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Parameter-free rendering of single-molecule
localization microscopy data for parameter-free
resolution estimation
Adrien C. Descloux 1✉, Kristin S. Grußmayer 1,2 & Aleksandra Radenovic 1✉

Localization microscopy is a super-resolution imaging technique that relies on the spatial and

temporal separation of blinking fluorescent emitters. These blinking events can be individually

localized with a precision significantly smaller than the classical diffraction limit. This sub-

diffraction localization precision is theoretically bounded by the number of photons emitted

per molecule and by the sensor noise. These parameters can be estimated from the raw

images. Alternatively, the resolution can be estimated from a rendered image of the locali-

zations. Here, we show how the rendering of localization datasets can influence the reso-

lution estimation based on decorrelation analysis. We demonstrate that a modified histogram

rendering, termed bilinear histogram, circumvents the biases introduced by Gaussian or

standard histogram rendering. We propose a parameter-free processing pipeline and show

that the resolution estimation becomes a function of the localization density and the loca-

lization precision, on both simulated and state-of-the-art experimental datasets.
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In 2019 we proposed a novel method to estimate resolution
using decorrelation analysis on a single image1. A partial phase
autocorrelation for a series of filtered images determines the

highest spatial frequency with sufficiently high signal to
noise ratio. The method has now been tested for more than a year
across imaging modalities using the open source software (https://
github.com/Ades91/ImDecorr). We received overall positive
comments from specialists ranging from two-photon microscopy
to structured illumination imaging and beyond. Initially, we
presented decorrelation analysis on the single-molecule localiza-
tion microscopy symposium (SMLMS), looking for feedback
from this community that relies heavily on image processing.
Unlike other super-resolution methods, most SMLM software
does not directly output an image, but a set of localizations that
need to be rendered for visualization. This adds another level of
complexity to the interpretation of the images. Interactive dis-
cussions around increasing localization precision in optimized
SMLM (due to new developments in experiments2–4 and SMLM
software5) and the resulting demands on localization density
prompted us to investigate in greater detail the best practice of
using our algorithm.

Ideally, the estimated resolution should not change when
choosing a different method to render the dataset. Nevertheless,
commonly used rendering choices (fixed and localization-
uncertainty-based Gaussian rendering) are implying additional
assumptions about the underlying localization statistics, which can
impact the resolution estimate6. In our publication, we rendered
all the localizations as a Gaussian with a standard deviation equal
to their respective localization uncertainty. The estimation of the
localization uncertainty is a non-trivial task and depends on many
parameters such as camera calibration or the noise model used7,8.
In addition, there exist localization softwares using e.g., machine
learning that do not routinely return localization estimates9. In
our recent addendum6, we advise, based on simulations, to choose
histogram rendering to construct input images for decorrelation
analysis. We show that the use of fixed Gaussian rendering is not
optimal, as it is likely to bias the resolution estimate and does not
provide any benefits compared to histogram rendering. We also
discussed the challenges of using histogram rendering in con-
junction with our resolution estimation algorithm.

Here, we focus on diverse experimental data, pinpointing the
limits of SMLM and decorrelation analysis and proposing a
workflow for accurate resolution estimation. We present a mod-
ified histogram method for SMLM dataset rendering that is
compatible with resolution estimation using decorrelation

analysis. The proposed bilinear histogram rendering method does
not require the knowledge of the localization uncertainty estimate
or artificial jittering of the localizations and minimizes the
rounding error of naïve histogram rendering. We demonstrate
that the modified histogram rendering is able to convey the
localization information into the image accurately. Using experi-
mental data and simulations, we show how our resolution estimate
depends on the rendering pixel size and localization density. We
find that our method expects a localization density of about
1–4×104 loc. per µm2 to work reliably with experimental data.

Results
Histogram and bilinear histogram rendering. Let us consider an
SMLM dataset of N localizations with positions xn; yn

� �
. One way

to render the data without making additional assumptions is to
plot them as a histogram, which is usually expressed as

I x; y
� � ¼ ∑N

n δ x � xn
� �

; y � yn
� �� � ð1Þ

where xn
� �

denotes the x position of the nth localization event
floored to the nearest integer multiple of the chosen pixel size.
This rounding operation is problematic as it introduces a round-
off error, which can be detrimental to the resolution estimation,
especially if the pixel size is on the order of the localization
uncertainty. In order to alleviate this effect, we propose to render
the data using a modified histogram expression

I x; y
� � ¼ ∑N

n δ x � xn
� �

; y � yn
� �� � � wn x; y

� � ð2Þ
where � denotes the convolution operation of a discrete Dirac
distribution with the 2 × 2 matrix wn. Compared to Eq. 1, each
localization is spread on the four nearest pixels and the weights
are given by

wn xn; yy

h i
¼ 1� yn þ yn

� �

yn � yn
� �

 !

� 1� xn þ xn
� �

; xn � xn
� �Þ�

ð3Þ
where � denotes the tensor product. This rendering approach is
equivalent to a linear (or bilinear for the 2D case) interpolation
and is also equivalent to a 2D average shifted histogram with an
infinitesimal shift10. The weight distribution of three localizations
is illustrated in Fig. 1a. Figure 1b and c show the rendering of the
same dataset (central region of cSir phalloidin dataset presented
in Fig. 2) using standard histogram rendering (b) and bilinear
histogram rendering (c). We see that the standard histogram

Fig. 1 Illustration of bilinear rendering of localization microscopy data. a Schematic of the rendering of localizations with positions [2.3, 1.8], [5.2, 1.5],
[4.2, 5.2] (black crosses) on the image grid, with the weights indicated. b Standard histogram rendering applied on the center region (pixel size of 15 nm;
FOV of 3×3 µm) of the cSir Phalloidin dataset (see Fig. 2 for details). c Bilinear histogram rendering of the same region as in b. Scale bar 500 nm.
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image looks more pixelated (due to the rounding operation) while
the bilinear histogram looks noticeably smoother.

This rendering method will be referred to as bilinear histogram
rendering. We note that this rendering approach is not new11 but
it is the first time, to our knowledge, that it is used in the context
of resolution estimation. With this approach, the information
about the position of the localization is conveyed into the image
and it is, to our knowledge, the most appropriate rendering choice
for resolution estimation based on decorrelation analysis1. The
resolution estimation assumes that the image is expressed as the
sum of a signal (exhibiting spatial correlations) and uncorrelated
noise. The estimation relies on the computation of cross-
correlation coefficients d between the high-passed version of the
input image and its low-pass filtered Fourier normalized version.
Normalizing the Fourier transform balances the contributions of
signal and noise. The low-pass filter consists in an ideal lowpass
filter characterized by its cutoff frequency r, which allows to
compute the cross-correlation coefficient as a function of r. With
decreasing r, first noise contributions are gradually removed while
preserving the bandwidth-limited signal. The asymmetry (noise
rejection but signal preservation) is mathematically translated into
an increase in the correlation. Eventually, the low-pass filter will
start to remove the signal which reduces the correlation. The
presence of a local maximum in the function d r; σð Þ indicates the
spatial frequency of best noise rejection and signal preservation.
The high-pass filter is an inverted Gaussian shaped filter of

standard deviation σ. We have demonstrated that the image
resolution can be estimated from the function d r; σð Þ by finding,
for each value of σ i, the position ri of the local maxima. The image
cutoff is then defined as the largest ri.

In the case of SMLM data, the resulting resolution estimate
depends on the density of localizations, the homogeneity of the
labeling, the filtering of high uncertainty localizations and the
accuracy of the drift correction. A Matlab implementation of the
bilinear histogram method used in this work is made publicly
available at https://github.com/Ades91/ImDecorr [https://doi.org/
10.5281/zenodo.4655984].

The only remaining open parameter for rendering is the pixel
size. If it is set too small, the localizations might not exhibit any
spatial correlations as gaps will appear between localizations, which
is likely to result in an underestimated resolution. If the pixel size is
set too large, our resolution estimation will possibly be close to twice
the pixel size, which means that the Nyquist sampling criterion is
not fulfilled. Similarly, if the localization density is too low, such
that no continuous structures can form, the algorithm will also
underestimate the resolution (see Supplementary Information, Note
and Figs. 1, 2 and 3 for a comparison between standard and bilinear
histogram and Gaussian rendering).

Experimental results. In order to demonstrate the applicability
and advantages of the proposed bilinear histogram rendering
method for resolution estimation of SMLM, we applied the

Fig. 2 Experimental resolution estimate using bilinear histogram rendering. a–e Selection of Shareloc.xyz data rendered with a pixel size of 5 nm (field-
of-view of 12 × 12 µm2), scale bar: 2 µm. The resolution indicated corresponds to the smallest resolution estimated from all the tested pixel sizes. f–j Zoom-
in of a–e of 2.5 × 2.5 µm2 regions indicated by the white squares, scale bar: 500 nm. k Resolution vs pixel size. l Resolution as a function of number of
localizations. m Resolution as a function of localization density.
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discussed methodology on several SMLM datasets, including (d)
STORM, DNA-PAINT and multi-color STORM. Although most
journals mandate or encourage data sharing, comprehensive and
up-to-date database(s) of localization microscopy are still rare. In
our opinion, they are an invaluable asset for tool developers and
the SMLM community.

Experimental results: ShareLoc. We first applied our method on
several single channel (d)STORM datasets publicly available at
https://shareloc.xyz/. We selected five different proteins from
different cellular structures acquired by three different groups
(see Table 1 below for details).

Figure 2a–e shows the five selected data sets rendered at their
highest localization density using bilinear histogram rendering with
a pixel size of 5 nm. The resolution indicated corresponds to the
smallest resolution estimated from all the tested pixel size. For
comparison purposes, a field-of-view of 12 × 12 µm2 is chosen for
all data sets. Figure 2f–j shows a 2.5 × 2.5 µm2 zoom-in of Fig. 2a–e,
indicated by the white squares. Figure 2k shows the resolution
estimate as a function of the pixel size at their highest localization
density. We see that for large pixel size, the resolution evolves
linearly at twice the pixel size (sampling limited). As the pixel size
decreases, the resolution estimate reaches a minimum depending on
the data set and then rises again (sparsity limited). The minimum of
each curve corresponds to the resolution indicated in Fig. 2a–e.
Figure 2l shows the estimated resolution as a function of the
number of localizations included in the analysis. For each sample
point, we computed the resolution as a function of the pixel size and
retained only the smallest estimate. We see that the number of
localizations required to reach a stable resolution estimate depends
on the structure. However, all the curves exhibit the same trend of
an underestimated resolution that converges to a plateau once a
certain number of localizations are exceeded.

Figure 2m shows the same curves as Fig. 2l but with the number
of localizations normalized to the area covered by the structure.

The sample area is estimated directly from the image rendered at
the highest localization density with a pixel size of 5 nm and
estimated as the number of pixels with a value greater than 0.5
multiplied by the area of a single pixel. We see from the proposed
normalization that the five images have similar localization density
as well as a relatively similar threshold for the convergence of the
resolution estimate of about 1–4 × 104 loc. per µm2.

We note that the estimated sample area and, therefore the
localization density can strongly vary depending on the chosen
pixel size and threshold (5 nm and 0.5 in this manuscript; both
values were found, based on visual inspection, to produce an
adequate estimate of the sample area for all the datasets
presented). To be able to compare the localization density from
different experiments, it is mandatory to use the same pixel size
and threshold.

Experimental results: DNA-PAINT. We also applied our
method to DNA-PAINT data of microtubules in COS-7 cells
(courtesy of F. Schueder and R. Jungmann, reported localization
precision of ~5.5 nm12). The dataset considered has a reported
localization uncertainty of about 8 nm.

Figure 3a–c show the bilinear histogram rendering of three
randomly selected fields-of-view. Figure 3d shows the estimated
resolution as a function of the pixel size. Figure 3e shows the
estimated resolution as a function of the localization density. For
each sample point, the resolution is estimated as a function of the
pixel size and the smallest resolution is retained. We observe that
a localization density smaller than about 104 loc. per µm2 is not
sufficient for our method to output a resolution estimate. Past this
threshold, we see that the resolution gradually improves with the
localization density and stabilizes at around 3–4×104 loc. per
µm2. These numbers are consistent with the results obtained with
the shareloc data. Finally, Fig. 3f shows a zoom-in of Fig. 3c. The
ability to visually resolve the microtubule hollowness confirms the
high resolution predicted by our algorithm.

Fig. 3 Resolution estimation of DNA-PAINT data. a–c Bilinear histogram of microtubule data at 5 nm pixel size, scale bar: 2 µm. d Resolution as a function
of the pixel size. e Resolution as a function of the loc. density. f Zoom in of c, scale bar: 400 nm.
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Experimental results: Multi-color STORM. Finally, we applied
our method to multi-color STORM/DNA-PAINT data (courtesy
of A. Jimenez and C. Leterrier, reported localization precision of
~4 nm, Fig. 6a of ref. 13). Bilinear histogram rendering of a 12 ×
12 µm2 selected ROI is shown in Fig. 4a. We show in the inset of
Fig. 4a, a zoom-in of the tubulin channel where the microtubule
hollowness is also clearly visible.

Figure 4b shows the resolution as a function of the pixel size for all
the channels. Figure 4c shows the resolution estimate as a function of
the localization density. Again, we observe that a localization density
of about 104 loc./µm2 is required to get a first estimate. As we include
more localizations, the resolution gradually improves until it reaches
a plateau at about 2–4 × 104 loc. per µm2.

Discussion
As previously shown1, localization-uncertainty-based Gaussian
rendering can also provide a reasonable resolution estimate, but is
making additional assumptions about the localization statistics
and requires correct estimation of the individual localization
uncertainty1. On the other hand, using a constant Gaussian
kernel can bias the resolution estimate and should not be used
with decorrelation analysis6. Bilinear histogram rendering is the
method of choice since it uses the smallest amount of information
about the localizations, their position. It also alleviates the ren-
dering rounding error compared to standard histogram render-
ing, thus requiring a significantly lower number of localizations
enabling reliable resolution estimation for state of the art
SMLM data.

Here, we have shown how the resolution is a function of the
rendering pixel size for bilinear histogram rendering. To find the
optimal pixel size (balance between sampling and density), we
advise to compute the resolution as a function of the pixel size and
retain the smallest resolution achieved. To assess the labeling den-
sity, we computed the resolution as a function of the number of
localizations included in the rendering. Since the optimal pixel size
depends on the number of localizations included, we advise to again
compute the resolution as a function of the pixel size and retain the
smallest resolution achieved. The presence of a plateau is a reliable
indicator of sufficient labeling density. The average runtime for the
estimation of the resolution of a single experimental dataset over a
field-of-view of 12 × 12 µm is about 30 seconds (see Supplementary
Information, Note 4). Using a variety of experimental datasets, we
have shown that a localization density of about 1–4 × 104 loc. per
µm2 was required for the resolution estimation to converge. A
Matlab implementation of the bilinear histogram method used in
this work as well as a basic script for processing of localization data
is publicly available at https://github.com/Ades91/ImDecorr12.

Methods
The localization dataset is loaded into Matlab. The x and y localization positions
are converted to nanometers. All the localizations outside of the specified field-of-
view are then filtered. To estimate the localization density, we have to estimate the
sample surface. To estimate the sample surface, we render all the localizations using
bilinear histogram rendering with a pixel size of 5 nm. The resulting image is then
binarized with a threshold of 0.5. The surface is given as the number of pixels with
a value >0.5 times the area of a single pixel. The localization density is then given
by the number of localizations included in the rendering divided by the sample

Table 1 Selected https://shareloc.xyz/#/ data.

Name Description Author Hash Loc. Prec.

1 WGA A647.smlm dSTORM of central canal
of Xenopus nuclear pore
complex

orestis.faklaris@mri.cnrs.fr 22d97bd241f21f27b1bee29666a622c5 ~8 nm

tubulin-AF647_4.smlm – Markus Sauer, University of
Wuerzburg

2ef45b60988e370cf80dfe994524245b –

COS7_csir_phalloidin.smlm actin stained with caged
Si-rhodamine phalloidin of
a Cos-7 cell

Markus Sauer, University of
Wuerzburg,
DOI: 10.1002anie.201509649

41080d3e899715bed8ecee58192138c8 ~6 nm

gp210 NPC.smlm dSTORM of Xenopus
nuclear pore complex

orestis.faklaris@mri.cnrs.fr 5e56796222dca3bceba7a6d6e3b64e5d ~6 nm

s1-c2-fixed-tom22-642-
30ms_1_mmstack_pos0.smlm

Mitochondria image used
for figure 6b

wei.ouyang@pasteur.fr 94106847488a2e145b5e062ed0addbb2 –

Fig. 4 Resolution estimation of multi-color STORM data. a Bilinear histogram rendering at 5 nm pixel size. Actin (phalloidin-AF647; STORM; gray
colormap), microtubules (two anti-α-tubulin antibodies; STORM; green colormap) and clathrin-coated pits (anti-clathrin light chain; Atto655 imager; DNA-
PAINT; red colormap). b Resolution vs pixel size. c Resolution as a function of the loc. density. Scale bar: 2 µm.
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area. Then for each localization density and each pixel size, we render the locali-
zation and estimate the image resolution using decorrelation analysis1.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The shareloc data are publicly available at https://shareloc.xyz/#/. Data requests for DNA
paint datasets must be addressed to Florian Shueder and Ralf Jungmann. Datasets for
multi-color STORM are publicly available https://figshare.com/articles/dataset/
Source_Data_for_Figure_6_of_Jimenez_et_al_Methods_2020/12279917.

Code availability
All the codes used in this manuscript are publicly available at https://github.com/Ades91/
ImDecorr.

Received: 26 September 2020; Accepted: 7 April 2021;

References
1. Descloux, A. C., Grussmayer, K. S. & Radenovic, A. Parameter-free image

resolution estimation based on decorrelation analysis. Nat. Methods 16,
918–924 (2019).

2. Coelho, S. et al. Ultraprecise single-molecule localization microscopy
enables in situ distance measurements in intact cells. Sci. Adv. 6, eaay8271
(2020).

3. Cnossen, J. et al. Localization microscopy at doubled precision with patterned
illumination. Nat. Methods 17, 59–63 (2020).

4. Gwosch, K. C. et al. MINFLUX nanoscopy delivers 3D multicolor nanometer
resolution in cells. Nat. Methods 17, 217–224 (2020).

5. Li, Y. et al. Real-time 3D single-molecule localization using experimental point
spread functions. Nat. Methods 15, 367–369 (2018).

6. Descloux, A., Grußmayer, K.S. & Radenovic, A. Addendum: parameter-free
image resolution estimation based on decorrelation analysis. Nat. Methods
1061–1063 (2020).

7. Mortensen, K. I., Churchman, L. S., Spudich, J. A. & Flyvbjerg, H. Optimized
localization analysis for single-molecule tracking and super-resolution
microscopy. Nat. Methods 7, 377–381 (2010).

8. Huang, F. et al. Video-rate nanoscopy using sCMOS camera–specific single-
molecule localization algorithms. Nat. Methods 10, 653–658 (2013).

9. Ouyang, W., Aristov, A., Lelek, M., Hao, X. & Zimmer, C. Deep learning
massively accelerates super-resolution localization microscopy. Nat.
Biotechnol. 36, 460–468 (2018).

10. Scott, D. W. Averaged shifted histograms: effective nonparametric density
estimators in several dimensions. Ann. Stat, 13 1024–1040 (1985).

11. Wolter, S. et al. Real‐time computation of subdiffraction‐resolution
fluorescence images. J. Microsc. 237, 12–22 (2010).

12. Schueder, Florian et al. “An order of magnitude faster DNA-PAINT imaging
by optimized sequence design and buffer conditions”. Nat. Methods 16,
1101–1104 (2019).

13. Angélique, Jimenez, Friedl, Karoline & Leterrier, Christophe About samples,
giving examples: optimized single molecule localization microscopy. Methods
174, 100–114 (2020).

Acknowledgements
We thank Christian Sieben and Jean Comtet for the helpful and critical reading of our
manuscript. We also thank Jonas Ries for bringing the motivation to propose a modified
rendering method compatible with our resolution estimation. We thank Wei Ouyang,
Orestis Faklaris, Markus Sauer, Christophe Leterrier, Florian Schueder and Ralf Jung-
mann for providing the experimental datasets. Color of line plots were taken from
Matlab file exchange: Beautiful and distinguishable line colors by Jonathan C. Lansey.
This project has been partly funded by the European Union’s Horizon 2020 research and
innovation program via grant 686271/SEFRI 16.0047. [750528]. A.D. and A.R.
acknowledge the support from Zeiss IDEAS center and EPFL open science fund.

Author contributions
A.C.D. initiated the work, wrote the algorithms and processed the data. A.C.D., K.S.G.
and A.R. wrote the manuscript and selected the experimental data.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-021-02086-1.

Correspondence and requests for materials should be addressed to A.C.D. or A.R.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02086-1

6 COMMUNICATIONS BIOLOGY |           (2021) 4:550 | https://doi.org/10.1038/s42003-021-02086-1 | www.nature.com/commsbio

https://shareloc.xyz/#/
https://figshare.com/articles/dataset/Source_Data_for_Figure_6_of_Jimenez_et_al_Methods_2020/12279917
https://figshare.com/articles/dataset/Source_Data_for_Figure_6_of_Jimenez_et_al_Methods_2020/12279917
https://github.com/Ades91/ImDecorr
https://github.com/Ades91/ImDecorr
https://doi.org/10.1038/s42003-021-02086-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	Parameter-free rendering of single-molecule localization microscopy data for parameter-free resolution estimation
	Results
	Histogram and bilinear histogram rendering
	Experimental results
	Experimental results: ShareLoc
	Experimental results: DNA-PAINT
	Experimental results: Multi-color STORM

	Discussion
	Methods
	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




