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Abstract
Metabolism is the process by which cells and organisms obtain
nutrients and energy to perform their functions. In the last
years, many human diseases, including cancer, diabetes, and
cardiac diseases, have been associated with altered meta-
bolism. Understanding these metabolic alterations at a sys-
tems level will help to design better therapies and treatments.
In this context, the human genome-scale metabolic models
(GEMs) combined with mathematical methods and experi-
mental data have been powerful tools to investigate cellular
metabolism under different conditions. Here, we review current
methods and models to study human metabolism, and we
discuss future perspectives, including a community call for an
agreement on how to use GEMs in a context-specific manner
for quantitative analysis of human metabolism.
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Introduction
With the annotation of the human genome sequences in
2001 and 2004 [1,2], the scientific community recon-
structed in 2007 the first genome-scale metabolic model
(GEM) for human cells [3,4]. In 2010, within Systems
Biology, there was a community effort to define the

protocols required to reconstruct and curate high-level
GEMs [5]. Since then, the human metabolic models
were curated and refined over the years, and improved
www.sciencedirect.com
versions of the human GEMs were generated, including
HMR [6], Recon 2 [7], HMR 2.0 [8], Recon 2.2 [9],
iHsa [10], and the most recent versions Recon 3D [11]
and Human1 [12].

Over the years, a phylogeny of constraint-based methods
was developed to use GEMs to simulate the metabolic
behavior of cells, such as perform a specific task, opti-

mize the production of compounds of interest, or pre-
dict cellular phenotypes [13]. Some of these methods
incorporate constraints at steady-state for mass balance
[14], enzyme usage [15], and thermodynamic laws
[16,17]. Such methods have been used to formulate
biological hypotheses and guide experiments generating
new sets of data used to improve the predictive capa-
bilities of the metabolic models. GEMs and the
methods developed are powerful platforms for inte-
grating omics data, including transcriptomics, prote-
omics, metabolomics, and fluxomics.

As our knowledge of human metabolism increases, so
does the size and complexity of the metabolic models in
terms of genes, reactions, and metabolites. The ever-
increasing size of the human metabolic models hinders
their utilization for biological studies, as their increased
complexity hampers the analysis of results and increases
the computational cost. Furthermore, these networks
are reconstructed based on the whole genome of human
cells, while a specific cell type expresses only a portion
of those genes. Thus, there is an apparent need to

reduce GEMs to a more manageable size representing a
particular cell type. To this end, a plethora of methods
were developed to derive reduced-size context-specific
models from the generic human models. Such context-
specific models can capture the phenotype of a partic-
ular type of cell or tissue by reducing the generic GEM
to the reactions catalyzed by enzymes expressed in the
specific tissue. In the last years, several model-reduction
methods were developed [18e20], including a human-
centered specific network reduction [21]. These
methods rely on transcriptomics or proteomics data and

metabolic tasks to identify the set of reactions that will
define the context-specific model [22e26]. The cell-
type-specific and tissue-specific models have been
successfully used to simulate metabolism in diseased
and healthy cells, as well as to identify biomarkers and
drug targets. Furthermore, personalized models that
integrate omics data from patient samples have been
Current Opinion in Systems Biology 2021, 26:109–115
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helpful for precision medicine [27e30]. Despite the
large number of individual methods and workflows
derived, up to date, there is not a consensus protocol to
generate context-specific models.

In this review, we highlight the main methods and
modeling approaches that have been used in the past
years to model cellular phenotypes in a diversity of con-

ditions. The focus of this review is to analyze the current
applications and challenges of thesemethods andmodels
and to provide future perspectives on how they can be
extended to derive more quantitative approaches for the
reconstruction of context-specific models (Figure 1).
Current methods and perspectives
Model-based analysis with omics data integration in
the human metabolic networks
Since the early 2010s, the era of big data allowed re-
searchers to obtain and analyze huge amounts of geno-
mics and transcriptomics data, leading to a community
interest in integrating transcriptomics and proteomics
Figure 1

Current versus Perspective methods to investigate metabolic phenotype
resentation of the human metabolic network. To the left side, the current meth
right side, the perspective methods and models necessary to improve the pre
and signaling effects.
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data in GEMs toward the reconstruction of tissue-
specific models. Nowadays, technological advances
facilitated data extraction at a single-cell level [32],
presenting the opportunity to integrate high-resolution
data into GEMs. Although several groups have started
to develop methods to integrate single-cell omics data
into GEMs [33], it remains a challenge to systematically
assess how the current methods can incorporate this

type of data [34,35]. Overcoming this challenge is
crucial to promote current modeling approaches
toward personalized studies. Mirroring the knowledge
on the methods developed to reconstruct tissue-specific
models, the community can start integrating single-cell
data and building single-cell models. Such models will
better capture the metabolic features of a specific cell or
single-cell population, leading to a better classification
of the metabolic subtypes present in the population, as
well as to characterize cooperation activities.

GEMs provide the relation between genes and meta-
bolic reactions, enabling identifying the pathways, and
s using the human GEMs. In the center, the KEGG map [31] as a rep-
ods available to use GEMs to infer the metabolic state of the cells. To the
dictive capabilities of GEMs by incorporating single-cell data and dynamic
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therefore the metabolites, involved in a specific process
or condition. This mapping offers a unique opportunity
to upgrade the value of omics data by interpreting the
expression profile and the metabolomics at the same
time. Moreover, GEMs are helpful to investigate alter-
native metabolic profiles in agreement with the
observed phenotype and generate testable hypotheses
both at the genomic and at the metabolomic level.

Furthermore, GEMs, in combination with omics data,
have been applied to identify cellular functions, such as
growth, energy maintenance, and utilization and syn-
thesis of metabolites, which are critical to correctly
capture the metabolic states of the cell [36,37].

Recently, a method was developed to extract the
metabolic pathways required to perform a set of meta-
bolic tasks using GEMs, using the expression data to
perform network enrichment analysis and assign func-
tionality to the deregulated genes in the pathway [38].

This approach has allowed identifying the minimal
network (minimum number of reactions) required to
perform a metabolic task, such as the production of a
metabolite, including not only the classical production
pathway but also the additional reactions necessary for
the activity of the main pathway (Figure 2).

Integrating the gene expression machinery in GEMs
GEMs have been recently extended to include infor-
mation on the concentration and availability of the en-
zymes [39] and to integrate the gene expression
machinery [40e42]. These models, known as proteome
constrained GEMs, can compute the optimal proteome
allocation of the cell, improving the capabilities of
Figure 2
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GEMs to capture observed cellular phenotypes. Prote-
ome constrained GEMs are currently being developed
for a variety of organisms spamming from bacteria to
human, and they can be readily used for the integration
of omics data.

One of the challengesworkingwith proteome constrained
GEMs is the large number of parameters (kcat) that are

required. Currently, these are estimated based on data-
bases such as BRENDA, SABIO-RK, and literature.
However, the available data covers only a small fraction of
the known metabolic reactions, highlighting the need to
develop strategies to estimate them. Furthermore, as we
refine the description of the mechanisms associated with
the enzymes, we increase not only the quality of the
GEMs but also their size, emphasizing once again the
need to generate systematically reduced versions of these
GEMs that correctly capture the biological state of the
cells under study.

The cellular microenvironment
Human cells live in a complex environment where they

constantly interchange metabolites with the medium
surrounding them. The availability of nutrients and the
ability of cells to use them determine the intracellular
metabolism and, ultimately, their phenotype. There-
fore, it is of great importance to correctly define the
uptake of nutrients in GEMs while simulating cellular
metabolism [43]. To this end, several studies have been
performed to develop approaches that allow us to build a
more biologically relevant environment in the GEMs
[44]. While many of these studies and model develop-
ment have been around cell lines [45,46], the environ-
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al pathway in KEGG [31] for the synthesis of phosphatidyl-serine and the
athway, the upstream pathways, in this case, glycolysis and TCA, and the
athway.
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mental conditions change in in vivo systems. Thus, we
should now use the in vitro and in silico learnings to es-
timate the in vivo environment of cells by combining the
individual cellular metabolic states and functions with
the information about the cell population in the
microenvironment.

Drawing from the paradigms of the microbiome com-

munities research, we can derive novel methods that
will allow us to understand better the in vivo microen-
vironment of cells. We can benefit from the work done in
microbial communities [47] to study the diverse popu-
lations of cells that are part of the microenvironment
and their interactions [48,49]. It is worth noting here
that in the case of human cells, the community of cells
shares the same genome. The different cells in the
population can be modeled using transcriptomics data,
which will capture how differences in gene expression
translate to different cellular phenotypes.

Recently, human GEMs have been used with a spatial
modeling approach to reveal the heterogeneity in the
tumor microenvironment [50], as well as to analyze the
spatial and morphological dynamics of multicellular
systems while modeling the metabolic activity of indi-
vidual cells [51].

Signal transduction to metabolism
Cells not only cohabit in their microenvironment, but
they also cross-communicate among them. The signals
that cells sense in their immediate microenvironment
are transmitted intracellularly and converted into re-
sponses that regulate and shape the phenotype of the

cells. In certain cases, these signals regulate the
expression of transcription factors and, therefore, of
genes. In the case of metabolic genes, this process re-
programs the metabolism of cells, affecting the activity
of metabolic pathways.

Although the fields of signaling and metabolism have
been widely studied independently, there is increasing
evidence that metabolism is tightly regulated by
signaling events, both in healthy and in diseased cellular
states. This results in an emergent need to understand

how the signals propagate from the receptors of the cells
to the metabolic reactions. Toward this, we need to
develop novel integrated models that connect metabolic
and signaling networks and are able to simulate the flow
of information from the receptors to the downstream
metabolic pathways. Even though this remains a com-
plex endeavor, the community is developing methods in
this direction [52e54].

The need for dynamic models
GEMs have been powerful tools to study and under-
stand the metabolism of cells at a specific stage.
Current Opinion in Systems Biology 2021, 26:109–115
Nevertheless, organisms and cells are dynamic systems
continually adapting to their environmental conditions
and regulation patterns. In order to capture and analyze
this dynamic behavior, we need to develop kinetic
models. While constraint-based models rely on the
stoichiometric relation between reactions and metabo-
lites using linear equations, kinetic models include or-
dinary differential equations that need dynamic or

kinetic data to perform parameter identification. The
outstanding limitation of current kinetic models of
metabolism at the genome-scale, particularly in human
metabolism, is the large number of kinetic parameters
required and the uncertainty about their values.
Numerous methods are currently being framed to
overcome the lack of kinetic data [55e57] and perform
parameter identifiability [58e61] in many organisms. All
these previous methods have benefited from extensive
fluxomic and metabolomic information, and while these
methods and the associated frameworks could now be

used for human metabolism, they will require more
quantitative data, which currently is challenging in
in vitro and in vivo models of mammalian systems.

Moreover, unlike other systems that operate in well-
defined physiologies, such as bacteria or yeast, the
mammalian and human metabolism are highly context-
specific, e.g., tissue-specific and disease-specific condi-
tions. This presents another challenge that can be
addressed by a community effort to assess the variability
across the representation of cellular conditions and cell

types.

Personalized models
One of the biggest challenges of current therapies is the
heterogeneity of the cell populations in the microenvi-
ronment and the heterogeneity among patients, leading
to the need for personalized therapies and, therefore,
personalized models [62]. Generating new approaches
based on previous learnings from modeling human cells
with GEMs will enhance the development of methods
to integrate patient’s specific metabolic and signaling
data into metabolic and signaling networks to build
personalized models. Deriving more accurate and robust
human metabolic and signaling models that capture not

only the intracellular events but also the interactions
occurring in the cellular microenvironment will help to
understand the alterations that lead to diseased states.
Such models will provide a deeper understanding of the
metabolic and signaling state of the patient’s cells,
enabling us to create engineering approaches to find
effective drug targets, novel therapies, and treatments
(Figure 3). Furthermore, the advance in models and
methods will ultimately guide the steps required to
achieve whole-cell modeling and whole-body modeling,
which are already being investigated for the human gut

microbiome [63].
www.sciencedirect.com
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Figure 3

Perspectives for personalized models. Applications of novel approaches toward personalized models to help in the design of novel therapies and
treatments. The methods and models required to integrate patient-specific omics data will allow researchers to have a deeper understanding of the
metabolic and signaling states of the patient’s cells.
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Conclusions
The reconstruction of these complex networks has
benefited in the past from community efforts that
allowed to improve their quality and applicability to
understand the genotypeephenotype relationship of
cells. The variability among physiological conditions
such as different tissues, microenvironments, and the

current access to more sophisticated protocols for data
acquisition (whole cell, single-cell, and bulk popula-
tions), has given rise to many data integration methods.
These methods, while similar in the objective they
involve very different formulations and parameters.
Although we understand that one method does not fit all
purposes, the community should agree on the sets of
methods to utilize as it has been done to develop pro-
tocols for experimental data.

Furthermore, the integration of signaling networks with

metabolic networks and the associated quantitative an-
alyses present new challenges. The reconstruction of
signaling networks downstream a receptor or upstream a
transcription factor can increase very fast in size due to
the combinatorial complexity. This presents a chal-
lenging situation that will require the convergence
toward a set of established community methods. While
the community is developingmethods to address some of
these challenges, there is no consensus on the appro-
priate modeling and algorithmic formulations and asso-
ciated assumptions.We suggest here that there is another
opportunity as we move in the analysis and reconstruc-

tion of tissue-specific and cell-type-specific models for
one or more parallel Systems Biology community efforts
to establish protocols towardmore quantitativemodeling
and analysis of human metabolism.
www.sciencedirect.com
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