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of everywhere differentiable surrogate models, which are more suitable to optimization-based
controllers that heavily rely on gradient computations. The presented approach is named Smooth
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1. INTRODUCTION

For more than five decades the expression ‘learning’ has
been utilized by the control community to describe ar-
chitectures in which performance is improved over time
as additional information on the environment is col-
lected (Nikolic and Fu, 1966; Fu, 1970). Due to the in-
creasing interest in machine learning methods in recent
years, areas such as Reinforcement Learning (RL), Neuro-
Dynamic Programming (NDP) and Iterative Learning
Control (ILC) have become very active research topics
(Kiumarsi et al., 2017; Rosolia and Borrelli, 2018). When
exploring these data-driven approaches to dealing with
dynamical systems, a natural question arises: should one
directly seek to optimize his objective or build a model
before proceeding to the control task? This turns out to
be a long-standing debate (Hou and Wang, 2013; For-
mentin et al., 2014), but model-based solutions are more
frequently adopted when the problem being tackled re-
quires safety guarantees (Canale et al., 2014; Wabersich
and Zeilinger, 2018). This is the direction taken herein.

Owing to their high representative power and success
in diverse applications, Gaussian Processes (GPs) are a
bayesian non-parametric technique that has being used to
deal with a variety of analysis and control problems. In
Ostafew et al. (2016) and Berkenkamp et al. (2016b), the
authors explore GPs respectively for ground robot loco-
motion and tuning controller parameters for quadrotors;
whereas the same formalism is used to estimate regions
of attraction for nonlinear systems in Berkenkamp et al.
(2016a). One critical ingredient used in many GP-based
methodologies capable of guaranteeing a safe operation
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is the ability to bound the error between the GP mean
function and the unknown true system dynamics. This
bound is usually expressed as a scaled version of the
posterior standard deviation (see Srinivas et al. (2012);
Chowdhury and Gopalan (2017) for the derivations). The
main challenge in these cases is efficiently estimating the
various associated quantities such as the maximum infor-
mation gain, especially in on-line learning.

An alternative approach to GPs which is also classified
as non-parametric is the well known Nonlinear Set Mem-
bership (NSM) method presented in Milanese and Novara
(2004) and refined later in a series of works. By assuming
differentiability of the ground-truth, optimal upper and
lower bounds on its unknown values can be obtained.
The predictor that minimizes the worst-case error over the
whole domain arises simply as the mean of such bounds.
A similar theory was studied in Beliakov (2006), as well
as in Calliess (2016); Limon et al. (2017) for Hölder-
continuous functions. One limitation of these works is the
non-differentiability of the yielded regressors, which are in
general piecewise nonlinear and whose regions are defined
by the intersection of two hyperbolic Voronoi diagrams.
Although this might not constitue a problem in some
domains, it certainly hinders their application in a real-
time optimization-based controller context.

Contributions: In this work we propose a particular ra-
dial basis functions (RBF) regression methodology that
overcomes the main limitation of the NSM and simi-
lar approaches, namely the regressor non-differentiability.
The method is referred to as Smooth Lipschitz Regres-
sion (SLR), and can be readily used for learning non-
parametric models of nonlinear dynamical systems from
data while providing prediction error bounds. In contrast
with the recent proposal of filtering interpolants a poste-
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∗ Laboratoire d’Automatique, École Polytechnique Fédérale de
Lausanne (EPFL), Lausanne 1015, Switzerland

(e-mails: {emilio.maddalena,colin.jones}@epfl.ch).

Abstract: We propose a non-parametric regression methodology that enforces the regressor
to be fully consistent with the sample set and the ground-truth regularity assumptions. As
opposed to the Nonlinear Set Membership technique, this constraint guarantees the attainment
of everywhere differentiable surrogate models, which are more suitable to optimization-based
controllers that heavily rely on gradient computations. The presented approach is named Smooth
Lipschitz Regression (SLR) and provides error bounds on the prediction error at unseen points in
the space. A numerical example is given to show the effectiveness of this method when compared
to the other alternatives in a Model Predictive Control setting.

Keywords: Safe learning, error bounds, nonlinear set membership, non-parametric regression,
model predictive control.

1. INTRODUCTION

For more than five decades the expression ‘learning’ has
been utilized by the control community to describe ar-
chitectures in which performance is improved over time
as additional information on the environment is col-
lected (Nikolic and Fu, 1966; Fu, 1970). Due to the in-
creasing interest in machine learning methods in recent
years, areas such as Reinforcement Learning (RL), Neuro-
Dynamic Programming (NDP) and Iterative Learning
Control (ILC) have become very active research topics
(Kiumarsi et al., 2017; Rosolia and Borrelli, 2018). When
exploring these data-driven approaches to dealing with
dynamical systems, a natural question arises: should one
directly seek to optimize his objective or build a model
before proceeding to the control task? This turns out to
be a long-standing debate (Hou and Wang, 2013; For-
mentin et al., 2014), but model-based solutions are more
frequently adopted when the problem being tackled re-
quires safety guarantees (Canale et al., 2014; Wabersich
and Zeilinger, 2018). This is the direction taken herein.

Owing to their high representative power and success
in diverse applications, Gaussian Processes (GPs) are a
bayesian non-parametric technique that has being used to
deal with a variety of analysis and control problems. In
Ostafew et al. (2016) and Berkenkamp et al. (2016b), the
authors explore GPs respectively for ground robot loco-
motion and tuning controller parameters for quadrotors;
whereas the same formalism is used to estimate regions
of attraction for nonlinear systems in Berkenkamp et al.
(2016a). One critical ingredient used in many GP-based
methodologies capable of guaranteeing a safe operation

� This work has received support from the Swiss National Science
Foundation under the RISK project (Risk Aware Data-Driven De-
mand Response, grant number 200021 175627.

is the ability to bound the error between the GP mean
function and the unknown true system dynamics. This
bound is usually expressed as a scaled version of the
posterior standard deviation (see Srinivas et al. (2012);
Chowdhury and Gopalan (2017) for the derivations). The
main challenge in these cases is efficiently estimating the
various associated quantities such as the maximum infor-
mation gain, especially in on-line learning.

An alternative approach to GPs which is also classified
as non-parametric is the well known Nonlinear Set Mem-
bership (NSM) method presented in Milanese and Novara
(2004) and refined later in a series of works. By assuming
differentiability of the ground-truth, optimal upper and
lower bounds on its unknown values can be obtained.
The predictor that minimizes the worst-case error over the
whole domain arises simply as the mean of such bounds.
A similar theory was studied in Beliakov (2006), as well
as in Calliess (2016); Limon et al. (2017) for Hölder-
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riori (Manzano et al., 2019), we directly obtain a nominal
model with the desired regularity properties. A numerical
example is provided to show several advantages of SLR
over NSM in a Model Predictive Control problem, where
the on-line computational times are significantly reduced.

Notation and basic definitions: Rn is the n-dimensional
Euclidean space endowed with the usual metric. span(V ) is
the linear span of a collection of vectors V . A n×n diagonal
matrix with entries c1, . . . , cn is written as diag(c1, . . . , cn).
Prob(A) denotes the probability of event A in an appropri-
ate probability space. A map f : X → Y between two met-
ric spaces with metrics dx and dy is Lipschitz continuous
if ∃L : dy(f(x1), f(x2)) ≤ Ldx(x1, x2), ∀x1, x2 ∈ X . The
smallest such constant L is known as the best Lipschitz
constant. We shall focus on Lipschitz functions between
Euclidean spaces. Given a function f , its gradient is a
column vector denoted by ∇f . C0 and C1 are respectively
the space of continuous and continuously differentiable
functions from X to Y.

2. PROBLEM DESCRIPTION

Let X ⊂ Rn be a compact and convex set, and Y ⊆ R.
The map f : X → Y is referred to as the target function,
regression function or ground-truth and is unknown.

Assumption 1. The ground-truth f belongs to C1 and
maxx∈X ||∇f(x)|| = L, with L unknown.

Assumption 2. A collection of noise corrupted data points
D = {(xi, ỹi) | ỹi = f(xi) + δi, i = 1, . . . , N} is available.

Assumption 3. The following upper bounds are known:
• L ≥ L
• δ ≥ |δi|, ∀i = 1, . . . , N

An additional property of the target function is formally
derived based solely on Assumption 1.

Proposition 1. f is Lipschitz continuous with best con-
stant L.

Proof : By using the multidimensional mean value theorem,
∀x1, x2 ∈ X , f(x2) − f(x1) = ∇f(x0)

T (x2 − x1), where
x0 = θx1 + (1 − θ)x2 for some θ ∈ [0, 1]. Then |f(x2) −
f(x1)| ≤ ||∇f(x0)|| ||x2 − x1|| ≤ L ||x2 − x1||. L being the
best constant follows from Rademacher’s theorem and the
convexity of X (Weaver, 2018, Corollary 1.42).

The set of all possible functions that are compatible with
both our regularity assumption and the available data-set
is called the ‘feasible system set’ in the NSM literature;
nevertheless, at times the regressor is chosen from outside
this same set (Cucker and Smale, 2002), causing the
terminology to become inappropriate. For this reason, a
more general term is preferred herein.

Definition 1. The function space FD = {f : X → Y |f ∈
C1, Lf ≤ L, |f(xi)− ỹi| ≤ δ, ∀(xi, ỹi) ∈ D}, where Lf is a
Lipschitz constant of f , is called the consistent space.

As shown in Milanese and Novara (2004); Beliakov (2006),
any member f ∈ FD, and in particular the ground-truth
itself, is optimally bounded by the functions

fl(x) ≤ f(x) ≤ fu(x), ∀x ∈ X (1)

where

ground-truth
NSM 
SLR

samples

x

f(
x
)

Fig. 1. A comparison between the NSM and SLR ap-
proaches when fitting noisy samples of a sinusoidal
wave. The gray area enclosed by the upper and lower
bounds define the space where the unknown ground-
truth can lie.

fu(x) = min
i=1,...,N

(ỹi + δ + L ||x− xi||) (2a)

fl(x) = max
i=1,...,N

(ỹi − δ − L ||x− xi||) (2b)

are called respectively the ceiling and floor functions.
Hence, fl(x) and fu(x) bound the space where the un-
known ground-truth can be located. The more data-points
are available, the tighter the bounds. An example is given
in Fig. 1, where five noisy samples were collected from a
sinusoidal wave.

In a rather general setting, the regression problem being
tackled is defined by the mathematical program below

P1 : min
f̂∈H

c (f̂) (3a)

s.t. f̂ ∈ FD (3b)

where c : H → R is a suitable real-valued functional, and
H is the hypothesis space being used.

Remark 1. In the NSM framework, a closed-form solution

to the problem exists and the obtained regressor f̂ mini-

mizes the cost c(f̂) = supf∈FD
||f− f̂ ||p for different norms

p. The optimal solution however lies not in FD, but rather
on its boundary (Milanese and Novara, 2004), hence the
non-differentiable points. In the SLR setting, we seek to

enforce the membership f̂ ∈ FD to obtain an everywhere
differentiable function which is also fully consistent with
the prior knowledge on the ground-truth.

Remark 2. Regularization terms of the form λ||f̂ || can
be employed in the cost function to bias the solution
towards smooth regressors. See for instance the discussion
in Bhujwalla et al. (2016). Our approach, on the other
hand, imposes constraints to guarantee (in a probabilistic
sense) the desired model regularity.

3. SMOOTH LIPSCHITZ REGRESSION

3.1 Designing a consistent regressor

We restrict our attention to regressors represented as
weighted sums of basis functions

f̂(x) =

m∑
k=1

wk φk(x) (4)
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riori (Manzano et al., 2019), we directly obtain a nominal
model with the desired regularity properties. A numerical
example is provided to show several advantages of SLR
over NSM in a Model Predictive Control problem, where
the on-line computational times are significantly reduced.

Notation and basic definitions: Rn is the n-dimensional
Euclidean space endowed with the usual metric. span(V ) is
the linear span of a collection of vectors V . A n×n diagonal
matrix with entries c1, . . . , cn is written as diag(c1, . . . , cn).
Prob(A) denotes the probability of event A in an appropri-
ate probability space. A map f : X → Y between two met-
ric spaces with metrics dx and dy is Lipschitz continuous
if ∃L : dy(f(x1), f(x2)) ≤ Ldx(x1, x2), ∀x1, x2 ∈ X . The
smallest such constant L is known as the best Lipschitz
constant. We shall focus on Lipschitz functions between
Euclidean spaces. Given a function f , its gradient is a
column vector denoted by ∇f . C0 and C1 are respectively
the space of continuous and continuously differentiable
functions from X to Y.

2. PROBLEM DESCRIPTION

Let X ⊂ Rn be a compact and convex set, and Y ⊆ R.
The map f : X → Y is referred to as the target function,
regression function or ground-truth and is unknown.

Assumption 1. The ground-truth f belongs to C1 and
maxx∈X ||∇f(x)|| = L, with L unknown.

Assumption 2. A collection of noise corrupted data points
D = {(xi, ỹi) | ỹi = f(xi) + δi, i = 1, . . . , N} is available.

Assumption 3. The following upper bounds are known:
• L ≥ L
• δ ≥ |δi|, ∀i = 1, . . . , N

An additional property of the target function is formally
derived based solely on Assumption 1.

Proposition 1. f is Lipschitz continuous with best con-
stant L.

Proof : By using the multidimensional mean value theorem,
∀x1, x2 ∈ X , f(x2) − f(x1) = ∇f(x0)

T (x2 − x1), where
x0 = θx1 + (1 − θ)x2 for some θ ∈ [0, 1]. Then |f(x2) −
f(x1)| ≤ ||∇f(x0)|| ||x2 − x1|| ≤ L ||x2 − x1||. L being the
best constant follows from Rademacher’s theorem and the
convexity of X (Weaver, 2018, Corollary 1.42).

The set of all possible functions that are compatible with
both our regularity assumption and the available data-set
is called the ‘feasible system set’ in the NSM literature;
nevertheless, at times the regressor is chosen from outside
this same set (Cucker and Smale, 2002), causing the
terminology to become inappropriate. For this reason, a
more general term is preferred herein.

Definition 1. The function space FD = {f : X → Y |f ∈
C1, Lf ≤ L, |f(xi)− ỹi| ≤ δ, ∀(xi, ỹi) ∈ D}, where Lf is a
Lipschitz constant of f , is called the consistent space.

As shown in Milanese and Novara (2004); Beliakov (2006),
any member f ∈ FD, and in particular the ground-truth
itself, is optimally bounded by the functions

fl(x) ≤ f(x) ≤ fu(x), ∀x ∈ X (1)

where
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Fig. 1. A comparison between the NSM and SLR ap-
proaches when fitting noisy samples of a sinusoidal
wave. The gray area enclosed by the upper and lower
bounds define the space where the unknown ground-
truth can lie.

fu(x) = min
i=1,...,N

(ỹi + δ + L ||x− xi||) (2a)

fl(x) = max
i=1,...,N

(ỹi − δ − L ||x− xi||) (2b)

are called respectively the ceiling and floor functions.
Hence, fl(x) and fu(x) bound the space where the un-
known ground-truth can be located. The more data-points
are available, the tighter the bounds. An example is given
in Fig. 1, where five noisy samples were collected from a
sinusoidal wave.

In a rather general setting, the regression problem being
tackled is defined by the mathematical program below

P1 : min
f̂∈H

c (f̂) (3a)

s.t. f̂ ∈ FD (3b)

where c : H → R is a suitable real-valued functional, and
H is the hypothesis space being used.

Remark 1. In the NSM framework, a closed-form solution

to the problem exists and the obtained regressor f̂ mini-

mizes the cost c(f̂) = supf∈FD
||f− f̂ ||p for different norms

p. The optimal solution however lies not in FD, but rather
on its boundary (Milanese and Novara, 2004), hence the
non-differentiable points. In the SLR setting, we seek to

enforce the membership f̂ ∈ FD to obtain an everywhere
differentiable function which is also fully consistent with
the prior knowledge on the ground-truth.

Remark 2. Regularization terms of the form λ||f̂ || can
be employed in the cost function to bias the solution
towards smooth regressors. See for instance the discussion
in Bhujwalla et al. (2016). Our approach, on the other
hand, imposes constraints to guarantee (in a probabilistic
sense) the desired model regularity.

3. SMOOTH LIPSCHITZ REGRESSION

3.1 Designing a consistent regressor

We restrict our attention to regressors represented as
weighted sums of basis functions

f̂(x) =

m∑
k=1

wk φk(x) (4)

with smooth maps φk : X → Y and scalars wk ∈ R, ∀k =

1, . . . ,m. The surrogate model f̂ is therefore a member
of H = span({φ1, . . . , φm}), which is a finite-dimensional
Hilbert space when endowed with the standard operations
and inner product. The number of elements is chosen to be
m = N+E, whereN is the number of available data-points
and E is a design parameter. Next, we discuss how the

condition f̂ ∈ FD in P1 can be approximately translated
into computational terms.

From the very choice of {φ1, . . . , φm}, f̂ ∈ C1 is guaran-
teed. Compatibility with the data-setD amounts to impos-
ing 2N linear constraints on the weights, which are clearly
always feasible. The only remaining condition is Lf̂ ≤ L.

Since one usually knows Lφk
for each basis function – or

can numerically estimate it to any desired precision – the
upper bound Lf̂ = Σm

k=1|wk|Lφk
can be easily obtained

for Lf̂ . Although enforcing Lf̂ ≤ L suffices to establish the

desired condition, it turns out to be extremely conservative
thus severely reducing the optimization problem feasible
set. Instead, Proposition 1 links the maximum norm of
the gradient and the best Lipschitz constant, hence we
can exploit the fact that

Lf̂ ≤ L (5)

⇔ max
x∈X

||∇f̂(x)|| ≤ L (6)

⇔ ∀x ∈ X , ||∇f̂(x)|| ≤ L (7)

and use the last inequality. Finally, overcoming the un-
countably infinite number of constraints is possible by
employing random convex programs, i.e., the scenario ap-
proach theory (Calafiore and Campi, 2006).

Consider a uniform probability distribution over X , and let
{xj}Sj=1 be a set of ‘scenarios’ uniformly extracted from the

domain with S ≥ 2
ε ln(

1
β )+2m+ 2m

ε ln( 2ε ), where both the

confidence parameter β ∈ (0, 1) and the level parameter
ε ∈ (0, 1) are specified. The proposed approach to finding
a smooth regressor then reads

P2 : min
w∈Rm

c (w) (8a)

s.t. wTφ(xi) ≤ yi + δ, ∀i = 1, . . . , N (8b)

wTφ(xi) ≥ yi − δ, ∀i = 1, . . . , N (8c)∣∣∣∣
∣∣∣∣

m∑
k=1

wk ∇φk(xj)

∣∣∣∣
∣∣∣∣ ≤ L, ∀j = 1, . . . , S (8d)

where w := [w1 . . . wm]T , φ := [φ1 . . . φm]T , and c(w) is
an appropriate objective function. Let w� := argminP2
and f�(x) := w�Tφ(x) denote respectively the optimal
weight vector and optimal regressor function. The con-

straints (8d) are less restrictive than (3b) since f̂ belongs
to the consistent space FD only if (8d) is imposed on the
whole domain.

Proposition 2. If c(w) is a convex function and an optimal
solution w� is found for P2, then with probability no
smaller than 1− β, it is also ε-level feasible for the robust

problem obtained by imposing ∀x ∈ X , ||∇f̂(x)|| ≤ L, i.e.,
Prob( ||∇f�(x)|| > L ) < ε.

Proof : For c(w) convex, P2 is convex since (8b) and (8c)
are linear, and (8d) is equivalent to a set of quadratic

constraints. The proposition then follows directly from
(Calafiore and Campi, 2006, Theorem 1 and Corollary 1).

Remark 3. Increasing the design parameter E provides

greater flexibility for f̂(x) as the number of basis functions
grows, but the number of constraints (8b) and (8c) remains
unchanged. The regressor is then based on N samples and
E ‘free points’. As m = N + E → ∞, a proper choice
of basis functions φ(x) would ensure approximation of any
continuous function arbitrarily well. As an example, Gaus-
sian RBFs are dense in C0 ⊃ FD given compact domains.
As a side effect, m → ∞ would also increase the number
of scenario constraints (8d) to infinity. Nevertheless, the
feasible set of P2 cannot become empty since at least
the target function f ∈ FD satisfies (8d) everywhere and
thus belongs to the feasible set. Hence, by increasing the
number of free points E, feasibility of P2 is likely to be
achieved.

Remark 4. Among the many possible objectives one could
select, including a regularizer ||w||1 helps achieving sparser
weight vectors w since it is an approximation of the
nonconvex cardinality function. This is particularly useful
when E is initially set to a large number aiming at finding
a preliminary solution to P2.

3.2 Probabilistic and deterministic guarantees

Next we examine the probabilistic property of the SLR
regressor f�(x) being completely contained inside the
original ceiling and floor functions (2). Furthermore, a
deterministic error bound is derived for f�(x) irrespective
of the later probability.

It is known that the effect of decreasing β on the sampling
complexity S is minor and that in many applications this
parameter can be set to 10−10 or even lower numbers
(Campi et al., 2009). Therefore, Proposition 2 ensures with
practical certainty that, if a solution is found, ||∇f�(x)||
will be lower or equal to L on its whole domain except for
a subset of size smaller than ε. One practical consequence
of this fact is the possible violation of the bounds defined
in (1). When ||∇f�(x′)|| > L for some x′ ∈ X the optimal
regressor may exceed the ceiling function or be inferior
to the floor function. Nevertheless, it is also conceivable
to have a function with higher gradients that still lies
completely inside the aforementioned bounds. Consider
for instance the target function f(x1, x2) = 0.02x2

1 +
2 cos(x2) and a grid of 49 samples as the available data-set.
The target function, two SLR regressors constructed with
exponential RBFs, and the NSM interpolant are shown
in Fig. 2(a). In Fig. 2(b) we present violation results
obtained if the gradient constraints (8d) are completely
neglected, i.e. S = 0 (left); and setting β = 10−10, ε = 0.5,
producing S = 1224 scenarios (right). The plots illustrate
that increasing the number of scenarios not only reduces
the areas in which ||∇f�(x)|| is greater than L, but also
ensures that the optimal regressor does not violate the
ceiling and floor bounds. It is noteworthy that this result
was achieved with a finite number of scenarios and a
considerably high level parameter ε.

As shown below, deterministic error bounds on the predic-
tion error can still be guaranteed due to the fact that the
consistent space FD is itself bounded.
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Fig. 2. (a) Target function, SLR and NSM regressors constructed based on a uniform grid of samples. (b) Effects of
increasing the number of scenarios in SLR: violations areas are shown in gray for S = 0 (left) and S = 1224 (right).

Proposition 3. Let ef̂ (x) := f̂(x)−f(x) denote the predic-

tion error of a regressor f̂(x) with respect to the ground-
truth f(x) ∈ FD. Then ef̂ (x) ≥ |ef̂ (x)| holds for all x ∈ X ,

where

ef̂ (x) := max{|f̂(x)− fl(x)|, |f̂(x)− fu(x)|} (9)

Proof : In view of (1), ∀x ∈ X , if f̂(x) ≤ f(x), then

|ef̂ (x)| ≤ |f̂(x) − fu(x)|, on the other hand, if f̂(x) ≥
f(x), then |ef̂ (x)| ≤ |f̂(x) − fl(x)|. Therefore, |ef̂ (x)| ≤
max{|f̂(x)− fl(x)|, |f̂(x)− fu(x)|}.

Taking the above proposition and the discussion on the
number of scenarios into account, we note that while (9)
could be used for robust control purposes, imposing an
appropriate number of constraints L is still important to
lowering the values attained by ef�(x).

4. NUMERICAL EXAMPLE

Consider the following discrete-time model of a unicycle

x+
1 = x1 + u1 cos(x3) (10a)

x+
2 = x2 + u1 sin(x3) (10b)

x+
3 = x3 + u2 (10c)

where x1, x2, x3 ∈ R represent respectively the robot first
and second coordinates in a fixed reference frame, and
its orientation; u1, u2 ∈ R denote respectively the linear

and angular velocity inputs. Let x =
[
x1 x2 x3

]T
, u =[

u1 u2

]T
; f1(x, u), f2(x, u) and f3(x, u) be the difference

equations associated respectively with x+
1 , x+

2 and x+
3 .

The three dynamics are to be learned separately given the
validity of Assumption 1 and Lipschitz bounds L1 = L2 =
1.8 and L3 = 3 for the target functions. The unicycle is free
to move in the plane, i.e., there are no state constraints,
whereas the control variables must satisfy u ∈ U := {u ∈
R2|

[
− 0.5 − 0.5

]T ≤ u ≤
[
0.5 0.5

]T }. Random initial

conditions were generated inside a box of unitary sides
and random inputs were applied to the system, producing
a total of N = 300 noise corrupted samples with δ = 0.03.

Exponential radial basis functions

φk(x) = σ2 exp

(
−||x− xk||2

2 l2

)
(11)

k = 1, . . . ,m were employed with σ = 1, l = 2, and E = 20
free points. The confidence and level parameters were
chosen as β = 10−5, ε = 0.3, yielding S = 4764 scenarios.
Next, in order to encourage sparsity the objective of P2
was chosen to be c(w) = ||w||1 and the problem was
solved in MATLAB with the aid of MOSEK. The optimal
solutions were found in approximately 10.96 seconds each
on a 3.1 GHz Intel Core i7 machine. The regression
performance of every obtained function was compared
with the NSM alternative. A total of 100 000 points
were uniformly sampled from the domain and used to
calculate the root mean squared error (RMSE) and mean
absolute error (MAE) indexes. The results are reported
in Table 1, where it can be seen how SLR performed
better in both negatively-oriented scores in all three cases:
the cumulative errors are reduced by at least 81%. It
can be however argued that the same E free points that
guarantee additional flexibility to SLR may compromise its
applicability later in an MPC controller since the regressor
complexity is increased. The following simulations address
this issue.

Table 1. NSM and SLR regression performance
scores (negatively oriented)

f̂1(x, u) f̂2(x, u) f̂3(x, u)

RMSE MAE RMSE MAE RMSE MAE

NSM 0.2008 0.1566 0.2114 0.1634 0.2410 0.1923

SLR 0.0282 0.0202 0.0344 0.0234 0.0435 0.0262
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Fig. 2. (a) Target function, SLR and NSM regressors constructed based on a uniform grid of samples. (b) Effects of
increasing the number of scenarios in SLR: violations areas are shown in gray for S = 0 (left) and S = 1224 (right).

Proposition 3. Let ef̂ (x) := f̂(x)−f(x) denote the predic-

tion error of a regressor f̂(x) with respect to the ground-
truth f(x) ∈ FD. Then ef̂ (x) ≥ |ef̂ (x)| holds for all x ∈ X ,

where

ef̂ (x) := max{|f̂(x)− fl(x)|, |f̂(x)− fu(x)|} (9)

Proof : In view of (1), ∀x ∈ X , if f̂(x) ≤ f(x), then

|ef̂ (x)| ≤ |f̂(x) − fu(x)|, on the other hand, if f̂(x) ≥
f(x), then |ef̂ (x)| ≤ |f̂(x) − fl(x)|. Therefore, |ef̂ (x)| ≤
max{|f̂(x)− fl(x)|, |f̂(x)− fu(x)|}.

Taking the above proposition and the discussion on the
number of scenarios into account, we note that while (9)
could be used for robust control purposes, imposing an
appropriate number of constraints L is still important to
lowering the values attained by ef�(x).

4. NUMERICAL EXAMPLE

Consider the following discrete-time model of a unicycle

x+
1 = x1 + u1 cos(x3) (10a)

x+
2 = x2 + u1 sin(x3) (10b)

x+
3 = x3 + u2 (10c)

where x1, x2, x3 ∈ R represent respectively the robot first
and second coordinates in a fixed reference frame, and
its orientation; u1, u2 ∈ R denote respectively the linear

and angular velocity inputs. Let x =
[
x1 x2 x3

]T
, u =[

u1 u2

]T
; f1(x, u), f2(x, u) and f3(x, u) be the difference

equations associated respectively with x+
1 , x+

2 and x+
3 .

The three dynamics are to be learned separately given the
validity of Assumption 1 and Lipschitz bounds L1 = L2 =
1.8 and L3 = 3 for the target functions. The unicycle is free
to move in the plane, i.e., there are no state constraints,
whereas the control variables must satisfy u ∈ U := {u ∈
R2|

[
− 0.5 − 0.5

]T ≤ u ≤
[
0.5 0.5

]T }. Random initial

conditions were generated inside a box of unitary sides
and random inputs were applied to the system, producing
a total of N = 300 noise corrupted samples with δ = 0.03.

Exponential radial basis functions

φk(x) = σ2 exp

(
−||x− xk||2

2 l2

)
(11)

k = 1, . . . ,m were employed with σ = 1, l = 2, and E = 20
free points. The confidence and level parameters were
chosen as β = 10−5, ε = 0.3, yielding S = 4764 scenarios.
Next, in order to encourage sparsity the objective of P2
was chosen to be c(w) = ||w||1 and the problem was
solved in MATLAB with the aid of MOSEK. The optimal
solutions were found in approximately 10.96 seconds each
on a 3.1 GHz Intel Core i7 machine. The regression
performance of every obtained function was compared
with the NSM alternative. A total of 100 000 points
were uniformly sampled from the domain and used to
calculate the root mean squared error (RMSE) and mean
absolute error (MAE) indexes. The results are reported
in Table 1, where it can be seen how SLR performed
better in both negatively-oriented scores in all three cases:
the cumulative errors are reduced by at least 81%. It
can be however argued that the same E free points that
guarantee additional flexibility to SLR may compromise its
applicability later in an MPC controller since the regressor
complexity is increased. The following simulations address
this issue.

Table 1. NSM and SLR regression performance
scores (negatively oriented)

f̂1(x, u) f̂2(x, u) f̂3(x, u)

RMSE MAE RMSE MAE RMSE MAE

NSM 0.2008 0.1566 0.2114 0.1634 0.2410 0.1923
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Fig. 3. Simulation results: Unicycle trajectories with NMPC designed with full knowledge of the dynamics (top row),
SLR regressor (middle row) and NSM regressor (bottom row), where the same data-set was used for the last two
techniques. In each of the first three columns, the system evolution is depicted starting from the same initial
condition. The the computational times per NMPC iteration is presented in the rightmost column histograms.

Three initial conditions were given to the unicycle, and
NMPC controllers were designed with cost function J =
ΣNhor

t=0 (xT (t+1)Qx(t+1))+(uT (t)Ru(t)), with parameters
Nhor = 5, Q = diag(103, 103, 1), R = diag(10−2, 10−2),
and hard constraints were imposed on the inputs u(t) ∈
U , t = 0, . . . , Nhor − 1. First, full knowledge of (10a)–
(10c) was assumed and the ground-truth functions were
employed as dynamic constraints in the NMPC formula-
tion. Next, the SLR and NSM regressors constructed with
the same data-set were considered. All optimizations were
carried out using an interior-point method under exactly
the same settings. The resulting trajectories are shown in
Fig. 3 for 30 steps, with arrows indicating the unicycle
orientation at each time instant. Clearly, using the SLR
regressor instead of the NSM one led to a system evolution
more similar to the full-knowledge case. Even though all
techniques conducted the unicycle to approximately the
same final conditions, the movement under the NSM-based
NMPC was more abrupt in specific parts of the space.

Computational times per controller iteration are reported
in the histograms of Fig. 3 and additional measures are
given in Table 2 (‘Std.’ is used for standard deviation).
Despite the 20 additional free points, optimization with
the SLR regressor was significantly faster than with the
NSM counterpart, reducing the mean iteration time by

Table 2. NMPC computational times

Mean (s) Std. (s) Worst case (s)

Ground-truth 0.0368 0.0112 0.0830

SLR 0.2856 0.2269 1.0421

NSM 3.8635 1.2794 5.1685

93% with lower standard deviation. This is due to the
piecewise non-linear non-differentiable nature of the equal-
ity constraints established by the NSM model, whereas a
single smooth differentiable nonlinear equality constraint
is enforced per time step in the SLR case. In practice,
an even further speed up could be achieved in the SLR
case by dropping the basis functions whose weights were
negligible, thus simplifying the regressor.

Even though the NMPC problem formulated in this sec-
tion has no state constraints, the error bounds of the
obtained regressors were analyzed. A set of 106 samples
were uniformily sampled from the joint state-control space
and used to evaluate the SLR bound through (9) and
the NSM bound – simply 0.5 |fu(x, u) − fl(x, u)|. The
histograms of normalized obtained values for each one of
the three dynamics are shown in Fig. 4. The SLR technique
resulted in larger error bounds with respect to NSM in
all cases, with an increase in the empirical mean of 19%,
20% and 13% for the first, second and third dynamics,
respectively. This behavior was expected given that the
NSM regressor minimizes (9) by being equidistant to the
ceiling and floor functions (see e.g. Fig. 1). Moreover, the
two uppermost histograms are similar to each other since
one target function is a translated version of the other;
whereas the last histogram presented the largest mean and
maximal error bound, which are mainly due to the more
conservative Lipschitz constant L3.

5. CONCLUSION

The SLR methodology was proposed to construct surro-
gate models from datapoints of everywhere differentiable
unknown functions defined on bounded convex domains.
In contrast with the NSM approach, the presented math-
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Fig. 4. Histograms showing the results of sampling the
NSM (green) and SLR (blue) error bounds.

ematical program enforces the regressor to be fully consis-
tent with the prior knowledge about the ground-truth. The
obtained semi-infinite optimization problem was tackled
with the scenario approach, yielding smooth regressors
that were shown to be suitable to optimization-based con-
trollers mainly due to their regularity properties.

Regarding its limitations, the deterministic error bounds
associated with the SLR were shown to be more conserva-
tive when compared to the NSM case. By increasing the
number of gradient constraints, this effect can be alleviated
at the price of having to solve a more complex regression
problem. Future investigations could address the issue of
finding more suitable representations for the error bounds
so as to enable efficient robust control formulations.
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