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Abstract

The last few years have experienced the emergence of the fourth industrial revolution (Indus-

try 4.0, I4.0), ultra-customization, as well as the explosion of demand for ethical, fair trade and

sustainable consumption. For industrial organizations, these trends offer new opportunities

and challenges in order to adapt to the consumer demand evolution, and to optimize the

supply chain (SC) accordingly. To cope with this, organizations have recently started a digital

transformation of their SCs and production. To do so, consumers are being placed at the center

of companies’ strategic agenda. In the context of ultra-customization, mass customization

(MC) is gaining momentum, especially with the arrival on the market of digital technologies

like additive manufacturing (AM), also known as 3D-printing. This technology was originally

used, since 1988, for prototyping. Due to technological advances, it is now very popular for the

final part production in series, and on a large scale. AM could bring current MC practices up to

date. SC performance is, among others, driven by operational excellence, information sharing

and trust between the different SC stakeholders. Looking at the second trend, which is focused

on new consumption patterns, organizations are now encouraged to evaluate the potential

of adopting new digital I4.0 technologies. In particular, the combination of Blockchain (BC)

with the Internet-of-Things (IoT) seems promising to improve SC performance and meet

customer demand. Despite the recognized potential of emerging I4.0 technologies, and the

transition toward digital SCs (DSCs), organizations are struggling to adapt to the trend of

ultra-customization, and the ethical, fair trade, and sustainable consumption one. This is

mainly due to the lack of decision support tools for these new technologies’ adoption, and to

the lack of user-centric approaches.

Therefore, in this thesis, we develop user-centric approaches from which we model and

analyze the impact of three I4.0 digital technologies on the SC. First, we develop a new

demand model, the “HLB model”, taking into account the individual demand of heterogeneous

customers. This model is the first, to our knowledge, to model both the heterogeneity of

customers and the evolution of their purchasing behavior over time. It couples the Bass

diffusion and the Hotelling-Lancaster models. This combination allows to incorporate the

product life cycle (PLC) in the demand model. Then, building on the HLB model, we analyze,

across the PLC, marketing and operations decisions which result from technology-switching

scenarios (between AM and MC). We formulate and solve an optimization problem by jointly

deciding on: technology-switching times, inventory, production quantity, pricing, and product
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variety strategies. The goal is to maximize a manufacturer’s profit, while addressing the

individual and evolving needs of customers. We use a “sample average approximation” for the

numerical solutions of our non-convex optimization problem. Based on an adaptive inventory

policy, we derive a closed-form solution for the production quantity decision. Our results

demonstrate that the new usage of AM with MC, and a user-centric approach, can benefit a

manufacturer. Significant profit improvements can be achieved with a hybrid AM-MC-AM

technology-switching production scenario, with specific dynamic pricing policies, and under

certain production capacity conditions. Second, we adopt a three-step approach to discover

the BC IoT success conditions for lean and agile SCs: (i) a multivocal literature review (MLR),

(ii) a topic modeling to categorize the success factors (SFs) identified in the literature, and (iii)

associate the categories of SFs to the SC macro-processes for lean and agile SCs, respectively.

Our findings are summarized into a conceptual framework and research propositions. This

last study is a first step toward a better understanding of BC and IoT benefits for lean and

agile SCs. It offers valuable insights into when and how the sweet spots for both SC types

would materialize in practice, as well as their impacts with respect to the SC macro-processes

performance.

Key words: Additive Manufacturing; Mass Customization; Customer Preferences; Blockchain;

Internet-of-Things; Lean and Agile Supply Chains
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Résumé

Ces dernières années ont connu l’émergence de la quatrième révolution industrielle (In-

dustrie 4.0, I4.0), de l’ultra-personnalisation, ainsi que de l’explosion de la demande pour

consommer éthique, équitable et durable. Pour les organisations industrielles, ces tendances

offrent de nouvelles opportunités et défis d’adaptation à l’évolution de la demande des con-

sommateurs, et d’optimisation de la chaîne d’approvisionnement (supply chain, SC). Pour y

répondre, les organisations ont récemment entamé une transformation digitale de leurs SCs,

et de leur production. Pour ce faire, les consommateurs sont placés au centre de la réflexion

stratégique des entreprises. Dans le contexte d’ultra-personnalisation, la personnalisation

de masse (supply chain, MC) prend de plus en plus d’ampleur, notamment avec l’arrivée sur

le marché de technologies digitales comme la fabrication additive (additive manufacturing

(AM), aussi connue sous le nom d’impression 3D). Cette technologie était originellement

utilisée, depuis 1988, pour faire du prototypage. Grâce aux avancées technologiques, elle est

maintenant très prisée pour la production de pièces finies en série et à grande échelle. L’AM

pourrait mettre au goût du jour les pratiques actuelles de MC. La performance de la SC est,

entre autre, basée sur l’excellence opérationnelle, le partage d’information et la confiance

entre les différents acteurs impliqués dans cette chaîne. Si l’on se penche sur la deuxième

tendance qui est axée sur de nouveaux modes de consommation, les organisations sont dé-

sormais conduites à évaluer le potentiel d’adoption de nouvelles technologies digitales de

l’I4.0. En particulier, la combinaison de la Blockchain (BC) avec l’Internet des objets (IoT)

semble prometteuse pour améliorer la performance de la SC et répondre à la demande client.

Malgré le potentiel reconnu des technologies émergentes de l’I4.0, et la transition vers des

SCs digitales, les organisations peinent à s’adapter aux tendances d’ultra-personnalisation

et de consommation éthique, équitable et durable. La raison étant principalement liée au

manque d’outils d’aide à la décision pour l’adoption de ces nouvelles technologies, et de

développements d’approches centrées utilisateurs.

Dans cette thèse, nous développons des approches centrées utilisateurs à partir desquelles

nous modélisons et analysons l’impact de trois technologies digitales de l’I4.0 sur la SC. Dans

un premier temps, nous développons un nouveau modèle de demande, le “HLB model”,

prenant en compte la demande individuelle de consommateurs hétérogènes. Ce modèle

est le premier à pouvoir modéliser à la fois l’hétérogénéité des consommateurs, ainsi que

l’évolution de leur comportement d’achat au cours du temps. Il couple le modèle de diffusion
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de Bass et le modèle Hotelling-Lancaster. Ce couplage permet d’incorporer le cycle de vie

du produit dans le modèle de demande. Ensuite, à partir du HLB model, nous analysons les

décisions marketing et opérationnelles au travers de scénarios de changement de technologies

(entre AM et MC) tout au long du cycle de vie du produit (PLC). Nous formulons et résolvons

un problème d’optimisation en décidant simultanément : des temps de changement de

technologies, d’inventaires et de quantités de production, de stratégies de prix, et de variété

de produits. Le but étant de maximiser le profit d’un producteur, tout en répondant aux

besoins individuels et évolutifs des consommateurs. Nous utilisons une “sample average

approximation” pour les solutions numériques de notre problème d’optimisation non convexe.

Basée sur une politique d’inventaire adaptative, nous dérivons une solution analytique pour

la décision de quantité de production. Nos résultats démontrent que le nouvel usage d’AM

avec l’utilisation de MC, et une approche centrée utilisateurs, peuvent être bénéfiques pour

un producteur. Des augmentations significatives de profit peuvent être obtenues à partir d’un

scénario de production hybride de type AM-MC-AM, avec des politiques de prix dynamiques

spécifiques, et sous certaines conditions de capacités de production. Dans un second temps,

nous adoptons une approche en trois étapes pour découvrir les conditions et facteurs de

succès (SFs) pour l’adoption de la BC et de l’IoT pour l’amélioration de la SC. Ces étapes

consistent en: (i) une “revue de littérature multivocale”, (ii) une modélisation thématique

(topic modeling) pour catégoriser les facteurs de succès (SF) identifiés dans la littérature, et

(iii) un alignement des catégories de facteurs de succès avec les macro-process des SCs lean

et agiles. Nos résultats sont résumés au sein d’un modèle conceptuel et de propositions de

recherche. Cette dernière étude est un premier pas vers une meilleure compréhension des

avantages d’adoption de la BC et de l’IoT pour les SCs de types lean et agiles. Elle offre des

indications précieuses sur la manière dont les “sweet spots” se matérialiseraient en pratique

pour les deux types de SC, ainsi que sur l’impact de ces “sweet spots” sur la performance des

macro-process des SCs.

Mots clefs: Fabrication Additive; Personnalisation de Masse; Préférences des Consommateurs;

Blockchain; Internet des Objets; Supply Chains Lean et Agiles
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1 Introduction

With the arrival of the fourth industrial revolution, Industry 4.0 (I4.0), organizations are facing

the emergence of connected, intelligent and advanced technologies (e.g., Additive Manufactur-

ing (AM), Blockchain (BC), and Internet-of-Things (IoT)), to serve the digital transformation

and disrupt traditional business models. The technological advances have implicitly led to

an increase in user expectations. Consumers are therefore even more demanding. They

expect their placed orders to be fully personalized, fulfilled and delivered quickly. These two

related trends are forcing companies to rethink and redesign their supply chains (SCs). To

gain competitiveness, productivity, cost reduction, business growth and customer satisfaction,

it is therefore necessary to develop and adopt a user-centric approach, which is gradually

spreading within companies. It is also crucial to evaluate the potential and relevance of these

new digital technologies. To avoid a mismatch between supply and demand, customer-centric

technology management decisions must be aligned with business strategies. As a result, a pro-

gressive digitalization of traditional linear supply chains is occurring, a phenomenon which is

referred to as Digital Supply Chain (DSC). Ageron et al. (2020) define the DSC as: “the devel-

opment of information systems and the adoption of innovative technologies strengthening

the integration and the agility of the supply chain and thus improving customer service and

sustainable performance of the organization.” Hence, challenges and opportunities related to

DSC are receiving considerable attention from decision makers.

The two main goals of this thesis are to investigate how to leverage: user-centric approaches

and emerging I4.0 technology enablers, in order to optimize the SC performance. For this

purpose, we focus on three specific I4.0 technology enablers, namely: AM, BC, and IoT, at the

marketing-operations interface.

1.1 Customer-centric Demand Models

Both demand and supply perspectives are equally important to rethink the SC. To be able to

react to market changes, demand modeling is an essential tool for SC design. Several types

of demand models have been developed over the years. Practitioners and academics have
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recently investigated customer-centric strategies, recognized to drive business value. In this

context and to address product customization, demand models that tackle heterogeneity

and individual needs are particularly appealing. In the marketing and operations literature,

utility-based demand models are typically used to study assortment problems. In this re-

search area, Kök et al. (2015) provide a detailed review of demand models which consider

customer heterogeneity. The multinomial logit (MNL) and locational choice are the prevalent

models. These models are utility-based demand functions for which consumers are assumed

to be rational utility maximizers (i.e., they will opt for the purchasing action that maximizes

their utility). In the MNL model, the utility is decomposed into deterministic and random

components. Due to its analytical properties, this model has been used to deal with pricing

and assortment selection issues (Aydin and Porteus 2008). In their work, Gaur and Honhon

(2006) indicate that: “the locational choice model was originally developed by Hotelling (1929)

to study the pricing and location decisions of competing firms”. Since then, variants of the

Hotelling model have been developed, such as the Hotelling-Lancaster model (also known

as “characteristics models” or “address models”), which assumes uniformly distributed cus-

tomers on a continuous virtual product space. The Hotelling-Lancaster model transposes the

Hotelling model to a context of product differentiation. Lancaster (1990) offers an excellent

review of them, and Gaur and Honhon (2006) provide a comprehensive comparison between

the MNL and locational choice models.

For tractability reasons, most of the demand models mentioned above do characterize con-

sumer needs at the individual level but in a static setting. They typically do not account for

forward-looking (strategic) customers, i.e., customers who choose their purchasing time by

trading off between the benefits of buying the product and their expectations on future prod-

uct prices (Song and Chintagunta 2003). Customers are generally not only variant-sensitive

in their purchasing decisions, but also time-sensitive. They do not necessarily purchase the

product at the same time. This is why other demand models, such as the diffusion of inno-

vation model known as the Bass model (Bass 1969), focus on modeling the product life cycle

(PLC) and, thus, indirectly, the evolution of consumer needs over time. The PLC concept is

a concept which was introduced in the seminal article by Dean (1976). The Bass model is

intended to predict the continued acceptance of a new product over time (Mahajan et al. 1990).

It is based on the famous “bell-shaped” normal distribution, where the curve represents the

frequency of customers purchasing a product over time. Diffusion models (see detailed review

by Mahajan et al. (2000)) are very popular in the marketing and operations literature and

have been explored and extended in numerous studies: with discrete customer choice models

(Lobel et al. 2015), with pricing strategies (Shen et al. 2013), with supply constraints (Ho et al.

2002); see Peres et al. (2010) for a thorough review. Chatterjee and Eliashberg (1990), Song and

Chintagunta (2003) developed micro-modeling diffusion approach (i.e., demand modeled

at the individual level). They highlighted the added-value of this approach for customer

segmentation in terms of purchasing times.

2



Introduction Chapter 1

1.2 Hybrid Mass Customization Manufacturing Practice

Two models are commonly used to determine customer preferences (Jiang et al. 2006), namely:

vertical differentiation (based on quality and price discrimination) and horizontal differen-

tiation (based on varying customer tastes for a product, e.g. diversifying shapes and colors

of eyeglasses). For manufacturers producing horizontally differentiated custom products,

mass customization (MC) is of particular interest to them since it aims to address individual

customer preferences. Manufacturers commonly use mass production (MP), a less flexible pro-

duction technology compared to MC (Alptekinoğlu and Corbett 2008), but known to provide

efficiency at lower costs. Indeed, MP offers a limited set of products while MC can, ideally, offer

an infinite variety of products. MC refers to both strategies and flexible manufacturing systems.

Anderson (2004) defines MC as “the ability to design and manufacture customized products at

mass production efficiency and speed.” In his work, (Berman 2012, Table 1) compares and

contrasts AM and traditional MC systems.

Due to technological advancements, new manufacturing opportunities disrupting traditional

MC systems have emerged. For instance, additive manufacturing (AM, also referred to as

3D-printing) is now capable of producing final parts in series, at large scale, and across differ-

ent industries. This practice is known as Rapid Manufacturing (RM) (Campbell et al. 2020).

AM is thus increasingly adopted for this purpose (e.g., Riddell (2019), an American football

equipment provider who 3D-prints custom helmet liners; see AFMG (2020) for other applica-

tions), and helps meeting higher customization requirements from customers. AM, which has

been used since 1988 for rapid prototyping (Hon 2007), has the potential to rejuvenate the MC

movement. Its new usage, i.e. RM, has increased significantly from 3.9% of AM’s total market

to 60.9% (Campbell et al. 2020). Although AM and traditional MC systems are both capable

of producing custom final parts cost-effectively, these two processes display technology and

cost-specific features, as well as different customization capabilities (Dong et al. 2020b). For

this reason, AM is not likely to replace traditional MC processes, but rather to supplement

them (Holweg 2015, Rogers et al. 2016, AFMG 2020). The combination of AM and traditional

MC processes could lead to a cost-effective hybrid manufacturing practice to achieve MC at

large scale while addressing individual customer preferences.

In addition to this hybrid manufacturing practice, hybrid production modes could emerge as

a consequence. Typically, if a company offers a high product variety to the customers, a shift

from a Make-To-Stock (MTS) to a Make-To-Order (MTO) production mode normally occurs

(Dobson and Yano 2002). This implies taking into account inventory decisions and capacity

constraints. The literature on pricing and production control under capacity constraints

usually focuses on inventory control where a demand distribution is assumed to be known

and stationary. Only few studies (e.g., Hadley and Whitin (1961), Kurawarwala and Matsuo

(1996)) consider consumer goods exhibiting non-stationary demand (i.e., when the demand

probability function changes over time). Later on, Graves (1999) and Yang and Kim (2018)

presented adaptive inventory models with non-stationary demand.
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1.3 Blockchain with IoT for Lean and Agile Supply Chains

In the previous section, we highlighted the rise of customer expectations over the years. After

recent scandals related to the recall of contaminated or defective products, deplorable working

conditions in some countries (e.g., Bapna (2012)), and the awareness of climate change,

customers are now more sensitive to ethical, fair trade, and green sustainability practices.

Companies are therefore implementing new strategies to meet these customer demands, and

to digitalize their SCs for enhanced transparency, efficiency and flexibility. DSCs operate I4.0

technology enablers. BC is one of them and the cornerstone of the emerging “trust economy”,

in which the SC plays a central role. Another I4.0 technology enabler is IoT, which is along BC

one of the most current hot topics. BC allows digital data to be stored in a cryptographically

secured and decentralized manner, leading to essentially tamper-proof transactions (Chouli

et al. 2017). Globally, IoT link the physical and digital worlds together in a distributed network

of devices communicating both with each other and with SC stakeholders. Pairing BC and

IoT seems promising to drive SC performance. BC enables privacy, security and reliability,

while IoT convert the physical world into valuable information. It is therefore not surprising

that this technology combination for the SC has recently received much attention (see the

thirty-five compelling use cases highlighted by Yusuf et al. (2018b)) to enhance traceability

and reliability across the whole chain, both internally, upstream, and downstream in the SC.

However, not all SCs are designed to produce the same product types (functional vs. innovative

products), and thus to serve the same consumer segments (Agarwal et al. 2006, PwC 2012).

Different SC types have hence been developed (Fisher 1997), for which strategies specific to

each type are implemented to meet the consumer demand. Two SC types are typically adopted:

lean (also called efficient) and agile (also called responsive). Chopra et al. (2013) provide a

comparison of lean and agile SCs. Vonderembse et al. (2006) and Agarwal et al. (2006) also

mention a third SC type called hybrid and leagile, respectively. Hybrid SC is a combination of

lean and agile supply chains (a comprehensive description can be found in Naylor et al. (1999)).

Although SC performance relies on strategic, operational and IT alignments, no study, to our

knowledge, has considered the differentiation between lean and agile SCs for the adoption of

BC and IoT.

1.4 Contributions and Structure of the Thesis

The thesis is structured as follows.

Chapter 2 investigates a novel customer-centric hybrid mass customization manufacturing op-

portunity, both from the demand and supply sides. To broaden our understanding of how AM

can complement traditional manufacturing systems, we develop an exploratory quantitative

model. First, we leverage customer-centricity in a novel time-varying locational choice model

of heterogeneous customers, coupling the Bass and the Hotelling-Lancaster models. Then,

we investigate customer-centric marketing and operations decisions, exploring technology-
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switching scenarios that interchange AM with traditional MC systems across the PLC. We

formulate and solve an optimization problem by jointly deciding on technology-switching

times, pricing, and product variety strategies to maximize a monopolist manufacturer’s profit

and meet individual customers’ diverse and evolving needs. We use a validated sample average

approximation approach for the numerical solution of our non-convex optimization prob-

lem, and derive analytical properties for the optimal pricing policy. The material underlying

Chapter 2 originates from the following working paper.

• Rachel Lacroix, Ralf W. Seifert, Anna Timonina-Farkas. Benefiting from Additive Man-

ufacturing for Mass Customization across the Product Life Cycle. Available at SSRN

3719793. Submitted to Operations Research Perspectives, 2021.

Chapter 3 builds on Chapter 2 to further explore the customer-centric hybrid manufacturing

practice, this time with the addition of inventory decisions under MC technology, production

decisions, and the consideration of capacity constraints under both AM and MC processes.

We address this opportunity through a mathematical model that considers a monopolist

manufacturer producing horizontally differentiated products at scale. To satisfy individual

customer preferences, under PLC and capacity considerations, the firm jointly optimizes

the following decisions: inventory, production quantity, product variety, optimal technology-

switching times (between AM and MC), and pricing policy. Our approach can be implemented

by decision-makers to leverage customer-centricity and benefit from this novel hybrid man-

ufacturing practice. We derive a closed-form solution for the production quantity decision

based on an adaptive inventory policy. We solve the resulting non-convex optimization prob-

lem using the sample average approximation framework, and derive analytical results. The

material underlying Chapter 3 originates from the following working paper.

• Rachel Lacroix, Anna Timonina-Farkas, Ralf W. Seifert. Utilizing Additive Manufactur-

ing and Mass Customization under Capacity Constraints. Available at SSRN 3737989.

Working paper, École Polytechnique Fédérale de Lausanne (EPFL), 2021.

Chapter 4 sheds light on lean and agile BC IoT SC sweet spots and conditions from a SC-driven

perspective. We uncover the relevance and conditions for BC and IoT adoption in lean and

agile DSCs through a three-step approach: (i) we conduct a multivocal literature review, (ii)

perform a topic modeling to categorize the success factors (SFs) identified in the literature,

and (iii) associate the categories of SFs to the SC macro-processes for lean and agile SCs,

respectively. Our results build on a holistic view of the BC and IoT SFs, stemming from a SC-

driven adoption perspective. The findings are summarized through a sweet spot conceptual

framework and research propositions. The material underlying Chapter 4 originates from the

following working paper.

• Rachel Lacroix, Christopher L. Tucci, Ralf W. Seifert. Blockchain of Things Sweet Spot
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for Lean and Agile Digital Supply Chains. Working paper, École Polytechnique Fédérale

de Lausanne (EPFL), 2021.

Chapter 5 distills the key insights of the thesis and outlines future research directions.

1.5 Statement of Originality

I hereby certify that the content of this thesis is the product of my own work with some

assistance from my supervisor Prof. Ralf W. Seifert as well as my co-authors Dr. Anna Timonina-

Farkas and Prof. Christopher L. Tucci.
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2 Benefiting from Additive
Manufacturing across the Product
Life Cycle
Additive manufacturing (AM) was initially designed for prototyping and product personal-

ization, where high production quantities were not required. Now, it is also implemented for

final part production to achieve cost-effective mass customization (MC). Thanks to its tool-

less production and extreme flexibility, AM has the potential to address individual customer

preferences with custom final parts. Nevertheless, despite its increased competitiveness, AM

is not yet likely to replace traditional MC systems, but it can complement them, improving

manufacturing efficiency. To broaden our understanding of how AM can complement tra-

ditional manufacturing systems, we develop an exploratory quantitative model. First, we

leverage customer-centricity in a novel time-varying locational choice model of heteroge-

neous customers, coupling the Bass and the Hotelling-Lancaster models. Then, we investigate

customer-centric marketing and operations decisions, exploring technology-switching sce-

narios that interchange AM with MC across the product life cycle (PLC). We formulate and

solve an optimization problem by jointly deciding on technology-switching times, pricing, and

product variety strategies to maximize a manufacturer’s profit and meet individual customers’

diverse and evolving needs. We use a validated Sample Average Approximation approach for

the numerical solution of our non-convex optimization problem. Testing different pricing

strategies, we show that decreasing and flexible trajectories are optimal. We derive analytical

properties for the optimal pricing policy and demonstrate that a manufacturer can benefit

from interchanging AM and MC across the PLC, in particular by adopting an AM-MC-AM

scenario

2.1 Introduction

The term “mass customization” (MC) was first coined in 1987 by Davis (1990). It refers to

both strategies and technologies and several definitions of MC—sometimes conflicting—have

been developed over the years. To avoid confusion, we define MC as “the ability to design

and manufacture customized products at mass production efficiency and speed” (Anderson

2004, p. 271) to deliver variety and customization from a certain number of product base

configurations at near mass production (MP) prices (Kwok et al. 2017). MP typically refers to a
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manufacturing system running at high capacity utilization and building on economies of scale

to “produce and deliver more of the same design of a given product or service by defraying the

fixed cost with higher production quantities” (Tseng and Jiao 2001).

For manufacturers, MC means higher product variety with traditional flexible manufacturing

systems. High product variety yields increased production costs due to tooling switchovers

and mold creation for each new product variant. In this chapter, we use the term ”mass-

customized” to refer to the parts produced with the traditional MC technology. For customers,

MC implies unique products matching their personal preferences. Recently, there has been

renewed interest in MC due to emerging Industry 4.0 technology enablers, such as additive

manufacturing (AM) (also referred to as 3D printing), pushing into the market (Olsen and

Tomlin 2020) and having the potential to drive MC forward. In this chapter, we build on

Berman (2012)’s comparison between AM and MC and cover the main differences between the

technology-specific fixed and variable cost structures, as well as the degree of product variety.

Table 2.2 summarizes the comparison of the key features between AM and MC technologies.

AM is spreading across different industries. For instance, Carbon, the world’s leading Digi-

tal Manufacturing Platform, announced a partnership with Adidas to produce 3D-printed

midsoles in 2017, and Riddell, the American football equipment provider, recently began

3D-printing custom helmet liners (Riddell 2019). Historically, AM was used for prototyping,

but recent technological developments have also made it appealing for rapid manufacturing

(RM, described as “the use of additive manufacturing (AM) technologies for final part produc-

tion” (Deradjat and Minshall 2017)). According to an industrial report by Wohlers Associates

(2017), the use of AM for RM has grown massively from 3.9% to 60.6% of total product and

service revenues. AM has become a common option for RM: 61% of respondents use more

than 10% of AM processes to produce final parts. For simplicity, AM includes RM throughout

this chapter.

Despite the advantages of AM, researchers and industry experts have concluded that it is not

likely to replace traditional MC processes. Instead, according to some (Holweg 2015, Rogers

et al. 2016, Sasson and Johnson 2016, AFMG 2020), it complements today’s traditional man-

ufacturing processes to increase manufacturing efficiency and product value for customers.

Currently, for as long as printing speed constitutes the major barrier to AM adoption for large

production volumes, MC remains the technology of choice. Utilizing the complementary

features of AM and MC over the product life cycle (PLC) in a technology-switching scenario

(between these two technologies) can be a solution. Therefore, we follow the AFMG (2020)

industry expert recommendation to evaluate the benefits of this emerging manufacturing

practice for product customization at scale. Accordingly, we formulate the following research

question: How can a manufacturer quantify the economic benefits of complementing AM for

final part production with an existing traditional MC technology under PLC considerations?

Sub-questions: (i) How can the PLC dynamics in a demand model based on customer pref-

erences be captured? What are the effects of accounting for the PLC on technology-switching

scenarios and profit maximization? (ii) What is the optimal technology-switching scenario to

adopt? (iii) Which pricing policy should be applied and what is its impact on profit? (iv) What

is the optimal number of product variants to offer under MC?
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Since technology-switching scenarios between AM and MC do not yet exist in practice, and

in light of increasing interest from academics and practitioners, we develop an exploratory

quantitative model. We consider a monopolist manufacturer who aims to maximize his profit

while addressing individual customer preferences over a discrete-time selling horizon and

under a MC manufacturing setting. We build and solve a non-convex customer-centric opti-

mization problem that jointly optimizes the technology-switching times (between AM and

MC), pricing, and product variety decisions over the PLC. We believe that no authors to date

have studied this combined problem. Our research questions require customer heterogeneity,

forward-looking behavior, and PLC dynamics, all of which are decisive for firms, to be taken

into account. Customers’ preferences differ depending on matters of taste. Customers are

also sensitive to the selling price and their purchasing behavior evolves over time. We thus

consider horizontal product differentiation (e.g., diversifying shapes and colors of eyeglasses),

which is a common practice for addressing varying customer tastes.

On the demand side, we leverage customer-centricity in a novel time-varying locational cus-

tomer choice model that we refer to as the Hotelling-Lancaster-Bass (HLB) model. The HLB

model combines the Hotelling-Lancaster (HL) and Bass diffusion models. This combination

offers the advantages of both modeling the demand of heterogeneous customers at the in-

dividual level and mimicking the PLC dynamics. To the best of our knowledge, no previous

studies combine these two models. We believe this new demand model can add to studies

that consider heterogeneous customers at the individual level when modeling the diffusion of

a new product (Chatterjee and Eliashberg 1990, Song and Chintagunta 2003).

On the supply side, our approach compares two flexible manufacturing technologies (AM and

MC). This study substantiates the importance of technology-switching decision making high-

lighted in previous works (Hayes and Wheelwright 1979, Ramasesh et al. 2010) in maintaining

the compatibility between the technology choice and the PLC stage. It also contributes to the

literature on the impact of AM on operations management and on MC.

We believe our model and the derived managerial insights can assist academics and practi-

tioners in quantifying the economic benefits of new customer-centric marketing and hybrid

production strategies for the disruptive application of AM in Industry 4.0. This study explores

both demand and supply perspectives in a dynamic setting. To summarize, this study brings

two major contributions: a new time-varying locational customer choice model that considers

customer heterogeneity, forward-looking behavior, and PLC dynamics; and the joint optimiza-

tion of customer-centric technology-switching times, pricing, and product variety decisions

over the PLC. We adopt an innovative approach to solve our non-convex optimization problem,

where the convergence of the solution is proven theoretically. Numerical experiments further

confirm the validity of our solution approach and highlight the benefits of and conditions for

interchanging AM and MC over the PLC.

The rest of our chapter is structured as follows. In Section 3.2 we review the related literature.

We describe the model in Section 3.3, and explain the solution approach and analytical results

in Section 2.4. We present our numerical findings and managerial insights in Sections 2.5 and

2.6, respectively.
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2.2 Literature Review

In our research, we aim to find optimal technology-switching times, pricing trajectories, and

product variety in order to maximize a manufacturer’s profit. Three main research streams are

relevant to our work: The first centers on analytical models that investigate the impact of AM

on operations and supply chain management (SCM); the second stream examines marketing

and production decisions for product line design; and the third focuses on PLC decisions and

the development of new product diffusion models.

A growing body of literature examines the advantages and challenges of AM for manufacturing

strategies (e.g., Attaran (2017), Westerweel et al. (2018a,b), Sethuraman et al. (2018), Chen

et al. (2021)). According to Weller et al. (2015), one of the main benefits of AM resides in

the flexibility of production and the customization of products without manufacturing cost

penalties. Several recent studies outline the potential of this technology on SCM (e.g., Sodhi

and Tang (2017)). Although our work is, to the best of our knowledge, the first analytical

framework to quantify the economic impact of AM on joint technology-switching, pricing, and

product variety decision making, there are articles that analyze other aspects of AM. We review

a sample of the analytical models that investigate the impact of AM on operations and SCM.

Most of this emerging literature focuses on spare parts logistics (Westerweel et al. 2018a, Song

and Zhang 2020), consumer goods retailing (Chen et al. 2021), component design cost analysis

(Westerweel et al. 2018b), and assortment planning (Dong et al. 2020a). The framework of Song

and Zhang (2020) is among the first in the operations management literature to scrutinize the

impact of AM. They show that on-demand 3D-printed parts lead to significant cost savings

and inventory reduction. Westerweel et al. (2018a) numerically examine, in a continuous time

setting, the impact of conventional manufacturing and AM on spare parts production and

assume that printed parts are of inferior quality.

Our work also compares AM and traditional manufacturing, but instead of considering them

as production systems for supplying spare parts, we model both technologies with the aim of

delivering final parts. Song and Zhang (2020) and Westerweel et al. (2018a) do not consider

the market value of MC, whereas our model jointly optimizes marketing and production

decisions and is related to the recent work of Dong et al. (2020a), who study the impact of AM

on a firm’s manufacturing strategy. They analyze three types of manufacturing technologies:

AM, traditional flexible, and dedicated (a process that can produce only one product variant)

technologies. They focus on product assortment decisions under capacity constraints and

demonstrate that the combination of AM and a dedicated technology allows wider product

variety with profit improvement.

Our research focuses on AM and MC without considering a dedicated technology since it

does not allow customization at a low cost and involves high setup costs. We consider the

production and customization of horizontally differentiated products and use a locational

model instead of the multinomial logit (MNL) model to describe customer preferences. A

comparison between the MNL and locational choice models is given in Gaur and Honhon

(2006). More broadly, details on demand models that can be applied to assortment planning

can be found in Kök et al. (2015). In this stream of literature, our chapter extends the work of
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Dong et al. (2020a) to include technology-switching and pricing decisions. We also build on the

work of Chen et al. (2021), which considers two adoption cases of AM in a dual-channel retail

setting (online and in-store channels) and studies the firm’s joint decision about products

offered, prices, and inventory. Instead of modeling heterogeneous customers’ preferences via

a circular model (Salop 1979), we extend the classic HL model to include PLC considerations.

Contributing to the product line design and MC literature (Lancaster (1998), Ramdas (2003),

Kök et al. (2015)), our work considers the perspectives of both the manufacturer and the

customer. Although a large number of studies focus on the reliability and cost of 3D-printed

products (e.g., Thomas and Gilbert (2014), Baumers et al. (2016)), only a few articles investigate

the business and operations management implications. To quantify the economic implica-

tions arising from our novel hybrid production strategy combining AM with MC, we explore a

customer-centric technology-switching scenario across the PLC. The importance of satisfying

individual customer needs is emphasized in the work of Merle et al. (2010).

Further, in the literature related to build-to-stock (BTS) and build-to-order (BTO) policies,

some works have examined quantitative models that jointly consider marketing and pro-

duction decisions (e.g., Alptekinoğlu and Corbett (2008), Sethuraman et al. (2018)). Jiang

et al. (2006) study a MC system consisting of an initial BTS phase and a final BTO phase, and

evaluate marketing, production, and pricing decisions. They compare mass production and

MC and assess the possible benefits of MC technology. Chen et al. (2021) determine, for two

adoption cases, the impact of AM on a firm’s product offering, and incorporate the firm’s

pricing and inventory decisions to show that AM increases product variety offered online and

leads to a price premium for online customers. In our article, we extend the classic locational

model on customers’ preferences that uses willingness-to-pay and disutility functions (see

Lancaster (1998)) with time-varying and utility-based demand. We also contribute to the MC

literature but do not consider the competition between a mass producer and a customizer

(e.g., Alptekinoğlu and Corbett (2008), Mendelson and Parlaktürk (2008), Xia and Rajagopalan

(2009)).

Two dimensions particularly relevant to our work are the PLC—concept introduced in the

seminal article by Dean (1976)—and diffusion models. These concepts are widely used in the

marketing literature (see the detailed review in Mahajan et al. (2000)). The well-known diffu-

sion model described in Bass (1969) aims to time the purchase of new products. It is commonly

used to forecast demand and has multiple extensions: For example, diffusion models with

supply constraints (Ho et al. 2002), with pricing strategies (Shen et al. 2013), and with discrete

customer choice models (Lobel et al. 2015); see Peres et al. (2010) for a thorough review. Our

work reinforces the product diffusion literature and links production technologies to PLC.

In the operations management literature, few researchers have addressed the interdepen-

dency between manufacturing processes and PLC, except for Hayes and Wheelwright (1979)

with their product-process matrix, which emphasizes the need for the technology-switching

to maintain manufacturing performance. Ramasesh et al. (2010) extend this literature by

developing an analytical model to guide the technology-switching decision when the PLC

uncertainty is included. Some papers (e.g., Chatterjee and Eliashberg (1990), Van den Bulte

and Stremersch (2004)) develop “micromodeling” diffusion models by specifying purchasing
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decisions at the individual level. However, the work of Peres et al. (2010) outlines that “the

interface between the individual level and the aggregate level still lacks a closed formulation

and needs further exploration.” In our work, we couple the HL framework with the Bass dif-

fusion process to develop a new time-varying locational customer choice model to capture

the influence of heterogeneous customer preferences on the three decisions that we aim to

optimize.

Our chapter proposes original insights in several aspects. None of the papers referenced so far

incorporate the PLC dimension in the utility function to handle the dynamics of the market

environment. We consider both marketing and production decisions, the interdependency

between the two flexible manufacturing systems (MC and AM), and the PLC.

2.3 Model Framework

In this section, we derive an analytical model that optimizes technology-switching times,

pricing, and the product-variety decisions of a manufacturer in possession of AM and MC

technologies over a finite horizon. We propose a customer-centric utility-based demand model

able to incorporate a product misfit and mimic a PLC on a random customer population. The

solution we construct combines the Bass and HL models through a specific utility function

formulation. Table G.1 summarizes our key notations and parametric assumptions.
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Table 2.1 – Notations and Parametric Assumptions.

Parameters Assumptions

N : Initial market size of potential adopters N ∈N
Ξ : i.i.d. random population of customers (ξi )1≤i≤N
T : Length of the finite selling horizon T ∈N
t : Current time period 1 ≤ t ≤ T

T
: Set of technology-switching scenarios characterized by a pair of
technology-switching times (TA→M ,TM→A )

T ∈ {TA→M ,TM→A }T

TA→M : Technology-switching time when the manufacturer switches from AM to MC 0 ≤ TA→M < TM→A
TM→A : Technology-switching time when the manufacturer switches from MC to AM TA→M < TM→A < T +1
TA↔M : Technology-switching times TA→M and TM→A
Φ : Virtual space of horizontally differentiated products Φ= [0,1]
ξ : Random customer characterized by τ and φ ξ= (τ,φ) with Pξ =Pτ⊗Pφ
τ : Customer’s ideal buying time Fτ(t ) = FB (t tmax

T )
(1−ε)

φ : Customer’s ideal product variant Pφ =U ([0,1])

FB : Bass cumulative distribution function (cdf) FB (u) = (1−exp(−(p+q)u)

(1+ q
p exp(−(p+q)u)

p, q : Bass innovation and imitation coefficients, respectively p, q ∈R+
tmax : Truncation value for the Bass infinite selling horizon tmax = F−1

B (1−ε)

where ε> 0 s.t. F−1
B (1−ε) ∼ 1

n : Number of product variants to offer to customers under MC 1 ≤ n ≤ nmax

x j : Location of product variant j on the virtual product space 0 ≤ x j ≤ 1

X
: Set of product variants available
to customers for purchase under MC technology

X = {x1, . . . , xn } ⊂ [0,1]n

w : Customer’s willingness-to-pay ω : [0,T ] →R+
pt : Selling price at time period t 0 ≤ pt ≤ max{0,UT },

∀ j ∈Φ
γ : Buying time-sensitivity coefficient γ : [0,T ] →R+

λ
: Product variant sensitivity coefficient, incurred only
under MC technology

λ : [0,T ] →R+

UT (ξ, t ) : Customer’s utility at time period t , dependent on the technology-switching scenario, T See (3.1)

Given the complexity of the study, several assumptions are needed and explained. In Sec-

tion 2.3.1, we present the manufacturing scenarios that we aim to analyze and describe MC

and AM technologies. In Section 2.3.2, we outline the market demand and customer prefer-

ence model. Section 2.3.3 presents the cost structures and profit functions of AM and MC.

Section 2.3.4 introduces the optimization problem.

2.3.1 Mass Customization and Additive Manufacturing Description and
Scenarios

(Berman 2012, Table 1) compares and contrasts AM and MC, and describes traditional MC

processes as relying on: “pre-assembled modular parts in different combinations or delayed

differentiation” based on individual customer specifications. Although both AM and MC are

capable of producing final parts cost-effectively, AM presents a higher degree of flexibility and

directly prints singular parts based on unique customer designs. Compared with MC, it also

offers the advantages of reducing production costs for small production volumes (no tooling

investment) and allowing individual customization of products without “per product variety”

additional costs (Weller et al. 2015, Attaran 2017). In this chapter, we build on the comparison
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between AM and MC and cover the following main differences: (i) the technology-specific

fixed and variable cost structures, and (ii) the product variety degree. Table 2.2 reports the

key features that distinguish AM from MC in our study. In particular, we make the following

assumptions: (i) as argued in (Dong et al. 2020a), 3D printers and AM raw materials are

expensive and, thus, AM incurs a higher setup cost during the first time period the technology

is used (Alptekinoğlu and Corbett 2008); (ii) following Weller et al. (2015), the marginal cost

of AM is constant, whereas the corresponding MC cost increases linearly according to the

number of product variants offered to customers; (iii) AM perfectly serves its customers

in terms of product variants and, thus, the manufacturer incurs no “per-product” variety

cost; (iv) conversely, MC offers product variants within a limited horizontally differentiated

product space since traditional flexible technologies (i.e., MC here) are commonly designed

to manufacture a specific set of product variants, as reported in Dong et al. (2020a); and (v)

the customer’s ideal product location is used to compute a product misfit penalty cost which

decreases the customer’s utility.

Table 2.2 – MC vs. AM technology key features comparison.

Technology production
features

MC AM

Fixed setup cost kM kA , where kA > kM
Variable production cost cM (n) = cb (1+ (n −1)δ),

where cM (n) > 0 (identical for all product variants)
cA > 0 (constant)

Product misfit penalty cost λ(τ)d(φ,X ), see (3.1) No product variant misfit.
The customer is served perfectly

in terms of product variant.

Further, we assume that each product can be produced by either MC or AM technology.

Wohlers Associates (2017) report that AM is economically viable when employed for small

batch sizes and custom parts. Thus, a firm could potentially receive revenues from final parts

produced on AM equipment, in a series production context. AM is typically more suitable

at the beginning and end of the PLC because it is typically used to manufacture products for

fewer customers. As demand increases, AM becomes less profitable because the production

cost of MC is lower (see Section 2.3.3). Thus, we will not consider the MC → AM → MC

strategy. Instead, we investigate the five following manufacturing scenarios to quantify the

economic benefits of using AM in complement of MC systems, or alone.

Base case (BC): The manufacturer uses MC technology only;

Case 1 (C1): AM → MC scenario, which implies AM during the product launch only;

Case 2 (C2): MC → AM scenario, for which AM is only used for the PLC decline phase;

Case 3 (C3): AM → MC → AM scenario resulting from the combination of (C1) and (C2);

Case 4 (C4): AM during the whole selling horizon.
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We compare (BC) with (C1) to analyze the impact of AM on the product’s launch phase, when

demand has not yet peaked but when “innovators” (a term coined in the Bass diffusion model

to describe the first consumers to buy) are most sensitive to product variants. Then, we

contrast (C2) with (BC) to scrutinize the effect of combining AM with MC in a context where

the manufacturer adopts MC during the initial and growth phase of the PLC. Then, we look at

(C3), where the manufacturer reverts to AM for the PLC decline phase, during which AM is less

costly because demand volume is declining, but customers might still seek highly customized

parts. In (C4), we investigate the use of AM being employed during the entire selling period

because it is more attractive from both the manufacturer’s and the customers’ perspectives.

We make a number of assumptions in what follows. The 3D-printed and mass-customized

goods are available equally quickly. Producing one product variant requires one unit of com-

mon raw material under both MC and AM technologies. The product quality is considered

equivalent under both manufacturing systems. No price discrimination is assumed for hor-

izontally differentiated variants of the same product (following Alptekinoğlu and Corbett

(2010)). The two manufacturing systems present fundamentally different characteristics and

structural product line designs as shown in Sections 2.3.2 and in 2.3.3.

Sales occur during a finite number T of selling periods. At each period {t }T
t=1, the product

price is set by the firm at p(t). A pair of switching times (TA→M ,TM→A), with 0 ≤ TA→M <
TM→A ≤ T +1, defines whether period t is under MC (TA→M < t ≤ TM→A) or AM (t ≤ TA→M or

t > TM→A). A switching time is defined as the last time period at which the former technology

was used. We denote by T , T ∈ {TA→M ,TM→A}T , the set of technology-switching scenarios,

which consists of switching times TA→M (when the manufacturer switches from AM to MC)

and TM→A (when the manufacturer switches from MC to AM). We assume AM and MC to be

flexible technologies, hence capable of customizing products with a high degree of flexibility.

Additive manufacturing: AM, which is assumed to be fully flexible, is able to offer an infinite

variety of customized goods in the product space. When customers buy at the t th period with

T (t) = AM , they are served perfectly—that is their product preferences are matched. We

assume that AM follows a BTO (build-to-order) production approach (Chen et al. 2021). As

soon as the 3D-prints are ready, they are immediately delivered to customers with no lead

time.

Mass customization: The degree of flexibility of MC technology is finite. It can only handle a

limited number of product variants, n (following the assumption of Dong et al. (2020a)). Thus,

at the t th period with T (t ) = MC , customers will not be served perfectly, and the firm needs

to decide the number of variants to offer as well as their customization type. The maximum

number of product variants, nmax , to offer to customers with this technology is set by the

manufacturer. Based on the assumption of Chen et al. (2021), we assume that MC technology

(like AM) follows a BTO (build-to-order) approach. Production capacity restrictions and

inventory aspects are beyond the scope of this chapter.
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2.3.2 Demand and Customer Preferences

The market size, N , represents the initial number of total potential adopters of a new product

and is defined as a deterministic parameter for simplicity. We consider a discrete-time, finite

selling horizon. We assume that an increase in product variety yields no additional operating

costs for AM. Thus, we focus on customer tastes rather than product qualities: this leads to

horizontal product differentiation. We consider forward-looking consumer heterogeneity to

capture individual customer purchasing behavior, defined by a utility-based demand model.

The forward-looking behavior affects the shape of the product sales pattern (see Chatterjee and

Eliashberg (1990)) and has implications for managerial insights as it induces price dynamics

in the market. To this end, we attribute random ideal buying time and ideal product location

to each customer. Then, we generate a time-varying utility incorporating time and product

misfit penalty costs (see (3.1)), which influences the customer’s decision on whether or not to

buy a product (see Kök et al. (2015)). Customers’ decisions are independent of each other, and

the manufacturer decides on a selling price for each time period, maximizing the profit.

Our model is based on a combination of (i) an HL approach to consider individual preferences

in terms of product attributes, and (ii) a Bass innovation diffusion model to capture customer

heterogeneity in the ideal buying time over the PLC. Hence, our model offers the advantages of

both modeling the heterogeneous customers’ demand at the individual level and mimicking

the PLC dynamics.

HL framework: The HL model assumes the horizontal product differentiation in a virtual

space and describes a customer’s ideal product, in particular along a Hotelling segment (see

Ulu et al. (2012) for more details). Products are characterized by the attributes most relevant to

consumers. A firm offers a catalogue of product variants on this segment, sets their locations

and prices, and pays a fixed cost per item. The model assumes a uniform density of customers

in a continuous product space. It considers non-uniform locations of customers, who are

assumed to be utility maximizers.

Bass diffusion model: This parametric approach is used to predict time-dependent demand

trajectories for new durable products (Bass 1969).

In our article, we extend the HL framework by adopting the Bass diffusion model to explicitly

incorporate time-dependency into the locational choice model; we refer to our model as the

HLB model. Although some researchers (e.g., Dong et al. (2020a)) use the multinomial logit

(MNL) model to capture consumer purchasing behavior to plan assortments in a product

category, we adopt the locational choice model, which enables us to independently specify

the degree of heterogeneity in terms of product attributes and ideal buying times. This is not

possible with the MNL model.

Kök et al. (2015) explain that the key difference between the locational choice and MNL models

is in product substitution, which “can happen between any two products” in the MNL model.

By contrast, the IIA (Independence of Irrelevant Alternatives) property does not hold for the
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locational choice model, for which “substitution between products is localized to products with

specifications that are close to each other.” As a result, the HL model provides more parameters

to control for a manufacturer deciding the number of variants to offer as well as their locations

in an attribute space.

In our HLB model, a random customer ξ is represented by independent random variables

τ and φ, ξ = (τ,φ), Pξ = Pτ⊗Pφ, where τ represents the ideal buying time and φ the ideal

product of the customer. Each customer has individual attributes that make it possible to

define his/her utility at each selling period, and for both AM and MC alternatives. During

the AM phase, customers are served by their exact product variant (no product misfit penalty

cost is incurred). Conversely, customers are served by the nearest produced variant if the MC

system is employed. We set the virtual product space containing all possible ideal products to

Φ= [0,1]. We do not consider otherΦ structures or the distribution of φ, since these topics are

beyond the scope of this chapter.

A customer (τ,φ) has a continuous willingness-to-pay ω(t), ω : [0,T ] → R+, which depends

only on t . The variations of ω over the discrete selling horizon distinguish the random cus-

tomer’s interest along the PLC. The customer’s utility decreases as the distance between the

selling period t and his/her ideal buying time τ increases: This represents the customer’s time

misfit. Similarly, the utility decreases if the customer’s ideal product φ is far from available

products under MC technology, where X = {x1, . . . , xn} ⊂ [0,1]n denotes the set of mass-

customized goods. The willingness-to-pay is negatively affected in both cases. Given the

selling price p(t), a customer purchases only if his/her utility exceeds p(t) at some selling

period t . The customer buys at the first instance t of this condition. Clearly, during the AM

phase, the willingness-to-pay is only affected by a buying time misfit: It is modeled by defining

a buying-time sensitivity γ : [0,T ] →R+.

We compute sales at the center of t th period and define the customer’s utility for period t un-

der AM as U A(ξ, t ) =U A(τ,φ, t ) =ω(τ)(1−γ(τ)|τ−t |/T ). Under MC technology, the customer’s

willingness-to-pay is also negatively affected by a product variant misfit; it is represented

by the product variant sensitivity coefficient λ(t) multiplied by the distance, denoted by

d(φ,X ), between the customer’s ideal product φ, and the set of available products for sale

X . The customer’s utility for the period t under MC technology is U M (ξ, t) =U M (τ,φ, t) =
ω(τ)

(
1−γ(τ)|τ− t |/T −λ(τ)d(φ,X )

)
. Overall, depending on the production technology, a

customer ξ observes the following utility at period t :

UT (ξ, t ) =U (τ,φ, t ) =ω(τ)

(
1−γ(τ)

|τ− t |
T

−λ(τ)d(φ,X )1MC (T (t ))

)
. (2.1)

We assume a customer buys at most one product as soon as the utility condition is satisfied.

In the Bass model, which we rely on to define ideal buying times, the selling horizon is infinite.

However, we normalize this horizon to the finite number of selling periods T . For this, we use

the inverse transform sampling method to simulate a random variable with the cumulative

distribution function FB , where FB is the Bass cdf. To set our finite horizon to T , we first select

ε> 0 such that 1−ε is close to one. Then, we draw u uniformly from [0,1−ε] (truncating to
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the finite horizon) and obtain v = F−1
B (u). Afterwards, we normalize it as vT /F−1

B (1−ε). Thus,

our customer’s ideal buying time τ has the following cdf:

Fτ(t ) = FB (t tmax
T )

(1−ε)
, (2.2)

where FB (u) = (1−exp(−(p +q)u)/(1+ q
p exp(−(p +q)u) is the Bass distribution according to

the model, p and q are the Bass coefficients of innovation and imitation, tmax = F−1
B (1−ε).

In our HLB model, similar to the HL model, each product is characterized by a single-taste

attribute—an element of Φ—and can also be described by the ratio of two attributes (see

Lancaster (1998)). The customer’s ideal product modeled by a random variable φ from the

manufacturer’s perspective is assumed to follow uniform distribution onΦ, denoted by Pφ =
U ([0,1]). As explained previously in this section, no product misfit penalty cost is incurred by

a customer when the technology employed is AM. However, for a mass-customized good, the

customer’s utility is negatively affected by a product variant misfit penalty cost. Hence, we aim

for a trade-off between the per-unit production cost and the product misfit penalty cost. On the

one hand, if not enough mass-customized variants are offered, the penalty cost is significant

because many consumers’ ideal products are far from the assigned mass-customized good.

On the other hand, if too many mass-customized variants are offered, the per-unit production

cost is high. Therefore, we aim to optimize the number of mass-customized variants—given

a maximum number of variants, nmax , set by the manufacturer—to include in the product

catalogue.

2.3.3 Cost Structures and Profits

In this section, we examine AM and MC cost structures and profits. Without loss of generality,

the costs of materials and energy consumption are normalized to zero under both technolo-

gies.

The firm incurs fixed costs, kA(N ) and kM (N ), that reflect the AM and MC equipment costs.

In our model, the setup costs are proportional to the market size, N . Alternatively, one could

apply an asymptotically converging coefficient for the setup costs. In our situation, kM (N ) is a

one-time fixed cost for setting up the MC system. It is counted once if TA→M < T (TM→A ∈T ).

The fixed cost kA(N ) is a setup cost for AM and counted once if TA→M > 0 or TM→A < T

(TA→M ∈T ). We assume kA(N ) ≥ kM (N ) since 3D-printers are usually more expensive than

MC equipment in accordance with the assumptions of Dong et al. (2020a). As the market size

N grows, kA(N )/N and kM (N )/N should converge (a reasonable hypothesis is that both ratios

are positively decreasing, for reasons of efficiency and economies of scale). For simplicity, we

set kA(N ) = N kA , kM (N ) = N kM .

Further, a per-unit cost of production is denoted by cA for AM technology and by cM (n) for

MC technology, where cA > 0 and cM (n) > 0 (identical for all product variants). Because of

AM’s infinite flexibility in terms of product variants, its per-unit cost of production does not

depend on the product’s variety and cA is defined as a constant marginal cost. By contrast,
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the marginal cost cM (n) = cb(1+ (n −1)δ) depends on the number n of product variants to

produce, where cb denotes a base cost and δ represents an incremental cost, which is the

cost to produce an additional product variant under MC. Adding products to the assortment

means additional molds, switchover, tools, etc. We model the marginal cost of MC product’s

variety to be proportional to the number of MC variants. Although we set the production

cost per-unit lower for MC than for AM, the total production cost increases in the number of

mass-customized variants available and, thus, the MC total cost will at some point exceed the

AM one.

The cost structures of AM and MC yield profits that are technology-specific. We compute the

respective profit functions over an i.i.d population {ξi }N
i=1 of size N , Pξi =Pτ⊗Pφ. For each

1 ≤ t ≤ T , we denote by St the number of completed sales at this period. For AM, we take into

account a constant marginal cost, cA , which is invariant in the product variety. The profit

during period t is computed as:

πt (p) =


St (pt − cA)−kA(N ), if t = 1 and TA→M > 0, or t = TM→A +1 and TA→M = 0,

St (pt − cA), if 1 < t ≤ TA→M or t ≥ TM→A +1 and TA→M > 0 or t > TM→A +1 and TM→A = 0,

St (pt − cM (n))−kM (N ) if t = TA→M +1,

St (pt − cM (n)) if TA→M +1 < t ≤ TM→A .

Note that πt (p) = πt ({ξi }N
i=1, p,TA↔M ,n). Then π({ξi }N

i=1, p) = ∑T
t=1πt ({ξi }N

i=1, p,TA↔M ,n) is

the total profit over the horizon T . Also, note that:

T∑
t=1

πt ({ξi }N
i=1, p,TA↔M ,n) =

N∑
i=1

T∑
t=1

πt (ξi , p,TA↔M ,n), (2.3)

which we refer to as the additivity property.

2.3.4 Optimization Problem

By combining the profit functions under both AM and MC manufacturing technologies, we

can now formulate our optimization model, aiming to maximize the manufacturer’s total

expected profit over a finite selling horizon. The joint decision variables are (i) the technology-

switching scenario as defined by the switching times (TA→M ; TM→A) (see Section 2.3.1), (ii)

the selling price over time p(t ), and (iii) the number of product variants n to offer under the

MC technology (if this process is selected).

If the selling price exceeds the customer’s utility UT (ξ, t ), the customer cannot afford the prod-

uct. Hence, the maximization of the expected profit is subject to a pricing strategy constraint

0 ≤ p(t ) ≤ max(ω). We restrict the MC product assortment size to 1 ≤ n ≤ nmax for some nmax

(following the assumption of Dong et al. (2020a)).

Given a random customer ξ, a technology-switching scenario, and a pricing policy, the addi-

tivity property implies that a manufacturer, on average, gains profit if he determines optimal
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p, (TA→M ; TM→A), n, solving the stochastic problem in (3.21):

max
p∈P

max
TA↔M∈T

1≤n≤nmax

Π(p,TA↔M ,n)

= max
TA↔M∈T

1≤n≤nmax

max
p∈P

Π(p,TA↔M ,n)︸ ︷︷ ︸
Π̃(p)

 , (2.4)

whereΠ(p,TA↔M ,n) = E[π(ξ, p,TA↔M ,n)] andπ(ξ, p,TA↔M ,n) =∑T
t=1πt (ξ, p,TA↔M ,n). Thanks

to the additivity property of the expectation and profit (see (2.3)), it follows that

E

[
N∑

i=1

T∑
t=1

πt (ξi , p,TA↔M ,n)

]
= NE[π(ξ, p,TA↔M ,n)].

We use the right-hand side of (3.21) for the optimization in order to avoid optimization traps.

The problem in (3.21) breaks down into two maximization problems: (i) an inner one opti-

mized over p and (ii) an obvious outer one optimized over finitely many n’s and T ’s. Thus, we

focus on the inner one, omitting variations on T and n:

max
p∈P

Π̃(p) (2.5)

The optimization problem (2.5) is a bilinear program with a nonlinear objective function

of p, i.e., it is a structured quadratic problem with the total profit depending piecewise on

the pricing strategy. The work of Petrik and Zilberstein (2011) shows that solving a bilinear

program optimally is NP-hard. The next section examines how we solve our optimization

problem (2.5).

2.4 Solution Approach

We approximate the solution of (2.5) using the Sample Average Approximation (SAA) frame-

work (more details can be found in Shapiro et al. (2014)) and a direct local search method,

i.e., Pattern Search (PS). Numerical experiments show the consistency of the SAA estimators

(Sections 2.4.2 and 2.4.3) and the optimal pricing policy structure for a special case (Section

2.4.4).

2.4.1 Sample Average Approximation Framework

For a given technology-switching scenario and n, the SAA function is defined by Π̂N (p) =
1
N π({ξi }N

i=1, p). The strong law of large numbers (LLN) yields, by boundedness of integrands:

∀p, Π̂N (p) → Π̃(p), Ξ−a.s. (LLN )
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However, the convergence

max
p∈P

Π̂N (p) → max
p∈P

Π̃(p), (2.6)

requires a stronger hypothesis: This is where the SAA framework (see Shapiro et al. (2014) and

Homem-de Mello and Bayraksan (2014)) comes in. When (2.6) is satisfied, we substitute the

optimal value by the approximated maximum:
max
p∈P

Π̂N (p). (2.7)

Note that in the above equation, the maximum of the optimization problem does not necessar-

ily exist. However, the supremum does exist, since the profit is bounded between −max(c+k)’s

and maxω. The optimization problem in (2.7) can be solved using heuristics, which need to

be chosen balancing accuracy and efficiency. We use a direct local search method, Pattern

Search (PS), commonly used for highly irregular functions (Chinneck 2015).

We follow the notations of Shapiro et al. (2014) and denote by ϑ∗and S the optimal value

and the set of optimal solutions of the true problem (2.5), and by ϑ∗
N and SN the optimal

value and the set of optimal solutions of the SAA problem (2.7). The SAA approach is validated

when ϑ∗
N and SN converge to their counterparts of the true problem (2.6), in which case SAA

convergence holds.

2.4.2 Convergence of SAA Estimators

To prove the SAA convergence, we need to answer the following questions (for subsets A,B ⊂
Rm , we define D(A,B) = supa∈A d(a,B) = supa∈A infb∈B d(a,b)):

(i) Are S ,SN non-empty?

(ii) If (i) holds, does ϑ∗
N →ϑ∗, Ξ almost surely?

(iii) If (i) and (ii) hold, does D(SN ,S ) → 0 Ξ almost surely?

To this end, we set a condition that guarantees (i), (ii) and (iii). We denote by µL the Lebesgue

measure on real line, and by µω its image under ω, µω := (µL)ω. We define δ(τ, t) =ω(τ)(1−
γ(τ) |τ−t |

T ) for any time period t .

Theorem 2.1. If the following conditions hold

µω <<µL ; ∀c, t , µL
(
δ(·, t )−1({c})

)= 0, (H)

then (i ), (i i ) and (i i i ) are verified.

Proof. The proof relies on Theorems 7.53 and 5.3 of Shapiro et al. (2014), which require (i −i i i )

for their conclusions to hold. Conditions (i , i i ) are straightforward, and hypothesis (H ) is used

for (i i i ). Complete proof can be found in Appendix A.
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Remark 2.2. Condition (H) holds if ω and δ have Lebesgue almost sure non-zero derivatives.

2.4.3 Validation of Numerical Approximations, and Population Sample Size

In the following, we present the results of numerical simulations performed to test the consis-

tency of SAA estimators ϑ∗
N and SN . As expected, the mean profit per customer converges

as N grows (starting from N = 2,000, see Fig. 2.1), which is in line with our formal proof of

the SAA convergence (Theorem 2.1). The optimal profit decreases as N increases, which is

consistent with the positive bias as shown in (Shapiro et al. 2014, Proposition 5.6).

Figure 2.1 – Convergence of the mean profit per customer with the SAA framework.

Parameters: Nmax = 10,000, population step size = 100, T = 12, p = 0.02, q = 0.6, linear

decreasing ω, nmax = 5, kM = 100, kA = 1.5 ·kM ,cb = 2,δ= 0.06,cA = 1.8 · cb , flexible pricing

policy.

Fig. D.1 gives additional insights for the validation of the optimal mean pricing policy and

the mean sales over the selling horizon (N = 10,000 SAA sample paths; each population is

optimized separately). The empirical cdf for normalized mean profits shows good adjust-

ment to N (0,1), which, in the absence of a formal Central Limit Theorem (CLT) for the SAA

approach, reinforces the validation of the sample size. We also observe similar results for

the switching times (TA→M ;TM→A) (see Fig. D.2). This justifies our choice of a population

sample size N = 10,000, whence, the approximation of optimal strategies for the mean profit

per customer is conducted on large random customer populations.

2.4.4 Policy Structure Under No Buying Time Misfit

In this subsection, we present a special case of the optimization problem, for which the

analytical solution is available. It serves to analytically characterize the optimal pricing policy

structure.
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Lemma 2.3. Suppose γ= 0, i.e., there are no buying time misfits. Given the pricing strategy p,

we denote its prearrangement in decreasing order by p↓. Then, for any ξ, π̃(ξ, p) ≤ π̃(ξ, p↓).

Proof. As γ= 0, the technology-switching scenario is fixed at AM and the utility is constant

over all time periods. The complete proof can be found in the Appendix B.

Corollary 2.4. Under the assumptions of Lemma 2.3 and if µω <<µL , then Theorem 2.1 holds

and the optimal pricing strategy is decreasing.

Proof. The complete proof can be found in Appendix C.

2.5 Numerical Analysis

In the previous section, we proved the reliability of the SAA estimators and the pricing pol-

icy structure for a special case. For complex systems, frequent in the digital Industry 4.0,

numerical approaches are necessary and very often irreplaceable methods for solution ap-

proximations.

We now aim to illustrate how our model can contribute to real-world manufacturing practice

by developing technology-switching strategies addressing individual customer preferences

in terms of ideal buying times and product variants across the PLC. We consider both the

demand and supply sides for the design experiments. These two perspectives are essential

since they affect the customer’s utility (see (3.1)), our decision variables and, ultimately, the

manufacturer’s profit. We perform numerical experiments to study time-dependent customer-

centric marketing and operations decisions across the PLC.

Accordingly, we derive managerial insights regarding our three decision variables. In Sec-

tion 2.5.1, we define the parameter setup for the baseline scenario. Our goal is twofold.

First, in Section 2.5.2, after performing some sensitivity analyses on customer preferences

(γ(τ), λ(τ), ω(τ)), we quantify the benefits of AM across the PLC, considering customer-centric

production strategies (see Section 2.3.1). Second, in Section 2.5.3, we quantify the value of

pricing flexibility. The benefits of AM in bringing product variety across the PLC are discussed

in the Appendix (F). Some of the results are expected, whereas others are less intuitive.

2.5.1 Parameter Setup

We overcome the lack of real data by investigating different parametric scenarios issued from

our model with synthetic data, from which we derive managerial insights (see Section 2.6).

For all experiments, we consider a discrete-time selling horizon with T = 12 (higher values of

T lead to a significant computational time and do not change our managerial insights, see

Fig. E.1 in Appendix E). We set Bass innovation and imitation coefficients to p = 0.02 and

q = 0.6 based on the mean value and on the upper bound of the coefficients provided by

Orbach (2016).
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On the demand side, the numerical study focuses on the influence of buying time and product-

variant sensitivity coefficients (γ and λ respectively) on our decision variables and on the

profit. Customer characteristics are depicted in Fig. 2.2.

Figure 2.2 – Customer characteristics: willingness-to-payω, ideal buying time misfit coefficient
γ, and ideal product variant misfit coefficient λ.

In particular, Fig. 2.2 illustrates possible shapes of the customer’s willingness-to-pay and of

the sensitivity coefficients over time. The customer’s willingness-to-pay ω with a linearly

decreasing profile captures its decline over the selling horizon. The consumer has high

willingness-to-pay when the product is released on the market and he/she is excited about it

(e.g., consumer good of a well-known brand). Over time, the product loses attractiveness and

the willingness-to-pay diminishes. The ideal buying time misfit coefficient γ is also modeled

by a linear decreasing shape. Customers are more sensitive to their ideal buying time period at

the beginning of the PLC than towards the end. The ideal product variant misfit coefficient λ

can present different profiles to express high or low product variant sensitivity across the PLC.

On the supply side, our study concentrates on the maximum number of mass-customized

variants, nmax , and on their pricing.

We set the baseline experiments as follows: 100 sample paths of a population size N = 10,000;

the mass-customized assortment size threshold for nmax is 15; the fixed MC cost is kM = 100;

the fixed AM cost is kA = ρk ·kM , where ρk = 1.5; the unit production cost under MC is cM (n)

and increases linearly with cM (n) = cb(1+ (n −1)δ) (cb = 2, δ= 0.06), which follows the form

and notations given by Dong et al. (2020a); the unit production cost under AM is cA = ρc · cb ,

where ρc = 1.8. The pricing policy is flexible in our baseline scenario and is optimized in our

problem. Baseline parameter values are given in Table 3.3.

Table 2.3 – Baseline Parameter Values.

Parameter p q N T nmax

Value 0.02 0.6 10,000 12 15

Parameter kM kA cb δ cM cA
Value 100 150% of kM 2 0.06 2,3.68 180% of cb
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2.5.2 Customer-centric Operations Management

Based on our baseline scenario for both the demand and supply perspectives, in this section,

we discuss the implications for a manufacturer of adopting AM to complement existing MC

systems. We aim to uncover whether applying a technology-switching scenario is econom-

ically viable and, hence, to assess when to switch from one technology to another. To gain

additional insights into the combined problem of technology-switching, product variant, and

price optimization, we first analyze the influence of customers’ buying time and product

variant sensitivity. Then, we analyze the influence of ω on our decision variables: These three

parameters affect customers’ utility (see (3.1)) and purchasing behavior, which plays a critical

role in our approach.

Impact of Buying-Time Sensitivity. First, we perform a sensitivity analysis on the buying

time misfit coefficient γ. We perform numerical experiments for a “strong” γ and a “weak”

one, where γstrong = 20∗γweak. Fig. 2.3 displays a shift in the sales diffusion pattern to the

left, indicating that time-sensitive customers buy earlier in the PLC. As illustrated in Fig. 2.4,

the buying time misfit coefficient directly impacts the manufacturer’s pricing strategy. A

stronger γ yields lower buying-time volatility (see the standard deviation for a “strong” γ in

Table 2.4) and thus implies a lower set of potential buyers for each period. Consequently,

the manufacturer charges a higher selling price in the presence of time-sensitive customers,

those who are more willing to buy during the considered period. Moreover, Fig. 2.4 also

Figure 2.3 – Influence of time-sensitivity on the sales diffusion pattern.

shows that it is profitable for a firm to switch back to AM towards the end of the PLC to gain

a higher profit per customer since higher selling prices are charged under this technology.

Interestingly, the manufacturer switches back to AM earlier in the presence of time-sensitive

adopters. Higher time sensitivity implies less volatility in the customer’s buying time. Since
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Figure 2.4 – Influence of time-sensitivity on the pricing policy trajectory across the PLC.
Parameters: 100 sample paths, u-shape λ, linear decreasing ω, nmax = 5, flexible pricing

policy.

the product variant misfit, λ, presents a u-shape (see Fig. 2.2) and is, thus, stronger in later

periods, the utility of time-sensitive customers is profitably served under AM in these periods.

Conversely, lower time sensitivity leads to more volatility in buying time periods. Therefore,

some customers purchase at earlier MC production periods, at which λ is lower. Then, the

observed optimal technology-switching scenarios, illustrated in Fig. 2.4, bring to light the

importance of modeling the buying time misfit coefficient in the utility function to capture

both customer heterogeneity and the ideal buying times. In fact, the buying time misfit

strongly influences the technology-switching scenario, even though demand is endogenous.

Impact of Product-Variant Sensitivity. We now perform a sensitivity analysis on the prod-

uct variant misfit coefficient λ. Since this coefficient is one of the characteristics that differen-

tiate AM and MC (see Section 2.3.1), we aim to uncover whether it influences the technology-

switching scenario and, particularly, whether it triggers the switch from one technology to

another. For this purpose, we test three possible shapes ofλ depicted in Fig. 2.2: (i) decreasing,

(ii) u-shape, and (iii) increasing, where γ and ω stay decreasing as in Fig. 2.2.

According to the optimal production strategies presented in Fig. 2.5, the technology-switching

decision can be triggered by the quantity ω
(
λd(φ,N )

)
in the customer’s utility (see (3.1))

falling below the difference between the AM production cost, cA , and the MC production

cost, cM . Indeed, there is a benefit in switching to an MC production strategy if its fixed costs

(kA +kM ) are absorbed. For a u-shape and for an increasing λ, the switching times, as well as

the mean profits, are identical. This is because both λs are identical during the MC period,

whereas they have no influence on either pricing or sales under the AM periods.
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Figure 2.5 – Influence of variant-sensitivity on the pricing policy trajectory across the PLC.
Parameters: 100 sample paths, strong γ, linear decreasing ω, nmax = 5, flexible pricing policy.

Fig. 2.5 clearly shows that the shape of the λ function influences the technology-switching

scenario across the PLC. In the case of high λ values, it is more beneficial to produce with AM

rather than with MC due to the high product variant misfit under the MC strategy. Under the

u-shape and increasing λ forms, it is beneficial for the manufacturer to switch back to AM

towards the end of the PLC: this captures preferences of variant-sensitive customers since they

are served perfectly under AM.

Impact of the Willingness-to-Pay. We examine the influence of the willingness-to-pay ω on

the pricing policy trajectory. We investigate three shapes of the function ω (Fig. 2.2): (i) linear

decreasing, (ii) increasing-decreasing, or bell-shape, and (iii) linear increasing. Fig. 2.6

demonstrates these profiles of ω and the resulting normalized optimal pricing strategies.

It clearly illustrates that ω drives the pricing policy trajectory even though the demand is

endogenous.

Influence of Customer Characteristics on Production Strategy. Given our baseline sce-

nario, Tables 2.4, 2.5 and 2.6 demonstrate that the firm can gain a mean profit increase per

customer from ca. 13.3% (from 6.41 under MC to 7.26 under (C2)) to 16.5% (from 6.41 to 7.47

under (C1)) by adopting AM either at the end or at the beginning of the PLC, compared to the

MC base case. The company can further increase the profit up to 17.5% (from 6.41 to 7.53) if

it adopts a (C3) technology-switching scenario. Furthermore, the results show that strategy

(C4) is around 17% (from 6.41 to 7.49) more beneficial than a MC one. However, the profit

increase between the technology-switching scenario (C3) and the AM (C4) is low: the sole use

of AM is around 0.5% less profitable than adopting the technology-switching strategy. Hence,
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Figure 2.6 – Influence of ω profiles on the pricing policy trajectory across the PLC.
Parameters: 100 sample paths, u-shape λ, strong γ, nmax = 5, flexible pricing policy.

a technology-switching strategy might be a solution for transitioning toward the sole use of

AM, as MC systems become obsolescent. This finding provides additional support for the

economic benefits of adopting AM in Dong et al. (2020a), Westerweel et al. (2018b), Chen et al.

(2021).

These results support the decision making for the “compatibility between process choice and

product life cycle stage,” as highlighted qualitatively by Hayes and Wheelwright (1979) and

analytically by Ramasesh et al. (2010). Hence, a firm benefits from linking AM and MC to the

PLC.

2.5.3 Bringing Pricing Flexibility across the PLC

We have analyzed the impact of demand on our optimization problem outcomes. Next, we

examine the value of pricing flexibility on the manufacturer’s expected profit per customer.

The effects of bringing higher product variety across the PLC are examined in the Appendix

(see F).

We now evaluate the pricing flexibility for a manufacturer across the PLC. We perform numeri-

cal experiments on the same three shapes of ω as in Section 2.5.2 and test pricing trajectories,

namely (i) constant, (ii) linear decreasing, and (iii) flexible, the last of which has no con-

straints.

Table 2.7 shows that for a linearly decreasing ω the manufacturer could gain a profit increase

of 21.84% if he applied either a decreasing or a flexible pricing policy. The profits under the

linearly decreasing and the flexible pricing policies are similar and the corresponding pricing
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Table 2.4 – Influence of buying-time sensitivity on profit.

Strong γ Weak γ

Technology-switching

scenario
Mean SD 95% CI Range Mean SD 95% CI Range

MC 6.41 0.03 6.37-6.47 6.36-6.49 10.22 0.04 10.15-10.30 10.09-10.33

MC → AM 7.26 0.02 7.23-7.30 7.21-7.32 11.84 0.04 11.78-11.90 11.75-11.92

AM → MC 7.47 0.02 7.43-7.51 7.42-7.53 11.92 0.04 11.85-11.98 11.79-12.00

AM 7.49 0.02 7.46-7.53 7.44-7.55 11.87 0.04 11.81-11.93 11.78-11.95

AM → MC → AM 7.53 0.02 7.50-7.56 7.48-7.57 12.00 0.04 11.93-12.05 11.88-12.07

Table 2.5 – Influence of product-variant sensitivity on profit.

U-shape λ Decreasing λ Increasing λ
Technology-switching
scenario

Mean SD 95% CI Range Mean SD 95% CI Range Mean SD 95% CI Range

MC 6.41 0.03 6.36-6.46 6.34-6.49 6.56 0.03 6.51-6.60 6.50-6.63 7.41 0.03 7.36-7.46 7.35-7.49
MC → AM 7.26 0.02 7.22-7.30 7.19-7.31 7.26 0.02 7.22-7.29 7.20-7.30 7.49 0.03 7.45-7.53 7.43-7.57
AM → MC 7.47 0.02 7.44-7.51 7.43-7.51 7.58 0.02 7.55-7.62 7.51-7.63 7.47 0.02 7.43-7.51 7.41-7.53
AM 7.49 0.02 7.46-7.53 7.44-7.55 7.49 0.02 7.46-7.54 7.44-7.55 7.49 0.02 7.46-7.53 7.44-7.54
AM → MC → AM 7.53 0.02 7.49-7.57 7.47-7.59 7.58 0.02 7.54-7.61 7.50-7.62 7.54 0.02 7.50-7.57 7.48-7.58

Table 2.6 – Influence of the willingness-to-pay’s profile on profit.

Decreasing ω Increasing-decreasingω Increasing ω
Technology-switching
scenario

Mean SD 95% CI Range Mean SD 95% CI Range Mean SD 95% CI Range

MC 6.41 0.03 6.36-6.46 6.35-6.47 4.52 0.02 4.48-4.56 4.46-4.59 5.52 0.03 5.48-5.57 5.46-5.60
MC → AM 7.26 0.02 7.23-7.29 7.21-7.30 4.60 0.02 4.57-4.63 4.55-4.66 6.02 0.04 5.96-6.08 5.95-6.11
AM → MC 7.47 0.02 7.44-7.51 7.42-7.52 4.63 0.02 4.59-4.67 4.56-4.69 5.63 0.03 5.58-5.68 5.56-5.69
AM 7.50 0.02 7.46-7.53 7.45-7.54 4.60 0.02 4.58-4.64 4.57-4.65 6.09 0.04 6.04-6.15 6.00-6.19
AM → MC → AM 7.53 0.02 7.50-7.57 7.48-7.58 4.72 0.02 4.69-4.76 4.67-4.78 6.14 0.04 6.08-6.20 6.07-6.23

trajectories are close to each other. Further, for an increasing-decreasing ω, the manufacturer

could gain a mean profit increase of 15.12% if he adopted the flexible pricing policy. Finally,

for an increasing function ω, the value of pricing flexibility is only 3.17%. Indeed, between

time periods t = 1 and t = 8, the optimal prices are very close for all three pricing policies

and they start to increase from time period t = 9 accounting for customers with a higher

willingness-to-pay.

Table 2.7 – Value of pricing flexibility for manufacturing practice across the PLC.

Mean profit per customer
Pricing policy Decreasing ω Increasing-decreasingω Increasing ω

Constant 6.18 4.10 6.62
Linear decreasing 7.53 3.04 6.62
Flexible 7.53 4.72 6.83

2.6 Managerial Insights and Conclusions

The present study was designed to model and evaluate the disruptive practice of a manufac-

turer combining traditional MC with AM for final part production, in the Industry 4.0 era.

We quantify the benefits of adopting AM as an alternative or as a complement to MC. This

study lends support to the growing interest in quantifying the economic benefits of AM on
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operations management and MC. Our model focuses on the operations-marketing interface

and jointly optimizes customer-centric technology-switching, pricing, and product variety

decisions. We show that technology-switching scenarios could help to satisfy individual cus-

tomer preferences while maximizing profitability across the PLC.

Individual customer preferences and the PLC are two important aspects to consider in practice

to rapidly develop and manufacture customized products. These aspects, though, have not

yet been fully explored in the context of operations management for Industry 4.0. To the

best of our knowledge, there is no analysis linking customer preferences and the PLC to the

technology choice over time. Although the emerging literature on AM in operations and SCM

compares conventional manufacturing systems with AM, it typically neglects the demand

perspective and the time-dependency of customer preferences. It also commonly ignores

the interdependency between manufacturing systems, the PLC, and pricing decisions. We

incorporate these aspects in our pilot study to derive operational and managerial insights.

Our first contribution is the novel time-varying locational customer choice model at the in-

dividual level, called the HLB model. We extend the Hotelling-Lancaster model by using the

Bass diffusion model to include the PLC dimension in the utility function. This model is the

first to offer the advantages of both modeling the demand of heterogeneous customers at

the individual level and mimicking the PLC dynamics. It could widen the literature on mi-

cromodeling diffusion models (e.g., Chatterjee and Eliashberg (1990), Song and Chintagunta

(2003)). We shed light on the importance of modeling individual customer preferences and

purchasing behavior, and, in particular, buying time-sensitivity, product variant sensitivity,

and willingness-to-pay. We demonstrate that these customer attributes affect the optimal

technology-switching scenario and the pricing policy.

Second, we quantify the benefits of adopting AM over a finite selling horizon, considering

both the demand and supply perspectives. Our results show that the firm could gain a signifi-

cant profit surplus by interchanging AM and MC over the PLC. For instance, an AM-MC-AM

manufacturing scenario can lead to a significant profit surplus compared with the sole use

of MC. In this scenario, AM makes it possible to address product variant and time-sensitive

customers at the beginning and at the end of the PLC, while MC provides economies of scale

and satisfies customers during the PLC growth stage. Our study finds that the combination of

AM and MC could be a temporary solution in the move toward the sole adoption of AM over

the PLC, as its competitiveness increases further and as traditional MC becomes obsolescent.

Third, we quantify the value of pricing flexibility. It can be an effective lever in the presence of

either “early” product variant and time-sensitive customers or “late” ones. It allows the firm to

charge higher selling prices under AM. Interestingly, as shown in Fig. 2.6 and Table 2.7, our

model shows thatω drives the shape of the optimal pricing policy. If theω shape is linear, then

the profits under flexible or linear pricing policies are close. When buying time-sensitivity is

absent and customers’ utility is constant over the PLC, the optimal pricing strategy to apply is

a classic linear decreasing one.

Finally, we review the benefits of adopting AM for product variety across the PLC in the

Appendix (see F). Since AM has the capability to produce infinite product variety (Reeves

et al. 2011), it can be used during the PLC’s introductory and decline stages. It can also
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be adopted on its own over the whole PLC if the number of product variants under MC is

either low or too high. Low product variety under MC means it is not possible to match cus-

tomer preferences, and high product variety under MC comes at a cost. Joint product variety,

technology-switching, and pricing decision making is a challenging task for the manufacturer.

Our results demonstrate that AM could offer significant economic benefits in addressing

time-sensitive customers and higher customer expectations in terms of product variety. This

study: (i) confirms and quantifies the potential of AM for final part production in combina-

tion with existing traditional manufacturing systems, and (ii) proposes an innovative way to

leverage customer-centricity to update marketing and operations decisions. We believe that

companies will increasingly select this technology in the future. Further, our findings lead to

the recommendation to consider both the demand and supply perspectives, as well as to link

them to the PLC. Both perspectives influence the manufacturer’s decisions and his expected

profit. Our model can be used to help understand the impact of relative parameter values

on optimal pricing, marketing, and production strategies. It is the first step toward a study

of hybrid production strategies using Industry 4.0 technologies. We aim to use it to explore

alternatives a manufacturer could face when implementing such strategies. It can serve as a

baseline for future studies and be used by practitioners and managers to make more informed

marketing and operations decisions using one of the disruptive Industry 4.0 technologies,

such as AM for final part production. Fig. 2.7 illustrates a technology-switching scenario,

pricing strategy, and conditions under which a manufacturer could maximize profit while

satisfying individual customer preferences.

Our work offers several paths for future research. First, when data becomes available, para-

Figure 2.7 – Illustration of a beneficial technology-switching scenario and pricing strategy over
the PLC.
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metric estimations for customer characteristics and industrial data for production costs could

be used to fit the model. Second, since one of the advantages of AM over traditional manufac-

turing, highlighted in the work of Attaran (2017), is the possibility to use AM for decentralized

manufacturing to “potentially reduce the need for logistics as designs could be transferred digi-

tally”, one could investigate how to take into account the decentralization in our model. Some

papers investigate this topic in dual-sourcing literature. In a manufacturing setting, Wester-

weel et al. (2018a) model the replenishment and printing decisions through a Markov decision

process to characterize the optimal policy structure. They focus on spare parts inventory

control and show promising results for using AM at remote locations. In a retail setting, Chen

et al. (2021) analyze the impact of on-demand customization in dual channels. They develop

a stylized model to evaluate the impact of AM on product offering, as well as pricing for the

two channels and inventory decisions. They consider the consumer point of view without

incorporating technology-switching decisions or PLC considerations. It is worth investigating

how our results can be extended to incorporate centralized and decentralized manufacturing

under individual customer preferences and PLC considerations.
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A Proof of Theorem 2.1.

Theorem 2.1. If (H) holds, then (i), (ii) and (iii) are verified.

Proof. of Theorem 2.1. The proof relies on Theorems 7.53 and 5.3 of Shapiro et al. (2014). The

first guarantees that S is non-empty and (LLN ) holds almost surely uniformly on p. The

second builds on the first to deliver the desired conclusions.

According to Theorem 7.53 of Shapiro et al. (2014), Π̃ is continuous on the compact set of

prices [0,max(ω)]T , S is non-empty and (LLN ) holds almost surely for uniform p, if 1) the set

of prices p is a compact subset; 2) ∀p0, the function p 7→ π̃(ξ, p) is ξ−a.s. continuous at p0; 3)

there exists integrable h, such that for all p, |π̃(ξ, p)| ≤ h(ξ).

Conditions 1) and 3) are straightforward and, thus, we focus on proving condition 2).

We consider a random customer ξ= (τ,φ). Recall thatP(τ,φ) =Pτ⊗Pφ has density fτ×1[0,1] w.r.t.

Lebesgue measure on R2. Given a pricing strategy p0 = (p0(t ))1≤t≤T , and a random customer

ξ, we investigate conditions under which p 7→ π̃(ξ,p) is continuous at p0. We distinguish two

cases, either ρ = mint |U (ξ, t )−p0(t )| > 0, or not.

If ρ > 0, and ∥ p−p0 ∥∞< ρ, then either U (ξ, t)−p0(t) > 0 and then U (ξ, t)−pt > 0 (i.e., a

customer purchases at time t ), or U (ξ, t )−p0(t ) < 0 and then U (ξ, t )−pt < 0 (i.e., no purchase

at time t ).

It follows that |π̃(ξ,p)−π̃(ξ,p0)| ≤∥ p−p0 ∥∞ (see ( B.1)), whence the profit is locally Lipschitz at

p0, therefore it is continuous at p0. From this we deduce that for ξ-a.s. continuity of p 7→ π̃(ξ, p)

to hold, it suffices to prove that for any p0, P(∪1≤t≤T {U (·, t ) = p0(t )}) = 0, which is granted if ∀t ,

P(U (·, t ) = p0(t )) = 0. We now carefully examine the case when for some t , and some positive

α (= p0(t )), U (ξ, t ) =U (τ,φ, t ) =α.

If production is AM at period t , then P({U (τ, t) = α}) = P(ω(τ)(1 − γ(τ)|τ− t |/T ) = α) =
Pτ(δ(·, t )−1({α})). Let us denote A = δ(·, t )−1({α}). Then

Pτ(A) =
∫

1AdPτ =
∫ T

0
1A fτ(t )d t =

∫
A

fτ(t )d t = 0

as µL(A) = 0 by assumption (H). So indeed, if production is AM , P(U (τ, t ) =α) = 0.
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Else, if production is MC at period j , then P({U (τ,φ, j ) = α}) = P(ω(τ)(1−γ(τ)|τ− j |/T −
λ(φ)d(φ,X )) =α). We set A = {ω(t )(1−γ(t )|t − j |/T −λ(t )d(s,X )) =α}. By Fubini, we have

P({U (τ,φ, t ) =α}) =
∫

A
dPτ,φ =

∫ T

0
(
∫ 1

0
(1A(t , s)d s) fτ(t )d t

=
∫
λω=0

(
∫ 1

0
1A(t , s)d s) fτ(t )d t +

∫
λω6=0

(
∫ 1

0
1A(t , s)d s) fτ(t )d t .

• If λω 6= 0, then since X is finite, {0 ≤ s ≤ 1 : d(s,X ) =β} is finite, therefore P(d(φ,X ) =β) = 0

for any realβ, in particular ifβ= 1
λ(t ) ( α

ω(t )−1−γ(t )|t− j |/T ), whence
∫
λω6=0(

∫ 1
0 1A(t , s)d s) fτ(t )d t =

0.

• If λω = 0, then if ω = 0, since µω << µL , it follows that
∫
ω=0 1A(t , s)dPτ,φ(t , s) = 0. Else, to

conclude with the last remaining case, that is if λ= 0, the result proves as if T (t) = AM , i.e.,

we recover the AM case: P({U (τ,φ, t ) =α}∩ {λ= 0}) ≤P(U AM (τ, t ) =α) = 0.

Now, we recall the assumptions of Theorem 5.3 of Shapiro et al. (2014), which we need to

conclude our proof: 1) ; 6=S ⊂C , C compact; 2) Π̃ continuous on C ; 3) (LLN ) holds uniformly

on C ; 4) (ξi )1≤i≤N −a.s., ; 6=SN ⊂C .

If these hold, then (i), (ii) and (iii) from Section 2.4.2 follow. Obviously, C = [0,maxω]T is

compact and we already have 2) from which 1) follows. We also already have 3), therefore only

4) requires consideration.

For fixed (ξi )1≤i≤N , since Π̂N is bounded, there exists a sequence of prices p(k) such that

Π̂N (p(k)) →ϑ∗
N . For each 1 ≤ i ≤ N , the sequence (t (ξi , p(k))k≥1 takes only a finite number of

values. By compactness of C and since N is finite, we can, therefore, select a sub-sequence

(which we still denote (p(k))k≥1), which satisfies: a) ∃p∞ ∈C
/

p(k) → p∞; b) for some k0 on,

and all 1 ≤ i ≤ N , t (ξi , p(k)) = ti is constant.

We set p(k)(0) = 0 ∀k. Then by b), ∀k ≥ k0 and all 1 ≤ i ≤ N , π̃(ξi , p(k)) = p(k)(ti )−p(k0)(ti )+
π̃(ξi , p(k0)). Then, Π̂N (p(k)) = 1

N

∑N
i=1 π̃(ξi , p(k)) = Π̂N (p(k0)) + 1

N

∑N
i=1(p(k)(ti ) − p(k0)(ti )) →

Π̂N (p(k0))+ 1
N

∑N
i=1(p∞(ti )−p(k0)(ti )) = Π̂N (p∞) by a). By uniqueness of the limit, it follows

that ϑ∗
N = Π̂N (p∞), which proves 4) for all (xii )1≤i≤N .
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B Proof of Lemma 2.3.

Lemma 2.3. Suppose γ= 0, i.e., there are no time misfits. Given the pricing strategy p, we

denote its prearrangement in a decreasing order by p↓. Then, for any ξ, π̃(ξ, p) ≤ π̃(ξ, p↓).

Proof. of Lemma 2.3. We define buying times as t(ξ,TA↔M , p), equal to 0 if the customer

never purchases, otherwise to the first time period at which the customer’s utility exceeds the

period’s price. Then

π̃(ξi , p) = p
(
t (ξ,TA↔M , p)

)− c
(
t (ξ,TA↔M , p)

)−kA1AM (TA↔M )−kM 1MC (TA↔M ), (B.1)

where p(0) = c(0) = 0 and c
(
t(ξ,TA↔M , p)

)
is the production cost per-unit for time period

under technology-switching scenario T .

Given a customer ξ, UT (ξ, t) =UT (ξ, t ′) =: UT (ξ) ∀ 1 ≤ t , t ′ ≤ T . If the customer does not

purchase at price p, neither does he at prices p↓, since UT (ξ) < min p = min p↓. Conversely,

if the customer purchases at period t(ξ, p), then p(1), . . . , p(t(ξ, p)−1) >UT (ξ) ≥ p(t(ξ, p)).

Since the position of p(t (ξ, p)) in p↓ is at least t (ξ, p), the customer purchases at time t ′ ≥ t (ξ, p)

under p↓ with profit difference p↓(t ′)−p((t (ξ, p)) = π̃(ξ, p↓)− π̃(ξ, p) ≥ 0.
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C Proof of Corollary 2.4.

Corollary 2.4. Under the assumptions of Lemma 2.3 and if µω <<µL , then Theorem 2.1 holds

and the optimal pricing strategy is decreasing.

Proof. of Corollary 2.4. Since UT (ξ, t) =UT (ξ) =ω(t)(1−λ(t)d(φ,X )), then, similar to the

proof of Theorem 2.1, either τ ∈ {λ 6= 0}, in which case (H) follows by independence of τ and

φ, or τ ∈ {λ= 0}, in which case (H) follows by the hypothesis µω <<µL . Then, all elements in

either SN or S can be chosen decreasing by Lemma 2.3.
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D Cross-validation - SAA Framework

Figure D.1 – Stability of the pricing policy, sales, and profit with the SAA framework.
Parameters: Ntot = 10,000, 100 sample paths for each population size N , population step size
= 100, T = 12, p = 0.02, q = 0.6, linear decreasing ω, strong γ, u-shape λ, nmax = 5, kM = 100,

kA = 1.5 ·kM ,cb = 2,δ= 0.06,cA = 1.8 · cb , flexible pricing policy.
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Figure D.2 – Convergence of the switching times with the SAA framework.
Parameters: Ntot = 10,000, 100 sample paths for each population size N , population step size
= 100, T = 12, p = 0.02, q = 0.6, linear decreasing ω, strong γ, u-shape λ, nmax = 5, kM = 100,

kA = 1.5 ·kM ,cb = 2,δ= 0.06,cA = 1.8 · cb , flexible pricing policy.
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E Selling Horizon Length

Figure E.1 – Influence of the selling horizon length, T , on the switching times, (TA→M ;TM→A).

Parameters: N = 10,000, 100 sample paths, T = [6,12,18,24], p = 0.02, q = 0.6, decreasing ω,

u-shape λ, strong γ, nmax = 5, kM = 100, kA = 1.5 ·kM ,cb = 2,δ= 0.06,cA = 1.8 · cb , flexible

pricing policy.
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F Higher Product Variety

In this section, we assess the impact of higher product variety on the optimal technology-

switching scenario and on the mean profit per customer. We vary the MC assortment size

threshold nmax in the baseline scenario. As shown in Fig. F.1, the optimal profit per customer

obtained for n = 5 is 0.26% lower w.r.t. the one obtained for n∗ = 6, which is the optimal

number of mass-customized variants to offer. Increasing nmax above n = 5 does not lead to a

significant profit surplus but to a profit loss starting from n = 7. Further, it is not economically

viable to switch to the technology at periods above n = 10. Moreover, starting with n = 15,

the cost per MC unit exceeds the one for AM in our model, therefore there is no interest in

adopting MC when offering such a large variety of products. Also, increasing nmax leads to a

drop in efficiency of the estimators.

As nmax increases, the time, at which the manufacturer switches to MC technology in the

technology-switching scenario, decreases. This can be explained by the dynamic identified

in Section 2.5.2. Specifically, increasing the number of mass-customized variants results in a

lower product variant misfit λ(τ)d(φ,N ) in the customer’s utility function, but in a higher per-

unit production cost cM . This production cost can be attributed to the cost of switching itself,

to the production of additional molds, and the use of tooling to manufacture supplementary

variants.
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Figure F.1 – Influence of bringing higher product variety across the PLC.

Parameters: N = 10,000, 100 sample paths, T = 12, p = 0.02, q = 0.6, decreasing ω, u-shape λ,

strong γ, nmax = 5, kM = 100, kA = 1.5 ·kM ,cb = 2,δ= 0.06,cA = 1.8 · cb , flexible pricing policy.

As demonstrated in the right plot of Fig. F.1, the profit difference between an AM and an

AM → MC → AM manufacturing scenario is only around 0.93%, which is close to the margin

identified in Section 2.5.2. Thus, we could argue that the firm would be better off adopting

solely the AM production strategy. However, if the firm offers a medium amount of product

variants under the MC technology, it is beneficial to use AM both at the beginning and at the

end of the PLC and to switch to MC during the middle phase of the PLC.
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3 Utilizing Additive Manufacturing and
Mass Customization under Capacity
Constraints
Additive manufacturing (AM), originally used for prototyping, is increasingly adopted for

custom final part production across different industries. This usage brings new manufac-

turing opportunities for mass customization (MC). However, printing speed and production

volume are two barriers to AM adoption for product customization at large scale. But what if

manufacturers could combine the benefits of AM for product customization with traditional

MC technologies over the product life cycle (PLC)? We address this opportunity through a

mathematical model that considers a monopolist manufacturer producing horizontally differ-

entiated products at scale. To satisfy individual customer preferences, under PLC and capacity

considerations, the firm jointly optimizes the following decisions: inventory, production quan-

tity, product variety, optimal technology-switching times (between AM and MC), and pricing

policy. Our approach can be implemented by decision-makers to leverage customer-centricity

and benefit from this novel hybrid manufacturing practice. We derive a closed-form solu-

tion for the production quantity decision based on an adaptive inventory policy. We solve

the resulting non-convex optimization problem using the Sample Average Approximation

framework grounded by analytical results. Our results demonstrate that the new usage of AM

with MC can benefit a manufacturer for customer-centric driven strategies. Significant profit

improvements can be achieved with an AM-MC-AM technology-switching scenario, under

certain capacity conditions, and with an increasing-decreasing pricing policy. Our results also

indicate that the benefits of pricing flexibility are highest when capacity is unlimited, or when

the firm does not hold inventory. Under capacity constraints, a simple decreasing pricing

policy combined with inventory performs very well.

3.1 Introduction

The recent technological developments of additive manufacturing (AM, also referred to as

3D-printing) are shifting its original usage. Although AM has been used since 1988 for rapid

prototyping (Hon 2007), only recently has it been considered for rapid manufacturing (RM,

which is described by Campbell et al. (2020) as the series production of final parts). According

to an industrial report by (Campbell et al. 2020), AM for RM grew significantly from 3.9% to
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60.6% of the total AM market and “more and more manufacturers are interested in using

3D-printing technologies for full-scale production as they believe they can benefit from mass

customization at lower costs.” Throughout the chapter, AM includes RM. Mass customization

(MC) typically refers to both strategies and flexible manufacturing systems. Anderson (2004)

defines MC as “the ability to design and manufacture customized products at mass production

efficiency and speed.” In this chapter, the term “mass-customized” will refer to the parts

manufactured with the traditional MC technology.

To meet higher customer expectations for MC (Deradjat and Minshall 2017), AM full flexibility

has been explored. The absence of tooling requirements, geometry freedom, and inventory

reduction through just-in-time operations makes AM particularly attractive over conventional

manufacturing processes (Weller et al. 2015, Baumers et al. 2016). (Berman 2012, Table 1)

compares and contrasts AM and traditional MC. Although AM and MC are capable of produc-

ing custom final parts cost-effectively, these two processes display technology-specific cost

structures and different customization capabilities, as highlighted in (Lacroix et al. 2020, Table

2). In this chapter, we focus on these key differences. Adopting AM for final parts production

has been proliferating across different industries (Berman 2012). In the automotive industry,

BMW is manufacturing 3D-printed customized components for commercial vehicles. AFMG

(2020) reports that “from consumer electronics to toys and sportswear, key players within the

consumer goods industry are increasingly recognizing 3D-printing as a valuable addition to

existing manufacturing solutions.”

Yet, AM for MC is not widely deployed for large-scale production and is not expected to replace

traditional MC processes. Rather, researchers and industry experts (e.g., (Holweg 2015, Rogers

et al. 2016, Sasson and Johnson 2016, AFMG 2020)) argue that AM will supplement existing

MC processes. Currently, printing speed and production volume are preventing AM adoption

at large scale (Arbabian and Wagner 2020). But what if manufacturers could combine the

benefits of AM with traditional MC processes over the course of the product life cycle (PLC)?

Firms currently lack quantitative decision tools to assess this opportunity. We aim to bridge

this gap.

On the demand side, practitioners and academics have recently scrutinized customer-centric

strategies, recognized to add business value, particularly in the context of MC. For instance,

Lacroix et al. (2020) have developed a time-varying locational customer choice model that

allows for customer heterogeneity and forward-looking behavior. The authors highlight the

importance of linking individual customers’ preferences to the PLC and to the technology (AM

or MC) choice over time.

Thus, the combination of customer-centric strategies with the new usage of AM combined

with MC, provide for new manufacturing opportunities. Yet, AM economic benefits over tradi-

tional MC processes, are not fully uncovered, and specifically not under capacity constraints

and across the PLC. As Dong et al. (2020b) point out, AM and MC (referred to as traditional

flexible manufacturing system in their work) present a different degree of flexibility and cost

structures. Hence, optimal technology-switching scenarios operating AM and MC over the PLC

and with limited capacity are of interest to manufacturers who aim to maximize their profit

while addressing individual customer preferences. The design thinking Venn diagram (Ideo
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2020) is widely spread in practice to implement a profitable customer-centric solution. Build-

ing on it (see Fig. 3.1), we can illustrate this manufacturing sweet spot that can successfully

drive operational efficiency, customer satisfaction, and profit. This diagram also highlights

pending questions related to this opportunity: Which pricing policy should be applied? How

many product variants to manufacture to satisfy individual customer preferences? Which

technology-switching scenario over the PLC (i.e., combining AM with the firm’s existing MC

processes) would be more beneficial? What are the effects of production capacity constraints

and inventory decisions on marketing and operations decisions?

In this chapter, we aim to answer the following research question: “How can a manufacturer

Figure 3.1 – Manufacturing sweet spot to transition toward mass customization at scale.

combine the benefits of AM with traditional MC technology under capacity constraints?” We ad-

dress this opportunity through a mathematical model, where individual customer preferences

and forward-looking behavior, PLC, and capacity constraints are considered. We analyze the

impact of deploying AM with MC for a monopolist manufacturer producing horizontally dif-

ferentiated products at scale. The manufacturer jointly decides on customer-centric strategies,

namely: inventory, production quantity, product variety, technology-switching times (between

AM and MC), and pricing decisions. To this end, several technology-switching scenarios, and

three production capacity and inventory cases are considered.

We develop an adaptive inventory policy intended for an interdependent non-stationary de-

mand. From this inventory policy follows a closed-form solution for the production quantity

decision. The numerous decisions involved in our optimization problem lead to a non-convex

problem. We thus analytically ground our optimization problem and successfully derive

an algorithmic formulation for our objective function under various capacity and inventory

scenarios. We solve our problem using the Sample Average Approximation (SAA) framework.

We perform robustness tests to check the convergence of our approximation problem and

validate the population sample size used in our numerical experiments.

On the operations side, given our manufacturing setting and the customers’ profile, significant
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profit improvements can be achieved with an AM-MC-AM technology-switching scenario. On

the marketing side and under capacity constraints, our results reveal that considering both

customer heterogeneity and limited production capacity requires an increasing-decreasing

pricing policy. Our findings also show that the benefits of pricing flexibility are highest when

capacity is unlimited, or when the firm does not hold inventory. Under capacity constraints,

a simple decreasing pricing policy combined with inventory performs very well and lessens

the need for pricing flexibility. Overall, our numerical results show that the combination of

customer-centric marketing and operations strategies with the new usage of AM combined

with MC can maximize a manufacturer’s profit while addressing individual customer prefer-

ences.

The remainder of this chapter is organized as follows. In Section 3.2, we review the relevant

literature. In Section 3.3, we describe our analytical model in detail. Specifically, we describe

our customer choice model, introduce the manufacturing scenarios that we investigate, and

the technology production characteristics that differentiate AM from MC. We then describe

our demand forecasting methods and develop an adaptive inventory policy. Next, we charac-

terize our objective function and build on the analytical properties of our demand forecasting

method to ground our non-convex optimization problem. In Section 3.4, we use the (SAA)

framework to approximate our optimization problem and perform robustness tests to check

its validity. Section 3.5 presents our sensitivity analyses and numerical experiments. Sec-

tion 3.6 summarizes our key findings and managerial insights. In the Appendix, we provide an

overview of our notations and parametric assumptions (see Table G.1), as well as analytical

results, algorithms, and proofs.

3.2 Literature Review

A growing body of literature has developed analytical models to evaluate the impact of AM

vs. conventional manufacturing systems on operations management (e.g., (Westerweel et al.

2018b,a, Sethuraman et al. 2018, Song and Zhang 2020, Dong et al. 2020b, Chen et al. 2020)).

Preliminary works in this field focused primarily on spare part logistics (Westerweel et al.

2018a, Song and Zhang 2020), consumer goods retailing (Chen et al. 2020), component de-

sign cost analysis (Westerweel et al. 2018b), and assortment planning (Dong et al. 2020b).

Only a few papers (i.e., Dong et al. (2020b), Chen et al. (2020)) position themselves at the

operations-marketing interface, considering both the demand and supply perspectives. Our

work is more closely related to this literature. Chen et al. (2020) focused on AM adoption cases

in a dual-channel retail setting (i.e., online and in-store channels) and studied the firm’s joint

decision about product offers, pricing, and inventory. Our model is placed in a manufacturing

setting. Dong et al. (2020b) was among the first to evaluate the impact of AM over conven-

tional manufacturing systems on a firm’s manufacturing strategy. The authors examine three

manufacturing technologies (i.e., AM, traditional flexible, and dedicated technologies). They

focus on product assortment decisions under capacity constraints and show that pairing AM

with dedicated technology allows wider product variety and profit increase. More recently,
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Lacroix et al. (2020) has built on the work of Dong et al. (2020b) to add technology-switching

(between AM and MC) and pricing decisions, under PLC considerations. Assuming limited

capacity under AM and MC, we extend their work to consider inventory decisions under MC

technology.

As we consider a monopolist manufacturer producing custom products that are horizontally

differentiated, papers modeling a utility-based demand in the mass customization (MC) lit-

erature are relevant to our work. Commonly used in the marketing literature, utility-based

demand models in assortment planning (see Kök et al. (2015) for a detailed review of demand

models in this research area) consider customer heterogeneity. Although some researchers

(e.g., Dong et al. (2020b)) model customer preferences through a multinomial logit (MNL)

model, we derive demand from the “Hotelling-Lancaster-Bass” (HLB) demand model devel-

oped by Lacroix et al. (2020). The HLB model is a novel time-varying locational customer

choice model that combines the classic Hotelling-Lancaster model (Lancaster 1990) (also

referred to as an “address model” by Kök et al. (2015)) and the well-known Bass diffusion

model (Bass 1969). For tractability reasons, most of the above papers study marketing and

operations decisions in a static setting. However, forward-looking customers are typically

variant-sensitive but also time-sensitive in their purchasing decisions. Thus, as previously

mentioned, we adopt the HLB demand model, which characterizes the demand of heteroge-

neous customers at the individual level and mimics the PLC dynamics. With respect to the

operations side, few studies have been conducted on generalized Bass diffusion models (i.e.,

those which include the selling price) (Bass 2004) with production or inventory decisions (e.g.,

Ho et al. (2002), Kumar and Swaminathan (2003) and Shen et al. (2013)). Ho et al. (2002) jointly

analyze demand and sales dynamics in a constrained new product diffusion context where

backorders and lost sales are deemed. Kumar and Swaminathan (2003) explicitly model inter-

actions between manufacturing and marketing decisions for a firm with a fixed production

capacity. Shen et al. (2013) focus on the joint impact of pricing, sales, and production decisions

with limited capacity. They derive optimal policies for handling new product introductions.

Unlike these papers, we do not use the Bass diffusion model as such to model the demand,

but we include it through the HLB model. Furthermore, most Bass diffusion models usually

consider aggregate demand which does not address the recent need of operations managers

for applying customer-centric operations strategies (see M&SOM upcoming special issue on

this topic). Chatterjee and Eliashberg (1990) developed an innovation diffusion model using a

micro-modeling approach (i.e., modeling demand at the individual level). They highlight the

added-value of this approach for customer segmentation in terms of adoption times. Lacroix

et al. (2020) showed the importance of modeling time-varying customer preferences at the

individual level as it directly impacts the operations, marketing decisions, and a manufac-

turer’s profit. Accordingly, since our focus is not on new product introduction timing but

on evaluating the benefits of combining AM with traditional MC, we build on the work of

Lacroix et al. (2020). The authors consider a monopolist manufacturer who jointly optimizes

technology-switching, pricing, and product variety decisions across the PLC. Unlike their

model, we consider AM and MC technologies as capacity-constrained and add inventory

decisions under MC technology.
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Our work is also related to the literature on pricing and production control under capac-

ity constraints. While this line of literature primarily focuses on inventory control where a

demand distribution is assumed to be known and stationary, few studies are intended for

consumer goods exhibiting non-stationary demand (i.e., the demand probability function

changes over time) and partial information. We focus on adaptive inventory control problems

for non-stationary demand and incomplete information. The earliest model investigating

stochastic non-stationary demand was by Hadley and Whitin (1961). They proposed an op-

timal inventory model where demand is Poisson distributed. Graves (1999) developed an

adaptive base-stock inventory policy for a non-stationary problem. However, in Graves’ model,

the firm has complete information as the demand is fully characterized by an auto-regressive

integrated moving average ARIMA(0,1,1) and by the observed demand from previous periods.

Kurawarwala and Matsuo (1996) presented a growth model to estimate the parameters of a

non-stationary demand process over its entire PLC but do not revise these estimates using

new observations. Treharne and Sox (2002) examined a periodic-review inventory model with

non-stationary and partially observed demand. The demand state is estimated using the ob-

served sales in each period. The inventory control problem is modeled as a partially observed

Markov’s decision process. Recently, Yang and Kim (2018) developed a joint replenishment

policy characterized by a variable order-up-to level for items sold in a retail system. They

adopt a multiplicative seasonal model to generate demand data to forecast the true demand

and assume that the forecast errors are normally distributed. Our model forecasts the demand

using a discrete-time version of a Bass diffusion model. The above-mentioned studies are

different from our work in that they do not apply customer-centric manufacturing strategies,

that is, they do not consider the evolving customer purchasing behavior at the individual level

and most of them do not combine marketing and operations decisions. Key realistic features

that distinguish our chapter from the above-mentioned ones is that we include (i) customer

heterogeneity in terms of product attributes and buying times, (ii) pricing flexibility, and (iii)

capacity constraints and PLC considerations at the marketing-operations interface. We jointly

optimize technology-switching, pricing, product variety, and inventory decisions that are of

interest to operations managers, in a context where customer-centric operations strategies

have gained much attention.

3.3 Model Framework

We consider a monopolist manufacturer, who serves customers over a finite horizon composed

of T periods. The customer preferences, which are heterogeneous in product attributes and

buying times, are described through a time-varying locational choice model similar to the one

proposed by Lacroix et al. (2020). This model is referred to as the Hotelling-Lancaster Bass

(HLB) model by the authors (see Section 3.3.1). Considering customer individual preferences,

the manufacturer decides whether to adopt only one production technology (AM or MC)

over the PLC or, alternatively, to switch between AM and MC during the selling horizon (i.e.,

to select a technology-switching scenario, hereafter specified by technology-switching time
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decisions). We formulate an analytical model that jointly optimizes, over time 1 ≤ t ≤ T , the

four following manufacturer’s decisions.

(i): the technology-switching times, a pair (TA→M ,TM→A) where 0 ≤ TA→M < TM→A ≤ T +1,

where MC production occurs at periods 1 ≤ t ≤ T such that TA→M +1 ≤ t ≤ TM→A , only. We

set T = {(TA→M ,TM→A) : 0 ≤ TA→M < TM→A ≤ T + 1} denote a set of possible technology-

switching pairs, T A = {t ∈ {0,T } : t ≤ TA→M or t > TM→A} the set of AM production periods,

and T M = {t ∈ {0,T } : TA→M < t ≤ TM→A} the set of MC ones;

(ii): the pricing strategy (pt )1≤t≤T ;

(iii): the product variety under MC, n;

(iv): the production quantity for each mass-customized variant j , Q j ,t .

We begin with the customer choice model, present the considered manufacturing scenar-

ios and production technology assumptions, and, finally, describe the firms’ operational

decisions.

3.3.1 Customer Choice Model

Our study builds on the customer choice model described in Lacroix et al. (2020). Considering

customer heterogeneity in product preferences denoted by φ, and ideal buying time τ, we focus

on a manufacturer adopting horizontal product differentiation (i.e., the selling price is equal

for all product variants).

We consider a potential market size, N , that represents the initial number of potential adopters.

Although unknown a priori, N can be estimated qualitatively via market research, or via the

Delphi method (Snyder and Shen 2019). A market’s random customer ξ is defined by his two

independent attributes τ and φ: ξ= (τ,φ), Pξ =Pτ⊗Pφ.

The virtual product spaceΦ= [0,1] contains all possible ideal variantsφ, uniformly distributed

onΦ (Pφ =U ([0,1])). Given its infinite manufacturing flexibility, AM technology is assumed to

serve customers perfectly in product attributes. By contrast, under MC, customers are served

by the nearest mass-customized variant, one within X = {x1, . . . , xn} ⊂ [0,1]n .

The customer’s ideal buying time τ is drawn from a truncated Bass distribution to model the

spread of customers along with the PLC (details in Lacroix et al. (2020)).

A customer’s utility is built on several components: a willingness-to-pay ω(τ), a time disutility

proportional term representing the customer buying time misfit at t , and a product disutility

proportional term corresponding to the customer’s product variant misfit under MC. The

variations of ω over the PLC display the customer’s evolving interest. The time disutility factor

is the product of a time sensitivity factorγ(τ) by a normalized time distance |τ− 2t−1
2 |/T between

the selling period and the customer’s ideal buying time τ. The variations of γ over the PLC

represent the customer’s sensitivity to the buying period. The product disutility term is equal

to a product sensitivity factor λ(τ) weighted by a product misfit distance d(φ,X ) between the

customer’s ideal variant φ and the nearest mass-customized variant from X . The variations
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of the customer’s product sensitivity factor over the PLC represent the customer’s product

sensitivity to the product misfit under MC production. The customer’s utility decreases as the

weighting distances increase. The willingness-to-pay is penalized under both AM and MC, but

with a higher penalization under MC due to the additional product disutility term. Overall,

given a production technology, a customer ξ presents the following utility at period t :

UT (ξ, t ) =UT (τ,φ, t ) =ω(τ)

(
1−γ(τ)

|τ− (2t −1)/2|
T

−λ(τ)d(φ,X )1T M (t )

)
. (3.1)

We assume that customers are rational utility maximizers (i.e., the customers choose the

product variant that yields the maximum utility for them). Furthermore, we adopt the fol-

lowing assumptions about the customer purchasing behavior: given the selling price pt , (i)

a customer buys at most one product as soon as his or her utility exceeds the selling price,

(ii) the customer buys at the first period t at which the previous purchasing condition is

satisfied, if the product is available, and leaves the market. Assumption (i) implies that the

initial market size N (the set of remaining potential customers after t ) is denoted by Ξt . Our

general notations and parametric assumptions for the decision variables, the HLB customer

choice model, the technology characteristics, and the inventory policy (described in Section

3.3.4) are summarized in Table G.1 (see Appendix).

3.3.2 Manufacturing and Inventory Scenarios

The key element of the model regarding the supply side is that a manufacturer can serially

produce the variants using either AM or MC technologies. Therefore, given the stage of the

PLC, the firm must decide when to switch from one production technology to another, to

maximize a manufacturer’s profit while satisfying individual customer preferences across

the PLC. We analyze the five following manufacturing scenarios presented in Lacroix et al.

(2020) (where produced quantities are unlimited). Unlike their model and following Shen

et al. (2013), we consider manufacturing capacities under AM and MC as it can result in lost

sales and perturb the PLC, and determine the potential benefits of using AM on its own or to

complement MC across the PLC.

Base case (BC): The manufacturer uses MC technology only;

Case 1 (C1): AM → MC The manufacturer uses only AM during the PLC introductory stage;

Case 2 (C2): MC → AM The manufacturer uses AM toward the PLC decline stage;

Case 3 (C3): AM → MC → AM This case combines the (C1) and (C2) cases;

Case 4 (C4): AM The manufacturer uses only AM over the PLC.

The following assumptions characterize AM and MC.
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(A1) AM and MC are both considered flexible manufacturing systems – they can easily adapt

to changes in the product variant and in the quantity being manufactured (Dong et al.

2020b).

(A2) The lead time is zero, that is the product variants are produced instantaneously.

(A3) The product quality is similar under both AM and MC technologies.

(A4) AM and MC technologies both require one unit of common raw material to produce one

product variant.

(A5) The selling prices and unit production costs are assumed to be identical for all variants

offered during the same period.

(A6) The manufacturing capacity per period K A resp. K M , under AM resp. MC is constant

over the PLC, following Dong et al. (2020b).

(A7) Consequently to assumption (A6), we assume that, up to the capacity limit, customer

orders are served on a First-Come First-Served (FCFS) basis.

(A8) On the one hand, AM is used as a Make-To-Order (MTO) production process – even

though production capacity is limited, the manufacturer does not hold inventory as

products are tailor-made and shipped directly to customers. Producing ahead of time

under AM would require prior knowledge of customer preferences, which is not the

case in our model. On the other hand, MC is typically composed of two stages: an

initial Make-To-Stock (MTS) phase for base product variants and a final MTO phase to

customize them. In this chapter, we focus on one-dimensional product customization

and thus concentrate on the initial stage of MC, that is, the MTS one (see the assumption

of Jiang et al. (2006)). Product modularity falls outside the scope of this chapter. As

production capacity and the assortment size (set to nmax ) are limited, the manufacturer

may need to produce ahead of time to meet demand during the upcoming periods.

The firm incurs one-time fixed costs, k A(N ), and kM (N ), which are independent of the pro-

duction quantity, though depending on the market size, N . This reflects investment expenses

on AM and MC equipment. The fixed cost kM (N ) is counted once if TA→M < T . The fixed cost

k A(N ) is also incurred once if TA→M > 0 or TM→A < T . Following the assumption of Dong et al.

(2020b), we assume kA(N ) ≥ kM (N ) since 3D-printers are typically more expensive than MC

equipment. Based on the assumption of Lacroix et al. (2020) and, for simplicity, the authors

set k A(N ) = N k̃ A , kM (N ) = N k̃M , where k̃ A = k A/N and k̃M = kM /N .

Further, per unit production costs denoted by c A for AM technology and by cM (n) for MC tech-

nology are defined, where c A > 0 and cM (n) > 0 (identical for all variants). Due to AM’s infinite

flexibility in terms of product variants, c A does not depend on the product’s variety and is set

constant. By contrast, cM (n) = cB (1+ (n −1)δ) depends on the number n of mass-customized

variants to offer, where cB denotes a base cost and δ represents an incremental cost (following

the form and notations in Dong et al. (2020b)).
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Besides the production framework (MTS and MTO), the product misfit penalty cost and

the cost structure, AM and MC distinguish from each other in terms of production capaci-

ties (in line with Shen et al. (2013) and assumption (A6)). We assume the total production

capacity under MC per period and variant, K M /n, is equally distributed among the mass-

customized variants and is greater than the production capacity under AM per period, K A : we

set K A = κ∗ N
T > 0, with K A ≤∑

j K M
j := K M = κ

ρ × N
T , where κ denotes the production capacity

magnitude, and ρ = K A

K M the production capacity ratio between AM and MC. To adapt the

production capacities to the market size, we set them proportional to N . We introduce pro-

portionality coefficients K̃ M = K M /N = κ/(ρT ), and K̃ A = K A/N = κ/T . The manufacturing

technologies characteristics’ are summarized in Table 3.1.

Table 3.1 – MC and AM Technology Characteristics Comparison.

Production Technology Comparison
Characteristic MC AM
Production framework MTS MTO
Production period T M T A

Assortment size n ∈ [1;nmax ] n ∈ [1;+∞[
Unit production cost cM (n) = cB (1+ (n −1)δ) > 0 c A = constant > 0
Setup cost kM = constant > 0 k A = constant > 0
Production capacity K M

j > 0,∀ j ∈ {1, . . . ,n} K A > 0, K A ≤∑
j K M

j := K M

Total production capacity K M =∑
j K M

j = N K̃ M K A = N K̃ A , K A ≤ K M

Holding cost h 0 (no inventory under AM)
Salvage value v = 0.8×pTM→A 0 (no inventory under AM)

As described earlier, we consider a capacity-constrained manufacturer using two flexible

manufacturing systems, namely AM and MC. We investigate three production capacity and

inventory scenarios: (i) the MTO uncapacitated (MTOUC) scenario, where production capac-

ities under AM and MC are assumed to be unlimited, and the firm does not hold inventory.

This scenario serves as our reference case. Further, we consider (ii) the MTO capacitated

(MTOC) scenario, where the production capacities under AM and MC are constant over time,

and the firm does not hold inventory. Finally, (iii) the MTS capacitated scenario (MTSC) is

similar to the MTOC scenario and allows the firm to hold inventory. The lead time is zero, that

is, the variants are produced instantaneously. We assume that the manufacturer can face a

non-stationary demand for which the information distribution is not necessarily accessible.

Therefore, in the MTSC scenario, the manufacturer carries an inventory for an assortment of

mass-customized variants, sold to end-users. The inventory is controlled using an adaptive

inventory policy, described later in Section 3.3.4.

3.3.3 Demand and Forecasting Model

In the MTSC scenario, at each period, the objective is to control the inventory of each mass-

customized variant, facing a non-stationary demand. We first introduce our demand forecast-

ing methods. To select the production quantity for each mass-customized variant offered to

customers, Q j ,t , we build on Snyder and Shen (2019) to forecast the demand trajectory, over
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the PLC. Let D j ,t denote the demand of variant j at time t . Following our notations,

{
D j ,t = ∑

i∈Ξt−1
1{U T (ξi ,t )>pt } ∩ {d(φi ,X ) = d(φi , x j )} if T (t ) = MC ; D t =∑

j D j ,t

D t = ∑
i∈Ξt−1

1{U T (ξi ,t )>pt } if T (t ) = AM ; we set D j ,t = 0 for homogeneity of notations.

(3.2)

We aim to adopt a meaningful forecasting demand method from the viewpoint of the manufac-

turer, who has partial information about the customer attributes, such as the Bass distribution.

We propose two alternatives to define the demand forecast, ∗D ′
j ,t . The first one corresponds to

a censored information case, that is, the firm only has access to the Bass distribution informa-

tion, not to the full demand distribution. We define for it a left subscript c (for censored) and

obtain the demand forecast by approximating the Bass distribution as if it were representing

the demand in our model. The second alternative corresponds to an uncensored information

case, in which the firm can statistically estimate the customer attributes: ω,λ,γ, through

market research. The demand forecast, in this case, is characterized by a left subscript u (for

uncensored), computed for a given pricing strategy, and is based on the exact mean value of

the demand in our random customer choice model. This second forecast alternative plays a

central role in analytically grounding results (see (i ) in Lemma 3.2, Theorems 3.3,3.8) for our

optimization problem in Section 3.4.1.

By independence of τ and φ for a population of size N , the first demand forecast is written as:
c D ′

j ,t = N ×
cd′

j,t︷ ︸︸ ︷
P({t ≤ τ< t +1}∩ {d(φ,X ) = d(φ, x j )}) = N

n (Fτ(t +1)−Fτ(t ))

c D ′
t = ∑

j c D ′
j ,t ; (:= Ncd′

j,t = N
n cd′

t)

 if T (t ) = MC ;

c D ′
t = N ×P({t ≤ τ< t +1})︸ ︷︷ ︸

cd′
t

= N (Fτ(t +1)−Fτ(t ))
]

if T (t ) = AM .

(3.3)

If the second forecast alternative is predicted by accurate model parameter estimations, then

uD ′
j ,t = N ×

ud′
j,t︷ ︸︸ ︷

P
(
{UT (ξ, t ) ≥ pt }∩ (∩1≤g<t {UT (ξ, g ) < pg })∩ {d(φ,X ) = d(φ, x j )}

)
uD ′

t = ∑
j uD ′

j ,t ; (:= Nud′
j,t = N

n ud′
t, see (3.5) below)

 if T (t ) = MC ;

uD ′
t = N ×P

(
{UT (ξ, t ) ≥ pt }∩ (∩1≤g<t {UT (ξ, g ) < pg })

)
︸ ︷︷ ︸

ud′
t

 if T (t ) = AM .

(3.4)

Indeed, independence and a change of variable (y ′ = x j ′ −x j + y) in the following integral

ud ′
j ,t =

∫ T

0

(∫ x j+ 1
2n

x j− 1
2n

(
t−1∏
g=1

1]−∞,pg [(U
T (x, y, g ))

)
1[pt ,+∞[(U

T (x, y, t )) fτ(x)d y

)
d x (3.5)
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yield, under MC technology: ∀ j , j ′, ud ′
j ′,t =u d ′

j ,t . As a consequence of the uniform distribu-

tion in the Hotelling-Lancaster model, the independence of τ and φ, and (3.3, 3.4):

∗D ′
j ,t =∗ D ′

t /n, ∗D ′
j ,t = N∗d ′

j ,t , ∗D ′
t = N∗d ′

t , ∗d ′
t =∗ d ′

j ,t /n, where “∗”equals to c or u. (3.6)

3.3.4 Adaptive Inventory Policy

We develop an adaptive inventory policy that shows key features that differ from most inventory

models in operations management: (i) the demand forecast is interdependent across the PLC,

due to the production capacity influencing the customer ability to purchase; (ii) the policy is

adaptive over time and relies on a backward-forward process (as explained below). We set the

current time point as the beginning of period t . The on-hand inventory (i.e., the variants that

are available on stock), I j ,t , is monitored periodically at the beginning of each period, and

set initially to 0 at the first period under MC, for all variants (i.e., I j ,TA→M+1 = 0). The ending

inventory level in period t is equal to the starting inventory level in period t +1.

In detail, our policy proposes a first step, called the backward step, and a second step, termed

the forward step. The backward step is based on the demand forecast, ∗D ′
j ,t (see (3.3), (3.4)).

For each t ∈T M and going backward across periods (i.e., starting at t = T ), the manufacturer

aims to estimate the target inventory level for each period and variant, I ′j ,t . For this, we develop

a Water Filling Scheme (WFS) which is an algorithm typically used in information theory (Yu

and Cioffi 2001). It provides equalization strategies on communications channels. We do

not use this algorithm but only refer to its concept of water level compensations between

channels (periods in our case). Our WFS algorithm can be analogically described as follows: if

the water level (demand forecast) in the lock chamber (period t ) exceeds the maximum water

level (MC production capacity), we open the valve separating the current lock chamber from

the next one (period t −1) to only allow the excess water level (target inventory level - MC

production capacity) to be moved to the next lock chamber. We repeat the operation, going

backward from one lock chamber to the next one until the excess water level does not surpass

the maximum water level anymore. Figure 3.2 displays the water filling analogy.

Figure 3.2 – Water filling scheme analogy.

From the (WFS), we also evaluate the mean total target inventory level per period, i ′t . This

quantity is required in Section 3.3.6 for the formulation of our objective function.
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Next, for the forward step, the goal is to determine the optimal production quantity, Q j ,t , after

observing the actual demand, D j ,t , such that the on-hand inventory level, I j ,t , matches the

target one, I ′j ,t (from the backward step), as much as possible (i.e., I ′j ,t
!= I j ,t ). This time going

forward across periods (i.e., starting at t = 1), this step consists of the following actions: we

first initialize to zero the inventory level for each mass-customized variant j . Then, for each t ,

we observe the actual demand and compute the optimal production quantity for each variant.

Remark 3.1. Note that we provide a closed-form solution of Q j ,t under MC (see (3.8)). �

Once the production quantity is determined, we compute the on-hand inventory level per

variant, I j ,t+1. This is the inventory that remains at the end of the considered period, or

equivalently that is the starting inventory level for the upcoming period, t +1. We iterate this

sequence of actions until we reach the end of the PLC.

We define hereafter the backward (step 1) and forward (step 2) steps:

Step 1: Backward step. We define the target inventory level for each period and variant

I ′j ,t , 1 ≤ j ≤ n, 1 ≤ t ≤ T + 1, the mean target inventory level per period and variant i ′j ,t ,

1 ≤ j ≤ n, 1 ≤ t ≤ T +1, the total target inventory level per period I ′t , 1 ≤ t ≤ T +1, and the

mean total target inventory level per period i ′t , 1 ≤ t ≤ T +1, using the above-mentioned Water

Filling Scheme and (3.3, 3.4, and 3.6):

(I′1, . . . ,I′T+1) = WFS(T ,n, (∗D′1, . . . ,∗D′T)) :

t = T, I ′T+1 = i ′T+1 = I ′j ,T+1 = i ′j ,T+1 = 0

while t > 0

if t > TA→M

I ′j ,t = max((∗D ′
j ,t −K M

j )1{T (t )=MC } + I ′j ,t+1, 0)

i ′j ,t = 1
N I ′j ,t = max((∗d ′

j ,t − K̃ M /n)1{T (t )=MC } + i ′j ,t+1, 0)

I ′t =
∑

j I ′j ,t

i ′t =
∑

j i ′j ,t = I ′t /N

t = t −1

else if ≤ TA→M

i ′t = 0

t = t −1

end
end

(WFS)

Note that in the above algorithm, for all t periods, such that T (t ) = AM , I ′t = i ′t = I ′j ,t = i ′j ,t = 0,

because under AM , the probability of demand for a specified finite number of variants is

0, by continuity of Pφ (∗D ′
j ,t = 0). Whence, this is consistent with the notations introduced

previously.

Step 2: Forward step. We then compute the on-hand inventory per variant and period
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(I j ,t ) 1≤ j≤n,
1≤t≤T+1

, the mean inventory level per period and variant (i j ,t ) 1≤ j≤n,
1≤t≤T+1

, the total inventory

level per period (It )1≤t≤T+1, and the mean total inventory level per period (it )1≤t≤T+1:

1. Set t = 1, and initialize the inventory level for each mass-customized variant j :

I j ,1 = 0 (3.7)

2. While t ≤ T

(a) Observe the actual demand D j ,t (3.2)

(b) Determine the production quantity for each variant j :

Q j ,t = 1{T (t )=MC } min{K M
j ,max{0, I ′j ,t − I j ,t +D j ,t }}, Qt =

∑
j

Q j ,t (3.8)

(c) Compute the inventory levels per variant for the upcoming period t +1:

I j ,t+1 = max{0, I j ,t +Q j ,t −D j ,t }, It+1 =
∑

j
I j ,t+1 (3.9)

(d) Set t = t +1

3. For later analytical requirements (in Section 3.3.6), set i j ,t = I j ,t /N , it = It /N .

Proceeding with the customers’ model, we note that they choose the nearest—to their ideal

one—product variant available, without observing the inventory levels, and do not make a

second choice if the first choice is not available due to production capacity shortage. In this

case, unmet demand during the period is considered lost for which the firm incurs a stockout

cost, denoted by s. The corresponding lost customers are then canceled out of the customers’

population. The excess inventory is salvaged at value v , at the end of the last MC period. The

salvage value corresponds to a fraction of the selling price of the last period under MC. It is

incurred at the end of this period, which is at TM→A +1. As for the on-hand inventory, the

firm incurs a holding cost h per unit per period. The holding cost is assumed to be lower

than the stockout cost, h < s, otherwise there would be no incentive for the firm to stock the

variants. Also, to ensure the profitability of the manufacturer the following condition should

hold: pt > v > cM (n). The notations are summarized in Table G.1 (see Appendix).

3.3.5 Manufacturer’s Profit

We can now compute the manufacturer’s technology-specific profits under AM and MC for

each period, denoted by ΠT
t . Based on the cost structures of AM and MC described in

Section 3.3.2, we formulate the profit function and recall that we do not carry inventory under

AM. Hence, no holding costs are incurred under this technology. Note that the actual demand
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at time t under AM is equal to

D t =
∑

i∈Ξt

1{U A (ξi ,t )>pt }, and that D t = St +Lt (3.10)

where the materialized sales, St , and the lost sales, Lt , for each period are given respectively

by

St = min{D t ,K A}, Lt = max{0,D t −K A}. (3.11)

Thus, focusing on AM technology first, the profit under this technology at period t , if T (t ) =
AM , is given by (for clarity, we subtract the fixed cost later in the profit function (see 3.15))

ΠT
t (p) = pt St − cASt − sLt . (3.12)

Similarly, we define the profit function for MC periods, which is given by (again, we subtract

the fixed cost later in the profit function (see 3.15))

ΠT
t (p) =∑

j

(
pt S j ,t − cM (n)Q j ,t −hI j ,t+1 − sL j ,t + v I j ,TM→A+11{t=TM→A}

)
, (3.13)

where the materialized sales, S j ,t , and lost sales, L j ,t , for each period under MC are given

respectively by

S j ,t = min{D j ,t ,K M
j + I j ,t }, L j ,t = max{0,D j ,t − I j ,t −Q j ,t }. (3.14)

For each mass-customized variant and each period, the production quantity, Q j ,t , and the

starting inventory level for the upcoming period, I j ,t+1, are given by (3.8) and (3.9).

By combining the profit functions (3.12) and (3.13), and incorporating the once-incurred fixed

costs of AM and MC technologies, we formulate the manufacturer’s total profit across periods

and for all customers

Π
T

({ξi }N
i=1, p) =

(∑
t
ΠT

t (p)

)
−k A(N )1{t :T (t )=AM } 6=;−kM (N )1{t :T (t )=MC } 6=;. (3.15)

In the work of Lacroix et al. (2020), an additivity property enabled the authors to formulate

their objective function as a mean profit per customer, independent of the random population.

They formulated and added the profit per customer—which could be defined independently

of each other and set the mean profit per customer to be the expected profit per customer

attained by the Law of Large Numbers (LLN). However, in our case, no additivity property

holds (under the MTOC and MTSC scenarios) in the profit function. Indeed, by restriction

of production capacities, potential buyers may fail to buy because some products might no

longer be available. For instance, if two customers have a positive utility and are interested in

the same product variant, if only one product variant is available, one customer will end up
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not purchasing. In general,

Π
T

({ξi }N
i=1, p) 6=

N∑
i=1
Π

T

({ξi }, p). (3.16)

If we define the mean profit per customer as

πT ({ξi }N
i=1, p) = 1

N
ΠT ({ξi }N

i=1, p), (3.17)

how can we prove the existence of the limit in (3.17)? The LLN no longer holds straightforwardly.

We address this question in Section 3.3.6. In particular, we describe algorithmically the limit

of (3.17) and prove a.s. convergence. To further validate our optimization approach, we prove

the validity of the SAA approach (see Section 3.4.1).

3.3.6 Theoretical Mean Profit per Customer

As observed in (3.16), we can no longer use the arguments from Lacroix et al. (2020) to prove

a.s. convergence in (3.17) to some limit. If such a limit existed, we would call it the theoretical

mean profit per customer for the given pricing, variety, and production strategies, and denote

it by π̃(T ,n, p). In this section, we develop a precise algorithmic formulation of π̃(T ,n, p),

and prove the aforementioned a.s. convergence. Note that, for the ud ′
t , we have an integral

form (3.5):

ud ′
t =

∫ T

0

(∫ 1

0

(
t−1∏
g=1

1]−∞,pg [(U
T (x, y, g ))

)
1[pt ,+∞[(U

T (x, y, t )) fτ(x)d y

)
d x. (3.18)

Lemma 3.2. By the Law of Large Numbers (LLN), for all t , j , we obtain the (i − i i ) a.s. conver-

gence of the mean actual demand to the mean uncensored demand. From this follows the

a.s. convergence of the quantities involved in the profit function, that is the mean: (i i i − i v)

target and (v −vi ) on-hand inventory levels, (vi i −vi i i ) production quantity, (i x −x) sales,

and (xi −xi i ) lost sales, (xi i i −xi v) on-hand inventory for the next period, and, finally, (xv)

profit per period (see Appendix H for more details).

Proof. of Lemma 3.2. See Appendix H.

We observe that the mean limiting total target inventory level per period, (i ′1, . . . , i ′T+1) is

also obtained from (∗d ′
1, . . . ,∗ d ′

t ) by a water filling algorithm (wfs) that resembles the (WFS),

described in 3.3.4. Using this key observation and Lemma 3.2, we can now formally define the

theoretical mean profit per customer, and its algorithmic formulation.

Theorem 3.3. Mean profit per customer, a.s. convergence. If (ξi )1≤i≤N is i.i.d., then

Π
T

({ξi }N
i=1, p)

/
N →a.s. π̃(T ,n, p), (3.19)
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where π̃(T ,n, p) =πT
1 + . . .+πT

T − k̃ A1{TA→M>0 or TM→A<T } − k̃M 1{TA→M<T }, (3.20)

and the πT
t ’s are obtained from algorithm (A-MTS) (see Appendix J).

Proof. of Theorem 3.3. The proof follows from Lemma 3.2 (see Appendix H).

The two following corollaries are proved using arguments similar to those detailed for proving

Lemma 3.2 and Theorem 3.3. They provide algorithmic computations of the theoretical mean

profits per customer derived again from the ud ′
t s, in the MTOC and MTOUC scenarios.

Corollary 3.4. Mean profit per customer – the MTOC scenario. In the presence of production

capacity constraints, in the MTOC setting, a similar a.s. convergence holds and the limit of the

mean profit per customer is obtained by a simplified version of the (A-MTS) algorithm (see

Appendix K).

Corollary 3.5. Mean profit per customer – the MTOUC scenario. Still reducing complex-

ity, without inventory and production capacity limitation, we recover the case in Lacroix

et al. (2020), for which we obtain a.s. convergence of the mean profit, with a different and

algorithmic formulation for the limit (see Appendix L).

Remark 3.6. Absence of mass-customized variants at the limit. We observe that in all three

cases –MTSC, MTOC, MTOUC, the limit of the mean profit per customer is expressed through a

formula where the reference to mass-customized variants has completely disappeared, except

in the term cT (t ). This is a consequence of two factors, namely: the product variants’ uniform

distribution from the Hotelling-Lancaster model and the independence of the customer

attributes τ and φ.

3.4 Solution Approach to Maximize Profit

In a discrete-time setup, the manufacturer aims to maximize its total expected profit by jointly

deciding on (i) the technology-switching times (TA→M ,TM→A), (ii) the pricing strategy pt , (iii)

the product variety n, and (iv) the production quantity Qt under MC. Given the capacity and

the inventory scenario, we formulate our optimization problem using the theoretical mean

profit per customer as previously described in (A-MTS, A-MTOC, A-MTOUC) algorithms. Since

the optimal production quantity is written in closed-form (3.8), we do not include this decision

variable in the formulation of our optimization problem:

π∗ := max
T

1≤n≤nmax

max
p∈P

π̃(T ,n, p). (3.21)
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Here, special attention is required for the inner maximization, which is a non-convex opti-

mization problem:

π̃(T ,n) := max
p∈P

π̃(T ,n, p). (3.22)

The solution approach to estimate this maximum is similar to the one described in Lacroix

et al. (2020), uses the SAA framework (Shapiro et al. (2014)), and a direct local search method,

in particular Pattern Search (PS). Note, that the PS heuristic is commonly used for nonlinear

programming problems with discontinuous non-smooth objectives (Chinneck 2015). By

Theorem 3.3 and Corollaries 3.4, 3.5, we numerically estimate π̃(T ,n, p) from (wfs, A-MTS,

A-MTOC, A-MTOUC) algorithms. The (A-MTS, A-MTOC, A-MTOUC) algorithms rely on calcu-

lating ud ′
t (3.4). The calculation requires, given T ,n, p, the computation of T integrals (3.18),

of highly irregular functions, which is computationally expensive. Therefore, we proceed with

optimizing πT ({ξi }N
i=1, p) (3.17) as formulated in our SAA problem (3.21). The method gener-

ates estimates of the maximum mean profit per customer and an associated pricing strategy

for a fixed production and a product variety strategy. After a finite number of evaluations of

these pricing strategies, we obtain an estimate π∗ and the associated optimal strategies p∗,

T ∗, n∗.

We prove that the SAA convergence holds even in the absence of the additivity property

(3.16). To determine a sufficient sample population size for our SAA optimization problem, we

conduct a robustness test in Section 3.4.2 .

3.4.1 SAA Convergence

As explained in Section 3.3.5, we cannot formulate our objective function by adding the profit

per customer. Under capacity constraint, the demand becomes interdependent across the PLC.

Thus, this approach fails for the MTS and MTOC cases, given the lack of additivity property in

the profit function. We have nonetheless observed in Lemma 3.2 (see H) and Theorem 3.3,

that the mean profit per customer can be derived algorithmically from the integrals defining

the value of ud ′
t (3.4). Also, the a.s. convergence of any involved quantities in Lemma 3.2

relies on that of the D t /N ’s or D j ,t /N ’s. The SAA approach purely relies on the existence of a

p-uniform a.s. convergence (UASC) (Shapiro et al. 2014).

Lemma 3.7. Uniform a.s. convergence of Dj,t/N’s. If (UASC) holds in Lemma 3.2, (i,ii) (for

the D t /N ’s and the D j ,t /N ’s), then

πT ({ξi }N
i=1, p)−→a.s. π̃(T ,n, p) uniformly in p ∈P (UASC)

where P = [0,maxx∈[0,T ]ω(x)]T .

We can prove (UASC) for the D j ,t /N ’s, and D t /N ’s using the same assumption as in (Lacroix

et al. 2020, Theorem 1).
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Theorem 3.8. SAA convergence of the mean profits. If (ξi )i≥1 is i.i.d., and if

µω <<µL ; and ∀c, t , µL
(
δ(·, t )−1({c})

)= 0, (H)

then a (UASC) holds for the D j ,t /N ’s and D j ,t /N ’s. As a consequence of Lemma 3.7, if{
p(∗,N ) achieves maxp∈P πT ({ξi }N

i=1, p) :=π(∗,T )({ξi }N
i=1, p(∗,N )),

p∗ achieves maxp∈P π̃(T ,n, p) (= π̃(T ,n) = π̃(T ,n, p∗)),
(3.23)

then {
p(∗,N ) → p∗;

π(∗,T )({ξi }N
i=1, p(∗,N )) →a.s. π̃(T ,n).

(SAA)

Proof. of Theorem 3.8. See I.
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3.4.2 Robustness Test and Population Sample Size Choice

We proceed by assessing that a sample population size of 10,000 is sufficient for approxi-

mating p∗,π∗,T ∗,n∗. To this end, we test 100 optimization strategies for 100 independent

sample population paths of size 10,000. We then evaluate variations on the obtained optimal

quantities. We maximize the mean profit for each sampled population and optimization

strategies. The profit is computed from materialized sales. Figure 3.3 illustrates and validates

the robustness by comparing the normalized mean profits with the normal distribution, in the

MTOC and MTS cases. We observe very low standard deviations for the mean optimal profits.

Figure 3.3 – SAA validation

Table 3.2 – SAA mean profit variations, sample size 104

Statistical estimators MTOC MTS

mean(mean profits) 5.79 5.91
std(mean profits) 0.025 0.027

3.5 Numerical Experiments

We now perform numerical experiments to highlight the benefits of and conditions for inter-

changing capacitated AM and MC over the PLC. Specifically, we aim to understand the effect

of capacity constraints and inventory decisions on this new manufacturing opportunity. In all
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experiments, we use the PS algorithm.

3.5.1 Parameter Setup

Due to the lack of real-world data, we first perform sensitivity analyses (see Section 3.5.2)

and investigate several parametric scenarios issued from our model with synthetic data (see

Sections 3.5.3 and 3.5.4). The baseline setup is similar to (Lacroix et al. 2020, Table 4), while we

set additional capacity and the inventory parameters as follows: the fixed production capacity

magnitude and ratio are κ= 0.5 and ρ = K A/K M = 0.5 respectively; the holding cost is h = 0.5;

the stockout cost is s = 0.8 per unit of unsatisfied demand; the potential remaining inventory

at the end of MC period is salvaged at v = 0.8pTM→A . Table 3.3 reports the baseline parameters.

Table 3.3 – Baseline Parameter Values.

Parameter p q N T nmax kM kA δ

Value 0.02 0.6 10,000 12 15 100 150% of kM 0.06
cb cM cA κ ρ h s v

2 2.48 180% of cb 0.5 K A

K M = 0.5 0.5 0.8 0.8×pTM→A

3.5.2 Sensitivity Analyses

Before investigating the potential benefits of adopting a technology-switching scenario under

capacity constraints, we perform sensitivity tests.

Production Capacity – Ratios and Magnitude – Sensitivity

Analyzing several production capacity ratios between AM and MC, namely K M

K A ∈ {10;4;2;1.33;1},

we fix the production capacity per period under AM and vary the total production capacity

under MC. We use the assumption (A6) which implies K A ≤ K M .

For each production capacity ratio, we analyze low, medium, and high production magnitudes.

In particular, we correspondingly fix the values for K A , with K A ∈ {41;208;416}, and determine

the values for K M through the production capacity ratios.

Firstly, Fig. 3.4 demonstrates the behavior of the optimal pricing strategy p. We observe that

the selling price is not monotonically decreasing as it would be in the uncapacitated case

(Lacroix et al. 2020). It exhibits an increasing-decreasing pattern when the demand tends

toward the production capacity under AM and MC. Thus, to avoid potential lost sales from

capacity shortage, the firm charges high upfront prices by an increasing pricing policy. This

strategy helps the firm to boost short-term profits from the most eager and interested initial

customers. Compared with the case with high production magnitude, the firm charges higher

selling prices during the products’ introduction for the low and medium capacity magni-

tudes. This is because the firm can offer fewer products due to the capacity constraint, and,

consequently, tries to attract fewer customers but those with higher product valuation.
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Figure 3.4 – Sensitivity analysis of production capacity ratios and magnitude
under AM and MC technologies, in the MTS scenario.
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This also leads to higher profit and reduced lost sales which come at a cost. Furthermore,

the effect is strengthened due to the forward-looking behavior of customers since they have

a decreasing willingness-to-pay (see (3.1)). Secondly, Fig. 3.4 shows the demand process

D t . As we model customers through a utility-based demand, the selling price has a direct

impact on the demand diffusion pattern. In the MTOUC case, we recover the traditional

bell-shaped curve of the demand. In the MTS case, the demand patterns and demand forecast

are also bell-shaped for high capacity magnitudes under MC (see demand for medium and

high capacity magnitudes and K M

K A = 10). As the production capacity ratio diminishes, the

demand trajectory tends to flatten. At the beginning and the end of the PLC, there are fewer

customers due to their ideal buying time distribution. Less product quantity is sufficient to

meet the demand. The demand grows and the firm can sell at full production capacity toward

the middle of the PLC. Thirdly, Fig. 3.4 depicts the on-hand inventories to satisfy the demand.

For low capacities, we observe that the inventory decreases as the production capacity ratio

diminishes. This is due to opposite trends of the selling price and the demand patterns. Next,

we see that the lost sales are negligible.

Lastly, for similar production capacities and as the production capacity magnitude increases,

AM technology is used more often by the manufacturer. Fig. 3.4 illustrates this through the

technology-switching times. However, for the low capacity magnitude case, and when K A is

much lower than K M , the manufacturer does not switch to AM (see the technology-switching

times for K M

K A = 10). During the introduction and decline stages of the PLC, higher production

capacity magnitudes allow the firm to offset the higher fixed and production costs of AM

compared with those of MC. Overall, the manufacturer could benefit from adopting AM at

the beginning and the end of the PLC in the MTS scenario. Switching to MP in the middle of

the product life cycle could be profitable provided a high production capacity magnitude and

similar production capacities under AM and MC.

Holding Cost Sensitivity

Considering the MTSC scenario, we now examine the sensitivity of our results to the holding

cost as it impacts the profit. Fig. 3.5 shows that the firm charges a higher selling price as

the holding cost value increases. If the holding cost is lower, the firm decides to stock more

inventory to satisfy the demand and, oppositely, to stock less when it is more expensive.

Moreover, it is more beneficial to start producing with AM instead of MC when the holding

cost is high, and when the production capacity of this technology allows meeting the demand.

Table 3.4 reports the holding cost impact on the technology-switching scenario as well as on

the mean profit per customer. As expected, a lower holding cost yields a higher mean profit per

customer and as the holding cost becomes expensive it is beneficial to start producing with

AM at the beginning of the PLC when there are fewer but more excited customers (i.e., with a

higher utility).
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Figure 3.5 – Holding cost sensitivity.

Table 3.4 – Holding cost impact on the mean profit per customer.

Mean profit per customer for

each holding cost value

Production strategy h = 0.1 h = 0.4 h = 0.7

MC 6.06 5.85 5.66

MC → AM 6.12 5.93 5.68

AM → MC 5.91 5.82 5.74

AM 4.02 3.81 4.04

AM → MC → AM 5.99 5.92 5.88

3.5.3 Value of Holding Inventory

To identify the value of holding inventory across the PLC, we examine three capacity and

inventory scenarios, namely MTOUC (which serves as our reference case), MTOC, and MTSC.

For each of these scenarios, we extract the optimal mean profit per customer for every pro-

duction strategy and highlight the highest among them. Considering our reference case

(MTOUC), Table 3.5 shows that, as expected, capacity constraints generate a 24% profit loss

under the MTOC scenario, and a 22% profit loss under the MTSC scenario (see the MTOC

and MTSC scenarios). Furthermore, holding inventory and adopting an AM → MC → AM
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technology-switching scenario allows a 3% profit gain compared with the MTOC scenario.

Table 3.5 – Capacity and inventory strategies impact on the mean profit per customer.

Mean profit per customer

Production strategy MTOUC MTOC MTSC

MC 6.42 5.08 5.79

MC → AM 7.22 5.16 5.87

AM → MC 7.46 5.62 5.80

AM 7.48 4.05 4.06

AM → MC → AM 7.55 5.72 5.90

3.5.4 Value of Pricing Flexibility

Next, we investigate the impact of pricing flexibility on the manufacturer’s expected mean

profit per customer. We perform numerical experiments and study three selling price trajecto-

ries, namely constant, linear decreasing, and flexible.

In line with our findings in Section 3.5.2, Fig. 3.6 reveals that there is a tendency to increase

selling prices if they must stay constant over the time horizon. By contrast, the firm charges

lower prices in the MTSC case (compared with MTOUC and MTOC cases) up to the middle of

the PLC when the pricing pattern must be linear decreasing. Technology-switching times can

explain this phenomenon. Although MTOUC and MTOC scenarios only employ AM during

the whole PLC, the MTSC scenario uses MC technology on its own. To offset the product

misfit penalty cost only incurred under MC and to attract more customers, the firm relies

on lower upfront prices until the demand peak. The flexible pricing strategy results in an

optimal non-convex path. Interestingly, we observe “reversed” selling prices set at t = 3 and

t = 9 in our flexible pricing trajectories. This can be explained by technology-switching and

production capacity effects on the selling price, and, consequently, on demand. AM is used

up to period t = 3 in the MTOC scenario whereas it is used until period t = 2 in the MTSC

scenario. The price is thus set higher for the third period under AM in the MTOC scenario.

In both the MTOC and the MTSC scenarios, when the firm switches to AM at the end of the

PLC, the selling price first increases before decreasing as demand is close to the production

capacity under AM. We define the relative gain of the flexible, versus the constant pricing

strategy, as (π∗
f lex−π∗

const )·(π∗
const )−1 and, similarly, the one of flexible versus linear decreasing

pricing strategy as (π∗
f lex −π∗

dec ) · (π∗
dec )−1. Table 3.6 summarizes the results. We observe a

significant gap between a constant and a flexible pricing policy (highest under the MTOC

case). Next, we notice that the gap is small (+1.5%) between the flexible and decreasing pricing

policies when the firm has an infinite capacity (MTOUC case). Therefore, in this case, it

might be more cost-effective to apply a simple decreasing pricing policy as suggested by the

marketing literature. It works well in practice and can avoid unobserved fees. However, under

capacity constraints, the gap strongly increases (+11.5% in the MTOC scenario) and the firm

can benefit from a flexible pricing policy displaying an increasing-decreasing pattern. The
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ability to increase prices during the PLC helps the manufacturer to better align supply and

demand. Our results are consistent with those of Shen et al. (2013). The authors report that an

increasing-decreasing pricing strategy, combined with optimal production/inventory policies,

is profitable under capacity constraints. The value of pricing flexibility is highest (+11.5%)

under the MTOC scenario, and decreases when the firm carries inventory (+3.7%). Holding

inventory might lessen the need for pricing flexibility. In other words, holding inventory allows

the firm to have higher profits by itself.

Figure 3.6 – Selling price trajectory for each production and inventory scenario.

Table 3.6 – Impact of the pricing trajectory on profit and technology-switching scenario.

MTOUC
Pricing
trajectory

π∗($) TA→M TM→A
Production

strategy
constant 6.19 3 6 AM → MC → AM
linear
decreasing

7.44 12 13 AM

flexible 7.55 4 8 AM → MC → AM
MTOC

constant 4.11 2 7 AM → MC → AM
linear decreasing 5.14 12 13 AM
flexible 5.73 3 9 AM → MC → AM

MTSC
constant 5.04 0 7 MC → AM
linear decreasing 5.65 0 12 MC
flexible 5.86 2 8 AM → MC → AM

Our results can help operations managers to understand this new manufacturing opportunity.

Furthermore, our findings allow the firm to evaluate the potential marketing and operations

benefits of combining the new manufacturing usage of AM with MC technology. Facing

forward-looking customers and their individual preferences, adopting AM, in combination

with MC, under capacity constraints, could improve a manufacturer’s profit if the production

capacity magnitude is high enough and close to the one of MC technology.
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3.6 Conclusion and Managerial Insights

This chapter investigated the conditions under which a capacity-constrained monopolist man-

ufacturer could combine the benefits of AM, for product customization, with the traditional

MC technology to achieve product customization at scale. Given the stage of the PLC, the firm

jointly decides on marketing (pricing policy, product variety) decisions and on operations

(technology-switching times, production quantity, inventory) decisions, to maximize profit

while addressing individual customer preferences. Our model positions itself at the marketing-

operations interface. It considers not only the supply side with the technology choice in a

dynamic setting across the PLC, but also the demand side to consider customer heterogeneity

and forward-looking behavior. We provide an innovative methodology to leverage customer-

centricity and optimize operations and marketing strategies.

First, we investigated several technology-switching scenarios, and three production capacity

and inventory cases. In the scenario where the firm holds inventory under MC, we developed

a customer-centric adaptive inventory policy intended for an interdependent non-stationary

demand. We built the first step of this inventory policy on a water filling algorithm, which is

typically used in information theory. We adapted it to fit our manufacturing context. From this

inventory policy follows a closed-form solution for the production quantity decision. We then

formalize the resulting non-convex optimization problem exploiting the analytical properties

of our uncensored demand forecast. Furthermore, we successfully derived an algorithmic

formulation for our objective function under our three capacity and inventory scenarios.

We solved our optimization problem using the so-called (SAA) framework. We performed

robustness tests to check the convergence of our approximation problem, and that the popu-

lation sample size used in our numerical experiments was sufficient enough. Our numerical

results demonstrate that the combination of customer-centric strategies with the new usage

of AM combined with MC could benefit a manufacturer. In particular, on the operations side,

significant profit improvements could be achieved with an AM-MC-AM technology-switching

scenario, given certain capacity and inventory conditions. To be profitable, the following con-

ditions are required: a sufficient enough production capacity under AM, similar production

capacities under AM and MC, a high holding cost under MC. When the firm has the option to

hold inventory, facing low or medium production capacity magnitudes implies increasing the

selling price, and thus to stock more. This strategy helps in preventing lost sales and meeting

the demand peak during the growth stage of the PLC. On the marketing side and under capac-

ity constraints, applying an increasing-decreasing pricing policy yields a higher profit. Indeed,

this pricing policy facilitates capturing interested customers with a high product valuation

at the beginning of the PLC. As demand gets closer to the production capacity limit, the firm

offers fewer products and increases the selling price to diminish lost sales. Then, as demand

grows toward the middle of the PLC, the firm starts decreasing the selling price. Our findings

also show that the benefits of pricing flexibility are highest when capacity is unlimited, or

when the firm does not hold inventory (+11.5% under capacity constraints vs. +3.7% profit

gain when holding inventory and under capacity constraints). Under capacity constraints,

a simple decreasing pricing policy combined with inventory performs very well and lessens
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the need for pricing flexibility. Although there are limitations due to the lack of real-world

data availability, we believe that our work sheds light on this new manufacturing opportunity.

Our approaches could be implemented by decision-makers to leverage customer-centricity

and benefit from this novel technology-switching manufacturing practice, which operates an

Industry 4.0 technology such as AM for product customization.
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G Notations and Parametric
Assumptions

Table G.1 – Notations and Parametric Assumptions.

Parameters Assumptions

N : Initial market size of potential adopters N ∈N
Ξt : Remaining potential adopters at period t

{∪T
m=t Ξm

}T
t=1

T : Length of the finite selling horizon T ∈N
t : Subscript denoting period {t }T

t=1
T : Set of production strategies characterized by (TA→M ,TM→A ) T ∈ {TA→M ,TM→A }T

TA→M : Technology-switching time when the manufacturer switches from AM to MC 0 ≤ TA→M < TM→A
TM→A : Technology-switching time when the manufacturer switches from MC to AM TA→M < TM→A < T +1

Φ : Virtual space of horizontally differentiated products Φ= [0,1]
φ : Customer’s ideal product variant Pφ =U ([0,1])
τ : Customer’s ideal buying time see Lacroix et al. (2020)

p, q : Bass innovation and imitation coefficients, respectively p, q ∈R+
ξ : Random customer characterized by τ and φ ξ= (τ,φ) with Pξ =Pτø
n : Number of mass-customized variants to offer to customers under MC 1 ≤ n ≤ nmax

X : Set of mass-customized product variants offered under MC X = {x1, . . . , xn } ⊂ [0,1]n

j : Subscript denoting the mass-customized variant j ∈ {1, . . . ,n}
x j : Location of product variant j on the virtual product space ∀ j ∈ {1, . . . ,n}

wt (τ) : Customer’s willingness-to-pay at period t ω(τ) ∈R+
γ(τ) : Buying time-sensitivity coefficient γ ∈R+

λ(τ)
: Product variant sensitivity coefficient, incurred only
under MC technology

λ ∈R+

UT (ξ, t ) : Customer ξ’s utility at period t , dependent on the production strategy T (3.1)

pt : Selling price at period t 0 ≤ pt ≤ max{0,UT }, ∀ j ∈Φ
∗ : Subscript denoting the demand forecast method ∗=c ,u

∗D ′
j ,t : Demand forecast of variant j at time t

D j , t : Observed demand for product variant j at time t
I ′j ,t : Target inventory level of variant j at time t

I j , t : Observed inventory level of variant j at time t
K A : Constant production capacity under AM

K M : Constant production capacity under MC equally distributed among n
κ : Production capacity magnitude κ ∈R+
ρ : Production capacity ratio between AM and MC ρ ∈R+

St : Sales at period t
Lt : Lost sales at period t

Q j ,t : Optimal production quantity for each variant j at time t

c A : Constant marginal production cost under AM c A = constant > 0

cb : Unit production base cost under MC cb = constant > 0
cM (n) : Unit production cost under MC depending on n cM (n) = cb (1+ (n −1)δ) > 0

k A : One-time fixed cost for AM technology k A = constant > 0
kM : One-time fixed cost for MC technology kM = constant > 0

h : Inventory holding cost per unit per period, common to all product variants h ∈R+
s : Stockout cost incurred when excess demand is lost per unit of unmet demand, h < s

common to all product variants
v : Salvage value of remaining inventory at the end of MC period pt > v > cM (n)
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Lemma 3.2. By the Law of Large Numbers (LLN), for all t , j ,



(i ) D j ,t /N →a.s. u d ′
j ,t

(i i ) D t /N →a.s. u d ′
t =

∑
j u d ′

j ,t

(i i i ) I ′j ,t /N →a.s. i ′j ,t

(i v) I ′t /N →a.s. i ′t =
∑

j i ′j ,t , i ′j ,t = i ′t /n

(v) I j ,t /N →a.s. i j ,t

(vi ) It /N →a.s. it =∑
j i j ,t

(vi i ) Q j ,t /N →a.s.

{
q j ,t = min(K̃

M
/n, max(i ′t /n − i j ,t +u d ′

j ,t )) if T (t ) = MC ,

q j ,t = 0 if T (t ) = AM ,

(vi i i ) Qt /N →a.s.

{
qt = min(K̃

M
, max(i ′t − it +u d ′

t )) if T (t ) = MC ,

qt = 0 if T (t ) = AM ,

(i x) S j ,t /N →a.s. s j ,t = min(u d ′
j ,t , q j ,t + i j ,t ) if T (t ) = MC ,

(x) St /N →a.s.

{
st = ∑

j s j ,t = min(u d ′
t , it +qt ) if T (t ) = MC ,

st = min(K̃
A

,u d ′
t ) if T (t ) = AM ,

(xi ) L j ,t /N →a.s. l j ,t = max(0,u d ′
j ,t − i j ,t −q j ,t ) if T (t ) = MC ;

(xi i ) Lt /N →a.s. lt =
{

max(0,u d ′
t − K̃ A) if T (t ) = AM ;∑

j l j ,t = max(0,u d ′
t − it −qt ) if T (t ) = MC ;

(xi i i ) I j ,t+1/N →a.s. i j ,t+1 = max(0, q j ,t + i j ,t − s j ,t )

(xi v) It+1/n →a.s. it+1 =∑
j i j ,t+1 = max(0, qt + it − st )

(xv) ΠT
t /N →a.s.

πT
t = st (pt −cT (t ))− slt

−1T (t )=MC hit+1 +1t=TM→A it+1(v pTM→A −c M (n))

(H.1)

We observe that (i ′1, . . . , i ′T+1) is also obtained from (∗d ′
1, . . . ,∗ d ′

t ) by a water filling algorithm
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(wfs) that resembles the (WFS), described in 3.3.4:

(i′1, . . . ,i′T+1) = wfs(T , K̃
M

, (∗d′1, . . . ,∗d′T)) :

t = T, i ′T+1 = 0

while t > 0

if t > TA→M

i ′t = max((∗d ′
t − K̃ M )1{T (t )=MC } + i ′t+1, 0)

t = t −1

else if ≤ TA→M

i ′t = 0

t = t −1

end
end

(wfs)

Proof. of Lemma 3.2. It follows by induction on t , starting with t = 1. The convergence of the

mean demand D j ,t /N and D t /N follows by the law of large numbers (see Eq. 3.18, 3.5). The

convergence of the mean target inventories results from the fact that the WFS algorithm and

capacities are positively homogeneous (WFS, wfs), and therefore the target mean inventories

are deduced from the mean demand forecast by (wfs). From (3.8,3.9) and the convergence

of demand, we deduce the convergence of the mean production quantities and inventories,

and the limit formulas in (vi i , vi i i ) follow readily. Then, from (3.11,3.14) and the preceding

convergences follow (i x −xi i ). The convergence and the equation in (xi i i ) follow from (3.9).

To conclude, (xv) follows from the summand expressions in (3.12,3.13).

76



I Proof of Theorem 3.8.

Theorem 3.8. SAA convergence of the mean profits. If (ξi )i≥1 is i.i.d., and if

µω <<µL ; and ∀c, t , µL
(
δ(·, t )−1({c})

)= 0, (H)

then a p-uniform strong law of large numbers holds for the ud ′
j ,t ’s and ud ′

t ’s. In other words, if

{
p(∗,N ) achieves maxp∈P πT ({ξi }N

i=1, p) :=π(∗,T )({ξi }N
i=1, p(∗,N )),

p∗ achieves maxp∈P π̃(T ,n, p) (= π̃(T ,n) = π̃(T ,n, p∗)),
(I.1)

then {
p(∗,N ) → p∗;

π(∗,T )({ξi }N
i=1, p(∗,N )) →a.s. π̃(T ,n).

(SAA)

Proof. of Theorem 3.8. All we need to prove, according to Lemma 3.7, is that D j ,t /N →u d ′
j ,t

and D t /N →u d ′
t uniformly in p ∈ P . The proof of these uniform convergences can be

conducted strictly as in (Lacroix et al. 2020, proof of Theorem 1). The only change is in that

instead of considering the mean profit per customer there, we consider the mean demand here.
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J Profit Algorithm (A-MTS) for
Theorem 3.3.

The mean profit per customer per period, πT
t , is obtained algorithmically as follows

(i′1, . . . ,i′T+1) = wfs(T , K̃
M

, (∗d′1, . . . ,∗d′T))

i1 = 0;

t = 1;

π̃(T , n, p) = 0

while t ≤ T

ifT (t ) = MC

qt = min(K̃ M , max(i ′t − it +u d ′
t ));

st = min(u d ′
t , it +qt );

lt = max(0,u d ′
t − it −qt );

it+1 = qt + it − st ;

else

qt = 0;

st = min(K̃ A ,u d ′
t );

lt = max(0,u d ′
t − K̃ A);

it+1 = it ;

end

πT
t = st (pt −cT (t ))− slt −1{T (t )=MC }hit+1

+1{t=TM→A }it+1(v pTM→A −cT (t ))

π̃(T , n, p) = π̃(T , n, p)+πT
t ;

t = t +1;

end

π̃(T , n, p) = π̃(T , n, p)− k̃ M 1{TA→M<T } − k̃ A1{TA→M>0 or TM→A<T }

(A-MTS)
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K Profit Algorithm (A-MTOC) for
Corollary 3.4.

The limit of the mean profit per customer is obtained by a simplified version of the (A-MTS)

algorithm (see J):

t = 1;

π̃(T , n, p) = 0;

while t ≤ T

st = min(u d ′
t , K̃ T (t ));

lt = max(0,u d ′
t − K̃ T (t ));

πT
t = st (pt −cT (t ))− slt ;

π̃(T , n, p) = π̃(T , n, p)+πT
t ;

t = t +1;

end

π̃(T , n, p) = π̃(T , n, p)− k̃ M 1{TA→M<T } − k̃ A1{TA→M>0 or TM→A<T }

(A-MTOC)

81





L Profit Algorithm (A-MTOUC) for
Corollary 3.5.

Similarly, the limit of the mean profit per customer is obtained by a simplified version of the

(A-MTS) algorithm (see J):

t = 1;

π̃(T , n, p) = 0;

while t ≤ T

st =u d ′
t ;

πT
t = st (pt −cT (t ))

π̃(T , n, p) = π̃(T , n, p)+πT
t ;

t = t +1;

end

π̃(T , n, p) = π̃(T , n, p)− k̃ M 1{TA→M<T } − k̃ A1{TA→M>0 or TM→A<T }

(A-MTOUC)

83





4 Blockchain of Things Sweet Spots
for Lean and Agile Supply Chains

Recently, the combination of Blockchain (BC) with the Internet-of-Things (IoT) has been

promising a sustainable competitive advantage for supply chains (SCs). However, the rele-

vance and conditions for these two technologies’ adoption in this context remain unclear.

Therefore, we adopt a three-step approach to discover the BC IoT success conditions for lean

and agile SCs: (i) we conduct a multivocal literature review, (ii) perform a topic modeling

to categorize the success factors (SFs) identified in the literature, and (iii) associate the cat-

egories of SFs to the SC macro-processes for lean and agile SCs, respectively. Our results

build on a holistic view of the BC and IoT SFs, stemming from a SC-driven adoption perspec-

tive. The findings are summarized through a sweet spot conceptual framework and research

propositions. This study is a first step towards enhancing both academics and practitioners’

understanding of BC and IoT benefits for lean and agile SCs. It offers valuable insights into

when and how the sweet spots for both SC types would materialize in practice, as well as their

impacts with respect to the SC macro-processes performance. We believe that this study is

the first to holistically structure and present the BC and IoT SFs, taking into account the SC

characteristics (lean or agile), and strategic objectives.

4.1 Introduction

With the emergence of advanced digital technologies and an increasing focus on customer

needs, the digitalization of supply chains (SCs) has been gradually increasing. This practice is

referred to as digital supply chain (DSC), progressively replacing traditional linear SCs (Schrauf

and Berttram 2018). Ageron et al. (2020) define DSC as: “the development of information

systems and the adoption of innovative technologies strengthening the integration and the

agility of the supply chain and thus improving customer service and sustainable performance

of the organisation.” DSC operates Industry 4.0 technology enablers such as Internet-of-

Things (IoT) devices and Blockchain (BC) to collect, digitize, and store information, physical,

and financial flows both intra and inter-firms.

Turning to the IoT, Dorsemaine et al. (2015) define it as a “group of infrastructures intercon-
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necting connected objects and allowing their management, data mining and the access to

data they generate.” This creates a distributed network of devices communicating both with

each other and with SC stakeholders. IoT devices cover passive, semi-passive (or semi-active),

and active Radio Frequency ID tags (RFID) (see further details in Gaukler and Seifert (2007),

Delen et al. (2007), Lee and Özer (2007)), sensors, and other connected devices on a distributed

network (Rejeb et al. 2019).

As for increasingly popular BC technology, it was originally thought to support transactions

in the cryptocurrency field (Nakamoto 2008). BC can be described as a subset of distributed

ledger technology (DLT) that allows digital data to be stored in a cryptographically secured and

decentralized manner, leading to essentially tamper-proof transactions (Chouli et al. 2017).

The major feature of DLTs is to provide secure, reliable, non-repudiable online transactions

between parties (Dumas et al. 2019). Different types of BCs exist. Hellwig et al. (2020) report

that they: “differ in the way new network participants (nodes) join a network.” The main BC

types can be classified as: public (permissionless), private (permissioned), or consortium

(permissioned). Consortium BCs are typically used in a SCM context because they offer a

balance of both public and private BC functions (Dutta et al. 2020).

Thus, the combination of BC and IoT blurs the boundary between the physical and digital

worlds to improve SC efficiency and accelerate B2B integration. As a consequence, traditional

and linear SCs are evolving towards a connected, intelligent, scalable, and customizable

ecosystem to gain efficiency, agility, customer satisfaction, and, ultimately, to increase SC

surplus (i.e., “the difference between the final value of the product or service perceived by

the customer and the SC costs generated to create this product or service” (Chopra et al.

2013)). It is therefore not surprising that, in the last five years, pairing BC and IoT for the

SC has received much attention and has led to compelling use cases (see the thirty-five use

cases highlighted by Yusuf et al. (2018b)). Other use cases that arise from the current COVID-

19 pandemic applications are of particular interest today for SC stakeholders. Specifically,

BC and IoT are being used to improve the efficiency, reliability, safety and transparency of

pharmaceutical supply chains, and, in particular, those dedicated to the vaccine distribution.

The technologies are used in the SC to track, monitor (e.g., temperatures and conditions) and

authenticate COVID-19 vaccines, testing kits, personal protective equipment (PPE) (Smartrac

2019, Abrams Kaplan 2020).

However, while the benefits of adopting BC with IoT have been thoroughly articulated by

academics and practitioners (e.g., (Yusuf et al. 2018a, Aich et al. 2019, Dai et al. 2019, Rejeb

et al. 2019, Banerjee 2019, Kumar and Pundir 2020, Dedeoglu et al. 2020)), the question for

practitioners of systematically deciding when and how to adopt newer digital technologies to

improve SC performance arises. Specifically, according to Vyas et al. (2019), when it comes

to nascent technologies such as BC, most people still do not fully understand how it works.

Furthermore, executives wonder what return on investment they might expect. Interestingly,

and in line with this questioning, the consideration of adopting BC and IoT for the SC is

typically focused on technological advantages rather than on the needs and business aspects

86



Blockchain of Things Sweet Spots
for Lean and Agile Supply Chains Chapter 4

of the supply chain. The focus on technological advantages is more prevalent than the focus

on the SC business advantages. Although legitimate, the technology-driven perspective might

fail to address the alignment between SC strategic objectives and information technology (IT),

which is a key SC driver (Chopra et al. 2013).

A revised perspective, i.e. SC-driven, is therefore needed to help practitioners navigate through

the digital technology landscape — in this case composed of both BC and IoT, depending on

the strategic objectives targeted, to define their relevance for SC performance improvement.

Some authors (e.g., Hackius and Petersen (2017), Banerjee (2018), Kshetri (2018), Angelis and

da Silva (2019), Viriyasitavat et al. (2019), Vyas et al. (2019), Cole et al. (2019), Saberi et al. (2019),

van Hoek (2019), Yang (2019), Durach et al. (2020), Dutta et al. (2020), Hastig and Sodhi (2020),

Kumar et al. (2020)), have investigated this SC-driven perspective to adopt BC for supply chain

management (SCM).

This study documents several key contributions made to the field of DSC: first, to identify

the success factors (SFs) favoring the adoption of BC and IoT in SCM with two perspectives:

technology and SC-driven; and second, to derive from the SFs, the BC and IoT-enabled SC

sweet spots and requirements depending on the organization’s SC type, i.e., lean or agile.

The rest of this chapter is organized as follows: Section 4.2 provides a background litera-

ture regarding the SC context and the relevance of using BC and IoT in SCM. Section 4.3

details our research methodology. Section 4.4 discusses the results and reports our sweet

spot conceptual framework as well as research propositions. Finally, Section 4.5 specifies

theoretical and managerial implications for lean and agile SC performance, and empirical

research implications.

4.2 Background Literature

4.2.1 Supply Chain Context

Supply chain optimization is one of the primary objectives pursued by companies. Within

each SC, the “supply chain surplus” is maximized (Chopra et al. 2013). With globalization, the

advent of new communication techniques, and technologies to meet increasingly demanding

customer requirements, SCs are becoming even more complex and fragmented.

To achieve a strategic fit between supply and demand, and, thus, to increase the SC surplus,

companies adopt different SC types to accommodate different customer segments (PwC

2012). Companies do not adopt the same SC type depending on the product type offered

(Agarwal et al. 2006). Indeed, a lean SC (also called efficient) will be adopted to produce

rather functional products with a predictable demand, and generating low product margins

(e.g., commodities). The objective of this SC type is to satisfy demand by optimizing internal

resources and minimizing SC costs (product design, production, inventory, and suppliers’

costs) as much as possible (Fisher 1997). In contrast, an agile SC (also called responsive)
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will be designed for more innovative products with uncertain demand (e.g., fashion goods),

generating high product margins. The efforts of an agile SC are focused on responding

to consumer demand as quickly as possible by offering a high service level (Fisher 1997).

Vonderembse et al. (2006) and Agarwal et al. (2006) developed frameworks to categorize

SC types (lean, agile, and hybrid; and lean, agile, and leagile, respectively) and explore the

relationship between the different SC type features. In this chapter, we focus on lean and agile

SCs (hybrid (also called leagile) SCs are a combination of lean and agile SCs).

The determinants as well as the strategic objectives targeted by these two SC types are known

to be different. Several studies have been carried out on the evaluation of SC performance.

The use of metrics from the SCOR® (Supply Chain Operation Reference) model (APICS 2017)

as criteria for evaluating SC performance is widespread. According to Lima and Carpinetti

(2016), this model: “has been developed to map the business activities related with all phases

of fulfilling a customer’s demand. The model contains four sections: process, practices, people

and performance. The reference model [. . . ] is based on six primary management processes:

plan, source, make, deliver, return and enable.” For instance, Vyas et al. (2019) developed a

framework that associates BC capabilities with SCOR performance metrics. However, unlike

our study, the authors do not consider IoT, nor do they distinguish the SC type. We thus employ

another method to map SC strategic objectives to BC and IoT capabilities. To this end, we

associate the SFs of BC and IoT in the SC (identified in the literature) to the three SC macro-

processes defined by Chopra et al. (2013), namely: Supplier Relationship Management (SRM),

Internal Supply Chain Management (ISCM), and Customer Relationship Management (CRM).

As explained by the authors, all SC activities can be listed in these macro-processes and in the

Transaction Foundation Management (TMF). For simplicity, in the remainder of this chapter,

we will consider the TMF as a fourth SC macro-process. These four SC macro-processes are

considered as essential for optimizing SC performance activities. They manage the main flows

of a SC (information, products, and financial flows) to meet customer demand, regardless of

the SC type. Furthermore, Chopra et al. (2013) state that: “Good supply chain management

[. . . ] attempts to grow the supply chain surplus, which requires each firm to expand the scope

beyond internal processes and look at the entire supply chain in terms of the three macro

processes to achieve breakthrough performance.”

4.2.2 Emerging Technologies

IoT and BC promise many benefits for the digitalization of the SC. These technologies are

likely to reduce internal management costs, improve the efficiency of SC activities, and ensure

a sustainable competitive advantage. BC and IoT are expected to do so especially through the

digitalization and integration of external networks (Korpela et al. 2017). In this DSC context,

the authors argue that the main benefits of these new technologies are therefore based on:

“cost-effectiveness of services and value-creating activities that are advantageous to many

actors in the ecosystem, including firms and their suppliers, employees and customers.”
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IoT has gone through a hype phase and is currently becoming a mainstream option within SCs.

IoT is of special interest to SC stakeholders because it allows remote (or from an automated

process) data capture and sharing, which is not otherwise possible (Banerjee 2019). However,

IoT as a standalone solution for DSCs faces challenges such as security, privacy, and data

reliability (Dedeoglu et al. 2020), but also decentralization, and poor data interoperability

(Dai et al. 2019). In the work of Dai et al. (2019), the authors argue that BC has the potential

to complement IoT systems as follows: (i) enhanced interoperability of IoT systems through

the conversion and storing of IoT data in a BC; (ii) improved security; (iii) traceability and

reliability; and (iv) automated interactions of IoT systems operated by smart contracts (i.e.,

computer protocols and autonomous programs that facilitate, verify, and execute a contract

whose conditions are defined and stored beforehand in the BC (Dumas et al. 2019)). Therefore,

BC enables transactional security while IoT combines the physical and digital world with

sensors (Kumar and Pundir 2020). As a result, recent studies have examined the opportunity

of pairing IoT with BC to solve SC challenges.

Zhang and Sakurai (2020) offer an exploratory study that identifies the works and industrial

cases of well-known companies that have adopted IoT and BC for DSCs. Aich et al. (2019)

highlight the benefits of implementing BC- and IoT-based SCs in four industries: automotive,

pharmaceutical, food industry, and retail. Dai et al. (2019) provide a comprehensive survey of

the integration of BC technology with IoT, that they refer to as “Blockchain of Things” (BCoT),

discuss the insights and industrial applications of this kind of implementation. Seifert and

Markoff (2019) review RFID implementation in various companies (particularly retailers),

derive learnings from past success/failure implementations of RFID, and use those learnings

to inform managerial decisions about BC implementation. van Hoek (2019) builds on the

framework of Reyes et al. (2016) to extend it using managers’ insights. In particular, the author

compares and contrasts RFID and BC implementation considerations. As Seifert and Markoff

(2019), the goal was also to inform managerial decisions about adopting BC for the SC.

To summarize, the combination of these two technologies enables the digitalization of the

physical world data and stores it in a distributed ledger accessible to multiple stakeholders,

thereby bridging the trust gap. The IoT-BC combination can drive value in different ways

to address SC challenges, such as adding value to products, call upon trust among partners,

reduce SC costs, improve SC efficiency, and empower customers (Banerjee 2019).

Key features that distinguish our chapter from the above-mentioned ones is that we include

(i) the viewpoint of both academics and practitioners by performing a multivocal literature

review (MLR); (ii) both the commonly found technology-driven perspective for the adoption

of digital technologies and a revised one, which is SC-driven; (iii) the considerations of both

BC and IoT SFs; and (iv) the differentiation of lean and agile SCs.
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4.3 Methodology

To investigate and structure the BC IoT success factors (SFs) in SCM, we used a three-fold

methodology: (i) a MLR, (ii) a topic modeling approach, and (iii) a mapping of BC IoT SF

categories to lean and agile SCs. From these three steps, we developed a conceptual framework

(that we refer to as the “sweet spot” throughout this chapter) and research propositions.

4.3.1 Multivocal Literature Review

We rely on the SFs identified in the literature that favor the adoption of the BC IoT technology

combination in SCs. Systematic Literature Reviews (SLR) have been increasingly used in

different fields (e.g., software engineering, social sciences, supply chain management) to

collect evidence and structure findings in a specific research area. However, this kind of

literature review does not include “gray” literature, defined by Garousi et al. (2019) as “non-

published, nor peer-reviewed sources of information.” Gray literature is typically provided

by industrial practitioners, companies and the government (Butijn et al. 2020). It allows

accounting for practical insights. SLRs that include both the academic and the gray literature

are referred to as Multivocal Literature Reviews (MLR) by Ogawa and Malen (1991). According

to Elmore (1991): “another potential use of multivocal literature reviews is in closing the gap

between academic research and professional practice.” The MLR approach seems particularly

relevant to go beyond the BC hype in SCM, for which an abundance of academic papers have

recently emerged, but where the bridge between academia and real-world practice has not yet

been explored in full. Therefore, we performed a MLR and followed the approach of Shoaib

et al. (2020), who apply this method to identify and prioritize the factors positively influencing

the adoption of BC in the SC. Unlike their work, we do not only consider BC but also IoT.

Furthermore, we first consider the SC type (lean or agile) that the company employs and the

SC performance objectives that are specific to it. Once this is acknowledged, we associate the

SFs with the different SC objectives and types. To summarize, instead of starting from the

technological advantages that BC could bring to the SC (a common approach in the academic

literature) and deducing recommendations from them in the form of a taxonomy, we start

with analyzing the SC type and its corresponding performance objectives. There are several

ways of examining application cases of emerging technologies such as BC. The stand in this

study is to adopt a SC user-centric business logic rather than a technical-driven one. Indeed,

depending on SC performance objectives, stakeholders will tend to favor one solution over

another. We then deduce under which cases and conditions BC coupled with IoT could be

beneficial for practitioners and in which other cases another more traditional database (TD)

technology could be sufficient.

Below, we detail the MLR, first for the academic literature, and, then, for the gray literature. We

invite the reader to refer to the work of Garousi et al. (2019), which presents a detailed analysis

of this approach. It consists mainly of three phases: “planning the review,” “conducting the

review,” and reporting the results. First, our goal is to identify the primary sources that allow

us to answer the following research question:
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• Under which conditions could organizations benefit from BC and IoT adoption in SCs?

and, secondly, to collect evidence from the identified sources to address our second research

question:

• How do SC characteristics factor into successful BC and IoT adoption?

We begin with the academic literature.

Academic literature: The selection of data sources was carried out through search engines

and specialized digital libraries, namely: Google Scholar, IEEE Explore, ISI Web of Science,

ACM Digital Library (see Tables M.1 and M.2 in Appendix M which detail the selection of

sources).

We used boolean operators (AND and OR) to develop our search strings: (“Factors” OR “As-

pects” OR “Items” OR “Elements” OR “Characteristics” OR “Motivators” OR “Variables” OR

“Determinants”) AND (“RFID” OR “Internet of Things” OR “IoT”) AND (“Blockchain” OR

“Distributed” OR “Decentraliz*”) AND (“Ledger” OR “Technology” OR “Database”) AND (“Im-

plementation” OR “Execution” OR “Adoption”) AND (“Supply chain” OR “Supply chain man-

agement” OR “Logistics” OR “Operations Management”). Once this step was realized, a search

stopping criterion was determined. Garousi et al. (2019) present three main search stopping

criteria: “theoretical saturation, i.e., when no new concepts emerge from the search results

anymore; effort bounded, i.e., only include the top N search engine hits; and evidence exhaus-

tion, i.e., extract all the evidence.” In our case, given the large number of data sources found

(more than 487′000 results as of this writing, March 2021), we relied on the search engine page

rank algorithm (Langville and Meyer 2011), and retained only a certain number of hits. We

thus chose the stopping criterion called “effort bounded.”

Next, inclusion and exclusion criteria were chosen in order to select the sources for our study.

The inclusion criterion corresponds to the source type: journals, conference papers, and

books. The inclusion criteria are similar to those developed in the study by Shoaib et al. (2020),

especially for the journal impact factor threshold set by the authors to 2.53. We adopted

the following exclusion factors: papers published in journals with an impact factor < 2.53,

public BC, and industries not applicable to passive RFID tags (as most most retail applications

operate with passive tags, which do not need a power supply (Delen et al. 2007, Gaukler and

Seifert 2007)).

To filter the selected literature, we conducted a quality review of the selected literature using

question-based quality assessment (QA) criteria and a “tollgate” approach (as suggested by

Afzal et al. (2009) and Akbar et al. (2019)). This approach typically consists of five phases:

“search using search terms,” “exclusion based on title and abstract,” “exclusion based on

introduction and conclusions,” “exclusion based on full text,” and “final selection of primary

studies.” For the sake of simplification, we grouped the first two phases together and the next
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two together, giving us only three phases instead of five. For the last phase of the “tollgate”

approach, entitled “final selection of primary studies,” we developed nine quality assessment

criteria, specific to our study (depicted in Table 4.1). For each source, each of these criteria was

evaluated as 0 when the criterion was not addressed, and as 1 otherwise. The sum of the nine

evaluated criteria resulted in a score, which was normalized and used to select the relevant

literature. The selection requirements were: a score greater than 0.5, and the quality criteria

n°4 equal to 1 (score > 0.5, and Q4 = 1). Table M.1 in the Appendix shows that 89 sources from

the academic literature were selected for our study.

Table 4.1 – Selected QA criteria for the academic literature.

QA
questions

Checklist questions

Q1 Are the research methods justified with respect to the research questions?
Q2 Does the literature report the SFs of BC or IoT, or both?

Q3
Does the literature report the BC type: permissionless (public),
permissioned (consortium), or private (centralized)?

Q4 Does the literature report the SFs depending on the BC type?
Q5 Does the literature report the SC type: lean, agile, or hybrid?

Q6
Does the literature report the technology adoption perspective, that is
technology-driven or supply chain-driven?

Q7 Does the literature discuss the background and applications of BC or IoT, or both?
Q8 Are the gathered data associated with BC or IoT, or both in SCM?
Q9 Are the research questions justified by our research methods?

Gray literature: In the same fashion as for the academic literature, we identified and se-

lected the sources of the gray literature. This type of literature allows us to answer our research

question, this time, with the “voice” of practitioners. Due to the source types’ nature, the

search engines and platforms used for data selection differed from those used for the aca-

demic literature: Google, Bing, Yahoo, Arxiv, SSRN (see Table M.2 in Appendix M for more

details). Then, as for the academic literature, we also used the stopping criterion called “effort

bounded.” However, the inclusion and exclusion criteria for the gray literature were different

from those used for the academic literature. The approved source types were white papers,

annual reports, magazines, technical reports, and preprints. In terms of exclusion criteria,

data sets, tweets, email, and audio-video materials about BC and IoT were excluded.

Once the inclusion and exclusion criteria were defined, we proceeded with evaluating the

quality of the gray literature. For this purpose, since some of the quality criteria used for the

academic literature were no longer valid to assess the gray literature (e.g., the journal impact

factor threshold), we adopted and adapted the quality criteria proposed by Garousi et al. (2019)

and Butijn et al. (2020), which are organized into several categories such as the publisher

authority, or the methodology employed (see Table 4.2). These criteria were then evaluated

using the same evaluation procedure as for the academic literature. The score obtained for

each study had to be greater than 0.5 to be retained (score > 0.5). Table M.2, in Appendix M,

shows that 86 sources from the gray literature were selected in the end.
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Table 4.2 – Quality assessment criteria for gray literature

Category Assessment criteria

Publisher authority
Publishers must have deep awareness about blockchains, and
the organization must be trustworthy

Study objectivity The objectives and conclusion of the report must be mentioned

Study relevance
The SFs of BC or RFID, or both must be mentioned
in a SCM context

Methodology
The document must contain goals, methodology, references, limits,
and specific questions

Date Mentioned date
Sources Must contain linked sources

Novelty
Adds something unique to the research, adds a sharp point or
discusses weaknesses

Impact Has citations and backlinks to support its statements

4.3.2 Topic Modeling

From the MLR (see Section 4.3.1), we extracted a large number of SFs for the adoption of BC

and IoT in the SC. How could we now automatically group these numerous SFs into categories?

Understanding a large corpus of text through topic clustering is a recurring subject in Natural

Language Processing (NLP), defined by Liddy (2001) as: “a theoretically motivated range of

computational techniques for analyzing and representing naturally occurring texts at one or

more levels of linguistic analysis for the purpose of achieving human-like language processing

for a range of tasks or applications.” To deliver on the aforementioned goal, an NLP method

named topic modeling is typically used. It is an unsupervised machine-learning model for

text-mining. Topic modeling discovers hidden semantic structures by outputting topics that

best describe a given text document.

We used the Latent Dirichlet Allocation (LDA) algorithm (see Blei et al. (2003) for a detailed

explanation of the method). The LDA algorithm takes documents as inputs (here the docu-

ments correspond to the sources of information we collected from the MLR) and finds topics

(our desired SF categories) as outputs. A topic is represented as a collection of weighted words.

The weight reflects how frequent, and, thus, important the SF is to that topic.

We followed Prabhakaran (2020)’s procedure and used the Gensim package in Python, along

with the Mallet’s implementation (via Gensim). According to the authors, the Mallet version

is known to run faster and gives better topics segregation. We now describe the main steps

of the topic modeling, which consists of: designating the preprocessed text to be analyzed

(i.e., our sources from the selected academic and gray literature during the MLR); tokenizing

each sentence into a list of keywords; creating bigram and trigram models (i.e., two or three

words, respectively, frequently occurring together in the text); lemmatizing and stemming the

text (i.e, keeping only noun, adjectives, verbs, and adverbs); creating the dictionary (the list

of keywords from our sources) and the corpus (the keywords’ frequency in the sources) from

the text, as well as the number of topics. The dictionary, corpus, and number of topics are the

input parameters subsequently required for the LDA algorithm.

Once the topic model is built, we run it and analyze the output topic coherence score, which
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provides a measure for judging the quality of the given topic model (see Suaysom and Gu

(2018) for further details). Typically, papers report coherence scores in the [0.35;0.65] range

(Chehal et al. 2020). The higher the coherence score, the more consistent the topic is.

Figure 4.1 – Coherence scores for the LDA Mallet model.

Last, we analyzed the results and optimized the number of categories. For our study, the

number of categories, n, retained was 14, a number from which the coherence score only

slightly increased (as depicted by Fig. 4.1). The SFs were grouped into categories numbered

from n = 1 to 14. A topic inferring phase was then carried out in order to name each SF

category. The categories’ name was chosen based on the top ten relevant keywords from each

topic.

4.3.3 Success Factors Mapping to Supply Chain Macro-Processes

We recall that the purpose of this study is to propose a SC user-oriented sweet spot by consid-

ering, first, the SC objectives, and not the potential benefits of emerging technologies such as

BC and IoT for the SC. The idea is then to define, according to these objectives, whether the

need for these technologies is still high, or not.

Through the previous topic modeling (see Section 4.3.2), the key SFs for the adoption of BC and

IoT were grouped into categories (see results in Section 4.4.2). By combining these categories

from all types of literature (academic and gray) and perspectives (technology and SC-driven),

we obtained SF macro-categories (see column “SC macro success factors” in Tables O.1 and O.2

of Appendix O). These macro-categories allowed us to associate them more easily with the SC

objectives, as explained later.

Now, the question of mapping these SC macro SFs to SC objectives arises. Drivers and per-

formance objectives for a lean and agile supply chains are known to be different. So how can

we associate the SC strategic objectives of these two SC types with the SFs identified in the

literature?
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Vyas et al. (2019) combine the capabilities of BC with SCOR performance metrics. However,

unlike our study, the authors do not consider IoT, nor do they distinguish the SC type used,

and adopt a technology-driven perspective. If we were to follow their procedure, it would

be difficult to discern which SFs could be attributed to a lean or agile SC type. Therefore,

to overcome this challenge, we chose to map the identified SF categories to the SC macro-

processes defined by Chopra et al. (2013) (see details in Section 4.2.1).

Once the mapping between the key SFs and the SC macro-processes was completed, we

separated the SFs that are lean or agile-specific from those that are related to the required

database type. This step permitted an identification of the sweet spot for the adoption of

BC and IoT in SCM. To achieve this objective, we built on previous studies that differentiate

between lean and agile supply chains. In their study, Vonderembse et al. (2006) provide a

description and characteristics of lean, agile, and hybrid supply chains. As mentioned above,

for simplicity, we do not consider hybrid supply chains, which are a combination of lean

and agile supply chains (a comprehensive description can be found in Naylor et al. (1999)).

(Chopra et al. 2013, Table 2-4, p30) propose an adaptation of the SC types comparison table,

developed originally by Fisher (1997). These studies allow us to classify the SFs as pertaining

to a lean or agile SC. For instance, the SF entitled “streamlined operations and product recall”

characterizes a lean SC. This SC type mainly focuses internally on the continuous improvement

of operational processes. Another example is the attribution of the SF “inventory, operations,

and working capital costs” to this SC type. Indeed, another important objective of a lean SC

usually lies in cost reduction. An example for an agile SC is the combination of the “real-time

information sharing, monitoring, access” factor, whose objective is to respond quickly to

consumer demand with a high service level. Access to data, as well as product information

sharing in real-time, are therefore important. This logic is applied to each SF. We present the

findings of our three-fold method in the next section.

4.4 Results

4.4.1 Technology- vs Supply Chain-driven Success Factors

The topic modeling approach (see Section 4.3.2) highlighted the SF categories identified in

the academic and gray literature. Fig. 4.2 presents, in the form of mind maps, the SFs from the

two literature types, depending on the technology-driven, and SC-driven perspectives.

Table N.1 in Appendix N summarizes the differences between the academic and gray literature.

The shaded cells in Table N.1 indicate topics not covered by the academic literature.

First of all, we can see that the gray literature, with a technology-driven perspective, reveals SFs

of BC and IoT adoption for the SC that are covered very little, if at all, in the academic literature.

These include human and organizational factors such as: stakeholder incentivization, end-

users experience, process or human error authentification and reduction, business-model

enabler; and product-related factors, as follows: product ownership, product conditions
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(a) Academic technology-driven (b) Gray technology-driven

(c) Academic supply chain-driven (d) Gray supply chain-driven

Figure 4.2 – Academic and gray topics depending on the perspectives.

monitoring, and product digital identity. For instance, in the academic literature, (Kshetri

2018, Table 2) reports comprehensive BC roles and mechanisms involved in achieving strategic

SC objectives such as cost, speed, dependability, risk reduction, sustainability, and flexibility.

However, human or business SFs are not predominant in their work (except for the food

provenance consumer awareness). Typically, customer-facing SFs have not been covered in

most academic papers. This confirms the value of considering the gray literature that extends

our understanding of adopting the Blockchain and IoT combination for the SC, from the

perspective of increasing customer value.

Next, turning to the SC-driven gray literature, we observe the following additional factors that

are not covered in the academic literature: digital product passport, digital twin, and brand

image. Then, comparing the SC-driven and technology-driven perspectives, the results indi-
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cate that the first one covers three additional SFs, namely customer-facing, SC performance,

and digital maturity.

In conclusion, these results confirm the need to perform a MLR, and demonstrate the synergy

of collecting evidence from the two literature types. This helps uncover additional SFs from

real-world practices. It also shows that perspective matters. Indeed, the revised SC-driven

perspective builds on the technology-driven one. In particular, it facilitates aligning SC

performance objectives with the right IT and operational capabilities. This supports SC

evolution and business strategies across the entire SC.

4.4.2 Success Factor Macro-Categories

The SFs identified previously can be sorted into eight categories—all types of literature and

perspectives combined: IT capabilities, data management, SC efficiency and digitalization,

smart systems, SCM integration and relationships, regulatory compliance, cost savings and op-

portunities, and customer-facing. Applying the mapping approach described in Section 4.3.3,

we obtained for each SC type (lean or agile) the mapped SFs to the eight corresponding

macro SFs; the SC macro-processes they impact; the corresponding requirements, but also

the necessary conditions constituting the BC and IoT sweet spot in SCM (explained later in

Section 4.4.3). Tables O.1 and O.2 in Appendix O summarize the results.

Shoaib et al. (2020) developed a taxonomy of key factors organized into eleven main cate-

gories, specifically: “overall efficiency,” “policies and laws,” “reliability and ecoreconciliation,”

“data management,” “sustainability,” “integrate SCM,” “customer satisfaction,” “accessibility,”

“overall cost,” “smart system,” and “system strength.” Two of our macro SFs can also be found

in their work, which are: “data management” and “smart system.” Although some of our

categories are different from those identified by the authors, overall, they are aligned with

them. We considered supplementary factors compared to their work, such as: IoT SFs, the

SC-driven perspective and SC types. Therefore, our SF categories encompassed further as-

pects related to SC transaction management; governance of partnerships; product conditions,

regulatory compliance, and product life cycle; and customer-facing. We named our categories

accordingly.

4.4.3 Sweet Spot Conceptual Framework and Research Propositions

If we now take a closer look at the SFs (see column “Success factors” of Tables O.1 and O.2 in

Appendix O), we notice that some of them characterize the SC type, while others are related

to the database technology (BC or a TD). We are interested in knowing the conditions under

which BC would be beneficial compared to using a TD. We thus only retain the decisive SFs for

the database type to be considered. The other SFs, related to the SC types (see shaded cells

in Tables O.1 and O.2), are discarded for the development of our conceptual framework, as

these non-decisive SFs are already known in the literature to characterize lean or agile supply
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chains. This led us to Fig. 4.3 and 4.4, which structures the SFs around the SC macro-processes

according to the SC type.

Figure 4.3 – Success factors of a lean Blockchain IoT supply chain sweet spot.

We then noted that the SFs could be grouped into three requirements: “data verification trust,”

“transparency,” and “decentralized execution,” which are common to both SC types but whose

respective SFs differ. The two-by-two associations of these requirements: “data verification

trust-transparency,” “data verification trust-decentralized execution,” and “transparency-

decentralized execution,” enabled the identification of scenarios for which the BC technology

would be a preferable option compared to a TD. These scenarios are portrayed in Fig. 4.5, due

to limitations in visualizing four dimensions simultaneously.

It is important to note that this comparison is only based on the IT capabilities of the database

technologies (BC and TD). It would be interesting to include the short-, medium-, and long-

term installation and maintenance costs of these two technologies in future research. For

instance, Kumar et al. (2020) compare three inter-organizational systems (IOS), namely: BC,

EDI (electronic data interchange) and SOA (service-oriented architectures) technologies.

Specifically, the authors compare BC features, such as the cost, with EDI and SOA technologies.

They argue that BC presents higher transaction costs and setup costs compared to the two

other IOS technologies, due to the validation overhead cost and duplicated storage.

We now describe the interaction effect of the three requirements and illustrate them in Fig. 4.5.

Transparency and data verification trust scenario: We examine the case of a high level of

data verification trust sought and a need of transparency (whether high or low) in the SC. The
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Figure 4.4 – Success factors of an agile Blockchain IoT supply chain sweet spot.

BC technology, because of its infrastructure, would meet these needs, unlike a TD. In other

cases, a TD would suffice, especially for a high need of transparency (to achieve operational

efficiency) but a low level of product data verification trust. This scenario could correspond to

a need of common materials traceability (e.g., plastics), whose provenance verification would

not be paramount for SCM. On the contrary, provenance verification would be crucial for

high-end valuable goods (e.g., luxury goods) to combat counterfeit and losses.

Data verification trust and decentralized execution scenario: Here, the choice of BC would

be appropriate to meet the high data verification trust and decentralized execution require-

ments in the SC. Indeed, due to its infrastructure, a TD is not originally designed for secure

decentralized execution. A TD would allow, coupled with IoT sensors, data verification but

in a less secure and reliable way compared to the BC. However, for low requirement levels of

these two aspects, a TD may be sufficient.

Decentralized execution and transparency scenario: Again, on one hand, when the need

for decentralized execution is high (as in the previous scenario), the adoption of BC would

be preferable to a TD. On the other hand, a TD would be recommended when the need of

decentralized execution in the SC is not important, regardless of the transparency level sought.

BC technology, paired with IoT sensors, is therefore recommended when high expectations

in product data verification trust or decentralized execution are pursued in the SC. Contrary

to expectations, the transparency factor is not a determinant for the adoption of BC in the
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Figure 4.5 – Success factor requirements.

SC. It only becomes so when combined with a desired high level of data verification trust or

decentralized execution. This can be explained by the fact that some SFs categorized under

the attribute “transparency” can be addressed by a TD. If we refer to a lean SC, typically,

visibility within the SC related to the traceability of raw materials can be achieved by means

of IoT sensors and a TD. On the other hand, proof of compliance with respect to product

transport conditions can only be achieved by means of a BC technology. The reason behind

it lies in the BC IT capabilities: this technology is known to be immutable (data stored on

the distributed ledgers cannot be changed, be it intentionally or accidentally). These results

widen our knowledge of the BC adoption in SCM.

To summarize, we successfully determined the SFs for the adoption of BC and IoT in lean and

agile supply chains, together with their conditions (see Fig. 4.5). As mentioned previously,

the conditions are of three kinds: “high data verification trust and decentralized execution,”

and/or “high decentralized execution and transparency,” and/or “high data verification trust

and transparency,” depending on the targeted SC’s strategic objectives. Usually, not all SC

macro-processes are simultaneously improved in the SC. According to the targeted SC objec-

tives, a lean SC can be characterized by four macro SFs, namely: regulatory compliance, IT

capabilities, smart system, and cost savings and opportunities. An agile SC can be featured by

five macro SFs: regulatory compliance, IT capabilities, data management, SCM integration

and relationships, and customer-facing. Our findings led us to our sweet spot conceptual

framework and research propositions summarized in Table P.1 (see Appendix P).

Although previous work has identified SFs for the adoption of BC in SCM, our propositions

include: the “voice” of practitioners (through factors identified from the gray literature), the

SC-driven perspective, the BC technology as well as IoT, and the SC type. These aspects

influence the definition of the sweet spot.

In subsequent sections, we argue that BC and IoT adoption are expected to improve the
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performance of the four SC macro-processes: SRM, ISCM, CRM, and TMF, under certain

conditions which vary depending on the SC type (lean or agile). Since all SC macro-processes

are not simultaneously improved in the SC, we highlight below, for both SC types, the SC

macro-processes that would likely be impacted by the favorable conditions of BC and IoT

adoption. This considerations are synthesized into research propositions below.

Lean Blockchain IoT SC sweet spot - research propositions

The “high data verification trust and decentralized execution” requirement for the SC could

impact the SRM and TMF macro-processes. First, looking at the SRM macro-process, the

following categories and corresponding SFs (see factors in parentheses) have been identified

and determine the “high data verification trust” requirement: regulatory compliance (proof of

certification of product conditions met, assurance of provenance, safety, and quality of goods).

Then, for the TMF macro-process, the category and SFs required to manage a “decentralized

execution” are: smart system (early detection and prevention of transactional or human errors,

cross-border payment systems, and direct payments):

P1.When the strategic objectives of a lean SC are geared toward the optimization

of SRM and TMF macro-processes, then a high level of data verification trust and

decentralized execution are likely to drive BC and IoT adoption in the SC.

Then, the “high data verification trust and decentralized execution” requirement for the SC

could also impact the ISCM and TMF macro-processes. First, looking at the ISCM macro-

process, the following categories and corresponding SFs have been identified and determine

the “high data verification trust” requirement: IT capabilities (reliability, authenticity, verifia-

bility), and regulatory compliance (proof of product conditions certification met, assurance

of provenance, safety and quality of goods monitoring, and product ownership change and

custody tracking). Second, for the TMF macro-process, the categories and SFs required to

handle a “decentralized execution” are the same as in (P1):

P2.When the strategic objectives of a lean SC are geared toward the optimization of

ISCM and TMF macro-processes, then a high level of data verification trust and

decentralized execution are also likely to drive BC and IoT adoption in the SC.

Next, the “high level of decentralized execution and transparency” requirement for the SC

could impact the TMF, ISCM, and CRM macro-processes. First, looking at the TMF macro-

process, the categories and SFs required to handle a “high level of decentralized execution”

for transaction automation and disintermediation are the same as in (P1). Then, for the

ISCM macro-process, transparency in the SC constitutes the key SF. Second, for the CRM

macro-process, the category named cost savings and opportunities and its “fair pricing” SF

have been identified and additionally determine the “transparency” requirement:
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P3.When the strategic objectives of a lean SC are geared toward the optimization of

ISCM, CRM, and TMF macro-processes, then a high level of decentralized execu-

tion and transparency are likely to drive BC and IoT adoption in the SC.

The “high data verification trust and transparency” requirement for the SC could impact the

SRM, ISCM, and CRM macro-processes. First, looking at the SRM macro-process, the category

and corresponding SFs to address the “high data verification trust” requirement are the same

as in (P1). Then, for the ISCM macro-process, the critical categories and corresponding SFs to

also address this requirement are equivalent to those reported in (P1). As for the “transparency”

requirement, the categories and corresponding SFs are the same as in (P2). Lastly, to achieve

“transparency”, the categories and SFs required for the CRM macro-processes are the same as

in (P3):

P4.When the strategic objectives of a lean SC are geared toward the optimization

of SRM, ISCM, and CRM macro-processes, then a high level of data verification

trust and transparency are likely to drive BC and IoT adoption in the SC.

Agile Blockchain IoT SC sweet spot - research propositions

Turning now to the agile SC, the “high data verification trust and decentralized execution”

requirement for the SC could impact the SRM, ISCM, and TMF macro-processes. First, look-

ing at the SRM macro-process, the following categories and corresponding SFs have been

identified and determine the “high data verification trust” requirement: regulatory compli-

ance (audit trail, combat fraud and counterfeit, assurance of human rights and fair work

practices), SCM integration and relationships (governance of partnerships). Then, for the

ISCM macro-process, the categories and SFs required to manage “high data verification trust”

are: IT capabilities (immutability, reliability, authenticity, and security), SCM integration and

relationships (trust system for disputes resolution and better stakeholders relationships), and

data management (assurance of provenance, safety, and quality of goods). As for successfully

achieving “decentralized execution” requirement in this SC macro-process, the following

categories and SFs have been identified: IT capabilities (distributed), and SCM integration

and relationships (disintermediation). Lastly, for the TMF macro-process, the categories and

SFs required to handle “decentralized execution” are: data management (proof of records),

and SCM integration and relationships (decentralized execution for disintermediation, and

reliable single source of truth platform):

P5.When the strategic objectives of an agile SC are geared toward the optimization

of SRM, ISCM, and TMF macro-processes, then a high level of data verification

trust and decentralized execution are likely to drive BC and IoT adoption in the

SC.
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Then, the “high level of decentralized execution and transparency” requirement for the SC

could impact the ISCM, CRM, and TMF macro-processes. Looking at the ISCM macro-process,

the same categories and SFs identified in (P4) help address the “high level of decentralized

execution,” and transparency in the SC constitutes the key SF. Then, for the CRM macro-

process, the categories and SFs required to achieve “transparency” are: the category named

customer-facing, and its “food provenance and safety public confidence” SF. Lastly, for the

TMF macro-process, the categories and SFs required to handle a “high level of decentralized

execution” for transaction automation and disintermediation are the same as in (P5):

P6.When the strategic objectives of an agile SC are geared toward the optimiza-

tion of ISCM, CRM, and TMF macro-processes, then a high level of decentralized

execution and transparency are likely to drive BC and IoT adoption in the SC.

Lastly, the “high level of data verification trust and transparency” requirement for the SC could

impact the SRM, ISCM, and CRM macro-processes. Again, looking at the SRM and ISCM

macro-processes, the same categories and SFs identified in (P5) help address the “high level

of data verification trust,” and transparency in the SC constitutes the key SF. Then, to meet the

“transparency” requirement in the CRM macro-process, the same categories and SFs identified

in (P6) are required:

P7.When the strategic objectives of an agile SC are geared toward the optimization

of SRM, ISCM, and CRM macro-processes, then a high level of data verification

trust and transparency are likely to drive BC and IoT adoption in the SC.

4.5 Discussion and Conclusions

In this chapter, we have achieved three main objectives and thus contribute to the literature

on supply chain management in a digital technology context. First, we collected SFs for

the adoption of BC and IoT in the SC. These factors have been identified not only in the

academic literature but also in the literature derived from industrial practices (gray literature)

to bridge the gap between theory and practice. We used a topic modeling approach to create

a holistic and structured view of these factors. The SFs were sorted into eight categories: IT

capabilities, data management, SC efficiency and digitalization, smart system, SCM integration

and relationships, regulatory compliance, cost savings and opportunities, and customer-facing.

Then, according to the literature, the benefits and use of BC often go hand in hand with

IoT sensors for automation, and improved SC efficiency (Kshetri 2017, Yusuf et al. 2018a,

Viriyasitavat et al. 2019, Banerjee 2019). Therefore, we not only collected SFs related to BC but

also those related to IoT. Only a few studies to date have considered the SFs’ combination of

these two technologies for improving SC performance. Our findings could therefore provide

visibility for decision makers on the benefits of adopting BC with IoT in the SC.

Second, in order to adopt a SC user-centric approach, we have associated the SFs identified
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in the literature with the SC macro-processes proposed by Chopra et al. (2013). These macro-

processes have the merit of including all SC activities. This revised SC-driven perspective

enables SC performance objective alignment—not only internally, but also externally with

suppliers and customers—with digital technologies such as BC and IoT. Interestingly, this

perspective is rarely used in the literature. A common perspective found in previous works

is the technology-driven one, which starts from the identified technological advantages of

BC and IoT. Recommendations according to this approach are then formulated from the

advantages to identify compelling use cases in SCM. Although legitimate, this approach

potentially risks neglecting the business aspect, in this case the SC performance objectives

targeted by the stakeholders. Therefore, we believe that our SC-driven perspective, which is

focused on the needs of SC stakeholders, allows us to highlight specific SFs which were not

highlighted by the technology-driven perspective. For instance, SFs for BC and IoT adoption in

the SC that are related to customer-facing, SC performance, and digital maturity are revealed

by our perspective, but commonly omitted in a technology-driven one.

Third, no one to the best of our knowledge has considered analyzing the SFs of BC and IoT

adoption by distinguishing the SC type (lean or agile). Depending on the needs of the targeted

customers, the company must define the responsiveness or efficiency of the SC (Chopra et al.

2013). This characterization is thus critical to ensure the growth of the SC surplus. Therefore,

our study provides valuable insights into the BC IoT SC sweet spot depending on the SC type.

Our results show that the lean BC IoT sweet spot differs from the agile one. In particular,

the lean sweet spot is characterized by SFs that revolve around regulatory compliance, cost

savings and opportunities, smart system, and IT capabilities (with an emphasis on reliability

and authenticity requirements). In contrast, the agile sweet spot is characterized by SFs that

revolve around data management, SCM integration and relationships, regulatory compliance

(this time with a focus on counterfeiting, fair trade and ethical practices), customer-facing,

and IT capabilities (with an emphasis on immutability, security, and distribution).

Overall, in this chapter, we have uncovered lean and agile BC IoT SC sweet spots from a

SC-driven perspective. Our results are summarized in a conceptual framework and research

propositions that are consistent with previous findings in the literature related to BC IoT adop-

tion for SCM. We believe that our study could be useful for both practitioners and academics

to address SC performance strategies with aligned technologies’ adoption. The uncovered

sweet spots have implications for lean and agile SC performance, and empirical research. We

discuss each of these implications below.

Managerial Implications for Lean and Agile SC Performance

This chapter has conceptualized key elements in favor of BC and IoT adoption in the SC, which

are likely to improve SC performance, be it lean or agile. This study provides a foundation for

future research on the impact of these factors on SC performance.

First, we turn our attention to lean SCs. The SFs related to the requirements of high data

verification trust and decentralized execution are likely to have a positive impact on various
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SC strategies. With more reliable, verifiable IT capabilities, increased regulatory compliance,

tracking of products and raw materials, we expect to see an improved SRM macro-process

and suppliers’ selection. Also, transaction automation and decentralized execution allow

for automated and cross-border direct payments between SC stakeholders, as well as early

detection of human or transactional errors. Thus, we expect to witness enhanced and cheaper

manufacturing, inventory, and lead time strategies for the ISCM and TMF macro-processes.

The SFs related to the requirements of high decentralized execution and transparency are

likely to have a positive impact on the ISCM and CRM macro-processes performance, and,

in particular, on pricing and product design strategies. As for the pricing strategy, the “fair

pricing” factor is likely to increase consumer confidence in their purchases and consequently

their loyalty to the brand in the future. For product design strategy, we expect a decreased

time to market and a maximization of product performance.

Turning now to agile SCs, the SFs related to the requirements of high data verification

trust and decentralized execution are likely to have a positive impact on the SRM, ISCM and

TMF macro-processes. Fairer and more ethical practices are expected to increase the quality

level of suppliers and to lead to trustworthy manufacturing strategies. Furthermore, the trust

system for dispute resolution brought by BC technology and IoT sensors is likely to reduce

lead time strategies, bring higher collaboration between stakeholders, and enhance relations

with suppliers.

The SFs related to the requirements of high decentralized execution and transparency are

likely to positively influence the SRM and ISCM macro-processes. They are expected to speed

up the lead time, inventory, and manufacturing strategies through disintermediation, better

data sharing in real-time, and transparency over the whole SC.

Implications for Empirical Research

Once empirically verified, the research propositions advanced in this chapter (see Section 4.4.3)

provide important insights into when and how the lean and agile BC IoT SC sweet spots ma-

terialize in practice, and their impact on SC performance. Several companies have already

adopted BC and IoT to improve the SC performance, some of which are very successful (e.g.,

Bocek et al. (2017), OpenSC (2019), Smartrac (2019), Waltonchain (2021), IBM (2021)).

Limitations and Future Research

It is important to note that our results are based on the assumption of a favorable regulatory

framework for the use of BC within a SC ecosystem. Given the growing number of successful

worldwide companies adopting BC and IoT for their SC, this should not be a major issue.

Our conceptual framework offers research propositions to be empirically validated. This

study is a first step towards enhancing our understanding of BC and IoT benefits for lean and

agile SCs. Consequently, this empirical validation is reserved for future studies, which could

lead to a number of SC performance implications. For instance, our conceptual model could
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be tested with companies for which we have identified sweet spots of BC and IoT adoption.

In particular, as a first step, an empirical analysis of the impacts of SFs on the company’s SC

strategies could be evaluated. As a second step, it would be interesting to identify potential

obstacles to the successful implementation of BC and IoT technologies according to SC type.

Conclusion

To conclude, in this chapter we have identified the SFs and favorable conditions for the use

of BC and IoT depending on the SC type existing in companies. Even if some scenarios have

been highlighted in order to improve the SC performance, other scenarios for which a simple

database could be sufficient have also been identified. Depending on the SC type used, we

invite the SC stakeholders to align their SC objectives with the required IT technologies. We

also recommend taking into account potential barriers to the implementation of new tech-

nologies such as technical, organizational, and operational challenges (as identified in the

literature by Dutta et al. (2020), for instance). As a matter of time, the development of BC skills

and standards, and the decrease of installation and maintenance costs of this technology,

it is expected that the pairing of BC with IoT will bring significant improvements of the SC

performance as well as the emergence of new business models.
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Table M.1 – Academic literature selection through the tollgate approach and quality assessment
criteria

Electronic databases Phase 1 Phase 2 Final selection Technology-driven Supply chain-driven

Google Scholar 170 132 71 33 38

IEEE Xplore 22 18 12 6 6

ISI Web of Science 24 12 5 2 3

ACM Digital Library 111 3 1 0 1

Total 327 165 89 41 48

Table M.2 – Gray literature selection through the tollgate approach and quality assessment
criteria

Electronic databases Phase 1 Phase 2 Final selection Technology-driven Supply chain-driven

Google 80 100 81 36 45

Bing 40 3 4 0 4

Yahoo 50 3 1 1 0

Total 170 106 86 37 49
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Table N.1 – Academic vs. gray literature topic comparison.

Topics Academic technology-driven Gray technology-driven

Technology Capabilities x x

Secure End-to-End Data Communication x x

Asset Provenance Tracking, Traceability Visibility x x

Product Compliance x x

Product Ownership x

Product Types x x

End-users Experience x

Trust System x x

Stakeholders Integration Collaboration x x

Operations Customer Analytics x

Transparency Auditability x x

Digitalization Automation x x

Real-time SC Monitoring x x

Technology Operations Performance x x

Accountability x x

Stakeholders Incentivization x

Error Authentification Reduction x

Process/Product Conditions Monitoring x

Network Accessibility x x

Digital Provenance Identity x

Predictive Maintenance x

Transactions x x

Business Model-enabler x

Regulations Counterfeit/Fraud Prevention x x

Topics Academic supply-driven Gray supply-driven

Fraud/Counterfeit Prevention, Security x x

Network Transaction Communication x x

End-to-End Traceability Security x x

Information Monitoring Identification x x

Provenance Trust, Tracking Compliance x x

Real Time Monitoring Collaboration x x

Error Authentification Reduction x x

Product Safety Quality x x

Fair Trade/Ethical Compliance x x

Competition Cost Pressure x x

Stakeholders Relationship x x

Sustainability x x

Machine-to-machine Communication x x

Trusted Circular Economy x x

Digital Passport, Digital Twin x

Financial Traceability Visibility x x

End-to-end Distributed Integrated Digital Supply Chain x x

Real-time Collaboration x x

Process Efficiency x x

Inventory Management Tracking x x

Cost Savings x x

Decentralized Practices x x

Customer-centricity x x

Brand Image x
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Table O.1 – Lean Blockchain IoT-enabled SC success factors and conditions.

SC type
SC

macro-processes

SC macro

success factors
Success factors Requirements

Lean

SRM

Regulatory

compliance

Regulatory compliance

(proof of certification of

product conditions met)

Data verification trust

Assurance of provenance,

safety and quality of goods

Data verification trust

Traceability of raw materials Data verification trust

Smart system
IoT track trace for product

conditions transportation

Transparency

ISCM

IT capabilities

Transparency Transparency

Reliability Data verification trust

Authenticity Data verification trust

Verifiability Data verification trust

Traceability Data verification trust

Durability Data verification trust

Feasibility Data verification trust

Regulatory

compliance

Provenance, safety, and

quality goods monitoring

Data verification trust

Product ownership change

~custody tracking

Data verification trust

Regulatory compliance

(proof of certification of

product conditions met)

Data verification trust

Smart system Predictive maintenance Transparency

Supply chain

efficiency and

digitalization

Streamlined operations

and product recall

Transparency

Business efficiency

through automation

Decentralized execution

Smart tracking through

IoT to identify

SC inefficiencies

and improve performance

Data verification trust

Streamlined administrative

processes and paperwork

Decentralized execution

Streamlined data

management

Data verification trust

Cost savings and

opportunities

Inventory, operations,

working capital costs

Transparency

Administrative paperwork

costs

Transparency

CRM

Cost savings and

opportunities

Fair pricing Transparency

Supply chain

efficiency and

digitalization

Product recall efficiency Transparency

Warranty programs Transparency

Customer-facing
Commodities, healthcare

and pharmaceutical products

Transparency

TMF
Smart system

Early detection of

transactional,

human errors

Decentralized execution

Cross-border

payment systems

Decentralized execution

Direct payments Decentralized execution

Smart contract for

process automation

Decentralized execution

Data management
Interoperability with

existing systems

Decentralized execution
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Table O.2 – Agile Blockchain IoT-enabled SC success factors and conditions.

SC type
SC

macro-processes

SC macro

success factors
Success factors Requirements

Agile

SRM

Regulatory

compliance

Fair trade ethical

practices
Data verification trust

Real-time compliance,

audit trail
Data verification trust

Combat fraud counterfeit Data verification trust

Assurance of human

rights fair work practices
Data verification trust

SCM integration

and relationships
Governance of partnerships Transparency

Smart system
IoT tracking for product

conditions transportation
Transparency

ISCM

IT capabilities

Transparency Transparency

Immutability Data verification trust

Reliability Data verification trust

Authenticity Data verification trust

Security Data verification trust

Distributed Data verification trust

Trackability Data verification trust

Scalability Decentralized execution

Data management

Assurance of provenance,

safety and quality of goods
Data verification trust

Real-time information

sharing, monitoring, access
Decentralized execution

Business rules cooperation

to agree common standards
Decentralized execution

SCM integration

and relationships

Decentralized execution Decentralized execution

Trust system for disputes

resolution and better

stakeholders relationships

Data verification trust

Multiple stakeholders

engagement and collaboration
Decentralized execution

Horizontal and vertical

network integration
Transparency

Smart system
Inventory capacity

management
Transparency

End-to-end SC monitoring,

product life cycle management
Transparency

Regulatory

compliance

Policies and laws Data verification trust

Privacy, anonymity protection Data verification trust

CRM

Customer-facing

Food provenance and

safety public confidence
Transparency

High-value durable

consumer goods
Data verification trust

Brand image Transparency

Customer satisfaction,

experience, loyalty
Data verification trust

Customer-facing sustainability

(e.g., social, green, circular economy)
Transparency

Licensing services Data verification trust

Cost savings

and opportunities

Competitive advantage

and trading pressure
Transparency

New business models Decentralized execution

TMF

Data management Proof of records Decentralized execution

SCM integration

and relationships

Disintermediation for

decentralized execution
Decentralized execution

Reliable single source of

truth platform
Decentralized execution

Trading partner pressure

for accountability
Transparency

Smart system Direct faster payments Decentralized execution

Data management
Interoperability with

existing systems
Decentralized execution

Transaction scalability Decentralized execution
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Table P.1 – Conceptual framework and research propositions.

Lean SC sweet spot
and SFs conditions

Agile SC sweet spot
and SFs conditions

High data verification trust
and decentralized execution

High data verification trust
and decentralized execution

Impacted
SC macro-processes

SC macro SFs involved
Impacted

SC macro-processes
SC macro SFs involved

SRM x Regulatory compliance (P1) SRM x
Regulatory compliance (P5),
SCM integration
and relationships (P5)

ISCM x
IT capabilities (P2),
regulatory compliance (P2)

ISCM x

IT capabilities (P5),
SCM integration
and relationships (P5),
data management (P5)

CRM CRM

TMF x Smart system (P1, P2) TMF x
SCM integration
and relationships (P5),
data management (P5)

High decentralized execution
and transparency

High decentralized execution
and transparency

Impacted
SC macro-processes

SC macro SFs involved
Impacted SC

macro-processes
SC macro SFs involved

SRM SRM

ISCM x Transparency (P3) ISCM x
IT capabilities (P6),
regulatory compliance (P6),
transparency (P6)

CRM x
Cost savings and
opportunities (P3)

CRM x Customer-facing (P6)

TMF x Smart system (P3) TMF x
SCM integration
and relationships (P6),
data management (P6)

High data verification trust
and transparency

High data verification trust
and transparency

Impacted SC
macro-processes

SC macro SFs involved
Impacted SC

macro-processes
SC macro SFs involved

SRM x Regulatory compliance (P4) SRM x
Regulatory compliance (P7),
SCM integration
and relationships (P7)

ISCM x
IT capabilities (P4),
regulatory compliance (P4),
transparency (P4)

ISCM x

IT capabilities (P7),
SCM integration and
relationships (P7),
data management (P7),
transparency (P7)

CRM x
Cost savings and
opportunities (P4)

CRM x
Cost savings and
opportunities (P4),
customer-facing (P7)

TMF TMF
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In the age of digitalization and I4.0, SC stakeholders are facing new challenges related to

SC flexibility and efficiency, information sharing, and trust. On the one hand, they have to

respond to individual consumer needs in terms of customization. This urges manufacturers

to adopt user-centric approaches, as well as to evaluate emerging I4.0 technologies. AM, for

instance, would allow them to gain higher operational efficiency and flexibility, while limiting

manufacturing costs. On the other hand, there is a growing demand from consumers for

transparency on the origin of products, but also for more ethical and sustainable practices

within companies. This demand encourages SC stakeholders to consider investments in

advanced digital technologies, such as BC and IoT. I4.0 technologies and the transition from

traditional linear SCs to DSCs seem to provide solutions to the above mentioned challenges.

They offer the prospect of improving SC performance and customer satisfaction.

Chapter 2 of this thesis was designed to model and evaluate the disruptive practice of a

monopolist manufacturer switching between traditional MC processes and AM for final part

production. We quantified the benefits of adopting AM as an alternative, or as a complement,

to MC and optimized the resulting marketing and operations decisions in a dynamic setting.

We focused on the operations-marketing interface and jointly optimized customer-centric

technology-switching, pricing, and product variety decisions. We showed that leveraging

AM through technology-switching scenarios (in particular an AM-MC-AM scenario) could

help satisfying individual customer preferences while maximizing profitability across the

PLC. Testing different pricing strategies, we showed that decreasing trajectories are almost

optimal and flexible ones are optimal. We then derived analytical properties for the optimal

pricing policy. On the demand side, we extended the literature on micromodeling diffusion

models (e.g., Chatterjee and Eliashberg (1990), Song and Chintagunta (2003)) by developing

a novel time-varying locational customer choice model at the individual level, called the

HLB model. To our knowledge, the HLB model is the first to offer the advantages of both

modeling customer heterogeneity demand, at the individual level, and mimicking the PLC

dynamics. On the supply side, we substantiated the importance of technology-switching

decision in maintaining the compatibility between the technology choice and the PLC stage
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(Hayes and Wheelwright 1979, Ramasesh et al. 2010). We adopted an innovative approach to

solve our non-convex optimization problem, where the convergence of the solution is proven

theoretically. Numerical experiments further confirmed the validity of our solution approach

and highlighted the benefits and conditions of interchanging AM and MC over the PLC.

Chapter 3 extended Chapter 2 to investigate the conditions under which a capacity-

constrained monopolist manufacturer could combine the benefits of AM with the traditional

MC technology. We considered not only the supply side with the technology choice (AM or

MC) in a dynamic setting across the PLC, but also the demand side to account for customer het-

erogeneity and forward-looking behavior. Similarly to Chapter 2, the model was also designed

to jointly optimize marketing and operations decisions. In this Chapter though, we added two

additional operations decisions, namely: inventory and production quantity decisions under

the MC technology. Compared to the model of Chapter 2, AM and MC technologies were both

capacity-constrained. We investigated several technology-switching scenarios, and three pro-

duction capacity and inventory cases. In the scenario where the firm held inventory under MC,

we developed a customer-centric adaptive inventory policy intended for an interdependent

non-stationary demand. From this inventory policy followed a closed-form solution for the

production quantity decision. The numerous decisions involved in our optimization problem

led to a non-convex problem. We again analytically grounded our optimization problem

and successfully derived an algorithmic formulation for our objective function, under our

three capacity and inventory scenarios. We solved our problem using the sample average

approximation framework. Lastly, we performed robustness tests to check the convergence of

our approximation problem and validated the population sample size used in our numerical

experiments. On the operations side and as in Chapter 2, significant profit improvements

could be achieved with an AM-MC-AM technology-switching scenario. On the marketing

side and under capacity constraints, our results revealed that considering both customer

heterogeneity and limited production capacity required an increasing-decreasing pricing

policy. Our findings showed that the benefits of pricing flexibility are highest when capacity is

unlimited, or when the firm does not hold inventory. Under capacity constraints, a simple

decreasing pricing policy combined with inventory performed very well and lessened the need

for pricing flexibility.

Overall, Chapters 2 and 3 showed that the combination of customer-centric marketing and

operations strategies with the new usage of AM paired with traditional MC processes could

maximize a manufacturer’s profit while addressing individual customer preferences.

In Chapter 4, we conceptualized the SFs and conditions which are likely to improve the SC

performance, and favoring BC and IoT adoption in lean and agile SCs. To this end, we adopted

a three-step approach. First, through a MLR, we collected SFs for the adoption of BC and

IoT in the SC. These factors have been identified not only in the academic literature, but also

in the literature derived from industrial practices (gray literature) to bridge the gap between

theory and practice. We not only collected SFs related to BC but also those related to IoT.

Second, we used a topic modeling approach to create a holistic and structured view of these
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factors into categories. Third, we leveraged user-centricity of the SC. For this, we associated

the SFs identified in the literature with the SC macro-processes proposed by Chopra et al.

(2013). This revised SC-driven perspective enabled SC performance objective alignment—not

only internally, but also externally with suppliers and customers—with digital technologies

such as BC and IoT. Lastly, we analyzed the SFs of BC and IoT adoption by distinguishing the

SC type (lean or agile), which, as far as we know, have not been performed previously. We

summarized our findings into a conceptual framework and research propositions. We offered

valuable insights into when and how the sweet spots for both SC types would materialize in

practice, as well as their impacts with respect to the SC macro-processes performance.

5.1 Future Research Avenues

While preparing the material of Chapters 2 to 4, we identified several promising paths for

future research. For instance, for both Chapters 2 and 3, and when data becomes available, it

would be interesting to use parametric estimations for customer characteristics and industrial

data related to production costs to fit the models. Second, one could investigate how to take

into account a decentralized manufacturing scenario in the models of Chapter 2 and 3 (e.g., see

the work of Attaran (2017) which outlines the decentralized feature of AM to reduce logistics

costs, and Westerweel et al. (2018a) who focus on spare parts inventory control, and show

promising results while using AM at remote locations). Thus, it would be worth examining

how our results can be extended to incorporate centralized and decentralized manufacturing

scenarios, under individual customer preferences and PLC considerations. Still in the context

of the production scenario analysis, it would also be worthwhile to explore scenarios where

AM and MC processes are operated in parallel. Finally, in Chapter 4, our conceptual framework

offers research propositions to be empirically validated. Our conceptual model could be tested

with companies for which we have identified sweet spots of BC and IoT adoption. In particular,

a first step could consist in empirically analyzing the impacts of SFs on the company’s SC

strategies. A second step could identify potential obstacles to the successful implementation

of BC and IoT technologies according to SC type.
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A. Alptekinoğlu and C. J. Corbett. Leadtime-variety tradeoff in product differentiation. Manufacturing

& Service Operations Management, 12(4):569–582, 2010.

D. M. Anderson. Build-to-Order & Mass Customization: The ultimate supply chain management and

lean manufacturing strategy for low-cost on-demand production without forecasts or inventory.

CIM press, 2004.

J. Angelis and E. R. da Silva. Blockchain adoption: A value driver perspective. Business Horizons, 62(3):

307–314, 2019.

APICS. SCOR quick reference guide, 2017. URL http://www.apics.org/docs/default-source/

scor-p-toolkits/apics-scc-scor-quick-reference-guide.pdf.

M. E. Arbabian and M. R. Wagner. The impact of 3D printing on manufacturer–retailer supply chains.

European Journal of Operational Research, 285(2):538–552, 2020. ISSN 0377-2217. doi: https:

//doi.org/10.1016/j.ejor.2020.01.063.

M. Attaran. The rise of 3-d printing: The advantages of additive manufacturing over traditional

manufacturing. Business Horizons, 60(5):677–688, 2017.

121

https://www.supplychaindive.com/news/coronavirus-rfid-sensor-tracking-hospital-supply-chain/581066/
https://www.supplychaindive.com/news/coronavirus-rfid-sensor-tracking-hospital-supply-chain/581066/
https://www.supplychaindive.com/news/coronavirus-rfid-sensor-tracking-hospital-supply-chain/581066/
https://amfg.ai/industrial-applications-of-3d-printing-the-ultimate-guide/
https://amfg.ai/industrial-applications-of-3d-printing-the-ultimate-guide/
http://www.apics.org/docs/default-source/scor-p-toolkits/apics-scc-scor-quick-reference-guide.pdf
http://www.apics.org/docs/default-source/scor-p-toolkits/apics-scc-scor-quick-reference-guide.pdf


Chapter 5 BIBLIOGRAPHY

G. Aydin and E. L. Porteus. Joint inventory and pricing decisions for an assortment. Operations Research,

56(5):1247–1255, 2008.

A. Banerjee. Blockchain technology: supply chain insights from erp. In Advances in computers, volume

111, pages 69–98. Elsevier, 2018.

A. Banerjee. Blockchain with iot: Applications and use cases for a new paradigm of supply chain driving

efficiency and cost. In Advances in Computers, volume 115, pages 259–292. Elsevier, 2019.

M. Bapna. Foxconn scandal offers supply chain lessons. World Resources Institute, 2012.

F. M. Bass. A new product growth for model consumer durables. Management Science, 15(5):215–227,

1969.

F. M. Bass. Comments on “a new product growth for model consumer durables the bass model”.

Management science, 50(12_supplement):1833–1840, 2004.

M. Baumers, P. Dickens, C. Tuck, and R. Hague. The cost of additive manufacturing: Machine produc-

tivity, economies of scale and technology-push. Technological Forecasting and Social Change,

102:193–201, 2016.

B. Berman. 3-d printing: The new industrial revolution. Business Horizons, 55(2):155–162, 2012.

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. the Journal of machine Learning

research, 3:993–1022, 2003.

T. Bocek, B. B. Rodrigues, T. Strasser, and B. Stiller. Blockchains everywhere-a use-case of blockchains

in the pharma supply-chain. In 2017 IFIP/IEEE symposium on integrated network and service

management (IM), pages 772–777. IEEE, 2017.

B.-J. Butijn, D. A. Tamburri, and W.-J. v. d. Heuvel. Blockchains: a systematic multivocal literature

review. ACM Computing Surveys (CSUR), 53(3):1–37, 2020.

I. Campbell, O. Diegel, R. Huff, and J. Kowen. Wohlers report 2020: 3D printing and additive manufac-

turing state of the industry. Wohlers Associates, 2020.

R. A. Chatterjee and J. Eliashberg. The innovation diffusion process in a heterogeneous population: A

micromodeling approach. Management Science, 36(9):1057–1079, 1990.

D. Chehal, P. Gupta, and P. Gulati. Implementation and comparison of topic modeling techniques

based on user reviews in e-commerce recommendations. Journal of Ambient Intelligence and

Humanized Computing, pages 1–16, 2020.

L. Chen, Y. Cui, and H. L. Lee. On-Demand Customization and Channel Strategies, pages 165–192.

Springer International Publishing, Cham, 2020. ISBN 978-3-030-31733-1.

L. Chen, Y. Cui, and H. L. Lee. Retailing with 3D printing. Production and Operations Management,

2021. doi: https://doi.org/10.1111/poms.13367.

J. W. Chinneck. Practical optimization: A gentle introduction. Chapter 17: Pattern Search for Uncon-

strained NLP. Systems and Computer Engineering, Carleton University, Ottawa, 2015. URL

http://www.sce.carleton.ca/faculty/chinneck/po/Chapter17.pdf.

S. Chopra, P. Meindl, and D. V. Kalra. Supply chain management: strategy, planning, and operation,

volume 232. Pearson Boston, MA, 2013.

B. Chouli, F. Goujon, and Y.-M. Leporcher. Les blockchains: de la théorie à la pratique, de l’idée à

l’implémentation. Editions ENI, 2017.

R. Cole, M. Stevenson, and J. Aitken. Blockchain technology: implications for operations and supply

chain management. Supply Chain Management: An International Journal, 2019.

H.-N. Dai, Z. Zheng, and Y. Zhang. Blockchain for internet of things: A survey. IEEE Internet of Things

Journal, 6(5):8076–8094, 2019.

122

http://www.sce.carleton.ca/faculty/chinneck/po/Chapter17.pdf


BIBLIOGRAPHY Chapter 5

S. M. Davis. Future Perfect, pages 18–28. Palgrave Macmillan UK, London, 1990. ISBN 978-1-349-11255-

5. doi: 10.1007/978-1-349-11255-5_2.

J. Dean. Pricing policies for new products. Harvard Business Review, 54(6):141–153, 1976.

V. Dedeoglu, R. Jurdak, A. Dorri, R. C. Lunardi, R. A. Michelin, A. F. Zorzo, and S. S. Kanhere. Blockchain

Technologies for IoT, pages 55–89. Springer Singapore, Singapore, 2020. ISBN 978-981-13-8775-3.

doi: 10.1007/978-981-13-8775-3_3. URL https://doi.org/10.1007/978-981-13-8775-3_3.

D. Delen, B. C. Hardgrave, and R. Sharda. Rfid for better supply-chain management through enhanced

information visibility. Production and operations management, 16(5):613–624, 2007.

D. Deradjat and T. Minshall. Implementation of rapid manufacturing for mass customisation. Journal

of Manufacturing Technology Management, 28(1):95–121, 2017.

G. Dobson and C. A. Yano. Product offering, pricing, and make-to-stock/make-to-order decisions with

shared capacity. Production and Operations Management, 11(3):293–312, 2002.

L. Dong, D. Shi, and F. Zhang. 3D printing and product assortment strategy. Working Paper, Available at

SSRN: http://dx.doi.org/10.2139/ssrn.3031566, 2020a.

L. Dong, D. Shi, and F. Zhang. 3D printing and product assortment strategy. Working paper, Washington

University in St. Louis, St. Louis. Available at SSRN 2847731., 2020b.

B. Dorsemaine, J.-P. Gaulier, J.-P. Wary, N. Kheir, and P. Urien. Internet of things: a definition &

taxonomy. In 2015 9th international conference on next generation mobile applications, services

and technologies, pages 72–77. IEEE, 2015.

J.-G. Dumas, P. Lafourcade, A. Tichit, and S. Varrette. Les blockchains en 50 questions: Comprendre le

fonctionnement et les enjeux de cette technologie. Dunod, 2019.

C. F. Durach, T. Blesik, M. von Düring, and M. Bick. Blockchain applications in supply chain transactions.

Journal of Business Logistics, 2020.

P. Dutta, T.-M. Choi, S. Somani, and R. Butala. Blockchain technology in supply chain operations:

Applications, challenges and research opportunities. Transportation Research Part E: Logistics

and Transportation Review, 142:102067, 2020.

R. F. Elmore. Comment on “towards rigor in reviews of multivocal literatures: applying the exploratory

case study method”. Review of educational research, 61(3):293–297, 1991.

M. L. Fisher. What is the right supply chain for your product? Harvard business review, 75:105–117,

1997.

V. Garousi, M. Felderer, and M. V. Mäntylä. Guidelines for including grey literature and conducting

multivocal literature reviews in software engineering. Information and Software Technology, 106:

101–121, 2019.

G. M. Gaukler and R. W. Seifert. Applications of rfid in supply chains. Trends in supply chain design and

management, pages 29–48, 2007.

V. Gaur and D. Honhon. Assortment planning and inventory decisions under a locational choice model.

Management Science, 52(10):1528–1543, 2006.

S. C. Graves. A single-item inventory model for a nonstationary demand process. Manufacturing &

Service Operations Management, 1(1):50–61, 1999.

N. Hackius and M. Petersen. Blockchain in logistics and supply chain: trick or treat? In Digitalization

in Supply Chain Management and Logistics: Smart and Digital Solutions for an Industry 4.0

Environment. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 23,

pages 3–18. Berlin: epubli GmbH, 2017.

G. Hadley and T. Whitin. An optimal final inventory model. Management Science, 7(2):179–183, 1961.

123

https://doi.org/10.1007/978-981-13-8775-3_3


Chapter 5 BIBLIOGRAPHY

G. M. Hastig and M. S. Sodhi. Blockchain for supply chain traceability: Business requirements and

critical success factors. Production and Operations Management, 29(4):935–954, 2020.

R. H. Hayes and S. C. Wheelwright. Link manufacturing process and product life cycles. Harvard

Business Review, 57(1):133–140, 1979.

D. Hellwig, G. Karlic, A. Huchzermeier, et al. Build Your Own Blockchain. Springer, 2020.

T.-H. Ho, S. Savin, and C. Terwiesch. Managing demand and sales dynamics in new product diffusion

under supply constraint. Management Science, 48(2):187–206, 2002.

M. Holweg. The limits of 3D printing. Harvard Business Review: Digital Review Articles, pages 2–4, 2015.

T. Homem-de Mello and G. Bayraksan. Monte Carlo sampling-based methods for stochastic optimiza-

tion. Surveys in Operations Research and Management Science, 19(1):56–85, 2014.

K. Hon. Digital additive manufacturing: from rapid prototyping to rapid manufacturing. In Proceedings

of the 35th International MATADOR Conference, pages 337–340. Springer, 2007.

H. Hotelling. Stability in competition. The economic journal, 39(153):41–57, 1929.

IBM. Build trust in your iot data with blockchain, 2021. URL https://www.ibm.com/blockchain/iot.

Ideo. What is design thinking?, 2020. URL https://www.ideou.com/blogs/inspiration/

what-is-design-thinking.

K. Jiang, H. L. Lee, and R. W. Seifert. Satisfying customer preferences via mass customization and mass

production. IIE Transactions, 38(1):25–38, 2006.

A. G. Kök, M. L. Fisher, and R. Vaidyanathan. Assortment planning: Review of literature and industry

practice. In N. Agrawal and S. A. Smith, editors, Retail Supply Chain Management: Quantitative

Models and Empirical Studies, pages 175–236. Springer, Boston, MA, 2015. ISBN 978-1-4899-7562-

1. doi: 10.1007/978-1-4899-7562-1_8. URL https://doi.org/10.1007/978-1-4899-7562-1_8.

K. Korpela, J. Hallikas, and T. Dahlberg. Digital supply chain transformation toward blockchain

integration. In proceedings of the 50th Hawaii international conference on system sciences, 2017.

N. Kshetri. Can blockchain strengthen the internet of things? IT professional, 19(4):68–72, 2017.

N. Kshetri. 1 blockchain’s roles in meeting key supply chain management objectives. International

Journal of Information Management, 39:80–89, 2018.

A. Kumar, R. Liu, and Z. Shan. Is blockchain a silver bullet for supply chain management? technical

challenges and research opportunities. Decision Sciences, 51(1):8–37, 2020.

S. Kumar and A. K. Pundir. Integration of iot and blockchain technology for enhancing supply chain

performance: A review. In 2020 11th IEEE Annual Information Technology, Electronics and Mobile

Communication Conference (IEMCON), pages 0396–0401. IEEE, 2020.

S. Kumar and J. M. Swaminathan. Diffusion of innovations under supply constraints. Operations

Research, 51(6):866–879, 2003.

A. A. Kurawarwala and H. Matsuo. Forecasting and inventory management of short life-cycle products.

Operations Research, 44(1):131–150, 1996.

T.-H. Kwok, H. Ye, Y. Chen, C. Zhou, and W. Xu. Mass customization: Reuse of digital slicing for additive

manufacturing. Journal of Computing and Information Science in Engineering, 17(2), 2017.

R. Lacroix, R. W. Seifert, and A. Timonina-Farkas. Benefiting from additive manufacturing for mass

customization across the product life cycle. Working paper, École Polytechnique Fédérale de

Lausanne (EPFL). Available at SSRN: abstract id=3719793, 2020.

K. Lancaster. The economics of product variety: A survey. Marketing science, 9(3):189–206, 1990.

124

https://www.ibm.com/blockchain/iot
https://www.ideou.com/blogs/inspiration/what-is-design-thinking
https://www.ideou.com/blogs/inspiration/what-is-design-thinking
https://doi.org/10.1007/978-1-4899-7562-1_8


BIBLIOGRAPHY Chapter 5

K. Lancaster. Markets and product variety management. In T.-H. Ho and C. S. Tang, editors, Product

Variety Management: Research Advances, volume 10 of International Series in Operations Research

& Management Science, chapter 1, pages 19–35. Springer Science+Business Media, 1998.

A. N. Langville and C. D. Meyer. Google’s PageRank and beyond: The science of search engine rankings.

Princeton university press, 2011.

H. Lee and Ö. Özer. Unlocking the value of rfid. Production and operations management, 16(1):40–64,

2007.

E. D. Liddy. Natural language processing. 2001.

F. R. Lima and L. C. R. Carpinetti. Evaluating supply chain performance based on scor® model and

fuzzy-topsis. In 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pages 2075–

2082. IEEE, 2016.

I. Lobel, J. Patel, G. Vulcano, and J. Zhang. Optimizing product launches in the presence of strategic

consumers. Management Science, 62(6):1778–1799, 2015.

V. Mahajan, E. Muller, and R. K. Srivastava. Determination of adopter categories by using innovation

diffusion models. Journal of Marketing Research, 27(1):37–50, 1990.

V. Mahajan, E. Muller, and Y. Wind. New-product diffusion models, volume 11. Springer Science &

Business Media, 2000.

H. Mendelson and A. K. Parlaktürk. Competitive customization. Manufacturing & Service Operations

Management, 10(3):377–390, 2008.

A. Merle, J.-L. Chandon, E. Roux, and F. Alizon. Perceived value of the mass-customized product and

mass customization experience for individual consumers. Production and Operations Manage-

ment, 19(5):503–514, 2010.

S. Nakamoto. Re: Bitcoin p2p e-cash paper. The Cryptography Mailing List, 2008.

J. B. Naylor, M. M. Naim, and D. Berry. Leagility: Integrating the lean and agile manufacturing paradigms

in the total supply chain. International Journal of production economics, 62(1-2):107–118, 1999.

R. T. Ogawa and B. Malen. Towards rigor in reviews of multivocal literatures: Applying the exploratory

case study method. Review of educational research, 61(3):265–286, 1991.

T. L. Olsen and B. Tomlin. Industry 4.0: Opportunities and challenges for operations management.

Manufacturing & Service Operations Management, 22(1):113–122, 2020.

OpenSC. Opensc – wwf-australia and bcg digital ventures – patagonian toothfish, 2019. URL https:

//opensc.org/case-studies.html.

Y. Orbach. Parametric analysis of the Bass model. Innovative Marketing, 12(1):29–40, 2016.

R. Peres, E. Muller, and V. Mahajan. Innovation diffusion and new product growth models: A critical

review and research directions. International Journal of Research in Marketing, 27(2):91–106,

2010.

M. Petrik and S. Zilberstein. Robust approximate bilinear programming for value function approxima-

tion. Journal of Machine Learning Research, 12(Oct):3027–3063, 2011.

S. Prabhakaran. Topic modeling with Gensim (Python), 2020. URL https://www.machinelearningplus.

com/nlp/topic-modeling-gensim-python/.

L. PwC. Next-generation supply chains: Efficient fast and tailored, 2012. URL https:

//www.pwc.com/gx/en/consulting-services/supply-chain/global-supply-chain-survey/

assets/pwc-next-generation-supply-chains-pdf.pdf.

R. Ramasesh, D. Tirupati, and C. A. Vaitsos. Modeling process-switching decisions under product life

cycle uncertainty. International Journal of Production Economics, 126(2):236–246, 2010.

125

https://opensc.org/case-studies.html
https://opensc.org/case-studies.html
https://www.machinelearningplus.com/nlp/topic-modeling-gensim-python/
https://www.machinelearningplus.com/nlp/topic-modeling-gensim-python/
https://www.pwc.com/gx/en/consulting-services/supply-chain/global-supply-chain-survey/assets/pwc-next-generation-supply-chains-pdf.pdf
https://www.pwc.com/gx/en/consulting-services/supply-chain/global-supply-chain-survey/assets/pwc-next-generation-supply-chains-pdf.pdf
https://www.pwc.com/gx/en/consulting-services/supply-chain/global-supply-chain-survey/assets/pwc-next-generation-supply-chains-pdf.pdf


Chapter 5 BIBLIOGRAPHY

K. Ramdas. Managing product variety: An integrative review and research directions. Production and

Operations Management, 12(1):79–101, 2003.

P. Reeves, C. Tuck, and R. Hague. Additive manufacturing for mass customization. In Mass Customiza-

tion, pages 275–289. Springer, 2011.

A. Rejeb, J. G. Keogh, and H. Treiblmaier. Leveraging the internet of things and blockchain technology

in supply chain management. Future Internet, 11(7):161, 2019.

P. M. Reyes, S. Li, and J. K. Visich. Determinants of rfid adoption stage and perceived benefits. European

Journal of Operational Research, 254(3):801–812, 2016.

Riddell. Riddell partners with carbon to produce first-ever 3D printed foot-

ball helmet liner. 2019. URL http://news.riddell.com/info/releases/

riddell-partners-with-carbonR-to-produce-first-ever-3d-printed-football-helmet-liner.

H. Rogers, N. Baricz, and K. S. Pawar. 3D printing services: Classification, supply chain implications

and research agenda. International Journal of Physical Distribution & Logistics Management, 46

(10):886–907, 2016.

S. Saberi, M. Kouhizadeh, J. Sarkis, and L. Shen. Blockchain technology and its relationships to

sustainable supply chain management. International Journal of Production Research, 57(7):

2117–2135, 2019.

S. C. Salop. Monopolistic competition with outside goods. The Bell Journal of Economics, pages 141–156,

1979.

A. Sasson and J. C. Johnson. The 3D printing order: Variability, supercenters and supply chain recon-

figurations. International Journal of Physical Distribution & Logistics Management, 46(1):82–94,

2016.

S. Schrauf and P. Berttram. How digitization makes the supply chain more efficient, agile, and

customer-focused. price waterhouse cooper, 2018. URL https://www.pwc.ch/en/publications/

2017/how-digitization-makes-the-supply-chain-more-efficient-pwc-2016.pdf.

R. W. Seifert and R. Markoff. RFID: Yesterday’s Blockchain – a cautionary and hopeful tale, 2019. URL

http://www.imd.org/research-knowledge/articles/RFID-Yesterdays-blockchain/.

N. Sethuraman, A. K. Parlakturk, and J. M. Swaminathan. Personal fabrication as an operational strategy:

Value of delegating production to customer. Kenan Institute of Private Enterprise Research Paper,

(18-5), 2018.

A. Shapiro, D. Dentcheva, and A. Ruszczynski. Lectures on Stochastic Programming: Modeling and

Theory, Second Edition. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,

2014. ISBN 1611973422, 9781611973426.

W. Shen, I. Duenyas, and R. Kapuscinski. Optimal pricing, production, and inventory for new product

diffusion under supply constraints. Manufacturing & Service Operations Management, 16(1):

28–45, 2013.

M. Shoaib, M. K. Lim, and C. Wang. An integrated framework to prioritize blockchain-based supply

chain success factors. Industrial Management & Data Systems, 2020.

Smartrac. Smartrac and suku leverage nfc and blockchain to guarantee authenticity of covid-19 test kits

and ppe, 2019. URL https://rfid.averydennison.com/en/home/news-insights/press-releases/

smartrac-and-suku-leverage-nfc-and-blockchain.html.

L. V. Snyder and Z.-J. M. Shen. Fundamentals of Supply Chain Theory. John Wiley & Sons, 2019.

M. Sodhi and C. S. Tang. Supply chains built for speed and customization. MIT Sloan Management

Review, 58(4):58419, 2017.

126

http://news.riddell.com/info/releases/riddell-partners-with-carbonR-to-produce-first-ever-3d-printed-football-helmet-liner
http://news.riddell.com/info/releases/riddell-partners-with-carbonR-to-produce-first-ever-3d-printed-football-helmet-liner
https://www.pwc.ch/en/publications/2017/how-digitization-makes-the-supply-chain-more-efficient-pwc-2016.pdf
https://www.pwc.ch/en/publications/2017/how-digitization-makes-the-supply-chain-more-efficient-pwc-2016.pdf
http://www.imd.org/research-knowledge/articles/RFID-Yesterdays-blockchain/
https://rfid.averydennison.com/en/home/news-insights/press-releases/smartrac-and-suku-leverage-nfc-and-blockchain.html
https://rfid.averydennison.com/en/home/news-insights/press-releases/smartrac-and-suku-leverage-nfc-and-blockchain.html


BIBLIOGRAPHY Chapter 5

I. Song and P. K. Chintagunta. A micromodel of new product adoption with heterogeneous and forward-

looking consumers: Application to the digital camera category. Quantitative Marketing and

Economics, 1(4):371–407, 2003.

J.-S. Song and Y. Zhang. Stock or print? Impact of 3-D printing on spare parts logistics. Management

Science, 66(9):3860–3878, 2020.

N. Suaysom and W. Gu. Expert opinion and coherence based topic modeling. International Journal on

Natural Language Computing (IJNLC) Vol, 7, 2018.

D. S. Thomas and S. W. Gilbert. Costs and cost effectiveness of additive manufacturing. NIST Special

Publication, 1176:12, 2014.

J. T. Treharne and C. R. Sox. Adaptive inventory control for nonstationary demand and partial informa-

tion. Management Science, 48(5):607–624, 2002.

M. M. Tseng and J. Jiao. Mass customization. Handbook of Industrial Engineering, 3:684–709, 2001.
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