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Abstract
Introduction: For	the	diagnosis	of	Parkinson's	disease	(PD)	and	atypical	parkinson-
ism	(AP)	using	neuroimaging,	structural	measures	have	been	largely	employed	since	
structural	abnormalities	are	most	noticeable	in	the	diseases.	Functional	abnormali-
ties	have	been	known	as	well,	though	less	clearly	seen,	and	thus,	the	addition	of	func-
tional measures to structural measures is expected to be more informative for the 
diagnosis.	Here,	we	aimed	to	assess	whether	multimodal	neuroimaging	measures	of	
structural and functional alterations could have potential for enhancing performance 
in diverse diagnostic classification problems.
Methods: For	77	patients	with	PD,	86	patients	with	AP	comprising	multiple	system	
atrophy	and	progressive	supranuclear	palsy,	and	53	healthy	controls	(HC),	structural	
and	functional	MRI	data	were	collected.	Gray	matter	(GM)	volume	was	acquired	as	
a	structural	measure,	and	GM	regional	homogeneity	and	degree	centrality	were	ac-
quired	as	functional	measures.	The	measures	were	used	as	predictors	individually	or	
in combination in support vector machine classifiers for different problems of dis-
tinguishing between HC and each diagnostic type and between different diagnostic 
types.
Results: In	statistical	comparisons	of	 the	measures,	structural	alterations	were	ex-
tensively	seen	in	all	diagnostic	types,	whereas	functional	alterations	were	limited	to	
specific diagnostic types. The addition of functional measures to the structural meas-
ure	generally	yielded	statistically	significant	improvements	to	classification	accuracy,	
compared to the use of the structural measure alone.
Conclusion: We suggest the fusion of multimodal neuroimaging measures as an ef-
fective strategy that could generally cope with diverse prediction problems of clinical 
concerns.
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1  | INTRODUC TION

In	the	era	of	precision	medicine,	machine	learning-based	predictive	
modeling has great potential for clinical prediction problems includ-
ing	the	diagnosis	of	specific	diseases,	as	 it	can	find	patterns	that	a	
single clinician may not detect when it is applied to various clinical 
data	sources.	However,	there	are	also	challenges	regarding	a	lack	of	
its meaningful contributions to clinical practice primarily due to the 
need	of	additional	measures	characterizing	 the	disease	process	as	
well	as	the	demand	for	a	large	sample	size	(Deo,	2015).

For	 the	diagnosis	of	Parkinson's	disease	 (PD)	 and	atypical	 par-
kinsonism	(AP),	though	still	usually	reliant	on	a	medical	history	and	
neurological	examination	in	clinical	practice,	neuroimaging	measures	
have	been	 increasingly	 employed.	 Furthermore,	 the	 application	of	
machine learning to neuroimaging measures has shown improved 
performance in classification problems related to the diagnosis (Rana 
et	al.,	2015;	Salvatore	et	al.,	2014).	In	particular,	given	challenges	of	
the	differential	diagnosis	between	PD	and	AP	as	often	manifested	
as	 the	 underdiagnosis	 of	 AP	 and	 the	 overdiagnosis	 of	 PD	 (Irene	
Litvan,	1999),	machine	learning-based	predictive	modeling	with	neu-
roimaging measures has emerged as an approach to discover new in-
sights	into	the	diagnosis	(Garraux	et	al.,	2013;	Scherfler	et	al.,	2016).

Among	other	MRI	measures,	gray	matter	(GM)	volume	acquired	
from	 structural	 MRI	 (sMRI)	 has	 been	 successfully	 employed	 for	
machine	 learning	 by	 taking	 account	 of	 structural	 abnormalities,	
specifically	GM	atrophy,	 in	PD	(Brenneis	et	al.,	2003;	Summerfield	
et	al.,	2005)	and	AP	(Brenneis	et	al.,	2003;	Messina	et	al.,	2011).	In	
contrast,	despite	possible	functional	abnormalities	related	to	PD	and	
AP	(Choe,	Yeo,	Chung,	Kim,	&	Lim,	2013;	Fang	et	al.,	2017;	Li,	Liang,	
Jia,	&	Li,	2016;	Wu	et	al.,	2009),	the	potential	of	functional	measures	
acquired	from	functional	MRI	(fMRI)	for	the	diagnosis	of	the	diseases	
at	a	single	individual	level	has	been	rarely	examined.	Moreover,	it	re-
mains unclear whether the fusion of structural and functional mea-
sures could be more informative than the use of structural measures 
alone especially when diverse diagnostic classification problems are 
considered.

In	this	study,	we	proposed	three	kinds	of	diagnostic	classification	
problems:	(a)	discriminating	PD	and	AP	from	healthy	controls	(HC);	
(b)	distinguishing	between	PD	and	AP;	and	(c)	classifying	subtypes	
of	 AP.	We	wanted	 to	 search	 for	 an	 effective	 strategy	 that	would	
generally cope with such diverse diagnostic classification problems. 
Specifically,	 we	 sought	 to	 test	 whether	 multimodal	 neuroimaging	
measures of structural and functional abnormalities could help to 
enhance classification performance compared to the use of mono-
modal neuroimaging measures alone.

2  | METHODS

2.1 | Participants

From	the	movement	disorders	and	dementia	database	collected	pro-
spectively	 from	2011	 to	2016	at	 a	 single	 tertiary	hospital,	 patients	

who	 underwent	 neurological	 examination,	 including	 the	 unified	
Parkinson's	disease	rating	scale	(UPDRS)	(Fahn,	Elton,	&	Members	of	
the	UPDRS	Development	 Committee,	 1987)	 and	mini-mental	 state	
examination	 (MMSE),	 and	 conventional	MRI	 scans	 at	 the	 first	 visit	
to	the	clinic,	were	selected.	At	 least	3	years	after	the	first	visit,	the	
most up-to-date diagnosis was retrieved from the case files of each 
patient.	To	ensure	a	differential	diagnosis,	apart	from	consensus	cri-
teria	 (Bensimon	et	al.,	2008;	Gelb,	Oliver,	&	Gilman,	1999;	Hughes,	
Daniel,	Kilford,	&	Lees,	1992;	Litvan	et	al.,	1996),	additional	imaging	
modalities,	such	as	18F-N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-
iodophenyl)	nortropane	PET,	18F-fluorodeoxyglucose	PET,	and	cardiac	
metaiodobenzylguanidine	imaging,	were	adopted	if	needed	and	clini-
cal features and drug responses during a follow-up were considered.

As	 diagnostic	 results,	 77	 patients	 (67.62	±	 7.72	 years,	 33	 fe-
males	 and	 44	 males)	 were	 diagnosed	 with	 PD	 and	 86	 patients	
(66.28 ±	9.24	years,	37	females	and	49	males)	were	diagnosed	with	
probable	AP.	The	patients	who	were	diagnosed	with	AP	were	 fur-
ther	 divided	 into	 44	 patients	 (61.73	±	 9.19	 years,	 18	 females	 and	
26	 males)	 with	 multiple	 system	 atrophy	 (MSA)	 and	 42	 patients	
(71.04	±	6.56	years,	19	females	and	23	males)	with	progressive	su-
pranuclear	palsy	(PSP).	The	patients	with	MSA	included	both	pheno-
types:	the	parkinsonian	variant	(MSA-P,	21	patients)	and	cerebellar	
variant	 (MSA-C,	21	patients)	 (Gilman	et	al.,	1999).	Fifty-three	age-	
and	 sex-matched	 healthy	 participants	 (66.87	±	 8.36	 years,	 28	 fe-
males	and	25	males)	were	also	recruited,	and	they	served	as	HC.	This	
retrospective	study	was	approved	by	the	Yonsei	University	Health	
System	institutional	review	board,	and	a	waiver	of	informed	consent	
was obtained.

2.2 | Acquisition and processing of 
neuroimaging data

MRI	scans	were	collected	using	an	Achieva	3	T	MRI	system	(Philips	
Healthcare).	Structural	MRI	(sMRI)	data	of	one	volume	were	acquired	
in coronal planes with a 3D T1-weighted SENSE parallel imaging se-
quence:	number	of	slices	=	210,	slice	thickness	=	1.00	mm,	matrix	
size	= 256 ×	256,	and	in-plane	resolution	=	0.875	mm	×	0.875	mm.	
Resting	state	fMRI	 (rsfMRI)	data	of	165	volumes	were	obtained	 in	
axial planes with a T2*-weighted gradient-echo echo-planar imag-
ing	sequence:	repetition	time	=	2,000	ms,	echo	time	=	30	ms,	num-
ber of slices =	31,	slice	thickness	=	4.00	mm,	matrix	size	= 80 ×	80,	
and in-plane resolution =	 2.75	mm	×	 2.75	mm.	Using	 the	 tools	 in	
SPM12	 (http://www.fil.ion.ucl.ac.uk/spm/,	RRID:SCR_007037)	 and	
DPARSF	 (http://rfmri.org/DPARS	F/,	RRID:SCR_002372),	 sMRI	 and	
rsfMRI	data	were	preprocessed.	GM	volume,	as	a	main	measure	in-
dicating	structural	abnormalities	 in	PD	and	AP,	was	acquired	 from	
sMRI.	In	addition,	as	measures	representing	functional	abnormalities	
at	local	and	global	levels,	regional	homogeneity	(ReHo)	(Zang,	Jiang,	
Lu,	He,	&	Tian,	2004)	and	degree	centrality	(DegCen),	respectively,	
were obtained from rsfMRI. Details on how the neuroimaging data 
were	processed	 to	acquire	 the	structural	 and	 functional	measures	
are	described	in	Appendix	S1.

http://www.fil.ion.ucl.ac.uk/spm/
http://rfmri.org/DPARSF/
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2.3 | Statistical inferences on 
neuroimaging measures

At	a	group	level,	differences	in	the	voxel-wise	measures,	including	GM	
volume,	ReHo,	and	DegCen,	were	 inferred	using	 two-sample	 t tests 
between HC and each diagnostic type and between different diagnos-
tic	types.	In	the	voxel-wise	statistical	inferences,	influences	of	age,	sex,	
and years of education were adjusted commonly for the three meas-
ures,	and	an	effect	of	total	intracranial	volume	(TIV)	was	additionally	
adjusted	for	GM	volume.	Statistical	significance	was	determined	at	an	
extent threshold of a p value of .05 family-wise error corrected for mul-
tiple comparisons with a height threshold of a p value of .001.

2.4 | Generation of predictor sets and application of 
machine learning

The	parcellation	 of	 120	GM	 regions	was	 determined	 according	 to	
the	modified	automated	anatomical	labeling	(AAL)	atlas	(Rolls,	Joliot,	
&	Tzourio-Mazoyer,	2015).	They	contain	94	cerebral	regions	and	26	
cerebellar	 regions	 (Table	S1).	For	each	GM	region,	GM	volume	di-
vided	by	TIV,	ReHo,	 and	DegCen	averaged	over	 voxels	within	 the	
region were assigned. Since the collection of values according to the 
choice	of	a	specific	atlas	seems	to	be	arbitrary	in	acquiring	predictor	
values,	we	also	applied	the	same	predictive	modeling	procedure	de-
scribed below to the choice of different atlases. Details on the par-
cellation	of	GM	regions	according	to	different	atlases	are	described	
in	Appendix	S1.

For	tasks	of	classification	between	HC	and	each	diagnostic	type	
and	between	different	diagnostic	types,	we	employed	the	support	
vector	machine	(SVM)	as	a	machine	learning	method.	Having	trained	
an	 SVM	 classifier	 for	 each	 classification	 problem,	 we	 evaluated	
classification	accuracy	via	leave-one-out	cross-validation,	by	which	

classification accuracy was computed for each left-out instance 
other than instances used for training. To assess improvements to 
classification accuracy according to the combined use of multimodal 
neuroimaging	measures	 in	 developing	 SVM	 classifiers,	we	 consid-
ered combinations of more than two measures as well as individual 
measures	as	predictor	sets.	Specifically,	the	fusion	of	the	structural	
and	functional	measures	was	manifested	by	combining	GM	volume	
and	ReHo,	by	combining	GM	volume	and	DegCen,	and	by	combining	
all the three measures. Each of the predictor sets was corrected for 
effects	 of	 age,	 sex,	 and	 years	 of	 education	 by	 obtaining	 residuals	
after regressing out the confounding covariates. To reduce the risk 
of	overfitting,	irrelevant	predictors	were	removed	when	they	failed	
to pass a criterion of showing a difference between two groups with 
a p value of.05 uncorrected for multiple comparisons in a two-sam-
ple t test.

2.5 | Comparison of classification accuracy

To	 compare	 classification	 accuracy	 between	different	 SVM	classi-
fiers,	specifically	between	the	one	constructed	with	the	structural	
measure alone and the ones constructed by the combination of the 
structural	and	functional	measures,	we	used	a	resampling	approach	
(Hothorn,	 Leisch,	 Zeileis,	 &	Hornik,	 2005)	 to	 derive	 a	 distribution	
of classification accuracy. Resampling was performed by applying 
10-fold	cross-validations	 iteratively	1,000	 times,	 such	 that	10,000	
estimates of classification accuracy were collected. The distribution 
of the estimates was represented as a curve the shape of which has 
been defined by a kernel smoothing function. With matched resa-
mpling	for	two	SVM	classifiers,	one-sided	one-sample	t tests were 
conducted	to	assess	the	null	hypothesis	of	zero	or	negative	differ-
ences in the estimates. Statistical significance was determined at a 
p value of .05 family-wise error corrected for multiple comparisons.

TA B L E  1   Demographic and clinical characteristics of participants

HC

Patients p value

PD

AP
HC versus. 
Patients

PD versus. 
AP

MSA 
versus. PSPMSA PSP

Sample	size 53 77 44 42

Age,	years	
(mean ± SD)

66.87	± 8.36 67.62	±	7.72 61.73	± 9.19 71.04	± 6.56 NS NS <.001

Sex	(female:male) 28:25 33:44 18:26 19:23 NS NS NS

Education,	years	
(mean ± SD)

12.53 ±	4.44 10.10 ±	4.75 11.43	±	4.38 10.27	±	4.89 .006 NS NS

Disease	duration,	
months (mean ± SD)

n/a 22.49	± 20.96 25.31 ±	18.94 33.33 ± 16.19 n/a .028 .040

UPDRS	(mean	± SD) 2.50 ± 2.12 24.90	± 10.32 29.67	± 13.36 28.00 ± 11.52 .003 NS NS

MMSE (mean ± SD) 28.33 ±	1.24 27.04	± 2.51 26.36 ± 3.26 24.31	±	2.78 .003 .006 NS

Abbreviations:	AP,	atypical	parkinsonism;	HC,	healthy	controls;	MMSE,	mini-mental	state	examination;	MSA,	multiple	system	atrophy;	NS,	
nonsignificant;	PD,	Parkinson's	disease;	PSP,	progressive	supranuclear	palsy;	UPDRS,	unified	Parkinson's	disease	rating	scale.
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2.6 | Identification of GM regions contributing to 
classification

For	the	SVM	classifier	that	has	been	composed	by	the	combination	
of	all	the	three	measures,	we	identified	GM	regions	that	contributed	
to	classification	and	assessed	how	repeatedly	each	GM	region	was	
involved	 in	 different	measures.	 In	 addition,	 as	 crucial	 roles	 of	 the	
cerebellum	in	PD	and	AP	have	been	noted	(Wu	&	Hallett,	2013),	we	
computed relative weight ratios of cerebral and cerebellar regions 
by	segregating	GM	regions	 involved	 in	each	measure	 into	the	two	
regions.

3  | RESULTS

3.1 | Demographic and clinical characteristics

Table	1	 summarizes	demographic	 and	 clinical	 characteristics	of	 all	
participants. The patients were matched in age and sex with HC de-
spite	PSP's	being	relatively	older	among	the	patients.	Motor	 func-
tion,	 as	 assessed	 with	 the	 motor	 section	 of	 the	 UPDRS,	 was	 not	
different	between	different	diagnostic	types.	Cognitive	function,	as	
assessed	with	 the	MMSE,	was	higher	 than	24	out	 of	 30	points	 in	
all	diagnostic	types,	indicating	the	patients'	cognition	not	being	se-
verely	abnormal,	although	a	statistical	difference	was	seen	between	
PD	and	AP.

3.2 | Group differences in neuroimaging measures

Figures	S1–S6	depict	differences	in	the	three	measures	between	HC	
and each diagnostic type and between different diagnostic types. In 
addition,	Tables	S2–S4	list	clusters	of	the	group	differences,	accom-
panied	by	labels	of	the	modified	AAL	atlas	and	coordinates	of	peak	
voxels.	Differences	in	GM	volume	were	most	noticeable	in	all	group	
comparisons.	As	compared	to	HC,	GM	volume	decreased	over	the	
basal	ganglia,	 thalamus,	cingulate	cortex,	 insula,	 superior	 temporal	
cortex,	 and	cerebellum	 in	all	 diagnostic	 types	of	patients.	 In	 addi-
tion,	reductions	in	GM	volume	reached	the	frontal	cortex,	sensori-
motor	cortices,	parietal	cortex,	and	occipital	cortex	in	PD	and	PSP.	
Between	different	diagnostic	types,	reductions	in	GM	volume	were	
more	 severe	 primarily	 over	 the	 cerebellum	 in	 both	MSA	 and	 PSP	
compared	 to	PD,	 and	greater	 decreases	 in	GM	volume	were	 seen	
over	the	thalamus,	cingulate	cortex,	and	frontal	cortex	in	PSP	than	
in	MSA.

Differences in functional measures were also observed but not 
in	 all	 diagnostic	 types,	 and	group	differences	were	much	 less	 dis-
tributed	 than	 those	 seen	 for	GM	volume.	 In	 comparison	with	HC,	
decreases	 in	 ReHo	 were	 observed	 over	 the	 cerebellum	 in	 MSA,	
whereas reductions in DegCen were seen over the cingulate cortex 
commonly in PD and PSP and over the sensorimotor cortices as well 
in PD.

3.3 | Classification accuracy of SVM classifiers

A	heat	map	 in	Figure	1	exhibits	 variations	 in	 the	 classification	ac-
curacy	 of	 SVM	 classifiers	 according	 to	 different	 combinations	 of	
measures.	Also,	 for	 the	SVM	classifier	constructed	with	 the	struc-
tural measure alone and those composed by the combination of 
the	structural	and	functional	measures,	Figure	2	shows	probability	
density curves of classification accuracy estimates and Table 2 lists 
statistically significant differences in classification accuracy. In gen-
eral,	predictor	sets	composed	by	the	combination	of	the	structural	
and functional measures provided comparable or higher classifica-
tion accuracy compared to those constructed with a single measure 
across the different classification problems. The combination of all 
the three measures yielded the highest classification accuracy in 
discriminating either diagnostic type from HC and in classifying the 
two	subtypes	of	AP,	with	significantly	higher	classification	accuracy	
than	the	structural	measure	alone.	 In	distinguishing	PD	from	MSA	
or	PSP,	the	combination	of	GM	volume	and	one	functional	measure	
provided	the	highest	classification	accuracy,	which	was	significantly	
higher than that yielded by the structural measure alone. When we 
assessed classification accuracy by applying the same predictive 
modeling	procedure	to	the	choice	of	different	atlases,	the	fusion	of	
more than two measures still tended to yield improvements to clas-
sification	 accuracy	 across	 the	 different	 classification	 problems,	 as	
displayed	in	Figures	S7	and	S8.

3.4 | Contributions of GM regions to classification

Figure	3	shows	predictors	in	the	SVM	classifier	that	has	been	com-
posed	by	the	combination	of	all	the	three	measures.	GM	regions	in-
volved in both the structural and functional measures were up to 
32%	of	cerebral	regions	in	distinguishing	between	MSA	and	PSP	and	
up	 to	71%	of	cerebellar	 regions	 in	distinguishing	between	PD	and	
MSA	 (Table	 S5).	 In	 terms	 of	 relative	weight	 ratios	 of	 cerebral	 and	
cerebellar	 regions	 (Figure	3),	 the	 relative	weight	 ratios	of	 cerebral	
regions were generally higher in the classification between HC and 
PD,	between	HC	and	PSP,	between	PD	and	PSP,	and	between	MSA	
and	PSP,	whereas	those	of	cerebellar	regions	were	largely	higher	in	
the	classification	between	HC	and	MSA	and	between	PD	and	MSA.

4  | DISCUSSION

With	respect	to	the	diagnosis	of	PD	and	AP,	there	are	a	range	of	clas-
sification	 problems,	which	 include	 distinguishing	 between	PD	 and	
AP	and	between	subtypes	of	AP	as	well	as	discriminating	PD	and	AP	
from	HC.	In	the	current	investigation,	as	an	effective	strategy	that	
can be used to tackle such diverse diagnostic classification prob-
lems,	we	proposed	employing	multimodal	neuroimaging	measures	in	
machine learning-based predictive modeling. We demonstrated that 
the combined use of the structural and functional measures could 
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improve	the	performance	of	SVM	classifiers,	compared	to	the	use	of	
the	structural	measure	alone,	for	most	of	the	classification	problems	
even when statistical group differences of the functional measures 
were not extensively seen.

As	machine	 learning-based	 predictive	 modeling	 has	 drawn	 at-
tention	in	the	era	of	precision	medicine,	the	potential	of	multimodal	
neuroimaging to provide more informative predictors for machine 
learning	has	been	underlined	(Libero,	DeRamus,	Lahti,	Deshpande,	&	
Kana,	2015;	Liem	et	al.,	2017;	Meng	et	al.,	2017).	Structure	and	func-
tion	are	 two	main	aspects	 for	explaining	brain	abnormalities,	with	
each	conveying	a	large	amount	of	information.	Here,	we	employed	
sMRI	to	acquire	a	local	measure	of	GM	structure	and	rsfMRI	to	ob-
tain	local	and	global	measures	of	GM	function,	and	we	employed	the	
individual ones or combinations of those as predictor sets for various 
classification problems.

In agreement with previous studies on structural abnormalities in 
PD	and	AP	(Brenneis	et	al.,	2003;	Messina	et	al.,	2011;	Summerfield	
et	al.,	2005),	we	showed	that	GM	volume	was	reduced	 in	all	diag-
nostic	types	in	relation	to	HC.	Also,	as	already	reported	in	literature	
(Messina	et	al.,	2011),	more	severe	GM	volume	loss	in	both	subtypes	
of	AP	than	in	PD	was	observed.	The	general	aspects	of	those	struc-
tural alterations may be described in terms of differential involve-
ments of cerebral and cerebellar regions: Cerebral regions were 
mainly	affected	in	PD;	cerebellar	regions	in	MSA;	and	both	cerebral	
and cerebellar regions in PSP.

Similarly,	 though	much	more	 spatially	 limited,	 functional	 alter-
ations	affected	cerebellar	regions	in	MSA	and	cerebral	regions	in	PD	
and	PSP,	with	differential	detections	of	those	according	to	local	and	
global	functional	measures.	Of	note,	the	involvement	of	the	same	re-
gions,	the	sensorimotor	cortices	and	cingulate	cortex	for	PD,	the	cin-
gulate	cortex	for	PSP,	and	the	cerebellum	for	MSA,	in	both	structural	

and	 functional	 alterations,	 reflects	 a	 link	 between	 structural	 and	
functional abnormalities.

When the structural and functional measures were employed 
as predictor sets for discriminating each diagnostic type from HC 
and	 distinguishing	 between	 different	 diagnostic	 types,	 statistical	
group differences were not always directly connected with the 
performance	of	SVM	classifiers.	For	instance,	although	GM	volume	
was the measure of the most prominent differences between HC 
and	PD	at	a	group	level,	it	yielded	lower	classification	performance	
than	the	functional	measures.	Nevertheless,	when	we	combined	the	
structural	 and	 functional	measures	 in	 constructing	 predictor	 sets,	
classification	performance	became	generally	enhanced,	and	particu-
larly,	the	combination	of	all	the	three	measures	yielded	significantly	
higher classification accuracy than the structural measure alone in 
all	classification	problems	but	distinguishing	between	PD	and	MSA.	
As	it	is	already	recognized	in	clinical	practice	that	multiple	diagnos-
tic criteria help to increase the level of diagnostic accuracy (Irene 
Litvan,	1999),	the	addition	of	the	functional	measures	seems	to	yield	
enhanced classification performance by providing additional diag-
nostic criteria possibly based on the relevance of functional abnor-
malities	to	the	pathophysiology	of	PD	and	AP.

Since,	 from	a	pathogenic	perspective,	neuronal	degeneration	
constitutes	pathologic	lesions,	structural	abnormalities	seem	to	be	
predominant	in	PD	and	AP	(Eriksen,	Wszolek,	&	Petrucelli,	2005),	
and	in	the	current	investigation,	this	was	evident	in	statistical	com-
parisons	of	the	structural	and	functional	measures.	Nonetheless,	
it would be obvious as well that not all aspects of the distinction 
between groups can be explained by structural alterations alone 
even when functional alterations are not clearly revealed in sta-
tistical	 comparisons	 at	 a	 group	 level.	 As	 shown	 in	 Figure	 3,	 the	
involvement	of	a	substantial	portion	of	GM	regions,	including	the	

F I G U R E  1  A	heat	map	of	the	
classification accuracy of support 
vector	machine	(SVM)	classifiers	for	
different classification problems. In the 
SVM	classifiers,	individual	measures	or	
combinations of those were employed 
as predictor sets. The considered 
measures included gray matter volume 
(Vol),	regional	homogeneity	(ReHo),	and	
degree	centrality	(DegCen).	HC,	healthy	
controls;	MSA,	multiple	system	atrophy;	
PD,	Parkinson's	disease;	PSP,	progressive	
supranuclear palsy
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sensorimotor	 cortices,	 cingulate	 cortex,	 and	 cerebellum	 men-
tioned	 above,	 in	 predictors	 of	 both	 structural	 and	 functional	
measures indicates again a link between structural and functional 
abnormalities.	Moreover,	local	and	global	functional	measures	had	
different	 contributions	 to	 classification,	 so	 that	 the	 inclusion	 of	
both functional measures would be largely helpful in enhancing 
classification performance.

With respect to the notion that multimodal neuroimaging mea-
sures can be fused to generally improve performance for various 
prediction	problems,	 it	might	be	tempted	to	add	as	wide	a	variety	
of	 measures	 as	 available.	 However,	 it	 is	 also	 important	 to	 under-
stand that improvements to prediction performance can be not al-
ways guaranteed by the combined use of multimodal neuroimaging 
measures	(Schmaal	et	al.,	2015).	In	this	regard,	requirements	for	en-
hanced prediction performance may be mentioned in two aspects. 
First,	 informative	 measures	 that	 can	 characterize	 the	 pathogen-
esis or pathophysiology of a disease need to constitute predictors 

for	 machine	 learning	 (Deo,	 2015).	 As	 additional	 informative	 MRI	
measures,	 for	 instance,	white	matter	 structural	measures	 that	can	
be	 acquired	 from	 diffusion	weighted	MRI	would	 be	 promising,	 as	
they can reveal pathological correlates of parkinsonism (Quattrone 
et	al.,	2006;	Scherfler,	2005;	Schocke	et	al.,	2002).	Second,	having	
collected	a	large	number	of	measures,	a	crucial	process	for	compos-
ing	a	predictor	set	is	feature	reduction,	which	involves	selecting	im-
portant	measures	 or	 combining	 existing	measures.	Here,	we	 used	
the	filter	method	as	a	simple	way	of	feature	reduction,	but	a	more	
advanced approach to feature reduction could be considered (Meng 
et	al.,	2017).	Alternatively,	deep	learning	may	be	employed	since	it	
provides the capability of data-driven automatic feature generation 
(Arbabshirani,	Plis,	Sui,	&	Calhoun,	2017).

This	study	has	limitations	to	consider.	For	each	diagnostic	type,	
although clinical diagnoses were finally made after more than 
three years	 of	 a	 clinical	 follow-up,	 the	 possibility	 of	misdiagnosis	
cannot be ruled out due to a lack of pathological confirmation. 

F I G U R E  2  Probability	density	curves	of	classification	accuracy	estimates	acquired	via	10,000	times	of	resampling.	The	probability	
density	curve	for	the	support	vector	machine	(SVM)	classifier	constructed	with	gray	matter	volume	(Vol)	alone	is	indicated	by	a	blue	solid	
line.	In	relation	to	this	SVM	classifier,	the	other	probability	density	curve	is	indicated	in	a	different	color	by	a	solid	line	when	the	respective	
SVM	classifier	constructed	by	adding	one	or	more	functional	measures,	among	regional	homogeneity	(ReHo)	and	degree	centrality	(DegCen),	
to	Vol	has	higher	classification	accuracy	of	statistical	significance	or	by	a	dotted	line	otherwise
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Vol + ReHo Vol + DegCen Vol + ReHo + DegCen

HC versus PD 0.083 (p value <	.001) 0.079	(p value <	.001) 0.119 (p value <	.001)

HC	versus	MSA NS 0.005 (p value <	.001) 0.047	(p value <	.001)

HC versus PSP 0.036 (p value <	.001) 0.075	(p value <	.001) 0.076	(p value <	.001)

PD	versus	MSA NS 0.004	(p value <	.001) NS

PD versus PSP 0.063 (p value <	.001) 0.023 (p value <	.001) 0.055 (p value <	.001)

MSA	versus	PSP 0.035 (p value <	.001) NS 0.029 (p value <	.001)

Note: All	comparisons	were	made	between	the	SVM	classifier	constructed	with	gray	matter	volume	
(Vol)	alone	and	that	constructed	by	adding	one	or	more	functional	measures,	among	regional	
homogeneity	(ReHo)	and	degree	centrality	(DegCen),	to	Vol.	In	case	of	statistical	significance,	a	
mean difference in classification accuracy and its respective p value are listed.
Abbreviations:	HC,	healthy	controls;	MSA,	multiple	system	atrophy;	NS,	nonsignificant;	PD,	
Parkinson's	disease;	PSP,	progressive	supranuclear	palsy.

TA B L E  2   Statistically significant 
differences in classification accuracy 
between	support	vector	machine	(SVM)	
classifiers

F I G U R E  3  Contributions	of	gray	matter	(GM)	regions	to	different	classification	problems	in	the	support	vector	machine	classifier	that	has	
been	composed	by	the	combination	of	three	measures.	Predictor	values	were	collected	from	individual	GM	regions	for	the	three	measures,	
including	GM	volume	(Vol),	regional	homogeneity	(ReHo),	and	degree	centrality	(DegCen).	The	size	of	a	sphere	corresponding	to	each	GM	
region	expresses	the	relative	magnitude	of	its	absolute	weight,	and	the	color	of	the	sphere	indicates	the	degree	of	overlaps	between	the	
different	measures.	Inset	plots	represent	relative	weight	ratios	of	cerebral	(Cbrm)	and	cerebellar	(Cbll)	regions	according	to	the	different	
measures
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In	 addition,	 as	 regards	 our	machine	 learning	 approach,	 the	 sam-
ple	size	 in	 this	 study	was	small,	and	moreover,	 the	generalization	
ability of the predictive models was not fully evaluated in that we 
performed	 internal	 cross-validation	 only.	 Further	 investigation	
including an external validation procedure is warranted in the fu-
ture.	Besides	the	diagnostic	classification	problems	we	considered,	
the	differential	diagnosis	of	two	phenotypes	of	MSA,	MSA-P,	and	
MSA-C,	would	be	of	clinical	interest	as	well	(Garraux	et	al.,	2013).	
Although	 structural	 and	 functional	 abnormalities	may	be	 specific	
to	 individual	MSA	variants	 (Planetta	et	al.,	2015),	we	merged	the	
two	phenotypes	of	MSA	as	a	single	group	here	primarily	due	to	a	
possible overlap of clinical and pathological findings between the 
two	(Krismer	et	al.,	2019;	Wenning	et	al.,	2013)	 in	relation	to	our	
limited	sample	size	of	each.

In	 conclusion,	 we	 demonstrated	 that	 the	 fusion	 of	 different	
measures from multimodal neuroimaging would have potential for 
improving the performance of machine learning-based predictive 
models.	For	PD	and	AP,	although	functional	alterations	are	much	
more	 limited	 than	 structural	 alterations,	 a	 possible	 link	 between	
structural and functional abnormalities appears to support the 
informativeness	 of	 functional	 measures,	 and	 the	 combined	 use	
of structural and functional measures is likely to yield improve-
ments to performance in various diagnostic classification prob-
lems. In machine learning approaches to predictive modeling for 
clinical	concerns,	the	limited	sample	size	has	been	a	major	obstacle	
(Sakai	 &	 Yamada,	 2019).	 Although	 it	may	 be	 often	 unsure	which	
neuroimaging measures would be suitable for a specific prediction 
problem,	we	propose	that,	in	addition	to	increasing	the	number	of	
patients,	gathering	diverse	informative	measures	from	multimodal	
neuroimaging for each patient would be helpful to develop a better 
performing	predictive	model.	In	addition,	for	the	clinical	use	of	mul-
timodal	neuroimaging	measures,	although	the	computational	time	
to	process	multimodal	neuroimaging	data,	rather	than	their	acquisi-
tion	time,	may	be	a	potential	limitation,	it	could	be	efficiently	man-
aged by taking advantage of recent technical advances toward the 
automated and intelligent processing of multimodal neuroimaging 
data.

ACKNOWLEDG MENTS
This	work	was	supported	by	 the	National	Research	Foundation	of	
Korea	grants	funded	by	the	Korean	government	(2020R1C1C1010435	
to	 N.-Y.S.,	 2019R1H1A2039678	 and	 2020R1I1A1A01061768	 to	
C.P.).

CONFLIC T OF INTERE S T
The authors have nothing to disclose.

AUTHOR CONTRIBUTION
SJC	and	N-YS	were	 responsible	 for	 the	study	concept	and	design.	
PHL	and	S-KL	contributed	to	the	collection	of	data.	CP	analyzed	the	
data	and	drafted	the	manuscript.	All	authors	critically	reviewed	con-
tent and approved final version for publication.

PEER RE VIE W
The peer review history for this article is available at https://publo 
ns.com/publo n/10.1002/brb3.1808.

DATA AVAIL ABILIT Y S TATEMENT
The data that support the findings of this study are available from 
the	corresponding	author	upon	reasonable	request.

ORCID
Seok Jong Chung  https://orcid.org/0000-0001-6086-3199 
Na-Young Shin  https://orcid.org/0000-0003-1157-6366 

R E FE R E N C E S
Arbabshirani,	M.	R.,	Plis,	S.,	Sui,	J.,	&	Calhoun,	V.	D.	(2017).	Single	sub-

ject prediction of brain disorders in neuroimaging: Promises and 
pitfalls. NeuroImage,	145,	 137–165.	 https://doi.org/10.1016/j.neuro	
image.2016.02.079

Bensimon,	 G.,	 Ludolph,	 A.,	 Agid,	 Y.,	 Vidailhet,	M.,	 Payan,	 C.,	 &	 Leigh,	
P.	N.	 (2008).	 Riluzole	 treatment,	 survival	 and	 diagnostic	 criteria	 in	
Parkinson plus disorders: The NNIPPS Study. Brain,	132(1),	156–171.	
https://doi.org/10.1093/brain/ awn291

Brenneis,	C.,	 Seppi,	K.,	 Schocke,	M.	 F.,	Müller,	 J.,	 Luginger,	 E.,	Bösch,	 S.,	
…	Wenning,	G.	K.	 (2003).	Voxel-based	morphometry	detects	 cortical	
atrophy in the Parkinson variant of multiple system atrophy. Movement 
Disorders,	18(10),	1132–1138.	https://doi.org/10.1002/mds.10502

Choe,	I.-H.,	Yeo,	S.,	Chung,	K.-C.,	Kim,	S.-H.,	&	Lim,	S.	(2013).	Decreased	
and	increased	cerebral	regional	homogeneity	in	early	Parkinson's	dis-
ease. Brain Research,	1527,	230–237.	https://doi.org/10.1016/j.brain	
res.2013.06.027

Deo,	 R.	 C.	 (2015).	 Machine	 learning	 in	 medicine.	 Circulation,	 132(20),	
1920–1930.	https://doi.org/10.1161/circu	latio	naha.115.001593

Eriksen,	J.	L.,	Wszolek,	Z.,	&	Petrucelli,	L.	(2005).	Molecular	pathogenesis	
of Parkinson disease. JAMA Neurology,	62(3),	 353–357.	 https://doi.
org/10.1001/archn eur.62.3.353

Fahn,	S.,	Elton,	R.	L.,	&Members	of	the	UPDRS	Development	Committee	
(1987).	The	unified	Parkinson's	disease	rating	scale.	In	S.	Fahn,	C.	D.	
Marsden,	D.	B.	Calne,	&	M.	Goldstein	(Eds.),	Recent developments in 
Parkinson's disease	(Vol.	2,	pp.	153–163).	Florham	Park,	NJ:	Macmillan	
Healthcare Information.

Fang,	 J.,	Chen,	H.,	Cao,	Z.,	 Jiang,	Y.,	Ma,	L.,	Ma,	H.,	&	Feng,	T.	 (2017).	
Impaired	brain	network	architecture	in	newly	diagnosed	Parkinson's	
disease based on graph theoretical analysis. Neuroscience Letters,	
657,	151–158.	https://doi.org/10.1016/j.neulet.2017.08.002

Garraux,	G.,	Phillips,	C.,	Schrouff,	J.,	Kreisler,	A.,	Lemaire,	C.,	Degueldre,	
C.,	…	Salmon,	E.	 (2013).	Multiclass	classification	of	FDG	PET	scans	
for	 the	 distinction	 between	 Parkinson's	 disease	 and	 atypical	 par-
kinsonian syndromes. NeuroImage: Clinical,	2,	883–893.	https://doi.
org/10.1016/j.nicl.2013.06.004

Gelb,	D.	J.,	Oliver,	E.,	&	Gilman,	S.	(1999).	Diagnostic	criteria	for	Parkinson	
disease. Archives of Neurology,	56(1),	33–39.	https://doi.org/10.1001/
archn eur.56.1.33

Gilman,	S.,	Low,	P.	A.,	Quinn,	N.,	Albanese,	A.,	Ben-Shlomo,	Y.,	Fowler,	C.	
J.,	…	Wenning,	G.	K.	(1999).	Consensus	statement	on	the	diagnosis	of	
multiple system atrophy. Journal of the Neurological Sciences,	163(1),	
94–98.	https://doi.org/10.1016/s0022	-510x(98)00304	-9

Hothorn,	T.,	Leisch,	F.,	Zeileis,	A.,	&	Hornik,	K.	 (2005).	The	design	and	
analysis of benchmark experiments. Journal of Computational and 
Graphical Statistics,	 14(3),	 675–699.	 https://doi.org/10.1198/10618	
6005x 59630

Hughes,	A.	J.,	Daniel,	S.	E.,	Kilford,	L.,	&	Lees,	A.	J.	(1992).	Accuracy	of	clin-
ical	diagnosis	of	idiopathic	Parkinson's	disease:	A	clinico-pathological	

https://publons.com/publon/10.1002/brb3.1808
https://publons.com/publon/10.1002/brb3.1808
https://orcid.org/0000-0001-6086-3199
https://orcid.org/0000-0001-6086-3199
https://orcid.org/0000-0003-1157-6366
https://orcid.org/0000-0003-1157-6366
https://doi.org/10.1016/j.neuroimage.2016.02.079
https://doi.org/10.1016/j.neuroimage.2016.02.079
https://doi.org/10.1093/brain/awn291
https://doi.org/10.1002/mds.10502
https://doi.org/10.1016/j.brainres.2013.06.027
https://doi.org/10.1016/j.brainres.2013.06.027
https://doi.org/10.1161/circulationaha.115.001593
https://doi.org/10.1001/archneur.62.3.353
https://doi.org/10.1001/archneur.62.3.353
https://doi.org/10.1016/j.neulet.2017.08.002
https://doi.org/10.1016/j.nicl.2013.06.004
https://doi.org/10.1016/j.nicl.2013.06.004
https://doi.org/10.1001/archneur.56.1.33
https://doi.org/10.1001/archneur.56.1.33
https://doi.org/10.1016/s0022-510x(98)00304-9
https://doi.org/10.1198/106186005x59630
https://doi.org/10.1198/106186005x59630


     |  9 of 9PARK et Al.

study of 100 cases. Journal of Neurology, Neurosurgery, and Psychiatry,	
55(3),	181–184.	https://doi.org/10.1136/jnnp.55.3.181

Krismer,	 F.,	 Seppi,	 K.,	 Göbel,	 G.,	 Steiger,	 R.,	 Zucal,	 I.,	 Boesch,	 S.,	 &	
Scherfler,	 C.	 (2019).	 Morphometric	 MRI	 profiles	 of	 multiple	 sys-
tem atrophy variants and implications for differential diagnosis. 
Movement Disorders,	 34(7),	 1041–1048.	 https://doi.org/10.1002/
mds.27669

Li,	Y.,	Liang,	P.,	 Jia,	X.,	&	Li,	K.	 (2016).	Abnormal	 regional	homogeneity	
in	Parkinson's	disease:	A	resting	state	fMRI	study.	Clinical Radiology,	
71(1),	e28–e34.	https://doi.org/10.1016/j.crad.2015.10.006

Libero,	L.	E.,	DeRamus,	T.	P.,	Lahti,	A.	C.,	Deshpande,	G.,	&	Kana,	R.	K.	(2015).	
Multimodal neuroimaging based classification of autism spectrum dis-
order	 using	 anatomical,	 neurochemical,	 and	white	matter	 correlates.	
Cortex,	66,	46–59.	https://doi.org/10.1016/j.cortex.2015.02.008

Liem,	 F.,	 Varoquaux,	 G.,	 Kynast,	 J.,	 Beyer,	 F.,	 Kharabian	Masouleh,	 S.,	
Huntenburg,	 J.	 M.,	 …	 Margulies,	 D.	 S.	 (2017).	 Predicting	 brain-
age from multimodal imaging data captures cognitive impair-
ment. NeuroImage,	 148,	 179–188.	 https://doi.org/10.1016/j.neuro	
image.2016.11.005

Litvan,	 I.	 (1999).	 Recent	 advances	 in	 atypical	 parkinsonian	 disor-
ders. Current Opinion in Neurology,	 12(4),	 441–446.	 https://doi.
org/10.1097/00019	052-19990	8000-00011

Litvan,	 I.,	Agid,	Y.,	Calne,	D.,	Campbell,	G.,	Dubois,	B.,	Duvoisin,	R.	C.,	
…	 Zee,	 D.	 S.	 (1996).	 Clinical	 research	 criteria	 for	 the	 diagnosis	 of	
progressive	 supranuclear	 palsy	 (Steele-Richardson-Olszewski	
syndrome):	 Report	 of	 the	 NINDS-SPSP	 International	 Workshop.	
Neurology,	47(1),	1–9.	https://doi.org/10.1212/WNL.47.1.1

Meng,	X.,	 Jiang,	 R.,	 Lin,	D.,	 Bustillo,	 J.,	 Jones,	 T.,	 Chen,	 J.,	…	Calhoun,	
V.	 D.	 (2017).	 Predicting	 individualized	 clinical	 measures	 by	 a	 gen-
eralized	 prediction	 framework	 and	 multimodal	 fusion	 of	 MRI	
data. NeuroImage,	 145,	 218–229.	 https://doi.org/10.1016/j.neuro	
image.2016.05.026

Messina,	D.,	Cerasa,	A.,	Condino,	F.,	Arabia,	G.,	Novellino,	F.,	Nicoletti,	
G.,	…	Quattrone,	A.	(2011).	Patterns	of	brain	atrophy	in	Parkinson's	
disease,	 progressive	 supranuclear	 palsy	 and	multiple	 system	 atro-
phy. Parkinsonism & Related Disorders,	 17(3),	 172–176.	 https://doi.
org/10.1016/j.parkr eldis.2010.12.010

Planetta,	 P.	 J.,	 Kurani,	 A.	 S.,	 Shukla,	 P.,	 Prodoehl,	 J.,	 Corcos,	 D.	 M.,	
Comella,	C.	L.,	…	Vaillancourt,	D.	E.	 (2015).	Distinct	 functional	and	
macrostructural	 brain	 changes	 in	 Parkinson's	 disease	 and	multiple	
system atrophy. Human Brain Mapping,	36(3),	1165–1179.	https://doi.
org/10.1002/hbm.22694

Quattrone,	 A.,	 Barbiroli,	 B.,	 Tonon,	 C.,	 Manners,	 D.,	 Malucelli,	 E.,	
Condino,	 F.,	 …	 Nicoletti,	 G.	 (2006).	 Apparent	 diffusion	 coefficient	
measurements of the middle cerebellar peduncle differentiate the 
Parkinson	 variant	 of	 MSA	 from	 Parkinson's	 disease	 and	 progres-
sive supranuclear palsy. Brain,	 129(10),	 2679–2687.	 https://doi.
org/10.1093/brain/ awl166

Rana,	 B.,	 Juneja,	 A.,	 Saxena,	 M.,	 Gudwani,	 S.,	 Senthil	 Kumaran,	 S.,	
Agrawal,	 R.	 K.,	 &	Behari,	M.	 (2015).	 Regions-of-interest	 based	 au-
tomated	 diagnosis	 of	 Parkinson's	 disease	 using	 T1-weighted	 MRI.	
Expert Systems with Applications,	 42(9),	 4506–4516.	 https://doi.
org/10.1016/j.eswa.2015.01.062

Rolls,	 E.	 T.,	 Joliot,	 M.,	 &	 Tzourio-Mazoyer,	 N.	 (2015).	 Implementation	
of a new parcellation of the orbitofrontal cortex in the auto-
mated anatomical labeling atlas. NeuroImage,	122,	 1–5.	 https://doi.
org/10.1016/j.neuro	image.2015.07.075

Sakai,	K.,	&	Yamada,	K.	(2019).	Machine	learning	studies	on	major	brain	
diseases:	5-year	trends	of	2014–2018.	Japanese Journal of Radiology,	
37(1),	34–72.	https://doi.org/10.1007/s1160	4-018-0794-4

Salvatore,	 C.,	 Cerasa,	 A.,	 Castiglioni,	 I.,	 Gallivanone,	 F.,	 Augimeri,	 A.,	
Lopez,	M.,	…	Quattrone,	A.	 (2014).	Machine	 learning	on	brain	MRI	
data	for	differential	diagnosis	of	Parkinson's	disease	and	Progressive	
Supranuclear Palsy. Journal of Neuroscience Methods,	222,	230–237.	
https://doi.org/10.1016/j.jneum eth.2013.11.016

Scherfler,	 C.,	 Göbel,	 G.,	 Müller,	 C.,	 Nocker,	 M.,	 Wenning,	 G.	 K.,	
Schocke,	 M.,	 …	 Seppi,	 K.	 (2016).	 Diagnostic	 potential	 of	 auto-
mated subcortical volume segmentation in atypical parkinsonism. 
Neurology,	86(13),	1242–1249.	https://doi.org/10.1212/wnl.00000	
00000 002518

Scherfler,	 C.,	 Schocke,	M.	 F.,	 Seppi,	 K.,	 Esterhammer,	 R.,	 Brenneis,	 C.,	
Jaschke,	 W.,	 …	 Poewe,	 W.	 (2005).	 Voxel-wise	 analysis	 of	 diffu-
sion weighted imaging reveals disruption of the olfactory tract in 
Parkinson's	disease.	Brain,	129(2),	538–542.	https://doi.org/10.1093/
brain/	awh674

Schmaal,	 L.,	 Marquand,	 A.	 F.,	 Rhebergen,	 D.,	 van	 Tol,	 M.-J.,	 Ruhé,	 H.	
G.,	van	der	Wee,	N.	J.	A.,	…	Penninx,	B.	W.	J.	H.	 (2015).	Predicting	
the naturalistic course of major depressive disorder using clinical 
and	 multimodal	 neuroimaging	 information:	 A	 multivariate	 pattern	
recognition study. Biological Psychiatry,	78(4),	278–286.	https://doi.
org/10.1016/j.biops	ych.2014.11.018

Schocke,	M.	 F.	H.,	 Seppi,	 K.,	 Esterhammer,	 R.,	 Kremser,	 C.,	 Jaschke,	
W.,	Poewe,	W.,	&	Wenning,	G.	K.	(2002).	Diffusion-weighted	MRI	
differentiates the Parkinson variant of multiple system atrophy 
from PD. Neurology,	 58(4),	 575–580.	 https://doi.org/10.1212/
wnl.58.4.575

Summerfield,	 C.,	 Junqué,	 C.,	 Tolosa,	 E.,	 Salgado-Pineda,	 P.,	 Gómez-
Ansón,	 B.,	 Martí,	 M.	 J.,	 …	 Mercader,	 J.	 (2005).	 Structural	 brain	
changes	 in	 parkinson	 disease	 with	 dementia:	 A	 voxel-based	 mor-
phometry study. Archives of Neurology,	62(2),	 281–285.	 https://doi.
org/10.1001/archn eur.62.2.281

Wenning,	G.	K.,	Geser,	F.,	Krismer,	F.,	Seppi,	K.,	Duerr,	S.,	Boesch,	S.,	…	
Poewe,	W.	 (2013).	The	natural	history	of	multiple	 system	atrophy:	
A	prospective	European	cohort	study.	Lancet Neurology,	12(3),	264–
274.	https://doi.org/10.1016/S1474	-4422(12)70327	-7

Wu,	T.,	&	Hallett,	M.	(2013).	The	cerebellum	in	Parkinson's	disease.	Brain,	
136(3),	696–709.	https://doi.org/10.1093/brain/	aws360

Wu,	T.,	Long,	X.,	Zang,	Y.,	Wang,	L.,	Hallett,	M.,	Li,	K.,	&	Chan,	P.	(2009).	
Regional	homogeneity	changes	in	patients	with	Parkinson's	disease.	
Human Brain Mapping,	 30(5),	 1502–1510.	 https://doi.org/10.1002/
hbm.20622

Zang,	Y.,	Jiang,	T.,	Lu,	Y.,	He,	Y.,	&	Tian,	L.	(2004).	Regional	homogeneity	
approach to fMRI data analysis. NeuroImage,	22(1),	394–400.	https://
doi.org/10.1016/j.neuro image.2003.12.030

SUPPORTING INFORMATION
Additional	 supporting	 information	 may	 be	 found	 online	 in	 the	
Supporting Information section.

How to cite this article:	Park	C-H,	Lee	PH,	Lee	S-K,	Chung	SJ,	
Shin	N-Y.	The	diagnostic	potential	of	multimodal	neuroimaging	
measures	in	Parkinson's	disease	and	atypical	parkinsonism.	
Brain Behav. 2020;10:e01808. https://doi.org/10.1002/
brb3.1808

https://doi.org/10.1136/jnnp.55.3.181
https://doi.org/10.1002/mds.27669
https://doi.org/10.1002/mds.27669
https://doi.org/10.1016/j.crad.2015.10.006
https://doi.org/10.1016/j.cortex.2015.02.008
https://doi.org/10.1016/j.neuroimage.2016.11.005
https://doi.org/10.1016/j.neuroimage.2016.11.005
https://doi.org/10.1097/00019052-199908000-00011
https://doi.org/10.1097/00019052-199908000-00011
https://doi.org/10.1212/WNL.47.1.1
https://doi.org/10.1016/j.neuroimage.2016.05.026
https://doi.org/10.1016/j.neuroimage.2016.05.026
https://doi.org/10.1016/j.parkreldis.2010.12.010
https://doi.org/10.1016/j.parkreldis.2010.12.010
https://doi.org/10.1002/hbm.22694
https://doi.org/10.1002/hbm.22694
https://doi.org/10.1093/brain/awl166
https://doi.org/10.1093/brain/awl166
https://doi.org/10.1016/j.eswa.2015.01.062
https://doi.org/10.1016/j.eswa.2015.01.062
https://doi.org/10.1016/j.neuroimage.2015.07.075
https://doi.org/10.1016/j.neuroimage.2015.07.075
https://doi.org/10.1007/s11604-018-0794-4
https://doi.org/10.1016/j.jneumeth.2013.11.016
https://doi.org/10.1212/wnl.0000000000002518
https://doi.org/10.1212/wnl.0000000000002518
https://doi.org/10.1093/brain/awh674
https://doi.org/10.1093/brain/awh674
https://doi.org/10.1016/j.biopsych.2014.11.018
https://doi.org/10.1016/j.biopsych.2014.11.018
https://doi.org/10.1212/wnl.58.4.575
https://doi.org/10.1212/wnl.58.4.575
https://doi.org/10.1001/archneur.62.2.281
https://doi.org/10.1001/archneur.62.2.281
https://doi.org/10.1016/S1474-4422(12)70327-7
https://doi.org/10.1093/brain/aws360
https://doi.org/10.1002/hbm.20622
https://doi.org/10.1002/hbm.20622
https://doi.org/10.1016/j.neuroimage.2003.12.030
https://doi.org/10.1016/j.neuroimage.2003.12.030
https://doi.org/10.1002/brb3.1808
https://doi.org/10.1002/brb3.1808

