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ABSTRACT

We present a systematic search for wide-separation (with Einstein radius θE & 1.5′′), galaxy-scale strong lenses in the 30 000 deg2 of
the Pan-STARRS 3π survey on the Northern sky. With long time delays of a few days to weeks, these types of systems are particularly
well-suited for catching strongly lensed supernovae with spatially-resolved multiple images and offer new insights on early-phase
supernova spectroscopy and cosmography. We produced a set of realistic simulations by painting lensed COSMOS sources on Pan-
STARRS image cutouts of lens luminous red galaxies (LRGs) with redshift and velocity dispersion known from the sloan digital sky
survey (SDSS). First, we computed the photometry of mock lenses in gri bands and applied a simple catalog-level neural network to
identify a sample of 1 050 207 galaxies with similar colors and magnitudes as the mocks. Second, we trained a convolutional neural
network (CNN) on Pan-STARRS gri image cutouts to classify this sample and obtain sets of 105 760 and 12 382 lens candidates
with scores of pCNN > 0.5 and > 0.9, respectively. Extensive tests showed that CNN performances rely heavily on the design of lens
simulations and the choice of negative examples for training, but little on the network architecture. The CNN correctly classified 14
out of 16 test lenses, which are previously confirmed lens systems above the detection limit of Pan-STARRS. Finally, we visually
inspected all galaxies with pCNN > 0.9 to assemble a final set of 330 high-quality newly-discovered lens candidates while recovering
23 published systems. For a subset, SDSS spectroscopy on the lens central regions proves that our method correctly identifies lens
LRGs at z ∼ 0.1–0.7. Five spectra also show robust signatures of high-redshift background sources, and Pan-STARRS imaging
confirms one of them as a quadruply-imaged red source at zs = 1.185, which is likely a recently quenched galaxy strongly lensed
by a foreground LRG at zd = 0.3155. In the future, high-resolution imaging and spectroscopic follow-up will be required to validate
Pan-STARRS lens candidates and derive strong lensing models. We also expect that the efficient and automated two-step classification
method presented in this paper will be applicable to the ∼4 mag deeper gri stacks from the Rubin Observatory Legacy Survey of Space
and Time (LSST) with minor adjustments.
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1. Introduction

Strongly lensed systems with time-variable sources provide
competitive probes of the Hubble constant H0, which are
independent of cosmic microwave background (CMB) obser-
vations (Planck Collaboration VI 2020) and the local distance
ladder (Riess et al. 2019; Freedman et al. 2019, 2020), and
allow one to assess the significance of the current H0 tension.
The COSmological MOnitoring of GRAvitational Lenses (COS-
MOGRAIL) and H0 Lenses in COSMOGRAIL’s Wellspring
(H0LiCOW) projects (e.g., Suyu et al. 2017; Courbin et al. 2018)
have recently established the capacity of combining time-delay
measurements and robust strong lensing models to constrain H0

? Full Table 1 is only available at the CDS via anonymous ftp
to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.
u-strasbg.fr/viz-bin/cat/J/A+A/644/A163

and measured H0 = 73.3+1.7
−1.8 km s−1 Mpc−1 in flat Lambda cold

dark matter (ΛCDM) cosmology using six lensed quasars (Wong
et al. 2020). The seventh lens has been analyzed by the STRong
lensing Insights into the Dark Energy Survey (STRIDES) col-
laboration (Shajib et al. 2020; Buckley-Geer et al. 2020), and a
detailed study of systematic effects is presented by Millon et al.
(2020) as part of the Time-Delay COSMOgraphy (TDCOSMO)
organization. Moreover, the first two strongly lensed super-
novae (SNe) with spatially-resolved multiple images have been
detected in recent years; one core-collapse SN was found behind
the strong lensing cluster MACS J1149.5+222.3 (SN Refsdal,
Kelly et al. 2015), and one type Ia SN was found behind an
isolated lens galaxy (iPTF16geu, Goobar et al. 2017). These
findings open new perspectives on future H0 measurements
with lensed SNe. These types of systems are indeed well-suited
for time-delay measurements given the smooth, nonerratic SNe
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light curves which require shorter high-cadence monitoring than
lensed quasars, and the possibility of reducing microlensing
effects by focusing on the early, achromatic expansion phase a
few weeks after explosion, and by using color light curves (Suyu
et al. 2020; Huber et al. 2019, and in prep.; Bonvin et al. 2019;
Goldstein et al. 2018). For lensed type Ia SNe, the standardizable
intrinsic peak luminosity of the source is also a valuable input for
breaking the mass-sheet degeneracy in lens mass models (Falco
et al. 1985). Constraints on H0 have already been derived with
SN Refsdal (Grillo et al. 2018, 2020) and they illustrate the great
potential of such measurements, in particular for galaxy-scale
strong lens systems that have simpler lens mass distributions
than galaxy clusters. Lensed SNe with adequate image separa-
tions providing time delays of a few days to weeks are particu-
larly promising and are relatively less sensitive to microlensing
effects (Suyu et al. 2020; Huber et al. 2019).

In addition to precise measurements of the Hubble constant,
strongly lensed SNe are promising as they allow for early-phase
SN studies. Multiply-imaged SNe detected from the first image
can be combined with strong lensing models to predict the time
delays and future SN reappearance, as was done for SN Refs-
dal, in order to trigger follow-up observations within a few
days of explosion. This is currently not feasible for unlensed
SNe beyond the local Universe due to their late discovery near
peak luminosity. Such early-phase studies are particularly valu-
able when tackling the progenitor problem of type Ia SNe and
disentangling the single-degenerate (Whelan & Iben 1973),
double-degenerate (Tutukov & Yungelson 1981), and addi-
tional scenarios that have been extensively debated over the last
decades. For core-collapse SNe, these observations are impor-
tant in order to characterize the progenitor properties and com-
pare them with current stellar evolution models. Early-phase
spectroscopy of type II SNe would yield novel constraints on
the mass-loss history just before explosion.

We recently initiated the Highly Optimized Lensing Investi-
gations of Supernovae, Microlensing Objects, and Kinematics of
Ellipticals and Spirals (HOLISMOKES, Suyu et al. 2020) pro-
gram to address these fundamental questions on stellar physics
and cosmology. The number of strongly lensed SNe is expected
to grow over the next few years, thanks to the on-going Zwicky
Transient Facility (ZTF, Masci et al. 2019) high-cadence sur-
vey on the Northern Hemisphere and the forthcoming Rubin
Observatory Legacy Survey of Space and Time (LSST, Ivezić
et al. 2019) on the South. Oguri & Marshall (2010) predict 45
strongly lensed type Ia SNe over the ten years of LSST, which
corresponds to a few events for the shallower ZTF survey. This
assumes a selection from spatially-resolved multiple images tar-
geting the most useful wide-separation systems. Using comple-
mentary selection techniques solely based on magnification of
SN Ia light curves, Goldstein & Nugent (2017) predict ten to 20
times more lensed SN Ia albeit mostly with small image sep-
arations (see also Wojtak et al. 2019). Importantly, new lensed
SNe candidates have to be selected early enough to start the
follow-up sequence in a timely manner. One way is to extend
the numerous, successful searches of galaxy-scale strong lenses
that were traditionally conducted on surveys with optimal image
quality (e.g., More et al. 2016; Sonnenfeld et al. 2018), to sur-
veys with largest sky coverage, in order to quickly identify
transients matching the position of background lensed sources.
Ultimately, these lens finding pipelines will be directly applica-
ble to the deep LSST stacks which are expected to yield approx-
imately a hundred thousand new systems (Collett 2015).

Galaxy-scale strong gravitational lenses without time-
variable sources also provide valuable insights into the lens

total mass distributions, including the inner dark-matter fractions
(e.g., Gavazzi et al. 2007; Grillo et al. 2009; Sonnenfeld et al.
2015; Schuldt et al. 2019), the slopes of the total and dark-matter
mass density profiles (e.g., Treu & Koopmans 2002; Koopmans
et al. 2009; Barnabè et al. 2011; Shu et al. 2015), and the spatial
extent of dark-matter halos (e.g., Halkola et al. 2007; Suyu &
Halkola 2010). Such systems play a crucial role in characteriz-
ing the lens stellar initial mass function (IMF), a major ingredi-
ent for stellar mass estimates, as a function of galaxy physical
properties (e.g., Cañameras et al. 2017a; Barnabè et al. 2013;
Sonnenfeld et al. 2019), and they are well-suited to search for
dark-matter substructures (e.g., Vegetti et al. 2012; Hezaveh
et al. 2016; Ritondale et al. 2019). Moreover, high magnifica-
tion factors provide unique diagnostics on the local interstellar
medium physical conditions in lensed high-redshift galaxies and
on the local feedback mechanisms driving their evolution (e.g.,
Danielson et al. 2011; Cañameras et al. 2017b; Cava et al. 2018).

Strong lensing events are rare, about one in 1000 for high-
resolution space-based imaging (e.g., Marshall et al. 2009) and
down to about one in 105 for seeing-limited ground-based data
(e.g., Jacobs et al. 2019a). Thus, their identification requires ded-
icated and automated methods. For instance, arc-finder algo-
rithms (e.g., Gavazzi et al. 2014; Sonnenfeld et al. 2018) and
citizen-science classification projects (Space Warps, Marshall
et al. 2016) have been developed over the last decade. In
particular, convolutional neural networks (CNNs) are super-
vised machine-learning algorithms optimized to image analy-
sis (LeCun et al. 1998) that have proven to outperform other
classification techniques and that require little preprocessing.
They are very efficient to peer into large imaging data sets
and have been increasingly used in the field of astronomy over
the last five years. These studies have established the ability
of CNNs in recognizing galaxy morphologies (Dieleman et al.
2015), including the key features of strong gravitational lenses
(Metcalf et al. 2019). Several CNN searches for new strong lens
candidates have focused on ground-based imaging data, from the
CFHTLS (Jacobs et al. 2017), KiDS DR3 (Petrillo et al. 2017)
and DR4 (Petrillo et al. 2019; Li et al. 2020), DES Year 3 (Jacobs
et al. 2019b,a), or the DESI DECam Legacy survey (Huang
et al. 2020a). Efficient classification pipelines using deep neu-
ral networks have also been developed and tested on simulated
Euclid and LSST images to prepare for these forthcoming sur-
veys which will tremendously increase the number of detectable
strong lensing systems (Lanusse et al. 2018; Schaefer et al. 2018;
Davies et al. 2019; Cheng et al. 2020; Avestruz et al. 2019).

In the meantime, no systematic searches of galaxy-galaxy
strong lenses have so far taken advantage of the Pan-STARRS
imaging covering the entire Northern sky. With this survey,
Berghea et al. (2017) identified a strongly lensed QSO forming a
quadruple system by cross-matching the position of a variable
AGN selected in the mid-infrared. More recently, Rusu et al.
(2019) performed a more systematic search of lensed QSOs by
applying color and magnitude cuts and visually inspecting Pan-
STARRS image cutouts of AGN candidates from the Wide-field
Infrared Survey Explorer (Secrest et al. 2015). In this paper, we
perform a comprehensive search for galaxy-scale strong lensing
systems with luminous red galaxies (LRGs) as deflectors and
typical high-redshift galaxies as background sources, using the
extended footprint of nearly 30 000 deg2 of the Pan-STARRS 3π
survey on the Northern sky. The automated pipeline, based on a
catalog-level preselection of galaxies and a convolutional neural
network, results in a ranked list of candidates which we further
inspect visually to select those with higher confidence for spec-
troscopic follow-up.
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The outline of the paper is as follows. In Sects. 2 and 3,
we give a short overview of the Pan-STARRS surveys and the
overall search methodology and, in Sect. 4, we describe the sim-
ulation of strong lenses. In Sect. 5, we present the networks
and training processes, and we extensively test the CNN per-
formance. In Sect. 6 we finally apply the CNN to preselected
Pan-STARRS image cutouts, provide the list of strong lens can-
didates from visual inspection, and characterize their overall
properties. Our main conclusions appear in Sect. 7. Through-
out this work, we adopt the flat concordant ΛCDM cosmology
with ΩM = 0.308, and ΩΛ = 1 − ΩM (Planck Collaboration XIII
2016), and with H0 = 72 km s−1 Mpc−1 (Bonvin et al. 2017).

2. The Pan-STARRS1 survey

The Pan-STARRS1 (PS1) surveys were conducted with a 7 deg2

field-of-view camera mounted on a 1.8 m telescope near the
Haleakala summit, Hawaii, in the five broadband grizy filters
(Chambers et al. 2016) similar to those from the sloan digital
sky survey (SDSS). The camera has a pixel size of 0.258′′ pix−1

(Tonry & Onaka 2009). PS1 includes both the 3π and Medium
Deep surveys. The former was completed in 2014 and made pub-
licly available in DR1 and DR2. It covers 30 000 deg2 on the
Northern sky down to −30 deg in the five grizy filters with a
depth of 21–23 mag. The median seeing FWHM is 1.31′′, 1.19′′,
and 1.11′′ in g, r, and i bands, respectively, but reaches >1.60′′,
>1.45′′, and >1.35′′ over 20% of the footprint (Chambers et al.
2016). The Medium Deep survey consists of ten fields covering
a total of 70 deg2, with multiple visits in five filters optimized for
transient detection. The few hundred exposures will eventually
provide deep stacks with 5σ point source detection limits down
to i ∼ 26.0 mag and will be available in DR3.

We performed our search on the entire Northern sky with
the 3π survey that overlaps nicely with on-going optical time-
domain surveys on the Northern Hemisphere (e.g., ZTF, Masci
et al. 2019) which provide a wealth of astronomical transients,
including strongly-lensed SNe. PS1 extends the SDSS to lower
declinations and achieves higher depth. In particular, we applied
our pipeline to gri stack images from DR1 which provide the
optimal coaddition of individual exposures and have higher 5σ
point-source sensitivities than z and y, probing down to 23.3,
23.2, and 23.1 mag in g, r, and i, respectively (Chambers et al.
2016). These three bands conveniently span a wavelength range
sensitive to young stellar populations in blue star-forming galax-
ies at z & 1 and to more dust-obscured or evolved early-type
galaxies. Although the overall survey strategy provided lim-
ited variations in depth and image quality over large scales, 3π
images have non uniform coverage on small scales due to the
stacking process. We found that limiting magnitudes vary by
up to ∼0.5 mag on PS1 cutouts over the extragalactic sky and
accounted for this effect in our analysis.

3. Overview of the lens-search method

In this paper, we aim at identifying galaxy-scale strong lensing
systems on the extragalactic sky covered by PS1. We focused
our search on typical high-redshift galaxies strongly lensed
by massive LRGs, which have a higher lensing cross-section
(Turner et al. 1984) and smooth light profiles that help sep-
arate the foreground and background emissions. In particular,
given the long standing difficulty in distinguishing strong lens-
ing features from arms of low redshift spirals, lenticular galaxies,

tidal tails and other contaminants with arc-like features (e.g.,
Huang et al. 2020a; Jacobs et al. 2019a), restricting to lens LRGs
increases our chance of robustly identifying multiple lensed
images with the >1′′ average PSF FWHM of PS1.

Selecting these rare systems on the entire Northern sky
requires an efficient analysis of the properties of the three bil-
lion sources detected in the PS1 3π survey image stacks. To
circumvent memory limitations, a number of CNN searches in
the literature have focused on subsets of galaxies with LRG-
like photometry using, for instance, the Baryon Oscillation
Spectroscopic Survey (BOSS) sample (Schlegel et al. 2009;
Dawson et al. 2013) or dedicated color and magnitude gri cuts
adapted from Eisenstein et al. (2001). However, this approach
requires low contamination from lensed images to the lens
multiband photometry and was essentially applied to deeper
surveys with better image quality (subarsec PSF FWHM in
optical bands) than Pan-STARRS, such as the Hyper Suprime-
Cam Subaru Strategic Program (HSC-SSP, Aihara et al. 2018;
Sonnenfeld et al. 2018) or the Kilo-Degree Survey with Omega-
CAM on the VLT Survey Telescope (KiDS, de Jong et al. 2013;
Petrillo et al. 2019). Due to the lower image quality, applying
such simple cuts on the photometry tabulated in Pan-STARRS
DR2 catalogs would exclude significant fractions of interesting
systems with strongly lensed arcs blended with the lens and alter-
ing its photometry. We therefore adopted a two-step approach:
(1) a catalog-based neural network classification of source pho-
tometry, (2) a CNN trained on gri image cutouts.

In addition, we aim to find wide-separation lens systems
because these configurations provide longer time delays of a
few days to weeks between multiple images, which is crucial
to measure accurate, microlensing-free time delays for cosmol-
ogy (Huber et al. 2019). Recently, the extensive follow-up of the
lensed Type Ia SN iPTF16geu at z = 0.4 with θE ∼ 0.3′′ (Goobar
et al. 2017) illustrated the difficulty in reaching the time-delay
precision required for cosmography on small-separation systems
(∆t < 2 days, Dhawan et al. 2020), and demonstrated the impact
of microlensing (More et al. 2017; Yahalomi et al. 2017; Bonvin
et al. 2019). Focusing on wide separations is an effective search
strategy for the Pan-STARRS survey with limited angular resolu-
tion, and it will help to trigger timely imaging and spectroscopic
follow-up.

As further described in Sect. 5, CNNs capture image charac-
teristics by learning the coefficients of convolutional filters (ker-
nels) of given width and height and creating a range of feature
maps. They are invariant to translation and rotation. During the
learning phase, the CNNs rely on training sets with representa-
tive labeled images to minimize the difference between predic-
tions and ground truth. Classification algorithms require training
sets of a few 104 to a million of labeled images depending on the
number of classes, image complexity and network depth. In con-
trast to the recent computer vision image recognition challenges
using deep CNNs (e.g., Russakovsky et al. 2015), relatively
modest training sets of few 105 examples are sufficient for our
two-class problem applied to small, galaxy-scale image cutouts
(e.g., Jacobs et al. 2017, 2019a). Nonetheless, the small number
and heterogeneous properties of spectroscopically-confirmed
strong lenses (see the MasterLens database) make it necessary
to use simulated systems.

Generating realistic mocks that account for the complexity of
PS1 stack images is a critical ingredient to reach optimal classi-
fication performances (e.g., Lanusse et al. 2018). We constructed
our mocks by painting lensed arcs on PS1 gri images of LRGs
with known redshift and velocity dispersion from SDSS spec-
troscopy. This approach captures the 3π survey properties, such
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as background artifacts, the presence of line-of-sight neighbor-
ing galaxies, and local variations of seeing FWHM, exposure
time and noise levels, while also accounting for variations in
individual bands. In contrast to fully-simulated images, using
real cutouts also guarantees positive examples that best mimic
the small scale background properties inherited from the com-
plex masking and stacking of individual PS1 exposures. As
background sources, we used representative high-redshift galax-
ies from the COSMOS field. High S/N image cutouts were taken
from HSC-SSP and Hubble Space Telescope (HST) to simulate
lens distortions and magnifications, and we used gri bands (sim-
ilar filter set as PS1) to provide color information.

In Sect. 4, we present the selection of lens and source
galaxies and the pipeline to produce a set of mocks. Our first
catalog-level network, described in Sect. 5.2, was trained on the
multiband photometry of mocks and nonlens systems from the
PS1 catalog, and assigned an output score, pcat, ranging between
0 and 1. A much lower fraction of sources with pcat > 0.5 were
then classified with the CNN presented in Sect. 5.3, resulting
in the final score, pCNN. We eventually examined visually all
sources with highest scores to assign grades and collected a list
of high-confidence candidates for future validation.

4. Simulating galaxy-scale strong lenses

4.1. Selection of lens galaxies

Realistic strong lensing simulations require knowledge on the
lens mass distribution and redshift. We therefore drew our sam-
ple of lens LRGs from the SDSS spectroscopic samples with
reliable velocity dispersion measurements, to have a proxy of
the lens total mass. We used the SDSS large scale structure cata-
logs of galaxies and QSOs for cosmological studies, including
LOWZ and CMASS samples for BOSS (from SDSS DR12),
and the higher-redshift LRG catalog for eBOSS (from SDSS
DR14, Bautista et al. 2018). QSOs were excluded using SDSS
class flag. This resulted in a broad sample of LRGs selected
for their redder rest-frame colors using gri color and magnitude
cuts (Eisenstein et al. 2001). The sample is volume limited up
to z ∼ 0.4 (LOWZ), with additionally more luminous LRGs in
the range 0.4 < z < 0.7 (CMASS). eBOSS LRGs lie at higher
redshift (zmed ∼ 0.7, Prakash et al. 2016) due to a combination
of optical and mid-infrared cuts in SDSS and WISE bands.

We cleaned this spectroscopic catalog to keep LRGs with
reliable velocity dispersions, using vdisp ≤ 500 km s−1 and
vdisp,err ≤ 100 km s−1, and obtained 1 192 472 LRGs to build the
mocks. We then cross-matched with the PS1 catalog to obtain
their photometry, image depth and seeing FWHM in PS1.

4.2. Selection of background sources

The sample of galaxies used to mock up high redshift lensed
sources was drawn from the COSMOS field to take advan-
tage of the wealth of existing data including ultra-deep optical
imaging, multiband photometry, spectroscopic follow-up, and
morphological classification. We selected galaxies with mor-
phological information from Galaxy Zoo: HST (Willett et al.
2017) and within the COSMOS2015 photometric catalog (Laigle
et al. 2016) that also lists physical parameters from SED fit-
ting. The former is a citizen science project that extends the
original Galaxy Zoo (Lintott et al. 2008, 2011; Willett et al.
2013) with a thorough visual classification of galaxies with ACS
imaging from the Hubble legacy surveys (see Scoville et al.
2007; Koekemoer et al. 2007, for the COSMOS field). In partic-

ular for COSMOS, Galaxy Zoo: HST relies on 3-color images
obtained by combining the HST F814W mosaic with color gra-
dients from ground-based imaging1.

We cleaned the resulting catalog from sources identified as
stars or artifacts (COSMOS2015 flag or visual identification),
and removed very extended galaxies with Reff > 1.5′′, as well as
galaxies contaminated by emission from companions within 5′′,
and brighter by 1 mag in r band (Laigle et al. 2016). The output
sample included 52 696 galaxies for the strong lensing simula-
tions. Redshifts were taken from public spectroscopic redshift
catalogs drawn from surveys with VLT/VIMOS (zCOSMOS-
bright, Lilly et al. 2007), VLT/FORS2 (Comparat et al. 2015),
Subaru/FMOS (Silverman et al. 2015), VLT/VIMOS (VUDS,
Le Fèvre et al. 2015; Tasca et al. 2017), Keck/DEIMOS
(Hasinger et al. 2018), or the best photometric redshift estimate
from Laigle et al. (2016) for galaxies without zspec available.

For the purpose of using this pipeline in future lensed SN
searches, the properties of COSMOS sources were compared
with expectations for high-redshift SN hosts. Firstly, the cleaned
catalog has a redshift distribution peaking at z ∼ 0.8 with a tail
extending to z & 1.5, akin to the mock lensed SN catalog of
Oguri & Marshall (2010), both for LSST-like imaging or for cur-
rent, shallower surveys probing down to R ∼ 20–21 (e.g., ZTF,
Masci et al. 2019). Secondly, the morphologies and star forma-
tion activities can be put in context with properties of SN hosts
constrained in the local Universe. Using a compilation of >3000
SN and host properties from SDSS-DR8, Hakobyan et al. (2012)
show that ∼13% of SNe of all types at z . 0.1 explode in galax-
ies with elliptical or lenticular morphologies, typical of early-
type hosts. We augmented the quiescent vs. star-forming classes
of Laigle et al. (2016) based on redshift-dependent NUV−r/r−J
cuts, with Galaxy Zoo morphologies to conclude that our sam-
ple is strongly dominated by star-forming galaxies, with ∼15%
classified as quiescent. This shows that our sample of sources
broadly matches the expected properties of SN hosts.

4.3. Downloading and processing image cutouts

For the lenses, PS1 gri image cutouts of 20′′ × 20′′ were down-
loaded from the PS1 cutout service2. We characterized the image
depth in individual cutouts with SExtractor (Bertin & Arnouts
1996) and verified that the observing strategy leads to nearly
uniform depth. Although it depends on several observing fac-
tors, the depth is weakly correlated with the number of indi-
vidual warp exposures used in a given stack. In particular, it
rapidly drops by 0.2–0.3 mag for the 10% of cutouts obtained
by coadding less than 8, 10, and 12 frames in g, r, and i bands,
respectively. A small fraction of <5% of these PS1 images were
discarded from the analysis.

Multiband images of COSMOS galaxies used as lensed
sources were taken from the first data release of the HSC SSP
(Aihara et al. 2018). The HSC ultra-deep stacks are provid-
ing the deepest optical exposures with best image quality over
the 2 deg2 of COSMOS and are well suited for the simula-
tion pipeline. The 5σ point-source sensitivities are 27.8, 27.7,
27.6 mag, in g, r, i, respectively, and seeing conditions are excel-
lent, with median values of 0.92′′, 0.57′′, and 0.63′′ in g, r,

1 Galaxy Zoo: CANDELS (Simmons et al. 2017) performs similar
classifications using deeper, multiband HST images but only over a sub-
set of the COSMOS field (Grogin et al. 2011; Koekemoer et al. 2011)
and strongly restricts the sample size.
2 http://hla.stsci.edu/fitscutcgi_interface.html
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Fig. 1. Left: examples of strong gravitational lens systems mocked up by painting COSMOS lensed sources on PS1 stack images, and used as
positive examples for training. Right: PS1 postage stamps of a subset of the 90 000 galaxies used as negative examples, including face-on spirals,
massive LRGs, and field galaxies with similar gri colors as the mocks. All postage stamps are 20′′ × 20′′.

and i bands, and negligible variations over the COSMOS field
(Tanaka et al. 2017).

We downloaded gri cutouts of 10′′×10′′, sufficient to enclose
all emission from galaxies with Reff < 1.5′′. Fainter com-
panions within a few arcsec were masked using segmentation
maps created in r band with SExtractor (using relatively few
deblending subthresholds, Bertin & Arnouts 1996) to isolate
the central galaxy of interest. To overcome the limited spatial
resolution of ground-based images, we combined these frames
with the HST F814W high-resolution images over the COS-
MOS field (see Leauthaud et al. 2007; Scoville et al. 2007;
Koekemoer et al. 2007) to produce pseudo color images fol-
lowing the steps described in Griffith et al. (2012). First of all,
F814W images were aligned and rescaled as if observed in HSC
i band, and masked HSC frames were resampled with SWarp
(Bertin et al. 2002) to the HST scaling of 0.03′′ pix−1 using
nearest-neighbor interpolation. Secondly, we multiplied each
resampled frame by an illumination map, defined as F814W
divided by HSC i band. This process preserves HSC source
photometry, and results in gri images with high-resolution light
profiles and color gradients with seeing-limited resolution.

4.4. Strong lensing simulations

Due to the limited angular resolution of Pan-STARRS, we
focused on the search for wide-separation lens systems with
bright arcs that can be easily recognized by eye. We imposed
a lower limit on the Einstein radius θE of mocks of 1.5′′, larger
than the median FWHM of PS1 seeing in gri bands. This ensured
that individual counter-images are well deblended from each
other in the mocks (albeit often blended with the lens). Each
lens deflector drawn from the LRG catalog was cross-matched
with a random COSMOS source at zsource > zdeflector, reject-
ing pairs with θE < 1.5′′3, and repeating the process iteratively
to obtain 90 000 lens+source pairs. Focusing on larger Einstein
radii amounts to selecting LRGs in the high-mass range, with

3 Calculated given the known lens redshift and velocity dispersion and
the known source redshift.

vdisp ∼ 230–400 km s−1, and redshifts zd ∼ 0.1–0.7 represen-
tative of the input BOSS sample, and sources in the redshift
range zs ∼ 0.5–3.0. The pairs mainly cover the θE range of
1.5–3.0′′, which is dominated by galaxy-scale dark-matter lens
halos on the high-end of the mass distribution (Oguri 2006),
while group-scale lenses contribute predominantly for image
separations above 3′′. θE values were not uniformly distributed
but dropped by a factor 100 from 1.5′′ to 3.0′′, akin to real
galaxy-scale lenses, implying that our CNN is predominantly
exposed to mock systems with θE ∼ 1.5′′.

For each pair, mock images were created with the simula-
tion pipeline described in Schuldt et al. (in prep.). In short, the
lens potential was modeled with a Singular Isothermal Ellipsoid
(SIE) profile, based on the known vdisp and zd, and using the cen-
troid, axis ratio, and position angle from the i-band light dis-
tribution, with random perturbations typical of SLACS lenses
(Bolton et al. 2008). The combined HSC+F814W cutouts of
COSMOS sources were randomly positioned in the source plane,
over regions next to the caustics corresponding to magnifications
µ ≥ 5. The sources were then lensed onto the image plane with
the GLEE software (Suyu & Halkola 2010; Suyu et al. 2012).
The resulting frames were convolved with the Pan-STARRS
PSF model described below, resampled and rescaled using Pan-
STARRS zero-points, and eventually coadded with the lens LRG
cutouts to obtain the final mock image. The process was repeated
for gri bands. In order to produce a set of mocks with systemat-
ically bright lensing features, we artificially boosted the lensed
source brightness by one magnitude in all bands. Mocks with
faint arcs were placed iteratively closer to the caustics to ensure
all lensed sources have S/N > 10 in i band4.

The Pan-STARRS analysis pipeline computes PSF models
at individual positions of stack images over a grid of about 8′
steps, and interpolates these models to predict the PSF FWHM
across the sky (Magnier et al. 2020). This introduces devia-
tions between the modeled and true PSF, since the latter varies
on very small scales due to stacking of individual exposures
with variable FWHM. However, we found that these deviations

4 Between the peak lensed source flux and the local background rms
level.
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Fig. 2. Aperture magnitudes and colors of galaxies in the lens LRG catalog (red regions) and in the set of 90 000 mock lens systems (blue regions).
The red and blue dots show the median of distributions. Left: (g − i) vs. i diagram for the R3 aperture, a circular aperture of 1.04′′ radius. Right:
difference in (g − i) color between the inner R3 aperture and concentric annuli between R3 and R4 (1.76′′ outer radius), and between R4 and
R5 (3.00′′ outer radius). Gray regions mark the position of 100 000 random sources with reliable gri aperture photometry selected from the PS1
DR2 catalogs. Orange regions show galaxies with pcat > 0.5 on the catalog-level network, which match the colors and magnitudes of mocks lens
systems. Solid and dashed lines show the 0.5, 1, and 2σ contours.

are usually within 10% when comparing the tabulated FWHMs
with those measured on isolated, unsaturated stars from GSC-
DR2 (Lasker et al. 2008). We therefore created a library of gri
PSF models in steps of 0.05′′ FWHM, by stacking PS1 postage
stamps of nine to 11 stars with adequate PSF FWHM. For each
mock, lensed arcs were convolved with the PSF model corre-
sponding to the PSF FWHM listed on PS1 tables at the position
of the lens LRG.

We generated a total of 90 000 mock lens systems (see
Fig. 1). Lens LRGs selected multiple times were rotated by
kπ/2 and used only once for a given orientation, with different
lensed arc configurations, so the networks never got the exact
same image several times as input. The mocks cover realistic
source colors and lensing configurations, including quads, near-
complete Einstein rings, fold and cusp arcs, and doubles (see
Schuldt et al., in prep.). Constraining the source plane positions
to large magnifications likely biases our set to lower fractions of
doubles than in blind samples of real lenses.

4.5. Photometry of mock lens systems

Focusing the CNN lens search on a subset of the three billion
sources detected in the PS1 3π survey requires a preselection
of sources based on their properties released in public catalogs.
For this purpose, we computed the photometry of mock lensed
systems in the same way as the PS1 image processing pipeline
(Magnier et al. 2020). Fixed aperture photometry is particularly
important to measure reliable colors. We derived the integrated
magnitudes of our mocks within the four smaller PS1 circular
apertures of 1.04′′ (R3), 1.76′′ (R4), 3.00′′ (R5), and 4.64′′ (R6)
radii, which are best suited to capture color gradients due to the
presence of lensed arcs at angular separations of 1.5–3.0′′ with
respect to the lens center. The two largest of these apertures are
also expected to be relatively good proxies of the integrated mag-
nitudes of mocks. We used SExtractor in dual-image mode, with
a 3σ detection threshold in r-band, and assuming an ideal sky
subtraction in PS1 deep stacks (see details in Waters et al. 2020).
To compute the aperture magnitudes of a given mock, the image
zero-points were taken from the PS1 catalog of stack detections
at the position of the LRG used to produce this mock.

The method was tested on LRG-only images by comparing
SExtractor estimates with those from the PS1 catalog, for stan-
dard stacks. For the four apertures, fitting the distributions of
magnitude offsets between these two estimates with Gaussian
functions led to µ = 0.00–0.02 and σ = 0.02–0.05 in g band,
µ = 0.00–0.01 and σ = 0.01–0.02 in r band, µ = 0.00 and
σ = 0.01–0.02 in i band, which proves the overall robustness
of our photometry. Unsurprisingly, the scatter only rises above
these average values for the large aperture magnitudes of fainter
objects, which mostly enclose background noise. These residual
biases up to 0.1–0.2 mag for &22.0 mag likely indicate small dif-
ferences in the local background subtraction between both meth-
ods, or the contamination from neighbors which were subtracted
by the PS1 pipeline (Magnier et al. 2020) but not with SExtrac-
tor. Nonetheless, these offsets remain minor compared to other
uncertainties in the analysis. On the contrary, Kron, Petrosian
and Sersic photometry were discarded due to systematic biases
with respect to values tabulated in PS1 catalogs.

5. Systematic search of strong lenses

The next sections describe the steps followed for the generic lens
search on the full Pan-STARRS 3π survey.

5.1. Preselecting Pan-STARRS detections

As shown in Fig. 2, the 90 000 mock lens systems have globally
bluer colors than the LRG sample due to the relative color of
lensed arcs, and they are brighter than ∼70% of sources detected
in the PS1 stack images. This population of fainter and bluer
PS1 galaxies can be excluded from the analysis. We used simple
color-magnitude cuts in the (g − i) vs. i, (g − r) vs. r, and (r − i)
vs. i diagrams for the R3, R4, R5, R6 circular apertures to rule
out regions in these diagrams that are not representative of the
mocks (i.e., not colored in blue in Fig. 2). These cuts are con-
servative and include 96% of the mocks, according to the aper-
ture magnitudes obtained in Sect. 4.5, while excluding ∼84%
of PS1 sources. They were applied to the complete catalog of
stack detections from PS1 DR2 using the PanSTARRS1 Catalog
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Archive Server Jobs System5, with detectionFlags3 > 65536
to remove multiple entries and to select detections from the opti-
mal stack image (Flewelling et al. 2020).

The stars were removed from the resulting sample using the
r-band cuts from Farrow et al. (2014):
rKron−rPSF < −0.192+0.120×(rKron−21)+0.018×(rKron−21)2.

This selection conservatively included 98% galaxies, those
discarded being mainly at the faint end (r & 21) and with higher
magnitudes than our mocks. While these cuts misidentified sat-
urated stars with r . 14 as galaxies (Farrow et al. 2014), such
bright sources had already been excluded from the analysis.

Regions with elevated Galactic dust extinction were removed
as strong reddening could alter our selection on the catalog level.
The interstellar dust reddening 2D map of Schlegel et al. (1998)
were loaded with the dustmaps python interface from Green
(2018). After converting to PS1 bandpasses using coefficients in
Table 6 of Schlafly & Finkbeiner (2011), we applied a reddening
threshold of E(g − i) < 0.3. These steps resulted in a catalog of
23.1 million galaxies for classification.

5.2. Applying machine learning to the Pan-STARRS
photometry

Limitations due to download speed of PS1 cutouts from the
archive can be overcome by further reducing the size of this cata-
log with additional selection criteria. The simple color and mag-
nitude cuts applied to the complete PS1 catalog do not capture all
photometric properties of mock lens systems, such as their pre-
cise locus on two-dimensional color-color and color-magnitude
diagrams or their radial color gradients. For instance, Fig. 2
indicates that mocks are generally redder within the smaller R3
aperture of 1.04′′ radius than within external, concentric annuli
between R3 and R4, and between R4 and R5. These gradients are
caused by the presence of bluer, lensed arcs at >1.5′′ from the
lens center and disappear on the LRG-only sample. To exploit
this information, we trained a simple fully-connected neural net-
work on the photometry of mocks and random PS1 sources using
aperture fluxes that ensure robust colors.

The data set contained gri fluxes in the four apertures for
90 000 lens and 90 000 nonlens examples as inputs, and the
ground truth labels of 1.0 and 0.0, respectively, as outputs for
binary classification. The negative examples were fluxes of ran-
dom sources that matched our loose color and magnitude gri cuts
in Sect. 5.1. The data set was split into training, validation, and
test sets with respective fractions of 56%, 14%, and 30%. All
fluxes were normalized to the average over the entire data set in
order to speed up the learning process. The network architecture
consisted of 12 dimensional input data, three fully connected
hidden layers of 50, 30, and five neurons each, with Rectified
Linear Unit (ReLU, Nair & Hinton 2010) nonlinear activations6,
and a single-neuron output layer with sigmoid activation7.

During the training phase, the network derives a model for
classifying galaxies in the training set as lenses or nonlenses
according to their input photometry, as briefly summarized with
the following stages. After the weight parameters and bias in
each neuron are initialized, a subset of the training data is passed
through the entire network to calculate predicted labels (forward
propagation), and the difference between predictions and ground
truth labels is quantified with a loss function L. This information
is propagated to the network weights and biases (back propaga-

5 http://casjobs.sdss.org/CasJobs
6 ReLU(x) = max(x, 0).
7 sigmoid(x) = 1

(1+e−x) .

tion, Rumelhart et al. 1986) which are then modified using a gra-
dient descent algorithm to minimize the total loss and improve
the model. These stages are repeated iteratively to perform a
complete pass through the entire training set, corresponding to
one epoch, and then over multiple epochs until the model reaches
optimal accuracy. After each epoch, the validation loss is eval-
uated by classifying inputs from the validation set, in order to
determine whether the decrease in training loss reveals better
performance or an overfitting to the training set. After training,
the network performance is finally quantified using independent
data from the test set. Further details can be found in the review
of LeCun et al. (2015).

Network parameter optimization is performed via mini-batch
stochastic gradient descent, a common variant that consists of
splitting the training set into small batches and adjusting the
weights according to the average corrections over each batch.
Our network minimized the cross-entropy loss function which
penalizes robust and incorrect predictions, and is expressed as
follows for a binary classification problem

L(y, p) = −
1
N

N∑
i=0

yi log(pi) + (1 − yi) log(1 − pi) (1)

where yi are the ground truth labels, and pi the network predic-
tions, namely scores in the range [0, 1] resulting from the sig-
moid activation on the output layer. The loss was computed over
each batch of size N. To avoid unbalanced splits of the data set,
we used 5-fold cross-validation that consists of reshuffling the
training and validation sets and building the performance met-
rics. Cross-validation runs trained over 500 epochs were used to
optimize the neural network hyperparameters with a grid search,
varying the learning rate over the range [0.0001, 0.1] and the
weight decay over [0.00001, 0.01], with momentum fixed to 0.9.
We trained a final network with the entire data set using an opti-
mal learning rate and weight decay of 0.001 and 0.00001, respec-
tively, and applying early stopping at epoch 193 that matched the
lowest average loss over the cross-validation runs.

Among the 23.1 million input galaxies, 1 050 207 were
assigned scores pcat > 0.5 indicating that their gri aperture pho-
tometry is consistent with the mocks. Figure 2 illustrates the net-
work predictions by comparing the colors and magnitudes of
random galaxies, mocks, and galaxies having pcat > 0.5. The
good agreement between 2σ contours of mocks and pcat > 0.5
shows that the network correctly captures the position of mocks
in color-magnitude diagrams, as well as their color variations
within different apertures. Moreover, our photometric selection
was successfully tested on the aperture fluxes of known strong
lensing systems listed as grade A or B with θE = 1.0−3.0′′ in
the MasterLens database8, and with lensed arcs visible in the
PS1 stack images. We therefore kept these 1 050 207 galaxies
for CNN classification.

5.3. Training the convolutional neural networks

Data sets for the CNNs included 180 000 images in g, r, and i
bands with the same fraction of positive (lens) and negative (non-
lens) examples. Positive examples were taken from the sample
of simulated lens galaxies with θE > 1.5′′ described in Sect. 4.4.
The choice of negative examples is strongly influencing the net-
work predictions and was modified iteratively to improve the
network performances (see Sect. 5.5). In short, we boosted the
fraction of galaxies with specific morphological types using

8 http://admin.masterlens.org
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Fig. 3. Architecture of the convolutional neural network, inspired from
LeNet (LeCun et al. 1998), and comprised of three convolutional layers
with 11 × 11, 7 × 7, and 3 × 3 kernel sizes, and 32, 64, and 128 fil-
ters, respectively, followed by three fully connected hidden layers with
2048, 512, and 32 neurons. ReLU activations were applied between
each layers. Max-pooling layers with 2 × 2 kernel sizes and stride = 2
were inserted after the first two convolutional layers, and dropout of 0.5
was used before the fully connected layers.

incorrect identifications of strong lenses in previous networks.
This allowed the network to learn how to discriminate strongly
lensed arcs from the usual contaminants such as extended arms
of low redshift spirals, lenticular galaxies, and mergers, and to
distinguish isolated LRGs from LRGs with the relevant strong
lensing features depicted in the mocks. Our resulting set of
90 000 negative examples included:

– 30% LRGs selected directly from the catalog of SDSS
LRGs on the high-end of the mass distribution used to create
the mocks,

– 20% spirals classified as likely face-on galaxies in Galaxy
Zoo 2 (Willett et al. 2013) and with r-band Sersic radii <4.5′′
from PS1 (Flewelling et al. 2020), to restrict to blue spiral arms
with similar extension as the lensing features present in the
mocks,

– 10% smooth, isolated galaxies from Galaxy Zoo 2 without
bright companion and bluer colors than LRGs,

– <1% galaxies with apparent dust lanes identified in Galaxy
Zoo 2 (Willett et al. 2013),

– 32% randomly selected galaxies from the PS1 catalog,
including diverse types, groups and mergers, and with negligi-
ble contamination from the rare strong lenses,

– 7% false positives from previous neural networks selected
by visually classifying candidates with scores >0.9.

Negative examples were not included in the pcat > 0.5 sam-
ple to be classified with the CNN, but they broadly followed
the same color and magnitude distributions in gri bands. Some
examples are shown in Fig. 1. The data set was split into train-
ing, validation, and test sets with the same proportions as before
(Sect. 5.2).

We used data augmentation and applied random shifts
between −5 and +5 pixels to all images so the network becomes
invariant on small positional offsets. This resulted in input
images of 70×70 pixels which conservatively included all emis-
sion from the central galaxy of interest. All survey galaxies in
the set of negative examples were unique, and LRGs used mul-
tiple times in the sample of mocks were rotated by kπ/2 so they
appeared only once with a given orientation in the set of posi-
tive examples. This ensured that the network was not sensitive
to preferential orientations. Other common image augmentation
techniques, such as image stretching, normalization and rescal-
ing (e.g., Petrillo et al. 2017, 2019) were discarded as they did
not significantly improve the learning process.

The CNN architecture was inspired from LeNet (LeCun
et al. 1998) and from the lens modeling CNN of Schuldt
et al. (in prep.). After the 70 × 70 × 3 input layer, it contains
three convolutional layers with 11 × 11, 7 × 7, and 3 × 3 kernel
sizes, and 32, 64, and 128 filters, respectively, followed by three

fully connected hidden layers with 2048, 512, and 32 neurons
(see Fig. 3). ReLU activations act as nonlinear transformations
between each one of these layers. Max-pooling layers (Ranzato
et al. 2007) with 2×2 kernel sizes and stride = 2 are inserted after
the first two convolutional layers and are essential to make the
CNN invariant to local translations of the relevant features in gri
image cutouts, while reducing the network parameters. Dropout
regularization (Srivastava et al. 2014) with a dropout rate of 0.5
is applied before the fully connected layers. This is an efficient
regularization method that consists of randomly ignoring neu-
rons during training in order to reduce overfitting on the training
set and improve the CNN generalization. The output layer con-
sists of a single neuron with sigmoid activation and results in a
score, pCNN, in range [0, 1] which corresponds to the network
lens or nonlens prediction9. Our CNN with moderate depth is
well suited for binary classification of small PS1 cutouts.

During the training process, the CNN learns the relevant pat-
terns in gri images by adjusting the convolutional kernel weights,
through a minimization of the binary cross-entropy loss between
ground truth and predicted labels. After the gradient calculation
and optimization, information learned by the network is stored
in the two-dimensional filters. As for the catalog-level network,
we used mini-batch gradient descent with a batch size of 128
and performed five cross-validation runs. We found an optimal
learning rate and weight decay of 0.0006 and 0.001, respectively,
using a grid search with momentum fixed to 0.9. The number of
training epochs was then chosen from the minimum average val-
idation loss over the cross-validation runs, which corresponded
to optimal network performance without overfitting.

The evolution of the training and validation loss for the net-
work with optimized hyperparameters is shown in Fig. 4, until
epoch 47 which corresponds to the lowest validation loss. The
gap between both curves (generalization gap) is small, showing
that the model predictions do not deteriorate much on new data
with similar properties as the training set. The final network per-
formances were characterized with the test set which was not
seen during training and validation and contains about 54 000
entries. In Fig. 5, we show the model probability predictions
for all lens and nonlens examples in the test set. Lenses domi-
nate the distribution for pCNN > 0.6. The model reaches 94.2%
accuracy, 93.1% purity and 95.5% completeness on this set sug-
gesting good pattern recognition abilities on new images10. In
addition, the Receiver Operating Characteristic (ROC) curve in
Fig. 6 illustrates the relation between the true positive rate (TPR,
the number of lenses correctly identified over the total number
of lenses) and the false positive rate (FPR, the number of non-
lenses identified as lenses over the total number of nonlenses)
in our trained model. The curve was obtained by varying the
network probability threshold for lens identification in the range
[0, 1], and an ideal network would correspond to an area under
curve (AUC) of 1. Our CNN gives AUC = 0.985, and can cor-
rectly identify 95.5% of lenses in the test set with a FPR of 7.1%
using pCNN > 0.5, or 77.0% of lenses in the test set with a FPR
of 0.8% using pCNN > 0.9. After optimizing hyperparameters
and quantifying the performance of the network on the test set,
we trained a final CNN with the complete data set of 180 000
labeled images and we fixed the resulting model parameters to
classify the 1 050 207 galaxies with pcat > 0.5.

9 For uncalibrated networks, this score differs from the likelihood of
correct classification.
10 Accuracy was defined as the sum of true positives and true negatives
over the total number of systems (lenses + nonlenses), and purity was
defined as the number of lenses correctly identified with pCNN > 0.5
over the number of systems with pCNN > 0.5.
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Fig. 4. Training of the CNN with optimized hyperparameters and using
early stopping. The training loss (red curve) and validation loss (blue
curve) were taken as the average of all cross-validation runs (light red
and blue curves).

Fig. 5. Distribution of network predictions compared with the ground-
truth for lenses (green) and nonlenses (orange) in the test set.

Fig. 6. Receiver Operating Characteristic curve for the trained CNN
showing the true position rate (TPR) as function of the false positive
rate (FPR) for different lens identification thresholds. The correspond-
ing area under curve (AUC) is 0.985.

5.4. Evaluating the network performance

The performance of the network was further evaluated on galax-
ies with various properties on the test set. Figure 7 depicts the
normalized distributions of scores for positive examples in dif-
ferent bins of θE, θE/Reff , and rKron, where Reff is the effec-
tive radius from the r-band Sersic fit of the LRG-only image

(Flewelling et al. 2020). Somewhat counterintuitively, scores are
closer to 1.0 for lenses with θE < 2′′. The low fraction of θE > 2′′
in the training set might explain the slightly lower CNN per-
formance on these systems, which generally do not have the
most challenging morphologies. Histograms for θE/Reff demon-
strate the ability of the network to assign pCNN closer to 1.0 for
mocks with Einstein radius larger than the effective radius of the
lens light distribution, where lensed arcs are in principle better
deblended from the lens. We also find a higher fraction of scores
pCNN > 0.9 for lens LRGs with higher rKron (i.e., fainter LRGs),
perhaps because the brightest lenses outshine the lensed source
emission. Nonetheless, these variations remain generally minor.

Finding acceptable network performances on the test set
might be misleading as it relies on our choices in simulating
the strong lenses and assembling a set of negative examples.
A valuable independent test consists of applying the CNN to
strong lenses from the literature. For that purpose, we collected
all grade A and B galaxy-scale lenses in the MasterLens cat-
alog, restricting to Einstein radii ∼1–3′′ similar to the range
probed by our 90 000 mocks. These systems were discovered
from various techniques including the identification of emission
lines from star-forming galaxies behind LRGs using spatially-
integrated spectra (SLACS, Bolton et al. 2008), and the analy-
sis of high-quality imaging from HST (e.g., in COSMOS, Faure
et al. 2008) or deep multiband surveys (e.g., CFHTLS SL2S,
Cabanac et al. 2007; Gavazzi et al. 2014; More et al. 2016). Most
of these lenses are not detectable in gri Pan-STARRS stacks and
need to be excluded from our test set. We thoroughly scanned
all PS1 gri single-band and 3-color images of this sample to
find those with detected lensed arcs, and assembled a test set
of 16 systems. While these published lenses have colors, zd, zs,
and configurations similar to our mocks, some of their multiple
images are strongly blended with the lenses and difficult to iden-
tify with PS1 data.

Pan-STARRS cutouts of these 16 lenses were scored with
our trained neural network and the results are presented in
Fig. 8. A total of 14/16 lenses are correctly identified as pCNN >
0.5 by the CNN, while 9/16 and 7/16 have higher scores
pCNN > 0.8 and pCNN > 0.9, respectively. SL2SJ0217−0513
and SDSSJ1112+0826 are the two incorrect classifications.
SL2SJ0217−0513 has a faint lens galaxy falling in the upper
range of the redshift distribution (zd = 0.646) and blended
with a faint blue arclet. It is worth noting that the network
performs better for SDSSJ1110+3649 (pCNN = 0.971) which
has a similar morphology to SL2SJ0217−0513, but with the
addition of a low S/N, blue counter image on the other side
of the lens galaxy. SDSSJ1112+0826 has typical properties
of our mocks but lacks a bright counter image. On the other
hand, lenses with well-detected and deblended arcs and counter
images (e.g., SDSSJ1430+4105, SDSSJ0201+3228, CSWA21)
have high scores, showing that the network is able to extract rel-
evant features.

Our comparison extends to systems with Einstein radii below
the 1.5′′ cutoff applied to our simulations. The CNN per-
formance in this regime remains acceptable, as illustrated by
the scores of 0.786, 0.612, and 0.971 assigned respectively to
SDSSJ1134+6027, SDSSJ2156+1204, SDSSJ2231−0849 that
have θE ∼ 1.1′′. In contrast, with θE = 3.26′′ due to its group-
scale environment (Auger et al. 2013), CSWA21 falls on the
upper range of the Einstein radius distribution that is underrep-
resented with only a few hundred examples in our training set.
This system is nonetheless given a score of 0.873 and confirms
that the CNN can identify these simple configurations. Interest-
ingly, the four systems with ≥4 magnified images according to
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Fig. 7. Normalized distributions of CNN scores for mocks lenses included as positive examples in the test set, for different ranges of Einstein radii
(left), θE/Reff (middle), and rKron (right).

Fig. 8. Three-color images of the 16 confirmed lens systems in the
MasterLens database that have clear strong lensing signatures in Pan-
STARRS images, and Einstein radii of 1–3′′ similar to our mocks. The
CNN scores are displayed at the top of each panel. Images are 15′′×15′′.

the MasterLens database have pCNN > 0.9. The small number
of test lenses however prevents robust estimates of the method
purity and completeness.

5.5. Discussion on the CNN training

The final version of the CNN from Sect. 5.3 was selected from
a range of networks with different architectures, after testing the
impact of the training set content. To identify the optimal net-
work, we compared scores assigned to the 16 known test lenses
and required low false positive rates by examining gri cutouts
of the few hundred galaxies with highest scores pCNN. Overall,
different choices of positive and negative examples had much
stronger impact, inducing variations in the number of good lens
candidates from visual inspection by a factor of &10 due to the
network learning different features, while changes in the CNN
architecture only offered slight improvements.

The sets of negative examples tested include: (1) random
PS1 sources drawn from the preselection in Sect. 5.1; (2) typ-
ical LRGs selected as in Eisenstein et al. (2001), mostly less
massive than LRGs in mocks; (3) high-mass LRGs similar to

those used in Sect. 4; (4) a combination of LRGs, face-on spi-
rals, and random sources (varying the fractions of LRGs and
contaminants). Scores on the MasterLens systems from CNNs
using sets (1) and (4) were comparable to those in Fig. 8, but
introduced an overwhelming number of &400 000 galaxies with
pCNN > 0.5 and &250 000 with pCNN > 0.9 implying high false
positive rates, and were ruled out. Other sets of positive exam-
ples were tested by (1) modifying the θE lower limit, and (2)
suppressing the artificial boost in arc brightness to get more real-
istic lens over source flux ratios. Both CNNs trained on fainter
arcs, more strongly blended with the lens significantly reduced
the fraction of genuine lens examples with scores pCNN ∼ 1 and
were also discarded.

Our tests on the architecture include: (1) adding and remov-
ing one convolutional layer, or one fully-connected layer; (2)
changing the number of neurons, the kernel sizes or number of
feature maps in these layers; (3) using smaller or larger strides
on the max-pooling layers; (4) modifying the dropout rates; (5)
implementing batch normalization (Ioffe & Szegedy 2015). Each
of these changes degraded the network performance as measured
from the loss and ROC curves on the test set, and from the 16
MasterLens systems. Using dropout normalization before fully
connected layers (as in Fig. 3) turned out to be the most efficient
solution to reduce overfitting.

5.6. Visual classification

Galaxies with high CNN scores, pCNN, were visually inspected
by different authors to assign a final grade. We started classifying
galaxies with pCNN close to 1.0, and progressively lowered the
threshold to introduce additional galaxies until the fraction of
reliable candidates from visual inspection became too low.

We graded the single-band and 3-color PS1 cutouts in gri
bands, zoomed to 12′′×12′′, and optimally displayed with linear
and arcsinh scaling using dedicated scripts to emphasize faint,
sometimes blended strong lensing features11. To aid the visual
classification, we plotted grz single-band and 3-color postage
stamps from the DESI Legacy Imaging Surveys that significantly
overlaps the PS1 3π survey footprint on the extragalactic North-
ern sky, and that provides slightly deeper, higher quality images
(Dey et al. 2019), and we plotted residual frames from subtrac-
tion of the best-fit light profile. On smaller regions of the sky,
we also included gri images from HSC DR2 wide-field surveys
(Aihara et al. 2019). The set of CNN candidates was divided into
four equal parts, each inspected either by R. C., S. S., S. H. S., or
S. T., in order to assign one of the following grades: 0: nonlens,

11 Code adapted from https://github.com/esavary/
Visualisation-tool
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1: maybe a lens, 2: probable lens, 3: definite lens, similarly to
Sonnenfeld et al. (2018) and Jacobs et al. (2019a). All candi-
dates with grades ≥2 from this first iteration were then inspected
by the three other authors, so final grades were averaged over the
four authors. The output list of candidates corresponds to aver-
age grades ≥2.

Nonlenses are galaxies clearly identified as nearby spirals,
ring galaxies, groups, or other contaminants from their mor-
phology, or cutouts with artifacts. Candidates listed as grade 1
have faint companions or weakly distorted features suggest-
ing possible strong lensing signatures, but may also corre-
spond to galaxy satellites or spiral arms. Probable lenses show
multiple elongated sources with similar colors, and orientation
and angular separation expected for counter-images, while the
available 3-color images cannot firmly rule out contaminants.
Those assigned grades of 3 have similar, although brighter,
nonblended and unambiguous signatures of galaxy-scale strong
lenses.

6. Results and discussion

6.1. Final candidates from visual inspection

Out of the 1.1 million galaxies the CNN scores 598 130 with
pCNN = 0, and 105 760, 12 382, and 1714 as candidate lenses
with pCNN > 0.5, pCNN > 0.9, and pCNN = 1, respectively.
Scores pCNN > 0.5 amount to 10% of sources ranked by the
CNN, and only 0.5% of the input catalog of 23.1 million galax-
ies. The human inspection process is necessary to increase purity
of the candidate sample. However, a systematic visual classifica-
tion of galaxies with pCNN > 0.5 would be unrealistic and we
use a higher pCNN threshold which impacts the purity and com-
pleteness in a way that is difficult to quantify. Predictions for
mock lenses on the test set (see Fig. 5) and for known lenses (see
Fig. 8) suggest that the majority of good candidates have scores
pCNN > 0.9 with only a few more in the range 0.5 < pCNN < 0.9,
and we therefore started inspecting all 12 382 with pCNN > 0.9.
As the fraction of visual grades ≥2 quickly drops with decreasing
CNN scores, down to .1% when extending to 0.8 < pCNN < 0.9,
we restricted our final classification to pCNN > 0.9.

Our selection results in 321 high-confidence candidates with
grades ≥2 (hereafter, grades refer to the average grades from the
visual inspectors). Respective fractions of 36%, 34%, and 30%
of these candidates have scores in the intervals 0.99 < pCNN ≤

1.00, 0.95 < pCNN ≤ 0.99 and 0.90 < pCNN ≤ 0.95, which
demonstrates that the CNN learns meaningful information and
assigns high scores for most of the probable or definite lenses.
The rate of grades ≥2 over the 12 382 galaxies with pCNN > 0.9
is about 2.5%. This fraction is slightly lower but comparable to
previous CNN lens searches using deeper, higher quality imag-
ing surveys (KiDS DR4, DES Year 3, Petrillo et al. 2019; Jacobs
et al. 2019a). This is not surprising as some of these searches
have focused on catalogs of LRGs with robust photometry and
are less subject to contamination by low-redshift spirals. Obtain-
ing equivalent performance suggests that our initial catalog-level
classification plays an important role in our systematic search
that balances the suboptimal imaging quality of the PS1 3π sur-
vey. Finally, 37 additional candidates from previous CNNs with
pCNN = 1.0 and grades ≥2 are included (see Sect. 5.5), bring-
ing the total number of resulting lens candidates to 358 from our
two-step search.

Examples of good candidates and false positives (grades ≤1)
after visual inspection are shown in Fig. 9. In most cases,
false positives belong to specific galaxy types frequently

misclassified by the network such as nearly face-on spirals
with obvious and extended arms, nearby lenticular galaxies, and
bright LRGs with faint unlensed companions. Galaxy groups,
mergers with perturbed morphologies, and cutouts with back-
ground artifacts are more rare. Other ambiguous systems listed
as false positives are galaxies with red bulges and faint arms,
with color gradients or companions, where all components are
blended and mimic lensed arcs.

The PS1 lens candidates were cross-matched with galaxy-
scale strong lenses from previous searches with the status of
spectroscopally confirmed or candidate systems, by building
upon and expanding the current MasterLens database. We com-
piled grade A and B systems (or equivalent) from a number
of recent searches based on optical and near-infrared imaging
from DES (Diehl et al. 2017; Jacobs et al. 2019b,a), CFHTLS
(More et al. 2016; Jacobs et al. 2017), KiDS (Petrillo et al. 2017,
2019; Li et al. 2020), DESI (Huang et al. 2020a), and HSC
(Wong et al. 2018; Sonnenfeld et al. 2018, 2020; Jaelani et al.
2020). Since our network may also be sensitive to lensed quasars
with colors and configurations similar to our mock lenses, we
also cross-matched with the all-sky database of ∼220 confirmed
lensed quasars in the literature (Lemon et al. 2019, and refer-
ences therein)12, and with previously identified lensed quasars
from HSC (Chan et al. 2020) and from PS1 (Rusu et al. 2019).
For the candidates not included in those tables, we searched in
the SIMBAD Astronomical Database13.

To our knowledge, besides the test lenses from the Master-
Lens database, 23 of our 358 CNN candidates are already listed in
the literature and corresponding references are listed in Table 114.
The vast majority of them are also galaxy-scale strong lens can-
didates from ground-based multiband imaging searches and lack
both spectroscopic and high-resolution imaging follow-up. The
only galaxy-galaxy lens systems confirmed with spectroscopy
or space-based imaging are PS1J0143+1607, PS1J0145−0455,
PS1J2343−0030, and PS1J0454−0308. Firstly, PS1J0143+1607
is CSWA 116, discovered through the search of blue lensed fea-
tures near LRGs in SDSS imaging (Stark et al. 2013). Its prop-
erties (zd = 0.415, zs = 1.499, θE = 2.7′′) are very similar to
our mock lenses, and the system was assigned pCNN = 1.0 and a
visual grade of 2.75. Secondly, PS1J0145−0455 is CSWA 103,
also presented by Stark et al. (2013), and has zd = 0.633, zs =
1.958, and θE = 1.9′′, akin to our mocks. It has pCNN = 1.0 and a
visual grade of 2.50. Thirdly, PS1J2343−0030 is a SLACS lens
with zd = 0.181 and zs = 0.463 which was discovered and mod-
eled by Auger et al. (2009) using SDSS spectroscopy and HST
imaging. It has an Einstein radius of 1.5′′, higher than the major-
ity of lenses in the SLACS sample, which explains its elevated
scores from the CNN (pCNN = 0.917) and PS1 cutout inspection
(2.50). Lastly, PS1J0454−0308 (pCNN = 1.000 and grade = 2.75)
is a peculiar system thoroughly studied in Schirmer et al. (2010),
where the main lens is the brightest elliptical galaxy of a fos-
sil group at z = 0.26 only 8′ from the MS0451−0305 cluster
at z = 0.54. The HST F814W frame clearly resolves the back-
ground source into an extended arc and a compact counter image,
corresponding to θE = 2.4′′. Most other galaxy-galaxy lenses in

12 https://www.ast.cam.ac.uk/ioa/research/
lensedquasars/
13 http://simbad.u-strasbg.fr/simbad/sim-fcoo
14 In addition, some systems have also been found independently
and concurrently in DESI Legacy Surveys DR8 by Huang et al.
(2020b): PS1J0717+4624, PS1J0324−1020, PS1J1749+2330, and
PS1J1903+5225 are assigned A or B grades and 16 other candidates
are assigned C grades by Huang et al. (2020b).
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Fig. 9. Top: Pan-STARRS 3-color gri images of a subset of candidates with grades ≥2 from visual inspection of CNN scores pCNN > 0.9 (the
complete figure is available in Appendix A). Numbers displayed on top of each panel are CNN scores (pCNN, left) and average visual grades (right).
Candidates with PS1 names marked in orange have been previously published in the literature (see Table 1 and Sect. 6.1) Those marked in blue
show unambiguous spectral signatures of high-redshift background sources in our inspection of SDSS BOSS DR16 data. Bottom: examples of
random false positives with pCNN = 1. All cutouts are 15′′ × 15′′.

the literature were missed by our selection due to limited PS1
depth or lens configurations not represented in our mocks (e.g.,
higher Einstein radii). Finally, two of these 23 published systems
are confirmed lensed quasars. PS1J2350+3654 (pCNN = 1.0 and
grade of 2.25) was discovered in Gaia DR2 (Lemon et al. 2019),
and PS1J1640+1932 (pCNN = 1.0 and grade of 2.25) from SDSS
(Wang et al. 2017).

Postage stamps of the 335 newly-discovered and 23 pub-
lished galaxy-scale lens candidates from our Pan-STARRS CNN
search are shown in Fig. 9 and in Appendix A, together with
pCNN and visual inspection grades. Given that some visual iden-
tifications rely on Legacy imaging, which is sometimes deeper
than PS1, we also show Legacy 3-color images of our candidates
located in the Legacy footprint in Appendix A.

6.2. Ancillary spectroscopy

We inspected SDSS BOSS spectra from the 16th data release
available for 104 out of 358 lens candidates, in order to char-
acterize the candidate lens galaxies and to search for spectral
signatures of high-redshift background galaxies. This approach
was previously used to select the SLACS sample (Bolton
et al. 2008) and relies on spectral features captured within
the small, 2′′ diameter aperture fibers. Firstly, our examination
results in 84 spectra of typical LRGs at intermediate redshift
with bright continuum, prominent 4000 Å break, deep stellar
absorption lines, and non- or very faint [OII]λλ3727 detec-
tions indicating evolved stellar populations with little residual
star formation. Secondly, we obtain seven LRG-like spectra
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Table 1. Final list of galaxy-scale strong lens candidates with lens LRGs from our systematic search in Pan-STARRS.

Name RA Dec pCNN Grade gKron rKron iKron gaper raper iaper Redshift Notes

PS1J2226+0041 22:26:09 +00:41:42 0.990 3.00 . . . 20.59 19.37 23.34 21.9 20.63 0.6471(∗) (a), (b), (c)
PS1J1821+7130 18:21:40 +71:30:10 1.000 3.00 18.66 17.61 17.19 20.12 19.04 18.62 . . .
PS1J1647+1117 16:47:04 +11:17:49 0.951 3.00 19.47 18.56 18.00 20.98 19.92 19.32 . . .
PS1J1559+3147 15:59:23 +31:47:12 1.000 3.00 18.19 17.18 16.58 19.77 18.74 18.15 0.1489(∗)

PS1J1508−1652 15:08:10 −16:52:38 1.000 3.00 . . . 18.95 18.39 22.42 20.65 19.88 . . .
PS1J1421−0536 14:21:28 −05:36:51 1.000 3.00 19.57 18.59 17.97 21.22 19.99 19.29 . . .
PS1J1415+1112 14:15:31 +11:12:08 0.993 3.00 19.54 18.30 17.65 21.05 19.81 19.16 0.3155(∗)

PS1J1322−0501 13:22:27 −05:01:34 0.995 3.00 . . . 20.18 19.33 23.26 21.55 20.66 . . .
PS1J1113+0104 11:13:57 +01:04:05 0.951 3.00 . . . 20.77 19.49 23.21 21.81 20.70 0.6402(∗)

PS1J0919+0336 09:19:05 +03:36:39 0.919 3.00 20.28 19.12 18.41 22.12 20.68 19.90 0.4440(∗) (c), (l)
PS1J0353−1706 03:53:46 −17:06:39 0.933 3.00 . . . 20.35 19.50 23.47 21.72 20.63 . . . (a)
PS1J0324−1020 03:24:49 −10:20:53 0.999 3.00 20.72 19.83 18.93 22.48 21.20 20.22 . . .
PS1J0211−1938 02:11:01 −19:38:10 0.944 3.00 20.42 19.29 18.80 22.05 20.66 19.97 . . .
PS1J0141−1713 01:41:06 −17:13:24 1.000 3.00 . . . 20.08 19.19 23.30 21.54 20.62 0.56 (a), (d)
PS1J2348+0148 23:48:45 +01:48:35 0.989 2.75 22.00 20.72 19.32 23.12 21.64 20.43 0.5902(∗)

PS1J2336−0207 23:36:10 −02:07:35 1.000 2.75 20.43 19.52 18.91 21.92 20.80 20.06 0.4942(∗)

PS1J2248−0103 22:48:01 −01:03:00 1.000 2.75 19.44 18.15 17.56 20.92 19.62 18.95 0.2772(∗) (e)
PS1J2247+1801 22:47:20 +18:01:21 1.000 2.75 19.97 18.53 17.96 21.59 20.16 19.57 0.3427(∗)

PS1J2233+3012 22:33:34 +30:12:23 0.998 2.75 19.93 18.31 17.68 21.64 20.06 19.41 0.3605(∗)

PS1J2202+0614 22:02:52 +06:14:50 1.000 2.75 18.52 17.40 16.83 19.87 18.78 18.22 0.17
PS1J2200−1024 22:00:47 −10:24:27 0.997 2.75 20.82 19.07 18.34 22.02 20.15 19.45 . . .
PS1J1926−2138 19:26:18 −21:38:20 1.000 2.75 16.48 15.90 15.65 17.80 16.98 16.69 . . .
PS1J1749+2330 17:49:12 +23:30:36 0.992 2.75 . . . 18.65 17.86 22.06 20.37 19.76 . . .
PS1J1655+0406 16:55:09 +04:06:13 1.000 2.75 18.30 17.77 17.32 20.03 19.33 18.86 . . .
PS1J1644+1121 16:44:08 +11:21:30 0.998 2.75 17.85 17.28 16.87 20.03 19.17 18.60 0.14
PS1J1555+4151 15:55:18 +41:51:39 1.000 2.75 20.96 19.93 19.02 22.25 21.32 20.35 0.5553(∗) (c)
PS1J1553−0142 15:53:38 −01:42:34 0.995 2.75 21.26 19.87 18.80 22.90 21.30 20.32 0.40
PS1J1445+3649 14:45:54 +36:49:49 0.960 2.75 19.85 18.33 17.66 21.06 19.52 18.89 0.3551(∗)

PS1J1439+0721 14:39:37 +07:21:01 0.913 2.75 20.80 19.48 18.65 22.25 20.63 19.79 0.4795(∗)

PS1J1422+4246 14:22:41 +42:46:08 0.983 2.75 21.43 20.46 19.63 22.89 21.86 20.82 0.6047(∗) (e)
PS1J1411+2313 14:11:05 +23:13:57 0.955 2.75 19.80 18.19 17.58 21.29 19.74 18.93 0.3508(∗)

PS1J1349+0537 13:49:15 +05:37:51 0.995 2.75 20.78 19.57 18.64 22.33 20.75 19.80 0.5055(∗)

PS1J1241+2721 12:41:37 +27:21:25 1.000 2.75 20.70 20.15 19.64 22.10 21.40 20.59 0.50
PS1J1206+2336 12:06:51 +23:36:02 1.000 2.75 19.95 18.92 18.46 21.57 20.11 19.62 0.25
PS1J1111+4329 11:11:55 +43:29:11 1.000 2.75 . . . 20.01 19.31 23.21 21.75 20.57 0.6370(∗)

PS1J0921+0214 09:21:37 +02:14:09 0.979 2.75 19.57 18.21 17.71 21.41 20.09 19.42 0.3191(∗) (f), (l)
PS1J0907+4233 09:07:28 +42:33:02 1.000 2.75 19.67 18.75 18.05 21.32 20.40 19.51 0.4950(∗)

PS1J0737+1914 07:37:10 +19:14:36 0.989 2.75 20.03 18.90 18.31 21.69 20.25 19.54 0.3528(∗)

PS1J0717+4624 07:17:41 +46:24:31 1.000 2.75 19.61 18.02 . . . 21.18 19.65 19.12 . . .
PS1J0520−2008 05:20:03 −20:08:04 0.929 2.75 19.19 18.78 18.44 20.57 20.13 19.85 . . .

Notes. These systems were selected as high confidence candidates with CNN scores >0.9, and average grades ≥2.0 from visual inspection.
Columns are: source name; right ascension; declination; output score from the CNN; average of the visual grades from four authors; g-, r-, and
i-band Kron magnitudes of the lens and source blends from the PS1 catalog; g-, r-, and i-band aperture magnitudes of 1.04′′ radii covering the lens
central regions; SDSS photometric redshifts or spectroscopic redshifts marked as (∗) where available; previously published confirmed or candidate
systems (grades A and B or equivalent). The complete table is available at the CDS.
References. (a) Jacobs et al. (2019a), (b) Diehl et al. (2017), (c) Sonnenfeld et al. (2018), (d) Huang et al. (2020a), (e) Wong et al. (2018), (f)
Petrillo et al. (2019), (g) Stark et al. (2013), (h) Auger et al. (2009), (i) Jacobs et al. (2019b), (j) Lemon et al. (2019), (k) Wang et al. (2017), (l)
Jaelani et al. (2020), and (m) Schirmer et al. (2010).

with two or more emission or absorption lines falling at a
different and concordant redshift, higher than the LRG red-
shift, and indicating the presence of a background galaxy. Two
of them are already published as confirmed strong lens sys-
tems: PS1J2343−0030 as part of the SLACS sample (Auger
et al. 2009), and PS1J1640+1932 (lensed quasar from Wang
et al. 2017). Thirdly, we find eight LRG-like spectra over-
laid with a single bright, high-redshift emission line consistent
with [OII]λλ3727 from a background star-forming galaxy at

0.95< z< 1.50. Although the line widths and resolved double-
peaked profiles are those expected for the [OII] doublet, other
bright emission lines (Hβλ4863, [OIII]λ4960 and [OIII]λ5008)
are redshifted out of the BOSS spectral window and we con-
sider these identifications as ambiguous. Lastly, three cases show
clear signatures of star-forming galaxies at z < 0.3, which likely
have blue arms misidentified as lensed arcs, one QSO at z =
0.5890, and one star. These five systems are considered as false
positives.

A163, page 13 of 27



A&A 644, A163 (2020)

Fig. 10. Pan-STARRS lens candidate with prominent Balmer absorption features from a background galaxy at zs = 1.185 blended with the BOSS
spectrum of the lens LRG at zd = 0.3155. The black and gray lines show the spectrum observed with a fiber of 2′′ diameter and the 1σ noise level,
respectively, and the blue line corresponds to the best-fit LRG template from the automated SDSS pipeline at λ < 8000 Å (see inset), which poorly
fits the continuum and Balmer lines at longer wavelengths. The red line shows that combining the SED templates of an LRG at zd = 0.3155 (brown
curve) and a recently quenched galaxy at zs = 1.185 (orange curve) correctly fits the spectrum over the entire range (see details in text).

Finding a vast majority of LRGs15 and only 3/104 star-
forming galaxies at lower redshift demonstrates the valid-
ity of our method. This result shows that our CNN and
visual inspection method predominantly selects the targeted
population of galaxy-scale strong lens candidates with lens
LRGs, and efficiently distinguishes strong lensing features
from usual interlopers (e.g., spiral arms, tidal features, blue
rings). Moreover, the five false positives (PS1J2249+3228,
PS1J1551+2156, PS1J1452+1047, PS1J0834+1443, and the
QSO PS1J1156+5032) are all listed as lower confidence can-
didates with grades ≤2.25.

The rarity of spectroscopic signatures from lensed galax-
ies is not surprising because the 2′′ BOSS fibers enclose little
lensed source emission in the θE & 1.5′′ systems targeted by
our search. Background line flux can only be detected in few
favorable cases, like in the presence of counter-images closer to
the lens center. In addition, emission lines in most lensed galax-
ies might be too faint for SDSS spectroscopy, and the observ-
able spectral band of BOSS excludes Hβ4863, [OIII]4960 and
[OIII]5008 for z > 0.9, which rules out multiple line detections
for the majority of sources expected at z > 1.

The only Pan-STARRS candidate robustly confirmed as a
strong lens system is PS1J1415+1112. Pan-STARRS imaging
spatially resolves the system into a quadruply-imaged back-
ground source forming a typical fold configuration, and with
redder color than the lens LRG (Fig. 9). The best-fit model
from the BOSS pipeline primarily identifies spectral features
from the foreground LRG at zd = 0.3155, but poorly fits the
continuum and remarkably prominent Balmer absorption lines
at λobs > 8000 Å (Fig. 10). These features are associated with
the background galaxy at zs = 1.185. Further inspection of
the BOSS spectrum shows that the strong Balmer absorption
lines, together with the weak 4000 Å break indicative of rela-
tively young stellar populations, and the lack of nebular emis-
sion lines at zs = 1.185 suggesting little on-going star formation,
favor the scenario of a recently quenched galaxy. To verify this

15 Although we can not completely rule out that in few cases, these are
actually the central bulges of late-type galaxies covered by BOSS.

hypothesis, we used the BC03 stellar population synthesis mod-
els (Bruzual & Charlot 2003) to combine the SED template of an
elliptical galaxy at zd = 0.3155 with 7 Gyr old stellar populations
and solar metallicity with various templates of post-starbursts at
zs = 1.185. After varying the stellar age, metallicity, and dust
attenuation, we found that rescaling the SED of a young galaxy
with 25 Myr old stellar populations, no on-going star formation,
and Z = 0.2 Z� correctly fits the overall wavelength range in
Fig. 10. Together with the red colors of multiple images this
adds further evidence that the lensed galaxy has indeed ceased
star formation recently.

The last four CNN candidates showing multiple emis-
sion lines from a background, possibly lensed galaxy do not
exhibit such clear configurations in Pan-STARRS and Legacy gri
images. Their BOSS spectra reveal simultaneous detections of
[OII]λλ3727, Hβλ4863, [OIII]λ4960, and [OIII]λ5008 on top of
the prominent stellar continuum from the foreground LRG (see
Fig. 11). The first three are PS1J2345−0209 with zLRG = 0.2940
and zs = 0.6581, PS1J1134+1712 with zLRG = 0.3752 and
zs = 0.8121, and PS1J0917+3109 with zLRG = 0.2386 and
zs = 0.8198. These candidates were listed as probable lenses
from our grades and, although zLRG, zs, and σ∗LRG suggest plau-
sible Einstein radii ∼1′′ for singular isothermal sphere pro-
files, high-resolution follow-up imaging is needed to ascertain
their configuration. These data will determine whether the back-
ground, spectroscopically-confirmed galaxies are those visu-
ally identified with Pan-STARRS and indeed multiply-imaged,
or whether they are out of the strong lensing regime. Lastly,
PS1J1724+3146 comprises a foreground LRG at zLRG = 0.2097
and a background source at zs = 0.3461, likely too close to the
lens to enter the strong lensing regime.

6.3. Properties of candidates

Our visual inspection stage implies that resulting lens candidates
have morphologies and configurations easily detectable by the
human eye. Figure 9 confirms that higher grades are given to sys-
tems with extended arcs, clear counter images and often compact
lens light profiles. Postage stamps make it clear that our most
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Fig. 11. Example of a lens candidate with multiple emission lines from a high-redshift background galaxy overlaid on the SDSS BOSS spectrum
of the foreground LRG. The black, gray and blue lines show the observed spectrum, the 1σ noise level, and the best-fit SDSS template for the
LRG, respectively. The spectrum is zoomed on the spectral features associated with the background line-emitter at z = 0.8198 rather than with the
LRG at z = 0.2386.

reliable systems have relatively brighter and distorted arcs (as
plausible strongly lensed background galaxies) in gri bands
which will facilitate their future follow-up. Interestingly, besides
the numerous blue arcs (e.g., PS1J1647+1117, PS1J1508−1652),
several candidates have lensed sources redder than the foreground
LRGs (e.g., PS1J1559−3147, PS1J1445+3649) and others have
compact, nearly point-like morphologies suggestive of lensed
quasars (e.g., PS1J1926−2138). Since the presence of possible
counter images is a prerequisite for lens identifications, our can-
didate set is presumably biased toward higher fractions of quads
than doubles, at least for grades ∼3. Other biases on the relative
positions of lenses and sources might also arise. For instance,
although our tests suggest that systems with θE/Reff < 1 are cor-
rectly classified by the CNN, with only minor differences in pCNN
with respect to θE/Reff > 1 (Fig. 7), candidates and known lenses
recovered by visual inspection should be relatively less blended
and lie on the high-end of the θE/Reff distribution. Quantifying
this effect is nevertheless an arduous task due to uncertainties in
reliably measuring Reff from Pan-STARRS imaging. As previ-
ously mentioned, systems with θE differing from simulated lenses
in our training set are likely all discarded.

Our 358 candidates have lens redshifts in the range zd ∼

0.15−0.65. The distribution does not change much between
candidates with confirmed lens zspec from SDSS, and those
with more uncertain SDSS zphot due to lens and source blend-
ing. It closely matches the lens redshift ranges in other sam-
ples selected through multiband, ground-based imaging such as
CASSOWARY (Stark et al. 2013) and SL2S (Sonnenfeld et al.
2013). Interestingly, Pan-STARRS candidates with SDSS stel-
lar velocity dispersion have σ∗mean ∼ 275 km s−1. This is signif-
icantly lower than σ∗mean ∼ 310 km s−1 in the set of LRGs for
simulations (Sect. 4.4), indicating that lens LRGs in our candi-
date set are less massive on average.

To understand implications of such differences in σ∗ we fol-
lowed Petrillo et al. (2017) and, for each lens candidate with zd
and σ∗ available from BOSS, we calculated Einstein radii for a
singular isothermal sphere profile and different source redshifts
spanning the most plausible zs = 0.5−3.0 range. We assumed
σSIS ∼ σ∗. In the vast majority of cases (86%), Einstein radii

predicted from the lens galaxy dynamics match the approximate
θE ∼ 1−2′′ of PS1 candidates from a basic inspection of 3-color
images in Fig. 9. This range is also expected from construction of
the training set and our CNN selection function. Predicted and
observed image configurations usually match for zs > 1. This
qualitative test argues in favor of plausible lens configurations
and few contaminants despite the moderate σ∗ from BOSS.

In some cases, the large Einstein radii &1.5′′ are likely to
be partly attributed to a contribution from the environment of
the primary lens galaxy, probably from a smooth dark-matter
halo associated with an extended group- or cluster-scale struc-
ture (Oguri 2006). As a matter of fact, obtaining a few strong
lens candidates with θE in the same range as our lens simula-
tions but with lower SDSS stellar velocity dispersions proves
that, if they are genuine strong lenses, they host moderately
massive lens LRGs with significant external shear and magni-
fication contributions from the environment. We verified that
some of our Pan-STARRS candidates are indeed matching the
position of the central brightest cluster galaxy of SDSS clus-
ters (e.g., PS1J0907+4233, PS1J2153+1154, PS1J1417+2120,
PS1J1210+2843, PS1J1730+3405, Szabo et al. 2011), and
of candidate galaxy clusters from a red sequence search
in DES imaging (e.g., PS1J0919+0336, PS1J2233+3012,
PS1J1210+2843, PS1J1414+6447, Rykoff et al. 2016). This
environmental effect is well illustrated by the case of
PS1J0454−0308 characterized in Schirmer et al. (2010). We
also found that PS1J2210+0620 and its bright red arc of ∼8′′
extension lie behind the core of Abell 2422 galaxy cluster (Abell
et al. 1989). Lastly, PS1J1142+5830 is located in the field of
the rich, X-ray luminous galaxy cluster MACSJ1142.4+5831 at
z = 0.325, also known as Abell 1351, which has a bimodal veloc-
ity distribution suggesting an on-going merger (Barrena et al.
2014). The SDSS photo-z of PS1J1142+5830 is consistent with
the cluster redshift but our candidate is offset by 1.3′ from the
brightest cluster galaxy.

The Pan-STARRS gri photometry of our 358 candidates is
comparable to that of our lens simulations. Observed (g − i) col-
ors of the deflector central regions within 2′′ diameter apertures
range between 1.3 and 2.7 mag and broadly follow the color
distribution of mocks and pcat > 0.5 galaxies in Fig. 2. Our
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best candidates are therefore representative of the global sam-
ple and visual inspection does not introduce significant biases in
terms of lens color. Kron (g − i) colors from blended deflector
and source emissions are ∼0.3 mag lower because lensed arcs
are predominantly bluer than the lens LRGs. Given uncertainties
on the lensed source colors, quantitative analyses would require
subtracting the lens LRG light profile, a hazardous task with
Pan-STARRS imaging. However, it is worth noting that a major-
ity of pCNN > 0.9 systems with blue arcs closely mimicking
extended arms of star-forming spirals were conservatively dis-
carded by visual inspection, while systems with similar config-
urations but redder arcs where considered less ambiguous and
assigned higher grades. Consequently, the output set is likely
biased toward a higher fraction of red lensed arcs compared to
all genuine lens systems assigned pCNN > 0.9.

We did not find significant correlations between average
grades and photometric properties. Although our high and lower-
confidence candidates have comparable lens brightness, those
with higher grades have slightly redder lenses by ∼0.15 mag in
(g − i) on average. Mean lens redshifts and velocity dispersions
are also increasing in the top half of the candidate set, by 0.05
and 50 km s−1, respectively.

6.4. Discussion

Our study demonstrates that a two-step approach combining
catalog-level and image-level classifications, as already applied
to lensed quasars searches (Agnello et al. 2015), is efficient
in selecting galaxy-scale strong lenses from very wide-field
surveys without imposing restrictive cuts on the input galaxy
catalog. Using three bands and multiaperture photometry, our
catalog-level neural network conveniently reduces the sample
size for CNN classification to the order of one million sources
which, in the case of Pan-STARRS, allows us to download all
gri cutouts within a manageable amount of time of about one
week. This first stage will be particularly beneficial to overcome
data volume limitations in the new era of deep, large scale sur-
veys such as LSST. At the same time, the low false negative rate
and good performance on known lens systems of our catalog-
level network applied to Pan-STARRS photometry shows that
this stage discards very few potentially interesting systems. After
that, we obtain encouraging results from our CNN combined
with visual inspection. The compilation of 330 newly-discovered
lens candidates (after removing the five false-positives identi-
fied from SDSS BOSS spectra) and confirmation of 23 lenses
already selected from other, more suitable surveys (e.g., DES,
KiDS) demonstrates the efficiency of our approach regardless of
the limited depth and seeing in Pan-STARRS.

The strategy presented in this paper is expected to be eas-
ily applicable to the deeper LSST gri stacks in order to identify
the large set of new, wide-separation galaxy-scale lenses from
this survey. The simulations of Collett (2015) suggest that the
LSST final stacks in gri bands will yield about 39 000 detectable
lens systems, with θE greater than the seeing FWHM and large
enough to spatially-resolve multiple images, and with total S/N
of lensed arcs >20 in at least one band. Under these assumptions,
future LSST lenses will mainly cover θE = 1−3′′, a similar range
as our Pan-STARRS candidates, and their systematic identifica-
tion will be crucial for several science cases including the search
for strongly lensed SNe with spatially-resolved multiple images
for early-phase SN spectroscopy and cosmography (Suyu et al.
2020). In order to achieve this, we can customize our simula-
tion pipeline of realistic Pan-STARRS mock lenses to produce
LSST mocks and quickly assemble a training set, by using gri

cutouts of the relevant LRG lenses from LSST stacks rather than
Pan-STARRS. Extending the search to broader populations of
lens galaxies might also become feasible, in light of the ∼4 mag
deeper gri LSST stacks.

Tests on the CNN performance presented in this paper
are likely valid essentially for Pan-STARRS seeing and depth,
while better imaging quality should enable identifications of
broader, more complex image patterns and would likely ben-
efit from updates on the neural network. The main challenge
is the minimization of false positives which, given the rar-
ity of strong lenses per deg2, will largely dominate the sam-
ple of CNN candidates even with FPR down to 1% or less.
Potential avenues for improvements include adding other con-
volutional layers or boosting the learning process with residual
networks (He et al. 2016), as the latter might give better perfor-
mance for image features not represented in the training data (for
LSST simulations, see Lanusse et al. 2018). A possibility would
be to use CNNs optimized for image outlier detection (e.g.,
Margalef-Bentabol et al. 2020), either to identify strong lenses
as the outlier class, or simply to exclude cutouts with partial
coverage, background artifacts or other anomalies before clas-
sification. In addition, although Teimoorinia et al. (2020) found
little difference with single-band HST images, implementing
additional classes for the usual interlopers (spirals, ring galax-
ies, . . . ) might help distinguish signatures of strong lenses in
gri bands. Our Pan-STARRS lens search demonstrates that ulti-
mately, most progress should come from the choice of posi-
tive and negative examples in the training set (see Sect. 5.5).
Highly-realistic lens simulations are one of the main ingredients
(see Lanusse et al. 2018). For instance, as multiple images are
strongly blended with lenses in about half of the mocks produced
in Sect. 4.4, one could only include those visually classified as
definite lenses from their bright arcs and unambiguous configura-
tions. Fine-tuning the selection of positive examples in this way
could help the network assign high scores exclusively to robust
candidates that are worth including for follow-up campaigns.

Reducing the false positive rates and making sure that only
high-confidence candidates get pCNN ∼ 1 will be crucial for
future lens searches in the LSST era. However, the most efficient
neural networks should provide orders of magnitudes more lens
candidates than Pan-STARRS and their systematic visual inspec-
tion might become unrealistic. Assembling complete strong lens
samples will therefore require one to abandon this nonauto-
mated, human-classification stage and to search for alterna-
tives. For instance, calibrating the CNN scores as probabilities
(e.g., Guo et al. 2017) could help quantify purity and complete-
ness, and automatically select a subset of candidates for high-
resolution imaging or spectroscopic follow-up.

7. Conclusion

In this paper, we presented a systematic search for wide-
separation, galaxy-scale strong lenses in Pan-STARRS using
machine learning classification of gri images from the 3π sur-
vey on the entire Northern sky. We focused our search on mas-
sive LRGs acting as strong lenses and producing Einstein radii
≥1.5′′, and we simulated a set of highly-realistic mocks by paint-
ing lensed arcs on Pan-STARRS image cutouts of LRGs with
known redshift and velocity dispersion from SDSS. This strat-
egy ensures that mocks include background artifacts and field
galaxies, and that the network becomes invariant under the small
scale exposure and FWHM variations on the survey stacks.

We computed the gri aperture photometry of mocks to prese-
lect a conservative catalog of 23.1 million sources, and followed
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a two-step approach for classification: (1) a catalog-based neu-
ral network on the source photometry, (2) a CNN trained on gri
image cutouts. The catalog-level network assigned pcat > 0.5 for
1 050 207 galaxies while excluding little known lenses from the
MasterLens catalog. The image-level network then yielded sets
of 105 760 and 12 382 candidates with scores pCNN > 0.5 and
>0.9, respectively. We visually inspected those with pCNN > 0.9
and combined with previous CNNs to assemble a final set of 330
high-quality newly-discovered candidates with average visual
grades ≥2. Publicly available BOSS spectroscopy of the lens
candidates’ central regions proves that the vast majority are
indeed LRGs at z ∼ 0.1−0.7, and five newly-discovered can-
didates show robust signatures of blended, high-redshift back-
ground sources. Pan-STARRS clearly resolves one of them as
a quadruply-imaged red galaxy at zs = 1.185 (likely recently
quenched), behind a lens LRG at zd = 0.3155.

This new set of bright lens candidates is particularly valuable
for future lensed SNe searches. Strong lenses with such image
separations are indeed likely to produce long time delays of a
few days to weeks which alleviates difficulties affecting θE < 1′′
lensed SNe such as iPTF16geu and allows one to measure accu-
rate, microlensing-free time delays for cosmography. Such time
delays are also well-suited to trigger timely imaging and spec-
troscopic follow-up of a SN reappearance to characterize the
SN’s early-phase behavior within a few days after explosion.
In the meantime, validating these Pan-STARRS lens candidates
and deriving strong lensing models will require high-resolution
imaging and spectroscopic follow-up.

Our CNN exhibits good performance on known lenses
detected in Pan-STARRS, correctly classifying 14/16 systems
as lenses and assigning scores pCNN > 0.9 to 7/16. We found
that CNN predictions strongly depend on the construction of the
training set but little on the network architecture. Our search also
recovered 23 confirmed or candidate strong lenses in the litera-
ture out of the MasterLens catalog. In the near future, the release
of deep stacks with best seeing conditions in smaller fields as
part of Pan-STARRS DR3 will give the opportunity to extend
our search to optimal PS1 data quality. In addition, we expect
that the efficient and automated two-step classification method
presented in this paper will be applicable to the deep gri image
stacks from LSST with only minor adjustments.
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Appendix A: Complete list of candidates

Fig. A.1. Pan-STARRS 3-color gri images of candidates with grades ≥2 from visual inspection of CNN scores pCNN > 0.9. See Fig. 9 caption.
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Fig. A.1. continued.
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Fig. A.1. continued.
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Fig. A.2. Legacy 3-color images of candidates covered in DR8.
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Fig. A.3. PS1 lens candidates with multiple emission lines from a high-redshift background galaxy overlaid on the SDSS BOSS spectrum of
the foreground LRG. The black, gray and blue lines show the observed spectrum, the 1σ noise level, and the best-fit SDSS template for the
LRG, respectively. The spectrum is zoomed on the spectral features associated with the background line-emitter rather than with the LRG. Top:
PS1J2345−0209 with zLRG = 0.2940 and zs = 0.6581. Middle: PS1J1134+1712 with zLRG = 0.3752 and zs = 0.8121. Bottom: PS1J1724+3146
with zLRG = 0.2097 and zs = 0.3461.
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