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Abstract

Poor decisions and selfish behaviors give rise to seemingly intractable global problems,
such as the lack of transparency in democratic processes, the spread of conspiracy theories,
and the rise in greenhouse gas emissions. However, people are more predictable than
we think, and with machine-learning algorithms and sufficiently large datasets, we can
design accurate models of human behavior in a variety of settings. In this thesis, to gain
insight into social processes, we develop highly interpretable probabilistic choice-models.
We draw from the econometrics literature on discrete-choice models and combine them
with matrix factorization methods, Bayesian statistics, and generalized linear models.
These predictive models enable interpretability through their learned parameters and
latent factors.

First, we study the social dynamics behind group collaborations for the collective
creation of content, such as in Wikipedia, the Linux kernel, and the European Union
law-making process. By combining the Bradley-Terry and Rasch models with matrix
factorization and natural language processing, we develop a model of edit acceptance in
peer-production systems. We discover controversial components (e.g., Wikipedia articles
and European laws) and influential users (e.g., Wikipedia editors and parliamentarians),
as well as features that correlate with a high probability of edit acceptance. The latent
representations capture non-linear interactions between components and users, and they
cluster well into different topics (e.g., historical figures and TV characters in Wikipedia,
business and environment in European laws).

Second, we develop an algorithm for predicting the outcome of elections and of
referenda by combining matrix factorization and generalized linear models. Our algorithm
learns representations of votes and regions, which capture ideological and cultural voting
patterns (e.g., liberal/conservative, rural/urban), and it predicts the vote results in
unobserved regions from partial observations. We test our model on voting data in
Germany, Switzerland, and the US, and we deploy it on a Web platform to predict Swiss
referendum votes in real-time. On average, our predictions reach a mean absolute error
of 1% after observing only 5% of the regions.
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Abstract

Third, we study how people perceive the carbon footprint of their day-to-day actions.
We cast this problem as a comparison problem between pairs of actions (e.g., the
difference between flying across continents and using household appliances), and we
develop a statistical model of relative comparisons reminiscent of the Thurstone model in
psychometrics. The model learns the users’ perception as the parameters of a Bayesian
linear regression, which enables us to derive an active-learning algorithm to collect data
efficiently. Our experiments show that users overestimate the emissions of low-footprint
actions and underestimate those of high-footprint actions.

Finally, we design a probabilistic model of pairwise-comparison outcomes that capture
a wide range of time dynamics. We achieve this by replacing the static parameters of a
class of popular pairwise-comparison models with continuous-time Gaussian processes.
We also develop an efficient inference algorithm that computes, with only a few linear-time
iterations over the data, an approximate Bayesian posterior distribution.

Keywords discrete-choice models, matrix factorization, Bayesian statistics, generalized
linear models, comparisons, choices, probabilistic models, data mining, machine learning,
computational social science
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Résumé

Les problemes globaux, tels que le manque de transparence des processus démocra-
tiques, la propagation de théories conspirationnistes ou 'augmentation des gaz a effet
de serre, peuvent paraitre imprévisibles et insolubles. Par contre, les étres humains
sont—heureusement—plus prévisibles que ’on ne pense. Grace a des jeux de données
massifs et de puissants algorithmes d’apprentissage automatique, il devient possible de
modéliser une multitude de comportements sociaux. Dans cette thése, nous développons
des modeles probabilistes de choix individuels afin d’analyser ces comportements. Nous
puisons dans la littérature des modeles de choix discrets, forts utilisés en économétrie,
afin de rendre nos modeles interprétables, et nous les combinons avec des méthodes
computationnelles, telles que la factorisation matricielle, les statistiques bayésiennes et
les modeéles linéaires généralisés, afin de les rendre plus performants.

Premieérement, nous étudions la dynamique des systemes collaboratifs de création
de contenu, tels que Wikipédia, le systeme d’opération Linux, et les lois du Parlement
européen. Nous combinons les modeles de Bradley-Terry et de Rasch en un nouveau
modele qui nous permet de prédire si les modifications de contenu sont acceptées ou
non (par la communauté Wikipédia ou par les autres parlementaires, par exemple).
Ce modele révele quels sont les composants importants de ces systemes, tels que les
articles de Wikipédia controversés ou les parlementaires influents, ainsi que les facteurs
qui augmentent la probabilité qu’une modification soit acceptée. Notre modele inclut
également des facteurs latents qui améliorent les performances de prédictions.

Deuxiemement, nous développons un algorithme de prédiction des résultats du vote
populaire d’élections et de référendums a partir d’observations régionales partielles. Notre
approche combine la factorisation matricielle et les modeles linéaires généralisés afin
d’apprendre des représentations vectorielles des votes et des régions. Ces représentations
capturent les biais d’influence, comme les biais culturels, linguistiques ou idéologiques.
Nous appliquons notre modele & des données de vote pour I’Allemagne, les Etats-Unis
et la Suisse, et nous le déployons sur une plateforme en ligne pour prédire les votations
suisses en temps réel. En moyenne, nos prédictions sont correctes a moins de 1% d’erreur
en utilisant les résultats de seulement 5% des communes.



Résumé

Troisiemement, nous nous intéressons a la perception que les gens ont de leur empreinte
carbone. Nous formalisons ce probléme sous forme de comparaisons entre deux actions
(par exemple, prendre 1'avion et utiliser un séchoir) et développons un modele inspiré par
I’approche de Thurstone en psychométrie. Le modele apprend la perception générale d’une
population d’individus en estimant les parametres d’une régression linéaire bayésienne.
Nos expériences montrent que les individus ont tendance & sur-estimer les actions a faible
empreinte carbone et sous-estimer les actions a forte empreinte.

Finalement, nous développons un modele probabiliste dynamique de comparaison par
paires. Nous remplagons les parametres statiques d’une famille de modeles de comparaison
par des processus gaussiens a temps continu. Nous développons également un algorithme
d’inférence qui calcule une approximation bayésienne de la distribution postérieure du
modele de maniere efficace, en quelques itérations a temps linéaire sur les données.

Mots-clés modeles de choix discrets, factorisation matricielle, statistiques bayésiennes,

modeles linéaires généralisés, comparaisons, choix, modeles probabilistes, analyse de
données, apprentissage automatique, sciences sociales computationnelles
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- Mathematical Notation

Symbol

Description

Plain lowercase letters denote scalar values.
Boldface lowercase letter denote column vectors.
Boldface uppercase letters denote matrices.

Calligraphic uppercase letters denote sets.

Number types: real, positive real and natural numbers, respectively.

Set of consecutive natural numbers {1,..., N}.

Pairwise comparison outcome “i is chosen over j”.

Multiway comparison outcome “i is chosen among alternatives A”.
Probability of the event A.

Indicator variable of the event .A.

Expectation of the random variable zx.

Variance of the random variable x.

Covariance of the random variables x and y.

Sigmoid function o : R — [0,1], o(x) = 1/[1 + exp(—=x)].

Softmax function S : R¥ — [0,1]5, S(x); = exp(x;)/ 25| exp(zy).

g(x) = O(f(x)) <= limsup,_ . |g9(z)|/f(z) < oco.

Xi



Mathematical Notation

Distribution Domain Density or mass function f(x)
N, %) RO L oxp 2@ )T e — )
' V2m| X
Gumbel(yu, ) R — exp{—[z + exp(—2)]}, where z = ——
Logistic(, ) R exp(=2) here z = — 1
9 , W = —F
B[1+ exp(—=z)] g
Bernoulli(p) {0,1} p*(1—p)t®

Categorical(p, K) {0,...,K}
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Il Introduction

1.1 Motivation

Since the seminal work of Alan Turing establishing the foundations of modern computer
science [185] and artificial intelligence [186], computers and algorithms have repeatedly
accelerated the progress in science and engineering. Today, however, their effect on society
is mixed. The US presidential election and the UK Brexit referendum in 2016 were marred
by allegations of manipulation by the algorithms of the political consulting firm Cambridge
Analytica. Misinformation, fake news, and conspiracy theories spread to millions of people
within algorithmically recommended echo chambers on social media [107, 62, 156, 35],
thus shaping collective action and political participation [119]. Although it reduces
costs, increases economic outputs, and facilitates decision-making, the democratization
of machine-learning algorithms in health, finance, surveillance, marketing, justice, and
policy-making also tends to reinforce and exacerbate social biases [74, 171, 159]. Major
breakthroughs in computer vision and natural language processing are obtained at a high
environmental cost [172].

The lack of transparency in democratic processes, the spread of conspiracy theories,
and the rise in greenhouse gas emissions are examples of seemingly intractable and
unpredictable global problems stemming from the poor decisions and selfish behaviors of
people. Fortunately, a century of research in econometrics and psychometrics has taught
us that human decisions are more predictable than we think: From choosing between
drinking tea or coffee in the morning to selecting which book to read before going to
bed, human behavior is often reduced to making choices between a finite number of
alternatives. Rooted in the work of Thurstone [179] and of Zermelo [206] in the 1920s,
and later earning Daniel McFadden his Nobel Prize in economics [128], discrete-choice
theory provides us with a toolset of statistical models for analyzing and forecasting
decision-making processes.
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Despite the progress that discrete-choice models made possible in studying consumer
choices of transportation modes [11, 127], household energy suppliers [67], and college
choices [61], their early application was mostly restricted to small-scale problems due to
lack of data and of computational power. Coincidently, the emergence of the Internet and
the World Wide Web in the second half of the 20" century led to the collection of large
datasets of human behavior. At work and at home, people spend countless hours behind
their computers and their smartphones, where every click, tap, and mouse movement
is recorded. The World Economic Forum [199] estimates that by 2025, the world will
generate 463 exabytes' of data every day. In parallel, the rapid increase of computational
power and the development of machine-learning algorithms have made it possible to
process and analyze considerable amounts of data.

However, the architecture of modern machine-learning methods, belonging to the class
of deep-learning algorithms, consists of many layers of non-linear transformations that
progressively extract higher-level features from the data, and each layer consists of many
parameters. This complex structure makes interpretation challenging: It is unclear what
patterns the model has learned exactly [58, 70, 143, 83]. Hence, although these algorithms
offer unprecedented predictive powers [109], they offer little insight into the problem
itself, limiting any in-depth understanding of human behavior. Often, they are used as
black boxes, i.e., oracles that gobble up datasets and spit out predictions.

In this thesis, we focus on designing probabilistic models of decision-making that are
highly interpretable. To study social processes, we draw from the literature on discrete-
choice models and incorporate ideas from matrix factorization, Bayesian statistics, and
generalized linear models. In particular, we ask the following research questions:

RQ1 Who are the important users and components in peer-production systems?

RQ2 What features of parliamentarians and laws increase the probability of law
amendments being accepted?

RQ3 What ideological patterns are contained in voting data and how can they help
predict elections and referenda?

RQ4 How do people perceive the carbon footprint of their actions?

RQ5 How can we learn pairwise-comparison models of time-dependent data?

We answer each question by designing a tailor-made probabilistic choice model. The
learned parameters of each model enable us to interpret their predictions, thereby shedding
light on the problem at hand. These models are also sufficiently general to be applicable
in other contexts. Finally, we made our approach practical and our results useful by
developing interactive Web platforms for RQ3, RQ4, and RQ5. These platforms are
available to the general public and contribute to the global endeavour of opening science.

I This is 463 x 10'® bytes or 463 billion gigabytes, enough data to fill almost 100 billions DVDs.
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1.2 Probabilistic Choice Models

1.2.1 A Brief History

The history of studying choices to understand human behaviour has its roots in the 1920s
in the psychometrics community. Thurstone [179] pioneered the “law of comparative
judgment” that established the methodology of measuring the perception of physical
stimuli (e.g., the weight of different objects) from pairwise comparisons. That same year,
he used his new approach [180], today known as the probit model, to study people’s
perception of the seriousness of crimes, a notion for which no physical scale exists. Almost
concurrently, Zermelo [206] proposed a similar model, known as the logit model, to
rank chess players from outcomes of matches®. Zermelo’s model was then independently
rediscovered in the early 1950s in the statistics community by Bradley and Terry [19].

In the late 1950s, Marschak [120] introduced Thurstone’s work to the econometrics
community by interpreting the psychological stimuli of Thurstone’s model as economic
random wutility. In parallel, Luce [114] proposed his choice aziom and the hypothesis of
independence of irrelevant alternatives (IIA) that states that the relative comparison of
two alternatives is unaffected by additions and subtractions of other alternatives. In other
words, it assumes that the alternatives are uncorrelated. This property enabled Luce
to extend the logit model to multi-way comparisons. This extension was also proposed
by McFadden [126] to introduce the multinomial logit model® from a random utility

viewpoint.

The subsequent decades were dedicated to extending discrete-choice models. In particular,
to relax the (rather restrictive) ITA hypothesis, Ben-Akiva [11] and Williams [198]
developed the nested logit model that encodes correlation between alternatives through
their joint distribution. Similarly, Boyd and Mellman [17] and Cardell and Dunbar [25]
developed the mized logit model, which encodes correlation by assigning a probability
distribution to the parameters of the (multinomial) logit model [80]. Some efforts were also
deployed by Yellot [204] to unify the different formulations of the logit model. In parallel,
pairwise-comparison data started to be exploited for ranking [59, 24, 148, 192, 135], a
model often referred to as the Plackett-Luce model [80]. Research addressing the inference
of discrete-choice models was also conducted for sampling and simulations [118, 39],
mazximum likelihood estimation [77, 89, 122, 190], and Bayesian inference [71, 26, 87].

Today, the availability of unprecedented computational power and of large-scale datasets
has enabled new applications of discrete-choice models. In reinforcement learning, Sadigh
et al. [161] and Christiano et al. [31] propose to use pairwise-comparison models to
incorporate feedback from human supervisors into the reward function. Ammar [5]
suggests using these models to make personalized recommendations. Chumbalov et al.

2This approach is still used today by the World Chess Federation [53].
3This model was first introduced as the conditional logit model.
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[33] propose a search algorithm for navigating large-scale databases of complex items (e.g.,
images) from pairwise comparisons. To make algorithmic policies, Lee et al. [110] apply
the Plackett-Luce model in a virtual democracy setting to learn people’s preferences.
Noothigattu et al. [139] also use this model to train autonomous vehicles to make
ethical decisions. Finally, Salganik and Levy [162] implemented the probit model into the
online platform All Our Ideas* to help the New York City Mayor’s Office of Long-Term
Planning and Sustainability understand New Yorkers’ preferences for developing the city
sustainably.

A history of the development of discrete-choice models in econometrics is given by Mc-
Fadden [128] in his Nobel-Prize lecture. The curious reader will find more details about
random utility models in the books of Train [181, Chapter 1] and Hensher et al. [81,
Chapter 3]. An introduction to probabilistic models of choice from a statistical perspective
is given by Maystre [121, Chapter 1]. In the next section, we introduce discrete-choice
models from a random utility perspective.

1.2.2 Random Utility Models

Choice Set

Discrete-choice models capture people’s preferences that drive their choices. When facing
a set of (at least two) alternatives, a decision-maker chooses one of the alternatives over
the other(s). This set of alternatives is defined as the choice set.

Definition (Choice Set). Given the set of all possible alternatives A, the choice set C C A
is the set of alternatives faced by a decision-maker. It has the following three characteris-
tics:

1. The alternatives are mutually exclusive.

2. The choice set C is exhaustive.

3. The number of alternatives is finite.

The exclusiveness of alternatives means that, when choosing alternative ¢ € C, the other
alternatives of C are left aside. The exhaustiveness of the choice set means that the
decision-maker faces all possible alternatives at decision time. Finally, the number of
alternatives must be finite: The decision-maker can count the alternatives.

The first two characteristics are not restrictive, because it is always possible to add
artificial alternatives. For example, if C = {1, j}, exclusiveness can be ensured by adding
a third alternative &k = "choose 7 and j". This enables the decision-maker to choose both

“http://www.allourideas.org
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alternatives at the same time. Similarly, exhaustiveness can be ensured by adding another
alternative [ = "none of the alternatives'. This enables the decision-maker to choose none
of the alternatives, hence making the choice set exhaustive.

The third characteristic is, however, restrictive. A finite number of alternatives is actually
the defining characteristic of discrete-choice models. This contrasts with regression models,
in which the target variable is continuous, hence the number of alternatives is infinite.
The choice set can also vary for each choice faced by a decision-maker. For example,
C1 = {i,j} and Cy = {i,7,k}. This contrasts with classification models, in which the
choice set, i.e., the domain of the target variable, is identical for every observation. For
example, in the context of email classification, C; = C2 = {“spam”, “ham”}.

Random Utility

Without loss of generality, we introduce the random utility models from an econometrics
viewpoint, 7.e., by analyzing the behavior of decision-makers facing choices. These methods
can obviously be used to model other processes. In particular, and as we will see in this
thesis, they can model implicit choices. For example, in the context of collective-sport
matches, if Team A wins against Team B, then Team A is implicitly chosen over Team B
(e.g., because it played better or had good lucky).

In econometrics, we posit that a decision-maker is rational and chooses the alternative
that maximizes its personal gain. For example, let us consider a sleepy Ph.D. student
who needs a hot beverage in the morning in order to start working on their research.
Let z; € RM be a vector of M observable features that might influence a person’s decision
to choose alternative i € C, and let w € RM be the associated M-dimensional parameter
vector. In our example, the choice set is C = {“espresso”, “cappuccino”, “Earl Grey tea”}
and the features could include the type of beverage (coffee or tea), the level of caffeine,
and the preparation time. The feature vector could also include features of the student,
such as their age, their gender, and their baseline level of glucose.

It is impossible to characterize all features that influence a decision-maker’s choice.
Therefore, we capture the effect of the unobserved features in a random noise variable ¢;,
whose probability distribution is to be defined. In our example, the noise could capture
the effect of the atmospheric pressure on the quality of the brew and the influence of the
student’s personal history on their choice’.

To analyze the decision-maker’s behaviour, economists posit that an alternative ¢ has a
random utility U; given by

— T .
Ui—wiw—i-ez,

5The student could have a preference for Earl Grey tea because this reminds them of their grandfather.
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Figure 1.1 — Probability density functions of Gaussian and Gumbel distributions.

and the decision-maker chooses alternative i if U; > Uj, for all j # i, ¢,j € C. Hence, the
probability that a decision-maker chooses 7 over j is

P(i>—j) ZP(UZ‘>U]')
=P (:cZT'w +e > a:}w +ej)
=P (ei —€ > zjw — m}w) . (1.1)

The probability P (i > j) is called the choice probability. The notation “i > j” reads
as “alternative ¢ is chosen over alternative j” or, equivalently, as “¢ wins over j”. In
our example, we are interested in the probability P (“capuccino” > “espresso”) that the
student will choose to drink a cappuccino instead of an espresso.

From (1.1), the characterization of a discrete-choice model depends on the researcher’s
hypotheses on the noise model, i.e., on the probability distribution that captures the
unobserved features best. Two popular choices of distribution, which we describe below,
are (i) the Gaussian distribution N(u, 0?) with mean p and variance o2, and (ii) the
Gumbel distribution Gumbel(y, 8) with location p and scale 5. The probability density
function of these two distributions are

1 _(fﬁ-#)ﬂ

() = ——
fGauss1an( ) O‘\/ﬁ

foumbal(@) = ;exp{—[z 4 exp(—2)]},

exp 20_2

where z = % We show in Figure 1.1 an example of these two distributions with g =0
and 02 = = 1.
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Figure 1.2 — Cumulative density functions of Gaussian and logistic distributions.

Probit Model The probit model was first introduced by Thurstone [179] in the context
of psychometrics. In this model, the random noise is independently and identically
distributed (i.i.d.) with a Gaussian distribution €;, €; ~ N(0,0.5). As the difference of two
Gaussian random variables is also Gaussian, i.e., ¢, — €¢; ~ N(0, 1) in this special case,
the choice probability for the probit model is

P (i > j) :P(ei—ej >w}w—w}w) ztﬁ(w}w—w}w), (1.2)

where ®(-) is the cumulative distribution function of the standard normal distribution, as
shown in Figure 1.2. When the random utility is parameterized by only one parameter,
each alternative i is represented by a one-dimensional parameter w; € R. The feature
vector x; becomes a one-hot vector that is 0 everywhere except in ¢, where it is 1, 7.e., it
“selects” the parameter associated with alternative i. Then, U; = wiTw + ¢ = w; + €;, and
the model

P(i>j) = (w, —wj)

is called the Thurstone model. The M parameters w = [w; - - - wy|T represent a score for
each of the M alternative. They can be interpreted as the perceived psychological stimuli
of the alternatives and induce a natural ranking.

Logit Model The logit model was introduced by Zermelo [206] and rediscovered two
decades later by Bradley and Terry [19]. In this model, the random noise is assumed
to follow a Gumbel distribution® ¢; ~ Gumbel(u;, 3;) (see Figure 1.1). The Gumbel
distribution has the property that the difference of two Gumbel random variables G

5This distribution is also called the (Type I) extreme value distribution.
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and Go with locations u1 and ueo, and scales 51 = B2 = (3, follows a logistic distribution
G1 — G2 ~ Logistic(y/, 8), whose cumulative density function is

x— 1
FLogistic(l‘) =0 ( ,M ) = PEAR)
g 1+exp {— /3/“ }

where 1/ = p1 — po and ' = 8, and where o(-) is the logistic function. We show, in
Figure 1.2, an example of the logistic cumulative distribution function with p/ = 0 and
B =1, which we compare with that of the standard normal distribution.

In the logit model, the random noise is assumed to be i.i.d. with a Gumbel distribution
€, €5 ~ Gumbel(0, 1). Hence, €; — €; ~ Logistic(0, 1), and the choice probability for this
model is

7

P(i>j):P(ei—ej>m]T-w—wTw)

1
1+ exp[—(®]w — zjw)]
T
_ fxp(wz w) - . (13)
exp(z]w) + exp(z;w)
When the random utility is parameterized by only one parameter, the model
S 1
P(i>j) = (1.4)

1+ exp[—(w; — wj)]

is called the Bradley-Terry model. In this scenario, the parameters w can be interpreted
as the intrinsic strengths of each alternative.

Multinomial Logit Model The multinomial logit model, also called conditional logit
model, was introduced by Luce [114] and by McFadden [126]. In the probit and logit
models, the decision-maker faces a binary choice, i.e., the size of the choice set is |C| = 2.
In the multinomial logit model, the decision-maker faces multiple alternatives, and the
choice set C = {1, j, ..., k} has more than two elements. The random noise is also assumed
to be i.i.d. with the Gumbel distribution, so that the choice probability is

exp(x]w)

P(’i>—C):P(Ui>Uj,...,Ui>Uk): Zjecexp(m}w)'

(1.5)

The notation “i > C” reads as “alternative ¢ is chosen among all alternatives in the choice
set C”.



1.2. Probabilistic Choice Models

Rasch Model Although not categorized as a discrete-choice model, the Rasch model [152]
is closely related to the Bradley-Terry model. We present it here because in Chapter 3 we
combine it with the multinomial logit model. This model was introduced in the context of
item response theory in order to measure people’s ability to answer tests and understand
the traits that explain their performance. It assumes that an individual u taking a test
has an intrinsic strength s, € R, and that a question ¢ in the test has an intrinsic
difficulty d; € R. The probability that individual u answers question ¢ correctly is

1
1+ exp[—(sy — d;)]’

P(us>1i)= (1.6)

The relation with the Bradley-Terry model is obvious comparing (1.4) and (1.6).

Independence of Irrelevant Alternatives The hypothesis property of independence
of irrelevant alternatives (ITA) was first formulated by Luce [114]. It states that, for any
two alternatives ¢ and j, the ratio of the multinomial logit probabilities from (1.5) is
independent of alternatives other than ¢ and j, i.e.,

P(i-C)  exp(@lw)/ Yy exp(@w)

= exp(z]w — xjw). (1.7)

P(j = C)  expl@lw)/ Spec explalw)

As this ratio depends only on alternatives i and j, adding or removing alternatives from
the choice set C will leave it unchanged. This is a powerful result, because it implies
that not all alternatives are necessary in order to obtain an estimate of the associated
parameters. As a result, under the multinomial logit model, (i) the computational cost
of estimating the parameters of many alternatives can be reduced by sub-sampling the
alternatives and (ii) if one is interested only in analyzing alternatives ¢, j € A, the other
alternatives k € A — {4, j} are irrelevant. If the multinomial logit model exhibits this
property, it is also because Luce proved that this model stems for the ITA hypothesis.

As shown bellow by the blue-bus/red-bus paradox, however, the IIA assumption is
restrictive. Suppose that a population of suburban residents must choose a mode
of transportation for they daily daily commute. Their probability of taking the bus,
which is blue, compared to commuting by car is P (“blue bus” > “car”) = 1/3, hence
P (“car” > “blue bus”) = 2/3. The ratio between these two probabilities is equal to 2.
Suppose now that the city adds a new red bus to their fleet. Although this should not
affect the probability of commuters to use their car’, the multinomial logit model predicts
that

P (“blue bus” > “car”) = P (“red bus” > “car”) =

DO = | =

P (“car” > “blue/red bus”) =

" Assuming, of course, that the bus frequency remains the same.
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so that the ratio is still equal to 2. It should be expected, however, that the probability
of a person using their car is unaffected by this new bus, i.e.,

P (“blue bus” > “car”) = P (“red bus” > “car”) =

)

P (“car” > “blue/red bus”) =

Wl =

In this case, the ratio is equal to 4.

To circumvent this issue, new choice models were proposed in the econometrics literature.
For example, the nested logit model, multinomial probit model, and mized logit model
all relax the ITA hypothesis by enabling correlated alternatives. The nested logit and
multinomial probit models assume that the random noise terms ¢; are correlated through
their joint distribution. The mixed logit model enables the parameters w to be random
by assigning them a probability distribution. An introduction to these models is given
by Train [181].

1.3 Outline and Contributions

In this thesis, we seek to gain new insight into the structure and dynamics of social
processes, such as peer-production, law-making, and voting. To answer the research
questions of Section 1.1, we

1. collect rich datasets,
2. build interpretable predictive models, and

3. design efficient learning algorithms.

Our models are tailored to the datasets, and the learned parameters enable us to interpret
their predictions, thereby gaining insight into the studied processes. We also make our
approaches practical and our results useful by deploying them on online Web platforms.

More specifically, in Chapter 2, we ask who are the important users and components
in online peer-production systems. We take a predictive viewpoint and posit that the
probability of acceptance of user contributions depends on the skill of users and the inertia
of components resisting to change. We model this probability with a discrete-choice model
inspired from the Rasch model, and we include latent factors reminiscent of collaborative
filtering to capture non-linear interactions between users and components. We apply our
model to Wikipedia and to the Linux kernel, two examples of large-scale peer-production
systems, and we discover interesting structures in the data: We identify controversial
Wikipedia articles and core Linux components that are crucial to the functioning of

10
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the system. Finally, the latent factors boost the predictive performance and cluster well
according to topics of the Wikipedia articles.

In Chapter 3, we shift our attention to law-making processes that we study through the
lens of peer-production systems. In the European Union, parliamentarians shape policies
by proposing amendments to law drafts. We look for features of the parliamentarians, the
amendments, and the laws that increase the probability of amendments being accepted.
We start by collecting a new dataset of 450000 legislative edits proposed by European
parliamentarians between 2009 and 2019. Then, we predict the acceptance probability
of amendments by building a model inspired from the multinomial logit model and the
Rasch model. Our approach takes advantage of the conflictive structure of amendments
that modify the same parts of the same laws. We identify that being in charge of a law
draft and that proposing shorter amendments are among the features that correlate with
highest probability of acceptance. We also discover words and bigrams that are predictive
of acceptance or rejection when inserted or deleted, such as the term “human rights” that
predicts acceptance when deleted from the law.

In Chapter 4, we study one of the most fundamental choice processes in our society:
voting. To understand voting patterns, we develop an algorithm for predicting aggregate
vote outcomes (e.g., national) from partial results (e.g., regional) that are revealed
sequentially. We combine matrix factorization and generalized linear models to obtain
a flexible, efficient, and accurate algorithm. Our experiments show that this approach
accurately predicts the outcomes of Swiss referenda, U.S. presidential elections, and
German legislative elections. We also show that the learned latent factors correspond
to clear ideological and cultural patterns, such as conservative/liberal and rural/urban
patterns. Finally, we deploy our algorithm on an online Web platform to provide real-time
vote predictions in Switzerland and a data-visualization tool to explore voting behavior.

In Chapter 5, we study people’s perception of their carbon footprint. Driven by the
observation that few people think of CO5 impact in absolute terms, we design a system to
probe their perception from simple pairwise comparisons of the relative carbon footprint
of their actions. We design a Web interface to collect 2000 answers from 200 users on our
university campus. We develop a Bayesian model inspired from the probit model that
enables us to take an active-learning approach to selecting the pairs of actions that are
maximally informative about the model parameters, hence making data collection more
efficient. The parameters capture the perceived carbon footprint of the actions and induce
a natural ranking to compare them with the true values. This reveals an interesting
pattern: Low-impact actions are usually overestimated and high-impact actions are
usually underestimated.

Finally, in Chapter 6, we address the problem of learning choices in a dynamic setting,
where alternatives are correlated over time. We solve this by replacing the static pa-
rameters of the logit model by continuous-time Gaussian processes, whose covariance

11
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function enables expressive time dynamics. We develop an efficient inference algorithm
that computes an approximate Bayesian posterior distribution. Despite the flexibility of
our model, our inference algorithm requires only a few linear-time iterations over the
data. We apply our model to several historical databases of sports outcomes and find that
our approach (a) outperforms competing approaches in terms of predictive performance,
(b) scales to millions of observations, and (c) generates compelling visualizations that
help in understanding and interpreting the data. We also develop a Web platform that
uses our algorithm to make predictions for football matches in European leagues and
international competitions.

12



] Peer-Production Systems

In this chapter!, we develop a discrete-choice model inspired from the Rasch model and
including ideas reminiscent of collaborative filtering to predict user contributions to
online peer-production systems. As the number of contributors to these systems grows,
it becomes increasingly important to predict whether the edits that users make will
eventually be beneficial to the project. Existing solutions either rely on a user reputation
system or consist of a highly specialized predictor that is tailored to a specific peer-
production system. We explore a different point in the solution space that goes beyond
user reputation but does not involve any content-based feature of the edits. We posit
that the probability that an edit is accepted is a function of the editor’s skill, of the
difficulty of editing the component and of a user-component interaction term. Our model
is broadly applicable, as it only requires observing data about who makes an edit, what
the edit affects and whether the edit survives or not. We apply our model on Wikipedia
and the Linux kernel, two examples of large-scale peer-production systems, and we seek
to understand whether it can effectively predict edit survival: in both cases, we provide
a positive answer. Our approach significantly outperforms those based solely on user
reputation and bridges the gap with specialized predictors that use content-based features.
It is simple to implement, computationally inexpensive, and in addition it enables us to
discover interesting structure in the data?.

2.1 Introduction

Over the last two decades, the number and scale of online peer-production systems has
become truly massive, driven by better information networks and advances in collaborative
software. At the time of writing, 128 643 editors contribute regularly to 54+ million articles
of the English Wikipedia [197] and over 15600 developers have authored code for the

!This chapter is based on Yardim et al. [201].
*Data and code publicly available on https://github.com/lcad/interank.
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Linux kernel [37]. On GitHub, 24 million users collaborate on 25.3 million active software
repositories [63].

In order to ensure that such projects advance towards their goals, it is necessary to identify
whether edits made by users are beneficial. As the number of users and components of
the project grows, this task becomes increasingly challenging. In response, two types
of solutions are proposed. On the one hand, some advocate the use of user reputation
systems [155, 2]. These systems are general, their predictions are easy to interpret
and can be made resistant to manipulations [44]. On the other hand, a number of
highly specialized methods are proposed to automatically predict the quality of edits in
particular peer-production systems [48, 75]. These methods can attain excellent predictive
performance [79] and usually significantly outperform predictors that are based on user
reputation alone [48], but they are tailored to a particular peer-production system, use
domain-specific features and rely on models that are difficult to interpret.

In this work, we set out to explore another point in the solution space. We aim to keep
the generality and simplicity of user reputation systems, while reaching the predictive
accuracy of highly specialized methods. We ask the question: Can one predict the outcome
of contributions simply by observing who edits what and whether the edits eventually
survive? We address this question by proposing a novel statistical model of edit outcomes.
We formalize the notion of collaborative project as follows. IN users can propose edits on
M distinct items (components of the project, such as articles on Wikipedia or a software’s
modules), and we assume that there is a process for validating edits (either immediately
or over time). We observe triplets (u,i,q) that describe a user u € {1,..., N} editing an
item i € {1,..., M} and leading to outcome ¢q € {0, 1}; the outcome ¢ = 0 represents
a rejected edit, whereas ¢ = 1 represents an accepted, beneficial edit. Given a dataset
of such observations, we seek to learn a model of the probability P (u > i) that an edit
made by user v on item ¢ is accepted. This model can then be used to help moderators
and project maintainers prioritize their efforts once new edits appear: For example, edits
that are unlikely to survive could be sent out for review immediately.

Our approach borrows from probabilistic models of pairwise comparisons [206, 151]. These
models learn a real-valued score for each object (user or item) such that the difference
between two objects’ scores is predictive of comparison outcomes. We take a similar
perspective and view each edit in a collaborative project as a game between the user who
tries to effect change and the item that resists change®. Similarly to pairwise-comparison
models, our approach learns a real-valued score for each user and each item. In addition,
it also learns latent features of users and items that capture interaction effects.

30bviously, items do not really “resist” by themselves. Instead, this notion should be taken as a
proxy for the combined action of other users (e.g., project maintainers) who can accept or reject an edit
depending, among others, on standards of quality.
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In contrast to quality-prediction methods specialized on a particular peer-production
system, our approach is general and can be applied to any system in which users
contribute by editing discrete items. It does not use any explicit content-based features:
instead, it simply learns by observing triplets {(u, 7, ¢) }. Furthermore, the resulting model
parameters can be interpreted easily. They enable a principled way of (a) ranking users
by the quality of their contributions, (b) ranking items by the difficulty of editing them
and (c¢) understanding the main dimensions of the interaction between users and items.

We apply our approach on two different peer-production systems. We start with Wikipedia
and consider its Turkish and French editions. Evaluating the accuracy of predictions
on an independent set of edits, we find that our model approaches the performance of
the state of the art. More interestingly, the model parameters reveal important facets
of the system. For example, we characterize articles that are easy or difficult to edit,
respectively, and we identify clusters of articles that share common editing patterns.
Next, we turn our attention to the Linux kernel. In this project, contributors are typically
highly skilled professionals, and the edits that they make affect 394 different subsystems
(kernel components). In this instance, our model’s predictions are more accurate than
a random forest classifier trained on domain-specific features. In addition, we give an
interesting qualitative description of subsystems based on their difficulty score.

In short, our paper (a) gives evidence that observing who edits what can yield valuable
insights into peer-production systems and (b) proposes a statistically grounded and
computationally inexpensive method to do so. The analysis of two peer-production
systems with very distinct characteristics demonstrates the generality of the approach.

Organization of the Paper We start by reviewing related literature in Section 2.2.
In Section 2.3, we describe our statistical model of edit outcomes and briefly discuss
how to efficiently learn a model from data. In Sections 2.4 and 2.5, we investigate our
approach in the context of Wikipedia and of the Linux kernel, respectively. Finally, we
conclude in Section 2.6.

2.2 Related Work

With the growing size and impact of online peer-production systems, the task of assessing
contribution quality has been extensively studied. We review various approaches to the
problem of quantifying and predicting the quality of user contributions and contrast
them to our approach.

User Reputation Systems Reputation systems have been a long-standing topic
of interest in relation to peer-production systems and, more generally, in relation to
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online services [155]. Adler and de Alfaro [2] propose a point-based reputation system
for Wikipedia and show that reputation scores are predictive of the future quality of
editing. As almost all edits to Wikipedia are immediately accepted, the authors define
an implicit notion of edit quality by measuring how much of the introduced changes is
retained in future edits. The ideas underpinning the computation of implicit edit quality
are extended and refined in subsequent papers [3, 44]. This line of work leads to the
development of WikiTrust [45], a browser add-on that highlights low-reputation texts in
Wikipedia articles. When applying our methods to Wikipedia, we follow the same idea
of measuring quality implicitly through the state of the article at subsequent revisions.
We also demonstrate that by automatically learning properties of the item that a user
edits (in addition to learning properties of the user, such as a reputation score) we can
substantially improve predictions of edit quality. This was also noted by Tabibian et al.
[176] in a setting similar to ours, but using a temporal point process framework.

Specialized Classifiers Several authors propose quality-prediction methods tailored
to a specific peer-production system. Typically, these methods consist of a machine-
learned classifier trained on a large number of content-based and system-based features
of the users, the items and the edits themselves. Druck et al. [48] fit a maximum entropy
classifier for estimating the lifespan of a given Wikipedia edit, using a definition of edit
longevity similar to that of Adler and de Alfaro [2]. They consider features based on the
edit’s content (such as: number of words added / deleted, type of change, capitalization
and punctuation, etc.) as well as features based on the user, the time of the edit and
the article. Their model significantly outperforms a baseline that only uses features of
the user. Other methods use support vector machines [22], random forests [22, 92] or
binary logistic regression [149], with varying levels of success. In some cases, content-
based features are refined using natural-language processing, leading to substantial
performance improvements. However, these improvements are made to the detriment of
general applicability. For example, competitive natural language processing tools have
yet to be developed for the Turkish language (we investigate the Turkish Wikipedia in
Section 2.4). In contrast to these methods, our approach is general and broadly applicable.
Furthermore, the use of black-box classifiers can hinder the interpretability of predictions,
whereas we propose a statistical model whose parameters are straightforward to interpret.

Truth Inference In crowdsourcing, a problem related to ours consists of jointly esti-
mating (@) model parameters (such as user skills or item difficulties) that are predictive of
contribution quality, and (b) the quality of each contribution, without ground truth [43].
Our problem is therefore easier, as we assume access to ground-truth information about
the outcome (quality) of past edits. Nevertheless, some methods developed in the crowd-
sourcing context [195, 193, 208] provide models that can be applied to our setting as
well. In Sections 2.4 and 2.5, we compare our models to GLAD [195].
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Pairwise Comparison Models Our approach draws inspiration from probabilistic
models of pairwise comparisons, as described in Section 1.2. The main paradigm posits
that every object i has a latent strength (skill or difficulty) parameter w;, and that the

4

probability P (i > j) of observing object ¢ “winning” over object j increases with the

distance w; — w;. Conceptually, our model is closest to that of Rasch [151].

Collaborative Filtering Our method also borrows from collaborative filtering tech-
niques popular in the recommender systems community. In particular, some parts of our
model are remindful of matrix-factorization techniques [99]. These techniques automati-
cally learn low-dimensional embeddings of users and items based on ratings, with the
purpose of producing better recommendations. Our work shows that these ideas can also
be helpful in addressing the problem of predicting outcomes of edits in peer-production
systems. Like collaborative-filtering methods, our approach is exposed to the cold-start
problem: with no (or few) observations about a given user or item, the predictions are
notably less accurate. In practice, this problem can be addressed, e.g., by using additional
features of users and / or items [164, 108] or by clustering users [112].

2.3 Statistical Models

In this section, we describe and explain two variants of a statistical model of edit outcomes
based on who edits what. In other words, we develop models that are predictive of the
outcome g € {0,1} of a contribution of user v on item 4. To this end, we represent the
probability P (u > ) that an edit made by user u on item ¢ is successful. In collaborative
projects of interest, most users typically interact with only a small number of items.
In order to deal with the sparsity of interactions, we postulate that the probabilities
{P (u > i)} lie on a low-dimensional manifold and propose two model variants of increasing
complexity. In both cases, the parameters of the model have intuitive effects and can be
interpreted easily.

Basic Variant The first variant of our model is directly inspired by the Rasch
model [151]. The probability that an edit is accepted is defined as

1

P (u-i) = 1+ expl—(su —d; + b)]’

(2.1)

where s, € R is the skill of user u, d; € R is the difficulty of item 7, and b € R is a
global parameter that encodes the overall skew of the distribution of outcomes. We call
this model variant INTERANK basic. Intuitively, the model predicts the outcome of a
“game” between an item with inertia and a user who would like to effect change. The
skill quantifies the ability of the user to enforce a contribution, whereas the difficulty
quantifies how “resistant” to contributions the particular item is.

17



Chapter 2. Peer-Production Systems

Similarly to reputation systems [2], INTERANK basic learns a score for each user; this
score is predictive of edit quality. However, unlike these systems, our model also takes
into account that some items might be more challenging to edit than others. For example,
on Wikipedia, we can expect high-traffic, controversial articles to be more difficult to
edit than less popular articles. As with user skills, the article difficulty can be inferred
automatically from observed outcomes.

Full Variant Although the basic variant is conceptually attractive, it might prove
to be too simplistic in some instances. In particular, the basic variant implies that if
user u is more skilled than user v, then P (u > i) > P (v > 4) for all items i. In many
peer-production systems, users tend to have their own specializations and interests, and
each item in the project might require a particular mix of skills. For example, with the
Linux kernel, an engineer specialized in file systems might be successful in editing a
certain subset of software components, but might be less proficient in contributing to,
say, network drivers, whereas the situation might be exactly the opposite for another
engineer. In order to capture the multidimensional interaction between users and items,
we add a bilinear term to the probability model (2.1). Letting x,,y; € R” for some
dimensionality D € N+, we define

1

P )) = .
(u =) 1+ exp[—(sy — di + ) y; + )]

(2.2)

We call the corresponding model variant INTERANK full. The vectors x, and y; can be
thought of as embedding users and items as points in a latent D-dimensional space.
Informally, P (u > i) increases if the two points representing a user and an item are
close to each other, and it decreases if they are far from each other (e.g., if the vectors
have opposite signs). If we slightly oversimplify, the parameter y; can be interpreted as
describing the set of skills needed to successfully edit item ¢, whereas x,, describes the
set of skills displayed by user wu.

The bilinear term is reminiscent of matrix-factorization approaches in recommender
systems [99]; indeed, this variant can be seen as a collaborative-filtering method. In
true collaborative-filtering fashion, our model is able to learn the latent feature vectors
{z;} and {y;} jointly, by taking into consideration all edits and without any additional
content-based features.

Finally, note that the skill and difficulty parameters are retained in this variant and can
still be used to explain first-order effects. The bilinear term explains only the additional
effect due to the user-item interaction.
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2.3.1 Learning the Model

From (2.1) and (2.2), it should be clear that our probabilistic model assumes no data
other than the identity of the user and that of the item. This makes it generally applicable
to any peer-production system in which users contribute to discrete items.

Given a dataset of K independent observations D = {(ug,ix,qx) | k= 1,..., K}, we
infer the parameters of the model by maximizing their likelihood under D. That is,
collecting all model parameters into a single vector 8, we seek to minimize the negative
log-likelihood

—0(0;D) = Z [—qlogP (u > i) — (1 — q)log(1 = P (u > 17))], (2.3)
(u,i,q)€D

where P (u > i) depends on 6. In the basic variant, the negative log-likelihood is convex,
and we can easily find a global maximum by using standard methods from convex
optimization. In the full variant, the bilinear term breaks the convexity of the objective
function, and we can no longer guarantee that we will find parameters that are global
minimizers. In practice, we do not observe any convergence issues but reliably find good
model parameters on all datasets.

Note that (2.3) easily generalizes from binary outcomes (¢ € {0,1}) to continuous-valued
outcomes (¢ € [0, 1]). Continuous values can be used to represent the fraction of the edit
that is successful.

Implementation We implement the models in Python by using the TensorFlow li-
brary [1]. Our code is publicly available online at https://github.com/1lcad/interank.
In order to avoid overfitting the model to the training data, we add a small amount of ¢o
regularization to the negative log-likelihood. We minimize the negative log-likelihood by
using stochastic gradient descent [14] with small batches of data. For INTERANK full, we
set the number of latent dimensions to D = 20 by cross-validation.

Running Time Our largest experiment consists of learning the parameters of INTER-
ANK full on the entire history of the French Wikipedia (c.f. Section 2.4), consisting
of over 65 million edits by 5 million users on 2 million items. In this case, our Ten-
sorFlow implementation takes approximately 2 hours to converge on a single machine.
In most other experiments, our implementation takes only a few minutes to converge.
This demonstrates that our model effortlessly scales, even to the largest peer-production
systems.
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2.3.2 Applicability

Our approach models the difficulty of effecting change through the affected item’s identity.
As such, it applies particularly well to peer-production systems where users cooperate
to improve the project, i.e., where each edit is judged independently against an item’s
(latent) quality standards. This model is appropriate for a wide variety of projects,
ranging from online knowledge bases (such as Wikipedia, c.f. Section 2.4) to open source
software (such as the Linux kernel project, c.f. Section 2.5). In some peer-production
systems, however, the contributions of different users compete against each other, such
as multiple answers to a single question on a Q&A platform. In these cases, our model
can still be applied, but fails to capture the fact that edit outcomes are interdependent.

2.4 Wikipedia

Wikipedia is a popular free online encyclopedia and arguably one of the most successful
peer-production systems. In this section, we apply our models to the French and Turkish
editions of Wikipedia.

2.4.1 Background & Datasets

The French Wikipedia is one of the largest Wikipedia editions. At the time of writing,
it ranks in third position both in terms of number of edits and number of users®. In
order to obtain a complementary perspective, we also study the Turkish Wikipedia,
which is roughly an order of magnitude smaller. Interestingly, both the French and the
Turkish editions score very highly on Wikipedia’s depth scale, a measure of collaborative
quality [196].

The Wikimedia Foundation releases periodically and publicly a database dump containing
the successive revisions to all articles®. We use a dump that contains data starting from
the beginning of the edition up to the fall of 2017: The French Wikipedia contains edits
between August 4, 2001, and September 2, 20017, and the Turkish Wikipedia between
December 5, 2002, and October 1, 2017.

Computation of Edit Quality

On Wikipedia, any user’s edit is immediately incorporated into the encyclopedia®. There-
fore, in order to obtain information about the quality of an edit, we have to consider the

4We chose the French edition over the English one because our computing infrastructure could not
support the ~ 15 TB needed to store the entire history of the English Wikipedia. The French edition
contains roughly 5x fewer edits.

5See: https://dumps.wikimedia.org/.

SExcept for a small minority of protected articles.
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implicit signal given by subsequent edits to the same article. If the changes introduced
by the edit are preserved, it signals that the edit was beneficial, whereas if the changes
are reverted, the edit likely had a negative effect. A formalization of this idea is given

by Adler and de Alfaro [2] and Druck et al. [48]; see also de Alfaro and Adler [44] for a
concise explanation. In this work, we essentially follow their approach.

Consider a particular article and denote by vy, its k-th revision (i.e., the state of the article
after the k-th edit). Let d(u,v) be the Levenshtein distance between two revisions [106].
We define the quality of edit k from the perspective of the article’s state after £ > 1
subsequent edits as

Qule = 1 + d(vg—1, Vgye) — d(Vk, Vkip)
T2 2d(vg—1,vk) '

By properties of distances, gy, € [0, 1]. Intuitively, the quantity g, captures the pro-
portion of work done in edit k£ that remains in revision k£ 4 £. It can be understood as a
soft measure of whether edit k has been reverted or not. We compute the unconditional
quality of the edit by averaging over multiple future revisions:

1 L
= 7 Z ke (2.4)
L=

where L is the minimum between the number of subsequent revisions of the article and
10 (we empirically found that 10 revisions is enough to accurately assess the quality of
an edit). Note that even though g is no longer binary, our models naturally extend to
continuous-valued g € [0,1] (c.f. Section 2.3.1).

In practice, we observe that edit quality is bimodal and asymmetric. Most edits have
a quality close to either 0 or 1 and a majority of edits are of high quality. The two
rightmost columns of Table 2.1 quantify this for the French and Turkish editions.

Dataset Preprocessing

We consider all edits to the pages in the main namespace (i.e., articles), including those
from anonymous contributors identified by their IP address”. Sequences of consecutive
edits to an article by the same user are collapsed into a single edit in order to remove
bias in the computation of edit quality [2]. To evaluate methods in a realistic setting, we
split the data into a training set containing the first 90 % of edits, and we report results
on an independent validation set containing the remaining 10 %. Note that the quality
is computed based on subsequent revisions of an article: In order to guarantee that the
two sets are truly independent, we make sure that we never use any revisions from the

"Note, however, that a large majority of edits are made by registered users (82.7 % and 76.6 % for
the French and Turkish editions, respectively).
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Table 2.1 — Summary statistics of Wikipedia datasets after preprocessing.

Edition # users N # articles M # edits ¢<0.2 ¢>0.8
French (2001-2017) 5460745 1932810 65430838 6.4%  72.2%
Turkish (2002-2017) 1360076 310991 8768258 11.6%  60.5%

validation set to compute the quality of edits in the training set. A short summary of the
data statistics after preprocessing is provided in Table 2.1.

2.4.2 Evaluation

In order to facilitate the comparison of our method with competing approaches, we
evaluate the performance on a binary classification task consisting of predicting whether
an edit is of poor quality. To this end, we assign binary labels to all edits in the validation
set: the label bad is assigned to every edit with ¢ < 0.5, and the label good is assigned to all
edits with ¢ > 0.5. The predictions of the classifier might help Wikipedia administrators
to identify edits of low quality; these edits might then be sent to domain experts for
review.

As discussed in Section 2.3, we consider two versions of our model. The first one, INTERANK
basic, simply learns scalar user skills and article difficulties. The second one, INTERANK
full, additionally includes a latent embedding of dimension D = 20 for each user and
article.

Competing Approaches

To set our results in context, we compare them to those obtained with four different
baselines.

Average The first approach always outputs the marginal probability of a bad edit in
the training set, i.e.,

# bad edits in training set
p =

# edits in training set

This is a trivial baseline, and it gives an idea of what results we should expect to achieve
without any additional information on the user, article or edit.

User-Only The second approach models the outcome of an edit using only the user’s
identity. In short, the predictor learns skills {s,, | u=1,..., N} and a global offset b such
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that, for each user u, the probability

_ 1
1+ exp[—(sy + b)]

P (u)

maximizes the likelihood of that user’s edits in the training set. This baseline predictor
is representative of user reputation systems such as that of Adler and de Alfaro [2].

GLAD In the context of crowdsourcing, Whitehill et al. [195] propose the GLAD model
that postulates that

1

P(uri) = 1+ exp(—sy/d;)’

where s, € R and d; € Rsq. This reflects a different assumption on the interplay between
user skill and item difficulty: under their model, an item with a large difficulty value
makes every user’s skill more “diffuse”. In order to make the comparison fair, we add a
global offset parameter b to the model (similarly to INTERANK and the user-only baseline).

ORES reverted The fourth approach is a state-of-the-art classifier developed by
researchers at the Wikimedia Foundation as part of Wikipedia’s Objective Revision
Evaluation Service [75]. We use the two classification models specifically developed for
the French and Turkish editions. Both models use over 80 content-based and system-based
features extracted from the user, the article and the edit to predict whether the edit will
be reverted, a target which essentially matches our operational definition of bad edit.
Features include the number of vulgar words introduced by the edit, the length of the
article and of the edit, etc. This predictor is representative of specialized, domain-specific
approaches to modeling edit quality.

Results

Table 2.2 presents the average log-likelihood and the area under the precision-recall curve
(AUPRC) for each method. INTERANK full has the highest average log-likelihood of all
models, meaning that its predictive probabilities are well calibrated with respect to the
validation data.

Figure 2.1 presents the precision-recall curves for all methods. The analysis is qualitatively
similar for both Wikipedia editions. All non-trivial predictors perform similarly in the
high-recall regime, but present significant differences in the high-precision regime, on
which we will focus. The ORES predictor performs the best. INTERANK comes second,
reasonably close behind ORES, and the full variant has a small edge over the basic variant.
GLAD is next, and the user-only baseline is far behind. This shows that (a) incorporating
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Table 2.2 — Predictive performance on the bad edit classification task for the French and
Turkish editions of Wikipedia. The best performance is highlighted in bold.

Edition Model Avg. log-likelihood AUPRC
French  INTERANK basic —0.339 0.399
INTERANK full —0.336 0.413
Average —0.389 0.131
User-only —0.346 0.313
GLAD —0.344 0.369
ORES reverted —0.469 0.453
Turkish INTERANK basic —0.380 0.494
INTERANK full —0.379 0.503
Average —0.461 0.168
User-only —0.390 0.410
GLAD —0.387 0.471
ORES reverted —0.392 0.552

information about the article being edited is crucial for achieving a good performance on
a large portion of the precision-recall trade-off, and (b) modeling the outcome probability
by using the difference between skill and difficulty (INTERANK) is better than by using
the ratio (GLAD).

We also note that in the validation set, approximately 20 % (15 %) of edits are made
by users (respectively, on articles) that are never encountered in the training set (the
numbers are similar in both editions). In these cases, INTERANK reverts to average
predictions, whereas content-based methods can take advantage of other features of the
edit to make an informed prediction. In order to explore this cold-start effect in more
detail, we group users and articles into bins based on the number of times they appear
in the training set, and we compute the average log-likelihood of validation examples
separately for each bin. Figure 2.2 presents the results for the French edition; the results
for the Turkish edition are similar. Clearly, predictions for users and articles present in
the training set are significantly better. In a practical deployment, several methods can
help to address this issue [164, 108, 112]. A thorough investigation of ways to mitigate
the cold-start problem is beyond the scope of this work.

In summary, we observe that our model, which incorporates the articles’ identity, is able to
bridge the gap between user-only prediction approach and a specialized predictor (ORES
reverted). Furthermore, modeling the interaction between user and article (INTERANK
full) is beneficial and helps further improve predictions, particularly in the high-precision
regime.
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Figure 2.1 — Precision-recall curves on the bad edit classification task for the Turkish and
French editions of Wikipedia.
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Figure 2.2 — Average log-likelihood as a function of the number of observations of the
user and item in the training set of the French Wikipedia.
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Table 2.3 — The ten most controversial articles on the French Wikipedia according
to Yasseri et al. [203]. For each article i, we indicate the percentile of its corresponding
parameter d;.

Rank Title Percentile of d;
1 Ségolene Royal 99.840 %
2 Unidentified flying object 99.229 %
3 Jehovah’s Witnesses 99.709 %
4 Jesus 99.953 %
5 Sigmund Freud 97.841 %
6 September 11 attacks 99.681 %
7 Muhammad al-Durrah incident 99.806 %
8 Islamophobia 99.787 %
9 God in Christianity 99.712 %

10 Nuclear power debate 99.304 %
Median 99.710 %

2.4.3 Interpretation of Model Parameters

The parameters of INTERANK models, in addition to being predictive of edit outcomes, are
also very interpretable. In the following, we demonstrate how they can surface interesting
characteristics of the peer-production system.

Controversial Articles

Intuitively, we expect an article ¢ whose difficulty parameter d; is large to deal with topics
that are potentially controversial. We focus on the French Wikipedia and explore a list
of the ten most controversial articles given by Yasseri et al. [203]. In this 2014 study,
the authors identify controversial articles by using an ad-hoc methodology. Table 2.3
presents, for each article identified by Yasseri et al., the percentile of the corresponding
difficulty parameter d; learned by INTERANK full. We analyze these articles approximately
four years later, but the model still identifies them as some of the most difficult ones.
Interestingly, the article on Sigmund Freud, which has the lowest difficulty parameter
of the list, has become a featured article since Yasseri et al.’s analysis—a distinction
awarded only to the most well-written and neutral articles.

Latent Factors

Next, we turn our attention to the parameters {y;}. These parameters can be thought of
as an embedding of the articles in a latent space of dimension D = 20. As we learn a
model that maximizes the likelihood of edit outcomes, we expect these embeddings to
capture latent article features that explain edit outcomes. In order to extract the one or
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Table 2.4 — A selection of articles of the Turkish Wikipedia among the top-20 highest
and lowest coordinates along the first principal axis of the matrix Y.

Direction Titles

Lowest Harry Potter’s magic list, List of programs broadcasted by Star TV,
Bursaspor 2011-12 season, Kral Pop TV Top 20, Death Eater, Heroes
(TV series), List of programs broadcasted by TV8, Karadayi, Show TV,
List of episodes of Kurtlar Vadisi Pusu.

Highest Seven Wonders of the World, Thomas Edison, Cell, Mustafa Kemal
Atatiirk, Albert Einstein, Democracy, Isaac Newton, Mehmed the Con-
queror, Leonardo da Vinci, Louis Pasteur.

two directions that explain most of the variability in this latent space, we apply principal
component analysis [14] to the matrix Y = [y;].

In Table 2.4, we consider the Turkish Wikipedia and list a subset of the 20 articles with
the highest and lowest coordinates along the first principal axis of Y. We observe that this
axis seems to distinguish articles about popular culture from those about “high culture”
or timeless topics. This discovery supports the hypothesis that users have a propensity
to successfully edit either popular culture or high-culture articles on Wikipedia, but not

both.

Finally, we consider the French Wikipedia. Once again, we apply principal component
analysis to the matrix Y and keep the first two dimensions. We select the 20 articles with
the highest and lowest coordinates along the first two principal axes®. A two-dimensional
t-SNE plot [188] of the 80 articles selected using PCA is displayed in Figure 2.3. The plot
enables identifying meaningful clusters of related articles, such as articles about tennis
players, French municipalities, historical figures, and TV or teen culture. These articles
are representative of the latent dimensions that separate editors the most: a user skilled
in editing pages about ancient Greek mathematicians might be less skilled in editing
pages about anime, and vice versa.

2.5 Linux Kernel

In this section, we apply the INTERANK model to the Linux kernel project, a well-known
open-source software project. In contrast to Wikipedia, most contributors to the Linux
kernel are highly skilled professionals who dedicate a significant portion of their time
and efforts to the project.

8Interestingly, the first dimension has a very similar interpretation to that obtained on the Turkish
edition: it can also be understood as separating popular culture from high culture.
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Figure 2.3 — t-SNE visualization of 80 articles of the French Wikipedia with highest and
lowest coordinates along the first and second principal axes of the matrix Y.

2.5.1 Background & Dataset

The Linux kernel has fundamental impact on technology as a whole. In fact, the Linux
operating system runs 90% of the cloud workload and 82% of the smartphones [37]. To
collectively improve the source code, developers submit bug fixes or new features in the
form of a patch to collaborative repositories. Review and integration time depend on the
project’s structure, ranging from a few hours or days for Apache Server [157] to a couple
of months for the Linux kernel [93]. In particular for the Linux kernel, developers submit
patches to subsystem mailing lists, where they undergo several rounds of reviews. After
suggestions are implemented and if the code is approved, the patch can be committed to
the subsystem maintainer’s software repository. Integration conflicts are spotted at this
stage by other developers monitoring the maintainer’s repository and any issues must be
fixed by the submitter. If the maintainer is satisfied with the patch, she commits it to
Linus Torvalds’ repository, who decides to include it or not with the next Linux release.

Dataset Preprocessing

We use a dataset collected by Jiang et al. [93] which spans Linux development activity
between 2005 and 2012. It consists of 670 533 patches described using 62 features derived
from e-mails, commits to software repositories, the developers’ activity and the content
of the patches themselves. Jiang et al. scraped patches from the various mailing lists and
matched them with commits in the main repository. In total, they managed to trace back
75% of the commits that appear in Linus Torvalds’ repository to a patch submitted to a
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mailing list. A patch is labeled as accepted (¢ = 1) if it eventually appears in a release
of the Linux kernel, and rejected (¢ = 0) otherwise. We remove data points with empty
subsystem and developer names, as well as all subsystems with no accepted patches.
Finally, we chronologically order the patches according to their mailing list submission
time.

After preprocessing, the dataset contains K = 619419 patches proposed by N = 9672
developers on M = 394 subsystems. 34.12% of these patches are accepted. We then
split the data into training set containing the first 80% of patches and a validation set
containing the remaining 20%.

Subsystem-Developer Correlation

Given the highly complex nature of the project, one could believe that developers tend to
specialize in few, independent subsystems. Let X, = {Xm}f\il be the collection of binary
variables X,; indicating whether developer u has an accepted patch in subsystem i. We
compute the sample Pearson correlation coefficient r, = p(X,, X,) between X,, and X,.
We show in Figure 2.4 the correlation matrix R = [ry,]| between developers patching
subsystems. Row 7, corresponds to developer u, and we order all rows according to the
subsystem each developer u contribute to the most. We order the subsystems in decreasing
order by the number of submitted patches, such that larger subsystems appear at the top
of the matrix R. Hence, the blocks on the diagonal roughly correspond to subsystems and
their size represents the number of developers involved with the subsystem. As shown by
the blocks, developers tend to specialize into one subsystem. However, as the numerous
non-zero off-diagonal entries reveal, they still tend to contribute substantially to other
subsystems. Finally, as highlighted by the dotted, blue square, subsystems number three
to six on the diagonal form a cluster. In fact, these four subsystems (include/linux,
arch/x86, kernel and mm) are core subsystems of the Linux kernel.

2.5.2 Evaluation

We consider the task of predicting whether a patch will be integrated into a release of
the kernel. Similarly to Section 2.4, we use INTERANK basic and INTERANK full with
D = 20 latent dimensions to learn the developers’ skills, the subsystems’ difficulty, and
the interaction between them.

Competing Approaches

Three baselines that we consider—average, user-only and GLAD—are identical to those
described in Section 2.4.2. In addition, we also compare our model to a random forest
classifier trained on domain-specific features similar to the one used by Jiang et al. [93]. In
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Figure 2.4 — Correlation matrix R between developers ordered according to the subsystem
they contribute to the most. The blocks on the diagonal correspond to subsystems. Core
subsystems form a strong cluster (blue square).

total, this classifier has access to 21 features for each patch. Features include information
about the developer’s experience up to the time of submission (e.g., number of accepted
commits, number of patches sent), the e-mail thread (e.g., number of developers in
copy of the e-mail, size of e-mail, number of e-mails in thread until the patch) and the
patch itself (e.g., number of lines changed, number of files changed). We optimize the
hyperparameters of the random forest using a grid-search. As the model has access to
domain-specific features about each edit, it is representative of the class of specialized
methods tailored to the Linux kernel peer-production system.

Results

Table 2.5 displays the average log-likelihood and area under the precision-recall curve
(AUPRC). INTERANK full performs best in terms of both metrics. In terms of AUPRC,
it outperforms the random forest classifier by 4.4%, GLAD by 5%, and the user-only
baseline by 7.3%.

We show the precision-recall curves in Figure 2.5. Both INTERANK full and INTERANK
basic perform better than the four baselines. Notably, they outperform the random forest
in the high-precision regime, even though the random forest uses content-based features
about developers, subsystems and patches. In the high-recall regime, the random forest
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Table 2.5 — Predictive performance on the accepted patch classification task for the Linux
kernel. The best performance is highlighted in bold.

Model Avg. log-likelihood AUPRC
INTERANK basic -0.589 0.525
INTERANK full -0.588 0.527
Average -0.640 0.338
User-only -0.601 0.491
GLAD -0.598 0.502
Random forest -0.599 0.505
1.0
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Figure 2.5 — Precision-recall curves on the bad edit classification task for the Linux kernel.
INTERANK (solid orange and red) outperforms the user-only baseline (dotted green), the
random forest classifier (dashed blue), and GLAD (dash-dotted purple).

attains a marginally better precision. The user-only and GLAD baselines perform worse
than all non-trivial models.

2.5.3 Interpretation of Model Parameters

We show in Table 2.6 the top-five and bottom-five subsystems according to difficulties
{d;} learned by INTERANK full. We note that even though patches submitted to difficult
subsystems have in general low acceptance rate, INTERANK enables a finer ranking by
taking into account who is contributing to the subsystems. This effect is even more
noticeable with the five subsystems with smallest difficulty value.

The subsystems ¢ with largest d; are core components, whose integrity is crucial to the
system. For instance, the usr subsystem, providing code for RAM-related instructions
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Table 2.6 — Top-five and bottom-five subsystems according to their difficulty d;.

Difficulty Subsystem % Acc. # Patch # Dev.
+2.664 usr 1.88% 796 70
+1.327 include 7.79%% 398 101
+1.038 lib 15.99% 5642 707
+1.013 drivers/clk 34.34% 495 81
+0.865 include/trace 17.73% 547 81
-1.194 drivers/addi-data 78.31% 272 8
-1.080 net/tipc 43.11% 573 44
-0.993 drivers/ps3 44.26% 61 9
-0.936 net/nfc 73.04% 204 26
-0.796 arch/mn10300 45.40% 359 63

at booting time, has barely changed in the last seven years. On the other hand, the
subsystems ¢ with smallest d; are peripheral components serving specific devices, such as
digital signal processors or gaming consoles. These components can arguably tolerate a
higher rate of bugs, and hence they evolve more frequently.

Jiang et al. [93] establish that a high prior subsystem churn (i.e., high number of previous
commits to a subsystem) leads to lower acceptance rate. We approximate the number of
commits to a subsystem as the number of patches submitted multiplied by the subsystem’s
acceptance rate. The first quartile of subsystems according to their increasing difficulty,
i.e., the least difficult subsystems, has an average churn of 687. The third quartile, i.e.,
the most difficult subsystems, has an average churn of 833. We verify hence that higher
churn correlates with difficult subsystems. This corroborates the results obtained by Jiang

et al.

As shown in Figure 2.5, if false negatives are not a priority, INTERANK will yield a
substantially higher precision. In other words, if the task at hand requires that the
patches classified as accepted are actually the ones integrated in a future release, then
INTERANK will yield more accurate results. For instance, it would be efficient in supporting
Linus Torvalds in the development of the Linux kernel by providing him with a restricted
list of patches that are likely to be integrated in the next release of the Linux kernel.

2.6 Summary

In this chapter, we have introduced INTERANK, a model of edit outcomes in peer-
production systems. Predictions generated by our model can be used to prioritize the
work of project maintainers by identifying contributions that are of high or low quality.
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2.6. Summary

Similarly to user reputation systems, INTERANK is simple, easy to interpret and applicable
to a wide range of domains. Whereas user reputation systems are usually not competitive
with specialized edit quality predictors tailored to a particular peer-production system,
INTERANK is able to bridge the gap between the two types of approaches, and it attains
a predictive performance that is competitive with the state of the art—without access to
content-based features.

We have demonstrated the performance of the model on two peer-production systems
exhibiting different characteristics. Beyond predictive performance, we can also use model
parameters to gain insight into the system. On Wikipedia, we have shown that the model
identifies controversial articles, and that latent dimensions learned by our model display
interesting patterns related to cultural distinctions between articles. On the Linux kernel,
we have shown that inspecting model parameters enables to identify core subsystems
(large difficulty parameters) from peripheral components (small difficulty parameters).

Perspective One direction to explore is the idea of using the latent embeddings learned
by our model in order to recommend items to edit. Ideally, we could match items that
need to be edited with users that are most suitable for the task. For Wikipedia, an ad-hoc
method called “SuggestBot” was proposed by Cosley et al. [38]. We believe it would be
valuable to propose a method that is applicable to peer-production systems in general.
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8] Law-Making Processes

Comparable to peer-production systems, a body of law is an example of a dynamic corpus
of text documents that are jointly maintained by a group of editors who compete and
collaborate in complex constellations. In this chapter!, we develop predictive models for
this process, thereby shedding light on the competitive dynamics of parliamentarians who
make laws. For this purpose, we curated a rich dataset? of 450000 law edits introduced
by European parliamentarians over ten years. An edit modifies the status quo of a law,
and could be in competition with another edit if it modifies the same part of that law. We
adapt the INTERANK model from Chapter 2 for predicting the success of such edits, in the
face of both the inertia of the status quo and the competition between overlapping edits.
This model combines three different categories of features: (a) Ezplicit features extracted
from data related to the edits, the parliamentarians, and the laws, (b) latent features that
capture bi-linear interactions between parliamentarians and laws, and (c) text features
of the edits. We show experimentally that this combination enables us to accurately
predict the success of the edits. The parameters of this model can be interpreted in terms
of the influence of parliamentarians and of the controversy of laws. They also help us
understand what explicit and text features contribute to the acceptance of edits. The
latent features cluster well into distinct topics discussed in the European Parliament.

3.1 Introduction

The process of maintaining a body of law in a democratic society shares many features
with peer-production systems. The work of parliaments is governed by complex rules,
processes, and conventions, in order to foster compromises among competing viewpoints
and priorities. How well this process works, to what extent it is subject to biases and to
benign or undue influences is of obvious concern to citizens and to scientists alike. An
exciting recent development in this regard is the adoption of open government initiatives,

!This chapter is based on Kristof et al. [104, 105].
*Data and code publicly available on https://github.com/indy-lab/war-of-words-2.
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such as in the United States [88], Switzerland [69], Brazil [47], and the European
Union [187]. Open-government data published on the Web are of great interest to citizens,
companies, sub- and supra-government entities, and researchers. These initiatives aim
to improve the transparency of the law-making process and the accountability of its
protagonists.

Not surprisingly, the dynamics of this process is complex, given the confluence of many
stakeholders, topics, special interests, and lobbying groups. Until open-government was
introduced, the work of parliaments had not been systematically accessible to the general
public, and internal documents — when they existed — were difficult to find. The European
Union (EU), however, has been a pioneer in opening the mechanics of its parliament.
It publishes detailed records of the process by which bills are written and amended,
until they finally become law. Once an initial draft of a new law has been published,
parliamentarians (MEPs, for Members of the European Parliament) in one or several
specialized committees examine the draft and propose amendments. Several amendments
can be in conflict if they attempt to modify the same part of the law draft. To be instituted,
an amendment needs to be approved by the committee in charge, and ultimately by the
full plenary. The European Parliament publishes every proposed amendment and its
authorship, along with various other details. This makes it possible to build detailed
models of the interplay between MEPs, laws, amendments, and committees.

In this work, we (i) curate a large-scale dataset of amendments proposed by MEPs over
two legislature periods (2009-2019) and (ii) develop a predictive model for the success
and failure of proposed amendments. Specifically, we collect explicit features for each
MEP, including their party membership, country of origin, and gender. We also collect
explicit features of the amendments and dossiers (law drafts), including their type and
the committee in charge. Finally, we extract the actual text of the amendments, which
consists of edits of the proposed law. Our dataset contains 449493 edits proposed by
1214 parliamentarians on 1889 dossiers

Our model relies mostly on the structure of incompatible edits, which can be viewed as a
conflict graph among all edits that target the same law. We posit a measure of strength
for each parliamentarian, and an edit inherits the strengths of its supporters. There
are two sources of competition in the process. First, a proposed edit competes with the
status quo, because the edit can be rejected in favor of not changing the existing state
of a law. Our model incorporates this by endowing each law with a measure of inertia
that represents the level of controversy of a law. Second, proposed edits of a law are
frequently mutually exclusive, because they overlap and are incompatible. These edits
then compete against each other, as well as against the status quo.

We further include explicit features and text features into the model. This combination
gives rise to models with improved predictive performance and enables us to make
predictions for unseen laws. We also endow our model with a set of latent features
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for both laws and MEPs, which capture richer interactions between them. Indeed, it
would seem plausible that an MEP might be an expert in one subject matter, but less
knowledgeable in another, which would bear upon their effectiveness in promoting a
particular amendment.

The remainder of this chapter is structured as follows. We set the framework by giving
some background on the European legislative process in Section 3.2. We state the problem
and provide a detailed description of our dataset in Section 3.3. In Section 3.4, we use
our dataset to describe the evolution of a law via a graph-theoretical viewpoint. We
describe our statistical models in Section 3.5. We give the results and interpretations of
our experiments in Section 3.6. We describe related work in Section 3.7 and conclude in
Section 3.8.

3.2 The European Law-Making Process

3.2.1 Representative Democracies

In representative democracies, citizens elect politicians to represent them in the various
branches of the government. The executive branch is in charge of executing and enforcing
the laws. Representatives of the executive branch can also propose new laws, but, to
avoid a concentration of power, they cannot pass new legislation without the approval
of the legislative branch. The legislative branch, typically a parliament, represents
both the people and the sub-governmental entities (such as states and municipalities).
Parliamentarians can propose new legislation or amend propositions made by the executive
branch. Finally, the judicial branch balances the power of the executive branch and the
legislative branch through its ability to decide whether the laws are constitutional.

Here, we focus on the European Union (EU). The EU is a political and economic union
of 28 countries called member states. This union enables them to share their markets,
to ease mobility across borders, to favor economic development, and to harmonize laws.
The EU covers an estimated population of 513 million, and up to 84% of member states’
national laws emanate from the EU [130]. Hence, EU laws have a significant impact
on the life of many people. European institutions make efforts to be transparent. They
make a lot of valuable data available online: parliamentary amendments, meetings by the

commissioners with civil society, and a transparency register to monitor interest groups.

The EU political system is broadly similar to that of a regular state. The 751 parliament
representatives (MEPs, for Member of the European Parliament) are elected every five
years by universal suffrage. The executive branch is called the Furopean Commission. The
legislative branch consists of the Furopean Parliament and of the Council of Ministers. The
Parliament is divided into 20 committees, comprising sub-sets of MEPs and specialized
in some particular policy area (such as fisheries, judiciary affairs, transportation, and
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trade). Each MEP is a member of at least one committee. The myriad of national parties
aggregate into a small number of political groups.

3.2.2 The Ordinary Legislative Procedure

We now describe the EU law-making process in some detail, leading up to our modeling
assumptions. Under the Treaty of Lisbon [141], which marks the beginning of the 7"
legislature in 2009, the Parliament’s powers were increased. The Parliament became
central in the process through which new laws are created. This process can take the form
of various procedures, the main one being the ordinary legislative procedure (OLP) [144].
Through the OLP, the Commission initiates a legislative proposal, and the Parliament
must adopt it in order for the proposal to become a law. Other procedures exist, where
the Parliament is not necessarily involved. Since 2009, the Parliament has dealt with 90%
of all new laws via the OLP. In this regard, we focus on the dynamics of the legislative
process in the Parliament. A sketch of the OLP is illustrated in Figure 3.1 and described
in the next paragraphs.

To create a new law, (A) the Commission drafts a legislative proposal and transfers it to
the corresponding committee of the Parliament. For instance, if the proposal introduces
regulations on greenhouse-gas emissions, it is transferred to the Environment Committee.
The committee appoints a rapporteur to lead the debate. The role of the committee
is to write a report in the form of amendments to the proposal, i.e., insertions in or
deletions of parts of the proposal. The rapporteur first seeks external expertise to draft a
report. Then, (B) other MEPs on the committee can in turn propose amendments to
the proposal. To constitute the final report to be submitted to the whole Parliament,
each amendment by the rapporteur or by other MEPs is therefore voted on within the
committee. Once the committee finds a consensus, (C) they transfer the report to the
whole Parliament.

In the plenary session, the Parliament holds a vote on the report. (D) If rejected, the
proposal is abandoned; (E) if accepted, the report, establishing the Parliament’s position
on the proposal, is transferred to the Council of Ministers. The report is therefore an
important document and the rapporteur has an important role to play. The ministers
(of the different EU countries) can accept the report, (F) in which case, the proposal is
adopted with the Parliament’s amendments and a new law is created; or they can make
amendments, (G) in which case it is transferred back to the parliamentary committee.
At this stage, we say that a law has gone through the first reading.

Other committees can also independently decide to address an opinion to the reporting
committee. For instance, the Transportation Committee might consider that it is also
concerned by greenhouse-gas emissions and that it is entitled to give its opinion to the
Environment Committee. An opinion is similar to a report in that it contains amendments
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Figure 3.1 — Sketch of the ordinary legislative procedure. (A) The Commission submits a
legislative proposal to one of the Parliament committees. (B) The proposal is amended
and (C) submitted to vote to the whole Parliament. (D) If it is rejected, the proposal
is abandoned. (E) If it is accepted, it is transferred to the Council. (F') If the Council
accepts the amended proposal, a new law is adopted. (G) If the Council amends it, it is
sent back to the committee. (H) Other committees can optionally make amendments
and (I) suggest them to the reporting committee.
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to the proposal. It is created similarly to a report, i.e., (H) the opinion committee appoints
a rapporteur to draft an opinion, and other MEPs can propose amendments. (I) The
opinion committee then transfers its opinion to the reporting committee. An opinion
differs from a report in that it is not voted by the whole Parliament (only the report
is), and the reporting committee is free to take into account the amendments from the
opinion. Amendments from the opinion committee can, however, be in conflict with
amendments from the reporting committee, and MEPs from the reporting committee
will also have to vote on those. We refer to reports and opinions as dossiers.

This iterative process can be repeated up to three times (three readings). The third
reading, called conciliation, involves a negotiation between the Parliament and the
Council. During the 8" legislature for example, 99% of all laws were adopted after the
first reading, i.e., after amendments made by both the Parliament and the Council,
and 89% were adopted directly after amendments by the Parliament, i.e., the Council
accepted it without making amendments.

3.3 Dataset

3.3.1 Amendments & Edits

We collected a dataset of 237177 legislative amendments from the European Parliament
website.? The dataset spans the 7" legislature (referred to as EP7), from 2009 to 2014,
and the 8'" legislature (EPS8), from 2014 to 2019. MEPs come from 28 different countries,
and they belong to one of the 8 (EP7) or 9 (EPS8) political groups. An amendment
consists of (i) one or several authors, (ii) the original text by the European Commission,
and (iii) the amended text by the author(s). We show an example of two amendments in
their raw format in Figure 3.2. The two amendments are proposed on Article 13 of a
proposal about copyrights on the Internet. Amendment 802 is proposed by three MEPs
and consists of three edits: (a) Inserting “copyright” (in green), (b) replacing “by” by
“uploaded by users of” (in yellow), and (c) deleting the end of the title after “providers”
(in red). Amendment 803 is proposed by two other MEPs and consists of two edits: (d)
Replacing “large” by “significant” (in yellow) and (e) inserting “copyright protected” (in
green). There are two conflicts in this amendment: Edit (c) of the first amendment is
in conflict with Edit (d), and it is also in conflict with Edit (e). All these edits are also
implicitly in conflict with the original text proposed by the European Commission. Out
of these five edits, only Edit (d) was accepted. All other edits were rejected, i.e., the
status quo was voted and the text proposed by the Commission was maintained.

Edits MEPs propose amendments on a specific article of the legislation, and they can
modify several parts within a single amendment. As a result, we decompose the difference

3Data and code publicly available on https://github.com/indy-lab/war-of-words.

40


https://github.com/indy-lab/war-of-words

3.3.

Dataset

Amendment 802

Lidia Joanna Geringer de Oedenberg, Catherine Stihler, Victor Negrescu

Article 13 — title
Text proposed by the Commission

Use of protected content by information
society service providers storing and
giving access to large amounts of works
and other subject-matter uploaded by
their users

Amendment

Use of copyright protected content
uploaded by users of information society
service providers

Amendment 803
Tadeusz Zwiefka, Bogdan Brunon Wenta
Article 13 — title

Text proposed by the Commission

Use of protected content by information
society service providers storing and giving
access to /arge amounts of works and other
subject-matter uploaded by their users

Amendment

Use of protected content by information
society service providers storing and giving
access to significant amounts of copyright
protected works and other subject-matter
uploaded by their users

Figure 3.2 — Example of two conflicting amendments in their raw format on the title
of Article 13 of a proposal about copyrights on the Internet. (Top) Amendment 802
is proposed by three MEPs and consists of three edits. (Bottom) Amendment 803 is
proposed by two other MEPs on the same text, and it consists of two edits. The last edit
of Amendment 802 (deleting the end of the title) conflicts with both edits of Amendment
803. Only the first edit of Amendment 803 (replacing “large” by “significant”) was
accepted, and all other edits were rejected.
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between the original and the amended text into one or several edits, as defined below.
An edit is a sequence of words that are inserted or deleted or both. We extract edits
by computing the diff, i.e., the difference between the words in two texts, between the
original and the amended text of each amendment. We normalize the texts by removing
special characters and by putting the words in lower case. We keep punctuation because
the structure of sentences is important in legal texts. We merge identical edits proposed
by different MEPs, thus considering them as one edit proposed by all authors together.
This is in line with Rule 174 of the Rules of Procedure of the Parliament [145]. We extract
200407 edits for EP7 and 249086 edits for EP8. On average, there are 1.85 and 1.93
edits per amendment for EP7 and EP8, respectively. There are also more dossiers in EP7
than in EP8, which means that there are proportionally more edits per dossier in EPS.

Conflicts There exists an inherent competition between the MEPs in the amending
process, as amendments are vehicles of political ideas and interests. We are therefore
interested in the conflicts between edits. We define a conflict as a set of edits that overlap.
Edits overlap because they modify parts of the text at the same position. We extract
40302 conflicts for EP7 and 56 298 for EP8. Adding the conflicts to isolated edits, we
obtain a dataset of 126417 data points for EP7 and 141034 data points for EPS.

Labels The votes on each edit are not publicly available, and we need to infer their
outcomes from the raw data. Reports and opinions contain only the amendments accepted
within the committees. Draft reports, draft opinions, and other documents containing all
proposed amendments are published separately. Therefore, if the edits extracted from
the latter documents appear in the former documents, we label them as accepted, i.e.,
the committee votes to include these edits in their report or opinion. Otherwise, we label
them as rejected. Out of the proposed edits, 37.7% are accepted for EP7 and 25.7% for
EPS.

Timestamps The timeline of the legislative process described in Section 3.2 varies
from one dossier to another. Depending on the dossier, MEPs can propose edits during a
window of one to six months, after which all the edits related to that dossier are published
together. As a result, the actual, detailed chronology of the edits is unfortunately hidden,
and we do not have access to the precise time the edits are proposed and when they are
voted. Furthermore, there is a delay between the time an edit is proposed and the time it
is voted: recent edits might be voted before older ones. The timestamps associated with
each edit are, therefore, noisy.
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Table 3.1 — Descriptive statistics of our extended dataset.

EP7 (2009-2014) EP8 (2014-2019)

# amendments 108 292 128 885
# edits 200407 249 086
# conflicts 126417 141034
# MEPs 761 791
# dossiers 1089 800
% accepted 37.7% 25.7%
% inserted 37.8% 37.9%
% deleted 22.0% 22.4%
% replaced 40.2% 39.7%

In total, we collect 449493 edits from 237 177 amendments in the European Parliament
during the 7*" and the 8*" legislature periods* (referred to as EP7 and EPS8), between
2009 and 2019 (each period lasts 5 years). After gathering the edits according to the
conflicts, we obtain 267451 conflicts for both EP7 and EPS8, covering 1889 dossiers. We
summarize this dataset in Table 3.1.

3.3.2 Explicit Features

We extract explicit (meta) features of the MEPs, the edits, and the dossiers, as well as
text features. For each MEP, we collect their nationality (one of 28), their EU political
group (one of 8 or 9), and their gender. A political group clusters national parties that
share similar political ideologies. For each edit, we identify whether it is an insertion, a
deletion, or a replacement of some words in the proposal, and we compute its length. We
also collect information about where in the law the edit was proposed: in an article (in
the body of the proposal), in a recital (in the preamble of the proposal), in an annex, or
in other more specific but less frequent parts of a law. We determine whether an edit in a
reporting committee comes from an opinion committee (in which case it is an “outsider”).
Finally, we note whether an edit comes with an optional justification. For each dossier,
we identify its type (report or opinion) and the committee that is in charge. We also
note if the proposal is a regulation (legally binding for all member states of the EU), a
directive (sets general goals that member states can implement however they want), or
a decision (binding to one member state or company only). We describe these explicit
features in Table 3.2.

4We do not collect data from EP9 (2019 — 2023), as the amount of published data is too small at this
time: The legislature period started in Fall 2019 and the Parliament’s activities were slowed down due to
the COVID-19 crisis in Spring 2020.
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Table 3.2 — List of features for MEPs and edits.

Category Feature

Type [Values]

MEP Nationality Categorical [28]
Political group Categorical [8 or 9]
Gender Categorical [2]
Rapporteur Binary

Edit Edit type Categorical [3]
Log-length (+) Numerical [R>]
Log-length (-) Numerical [R>o]
Article type Categorical [7]
Outsider committee Binary
Justification Binary

Dossier ~ Type Categorical [2]
Committee Categorical [35]
Legal act Categorical [3]

3.3.3 Text Features

We further augment the dataset by collecting text features of the edit itself. It is reasonable
to expect that certain words and phrases are predictive of the success of an edit. We
extract the deleted words w_ from the proposal and the inserted words w4 from the
({by 2”
and w4 = “uploaded by users of”. We also consider the context of an edit by extracting

amendment. In Figure 3.2, for example, Edit (b) of Amendment 802 has w_ =

the original text of the whole amended article. For Amendment 802, the context is the
portion of text labelled as “Text proposed by the Commission”. Finally, we also extract the
title of the law proposal; we will use it as a text feature of the dossier. For Amendments
802 and 803, the title is “Copyright in the Digital Single Market”. We map all words
to lower case, and we replace digits in the title by the letter “D”, as there are many
reference numbers that are unlikely to be useful for our task.

We give some statistics of the distribution of the length of the deleted text w_, the
inserted text w., the context, and the title in Table 3.3. We report the lower quartile Q1
and the upper quartile @3, as well as the median. About half of the inserted and deleted
texts are short (7 words or less), but the distribution of lengths has a long tail, as shown
by the larger values of the upper quartile (5. The context provides large portions of text
(the median is at 42 for EP7 and 49 for EP8), which will be useful for making predictions.
In Section 3.5, we describe how we incorporate the explicit features and the text features
into our models.
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Table 3.3 — Distribution of text lengths in number of words.

Legislature Type @1 Median Q3
EP7 Insertion w4 2 7 20
Deletion w_ 2 6 26
Context 15 42 79
Title 6 1219
EPS Insertion w4 2 6 17
Deletion w_ 2 6 28
Context 20 49 93
Title 6 10 22
Transportable pressure equipment European capitals of culture
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Figure 3.3 — (Left) The “transportable pressure equipment” edit graph contains 96 edits
(97% accepted) and no conflicts. (Center) The “European capitals of culture” edit graph
contains 58 edits (48% accepted) and 16 conflicts. (Right) The GDPR edit graph contains
3154 edits (9% accepted) and 1298 conflicts.

3.4 Edit Graph

We describe the dynamics of the legislative process in terms of the conflicts between
edits. For each dossier, we construct the edit graph G = (V, Eq), such that each node
v € Vg is an edit and such that there is an undirected edge (u,v) € Eg if edits v and v
overlap. A component of size at least 2 in G is therefore a group of overlapping edits. An
isolated node corresponds to an edit that does not overlap with any other edit.

In Figure 3.3, we show the edit graphs of three regulations of EP7. We depict each node
with a green dot if the edit is accepted, and with a red cross if the edit is rejected. The
“transportable pressure equipment” (left), a very specific legislation, exhibits a graph
with 96 nodes, among which 97% are accepted. The graph contains only isolated nodes,
meaning that no edits overlap: all its components are size 1. The “European capitals of
culture” (center), which can affect some cities of member states, exhibits a graph with
58 nodes, among which 48% are accepted. The graph contains 16 cliques and the average
component size is 1.49. The GDPR (right), with high stakes for both businesses and
consumers, exhibits a graph with 3154 nodes, among which only 9% are accepted. The
graph contains 1298 cliques, meaning that many edits are conflicting, and has an average
component size of 3.44.
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3.4.1 Conflicts

Conflicts are inherent in the ordinary legislative procedure defined in Section 3.2, as
every proposed edit reflects a disagreement with the initial law proposal. A first class of
conflicts occur between the proposal and each edit proposed by MEPs. These conflicts
appear as components of any size in (G. Hence, every isolated node and every clique
in G are such conflicts. We call them “conflicts with the status quo”, as they are in
disagreement with the proposal. For example, each edit of Amendments 108 and 5 in
Figure 3.2 is such a conflict. In Figure 3.3 (left), each green node is an edit accepted over
the status quo, and each red node is an edit rejected over the status quo. Similarly, in
Figure 3.3 (center), the cliques with all red nodes are rejected over the status quo.

Another class of conflicts occur between two or more edits proposed by MEPs. If several
MEPs propose different edits on the same part of a text, they compete with each other
for the acceptance of their suggestions. In this case, the edits conflict with the status
quo and with edits proposed by other MEPs. These conflicts appear as a clique of size at
least 2 in (G, as there is an edge between overlapping edits. For example, in Figure 3.2,
the first edit in Amendment 108 and the first edit in Amendment 5 form such a conflict.
It corresponds to a clique of size 2. In Figure 3.3 (left), there are no such conflicts. As no
edge links any two nodes, all conflicts are only with the status quo. In Figure 3.3 (center),
however, the cliques with one green node and one or more red nodes are conflicts between
several edits, where one edit is accepted over the others and over the status quo.

In G, two green nodes cannot appear at both ends of the same edge, as only one edit
can be accepted among those that are conflicting. Hence, green nodes can only appear
as an independent set on the components. Two red nodes, however, can appear at both
ends of the same edge, as they can both be rejected: this is the case with the first edit in
Amendments 108 and 5.

Conflicts between edits can be easily projected to conflicts between MEPs, as we know the
authors of each edit. We compare the conflictive dynamics between MEPs by comparing
the distribution of (i) the number of cliques and (ii) the size of cliques in the edit graph
G of each dossier. The median number of cliques in EP7 is 14, which is smaller than 32
in EP8. The median size of cliques in EP7 is 2.23, which is smaller than 2.38 in EPS8.
There are therefore (i) more conflicts and (ii) conflicts of larger size in EP8, compared to
EP7. This increased heterogeneity in the clique structures of edit graph G suggests that
predicting the outcome of edits is more difficult for EPS.

3.4.2 Collaboration

Here, we construct the collaboration graph H = (Vi, Ex) by projecting edits onto the
space of MEPs. Each node v € Vi is a MEP and there is a weighted edge (u,v) € Eg if
MEPs u and v co-sign an edit, where the weights count the collaborations. The node-
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degree distribution, ¢.e., the distribution of number of collaborators, is well fitted by a
power-law distribution whose median is 61 for EP7 and 136 for EP8. Hence, MEPs tend
to collaborate with many colleagues in general, and more so in EPS.

We quantify (i) national and (ii) political collaborations by computing the modularity [136]
in graph H when defining communities by nationality or by political group. Modularity is
a measure of the strength of the community structure in a graph. It takes values between
—1 and 1, with a higher positive value indicating stronger community structure. In order
to obtain comparable measurements, we merge the two right-wing populist, euroskeptic
groups of EP8 to obtain 8 political groups, as in EP7°. We compute the modularity Qg)
when clustering MEPs by nationality in the [-th legislature and Qz(,l) when clustering
MEPs by political group. Computing the modularities in both legislatures, we obtain

Q" =017 > 0.05 = QY,
QM =0.22>0.18=Q%.

This suggests that political affinity is more important than national affinity to drive
collaboration in EP8 compared to EP7. The political science has not settled on this point:
political cohesion is stronger than national cohesion in the EU Parliament in some works
[84, 86, 125], and national cohesion is stronger than political cohesion in other works
[34, 85, 27]. To the best of our knowledge, however, all previous work about political
and national cohesion is performed using vote outcome data rather than amendment
outcome, an inherently different setting.

3.5 Statistical models

3.5.1 Problem Statement

We build a model that predicts the vote outcome of edits that will form the reports and
the opinions. Formally, we take a supervised approach to solve the following prediction
problem: Let C = {a,b,...} be a set of conflictive edits proposed on a dossier i, for
which we have observed other edits. Note that C forms a clique in the edit graph G of
Section 3.4. We want to predict which of the conflictive edits in C or the status quo of
the proposal for dossier 7 will be accepted within the committee. This task differs from
multinomial classification as the number of classes varies for each data point: If an edit a
is in conflict only with the original text proposed by the Commission, then |C| = 1. If
several edits a,b,... € C are in conflict against each other, then |C| > 1.

According to Rule 180 of the Rules of Procedure of the European Parliament [147], the
committee sets a deadline by which MEPs must propose amendments to a dossier. The

®Communities of equal size are required to enable fair comparison of modularities. One right-wing
populist group in EP7 split into two at the beginning of EPS.
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voting takes place after this time. Hence, at the time of voting, an edit is expected to
confront all alternatives: If edits a, b, and ¢ are in conflict, the MEPs vote on all three of
them and the status quo to select only one outcome.

3.5.2 The War of Words Model

We propose a statistical model of edit outcomes from conflicts. We incorporate assumptions
reminiscent of the Bradley-Terry model [19] and of the Rasch model [151], as follows. We
model the amending process as a "game" between (a) the MEPs themselves (similar to
the Bradley-Terry model) and (b) the MEPs and the status quo (similar to the Rasch
model). For simplicity, let us suppose that an edit proposed by MEP u is accepted on
dossier i over a conflicting edit proposed by MEP v. As an example, a MEP from one
party might propose a modification favoring economic interests, whereas another MEP
from another party proposes a modification at the same position in the proposal favoring
social interests. We model the probability of the edit proposed by MEP u to be accepted
over the edit proposed by MEP v on dossier i, i.e., the probability of MEP « "winning"
over MEP v on dossier ¢ as

exp(su)
exp(sy) + exp(sy) + exp(d; + b)
1
"~ 1+ exp[—(su — 50)] + exp[—(su — di) + ]’

P(u>;v):=

(3.1)

where s,,s, € R are the skills of MEPs u and v, d; € R is the inertia of dossier i,
and b € R is a global bias parameter. The first exponential in the denominator of (3.1)
encodes the MEP-MEP interaction. The second exponential encodes the MEP-dossier
interaction. If an edit proposed by MEP wu does not conflict with any other edits, the
MEP-MEP term vanishes, leaving only the MEP-dossier term.

As explained in Section 3.3 and Section 3.4, one or more MEPSs can propose an edit, and
an edit can be in conflict with one or more other edits. It is easy to generalize (3.1) to
multiple authors and multiple conflicts. To model multiple authors, we simply sum the
skills of each author of an edit. To model multiple conflicts, we observe that each conflict
generates a new MEP-MEP interaction term. Call C = {a,b,...} the set of conflicting
edits proposed by authors A, Ap, . ... The probability of edit a being accepted over edits

b,... on dossier 7 is given by
exp(Sq)
P(a>;C— - : 3.2
(0 € =100 = = o0) + exp(@ + ) 32
ceC

where s, = >_,c 4, Su is the cumulated skill of all authors of edit a. We refer to this
model as the WAR OF WORDS model, or simply as the WOW model. The probability
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that all edits are rejected, i.e., the status quo of dossier ¢ wins, is given by

exp(d; +b)

> exp(sq) +exp(d; +b)
aeC

PG> C) ::I—ZP(GHC—{G}):

aeC

The parameters in this model enable interpretation. The skill s,, quantifies the ability
of MEP u to pass an edit representing their views. We interpret a high skill as a high
influence. The inertia d; quantifies the resistance to change of dossier ¢. This resistance is
not due to the dossier resisting per se but rather to the effect of other MEPs voting the
edits or proposing conflicting edits. In this sense, we interpret a high inertia as a sign of
possible high controversy. The general bias term b tunes the importance that the model
gives to the MEP-MEP term relative to the MEP-dossier term. We conduct an in-depth
analysis of the parameters in Section 3.6.

3.5.3 Enriched Models

Explicit Features We extend the WOW model by augmenting it with explicit features
of the MEPs (e.g., nationality), the edits (e.g., length of inserted text), and the dossiers
(e.g., report or opinion), as described in Table 3.2. From (3.2), we replace the skill
parameters s, with the inner product between a feature vector s, € RMeE of My features
of edit a and the associated parameter vector wr € RME. We also replace the difficulty
parameter d; by the product of a feature vector d; € RMP of Mp features of dossier i
and its associated parameter vector wp € RMP. We then have

exp(slwg)

> exp(siwg) + exp(d]wp +b)
ceC

P(a>;C—{a}) = (3.3)

We refer to this model as WOW (Ezplicit) (or WOW (X)), for conciseness). In (3.2), the
feature vector s, is the indicator of the authors of an edit a: Its entries s, are 1 for
all u € A, and 0 otherwise. Similarly, the feature vector d; is the indicator of dossier i.
In (3.3), the feature vectors s, and d; represent features related to MEPs, edits, and
dossiers derived from our dataset.

Latent Features Consider the simple case of an MEP wu proposing an edit on dossier ¢,
and suppose that this edit conflicts with another edit, proposed by MEP v. From (3.2),
let p(u =; v) be the probability that, for dossier i, the edit proposed by MEP w is
accepted over the edit proposed by MEP v. The assumption made in the WOW model is
strong: It posits that if MEP w is more influential than MEP v, then, all other things
being equal, P (u >=; v) > P (v >; u) for all dossiers i. This assumption is not always
realistic: Dossiers span a vast amount of different topics, and the MEPs have their own
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specializations and interests. For example, an MEP familiar with fisheries might not be
knowledgeable about research and academia.

In order to capture these dependencies, we incorporate a bi-linear term into the WoW
model. We assign a vector x, € R” to each MEP wu, and a vector Y; € R’ to each
dossier 4, for some dimensionality L > 0. We then rewrite (3.2) as

exp(sq + xTy;)

" exp(sc + xly;) +exp(d; +b)’
ceC

P(a=;C—{a}) = (3.4)

where &, = >, ¢ A, Tu is the sum of the latent features x,, of each author u of edit a. We
refer to this model as the WOW (Latent) model (or WOW(L)). The latent vectors x,
and y; can be viewed as the embeddings of MEP u and of dossier ¢ in a Euclidean latent
space. Informally, the probability P (a =; C — {a}) increases when the MEP embedding x,
is co-linear with the dossier embedding y; in the latent space. It decreases when the two
vectors point in opposite directions. Furthermore, vector @, can be interpreted as the set
of skills of MEP w. Similarly, y; can be interpreted as the set of skills required to edit
dossier 1.

Text Features The features described so far ignore the text content of the edit itself.
It is reasonable to expect that the presence of certain words or phrases in the original or
amended text of an edit, and in the title of the dossier, are predictive of the success of
the edit. Hence, we incorporate text features to the WOW model by rewriting (3.2) as

exp(sa + r]wr)

%:C exp(sc + rdwyr) + exp(d; + rJwp +b)’
C

P(a>;C—{a}) = (3.5)

where r, € RP, r; € RP' are, respectively, representations of the text of the edit a
and the title of dossier i, and wy € RP, wyr € R are, respectively, the associated
parameter vectors. We refer to this model as the WOW (Tezt) model (or WOW(T)).

We explore different ways of learning the representations 7, and r; from (a) pre-trained
word embeddings and (2) by training embeddings on our dataset. With pre-trained
embeddings, 7, is the concatenation of three vectors that are the representations of the
deleted text, inserted text, and the context of the edit, as explained in Section 3.3. Each
of these vectors are the averages of the pre-trained word embeddings of the words in
these parts of the text, and r; is the average of the pre-trained embeddings of the words
in the title of dossier i. We use two sets of pre-trained embeddings trained with the
word2vec algorithm [129]: (a) 300-dimensional embeddings trained on Google News [68]
and (b) 200-dimensional Law2Vec embeddings trained on legal texts of the EU, the US,
the UK, Canada, and Japan|[28].
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Table 3.4 — Variations of our model by combination of features (explicit, latent, and text
features).

Model Equation Explicit Latent Text
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We also learn embeddings from our dataset by using the supervised fastText model for
text classification [95]. In the simplest version of this model, a D-dimensional embedding
is learned for each word (and n-grams) in a dataset. A piece of text is then classified
with a softmax layer by representing it as the average of the word embeddings. We use
the learned word and bigram embeddings to construct r, and r;.

The original fastText model is defined, however, for classification of homogeneous pieces
of text into a fixed set of classes. This does not directly apply to our problem, as (a)
the text features for the edit are of three types (deleted text, inserted text, and context)
and (b) the size of a conflict |C| = K varies from a data point to another. We solve the
first problem by prepending tags (<del>, <ins>, and <con>) to each word to enable the
model to learn separate embeddings for the same word in different types of text feature.
We solve the second problem by training the embeddings on a binary classification task
of edit acceptance (based only on the text), and by using the embeddings learned on
this ad-hoc task into the WOW models. We learn the embeddings for the words in the
title by training a different fastText model to predict the acceptance of an edit from the
title only. This is equivalent to predicting the probability of acceptance of the status quo
for each dossier, given its title. For our experiments in Section 3.6, we use the fastText
embeddings rather than pre-trained embeddings, because the former performed better
on the ad-hoc binary classification task.

Hybrid Models We combine WoW (Ezxplicit), WOW (Latent), and WOW (Text) to-
gether to obtain hybrid models with different components. This helps us understand the
contribution of each type of features to the performance, in Section 3.6. We summarize
all the possible combinations in Table 3.4, and we sort them by increasing levels of
complexity. The WOW model has no features at all and will serve as a baseline. The
WOW (XLT) combines explicit, latent, and text features together, and it has the highest
complexity.

o1



Chapter 3. Law-Making Processes

3.5.4 Learning the Parameters

Each observation n is a triplet (Cy, in,l,) of (a) a set of conflicting edits C,, with |C,| =
K, >0, (b) a dossier i, on which the edits are proposed, and (c) a label ,, € Cx U {i,,}
indicating which of the K, edits or the status quo is accepted. Given a dataset of N
independent triplets D = {(Cy,in,ln) | n =1,...,N} and given a vector 6 of all the
parameters in our model, we learn @ by minimizing their negative log-likelihood under D

N
—0(0;D) = > > |1y, —aylogP (a4, Co — {a}) + 1y, ;1 log P (in = Cn) |,

n=1 aECn

where P (a >;, C, — {a}) and P (i,, = C,,) depend on 6. In order to avoid overfitting, we
add regularization to the negative log-likelihood. We pre-process our dataset by keeping
only the dossiers for which more than 10 edits have been proposed and only the MEPs
who have proposed more than 10 edits. Hence, we obtain a dataset of N = 125733 data
points for EP7 and N = 140763 data points for EP8. In the WOW (Ezplicit) and the
WOW (Tezt) models, the log-likelihood is convex, and we find optimal parameters by
using an off-the-shelf convex optimizer (L-BFGS-B [23]). In the WOW ( Latent) model,
the bi-linear term breaks the convexity, and we can no longer ensure that we will find
parameters that are global optimizers. In practice, by using a stochastic gradient descent
algorithm (Adagrad [49]), we are still able to find good model parameters without
convergence issues.

3.6 Experimental Results

3.6.1 Baselines

We start by introducing the baselines against which we compare our models. For each
baseline and for our models, we assume a set of K conflicting edits C = {a, b, ...} proposed
on dossier ¢, for which we want to model the probability that an edit a € C is accepted
over edits b, ... on this dossier. We denote this probability by P (a >; C — {a}), and we
denote the probability that the status quo wins, 7.e., that the original text proposed by
the Commission is kept, by P (i = C) =1—3 o P (a >; C — {a}).

Naive Classifier The naive classifier predicts a uniform probability for each outcome,
i.e., for each of the conflicting edits or the status quo to win, as

P(a>iC—{a}):P(i>C):K:_1.
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3.6. Experimental Results

Random Classifier The random classifier learns the prior probability pt) that the
status quo wins for each conflict size |C| = K, and it predicts

P (i > C) = p¥.

It predicts uniformly each of the edits to win as

1—pE)

P(a»iC—{a}): K

3.6.2 Experimental Setting

We report the cross-entropy loss to evaluate the baselines and our models. Let (Cy,in, ly)
be an observation. We compute

0, = (3.6)

—logp(ly, =i, Cn — {ln}) if I, € Cy,

—logp(in > Cp) if 1, = iy,.
We report the average value for all N points in our test set as £ = % > n fn. We randomize
our dataset and we split it into 80% for training, 10% for validation, and 10% for the
final evaluation. Note that an edit can be involved in several conflicts. For example, in
Figure 3.2, edit ¢ is in involved in two conflicts: C; = {¢,d} and Cy = {c, e}. Hence, we
assign conflicts to each set so that an edit is present in exactly one set. We combine both
the training and the validation sets to fit our model before evaluating it on the test set. We
set the number of latent dimensions L and the regularizers, and we choose the best word
embeddings, by held-out validation. This results in fastText of dimension D = D’ = 10,
with bigrams.

3.6.3 Predictive Performance

We show in Figure 3.4 the overall performance of all variations of our model (with and
without explicit, latent, and text features) over EP7 and EPS8, and we compare them
against the naive and the random predictors, as well as against the WOW model. All
our models outperform the baselines, and WOW (XLT') outperforms all other models.
Including explicit features improves the performance of the predictions in terms of the
cross entropy by 7% for EP7 and 6% for EP8 over the simpler WOW model. On EP7,
WoOW (L) improves the performance by 12% and WoOW(T') by 7%, whereas for EP8 the
difference between the two models is smaller (10% increase for WOW (L) and 8% for
WOW(T)). Hence, the text features provide a greater improvement for EP8 than for
EP7, while the latent features provide a greater improvement for EP7 than for EP8. The
difference between WOW (XL) and WoW (L) (0.010 for EP7 and 0.013 for EPS8) is less
than the difference between WOW (XT) and WoW (T') (0.034 for EP7 and 0.035 for
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Figure 3.4 — Average cross-entropy loss of the baselines and our models. Combining the
explicit, latent, and text features help obtain the best performance.

EPS), as the latent features absorb the effects of the explicit features more than the text
features do. Finally, combining the text and latent features provides high performance,
but further combining them with explicit features leads to the best performance.

3.6.4 Error Analysis by Conflict Size

We explore how the WOW (XLT) model performs on conflict of different sizes in the
test set for EP8 (we observe a similar behaviour on EP7). We bin the conflict size so
that there are at least 100 data points in each bin. The distribution of conflict size is
exponentially decreasing: There are 8462 conflicts of size 1 (i.e., an edit is in conflict
with the status quo only), 3063 conflicts of size 2 (i.e., two edits are in conflict, as well as
with the status quo), and 140 conflicts of size 7 and more. We compare the average cross
entropy of the WOW (XLT') model with that of the random predictor and that of the
WoOW model. In Figure 3.5, we see that while the loss generally increases with conflict
size for all three models, it increases less rapidly for the WOW (XLT') model than for the
WOW model. This suggests that the explicit, latent, and text features enable the model
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Figure 3.5 — Average cross-entropy loss per conflict size |C| = K. The loss of the
WOW (XLT) model increases less rapidly than the loss of the baselines.

to exploit the increasing complexity of data points to make more accurate predictions.
We also see that for conflicts of size 4 and higher, the WOW model performs worse than
the random predictor, but the WOW (XLT') model is able to outperform it.

3.6.5 Contribution of Explicit Features

To understand the contribution of the explicit features to the predictive performance, we
show in Figure 3.6 the decrease in cross-entropy loss of WOW (MEP) (all MEP features
but the rapporteur feature), WOW (Rapporteur) (rapporteur feature only), WoW (Edit),
and WOW (Dossier) over WOW. The dossier features contribute virtually nothing to
the predictive performance (the difference is at the fourth decimal point). Similarly, for
EP7, the nationality, political group, and gender features of WOW (MEP) contribute
very little. For EP8, these features improve the performance, but not as much as the
edit features. This suggests that these features have limited influence on the predictions.
Nationalities and political groups have been qualitatively analyzed in the literature in the
context of their influence on MEPs’ voting behaviour [84, 36, 133, 111]. To the best of
our knowledge, there is no analysis of their effect on the amending process. Interestingly,
for EP7, combining all features into the WOW (X) model leads to a performance boost
that is greater than the sum of each individual feature groups.

3.6.6 Interpretation of Explicit Features

To get insights into the dynamics of the legislative process, we interpret the values of
the parameters of WOW(XLT') trained on the full dataset for EP8 (combining training,
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Figure 3.6 — Difference in cross-entropy loss over WOW of different models. The rapporteur
feature and the edit features contribute more to the predictive performance than the
MEP and dossier features.

validation, and test data). Let wy € R be the value of the parameter associated with
feature f. The rapporteur feature r of WOW (Rapp.) provides a greater decrease in
loss. This rapporteur advantage complements the findings of Costello and Thomson
[40], conducted by interviewing key informants over EP5 (1999-2004) and EP6 (2004-
2009). They show that the rapporteur, with their particular role, has some influence
on the legislative process, albeit constrained. We note that, according to our model,
the rapporteur advantage has slightly increased in EP8 (w, = 1.19) compared to EP7
(w, = 1.12).

These explicit features enable us to explain what contributes to the success of an
edit. We report here (and in subsequent sections) the results for EP8 only. All other
things being equal, a female (Wgey = —0.02 > —0.04 = W) MEP from Latvia and
whose party belongs to the group of the European People’s Party (center-right) has the
highest chance to see her edit accepted. This edit has even higher chances if it inserts
(Wins = —0.03 > wgel = —0.13 > wyep = —0.22) a short portion of text (the feature
associated with both insertion and deletion length is negative) in a part of the law that
is not its body or its preamble (wart, Wrec and Wpara have the lowest value among the
seven article types). Adding a justification also increases the probability of an edit being
accepted (wjys = 0.08), as well as edits from the opinion committee (referred to as the
“outsider committee” feature in Table 3.2, woy, = 0.16).

For the dossier features, our model learns that it is harder to make edits on reports, as
compared to opinions (wyep = 0.33 > —0.26 = wepi). As explained in Section 3.3, reports
are voted by the whole Parliament. Therefore, they have a greater influence on the final
law, and we expect that MEPs make it more difficult for competing edits to be accepted
in reports. Finally, our model also learns that it is harder to make edits for decisions and
directives, as compared to regulations (wqec = 0.25 > wgir = 0.12 > wyee = 0.10).
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Controversy of Dossiers Table 3.5 provides a list of the ten dossiers in EP8 with
the highest inertia parameter d; and the ten dossiers with the lowest d;. Overall, the
values of d; correlate well with the number of nodes, the number of cliques, the average
size of cliques, and the edit acceptance rate. These four metrics are a good proxy to the
level of activity by MEPs in the amending process of a given dossier. Higher activity,
possibly due to higher controversy, leads to higher value of d;. We note, however, that
some of the top-10 dossiers have a small number of edits. This shows that the inertia
parameters capture more information than simply some of these descriptive statistics.

The top-ten dossiers include laws with high stakes about financial markets, the environ-
ment, vast investment programmes, and assistance to member states: The “Screening
of foreign direct investments” sets a framework to better equip the EU for investments
from non-EU countries. It has crucial implications for companies, workers, governments,
and citizens. The “European Supervisory Authorities on financial markets” sets strict
regulations for the financial markets. “InvestEU” and the “Horizon Programme” are vast
investment programmes for innovation and research. The “Cost-effective emission reduc-
tions and low-carbon investments” is one of the implementations of the Paris Climate
Agreement. Finally, The infamous “Copyright in the Digital Single Market”, considered
to be a threat to freedom of expression on the Web by its opponents, sparked public
protests in several cities. The reporting committee publicized that “MEPs have rarely or
never been subject to a similar degree of lobbying before” [146].

3.6.7 Interpretation of Text Features

In Figure 3.4, we observe that the text features contribute significantly to improving
the performance. We use the learned parameter vectors wr and wp of WOW (XLT)
to identify words and bigrams that have the most predictive power. First, we rank the
words and bigrams of the edit text, according to the dot product of their embeddings
with wp. The top-k terms (having a positive dot product) contribute the most towards
acceptance of the edit, whereas the bottom-k terms (having a negative dot product)
contribute most towards rejection of the edit. The opposite holds for the terms of the
title and their dot product with wq.

We look at the top 50 terms for each feature and prediction outcome and find some
interesting patterns among these terms, although not all of them are easy to interpret.
Note that we have more than 10000 unique terms for the edit text and more than 1000
unique terms for the title, hence we consider only the most predictive terms near the
ends of the ranking.

One of the bigrams that, when deleted, is predictive of acceptance is any other, which
is commonly used to widen the scope of the law (as in “contractual or any other
duty”). Interestingly, the bigrams human rights and data protection are also predictive of
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3.6. Experimental Results

acceptance when deleted. The word should, which is used to add recommendations, is
predictive of acceptance when inserted, while adding must, which is used for obligations,
is predictive of rejection. We see that best is predictive of acceptance, which is commonly
used to make a requirement stronger (as in “best available scientific evidence”, “best
possible way”). Adding positive and positive impact predicts acceptance, whereas adding
negative predicts rejection. Adding the word inserted, which commonly refers to inserting
new articles in existing laws, is predictive of acceptance, whereas deleted is predictive of
rejection.

Considering the words in the context, we see that fircarms, resettlement, terrorist and
fingerprints are predictive of rejection. This could be because the laws related to these
topics are controversial, hence many edits are rejected due to conflicts. For the words in
the title, we see that customs, community, financial, fisheries, and general budget are
predictive of acceptance, whereas market, framework, structural reform, emission, and
greenhouse gas are predictive of rejection. This suggests the relative ease or difficulty
of editing laws related to these topics, and it correlates well with the values of the
difficulty parameters d;: The top-50 dossiers with the highest difficulty parameters
contain high-controversy dossiers about establishing frameworks for the screening of
foreign investments and vast public investment programs (InvestEU and Horizon Europe),
as well as regulation of the financial market, copyright in the digital market, and carbon-
emission reduction. The bottom-50 dossiers with the lowest difficulty parameters contain
low-controversy dossiers about cohesion within the EU, financial rules, fisheries, and the
community code on visas.

3.6.8 Interpretation of Latent Features

The latent features improve the predictions overall and help capture the complex dynamics
of the legislative process. The best number of latent dimensions is L = 20 for the models
including latent features. In order to interpret the latent features, we gather the latent
vectors y; learned by WOW (XLT) into a matrix Y = [y;]. We apply principal component
analysis and keep the top-10 and bottom-10 dossiers from each of the first two principal
components in EP8. We use t-SNE [115] to represent these forty dossiers in a two-
dimensional space, and we show the projection in Figure 3.7.

We distinguish four clusters. The cluster at the top-left contains dossiers about fuel
quality, renewable energy, trade of animals, and sustainable investments. It also contains
dossiers about electronic communications, the processing of personal data, and sharing
public information. We interpret this cluster as environment and communications, and
we highlight with green triangles the corresponding dossiers. The cluster at the top-
center contains dossiers about the establishment of defense funds, the prosecution of
criminal offenses, and the identification of criminals between member states. It also
contains dossiers about the protection of workers, businesses, refugees, internal markets,
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Figure 3.7 — Visualization with t-SNE of the top-10 and bottom-10 dossiers on the first two
principal components in EP8. There are four clusters: Environment and Communications,
Defense and Protection, Investment and Development, and Business and Innovation.

and cultural goods. We interpret this cluster as defense and protection (red crosses).
The cluster at the top-right contains dossiers about vast investment and development
programmes, finance, and the development of internal markets. We interpret this cluster as
investment and development (blue dots). Finally, the cluster at the bottom-left contains
dossiers about economic competitiveness and innovation, as well as frameworks for
business development and the funding of start-up companies. We interpret this cluster as
business and innovation (orange squares).

3.6.9 Solving the Cold-Start Problem

We explore how to solve the cold-start problem by defining a second predictive problem:
Given a dossier i for which we have never seen an edit, and given a conflict C = {a,b, ...},
we want to predict which of the edits or the status quo wins. We order the dossiers by
the date a committee received a proposal, and we use the dossiers that contain the first
80% of the conflicts as a training set. We use the next 10% as validation set, and we
keep the last 10% aside as test set. We ensure that no edits in the training set leak into
the validation and test sets. This scenario is more realistic because we make predictions
about new dossiers that the model has never observed before.

We report, in Table 3.6, the results for WoW (Ezplicit), WOW (Text), and WOW (XT),
together with the baselines. The latent features cannot be used for this task, as the
dossier embeddings y; are unavailable for new dossiers. For our models, the difficulty
parameter d; is set to the average difficulty learned in the training set. The random
predictor, which learns the prior probability of the status quo winning for each conflict
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Table 3.6 — Average cross entropy of the baselines and our model on predicting new,
unseen dossiers.

Type Model Avg. cross entropy
Baseline Naive 0.947
Random 0.800
Wow 0.873
Ours WoW (Explicit) 0.784
WOW (Text) 0.839
WoW (XT) 0.759

size, performs the best out of all the baselines, and it outperforms WoW ( Text). Our
approach outperforms only the random predictor when including explicit features. This
suggests that the dossier features help us make more accurate predictions by learning
parameter values for the type of dossier, its legal act, and its committee in charge. In
this case, adding text features further boosts the performance.

The overall performance, however, is mixed: The improvement of WOW (XT') over the
random predictor is rather small. One possible explanation is that the legislative process
might be non-stationary. Hence, our model overfits on the training set, which is very
different from the test set. The task is also unfair to our model, as in a real setting,
predictions would be made for the next dossier only. In the current setting, we make
predictions for all future dossiers. We keep further investigations of this aspect for future
work.

3.7 Related Work

Amendment analysis in the European Parliament has been studied by the political science
community on datasets of small size [100, 183, 101, 6]. The effect of the rapporteur on
the success of an amendment has been studied in previous legislature periods and in
specific committees [57, 90]. Predicting edits on collaborative corpora of documents has
been studied in the context of peer-production systems, such as Wikipedia [48, 2, 163]
and the Linux kernel [93, 201]. A whole body of literature covers the conflicts between
two Wikipedia edits [173, 202] and the quantification of controversy of Wikipedia articles
[166, 165]. The notion of conflict is, however, different in our setting, where multiple
edits can be in conflict at the same time: The task of predicting which edit will be
accepted out of all the conflicting edits is more complex, and classic approaches cannot
be used. In this work, we take a peer-production viewpoint on the law-making process
and propose a model of the acceptance of the legislative edits. Our approach generalizes
to any peer-production system in which (meta) features of the users and items can be
extracted and in which edits can be in conflict with one another.
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We use the text of the edits and dossiers as features for classification. Text classification
is a well-studied problem in natural language processing. A simple baseline is to apply
linear classifiers to term-frequency inverse document-frequency (TF-IDF) vectors [94].
However, these models do not capture the synonymy relation between words, hence suffer
from poor generalization. Models based on neural networks show better performance
on this task [207]. They tend, however, to require larger datasets, and the features they
learn are harder to interpret. The fastText model [95] bridges the gap between the two:
It learns embeddings from linear models. We adapt this approach to our problem of
edit classification, as edits are inhomogeneous pieces of text. Edit modelling has been
studied using neural models[205, 73] that suffer from the aforementioned issues of dataset
size and interpretability. In the WAR OF WORDS models, we combine text features and
non-text features to take into account the dynamics of the legislative process. Legal texts
also have features and structures that set them apart from other domains. For example,
the word “should” has a strong legal significance, whereas it is commonly removed as a
stop word.

Our model draws inspiration from probabilistic models of choice, described in Section 1.2.
First, it borrows from the logit model to model the competitive dynamics between MEPs.
These approaches learn a real-valued score for individuals and model the probability that
one individual wins over another as a function of the difference of their scores. Second, it
borrows from the Rasch model to model the competitive dynamics between MEPs and
the status quo. These approaches learn a real-valued strength for each individual and a
real-valued difficulty for each item, and they model the probability that an individual
wins over the item as a function of the difference of the strength and the difficulty. Our
model unifies both approaches by learning a strength for each MEP and a difficulty for
each dossier, considering (i) conflicts between MEPs and (ii) conflicts between MEPs
and the status quo.

3.8 Summary

In this chapter, we have introduced a new dataset of legislative edits and a model of
edit outcomes. Our dataset provides rich information on a long-term, dynamical process
of interactions between parliamentarians. Our proposed model learns a skill parameter
for MEPs who propose edits and an inertia parameter for the law proposals that resist
to change. Our model also incorporates (a) explicit features of the edits, of the MEPs,
and of the dossiers, (b) latent features of the MEPs and dossiers, and (c) text features
of the edits and dossiers. Each of the three classes of additional features improve the
performance significantly, and the best performance is achieved by combining all features.
We interpreted the values of the learned parameters to gain insights into the legislative
process. We provided interpretation of all explicit features to characterize what makes
the success of an edit more likely. We have shown that the latent features capture the
representation of MEPs and dossiers in an ideological space. We have analyzed the words
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and bigrams in different parts of an edit and a dossier in terms of their influence on the
acceptance probability. We have also analyzed the performance of our model on subsets
of the test set based on conflict size, and we have shown that our best model can leverage
the features of the data to make more accurate predictions on conflicts of higher size
than other baselines. Finally, we have described how to use our model for predicting
edits made on new, unseen dossiers.

Applications and Broader Impact We believe that approaches such as ours are
helpful to political scientists, journalists and transparency observers, and to the general
public: First, it could be useful in validating theoretical hypotheses using large-scale
datasets and advanced computational methods. Second, it could help uncover lesser-known
facts, such as controversial dossiers that slipped under the radar. Finally, the greater
transparency that results from these insights can enhance trust in public institutions and
strengthen democratic processes.

Perspective First, we currently use pre-trained word embeddings and embeddings
trained on an ad-hoc binary classification task. We plan to explore how to learn text
embeddings in an end-to-end manner using the conflictive structure of the WAR OF
WORDS model. Second, as shown in Section 3.6.9, our model has only limited predictive
power on edits made on future dossiers. We plan to further explore how to exploit
the temporality of the data and how to develop a dynamical model able to take into
account the non-stationarity of the law-making process. Finally, the current setting of the
predictive task assumes that conflicts are independent of each other; because an edit can
be involved in multiple conflicts, they are not always independent. We plan to develop
more advanced models by leveraging these correlations between conflicts. For example,
we plan to explore how to include latent features and text features to the mixed logit
model [80].
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In this chapter!, we address the problem of predicting aggregate vote outcomes (e.g.,
national) from partial outcomes (e.g., regional) that are revealed sequentially. We combine
matrix factorization techniques and generalized linear models (GLMs) to obtain a flexible,
efficient, and accurate algorithm. While our approach does not use discrete-choice models
directly, the problem we tackle is related to one of the most fundamental choice processes:
voting. Our algorithm works in two stages: First, it learns representations of the regions
from high-dimensional historical data. Second, it uses these representations to fit a
GLM to the partially observed results and to predict unobserved results. We show
experimentally that our algorithm is able to accurately predict the outcomes of Swiss
referenda, U.S. presidential elections, and German legislative elections?. We also explore
the regional representations in terms of ideological and cultural patterns. Finally, we
deploy an online Web platform? to provide real-time vote predictions in Switzerland and

a data visualization tool to explore voting behavior.

4.1 Introduction

The past decade has seen the emergence of several open-government initiatives for the
increase of administration transparency through the publication of governmental data.
These data are of great interest to parties, companies, sub- and supra-government entities,
researchers, and citizens. In particular, the results of referenda and election ballots in
municipalities, districts, states, and countries are valuable for understanding the structure
and the dynamics of politics.

In this chapter, we address the problem of vote prediction when only partial results
are available. The ability to predict the outcome of votes both before and during ballot
counting is relevant to political parties, interest groups, polling agencies, news outlets,

!This chapter is based on Immer et al. [91].
?Data and code publicly available on https://github.com/indy-lab/submatrix-factorization.
3The platform is accessible on https://www.predikon.ch.
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government authorities, and interested citizens. These predictions help uncover voting
patterns, e.g., to identify swing regions, to understand voting behaviours, and to detect
fraud. Political parties and interest groups can enhance their campaigning efforts. Polling
agencies and news outlets can optimize their surveying efforts. Authorities can monitor
the smooth functioning of the voting process.

We focus on national vote predictions during the ballot counting, i.e., after all eligible
voters have cast their ballots, as government officials start count the valid votes in each
region. We predict national results by using sequential regional results, and we seek to
obtain accurate predictions as early as possible, i.e., with a minimum number of regional
results. Typically, less populated regions release their official counts earlier than more
populated ones. Regions where remote voting is allowed release their results earlier than
regions where this is not allowed. In some countries, for example in the U.S., some regions
vote earlier than others by design. We will show that our model is able to exploit the
correlations between regions and between votes to obtain accurate early predictions.

Switzerland offers a fascinating laboratory for vote prediction due to its direct-democracy
system. Swiss citizens are called to vote four times a year on referenda and popular
initiatives [177, 178]. As a result, the amount and frequency of voting data produced
in Switzerland remains unmatched by any other country. We take Switzerland as an
example to develop our methodology but, as shown in Section 4.3, our algorithm can be
applied to other countries and in other settings.

In Section 4.2, we propose an algorithm to predict national vote outcomes from a
sequence of regional vote results. Our model has two components: First, it learns the
correlations between regions and between votes from historical data by using singular
value decomposition (SVD). Second, after observing at least one regional result for a
new vote, it uses the SVD as input features to a generalized linear model (GLM) to
predict the unobserved regional results. The national outcome is then easily obtained
by weighted aggregation of the predicted and the observed regional results. The SVD,
computed only once on the historical data, is inexpensive in terms of complexity and
enables interpretation. By using different likelihoods in the GLM, we gain flexibility in
predicting binary outcomes (for votes) or categorical outcomes (for elections).

For Swiss votes, where people must answer "Yes" or "No" on each ballot, we show that
a Gaussian and a Bernoulli likelihood provide the best performance. We also explore
what the SVD offers in terms of interpretation of voting patterns. Furthermore, we show
that we can predict the outcome of the popular vote of a U.S. presidential election by
casting this problem as a binary choice between two candidates. We predict the outcome
of parliamentary elections in Germany, where people must choose between five political
parties, using a categorical likelihood. We describe our experiments on state-level and
district-level results in Section 4.3.
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We also deploy a Web platform available to the general public to provide vote prediction
for Switzerland. Using an API developed by the Swiss government, we are able to make
real-time predictions during the official counting with partial regional results. We also
provide a data-visualization tool to explore voting patterns and to understand how our
model makes predictions. We describe our platform in Section 4.4.

In summary, our contributions are as follows: We propose an efficient, flexible, and accurate
algorithm for predicting the national outcome of a referendum or an election from early
regional results. We curate a new dataset of sequential vote results in Switzerland,
covering 330 votes and 2196 regions between 1981 and 2020. We deploy an interactive
Web platform to display real-time vote predictions in Switzerland, together with tools to
explore and visualize our dataset. The data and the code are available on github.com/indy-
lab /submatrix-factorization and the Web platform is available on www.predikon.ch.

4.2 Methodology

4.2.1 Generalized Linear Models

Generalized linear models (GLMs) are probabilistic models whose likelihood belongs
to the exponential family. Let £ € R” be some D-dimensional features, w € RP be
some D-dimensional parameters, and y € D be an observation in a given domain D.
Let h(y) € R be a scaling factor, § :== xTw € R be the natural parameter, and A(f) € R
be the log-partition function. Then, the likelihood of a GLM is

p(ylw, z) = h(y)exp{yd — A(0)}. (4.1)

Point-wise predictions are obtained from the mean parameter

p=Ely =A0)=g"),

where the invertible function g : D — R is called the link function. This function links
the natural parameter and the mean parameter. The choice of link function depends
on the choice of distribution in the GLM. Equation (4.1) can be easily generalized
to K outputs y € D (e.g., for multi-party elections) by setting the domain D to be K-
dimensional. One advantage of GLMs is that they can be efficiently fit to data by using
convex optimization methods [18]. In Table 4.1, we summarize four popular GLMs and
their corresponding link functions, natural parameters, mean parameters, and support
of g. We will use these models in our algorithm to predict referenda and elections, as
described in the next sections. We refer the curious reader to Murphy [134, Chapter 9]
for a detailed introduction to GLMs.
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Table 4.1 — List of Generalized Linear Models. The softmax function is denoted by S.

Distrib. Link ¢ 0 7 D
N(p, 0?) Identity 0=p w=xTw R
N(p, X) Identity 0=pn n=Xw RKE
Bernoulli(pu) Logit 0 =logit(u) p=o(xTw) [0,1]
Categorical(p, K) Inv. softmax 6 =S"1(u) p=SXw) [0,1]¥
X
x W
] 2 Yy
Y = Yy Y | @ yra = [ N
g Y\\:“ (0)
s o Yva
R ’
V + 1 votes

Figure 4.1 — Decomposition of the vote matrix Y into the fully observed sub-matriz Yy
and the new vote yy,, 1, whose results arrive sequentially. The (V 4 1) votes are chrono-
logically ordered and the R regions are arbitrarily ordered.

4.2.2 Problem Setup

Let Y € R®¥*(V+D he the matrix of (V 4 1) regional vote results in R regions, where
a result is typically a fraction of votes. We assume the columns to be in chronological
order. For a new, unobserved vote V + 1, we sequentially observe entries of the last
column? in Y, which we denote by yy ;. Let Y € R**V be the sub-matriz of all
observed, historical results up to vote V. Denoting the set of consecutive integers by
[R] :={1,2,..., R}, we define the set of observed indices for the new vote as

O ={r:re€[R]and y,y4+1 € R},
and the set of unobserved indices (corresponding to values to be predicted) as

U={r:re[R]and y,y4+1 = 0}.

Let y§/0+)1 and ygﬁ)rl denote the observed and unobserved entries of yy,,;, respectively.

Our task is to predict the missing entries y%ﬁl from Yy and ygo_gl only. Figure 4.1

depicts the structure of the matrix Y.

To predict the missing entries of ygz/’{ll, Etter et al. [55] use standard matrix factorization

with alternating least-squares (ALS) to minimize the non-convex loss based on the

4This problem can be trivially generalized to multiple unobserved columns Yy Yypo o
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Frobenius norm

Y© _ (aB")"?

min

: 4.2
i (4.2)

F

where A € R®*P and B € RV*? are two matrices of latent dimension D € N+, and
where superscript (O) denotes that, in this case, only the observed entries are kept. With
ALS, each iteration is expensive, and there are neither convergence guarantees nor explicit
convergence rates [10, 99]. According to the Eckart-Young-Mirsky Theorem [52], the
optimal solution to Equation (4.2) is the SVD, which is only computable if Y(©) = Y. We
devise a more effective algorithm motivated by the special structure of this collaborative
filtering problem[55].

4.2.3 Algorithm

Our algorithm works in four steps: First, the fully-observed sub-matrix Yy is decomposed
using SVD as

Yy ~USVT, (4.3)

where the diagonal matrix ¥ € RP*P stores the singular values, and where the ma-
trices U € RF*P and V € RV*P store the D left and right singular vectors with the
highest singular values, respectively.

Second, we compute the projection of the regions into the vote space as
X=YyW=U3, (4.4)

where the matrix X € R®*P stores D-dimensional representations of the regions. We
explore these representations in more detail in Section 4.3. These two steps are performed
offline, i.e., they are performed once.

Third, we use the observed results of a new vote yg/oll and the representations of observed

regions in X to fit a GLM p. We find the maximum likelihood estimate w, € R by
minimizing the regularized negative log-likelihood of model p in Equation (4.1), with
regularization parameter A € R,

o @
G(wi X, yi7)) = = Y log plyry)y 1w, @) + w3, (4.5)
T
where yfn(‘?) +1 € R is the result of the r-th observed region, and x, € RP is the r-th row

of the representation matrix X corresponding to the representation of the r-th region.
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Finally, we predict the unobserved regions of the new vote yg/ _s)_l € Rl as the mean of

the GLM p using the link function g. From the optimal parameters w,, we compute
2 —
il =g (XWw,), (4.6)

where X € RMIXD are the representations of the unobserved regions. The prediction

for the national outcome is then the average of y§/0421 and y%z,’ﬂ)rl, weighted by the population

of each region r. We summarize these steps in Algorithm 4.1.

Algorithm 4.1 SuBSVD-GLM
Input: Sub-matrix Yy, partial results ¥, ,, and GLM p.

Output: Prediction of unobserved results ygﬂ)rl.
1: Decompose Yy =~ UXVT. > Equation (4.3)
2: Project X =UX. > Equation (4.4)
3: Optimize w, = arg ming, —¢,(w; X, y§/0+)1)' > Equation (4.5)
4: Predict yg{ll =gt (X(u)w*). > Equation (4.6)

To predict the outcomes of referenda and elections, we use the GLMs described in Table 4.1.
For referenda, we use univariate Gaussian and Bernoulli likelihoods. For elections, we use
multivariate Gaussian and categorical likelihood. When a univariate Gaussian likelihood
is used, the optimal parameters w, can be learned (step 3 of Algorithm 4.1) in closed
form with least-squares

-1
w. = (XOTX© 4 a1p) - xO1y?),, (4.7)
where X (©) € RIOIXD are the representations of the observed regions, yg/o_gl € Rl are
the observed entries of the new vote, and Ip is a D-dimensional identity matrix. In
general, we make the algorithm more efficient by reusing the optimal parameters w,
learned with |O| observations when new observations arrive.

Although this algorithm is intuitive, considering the particular structure shown in
Figure 4.1, its general performance is not obvious. In standard matrix factorization,
defined in Equation (4.2), both A and B are learned together. Our algorithm fixes A to
be equal to X = U3, at the expense of adding some constraints, but with the benefit
of computational complexity and identifiability gains. In terms of identifiability, our
regularized negative log-likelihood is strictly convex, which now guarantees a unique
global optimum. To limit computational cost, we factorize the matrix Yy, only once and
reuse its decomposition for each new observation(s) in ¥y, ;. Computing one SVD has
complexity O(RD?), as typically D < R. The optimization procedure (step 3) can be
performed efficiently, e.g., in O(n(|O|D + D3)) for n iterations of Newton’s method. With
a univariate Gaussian likelihood, computing the least-squares solution has asymptotic
complexity O(|O|D? + D3?), which is dominated by the |O|D? term, as typically D < |O|.
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Finally, predicting unobserved values is only a (function of a) matrix-vector multiplication
of complexity O(|U|D).

Elections are more complex than referenda because they have categorical outcomes. Let K
be the number of possible outcomes (for example K political parties). The vote result
matrix becomes a tensor Y € REXV*K To apply our algorithm, we concatenate the
results of each party to collapse the last dimension. This yields a matrix Yy € RF*VE
that can be decomposed using SVD to obtain representations of regions (steps 1 and
2). For an election, the regional results are stored in a matrix yy,; € RA*K and we
use multivariate Gaussian or categorical likelihoods in the GLM to model the multiple

outcomes (steps 3 and 4).

4.2.4 Probabilistic Interpretation

Voting data have the special property that the sum of all possible outcomes in a given
region is equal to 1. The outcome p € [0, 1] of a referendum is the probability p that
it is accepted (and the probability 1 — p that it is rejected). The suffrage p € [0, 1]K
obtained by K political parties in an election describes the probability mass function p(k)
that the k-th party is elected. As a result, we provide a probabilistic interpretation of
outcomes of referenda and elections.

Let Pr(f,) ~ Bernoulli(p,,) be a random variable representing the vote cast by voter i in
region r on referendum v. As voting is anonymous, we do not observe individual votes,
rather the average vote in each region

13

=1

where N, is the number of voters in region r, and whose expectation is p,.,. By decomposing
the result matrix Y = ABT as in Equation (4.2), we posit that the parameter of the
random variables describing individual voters is a product of latent features of regions
and votes p., = alb,, with a,,b, € RP. In Equation (4.3) and Equation (4.4), our
algorithm learns the latent features of the regions a, = (UX), = @, from historical data.
In Equation (4.5), it learns the latent features of the votes b, = argming —£,(b; X, y,)
as the parameters of a GLM p.

So far, we have considered that each region has the same number of voters. If we have
access to data about the number of voters in each region (e.g., the number of valid votes,
the number of eligible voters, or the population), we can include this information by
replacing the regularized log-likelihood in (4.5) by

(@) (@)
—p(w; X, 437 ) = 37 N log p(y D, Jw, @) + A|wl3, (4.8)
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Table 4.2 — Description of datasets used in our experiments.

Country Type Region R V K Period
Switzerland Binary Munic. 2196 330 - 1981-2020
U.S. Binary State 50 11 - 1976-2016
Germany Categ. State 16 6 5 1990-2009

Germany Categ. District 538 5 5 1990-2005

where N, € R is a count related to the number of voters in region r. We refer to the
variation of the algorithm that uses this log-likelihood as weighted. We refer to the
variation of the algorithm that uses the log-likelihood in (4.5) as unweighted. A similar
argument can be trivially made for elections by letting Pr(fj) ~ Categorical (p,,, K) be a
random variable describing the vote cast by voter 4 in region r on vote v for K political
parties.

4.2.5 Limitations

By design, our approach suffers from the cold-start problem of collaborative filtering [99].
We can make predictions only when at least one past observation is available, 7.e.,
when |O| = 1. To bypass this problem, Etter et al. [55] include features of the regions,
such as the geographical location, the population size, and the elevation, and features of
the votes, such as the voting recommendation by political parties. These features are,
however, not systematically and programmatically available, making it difficult to use
them in a real-world system such as the one we describe in Section 4.4.

Our approach also makes the hypothesis that regional and vote representations are static
over time. In particular, the algorithm learns the regional representations over the whole
training set. The latest results might, however, provide more information than older
results. To bypass this problem, we could weigh the SVD by using a sliding window or by
exploiting a temporal SVD algorithm [7] to capture the dynamics of the voting process.

4.3 Experimental Results

We evaluate our algorithm on the four datasets® described in Table 4.2. The outcomes for
the Swiss referenda and for U.S. presidential elections are binary. For Switzerland, this
corresponds to the referendum being accepted or rejected. For the U.S. this corresponds
to one presidential candidate being elected over the other. The outcomes for the German
legislative elections are one of five categories, corresponding to five political parties.

®The data and the code are available on github.com/indy-lab/submatrix-factorization.
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For the binary datasets, i.e., for Switzerland and for the U.S., we use a GLM p with
univariate Gaussian and Bernoulli likelihoods. As data about the number of valid votes
and about population counts are available for these two datasets, we use a likelihood
with weighting, as defined in (4.8). For the categorical datasets, i.e., for Germany, we use
a GLM with multivariate Gaussian and categorical likelihoods. As data about population
counts were not available in this case, we use a likelihood without weighting, as defined
in in (4.5).

4.3.1 Evaluation

For each dataset, we find the best hyperparameters using the training set only. To
evaluate the performance of our algorithm, we compute the mean absolute error (MAE)
and the accuracy on the national results.

We first describe the error metrics used for the binary outcome case then extend them
for multiple outcomes, e.g., when different parties can be voted. Let y* € R be the
true regional results and let y ==y, € R” be a prediction. The true national outcome
y* € R is defined as

* 1 *
Yy = N Z NTyra
re[R]

where N = 3., (g Nr is the total number of voters. The predicted national outcome
y € R is defined as

1 *
Yy = N (Z Nyyr + Z Nr%«) )
reld reQ

where the prediction y, in some observed region r € O equals the true outcome y*. Then,
the MAE and the accuracy of the national prediction are computed as

MAE(y,y") = ly — y*|, (4.9)

Acc(y,9") = 1{y>0.5 and y*>0.5} T L{y<0.5 and y*<0.5}>
where 1 ) is the indicator function.

The MAE enables us to evaluate how far a predictor is from the exact percentage value,
whereas the accuracy enables us to evaluate if the outcome is predicted correctly. For K
outcomes, the true and the predicted outcomes are vectors y* € [0,1]% and y € [0, 1]¥,
respectively, and the MAE in (4.9) is simply the ¢1-norm of the difference between the
two vectors. As the accuracy is not defined for multiple outcomes, we compute the average
displacement (or Spearman’s footrule) [46]. Let p : [K] — [K] be a permutation map
from a party to its rank for the predicted order, and let p* : [K] — [K] be a permutation
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map for the true order. The average displacement is then computed as

1 K
D(p,p") = 7= >_ Ip(k) = p" (K)].
k=1

This measures the average position shift between the true rank and the predicted rank of
each party.

We train our algorithm on data up to vote V and make predictions on vote V + 1 to
evaluate our algorithm. To simulate a real setting where results arrive sequentially, we
incrementally add regions to the set of observed regions O and average the MAEs on
several reveal orders to obtain error bars. Current political forecasting methods for
real-time estimation of the outcomes (e.g., by media outlets) rely mostly on weighted
averages of the regional results on the day of the vote. More sophisticated methods
(developed, e.g., by polling agencies) can also be used, but their technical details are not
available. Hence, we compare our algorithm against weighted averaging as a baseline.
For the binary classification task, we also compare against standard matrix factorization
(MF) trained with alternating least squares, as proposed by Etter et al. [55] and as
formulated in Equation (4.2). For the multiple outcome task, we restrict our comparison
to weighted averaging.

4.3.2 Swiss Referenda

We collect a dataset of V' = 330 referenda in R = 2196 municipalities (the regions are
here the municipalities) between 1981 and 2020. We start with a training set of V' = 300
votes and report the average performance on the next 26 votes with 100 reveal orders
each. As several votes can occur on the same day, we make sure that only past votes
are used in the training set. In Section 4.4, we analyze in depth the last four votes (two
votes on two dates) for which we have real, sequential data. The best combination for
the Bernoulli likelihood is A = 0.01 and D = 25.

In Figure 4.2, we show the MAE and the accuracy of our algorithm to predict national
results from partial municipal results. The two likelihoods used for the GLM provide
equal performance, and we report only the performance of the Bernoulli likelihood for
clarity. In terms of MAE (top), MF outperforms the weighted average baseline and our
algorithm outperforms MF for every number of observed regions from 1 to 1000. The
difference becomes marginal when more than 1000 results are observed, which suggests
that a good approximation of the national result can be obtained by simply averaging
the observed results when more than 50% of the results have arrived. Nevertheless, in
this synthetic setting (the reveal order is randomized) our approach gains only one
percentage point at best over the baseline. In Section 4.4, we will show that the gain
becomes substantial with real data, i.e., with the actual reveal order. In terms of accuracy
(bottom), our algorithm predicts the final outcome with 95% accuracy with 10 observed
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Swiss Referenda
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Figure 4.2 - MAE (top) and accuracy (bottom) averaged over 26 Swiss referenda and
100 reveal orders each.

regions only, outperforming the two baselines by 5 percentage points. The accuracy of
our algorithm reaches 100% after observing 200 municipal results, i.e., after observing

10% of all municipalities.

We explore the patterns in the feature matrix X = UX obtained from (4.4). In Figure 4.3,
we plot the first two columns of X, i.e., a projection of the municipalities on the first two
singular vectors of the vote representation. This plot, popularized by Etter et al. [54],
shows two clear clusters of municipalities corresponding to their language. It also exhibits
the infamous Rdstigraben, a cultural separation between French-speaking municipalities
and German-speaking municipalities. In addition, we show in Figure 4.4 a projection
of the result matrix Y by using t-SNE [115]. The language separation is also clearly
visible, with French-speaking municipalities on the left of the plot and German-speaking
municipalities on the right. The group of municipalities are further subdivided into
smaller clusters corresponding to the canton (states of the Swiss confederation) that they
belong to. Most cantons are uni-lingual in Switzerland, but a few are bilingual. The most
notable among them is Wallis, and interestingly enough, we observe that it is separated
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French
German
Italian
Romansh

Figure 4.3 — Projection of Swiss municipalities on the first two singular vectors of
referendum matrix Y. Municipalities are colored according to their language.

into two distinct clusters. The French-speaking municipalities in Wallis are closer to other
French-speaking municipalities, and vice versa for the German-speaking municipalities.
The municipalities of the only Italian-speaking canton, Ticino, form their own cluster.

4.3.3 U.S. Presidential Election

The U.S. presidential election takes place every four years. We obtain a dataset about the
state-level ballots between 1976 and 2016 [132]. In the spirit of Nate Silver’s Five Thir-
tyEight [167], we evaluate the performance of our algorithm at predicting the result
of the U.S. presidential election in 2016. The U.S. presidential election relies on the
electoral-college system, which adds one level of complexity to the prediction because
(1) the state-level results are quantized to an integer number of delegates and (2) the
candidate who wins the majority of votes in a state wins all the delegates of that state.
This (non-linear) winner-take-all rule requires further modeling assumptions and is out
of the scope of this work. Instead, we focus on predicting the results of the popular vote.

We transform the outcome of the election into a binary outcome of Democratic candidate
and Republican candidate. In all these elections, the results of other parties, e.g., the
Green party and independent candidates, are insignificant compared to the two major
U.S. parties. This dataset contains the results of V' = 11 votes in R = 51 regions (50
states and the District of Columbia) between 1976 and 2016. As the number of votes is
small, we train our algorithm on all votes up to 2012 (V' = 10) to set the sub-matrix Yy,
and we predict the state-level results and the national results of the 2016 election. We
report the averaged performance on 10000 random reveal orders. The best combination
for the Bernoulli likelihood is A = 0.01 and D = 7.
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Figure 4.4 — Projection of Swiss municipalities from referendum matrix Y with t-SNE.
(Left) Municipalities are colored according to their language. (Right) Municipalities are
colored according to their canton (26 cantons). The bilingual canton of Wallis is split
into two clusters. The only Italian-speaking canton of Ticino is isolated from the other
clusters.

In Figure 4.5, we show the MAE and the accuracy of our algorithm in predicting this
election. The two likelihoods used for the GLM provide equal performance, and we report
only the performance of the Bernoulli likelihood for clarity. In terms of MAE (top), our
algorithm and MF outperform the weighted average baseline after observing the results
in two regions. In terms of accuracy (bottom), our algorithm outperforms both MF and
the weighted average for any number of observation. All models have an accuracy of 41%
after observing the result of one region. This is because the Democratic candidate won
in 21 of 51 regions (41%) and won the popular vote.

4.3.4 German Legislative Election

German legislative elections take place every four years. We obtain two datasets [140]
of regional results with R = 16 states (1990-2009) and R = 538 districts (1990-2005).
After 2005 (for the districts) and 2009 (for the states), the data are regrettably not
publicly available any longer. We keep K = 5 political parties, corresponding to the five
major parties in Germany® for which we have data over the whole period. The datasets
cover V = 6 votes for state-level results and V' = 5 for district-level results. As there

5CDU/CSU (christian democracy), SPD (social liberalism), FDP (conservative liberalism), the Green
party (ecological), and the Left party (radical left).
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Figure 4.5 — MAE (top) and accuracy (bottom) of the popular vote of the U.S. presidential
election in 2016.

are multiple outcomes, we use a categorical likelihood to predict the results of the five

parties.

For the state-level results, we train our algorithm on all votes up to 2005 (V = 5) to
set the sub-matrix Yy, and we predict the national results of the 2009 election. For the
district-level results, we train our algorithm on all votes up to 2001 (V = 4), and we
predict the national results of the 2005 election. In Figure 4.6, we show the performance
of our algorithm in predicting these two elections. For both datasets, our algorithm
outperforms the baseline already after a small number of observations. The performance
for the prediction of the national results when using the fine-grained district-level results
is better than when using coarser-grained state-level results. Remarkably, after observing
the results in 10 districts (Figure 4.6, top right), i.e., approximately the average number
of districts per state, the MAE reaches 1%, which is four times better than the MAE
obtained after predicting the national outcome from one state (Figure 4.6, top left). A
similar observation can be made for the average displacement. This suggests that the
finer the level of granularity of regions is, the better the predictive performance is, even
if the observed results are obtained from the same number of voters.

Like with Switzerland in Section 4.3.2, we explore the representations of the regions
contained in the feature matrix X for Germany. In Figure 4.7, we plot the first two
columns of X, i.e., a projection of the districts on the first two singular vectors of the
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Figure 4.6 - MAE (top) and average displacement (bottom) of German legislative elections
at state level in 2009 (left) and district level in 2005 (right).

vote representations. We color the points according to the first party elected in the
corresponding districts (left). With no exception, either the CDU/CSU or the SPD is
elected. The two clusters are each separated in half: The districts on the right side of
their cluster vote in majority for the CDU/CSU. For the lower cluster, those districts
also belong to Southern Germany. The districts on the left side of this cluster (which
vote in majority for the SPD) belong to North-Western Germany.

The CDU/CSU and the SPD have the top two ranks in all districts. Therefore, it is
interesting to color the points according to the party in third place. This clearly separates
the two clusters. The cluster at the top corresponds to the Left party.” The top cluster
contains only districts that belong to historical East Germany (formerly the GDR, before
the reunification in 1990), such as Potsdam, Leipzig, and Dresden. The cluster at the
bottom corresponds to the Green party and the FDP and contains only districts that
belong to historical West Germany (the former BDR), such as Frankfurt, Munich, and
Hamburg. Interestingly, Berlin lies in the cluster that corresponds to historical East
Germany, but seems slightly isolated.

"The three exceptions with CDU/CSU voted the Left party in second place.
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Figure 4.7 — Projection of German district on the first two singular vectors of election
matrix Y. (Left) Districts are colored according to the first party elected in each of them.
(Right) Districts are colored according to the third party elected. This coloring reveals
the historical East/West separation.

4.4 Deployed System

We deploy a Web platform, called Predikon®, to provide real-time predictions for Swiss
referenda (see Appendix A.1. Four Sundays a year, Swiss citizens are called on to vote on
at least one item in a referendum. These items can cover a broad range of topics, from
joining the European Union to subsidizing railways and roads, from banning the use of
fossil fuels to cutting taxes, and even forbidding Swiss farmers to remove horns from
cows and goats. A month prior to a referendum vote day, eligible voters receive official
ballots, together with useful documentation. To cast their vote, they can either send their
ballot by post or bring it to the ballot office on the referendum vote day, up to 11:59am.
Starting at 12pm, each municipality is in charge of counting both the remote ballots and
the ballots they collected on the same day. Once they have finished counting, they report
the result to their canton whose administration communicates the official count.

4.4.1 Implementation Details

In 2019, the Swiss Federal Statistical Office released a public API to access vote data,
both historical and real-time, for all municipalities in a standardized format [174]. This
enabled us to obtain sequential results in all municipalities on the referendum vote days
and made it possible to use our algorithm to predict the outcome of referenda starting at
12pm. We use the dataset described in Table 4.2 for Switzerland, which contains R = 2196

8The platform is available on www.predikon.ch.
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Table 4.3 — True outcome y,,, earliest prediction yn.t, and absolute difference A =
|yiat — Ynat| for referenda with real data.

Date Item Yrat (7] Ynat [70] A
Feb 9, 2020  More Affordable Housing 42.97 41.57 1.40
Ban of Sexual Discrimination 63.03 62.95 0.08
Sep 27, 2020 Moderate Immigration 38.35 38.53 0.18
Hunting Act 48.07 47.54  0.53
Tax Deduction of Childcare Expenses 36.77 35.58 1.19
Paternity Leave 60.27 59.33 0.94
New Fighter Aircrafts 50.16 51.29 1.13
Nov 29, 2020 Responsible Businesses 50.73 50.13 0.60
Ban on Financing War Material 42.55 41.91 0.64
Mar 7, 2021  Ban on Full Face Coverings 51.21 50.80 0.41
e-1D Act 35.64 38.03 2.39
Trade Agreement with Indonesia 51.65 51.54 0.11

municipalities. We predict the outcome of twelve items between February 9, 2020, and
March 7, 2021. We summarize these items in Table 4.3. On average, the turnout is 53.3%
and 2.8 million valid ballots are counted for each referendum.

For a vote V' +1, we use the historical data up to vote V' to learn the feature matrix X from
the sub-matrix Yy . For example, for February 9, 2020, we train the model using V' = 328
votes and we predict the results of the two referenda on that date. We use a Bernoulli
likelihood to define our GLM with D = 25 latent dimensions and a regularization
factor A = 0.01. We fetch municipal results from the API every minute®. If new results
are available, we learn the optimal parameters w, by optimizing the negative log-likelihood
using Newton’s method, and we predict the unobserved municipal results as y%)_l =
o(XWa,). Similar to Equation (4.6), we predict the national outcome yua; € [0, 1] by

aggregating our prediction of unobserved results & with the observed results O as

0)
Ynat = (Z N, u)y%ur +> N, O)yf,(« V+1>
reld reO

where Nﬁu) is the number of valid ballots in municipality » from the previous vote (used
as proxy for the current vote), ,EO) is the number of valid ballots in municipality r
for the current vote, and N = >, o, Nr(u) +> co NT(O) is the total number of valid
ballots. As the number of unobserved results |U/| tends to 0 with time and the number
of observed results |O| tends to the total number of regions R, the prediction for the

national outcome ynat converges to the true outcome y,, € [0, 1].

9Schedule suggested by the Swiss Federal Statistical Office.
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4.4.2 Real-Time Predictions

In Figure 4.8, we show eight examples of the evolution of our predictions (red line),
together with the weighted averaging (black line), as a function of the progress of the
ballot counting. The ballot counting starts at 12pm and ends later in the afternoon,
after all municipalities reported their results. Looking at the trajectory of the weighted
averaging, the jumps occurring at several steps correspond to the publication of the
results of whole cantons, such as Wallis, and of large municipalities, such as the cities of
Basel, Genera, Bern or Zurich.

Our first predictions are made at 12:01pm, using the results of 355 municipalities on
average (16.2% of all municipalities) representing 6.5% of the total population. For the
twelve referenda, these predictions reach a mean absolute error of 0.8% to the true
outcome. The largest error is made on the “e-ID Act”, with a MAE of 2.39%. This could
be due to the lack of historical votes related to digitalization in Switzerland leading
to a vote embedding lying in an empty region of the ideological space. The weighted
average for the current count varies up to a difference of 7.3%, whereas our predictions are
qualitatively stable over time. To provide a robust estimation of the final outcome, our
algorithm takes advantage of the correlation across municipalities and votes. Furthermore,
our earliest predictions were always on the correct side of the 50% threshold, i.e., it
reached an accuracy of 100% at predicting the acceptance or rejection of a referenda.

4.5 Related Work

We base the present paper on the work of Etter et al. [54, 55]. Their approach consists in
combining matrix factorization and Gaussian processes (GP) to understand what features
of the votes and of the municipalities contribute the most to the predictive performance.
They develop an expectation-maximization algorithm to learn both latent features and
the GP parameters jointly. They show that the geographical location of municipalities is
the most important feature for making predictions, an aspect that is in part captured by
the feature matrix X of Equation (4.4) in our algorithm and illustrated in Figure 4.3:
Municipalities that are geographically close tend to speak the same language. They also
show that they are able to make accurate predictions of Swiss referenda. In comparison,
our method is more efficient, as it learns the latent features of municipalities X through
singular value decomposition offline, and it learns the latent features of a vote through
a GLM. The GLM also provides more flexibility: Our algorithm could conceivably be
used to make prediction for other types of observations, e.g., count data, and works for
non-binary outcomes. We developed our algorithm with applicability in mind. Our main
goal was to make real-time predictions for Swiss referenda, with all the constraints that
come with this problem.
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Figure 4.8 — Examples of evolution of predictions (red) and weighted averaging (black)
on real, sequential data for the referenda between February 9, 2020, and March 7, 2021.
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The problem we address, i.e., predicting unobserved entries of a new column of a matrix
from partial observations of that column, is most similar to the problem of missing-data
imputation. The use of SVD for data imputation has been studied in the context of
genomics [182, 78]. In gene matrices, missing entries are common, and the authors propose
an algorithm based on SVD to impute missing data. Their algorithm iteratively computes
the SVD of an approximation to the full matrix and predicts the missing values with
a regression by using the non-missing values to refine the approximation. An extensive
literature review of predictive methods for data imputation is available in Bertsimas
et al. [12]. Incremental SVD revisions have been studied in the context of computer
vision [20] and recommender systems [21]. In this latter work, the author proposes
algorithms to compute the SVD of a matrix when new columns arrive sequentially and
are corrupted by some noise (e.g., some entries are missing). Their solution is equivalent
to our SUBSVD-GAUSSIAN algorithm without regularization, ¢.e., A = 0, for which a
closed form solution is provided in Equation (4.7).

A whole body of work in the political science community exists on election forecasting [113],
i.e., predicting the outcome of an election before it happens. The seminal work of Bean [8],
who first studied this problem in 1948, looked at using historical data to find U.S. states
that were the most predictive of the national outcome. Statistical models for election
forecasting have since been developed in many contexts for Germany [184], France [9], the
U.K. [60], and the U.S. [158, 97]. The prediction of U.S. elections has been popularized by
the blogger and statistician Nate Silver in 2008 as he predicted Barack Obama’s victory
in the Democratic Party primaries using a statistical model of historical data [16], and as
he predicted Barack Obama’s victory in the presidential election from polling data [167].
In the computer science community, algorithms for election forecasting have also been
developed using social media data in Denmark [102], Finland [189], the U.S. [30, 150], and
the developing world [51]. To the best of our knowledge, except for the work mentioned
at the beginning of this section, we are the first to study real-time outcome predictions of
elections and referenda, and to deploy a system for making predictions of Swiss referenda
in real-time.

4.6 Summary

In this chapter, we have proposed an algorithm to predict national vote results from
regional results that are observed sequentially. Our approach learns a representation
for each region by factorizing the sub-matrix of historical data and approximating the
representation of a new vote as the optimal parameters of a generalized linear model. The
predictions for unobserved results are obtained through the link function of the GLM,
and national predictions are obtained by aggregating observed and unobserved regional
results. We are able to predict both referenda with binary outcomes and elections with
categorical outcomes. We have shown that our approach outperforms the (weighted)
average of partial results on three datasets of Swiss referenda, U.S. presidential elections,
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and German legislative elections. We have explored the regional representations in their
latent space and have shown that they capture ideological and cultural patterns. Finally,
we have deployed a Web platform to provide real-time vote predictions for Swiss referenda.
Our algorithm is able to predict the final outcome of four real votes with an absolute
error of about 1% after observing only 13% of the ballots.

Perspective We plan to further develop our approach in three directions. First,
Bayesian inference in our generalized linear model would enable uncertainty quan-
tification of our predictions in a principled way. This could be beneficial for predictions,
especially during the early counting phase. Bayesian inference for GLMs has been widely
studied in the literature [134]. Second, our algorithm is capable of making predictions
only with at least one observed regional result. In the spirit of Etter et al. [55], we plan
to augment our algorithm with features from the vote and the municipalities to make
predictions prior to referenda in Switzerland. One limitation of their work lies in the
lack of systematic availability of the features they include in their model. In particular,
every Swiss citizen receives documentation about each referendum. These explanatory
documents provide a valuable source of information about a vote, one that could be
incorporated in a predictive model. The actual text of the proposed laws would provide
another source of relevant information. Finally, by collecting the sequential order by
which regional results arrive in Swiss referenda, we obtain data about the true reveal
order. We plan to explore whether the true sequential order can be exploited to learn the
schedule by which results arrive and, therefore, further improve the earliest predictions.
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5] Carbon Footprint Perception

In this chapter!, we propose a statistical model to understand people’s perception of
their carbon footprint. Our model is inspired by the probit model of Thurstone [180]
that we describe in Section 1.2. Driven by the observation that few people think of CO9
impact in absolute terms, we design a system to probe people’s perception from simple
pairwise comparisons of the relative carbon footprint of their actions. The formulation
of the model enables us to take an active-learning approach to selecting the pairs of
actions that are maximally informative about the model parameters. We define a set
of 18 actions and collect a dataset of 2183 comparisons from 176 users on a university
campus by developing a Web platform?. The early results reveal promising directions to
improve climate communication and enhance climate mitigation.

5.1 Introduction

To put the focus on actions that have high potential for emission reduction, we must
first understand whether people have an accurate perception of the carbon footprint
of these actions. If they do not, their efforts might be wasted. As an example, recent
work by Wynes and Nicholas [200] shows that Canadian high-school textbooks encourage
daily actions that yield negligible emission reduction. Actions with a higher potential of
emission reduction are poorly documented. In this work, we model how people perceive
the carbon footprint of their actions, which could guide educators and policy-makers.

In their daily life, consumers repeatedly face multiple options with varying environmental
effects. Except for a handful of experts, no one is able to estimate the absolute quantity of
CO4 emitted by their actions of say, flying from Paris to London. Most people, however,
are aware that taking the train for the same trip would release less CO2. Hence, in the
spirit of Thurstone [180] and Salganik and Levy [162] (among many others), we posit

'This chapter is based on Kristof et al. [103].
2The platform is accessible on http://www.climpact.ch.
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that the perception of a population can be probed by simple pairwise comparisons. By
doing so, we shift the complexity from the probing system to the model: Instead of asking
difficult questions about each action and simply averaging the answers, we ask simple
questions in the form of comparisons and design a non-trivial model to estimate the
perception. In fine, human behaviour boils down to making choices: For example, we
choose between eating local food and eating imported food; we do not choose between
eating or not eating. Our awareness of relative emissions between actions (of the same
purpose) is often sufficient to improve our carbon footprint.

Our contributions are as follows. First, we cast the problem of inferring a population’s
global perception from pairwise comparisons as a linear regression. Second, we adapt a well-
known active-learning method to maximize the information gained from each comparison.
We describe the model and the active-learning algorithm in Section 5.2. We design an
interactive platform to collect real data for an experiment on our university campus,
and we show early results in Section 5.3. Our approach could help climate scientists,
sociologists, journalists, governments, and individuals improve climate communication

and enhance climate mitigation.

5.2 Models

Let A be a set of M actions. For instance, "flying from London to New York" or "eating
meat for a year" are both actions in A. Let (i,7,y) be a triplet encoding that action
1 € A has an impact ratio of y € R~ over action j € A. Said otherwise, if y > 1, action i
has a carbon footprint y times greater than action j, and if y < 1, action 7 has a carbon
footprint 1/y times smaller than action j.

Given some parameters w;, w; € R representing the perceived (log-)carbon footprint in
COq-equivalent of action ¢ and action j, we posit

exp wj

exp wj

We gather the parameters in a vector w € RM. Assuming a centered Gaussian noise
e ~N(0,02), 02 € R, we model the (log-)impact ratio

logy = w; —w; + € = xTw + ¢, (5.1)

where the comparison vector & € RM is zero everywhere except in entry i where it
is +1 and in entry j where it is —1. Vector & "selects" the pair of actions to compare.
For a dataset D = {(in,jn,yn) : n = 1,..., N} of N independent triplets and since
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logy ~ N(xTw,02), the likelihood of the model is

N
py| X, w) = [ p(yilz]w, 0}) = N(Xw, o0 1),
i=1

where y € R is the vector of observed (log-)impact ratios, and X € RVM*M is a matrix
of N comparison vectors.

We assume a Gaussian prior for the weight parameters w ~ N (u, 3,,), where p € RM is
the prior mean and X, € RM*M ig the prior covariance matrix. To obtain the global
perceived carbon footprint of each action in A and to enable active learning, we compute
the posterior distribution of the weight parameters given the data,

p(y|X, w)p(w)
p(y| X)

=N (w =% (0,2XTy+3,'n), B = (0,2X7X + 2p1)1> . (5.2)

p(w| X, y) =

The noise variance o2, the prior mean pu, and the prior covariance matrix Y, are
hyperparameters to be tuned. The global perceived carbon footprint is given by the
posterior mean as expw. We use the posterior covariance matrix X to select the next
pair of actions, as described in the following section.

Active Learning We collect the triplets in D from multiple users who take a quiz.
During one session of the quiz, a user sequentially answers comparison questions and
decides when to stop to see their overall results. Active learning enables us to maximize
the information extracted from a session.

Let ¥ and ¥ 41 be the covariance matrices of the posterior distribution in Equa-
tion (5.2) when N and N + 1 comparisons have been respectively collected. Let  be the
new (N + 1)-th comparison vector, and recall that the entropy of a multivariate Gaussian
distribution is given by

M 1
S = 7(1 + log 27) + 3 log det 3. (5.3)

As proposed by MacKay [116], we want to select the pair of actions to compare that is
maximally informative about the values that the model parameters w should take [32, 87].
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For our linear Gaussian model, this is obtained by maximizing the total information gain

AS = SN — SNy
det E]_VIH
det !
det[Z5 + 0, 2zxT)
det EJ_VI
(det S )1 + 0, 22TENT)
det Iy

—

—
o

—
Q

g

log(1 + 0, 22T yx).

N = N = N= N
—
o

We obtain (5.4) by observing that X' + o, 2z’ = 0,2 XTX + Yot to ket = Z]_Vlﬂ.
We obtain (5.5) by the matrix determinant lemma.

Hence, to maximize AS, we maximize 73 yx for all possible  in our dataset. Recall
that comparison vectors @ are zero everywhere except in entry ¢ (+1) and in entry j (-1).

%-:1, we seek, therefore, to find the pair of actions

By denoting Xy = [07]
(i*,7%) = argmax {O‘?i +o3;— 20%} .
i7j

The prior covariance matrix 3, could capture the prior knowledge about the typical
user perception of relative carbon footprint. In future work, we intend to further reduce
the number of questions asked during one session by a judicious choice of X,,. In our
experiments so far, we simply initialize it to a spherical covariance, as explained in the

next section.

5.3 Experimental Results

Starting with no information at all, we arbitrarily set the prior noise 02 = 1 and the prior
covariance matrix to a spherical covariance X, = agI , with ag = 10. Our results are
qualitatively robust to a large range of values for of,. In order to compare the perceived
carbon footprint expw with its true value exp v, we set the prior mean to g = c1, where
c= ﬁ Zf\il v; is the mean of the (log-)true values. This guarantees that the perceived
carbon footprint estimated from the model parameters have the same scale as the true

values.

We compile a set A of M = 18 individual actions about transportation, food, and
household (the full list of actions is provided in Appendix A.2.2). We deploy an online
quiz? to collect pairwise comparisons of actions from real users on a university campus

3 Accessible at http://www.climpact.ch
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Figure 5.1 — Global perceived carbon footprint of 18 actions in kgCOs-equivalent and
their true values (log scale). The list of actions is provided in Appendix A.2.2.

(see Appendix A.2.1) We collect N = 2183 triplets from 176 users, mostly students
between 16 and 25 years old. We show in Figure 5.1 the true carbon footprint, together
with the global perception of the population, i.e., the values exp w; for each action i € A.

The users in our population have a globally accurate perception. Among the actions
showing the most discrepancy, the carbon footprint of short-haul flights is overesti-
mated (Action 11), whereas the carbon footprint of long-haul flights (16) is highly
underestimated (the scale is logarithmic). Similarly, the carbon footprint of first-class
flights (18) is also underestimated. The users tend to overestimate the carbon footprint
of more ecological transports, such as the train, the bus, and car-sharing (1, 4, and 6).
The users have an accurate perception of actions related to diet (8, 14, and 15) and of
actions related to domestic lighting (3 and 10). They overestimate, however, the carbon
footprint of a dryer (2). Finally, they highly underestimate the carbon footprint of oil
heating (17). Switzerland, where the users live, is one of the European countries whose
consumption of oil for heating houses is the highest. There is, therefore, a high potential
for raising awareness around this issue.

5.4 Summary

In this chapter, we proposed a statistical model for understanding people’s global
perception of their carbon footprint. The Bayesian formulation of the model enables
us to take an active-learning approach to selecting the pairs of actions that maximize
the gain of information. We deployed an online platform to collect real data from users.
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The estimated perception of the users gives us insight into this population and reveals
interesting directions for improving climate communication. In particular, we observed
that the CO45 emissions of actions with low carbon footprint tend to be overestimated,
and actions with high carbon footprint tend to be underestimated.

Perspective Our model learns the overall perception of the whole population. This
estimation lead to coarse results that may bias interpretation. We plan to enrich our
model by replacing the global perception parameters w with parameters that depend on
features of the users and of the actions. For example, the political views, income level,
and region of residence of users might affect their perception. We also plan to collaborate
with domain experts to further analyze people’s estimated perception of their carbon
footprint and to translate the conclusions of the results into concrete actions.
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Inspired by applications in sports where the skill of players or teams competing against
each other varies over time, we propose in this chapter! a probabilistic model of pairwise-
comparison outcomes that capture a wide range of time dynamics. We achieve this by
replacing the static parameters of a class of popular pairwise-comparison models by
continuous-time Gaussian processes; the covariance function of these processes enables
expressive dynamics. We develop an efficient inference algorithm that computes an
approximate Bayesian posterior distribution. Despite the flexibility of our model, our
inference algorithm requires only a few linear-time iterations over the data and can take
advantage of modern multiprocessor computer architectures. We apply our model to
several historical databases? of sports outcomes and find that our approach (a) outper-
forms competing approaches in terms of predictive performance, (b) scales to millions of
observations, and (c) generates compelling visualizations that help in understanding and
interpreting the data. Finally, we deploy our algorithm on a Web platform? to predict
the outcome of football matches in European leagues and international competitions.

6.1 Introduction

In many competitive sports and games (such as tennis, basketball, chess and electronic
sports), the most useful definition of a competitor’s skill is the propensity of that
competitor to win against an opponent. It is often difficult to measure this skill explicitly:
take basketball for example, a team’s skill depends on the abilities of its players in terms
of shooting accuracy, physical fitness, mental preparation, but also on the team’s cohesion
and coordination, on its strategy, on the enthusiasm of its fans, and a number of other
intangible factors. However, it is easy to observe this skill implicitly through the outcomes
of matches.

!This chapter is based on Maystre et al. [124].
*Data and code publicly available on https://github.com/lucasmaystre/kickscore-kdd19.
3The platform is accessible on https://kickoff.ai.
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In this setting, probabilistic models of pairwise-comparison outcomes provide an elegant
and practical approach to quantifying skill and to predicting future match outcomes
given past data. These models, pioneered by Zermelo [206] in the context of chess (and
by Thurstone [179] in the context of psychophysics), have been studied for almost a
century. They posit that each competitor i (i.e., a team or player) is characterized by a
latent score s; € R and that the outcome probabilities of a match between ¢ and j are
a function of the difference s; — s; between their scores. By estimating the scores {s;}
from data, we obtain an interpretable proxy for skill that is predictive of future match
outcomes. If a competitor’s skill is expected to remain stable over time, these models are
very effective. But what if it varies over time?

A number of methods have been proposed to adapt comparison models to the case
where scores change over time. Perhaps the best known such method is the Elo rating
system [53], used by the World Chess Federation for their official rankings. In this case,
the time dynamics are captured essentially as a by-product of the learning rule (c.f.
Section 6.5). Other approaches attempt to model these dynamics explicitly [56, 66, 42, 41].
These methods greatly improve upon the static case when considering historical data, but
they all assume the simplest model of time dynamics (that is, Brownian motion). Hence,
they fail to capture more nuanced patterns such as variations at different timescales,
linear trends, regression to the mean, discontinuities, and more.

In this work, we propose a new model of pairwise-comparison outcomes with expressive
time-dynamics: it generalizes and extends previous approaches. We achieve this by
treating the score of an opponent ¢ as a time-varying Gaussian process s;(t) that can be
endowed with flexible priors [153]. We also present an algorithm that, in spite of this
increased flexibility, performs approximate Bayesian inference over the score processes
in linear time in the number of observations so that our approach scales seamlessly
to datasets with millions of observations. This inference algorithm addresses several
shortcomings of previous methods: it can be parallelized effortlessly and accommodates
different variational objectives. The highlights of our method are as follows.

Flexible Dynamics As scores are modeled by continuous-time Gaussian processes,
complex (yet interpretable) dynamics can be expressed by composing covariance
functions.

Generality The score of an opponent for a given match is expressed as a (sparse) linear
combination of features. This enables, e.g., the representation of a home advantage
or any other contextual effect. Furthermore, the model encompasses a variety of
observation likelihoods beyond win / lose, based, e.g., on the number of points a
competitor scores.

Bayesian Inference Our inference algorithm returns a posterior distribution over score
processes. This leads to better predictive performance and enables a principled way
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to learn the dynamics (and any other model hyperparameters) by optimizing the
log-marginal likelihood of the data.

Ease of Intepretation By plotting the score processes {s;(t)} over time, it is easy to
visualize the probability of any comparison outcome under the model. As the time
dynamics are described through the composition of simple covariance functions,
their interpretation is straightforward as well.

Concretely, our contributions are threefold. First, we develop a probabilistic model of
pairwise-comparison outcomes with flexible time-dynamics (Section 6.2). The model
covers a wide range of use cases, as it enables (a) opponents to be represented by a sparse
linear combination of features, and (b) observations to follow various likelihood functions.
In fact, it unifies and extends a large body of prior work. Second, we derive an efficient
algorithm for approximate Bayesian inference (Section 6.3). This algorithm adapts to
two different variational objectives; in conjunction with the “reverse-KL” objective, it
provably converges to the optimal posterior approximation. It can be parallelized easily,
and the most computationally intensive step can be offloaded to optimized off-the-shelf
numerical software. Third, we apply our method on several sports datasets and show that
it achieves state-of-the-art predictive performance (Section 6.4). Our results highlight
that different sports are best modeled with different time-dynamics. We also demonstrate
how domain-specific and contextual information can improve performance even further;
in particular, we show that our model outperforms competing ones even when there are
strong intransitivities in the data.

In addition to prediction tasks, our model can also be used to generate compelling
visualizations of the temporal evolution of skills. All in all, we believe that our method
will be useful to data-mining practitioners interested in understanding comparison time-
series and in building predictive systems for games and sports. Our algorithm is deployed
on the Kickoff.ai* platform to provide predictions of football matches is European leagues
(see Appendix A.3).

A Note on Extensions In this chapter, we focus on pairwise comparisons for con-
ciseness. However, the model and inference algorithm could be extended to multiway
comparisons or partial rankings over small sets of opponents without any major concep-
tual change, similarly to Herbrich et al. [82]. Furthermore, and even though we develop
our model in the context of sports, it is relevant to all applications of ranking from
comparisons, e.g., to those where comparison outcomes reflect human preferences or
opinions [179, 126, 162].

“https:/ /kickoff.ai
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6.2 Model

In this section, we formally introduce our probabilistic model, called Kickscore. For clarity,
we take a clean-slate approach and develop the model from scratch. We discuss in more
detail how it relates to prior work in Section 6.5.

The basic building blocks of Kickscore are features®. Let M be the number of features;
each feature m € [M] is characterized by a latent, continuous-time Gaussian process

$m(t) ~ GP[0, kp(t, )] (6.1)

We call s,,(t) the score process of m, or simply its score. The covariance function
of the process, kp,(t,t") == E[sp,(t)sm(t')], is used to encode time dynamics. A brief
introduction to Gaussian processes as well as a discussion of useful covariance functions is
given in Section 6.2.1. The M scores s1(t), ..., sy (t) are assumed to be (a priori) jointly
independent, and we collect them into the score vector

s(t) = [s1(t) - su(®)]'

For a given match, each opponent ¢ is described by a sparse linear combination of the
features, with coefficients 2; € RM. That is, the score of an opponent i at time ¢* is
given by

s = x]s(t"). (6.2)

In the case of a one-to-one mapping between competitors and features, x; is simply the
one-hot encoding of opponent 7. More complex setups are possible: For example, in the
case of team sports and if the player lineup is available for each match, it could also be
used to encode the players taking part in the match [123]. Note that x; can also depend
contextually on the match. For instance, it can be used to encode the fact that a team
plays at home [4].

Each observation consists of a tuple (x;, x;,t*, y), where x;, ; are the opponents’ feature
vectors, t* € R is the time, and y € ) is the match outcome. We posit that this outcome
is a random variable that depends on the opponents through their latent score difference:

y | @i, @y, t* ~py|si—s;),

where p is a known probability density (or mass) function and s;, s; are given by (6.2). The
idea of modeling outcome probabilities through score differences dates back to Thurstone

5In the simplest case, there is a one-to-one mapping between competitors (e.g., teams) and features,
but decoupling them offers increased modeling power.

96



6.2. Model

A A
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(a) Static model (b) Our dynamic model

T

Figure 6.1 — Graphical representation of a static model (left) and of the dynamic model
presented in this chapter (right). The observed variables are shaded. For conciseness, we
let ¢, = x,; — ®, ;. Right: the latent score variables are mutually dependent across
time, as indicated by the thick line.

Table 6.1 — Examples of observation likelihoods. The score difference is denoted by
d = s; — sj and the Gaussian cumulative density function is denoted by ®.

Name y p(y | d) References
Probit (£1}  ®(yd) [179, 82]
Logit {£1} [1+ exp(—yd)]~* [206, 19]
Ordinal probit {+1,0} ®(yd —a),... [64]
Poisson-exp N> exp(yd — ) /y! [117]
Gaussian R ox exp[(y — d)?/(20%)] [72]

[179] and Zermelo [206]. The likelihood p is chosen such that positive values of s; — s;
lead to successful outcomes for opponent ¢ and vice-versa.

A graphical representation of the model is provided in Figure 6.1. For perspective, we
also include the representation of a static model, such as that of Thurstone [179]. Our
model can be interpreted as “conditionally parametric”: conditioned on a particular time,
it falls back to a (static) pairwise-comparison model parametrized by real-valued scores.

Observation Models Choosing an appropriate likelihood function p(y | s; — s;) is an
important modeling decision and depends on the information contained in the outcome
y. The most widely applicable likelihoods require only ordinal observations, i.e., whether
a match resulted in a win or a loss (or a tie, if applicable). In some cases, we might
additionally observe points (e.g., in association football, the number of goals scored by
each team). To make use of this extra information, we can model (a) the number of points
of opponent ¢ with a Poisson distribution whose rate is a function of s; — s;, or (b) the
points difference with a Gaussian distribution centered at s; — s;. A non-exhaustive list
of likelihoods is given in Table 6.1.
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A Constant A Piecewise constant . Constant + linear
2 1 2 2 1
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Figure 6.2 — Random realizations of a zero-mean Gaussian process with six different
covariance functions.

6.2.1 Covariance Functions

A Gaussian process s(t) ~ GP[0, k(t,t")] can be thought of as an infinite collection of
random variables indexed by time, such that the joint distribution of any finite vector
of N samples s = [s(t1)---s(tn)] is given by s ~ N(0, K), where K = [k(t;,t;)]. That
is, s is jointly Gaussian with mean 0 and covariance matrix K. We refer the reader
to Rasmussen and Williams [153] for an excellent introduction to Gaussian processes.

Hence, by specifying the covariance function appropriately, we can express prior expec-
tations about the time dynamics of a feature’s score, such as smooth or non-smooth
variations at different timescales, regression to the mean, discontinuities, linear trends
and more. Here, we describe a few functions that we find useful in the context of modeling
temporal variations. Figure 6.2 illustrates these functions through random realizations of
the corresponding Gaussian processes.

Constant This covariance captures processes that remain constant over time. It is useful
in composite covariances to model a constant offset (i.e., a mean score value).

Piecewise Constant Given a partition of R into disjoint intervals, this covariance is
constant inside a partition and zero between partitions. It can, for instance, capture
discontinuities across seasons in professional sports leagues.

Wiener This covariance reflects Brownian motion dynamics (c.f. Section 6.5). It is
non-stationary: the corresponding process drifts away from 0 as ¢ grows.
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Matérn This family of stationary covariance functions can represent smooth and non-
smooth variations at various timescales. It is parametrized by a variance, a charac-
teristic timescale and a smoothness parameter v. When v = 1/2, it corresponds to
a mean-reverting version of Brownian motion.

Linear This covariance captures linear dynamics.

Finally, note that composite functions can be created by adding or multiplying covariance
functions together. For example, let k, and k; be constant and Matérn covariance
functions, respectively. Then, the composite covariance k(t,t") = ko(t,t") + kp(t,t')
captures dynamics that fluctuate around a (non-zero) mean value. Duvenaud [50, Section
2.3] provides a good introduction to building expressive covariance functions by composing
simple ones.

6.3 Inference Algorithm

In this section, we derive an efficient inference algorithm for our model. For brevity,
we focus on explaining the main ideas behind the algorithm. A reference software
implementation, available online at https://github.com/lucasmaystre/kickscore,
complements the description provided here.

We begin by introducing some notation. Let D = {(@y,, tn,yn) : n € [N]} be a dataset
of N independent observations, where for conciseness we fold the two opponents x,, ;
and x, ; into x, = T,; — x, , for each observation®. Let D,,, C [N] be the subset of
observations involving feature m, i.e., those observations for which ., # 0, and let
Ny, = |Dyn|. Finally, denote by s,, € R¥™ the samples of the latent score process at
times corresponding to the observations in D,,. The joint prior distribution of these
samples is p(s,,) = N(0, K,,,), where K, is formed by evaluating the covariance function
km(t,t") at the relevant times.

We take a Bayesian approach and seek to compute the posterior distribution

M N
p(81,...,80m | D) x H p(Sm) H plyn | 2] s(tn)]. (6.3)

m=1 n=1
As the scores are coupled through the observations, the posterior no longer factorizes
over {s,,}. Furthermore, computing the posterior is intractable if the likelihood is

non-Gaussian.

To overcome these challenges, we consider a mean-field variational approximation [191].
In particular, we assume that the posterior can be well-approximated by a multivariate

5This enables us to write the score difference more compactly. Given an observation at time ¢* and
letting x == z; — x;, we have s; — s; = ®]s(t") — z]s(t") = xTs(t").
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Gaussian distribution that factorizes over the features:

M
p(317' -y SM ‘ D) ~ Q(sla" '7SM) = H N(Sm ’ /J‘mazm) (64)

m=1

Computing this approximate posterior amounts to finding the variational parameters
{fm, X} that best approximate the true posterior. More formally, the inference problem
reduces to the optimization problem

min div[p(s1,...,8m | D) || g(s1,-..,8Mm)], (6.5)
{ttm,Zm }
for some divergence measure div(p|lg) > 0. We will consider two different such measures
in Section 6.3.1.

A different viewpoint on the approximate posterior is as follows. For both of the variational
objectives that we consider, it is possible to rewrite the optimal distribution ¢(s;,) as

q(sm) x p(sm) H N(smn | ﬁmm&g@n)'
n€Dm

Letting X,, C [M] be the subset of features such that z,,, # 0, we can now reinterpret
the variational approximation as transforming every observation (&, t,,y,) into several
independent pseudo-observations with Gaussian likelihood, one for each feature m € X,,.
Instead of optimizing directly {pm, 3y, } in (6.5), we can alternatively choose to optimize
the parameters {fiyn, 72, - For any feature m, given the pseudo-observations’ parameters
fi, and 62, computing ¢(s,,) becomes tractable (c.f. Section 6.3.2).

An outline of our iterative inference procedure is given in Algorithm 6.1. Every iteration
consists of two steps:

1. updating the pseudo-observations’ parameters given the true observations and the
current approximate posterior (lines 4-7), and

2. recomputing the approximate posterior given the current pseudo-observation (lines 8
and 9).

Convergence is declared when the difference between two successive iterates of {fimn } and
{52} falls below a threshold. Note that, as a by-product of the computations performed
by the algorithm, we can also estimate the log-marginal likelihood of the data, log p(D).

Running Time In Section 6.3.1, we show that DERIVATIVES and UPDATEPARAMS
run in constant time. In Section 6.3.2, we show that UPDATEPOSTERIOR runs in time
O(Np,). Therefore, if we assume that the vectors {x,} are sparse, the total running time
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Algorithm 6.1 Model inference.
Require: D = {(xp,tn,yn) : n € [N]}
I: fim, 62, + 0,00 VYm
2: q(8m) < p(sm) Ym
3: repeat
4: forn=1,...,N do

5 0 < DERIVATIVES(Zy,, Yn)

6 for m € X,, do

7: fimn, 52, < UPDATEPARAMS (Zym, 6)
8 form=1,...,M do

9: q(8m) + UPDATEPOSTERIOR(fis, 52,)

10: until convergence

per iteration of Algorithm 6.1 is O(N). Furthermore, each of the two outer for loops
(lines 4 and 8) can be parallelized easily, leading in most cases to a linear acceleration
with the number of available processors.

6.3.1 Updating the Pseudo-Observations

The exact computations performed during the first step of the inference algorithm—
updating the pseudo-observations—depend on the specific variational method used. We
consider two: expectation propagation [131], and reverse-KL variational inference [15].
The ability of Algorithm 6.1 to seamlessly adapt to either of the two methods is valuable,
as it enables practitioners to use the most advantageous method for a given likelihood
function.

Expectation Propagation

We begin by defining two distributions. The cavity distribution ¢_,, is the approximate
posterior without the pseudo-observations associated with the nth datum, that is,

q(s1,...,8M)
HmeXn N(smn | fimn, 6T2nn)

q—n(S1,...,8M) X

The hybrid distribution ¢, is given by the cavity distribution multiplied by the nth
likelihood factor, i.e.,

(jn(sla SRR SM) o8 Q—n(sla SRR SM)p[yn ‘ mzs(tn)}
Informally, the hybrid distribution ¢, is “closer” to the true distribution than q.

Expectation propagation (EP) works as follows. At each iteration and for each n, we
update the parameters {fimn, Fmn : m € X, } such that KL(g,|l¢) is minimized. To this
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end, the function DERIVATIVES (on line 5 of Algorithm 6.1) computes the first and second
derivatives of the log-partition function

log Eq_,, {plyn | @},s(tn)]} (6.6)

with respect to p—p, = E,_, [2]s(t,)]. These computations can be done in closed form for
the widely-used probit likelihood, and they involve one-dimensional numerical integration
for most other likelihoods. EP has been reported to result in more accurate posterior
approximations on certain classification tasks [137].

Reverse KL Divergence

This method (often referred to simply as variational inference in the literature) seeks to
minimize KL(¢||p), i.e., the KL divergence from the approximate posterior ¢ to the true
posterior p.

To optimize this objective, we adopt the approach of Khan and Lin [98]. In this case,
the function DERIVATIVES computes the first and second derivatives of the expected
log-likelihood

E, {logplyn | ] s(tn)]} (6.7)

with respect to p = Ey[x]s(t,)]. These computations involve numerically solving two
one-dimensional integrals.

In comparison to EP, this method has two advantages. The first is theoretical: If the
likelihood p(y | d) is log-concave in d, then the variational objective has a unique global
minimum, and we can guarantee that Algorithm 6.1 converges to this minimum [98]. The
second is numerical: Excepted for the probit likelihood, computing (6.7) is numerically
more stable than computing (6.6).

6.3.2 Updating the Approximate Posterior

The second step of Algorithm 6.1 (lines 8 and 9) solves the following problem, for every
feature m. Given Gaussian pseudo-observations {fimn,mn : 7 € Dy} and a Gaussian
prior p(s,,) = N(0, K,,), compute the posterior

q(8m) o< p(8m) H N(8man | ﬂmm&%m)'
nEDm

This computation can be done independently and in parallel for each feature m € [M].

A naive approach is to use the self-conjugacy properties of the Gaussian distribution
directly. Collecting the parameters of the pseudo-observations into a vector fi,, and a
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Figure 6.3 — State-space reformulation of our model. With respect to the representation
in Figure 6.1b, the number of latent variables has increased, but they now form a Markov
chain.

diagonal matrix 3,,, the parameters of the posterior ¢(s,,) are given by
Y, =K'+ 07w, =22 . (6.8)

Unfortunately, this computation runs in time O(N?2)), a cost that becomes prohibitive if
some features appear in many observations.

Instead, we use an alternative approach that exploits a link between temporal Gaussian
processes and state-space models [76, 154]. Without loss of generality, we now assume
that the IV observations are ordered chronologically, and, for conciseness, we drop the
feature’s index and consider a single process s(t). The key idea is to augment s(t) into a
K-dimensional vector-valued Gauss-Markov process §(t), such that

g(tn—i-l) = Ang(tn) + &n, En ~~ N(O’ Qn)

where K € N-g and A, @, € RX*K depend on the time interval |t, ;1 — t,| and on
the covariance function k(¢,t') of the original process s(t). The original (scalar-valued)
and the augmented (vector-valued) processes are related through the equation

s(t) = hTs(t),
where h € R¥ is called the measurement vector.

Figure 6.3 illustrates our model from a state-space viewpoint. It is important to note
that the mutual time dependencies of Figure 6.1b have been replaced by Markovian
dependencies. In this state-space formulation, posterior inference can be done in time
O(K3N) by using the Rauch-Tung-Striebel smoother [175].

From Covariance Functions to State-Space Models A method for converting a
process s(t) ~ GP[0, k(t,t’)] into an equivalent Gauss-Markov process §(t) by explicit
construction of h, {A,} and {@,} is given in Solin [168]. All the covariance functions
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described in Section 6.2.1 lead to exact state-space reformulations of order K < 3.
The composition of covariance functions through addition or multiplication can also
be treated exactly and automatically. Some other covariance functions, such as the
squared-exponential function or periodic functions [153], cannot be transformed exactly
but can be approximated effectively and to arbitrary accuracy [76, 169].

Finally, we stress that the state-space viewpoint is useful because it leads to a faster
inference procedure; but defining the time dynamics of the score processes in terms of
covariance functions is much more intuitive.

6.3.3 Predicting at a New Time

Given the approximate posterior ¢(s1, ..., Sy ), the probability of observing outcome y
at a new time t* given the feature vector x is given by

ply | @, ") = /R p(y | 2)p(2)dz,

where z = xTs(t*) and the distribution of s,,(t*) is derived from the posterior ¢(s,,). By
using the state-space formulation of the model, the prediction can be done in constant
time [160].

6.4 Experimental Results

In this section, we evaluate our model and inference algorithm on real data. Our experi-
ments cover three aspects. First, in Section 6.4.1, we compare the predictive performance
of our model against competing approaches, focusing on the impact of flexible time-
dynamics. Second, in Section 6.4.2, we show that by carefully choosing features and
observation likelihoods, predictive performance can be improved significantly. Finally,
in Section 6.4.3, we study various facets of our inference algorithm. We measure the
impact of the mean-field assumption and of the choice of variational objective, and we
demonstrate the scalability of the algorithm.

Datasets We consider six datasets of pairwise-comparison outcomes of various sports
and games. Four of them contain timestamped outcomes; they relate to tennis, basketball,
association football and chess. Due to the large size of the chess dataset?, we also
consider a subset of the data spanning 30 years. The two remaining datasets contain
match outcomes of the StarCraft computer game and do not have timestamps. Table 6.2

"This dataset consists of all the match outcomes contained in ChessBase Big Database 2018, available
at https://shop.chessbase.com/en/products/big_database_2018.
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Figure 6.4 — Temporal evolution of the score processes (u & o) corresponding to selected
basketball teams (top) and tennis players (bottom). The basketball teams are the Los
Angeles Lakers (LAL), the Chicago Bulls (CHI) and the Boston Celtics (BOS).

provides summary statistics for all the datasets. Except for chess, all data are publicly

available online®.

Performance Metrics Let (x,t*,y) be an observation. We measure performance by
using the logarithmic loss: —logp(y | @, t*) and the accuracy: 1{y:argmax oyl t7) ) We

y b
report their average values on the test set.

Methodology Unless specified otherwise, we partition every dataset into a training
set containing the first 70% of the observations and a test set containing the remaining
30%, in chronological order. The various hyperparameters (such as covariance functions
and their parameters, learning rates, etc.) are selected based on the training data only,
by maximizing the log-marginal likelihood of Bayesian models and by minimizing the
average leave-one-out log loss otherwise. In order to predict the outcome of an observation
at time t*, we use all the data (in both training and test sets) up to the day preceding t*.
This closely mimics the setting where a predictor must guess the outcome of an event in
the near future based on all past data. Unless specified otherwise, we use Algorithm 6.1

8Tennis: https://github.com/JeffSackmann/tennis_atp, basketball: https://projects.
fivethirtyeight.com/nba-model/nba_elo.csv, football: https://int.soccerway.com/, StarCraft:
https://github.com/csinpi/blade_chest.
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Table 6.2 — Summary statistics of the sports datasets.

Name Ties M N Time span
ATP tennis No 20046 618934 19912017
NBA basketball No 102 67642 1946-2018
World football Yes 235 19158 1908-2018

ChessBase small  Yes 19788 306764 1950-1980
ChessBase full Yes 343668 7169202 14752017

StarCraft WoL No 4381 61657 —
StarCraft HotS  No 2287 28582 —

with the EP variational objective, and we declare convergence when the improvement in
log-marginal likelihood falls below 1073, Typically, the algorithm converges in less than
a hundred iterations.

6.4.1 Flexible Time-Dynamics

In this experiment, we compare the predictive performance of our model against competing
approaches on four timestamped datasets. In order to better isolate and understand the
impact of accurately modeling time dynamics on predictive performance, we keep the
remaining modeling choices simple: we treat all outcomes as ordinal-valued (i.e., win,
loss and possibly tie) with a probit likelihood and use a one-to-one mapping between
competitors and features. In Table 6.3, we report results for the following models:

e Random. This baseline assigns equal probability to every outcome.

o (Constant. The model of Section 6.2 with a constant covariance function. This model
assumes that the scores do not vary over time.

e FElo. The system used by the World Chess Federation [53]. Time dynamics are a
by-product of the update rule (c.f. Section 6.5).

o TrueSkill. The Bayesian model of Herbrich et al. [82]. Time dynamics are assumed
to follow Brownian motion (akin to our Wiener kernel) and inference is done in a
single pass over the data.

e Kickscore. The model of Section 6.2. We try multiple covariance functions and
report the one that maximizes the log-marginal likelihood.

Our model matches or outperforms other approaches in almost all cases, both in terms
of log loss and in terms of accuracy. Interestingly, different datasets are best modeled by
using different covariance functions, perhaps capturing underlying skill dynamics specific
to each sport.
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Table 6.4 — Average predictive log loss of models with different observation likelihoods.
The best result is indicated in bold.

Dataset Probit Logit Gaussian Poisson

NBA basketball 0.630 0.630  0.627 0.630
World football 0.926 0.926 0.927 0.922

Visualizing and Interpreting Scores Figure 6.4 displays the temporal evolution of
the score of selected basketball teams and tennis players. In the basketball case, we can
recognize the dominance of the Boston Celtics in the early 1960’s and the Chicago Bulls’
strong 1995-96 season. In the tennis case, we can see the progression of a new generation
of tennis champions at the turn of the 215% century. Plotting scores over time provides an
effective way to compactly represent the history of a given sport. Analyzing the optimal
hyperparameters is also insightful: the characteristic timescale of the dynamic covariance
component is 1.75 and 7.47 years for basketball and tennis, respectively. The score of

basketball teams appears to be much more volatile.

6.4.2 Generality of the Model

In this section, we demonstrate how we can take advantage of additional modeling options
to further improve predictive performance. In particular, we show that choosing an
appropriate likelihood and parametrizing opponents with match-dependent combinations
of features can bring substantial gains.

Observation Models

Basketball and football match outcomes actually consist of points (respectively, goals)
scored by each team during the match. We can make use of this additional information to
improve predictions [117]. For each of the basketball and football datasets, we compare
the best model obtained in Section 6.4.1 to alternative models. These alternative models
keep the same time dynamics but use either

1. a logit likelihood on the ordinal outcome,
2. a Gaussian likelihood on the points difference, or
3. a Poisson-exp likelihood on the points scored by each team.
The results are presented in Table 6.4. The logit likelihood performs similarly to the

probit one [170], but likelihoods that take points into account can indeed lead to better
predictions.
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Table 6.5 — Predictive performance of models with a home or first-mover advantage in
comparison to models without.

Basic Advantage

Dataset Loss Acc. Loss Acc.

World football 0.926 0.558 0.900 0.579
ChessBase small 1.026 0.480 1.019 0.485

Match-Dependent Parametrization

For a given match, we can represent opponents by using (non-trivial) linear combinations
of features. This enables, e.g., to represent context-specific information that might
influence the outcome probabilities. In the case of football, for example, it is well-known
that a team playing at home has an advantage. Similarly, in the case of chess, playing
White results in a slight advantage. Table 6.5 displays the predictive performance achieved
by our model when the score of the home team (respectively, that of the opponent playing
White) is modeled by a linear combination of two features: the identity of the team or
player and an advantage feature. Including this additional feature improves performance
significantly, and we conclude that representing opponents in terms of match-dependent
combinations of features can be very useful in practice.

Capturing Intransitivity

Score-based models such as ours are sometimes believed to be unable to capture meaningful
intransitivities, such as those that arise in the “rock-paper-scissors” game [29]. This is
incorrect: if an opponent’s score can be modeled by using match-dependent features, we
can simply add an interaction feature for every pair of opponents. In the next experiment,
we model the score difference between two opponents ¢, j as d = s; — s; + s;;. Informally,
the model learns to explain the transitive effects through the usual player scores s; and
sj and the remaining intransitive effects are captured by the interaction score s;;. We
compare this model to the Blade-Chest model of Chen and Joachims [29] on the two
StarCraft datasets, known to contain strong intransitivities. The Blade-Chest model
is specifically designed to handle intransitivities in comparison data. We also include
two baselines, a simple Bradley—Terry model without the interaction features (logit)
and a non-parametric estimator (naive) that estimates probabilities based on match
outcomes between each pair—without attempting to capture transitive effects. As shown
in Figure 6.5, our model outperforms all other approaches, including the Blade-Chest
model.
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StarCraft HotS StarCraft WoL
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Figure 6.5 — Average log loss of four models (Bradley—Terry, naive, blade-chest, and
Kickscore) on the StarCraft datasets.

6.4.3 Inference Algorithm

We turn our attention to the inference algorithm and study the impact of several imple-
mentation choices. We start by quantifying the impact of the mean-field assumption (6.4)
and of the choice of variational objective on predictive performance. Then, we demonstrate
the scalability of the algorithm on the ChessBase dataset and measure the acceleration
obtained by parallelizing the algorithm.

Mean-Field Approximation

In order to gain understanding on the impact of the factorization assumption in (6.4),
we devise the following experiment. We consider a small subset of the basketball data
containing all matches between 2000 and 2005 (N = 6382, M = 32). We evaluate the
predictive performance on each week of the last season by using all the matches prior to
the test week as training data. Our model uses a one-to-one mapping between teams and
features, a constant + Matérn 1/2 covariance function, and a Gaussian likelihood on the
points difference.

We compare the predictive performance resulting from two inference variants, (a) mean—
field approximate inference, i.e., Algorithm 6.1, and (b) ezact posterior inference®. Both
approaches lead to an average log loss of 0.634 and an average accuracy of 0.664. Strik-
ingly, both values are equal up to four decimal places, suggesting that the mean-field
assumption is benign in practice [13].

9This is possible for this particular choice of likelihood thanks to the self-conjugacy of the Gaussian
distribution, but at a computational cost O(N?).
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Time per iteration
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Figure 6.6 — Running time per iteration of a multithreaded implementation of Algo-
rithm 6.1 on the ChessBase full dataset, containing over 7 million observations.

Variational Objective

Next, we study the influence of the variational method. We re-run the experiments of
Section 6.4.1, this time by using the reverse-KL objective instead of EP. The predictive
performance in terms of average log loss and average accuracy is equal to the EP case
(Table 6.3, last three columns) up to three decimal places, for all four datasets. Hence,
the variational objective seems to have little practical impact on predictive performance.
As such, we recommend using the reverse-KL objective for likelihoods whose log-partition
function (6.6) cannot be computed in closed form, as the numerical integration of the
expected log-likelihood (6.7) is generally more stable.

Scalability

Finally, we demonstrate the scalability of our inference algorithm by training a model
on the full ChessBase dataset, containing over 7 million observations. We implement
a multithreaded version of Algorithm 6.1 in the Go programming language'® and run
the inference computation on a machine containing two 12-core Intel Xeon E5-2680 v3
(Haswell generation) processors clocked at 2.5 GHz. Figure 6.6 displays the running time
per iteration as function of the number of worker threads. By using 16 threads, we need
only slightly over 5 seconds per iteration.

0The code is available at https://github.com/lucasmaystre/gokick.
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6.5 Related Work

As described in Section 1.2, probabilistic models for pairwise comparisons have been
studied for almost a century. Thurstone [179] proposed his seminal law of comparative
judgment in the context of psychology. Almost concurrently, Zermelo [206] developed a
method to rank chess players from match outcomes. Both rely on the same idea: objects
are characterized by a latent score (e.g., the intrinsic quality of a perceptual variable, or
a chess player’s skill) and the outcomes of comparisons between objects depend on the
difference between the corresponding latent scores. Zermelo’s model was later rediscovered
by Bradley and Terry [19] and is currently usually referred to as the Bradley—Terry model.
Stern [170] provides a unifying framework and shows that, in practice, Thurstone’s and
Zermelo’s models result in similar fits to the data. In the context of sports, some authors
suggest going beyond ordinal outcomes and investigate pairwise-comparison models with
Gaussian [72], Poisson [117, 72], or Skellam [96] likelihoods.

In many applications of practical interest, comparison outcomes tend to vary over time.
In chess, for example, this is due to the skill of players changing over time. The World
Chess Federation, which uses a variant of the Bradley—Terry model to rank players,
updates player scores after each match by using a stochastic gradient update:

S; — 8; + /\a(zi logp(y | si — s5),
where A € R is a learning rate. It is interesting that this simple online update scheme
(known as the Elo rating system [53]) enables a basic form of “tracking”: the sequence of
scores gives an indication of a player’s evolution over time. Whereas, in this case, score
dynamics occur as a by-product of the learning rule, several attempts have been made
to model time dynamics explicitly. Usually, these models assume a variant of Brownian
motion:

S(tny1) = s(tn) + €n, en ~ N(0,0%tns1 — tnl). (6.9)

Glickman [65] and Fahrmeir and Tutz [56] are, to the best of our knowledge, the first
to consider such a model. Glickman [66] derives a computationally-efficient Bayesian
inference method by using closed-form approximations of intractable integrals. Herbrich
et al. [82] and Dangauthier et al. [42] propose a similar method based on Gaussian
filtering and expectation propagation, respectively. Coulom [41] proposes a method based
on the Laplace approximation. Our model strictly subsumes these approaches; Brownian
motion is simply a special case of our model obtained by using the Wiener kernel. One
of the key contributions of our work is to show that it is not necessary to restrict the
dynamics to Brownian motion in order to get linear-time inference.

Finally, we briefly review literature on the link between Gaussian processes (GPs) with
scalar inputs and state-space models (SSMs), as this forms a crucial component of
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our fast inference procedure. Excellent introductions to this link can be found in the
theses of Saatgi [160] and Solin [168]. The connection is known since the seminal paper
of O’'Hagan [142], which introduced Gaussian processes as a method to tackle general
regression problems. It was recently revisited by Hartikainen and Sarkké [76], who
provide formulae for going back-and-forth between GP covariance and state-space forms.
Extensions of this link to non-Gaussian likelihood models are discussed in Saatci [160]
and Nickisch et al. [138]. To the best of our knowledge, we are the first to describe how
the link between GPs and SSMs can be used in the context of observation models that
combine multiple processes, by using a mean-field variational approximation.

6.6 Summary

We have presented, Kickscore, a probabilistic model of pairwise comparison outcomes
that can capture a wide range of temporal dynamics. This model reaches state-of-the-art
predictive performance on several sports datasets, and it enables generating visualizations
that help in understanding comparison time-series. To fit our model, we have derived
a computationally efficient approximate Bayesian inference algorithm. To the best of
our knowledge, our algorithm is the first linear-time Bayesian inference algorithm for
dynamic pairwise comparison models that minimizes the reverse-KL divergence.

Perspective One of the strengths of our approach is that it enables to discover the
structure of the time dynamics by comparing the log-marginal likelihood of the data under
various choices of covariance functions. In the future, we would like to fully automatize
this discovery process, in the spirit of the automatic statistician [50]. Ideally, given only
the comparison data, we should be able to systematically discover the time dynamics that
best explain the data, and generate an interpretable description of the corresponding
covariance functions.
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rd Conclusion

In this thesis, we have answered specific questions about social processes from a machine-
learning and data-mining viewpoint. In order to propose predictive models that enable
interpretation through the learned parameters, we have built upon the literature on
discrete-choice models, which we have combined with latent-factor models, Bayesian
statistics, and generalized linear models. We have demonstrated that discrete-choice
analysis offers a principled and powerful approach to modeling social processes, as making
choices is inherent in human behaviour.

In Chapter 2, we have studied the social dynamics behind group collaborations for
the collective creation of content, such as in Wikipedia and the Linux kernel. We have
proposed a new discrete-choice model inspired from the Bradley-Terry and Rasch models,
which incorporates ideas from collaborative filtering. The model enables us to identify
controversial Wikipedia articles and core Linux components that are crucial to the system.
We have improved the predictive performance by including latent factors, which in turn
have helped us understand how users edit some Wikipedia articles: They are either
“experts” in popular culture or in high culture, but not both.

In Chapter 3, we have studied, through the lens of peer-production systems, the law-
making process in the European Union. To capture the conflictive structure inherent in
this process, we have designed a model inspired from the multinomial logit and Rasch
models, which we have enhanced with natural language processing techniques. We have
quantified the controversy of laws and proposed intuitive visualizations by representing
each law as the conflict graph of its edits. We have also identified features of the edits
that correlate with a higher probability of acceptance: For example, inserting short
edits, providing a justification for the change, deleting “human rights”, and having the
parliamentarian in charge of the law sponsor the edit are all factors that contribute to
acceptance.

In Chapter 4, we have developed an algorithm that combines matrix factorization and
generalized linear models for predicting the popular vote of elections and referenda from
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partial, regional results. This algorithm learns representations of votes and regions to
capture ideological and cultural voting patterns (e.g., rural/urban, liberal/conservative,
etc.). Its predictions are also accurate: In Switzerland, for example, it is able to predict
referendum votes with an accuracy of 99% and a mean absolute error of less than 1%
using only 5% of the results observed in municipalities. We have deployed our algorithm
on a Web platform to make real-time predictions for referenda in Switzerland.

In Chapter 5, we have studied how people perceive the carbon footprint of their day-
to-day actions. We have cast this problem as a comparison problem between pairs
of actions (e.g., between intercontinental flights and using household appliances) and
developed a statistical model of relative comparisons reminiscent of the Thurstone model
in psychometrics. The model learns users’ perception as the parameters of a Bayesian
linear regression, which enables us to derive an active-learning algorithm to select the
optimal pairs of actions to probe. Because no suitable data existed for answering these
questions, we built a Web interface to collect comparison data from students on our
university campus. Our results show that users tend to overestimate actions with low
carbon footprint and underestimate actions with high carbon footprint.

Finally, in Chapter 6, we have developed a dynamic choice-model that enables the
parameters to vary over time. We achieve this by replacing the static parameters by
continuous-time Gaussian processes. We have also developed an efficient inference algo-
rithm that computes an approximate Bayesian posterior distribution in a few linear-time
iterations over the data. We have shown experimentally on several datasets of (e-)sports
that this model outperforms competing approaches in terms of predictive performance,
scales to millions of observations, and generates compelling visualizations of the parame-
ters’ dynamics. We have deployed our approach as a real-world application on the Web
for predicting football matches in European leagues and international competitions.

Ethical Considerations Studying human behavior and addressing social problems
from a computational viewpoint induces a risk of abuse. This is especially true for political
processes, as popularized by the infamous scandal of Cambridge Analytica in 2016. After
submitting our paper [105] forming the basis of Chapter 3 to the Web Conference 2021,
one anonymous reviewer expressed concerns regarding the use of machine learning for
making decisions in law making, and whether our findings in Section 3.6 could help
adversarial attacks. We answer to such concerns by precising that we do not propose to
rely on our models for making decisions, such as whether an edit should be accepted or
not. Our goal is to understand the factors correlated with the acceptance of edits, and
thereby gain insights into the law-making processes. These correlations do not imply a
causal relationship that would benefit potential adversarial attackers. Nevertheless, even
if such a relationship were to exist, we prefer that these findings are published in an open
research community, where possible countermeasures to such attacks could be thought of
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for the public good, rather than them being discovered by a company or an influence
group that might use them in an opaque manner to push private interests.

Our vote prediction algorithm of Chapter 4 also triggered private concerns regarding its
potential effect on the final outcome. If voters see early predictions of the outcome of an
election or referendum, will they decide not to vote at all (if the prediction is in their
favor) or, on the contrary, will they encourage more people to do so in order to swing the
result (if the prediction goes against their preference)? In the political science literature
on election forecasting, this is referred to as the bandwagon and the underdog effects,
respectively,and it is unclear which one prevails. However, a recent paper that studies the
effect of probabilistic forecasting in the 2016 U.S. election concludes that “forecasting
can fundamentally alter the information environment available to potential voters, with
the potential to change the outcome of elections” [194]. For that reason, some countries,
such as France, Spain, Italy, and Canada, enforce election silence: Polling and political
campaigning (including predictions) are forbidden some time prior to the voting day to
prevent influencing voting behavior and election outcome. In Switzerland, where no such
policy is implemented, voting offices close at 12:00pm on the Sunday of the vote. Our
predictions are made during ballot counting, which takes a few hours and starts only
when voting has closed everywhere. Hence, our predictions cannot influence the voting
behavior, because it is impossible to vote when our predictions are made public.

Perspective on Interpretability and Causality In the most machine-learning
fashion, the results of this thesis rely on correlations between features and predicted
outputs. For example, in Chapter 3, we uncover features of law edits that correlate well
with higher probability of acceptance. While these findings enable us to shed light on the
problems we address, they could be made stronger by taking a causal inference perspective.
In particular, a rigorous evaluation of potential confounding factors would reinforce our
statistical models and conclusions. For example, in Chapter 3, controversy might be a
confounding factor: Many edits might be rejected because the laws are controversial, but
controversy is also modeled as a parameter of the law proposals. Causal inference and
reasoning is rapidly expanding in the machine-learning community. Discovering causal
relationships in the problems addressed in this thesis could be used to derive new insights
and to develop our methods further.

Perspective on Methodological Uncertainties By definition, computational mod-
els are approximate representations of (complex) realities. Human behaviour, in particular,
is uncertain by essence, and models of social processes are only as good as the datasets
they rely on. In the presence of noisy data, it becomes crucial to quantify uncertainty and
propagate it through parameter estimation. This enables a model to provide predictive
distributions rather than point-wise predictions. Bayesian inference offers a principled
approach to achieve uncertainty quantification and propagation. In this work, we have
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relied on such methods only in Chapter 6 and, to some extent, in Chapter 5. We believe
that the other chapters, and the SUBSVD-GLM algorithm of Chapter 4 in particular,
would benefit from Bayesian inference to provide more informative and robust predictions.

The discrete-choice models on which the present work is based, such as the Bradley-Terry,
the Thurstone, and the multinomial logit models, are subject to structural uncertainty
because they assume that the alternatives in the choice set are independent. Clearly, this
strong assumption might limit the depth of some analyses. Resorting to models that
encode dependencies between alternatives offers a natural and promising direction to
further exploit the structure of the problems at hand. For example, the mixed logit, nested
logit, and multinomial probit models all enable this by encoding correlations through
the joint distribution of the noise model (see Section 1.2). To the best of our knowledge,
combining matrix factorization techniques with these models has not yet been explored
and opens up fascinating research directions that could lead to new methodologies in
discrete-choice analysis and preference learning.

Perspective on Socio-Environmental Processes This thesis is written at a time
when the global political spectrum is more polarized than ever and in a society that faces
the grand environmental challenges of climate change and biodiversity loss. Although
currently being mostly part of the problem, computer science and machine-learning
algorithms can become part of the solution. Impactful policies require ambitious target
setting and effective implementation. They require combining (1) top-down processes, i.e.,
how policy-makers shape laws, and (2) bottom-up processes, i.e., how individuals make
choices in their daily life. For (1), machine-learning methods can help to discover influence
networks and lobbying activities in political processes. For (2), understanding how people
make choices and change their opinions over time gives a starting point to bridge the
gap between policy and implementation. Processing large-scale datasets of legal texts,
parliamentary speeches, and social media activities with recent methods in language
modeling, latent-factor models, and network science offers a promising direction to study
the hidden influence processes and to understand people’s behaviour in law-making and
political participation. Monitoring societal currents and making the results available to
the general public can increase transparency into political processes and help shape fair,
ethical, and effective policies.

A Call for Interdisciplinary Research Tackling social-science problems from a
machine-learning perspective gave us the advantage of agnostic analyses, but sometimes
at the expense of some limitation in the analysis. Indeed, collaborating with political
scientists, economists, psychologists, sociologists, climate scientists, and ecologists would
provide expert knowledge to strengthen our findings. As computer science increasingly
percolates through other scientific domains, computational methods are often used only as
a means to an end, rather than as a source of innovative approaches and fresh viewpoints.
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Interdisciplinary research can act as an effective catalyst for scientific progress, as major
breakthroughs often take place by crossing ideas from different fields. For example, the
sequencing of the human genome in the 1990s required the collective efforts of physicists,
chemists, biologists, and computer scientists. Today, at a time when conspiracy theories
disseminate doubt and threaten the acceptance of facts, interdisciplinary research could
restore trust in science by reinforcing the credibility of scientific results and enhancing
their scope. Only synergistic collaborations with other fields will enable computer science
to unleash its true potential for transformative societal good.

119






N Appendix

A.1 Predikon

To make the research presented in Chapter 4 available to the general public, we developed
Predikon !, a website predicting Swiss referendum votes in real time. Four times a year,
Swiss citizens are called to vote on referenda and popular initiatives. They can send their
ballot remotely or come to the ballot office, on the date of the vote, to deposit it. Then,
starting at 12pm, officials in Swiss municipalities start counting the ballots and report
the results as soon as they finish. We make predictions using the partial national results,
i.e., using only the results in the municipalities that are done counting and have reported
their results. In Figure A.1, the homepage of Predikon shows the predictions in real time
for current votes and those of past votes. We built an interactive tool to visualize the
projections of the municipalities in the latent ideological space of Section 4.3.2, with
PCA (see Figure A.2) and t-SNE (see Figure A.3).

A.2 Climpact

A.2.1 Web Platform

To collect data about people’s perception from real users, we built the Climpact platform
and opened it for students on our university campus. Users answers questions in a quiz
that asks them to compare pairs of actions. They answer in relative terms, i.e., they
indicate the relative order of magnitude between two actions, as shown in Figure A.4.
Once the quiz is finished, they have access to their answers that they can compare
against the correct values (see Figure A.5. Each action has its own page, and we display
the perceived carbon footprint and the true values of several actions on one plot (see
Figure A.6.

"https://www.predikon.ch
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Figure A.5 — After the quiz, users can compare their answers with the correct ones.

A.2.2 List of Actions

We provide here the full list of actions, together with the true carbon footprint associated
with each of them. Because different countries use different sources of energy, we calculate
the carbon footprint relative to the country where our university is located. The actions
are ordered according to their true carbon footprint.

1. Take the train in economy class on a 1000-km round-trip.
The train is a high-speed train with 360 seats. The seat-occupancy rate is 55%
(average rate for these types of trains). We count the CO9 emissions per passenger.
Carbon footprint: 17 kgCOs-equivalent.

2. Dry your clothes with a dryer for one year.
A dryer emits CO5 because it consumes electricity. We consider a dryer of average
quality. The electricity is consumed from a grid with average COs rate.
Carbon footprint: 40 kgCOs-equivalent.

3. Light your house with LED bulbs.
LED bulbs emit CO2 because they consume electricity to generate light. The
electricity is consumed from a grid with average COs rate.
Carbon footprint: 40 kgCOs-equivalent.
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Figure A.6 — Each action has a page, where the perceive value for this action and the
true values are displayed on a plot and compared with other actions.
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10.

11.
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. Take the bus on a 1000-km round-trip.

The bus is a standard-size bus with 60 seats. The seat-occupancy rate is 50%
(average rate for buses). We count the CO2 emissions per passenger.
Carbon footprint: 45 kgCOs-equivalent.

. Drive an electric car alone on a 1000-km round-trip.

The car is a compact electric car that consumes 15 kWh/100km. The electricity is
consumed from a grid with average CO9 rate. There are no other passengers in the
car. We count the COg emissions per passenger.

Carbon footprint: 45 kgCOs-equivalent.

. Car-share with three other persons on a 1000-km round-trip.

The car is a mid-sized gasoline car that consumes 7 1/100km. There are four persons
in the car. We count the CO9 emissions per passenger.
Carbon footprint: 75 kgCOs-equivalent.

Eat local and seasonal fruits and vegetables for one year.

Growing food emits COgy because it requires fertilizing and driving agricultural
machines. The goods are then transported to grocery shops and to your home.
Carbon footprint: 89 kgCOs-equivalent.

. Eat eggs and dairy products for one year.

The production of eggs and dairy products (milk, cheese, etc.) emits CO2 because
of water and land consumption, animal methane, and fossil fuel consumption for
transportation and heating. We consider an average citizen consuming 50 kg of
eggs and dairy products per year.

Carbon footprint: 100 kgCOs-equivalent.

. Throw all waste in the same trash for one year.

Throwing all waste (PET, glass, cardboard, etc.) in the same trash, i.e., without
recycling, emits CO9 because more energy is needed to extract, transport, and
process raw materials. Incinerators also burn more waste, and organic waste de-
composition generates methane.

Carbon footprint: 200 kgCO3z-equivalent.

Light your house with incandescent bulbs.

Incandescent bulbs emit CO9 because they consume electricity to generate light.
The electricity is consumed from a grid with average COs rate.

Carbon footprint: 239 kgCOs-equivalent.

Fly in economy class for a 800-km round-trip.

The plane is a standard aircraft for short-distance flights with 180 seats. The
seat-occupancy rate is 80%. We count the COy emissions per passenger.

Carbon footprint: 270 kgCOs-equivalent.
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12.

13.

14.

15.

16.

17.

18.

Drive alone for a 1000-km round-trip.

The car is a mid-sized gasoline car that consumes 7 1/100km. There are no other
passengers in the car. We count the COy emissions per passenger.

Carbon footprint: 300 kgCOs-equivalent.

Heat your house with a heat pump for one year.

A heat pump emits CO2 because it consumes electricity to generate heat. The
house is of average size. The electricity is consumed from a grid with average CO»
rate.

Carbon footprint: 400 kgCOz-equivalent.

Eat imported and out-of-season fruits and vegetables for one year.
Growing food emits CO2 because it requires fertilizing and driving agricultural
machines. Importing food emits CO2 because of fossil fuel consumption for trans-
portation. Out-of-season food emits COs because it grows in greenhouse that needs
to be heated. The goods are then transported to grocery shops and to your home.
Carbon footprint: 449 kgCOz-equivalent.

Eat meat for one year.

Meat production emits COs because of water and land consumption, animal
methane, and fossil fuel consumption for transportation and heating. We consider
an average citizen consuming 50 kg of meat per year.

Carbon footprint: 800 kgCOs-equivalent.

Fly in economy class for a 12000-km round-trip.

The plane is a standard aircraft for long-distance flights with 390 seats. The seat-
occupancy rate is close to 100%. We count the CO4 emissions per passenger.
Carbon footprint: 2300 kgCOs-equivalent.

Heat your house with an oil furnace for one year.

An oil furnace emits COs because it burns fuel to generate heat. The house is of
average size.

Carbon footprint: 3300 kgCOs-equivalent.

Fly in first class for a 12000-km round-trip.

The plane is a standard aircraft for long-distance flights with 390 seats. The
seat-occupancy rate is close to 100%. We count the CO5 emissions per passenger.
Passengers flying in first class use more space than passengers in economy.
Carbon footprint: 9000 kgCOs-equivalent.

A.3 Kickoff.ai

We built Kickoff.ai to predict football matches from the top-5 European leagues (France,

Spain, Italy, England, and Germany) and two international competitions (European
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Figure A.7 — Home page of Kickoff.ai that shows the predictions for upcoming matches.

Championship and World Cup). Our predictions use the Kickscore model of Chapter 6.
We provide a predicted probability for the victory of Team A, of Team B, or a draw (see
Figure A.7). Each match has its own page, own which we display the learned latent skills
of the two teams (see Figure A.8.
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Figure A.8 — Each match has a page, where we show a visualization of the latent skill of
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