk ′ =
∫ ∞

0 d x x2R̃k (x)R̃k ′(x), which can also be computed analytically. A representation

of the orthogonal radial functions up to nmax = 8 is reported in Fig. B.1.
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 / 
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Figure B.1 – Representation of 8 orthogonal radial functions, multiplied by x, built to
evenly span the radial interval [0,rc]. Distances are reported in units of rc.



C Calculation of LODE coefficients

We report below the details of the real and reciprocal space calculation of the potential

harmonic coefficients, 〈anl m|Vi 〉, that enter the construction of the LODE framework.

C.1 Direct-space formulation for finite systems

For a given atom-type a, the electrostatic potential generated by a localized Gaussian

density distribution is [5]

〈ax |V 〉 =
∑

j
δa j a

1

|x − r j |
erf

( |x − r j |p
2σ

)
, (C.1)

with σ the Gaussian width and erf(·) an error function. Upon centering the field about

an atom i , the spherical harmonic projections can be worked out analytically as

〈axlm|Vi 〉 =
4π

2l +1

∑
j
δa j a exp

{
−1

2

(ri j

σ

)2
}

Y ?lm(r̂ i j )×[
1

x l+1

∫ x

0
d x ′ x ′2+l exp

{
−1

2

(
x ′

σ

)2
}
ιl

(
x ′ri j

σ2

)
+x l

∫ ∞

x
d x ′ x ′1−l exp

{
−1

2

(
x ′

σ

)2
}
ιl

(
x ′ri j

σ2

)]
(C.2)

with r i j = r j − r i and ιl a modified spherical Bessel functions of the first kind. To

produce the results presented in this thesis, however, we directly sample Eq. (C.1) on

atom-centered spherical grids and perform the projections on the basis functions by

numerical integration. In particular, a Gauss-Legendre quadrature of 50 points and a

Lebedev quadrature [154] of 146 points were used to compute the radial and spherical

projections, respectively.
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C.2 Reciprocal-space formulation for periodic systems

GivenΩ the cell volume, the Fourier transform of an a-type Gaussian density is

〈
ak

∣∣ρ〉
=

1

Ω

∫
d x 〈k |x〉〈ax

∣∣ρ〉
=

1

Ω

(∑
j
δa j ae−i k ·r j

)
e− k2σ2

2 . (C.3)

Then, given the plane-waves solution of the Poisson equation,

∇2V (r ) = −4πρ(r ) −→ −k2V (k) = −4πρ(k) , (C.4)

we can write the potential in real space as

〈ax |V 〉 =
1

Ω

∑
k

(∑
j
δa j ae−i k ·r j

)
4π

k2
e− k2σ2

2 e i k ·x . (C.5)

Consider now the spherical harmonics expansion of the plane wave:

e i k ·x = 4π
∞∑

l=0

∑
|m|≤l

i l jl (kr )Y ?lm(k̂)Yl m(x̂) , (C.6)

with jl a spherical Bessel function. Upon centering the field on an atom i , which

brings an additional phase factor e i k ·r i , the expansion above allows us to single out

the spherical harmonic components of the potential, obtaining

〈ar l m|Vi 〉 =
16π2

Ω

∑
k

(∑
j
δa j ae−i k ·r i j

)
e− k2σ2

2

k2
i l jl (kr )Y ?lm(k̂) . (C.7)

Finally, we can project on GTO-like primitive radial functions to get the discretized set

of LODE coefficients:

〈anl m|Vi 〉 =
16π2

Ω

∑
k

(∑
j
δa j ae−i k ·r i j

)
e− k2σ2

2

k2
i l Inl (k) Y ?l m(k̂) . (C.8)

The radial integral can be computed analytically as

Inl (k) =
1

Nn

∫ ∞

0
dr r 2+n exp

{
−1

2

(
r

σn

)2}
jl (kr ) =

=
1

Nn

p
π 2

1
2 (n−l−1) k l σ3+n+l

n

Γ
(1

2 (3+n + l )
)

Γ
(3

2 + l
) 1F1

(
1

2
(3+n + l ),

3

2
+ l ,−1

2
(kσn)2

)
(C.9)
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with {σn} the set of GTOs widths chosen to have equally spaced peaks within the

cutoff radius rc and Nn a normalization factors. Note that the convergence of this

integral is guaranteed by the superexponential decay of GTOs. The choice of primitive

radial functions and the orthogonalization of the radial projections follows the same

procedure discussed in Appendix B.

In compact Dirac notation, Eq. (C.8) can be simply written as

〈anl m|Vi 〉 =
∑
k
〈nlm|k〉〈ak |Vi 〉 , (C.10)

with

〈nlm|k〉 = 4π i l Inl (k)Y ?lm(k̂) (C.11)

the scattering partial-wave coefficients of pure geometric nature, and

〈ak |Vi 〉 =
1

Ω

(∑
j
δa j ae−i k ·r i j

)
4π

k2
e− k2σ2

2 (C.12)

the Fourier components of the species-dependent potential field. One can make a

few remarks on these expressions:

• The information about the system is entirely included in the combination of

the complex phase factors that depend on the atomic positions. All the other

terms can be computed only once for each atomic configuration if the box size

is allowed to vary, and only once for each ensemble of atomic configurations if

the box size is kept fixed.

• Assuming a statistically uniform distribution of atoms in the supercell, the

calculation of the system-dependent phase factors scales quadratically with

the number of atoms N . To alleviate the cost of this operation, one should in

principle adopt suitable fast Fourier transform (FFT) algorithms that reduce the

cost from N 2 to N log N [250].

• Given the real nature of the potential field, the sum over the k-vectors can be

restricted on a semi-sphere in reciprocal space, e.g., kx > 0 for orthorombic cells,

with the sphere radius kmax = 2π/λmin defined by the minimum wavelength

introduced in the calculation, λmin ∼σ. Then, given the parity of the spherical

harmonics under inversion of the direction of k , which brings a (−1)l phase,

one can replace the complex exponential by 2cos
(
k · r i j

)
and −2i sin

(
k · r i j

)
for

even and odd values of l , respectively.
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C.3 Plain Ewald method

To afford the calculation of the spherical harmonic projections associated with a

periodic potential generated by an arbitrarily sharp atom-density distribution, we rely

on a plain implementation of the Ewald method. For each different atomic species

a, we introduce a smooth Gaussian density ρ̃σ′ , with σ′ >σ, that is able to perfectly

screen the original density field ρσ, i.e.,〈
ax

∣∣ρS
〉

=
〈

ax
∣∣ρσ〉−〈

ax
∣∣ρ̃σ′

〉
, (C.13)

such that,∫
d x

〈
ax

∣∣ρS
〉

= 0. (C.14)

The resulting potential is short-ranged, meaning that it decays as fast as the com-

pensating Gaussian density ρ̃σ′ ; as such, its spherical harmonics projections can be

computed in real space using the same implementation discussed in Sec. C.1. The

remaining long-ranged (unscreened) potential generated by ρ̃σ′ is smooth enough

to be represented via a manageable number in plane-waves; as such, its spherical

harmonics projections can be computed in reciprocal space using the same imple-

mentation discussed in Sec. C.2. Finally, the two contributions can be added together

to obtain the desired potential field projections associated with the arbitrarily sharp

Gaussian density ρσ.



D Electron-nucleus interaction on a
density-fitted basis

Consider to compute the interaction of the electron density, represented on a linear

density-fitted basis, with the nuclear potential of a system of N atoms. In atomic units,

Uex[ne ] = −
N∑

i =1
Zi

∫
dr

ne (r)

|r− ri |

≈ −
N∑

i =1
Zi

N∑
j =1

∑
nlm

c j
nlm

∫
dr

Rn(|r − r j |)Ylm( �r − r j )

|r− ri |

= −
N∑

i =1
Zi

N∑
j =1

∑
nlm

c j
nlm

∫
dr

Rn(r )Ylm(θ,φ)

|r− ri j |
,

(D.1)

where we adopted the change the of variable r → r− r j and set ri j = ri − r j in the last

equality. Assuming the space is isotropic, we now introduce a rotation of the reference

frame in such a way that the direction of ri j is aligned with the ẑ-axis. Upon this

transformation, the spherical harmonics undergo a passive rotation that is expressed

by the proper Wigner-D matrix:

Uex[ne ] = −
N∑

i =1
Zi

N∑
j =1

∑
nlm

c j
nlm

∑
m′

D l†
mm′(r̂i j → ẑ)

∫
dr

Rn(r )Yl m′(θ,φ)

|r− ri j |
, (D.2)

where now ri j ∥ ẑ within the integral. This alignment allows us to rewrite

|r− ri j | =
√

r 2 + r 2
i j −2r ri j cosθ . (D.3)

The spherical harmonics within the integral can now be averaged over the azimuthal

angle φ. Upon this procedure, only the m′ = 0 components survive and we are left
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with the following expression,

Uex[ne ] =−
N∑

i =1
Zi

N∑
j =1

∑
nl

(∑
m

c j
nlmYl m(r̂i j )

)
2π

∫ ∞

0
dr r 2Rn(r )

∫ 1

−1
d cosθ

Pl (cosθ)√
r 2 + r 2

i j −2r ri j cosθ
,

(D.4)

where we used the identity D l
0m(r̂i j → ẑ) =

√
4π

2l+1 Yl m(r̂i j ). At this point, we introduce

the Laplace expansion of the Coulomb potential, i.e.,
1√

r 2+r 2
i j−2r ri j cosθ

=
∑

l
r l

r l+1
i j

Pl (cosθ) for r < ri j

1√
r 2+r 2

i j−2r ri j cosθ
=

∑
l

r l
i j

r l+1 Pl (cosθ) for r > ri j

(D.5)

Plugging into Eq. (D.4), the orthogonality of Legendre polynomials can finally be

exploited to obtain

Uex[ne ] =−
N∑

i =1
Zi

N∑
j =1

∑
nl

(∑
m

c j
nlmYl m(r̂i j )

)
4π

2l +1

 1

r l+1
i j

∫ ri j

0
dr r 2+l Rn(r )+ r l

i j

∫ ∞

ri j

dr r 1−l Rn(r )

 .

(D.6)

Note that if i = j then ri j = 0 and Yl m(r̂i j ) = 1p
4π
δl0δm0, which implies that only the

isotropic density components contribute to the electron-nucleus interaction. Under

this limit, the previous formula simplifies to

−
N∑
i

Zi
∑
n

c i
n00

p
4π

∫ ∞

0
dr r Rn(r ) . (D.7)

As a final remark, note that all the radial integrals can be computed analytically if the

density is expanded on a basis of GTOs.
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