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Abstract
This thesis is devoted to the investigation of static and dynamic properties of two
different sets of quantum magnets with neutron scattering techniques and the help
of linear spin wave theory. Both systems are copper-based with spin S = 1/2, which
makes them ideal to study the interplay between purely quantum and semi-classical
effects.

I start with the analysis of the antiferromagnet SeCuO3, which has a canted spins mag-
netic structure. Through careful inelastic neutron scattering experiments on thermal
and cold triple-axis spectrometers, I demonstrate that this compound exhibits three
primary types of excitations that are intrinsically opposite : spin waves (magnons),
singlet–triplet excitations (triplons), and fractional spins excitations (spinons). Such a
strong coexistence and interdependence of these collective excitations has not been
observed yet, thereby the quantification and description of the excitations in SeCuO3
leads the way to further theoretical work on multi-excitation spin systems, as well as
the existence of quantum effects in high dimensional systems.

My second project is on the extraction of the magnetic structure of three members of
the A(BO)Cu4(PO4)4 chiral family, namely (A;B) = (Ba; Ti), (Sr; Ti) and (Pb; Ti), from
spherical neutron polarimetry measurements. I prove that the first two compounds
exhibit a highly non-collinear magnetic structure, with the Cu2+ spins forming clusters
of ’two-in–two-out’ arrangements on each structural unit. This structure is stabilised
by the presence of a strong Dzyaloshinskii-Moriya interaction, and explains the obser-
vation of magnetoelectric effects as emerging from quadrupole moments. The analysis
of the latter compound did not lead to the confirmation of its magnetic structure due
to strong nuclear-magnetic interference.

I conclude this thesis by the investigation of the magnetic excitation spectrum of some
members of the (A; B) family, probed by inelastic neutron scattering measurements.
Indeed, its particular crystallographic structure makes it an ideal playground to study
tetramerisation effects on the two dimensional square lattice. Additionally, the afore-
mentioned Dzyaloshinskii-Moriya interaction ensures the presence of a structural
gap, which competes with the quantum one emerging from tetramerisation effects.
Using linear spin wave theory, I describe (Ba; Ti) as a chequerboard system with almost
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Abstract

equal intra- and inter-plaquette couplings, with weak quantum effects. I also provide
a qualitative description of (Pb; Ti), which exhibits similar physics, and conclude by
presenting the first results on the highly symmetric compound (K; Nb), which shows
hints of a strong quantum behaviour.

Keywords : quantum magnetism, neutron scattering, spinons, triplons, magnons,
spin waves, polarisation analysis, magnetic structure, Dzyaloshinskii-Moriya interac-
tion, neutron diffraction, square-lattice, antiferromagnet, inelastic neutron scattering,
excitation spectrum, tetramerisation, long ranger order.
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Résumé
Cette thèse est dédiée à l’étude des propriétés statiques et dynamiques de deux dif-
férentes classes d’aimants quantiques, à l’aide de la technique dite de diffusion de
neutrons ainsi que la théorie linéaire des ondes de spin. Dans le cas des deux systèmes
considérés, le magnétisme provient des atomes de cuivre (Cu2+) possédant un spin-
1/2. Cette faible valeur de spin en font d’excellents candidats pour étudier aussi bien
les effets semi-classiques que ceux purement quantiques.

Je commence par une étude systématique des excitations magnétiques présentes dans
l’antiferro-aimant SeCuO3 à l’aide d’expériences de diffusion inélastique de neutrons
sur des spectromètres à trois axes thermaux et froids. Je démontre que ce trois trois
types d’excitations intrinsèquement opposées coexistent dans ce systems : des ondes
de spin (magnons), des transitions de l’état singulet à l’état triplet (triplons), ainsi que
des excitations fractionnelles de spins (spinons). Cette coexistence, et interdépendance,
de ces excitations n’avait jamais été observée sur un matériau réel. Ainsi, ce travail
ouvre la voie à d’autres études plus poussées sur la présence d’excitations de spin de
différentes natures dans un seul système, ainsi que leur unification dans une même
théorie. De plus, la présence de spinons motive la compréhension d’un comportement
quantique dans un système à haute dimension.

Mon second projet porte sur la détermination de la structure magnétique de trois
membres de la famille d’aimants quantiques chiraux A(BO)Cu4(PO4)4, avec (A ;B) =
(Ba ; Ti), (Sr ; Ti) et (Pb ; Ti), à l’aide de la technique de polarimétrie neutronique sphé-
rique. Je démontre que les deux premiers composés possèdent une configuration de
spin hautement non-colinéaire, dans laquelle les moments magnétiques associés aux
atomes de Cu2+ forment un arrangement dit ’deux-dedans–deux-dehors’ sur chaque
unité structurelle formée de quatre atomes de spin. Cette structure magnétique est
stabilisée par la présence d’une interaction de Dzyaloshinskii-Moriya sur les liens
reliant deux atomes plus proches voisins de la dite unité. De plus, elle explique l’obser-
vation d’un effet magnéto-électrique comme provenant de moments quadrupolaires.
Finalement, l’analyse du dernier composé (Pb ; Ti) n’a pas conduit à la confirmation de
sa structure magnétique à cause de la présence de forts termes d’interférence nucléo-
magnétique.
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Résumé

Je conclus cette thèse par l’étude du spectre d’excitations magnétiques de quelques
membres de la famille d’aimants quantiques (A ;B) susmentionnée, mesuré au travers
d’expériences de diffusion neutronique inélastique. En effet, la structure atomique
de cette classe de composés en fait un excellent terrain de jeu pour étudier les effets
de tétramérisation magnétique sur un réseau carré à deux dimensions. De plus, la
présence d’une interaction de Dzyaloshinskii-Moriya induit l’existence d’un gap struc-
turel qui entre en concurrence avec le gap quantique prédit pour un système fortement
localisé. Avec l’aide de la théorie d’ondes de spin linéaire, je décris (Ba ; Ti) comme un
système dit de ’plateau d’échec’, possédant des interactions inter- et intra- plaquettes
de quasi même force. Je propose également une description qualitative des excitations
dans (Pb ; Ti) qui présente une physique extrêmement semblable, et conclus par la
présentation des premières mesures du spectre d’excitations magnétiques de (K ; Nb),
qui montre des signes d’un comportement quantique marqué.

Mots-clés : magnétisme quantique, diffusion de neutrons, spinons, triplons, ma-
gnons, ondes de spin, analyse de polarisation, structure magnétique, interaction de
Dzyaloshinskii-Moriya, diffraction de neutron, réseau carré, antiferroaimant, diffusion
inélastique de neutrons, spectre d’excitations, tétramérisation, ordre à longue distance.
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Sommario
Questa tesi è dedicata all’indagine, mediante tecniche sperimentali di dispersione di
neutroni e attraverso lo studio teorico con l’ausilio della teoria linearizzata delle onde
di spin, delle proprietà statiche e dinamiche di due diversi sistemi di magneti quanti-
stici a base di rame, con spin S = 1/2, il che li rende ideali per studiare le transizioni
tra gli effetti puramente quantistici e quelli semi-classici.

Il primo sistema che ho analizzato è il composto antiferromagnetico SeCuO3. Attraver-
so accurati esperimenti di spettrometria a tre assi (TAS) con scattering inelastico di
neutroni termici e freddi, dimostro che questo composto presenta tre tipi primari di
eccitazioni che sono intrinsecamente opposte: onde di spin (magnoni), eccitazioni
singoletto-tripletto (triploni), e eccitazioni frazionarie (spinoni). La chiara e forte coesi-
stenza e interdipendenza di queste eccitazioni collettive non era stata osservata finora,
queste misure delle eccitazioni nel SeCuO3 aprono perciò la strada ad ulteriori lavori
teorici sui sistemi di spin a eccitazioni multiple, che manifestano effetti quantistici in
sistemi bi e tri-dimensionali.

Il mio secondo progetto riguarda la determinazione per mezzo di misure di polarime-
tria neutronica sferica (SNP) della struttura magnetica di tre membri della famiglia
chirale A(BO)Cu4(PO4)4 , ovvero (A; B) = (Ba; Ti), (Sr; Ti) e (Pb; Ti). Dimostro che i
primi due composti presentano una struttura magnetica altamente non collineare, in
cui i momenti magnetici associati agli atomi di Cu2+ formano una disposizione detta
"due-dentro-due-fuori" per ogni unità strutturale di quattro atomi con spin. Questa
struttura è stabilizzata dalla presenza di una forte interazione Dzyaloshinskii-Moriya,
e spiega l’osservazione degli effetti magnetoelettrici che emergono dai momenti di
quadrupolo. L’analisi di quest’ultimo composto non ha portato alla conferma della
sua struttura magnetica a causa di a forti interferenze magnetiche nucleari.

Concludo questa tesi con l’indagine dello spettro di eccitazione magnetica di alcuni
membri della famiglia (A; B), sondati con misure di dispersione dei neutroni ine-
lastici. Questa particolare struttura cristallografica è ideale per lo studio effetti di
tetramerizzazione sul reticolo quadrato bidimensionale. Inoltre, la già citata interazio-
ne Dzyaloshinskii-Moriya provoca un gap legato alla struttura atomica, che compete
con quello che emerge dagli effetti quantistici legati alla tetramerizzazione.
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Sommario

Usando la teoria linearizzata delle onde di spin, descrivo (Ba; Ti) come un sistema
a scacchiera con accoppiamenti quasi uguali intra- e inter-placchette e con deboli
effetti quantistici. Fornisco anche una descrizione qualitativa di (Pb; Ti) che mostra un
comportamento fisico similare, e concludo presentando i primi risultati sul composto
altamente simmetrico (K; Nb), che mostra accenni di un forte comportamento quanti-
stico.

Parole chiave : magnetismo quantistico, dispersioni di neutroni, spinoni, triploni,
magnoni, onde di spin, analisi di polarizzazione, struttura magnetica, interazione di
Dzyaloshinskii-Moriya, reticolo quadrato, antiferromagnetico, diffrazione di neutroni
inelastici, spettro di eccitazione, tetramerizzazione, ordine a lunggo raggio
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1 Introduction

Contents
1.1 Elements of quantum magnetism . . . . . . . . . . . . . . . . . . . 3

1.1.1 Origin of magnetism . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Magnetic model . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Work presented in this thesis . . . . . . . . . . . . . . . . . . . . . 7

I remember my first day at university as a physics student, sitting at the back of the
auditorium. The professor started his first lecture by stating that physics does not
explain why things work – it is rather about building a deep understanding of how
they work. To this, I would like to add that beauty in physics does not lie in the simple
observation and description of a phenomenon, but rather in its contextualisation.
What are the conditions necessary in order to observe it? And to recreate it? And then
some engineers could ask – how can I exploit it? The beauty lies in connecting the dots.

Magnetism provides a perfect example of how the understanding of a phenomenon
is built, and results in the creation of tools now commonly used. The first recordings
of magnetism are by the Chinese writer Guanzhong (645 BC), and the Greek philoso-
pher Thales (545 BC). Both mention a stone, lodestone, capable of attracting iron.
It is only much later, around the 12th century, that pieces of lodestone floating on
water were found to align along the same direction, pointing towards the south, this
helping realise the first magnetic compass for navigation [1]. Further investigations
on magnetic properties resulted in the theoretical description of electromagnetism
by Maxwell [2]. However, it is only with the development of quantum mechanics – a
true revolution in the world of physics – that the microsopic origin of magnetism was
discovered. Magnetism is a quantum effect, strongly associated with electrons, and
leads to macroscopic realisations.

A big step forward in the understanding of quantum matter is associated with the
discovery of collective effects. Indeed, it is thought that metals are described by free
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Chapter 1. Introduction

electrons, which are contrarily bound to atoms in the case of insulators. However, there
is an intermediate region in which all electrons in the solid interact in a cooperative
way, opening a field of physics yet unexplored – the study of strongly correlated electron
systems. Probably the most famous associated phenomenon is superconductivity,
which is a state of matter where electrons can travel in a solid with no electrical resis-
tance. Engineering superconductive materials would naturally have direct applications
to industry, and significantly improve energy storage, transport and bring tremendous
help in facing pressing challenges such as climate change. Nevertheless, this quantum
state only emerges at low temperature or under extreme, some would even say absurd,
experimental conditions [3], and the hunt for room temperature superconductivity is
perhaps the most closely watched axis of research in solid state physics presently.

All of the above highlights the great importance of fundamental research in science.
Engineering new materials, and integrating them into new technologies in medicine,
energy storage or informatics is only possible after a long process that could run over
decades, in which the underlying nature of a phenomenon is explored and observa-
tions are associated with the structure of magnetic features. Naturally, the exploration
of magnetic systems was only possible thanks to the progress of experimental tech-
niques and instrumentation over the last century, which notably saw the developments
of neutron and x-ray scattering methods. Furthermore, experimental and theoretical
physics evolving hand in hand, the past 50 years witnessed the rise of computational
physics [4] , which allows for the study – and direct comparison with experiments – of
increasingly complex systems.

Throughout my thesis, I studied quantum effects closely associated with a quantity
that is the cornerstone of magnetism : the spin. Under certain conditions, such as low
temperature or high pressure, real materials found in nature or synthesised in labora-
tories can reach an ordered magnetic phase. This phase is defined by a particular, and
periodic, arrangement of the magnetic moments, mainly driven by the interactions
between the spins. This defines the ground state of the system, which minimises the
total energy of the system, and is a static property. Furthermore, as some energy is
provided to the system, it may reach an excited state. The resulting excitation might
then be distributed on all spins of the lattice, or localised. . . or both, simultaneously.
This defines the dynamics of the system.
As the title of my thesis might suggest, I used neutron scattering techniques to in a first
instance describe these two properties on two different types of quantum magnets. I
then complemented my observations with results extracted from numerical methods
applied on the same systems in order to understand the origin of these static and dy-
namic properties, and place them in a bigger picture. This is my humble contribution
towards a better understanding of quantum magnetism.
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1.1. Elements of quantum magnetism

1.1 Elements of quantum magnetism

The forthcoming text is not meant to provide an in-depth introduction to quantum
magnetism, which can already be found in many dedicated textbooks [5, 6, 7, 8, 9]. I
begin with a quick, and rather qualitative, description of quantum effects in ordered
matter, which should provide the new reader with the necessary elements in order to
understand this thesis.

1.1.1 Origin of magnetism

Magnetism effects have a microscopic origin, which is closely related to the behaviour
of electrons. Being fermions, they must obey Fermi-Dirac statistics and are ruled
by Pauli exclusion principle. The magnetic properties of an atom then depend on
their electronic configuration, which is given in terms of four quantum numbers.
The principal quantum number n defines the energy level of the orbital. The orbital
quantum number l (l = 0 . . . n− 1) gives the total angular momentum of the orbital
and defines s, p, d and f electrons. The magnetic quantum number ml defines the
projection of the orbital angular momentum along the quantisation axis (−l < ml < l).
Having defined s as the spin angular momentum (or just spin), which takes a value
s = 1/2 for electrons, the last quantum number is ms = ±s, and represents the
projection of the spin along the quantisation axis.
There are two distinctive contributions to magnetism. The first one is given by the
motion of electrons around the nucleus, and defines the angular momentumL such
that L =

∑
i li. The second contribution is present regardless of the orbital motion,

and is an intrinsic property of the electron, namely the spin s. A set of electrons then
has a total spin given by S =

∑
i si. In a first order approximation, only unfilled shells

contribute to the angular momenta, and the electronic structure can be derived using
Hund rules :

(i) Maximise the total spin S,

(ii) Maximise the total orbital momentL,

(iii) Choose the angular momentum J that minimises the energy. This gives J =
|L− S| for less than half full shells and J = |L+ S| above half filling. This rule
couples both contributions to magnetism.

In this thesis, I worked with Cu atoms. They are usually most stable as Cu2+ ions,
with the electronic structure [Ar]3d9, and are classified as transition metal ions. They
correspond to S = 1/2 and L = 2, which gives J = 5/2. However, for real compounds,
the effect of the environment should not be neglected. Indeed, as Fig.1.1(a) shows,
the shape of the surrounding orbitals, usually from oxygen of phosphorus atoms,
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Chapter 1. Introduction

models the local electronic environment. They produce what is called a crystal field
surrounding the magnetic ion, and that is related to the Coulomb repulsion between
electrons in different orbitals [Fig.1.1(b) and Fig.1.1(c)]. Instead of following Hund’s
rules, the electrons will tend to occupy the lowest-lying energy level first. This effect is
more pronounced for transition metals, which have a rather large orbital distribution,
and becomes stronger than spin-orbit coupling. Effectively, this results in what is
known as orbital quenching, and in an effective quantum number L̃ = 0, such that
J = S. The crystal field naturally depends on the neighbouring atoms’ positions, and
explains why the same magnetic ion can have different effective spin values depending
on its surrounding environment.

Figure 1.1 – Crystal field effects and origin. (a) Energy level splitting of the 3d orbital
of a transition metal (in red), applied to Cu2+. (b) and (c) Electronic configuration of a
Cu atom surrounded by four O atoms. The p orbitals of the O atoms are represented
in blue, while the (b) dx2−y2 and (c) dxy orbitals of the Cu2+ are drawn in red. The
latter minimises the orbital overlap and then has lower energy than the former. Figure
adapted from a private conversation with K. Kimura.

1.1.2 Magnetic model

Crystals are defined by a periodic arrangement of atoms, forming a crystallographic
lattice. Due to the competing interactions, it is sometimes energetically favourable
for a system to have all its (free) electrons delocalised over the whole lattice, thereby
minimising its kinetic energy. However, this competes with the on-site Coulomb
repulsion. The physics of most strongly correlated electron systems is well-described
in second quantisation by the so-called Hubbard Hamiltonian

ĤHub = −t
∑
〈i,j〉

∑
σ

c†iσcjσ + U
∑
i

ni↑ni↓ , (1.1)
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1.1. Elements of quantum magnetism

where σ denotes the spin state of the electron. The first term relates to the hopping of
one electron from site i to site j, and the second term describes the Coulomb repulsion
if more than one atom is placed on site i. However, when the electron wavefunction is
smaller than the interatomic distance, the Coulomb term U dominates. The system is
then likely to be described by a Mott insulator, which acts as an insulator even though
it should be a metal according to band theory. Remarkably, they exhibit low-lying
energy magnetic excitations, hence the popular saying – a good magnet is a bad metal.
Their formalism can be described by a perturbation analysis on the Hamiltonian 1.1,
assuming a small kinetic term, t/U � 1. It can be proven that the effective Hamiltonian
reads

Ĥeff = 4t2

U

∑
〈i,j〉

(
Ŝi · Ŝj −

1
4

)
(1.2)

where I introduce the vectorial spin operator Ŝ. This effective Hamiltonian is, up to
the constant term, similar to the Heisenberg Hamiltonian with interaction J = 4t2/U ,
which I generalise here as :

ĤHeis =
∑
i,j

Jij Ŝi · Ŝj . (1.3)

This Hamiltonian is probably the most commonly used in solid state physics, and
quantum magnetism. Furthermore, it defines a new lattice connecting several spins
according to a geometry defined by the hierarchy of the interactions J . This lattice is
then not structural, but magnetic. The excitations of a system described by it are then
given by spin fluctuations around their average value. A few comments can be made
on this simple yet extremely rich model.

In magnetic systems, the coupling constant J is not necessarily positive, and its
strength is usually related to the overlap between orbitals in the case of direct exchange.
The separation between atoms being rather large, this situation occurs infrequently for
insulators. On the other hand, the interaction between two atoms can be mediated
through several non-magnetic ions, such as O, where electrons are allowed to hop via a
superexchange process. In both instances, the coupling constant J can be negative or
positive, which defines the ferromagnetic (J < 0), and the antiferromagnetic (J > 0)
states respectively. In the former, the energy is minimised by a parallel spin configura-
tion, while the latter favours an antiparallel spin arrangement [Figs. 1.2(a) and 1.2(b)].
However, some systems can be geometrically frustrated, as Fig. 1.2(c) shows. Indeed,
the last spin cannot satisfy both antiferromagnetic couplings simultaneously, which
results in the frustration of one of them. The system is then dominated by quantum
fluctuations.
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Chapter 1. Introduction

Figure 1.2 – Magnetic interactions and geometrical frustration. (a) Ferromagnetic
state corresponding to J < 0 [red]. (b) Antiferromagnetic state with J > 0 [blue]. (c)
Geometrical frustration induced by the diagonal antiferromagnetic coupling.

These different coupling types naturally introduce my next comment. Although re-
stricted to nearest-neighbour sites in the Hubbard model, couplings involving longer
distances also exist in real materials, under the assumption of a reasonable superex-
change path. This can lead to frustration, as reported in Fig. 1.2(c). Furthermore,
the physics of the system strongly depends on its dimensionality. Notably, Mermin-
Wagner theorem states that there is no magnetic order at finite temperature for one- or
two-dimensional systems in the absence of anisotropy, while it can emerge in three
dimensions [10].

In the simplest case the coupling J between two magnetic ions is isotropic, which
means that the components Jx, Jy and Jz are equal. However, in many situations, the
environment is such that it favours a certain alignment of the spin. We then talk about
an easy axis. This behaviour is reported in the exchanges by anisotropic interactions.
The most famous case is probably the Ising model (Jx = Jy = 0). Furthermore, the
interaction could be antisymmetric due to spin-orbit coupling. This is the case of
the Dzyaloshinskii-Moriya interaction, which is represented by a matrixD such that
Dij = −Dji.

Finally, since the energy scales of these magnetic systems are relatively small, there
is constant competition between quantum and thermal fluctuations. The former
tends to induce a quantum ordered phase, while the latter would destroy it. Quantum
properties then strongly depend on the value of the spin S. In general, a system
exhibits a stronger quantum behaviour for low spins, the minimal value being naturally
S = 1/2. On the other hand, the classical limit corresponds to S → ∞. Additionally,
the quantum behaviour of a system is quantified by its quantum fluctuations, which
are strongest for frustrated or low-dimensional systems.
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1.2 Work presented in this thesis

This thesis is dedicated to the study of ground state properties, as well as magnetic
excitations of Cu2+ quantum magnets with the use of neutron scattering techniques. It
is divided in five chapters that can be read independently. Additionally, I was partially
involved in several side projects, which I did not report in this manuscript. The main
ones are the investigation of the two-dimensional antiferromagnet CoPS3 which may
lead to Kitaev-Heisenberg physics, the commissioning of the multiplexing spectrome-
ter CAMEA (PSI), first inelastic measurements on the quantum spin liquid candidate
K2Ni2(SO4)3, and the investigation of magnetic properties of chiral Tellurium [11].

In Chapter 2, I present a brief review of neutron scattering techniques, as well as the
main numerical method that I used, which is the linear spin wave approximation.

Chapter 3 presents my work on the excitation spectrum of SeCuO3. It was initially
thought based on its crystallographic structure that this system exhibits localised
states, which evolve into long range order at low temperature. I demonstrate that this
vision is slightly incomplete, and that magnetic excitations in this system emerge from
two weakly coupled sublattices, namely dimer units and weakly coupled chains. This
system gives rise to triplons, magnons and finally spinons-like excitations which have
not been observed in a purely three-dimensional system before.

Chapter 4 introduces the core of my thesis, which consists of an in-depth investigation
of the chiral quantum magnet family A(BO)Cu4(PO4)4. This study is motivated by two
objectives. First, this series of compound is known to exhibit magnetoelectric effects,
and further knowledge of the spin’s configuration is necessary in order to understand
the origin of this property. Secondly, the nuclear structure of these magnets makes it
a good realisation of the two dimensional square lattice antiferromagnet. This chiral
family thus forms a nice playground to study tetramerised effects on a square model.
I present how spherical neutron polarimetry was used in order to extract the magnetic
structure of a series of members of this family, and how this ground state is supported
by magnetic anisotropies. I conclude by showing the limitations of this method.

I pursue the study of the (A; B) family in Chapter 5, which presents a complete de-
scription of the magnetic excitations in (Ba; Ti), both at zero magnetic field an under
a finite vertical field. This quantum magnet can be modelled by a network of weakly
tetramerised coupled plaquettes. I also present qualitative results on other members
of this family, and notably highlight the quantum effects of the highly-symmetric (K;
Nb) compound. I finally perform a first attempt to place these results in the more
general context of the study of plaquettisation effects on the two dimensional square
lattice antiferromagnet with a structural gap.

My work is summarised in Chapter 6, which concludes this thesis.
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All the work presented in this thesis relies on neutron scattering measurements. It is
then necessary to present the underlying principles and physics, which explain why
neutron scattering is such a powerful tool for the investigation of static and dynamic
properties of crystals. This chapter is not meant to serve as a lecture book, as rigourous
treatment can be found in many dedicated textbooks [12, 13, 14, 15, 16] that those
interested are invited to read. Rather, my goal is to familiarise the reader with the main
concepts that will be used in the rest of this text. I start by presenting the neutrons
properties. Then, the magnetic and nuclear cross-sections are introduced as the
main concepts in neutron scattering theory. I briefly cover the instrumentation, and
conclude by deriving key elements of the Linear Spin Wave theory. This chapter is
strongly based on the textbooks referenced. If the reader is already familiar with the
neutron world, they are welcome to go directly to Chapter 3.
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Chapter 2. Welcome to the world of neutrons

2.1 Introduction to Neutron Scattering

The history of the neutron is closely related to Nobel Prizes. Based on the predictions
of Rutherford who modelled the modern atom as made of a massive positive nucleus
surrounded by negative charges [17] and predicted the existence of a neutral particle
in the nucleus, Bothe [18] and Becker [19], who observed some unexplained radiation
when hitting light elements with alpha particles; and Majorana, who stated that this
radiation should be associated to a new neutral particle, James Chadwick discovered
the neutron in 1932 [20]. He received the Nobel Prize in Physics for this discovery in
1935. Due to their chargeless behaviour, neutrons were almost immediately thought to
be used for probing the properties of nuclei. Indeed, scientists used to work with alpha
particles before, which have a charge of +2, making it complicated to overcome the
Coulomb potential of the orbiting electrons and to reach the nucleus of an atom. Enrico
Fermi then bombarded a series of heavy elements with neutrons, discovering new
radioactive elements and investigating nuclear reactions induced by slow neutrons
[21]. He received the Nobel Prize in Physics in 1938 for his work. Intrigued by this
new physics, Otto Hahn and Lise Meitner bombarded Uranium atoms with neutrons
and observed their splitting into lighter elements [22], releasing extra neutrons in the
process as well as a tremendous amount of energy (more than 200 MeV!). Otto Hahn
obtained the Nobel Prize in Chemistry for the discovery of nuclear fission, a honour
that should have been shared with Lise Meitner. The potential destructive applications
of Uranium nuclear fission are sadly well-known, but fortunately did not deter the
emerging the use of neutrons to probe matter.

A key property of neutrons is their electric neutral charge, allowing them to pene-
trate travel much deeper inside matter, to make possible the use of extreme sample
environments such as pressure cells, magnets and cryostats. Additionally, since neu-
trons interact with nuclei via the strong force which is very short-ranged, it allows the
study of bulkier samples – to the order of the centimetre – and an accurate descrip-
tion of physical phenomena. Another consequence of the strong force interaction
is that neutrons provide weak perturbations to the system, easily exciting magnetic
transitions, but without modifying the nature of the states. This simplifies a lot the
underlying scattering theory. Furthermore, neutrons have a wavelength to the order
of the inter-atomic distance (around 1.8 Å) and an energy of 25 meV, similar to the
excitations bandwidth in a crystal. They are then ideal for probing both static and
dynamic properties of the matter. Another reason to chose neutrons over X-rays is
the scattering cross-section which is isotope dependent to allow study of very light
elements such as (deuterised) Hydrogen. Moreover, the neutron is then sensitive to
the isotope which allows the study of biological systems by deuterisation. Finally,
neutrons possess an intrinsic magnetic moment which makes them ideal for the study
of static and dynamic magnetic properties such as excitations, magnetic interactions
and structures.
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2.1. Introduction to Neutron Scattering

Based on these criteria, Ernest Wollan and Clifford Shull performed one of the first
neutron diffraction experiments [23]. They discovered the presence of diffraction peaks
at unexpected positions as the very first evidence of the Néel state, predicted in 1948 by
Louis Néel [24] for which he obtained the Nobel Prize in Physics in 1970. These results
have defined the basis of modern quantum magnetism. The properties of neutrons
are now well known and are summarised in Table 2.1. Neutron scattering techniques
are also much more advanced, with the development of very specific instruments and
the creation of dedicated facilities around the globe. They are now used widely used,
complementary to in-lab bulk measurements, to shed light on physical behaviours
of systems. Having mentioned Nobel Prize laureates, the list grows longer with Flory
(1974), Bednorz and Muller (1987), de Gennes (1991), Shull and Brockhouse (1994),
whose research could not have been conducted without the use of neutron scattering
techniques. And there will be more to come . . .

In the frame of any work with neutrons, it is convenient to introduce the following
equivalences :

~ω = E = 81.81 · 1
λ2 = 2.072 · k2 = 5.227 · v2 = 0.08617 · T (2.1)

and
1 meV = 8.07 cm−1 = 11.6 K = 17.3 T. (2.2)

As for any experimental technique, it is necessary to start by introducing theoretical
elements. In the next paragraphs, elements of the scattering theory, as it has been
derived for neutrons, are provided.

Table 2.1 – Physical properties of neutrons, inspired by [12]

Property Value

Charge 0 C
Mass 1.674928(1)·10−24 g
Spin 1/2
Cold neutrons 0 – 10 meV
Thermal neutrons 10 – 100 meV
Hot neutrons 100 – 500 meV
Magnetic moments -1.9130427(5) µN
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Chapter 2. Welcome to the world of neutrons

2.1.1 Scattering cross-section

In all neutron scattering experiments, incoming neutrons of wavevector ki are scat-
tered by a crystalline sample, modelled by a periodic Bravais lattice, into outgoing
neutrons of wavevector kf with an angle Ψ. The interaction between the neutrons
and the sample will thus change the energy and the momentum of the neutrons and
can be pictured as in Fig. 2.1. As for all collisions, these changes are described by the
momentum and energy transfers, ~Q and ~ω such that

Q = ki − kf (2.3)

~ω = ~ (ωi − ωf ) = ~2

2m
(
k2
i − k2

f

)
. (2.4)

From here, one can already distinguish two types of scattering processes. Elastic
scattering is defined by an energy transfer ~ω = 0 and thus ki − kf = G, whereG is a
reciprocal lattice vector. This condition is equivalent to Bragg’s law λ = 2dhkl sin θhkl, in
which case Ψ is the Bragg angle 2θ. If this condition is not fulfilled, the scattering vector
can be decomposed intoQ = G+q. The dispersion relation ~ω(Q) of magnetic crystals
can then be obtained with inelastic neutron scattering measurements by scanning
over multiple points in the reciprocal space. In this thesis, I will use Miller’s notation,
such that a point in the reciprocal space is denoted byQ = ha∗ + k b∗ + l c∗ with

a∗ = b ∧ c
V0

, b∗ = c ∧ a
V0

, c∗ = a ∧ b
V0

, (2.5)

where a∗, b∗ and c∗ are the lattice parameters of the crystal and V0 = a · (b ∧ c) is the
volume of the structural unit cell.

Q = ki - kf

ki
kf

q

G

Ψ

Figure 2.1 – Illustration of a scattering process. The vector Q = G + q closes the
triangle formed by ki and kf . The Brillouin zone boundaries are represented by the
grid. Here is then an inelastic process, ki 6= kf +G.
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2.1. Introduction to Neutron Scattering

Outgoing neutrons are then measured by 3He detectors of efficiency η, covering a solid
angle ∆Ω and an energy range of ∆E, leading to the neutron count rate

C = Ψ0 η

(
dσ2

dEdΩ

)
∆Ω∆E , (2.6)

where Ψ0 is the initial neutron flux. This expression naturally introduces the par-
tial differential cross-section, defined as the probability that an incident neutron of
wavevector ki is scattered into a solid angle dΩ orthogonal to the wavevector kf and
reaches a final energy between Ef and Ef + dE.

An expression of this quantity can be derived from first principles using the formalism
of many-body interacting systems, based on the Born approximation [25]. Because of
their energy range, neutrons can excite a transition between two quantum states but
without modifying the nature of these states. The formalism of such weakly perturbed
systems is well-described by Fermi’s Golden Rule stating that

dσ2

dEdΩ =
(
m

2π~

)2 kf
ki

∑
λf ,σf

∑
λi,σi

pλipσi

∣∣∣〈kf , λf , σf |V̂ (Q)|ki, λi, σi〉
∣∣∣2 · δ (~ω + Ei − Ef ) ,

(2.7)
where λi (λf ) is the initial (final) state of the scattering system with corresponding
energy Ei (Ef ) and statistical population pλi (pλf ); and σi (σf ) is the initial (final) spin
state of the neutron, with polarisation probability pσi ;m is the mass of the neutron. The
delta function ensures the conservation of energy, and V̂ (Q) is the Fourier transform
of the interaction potential. This expression is known as the master formula because it
describes every neutron scattering process. For an unpolarised neutron beam, as for
most neutron experiments, Eq. 2.7 can be rewritten as follows

dσ2

dEdΩ = kf
ki
S (Q, ω) , (2.8)

where S (Q, ω) is called the response function and contains information about the
quantum system only. This is the key quantity in neutron scattering experiments since
it provides all necessary information on the system, with the appropriate choice of
interaction potential V . By expressing the delta function with integrals, Eq. 2.8 can be
rewritten as

dσ2

dEdΩ =
(
m

2π~

)2 kf
ki

1
2π~

∫
dt e−iωt〈V † (Q, 0)V (Q, t)〉 . (2.9)

The notation 〈. . .〉 denotes the average over initial states. This expression highlights
the fact that neutrons probe the time correlations in the system.
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2.1.2 Nuclear scattering

The main elastic scattering process emerges from the ordered crystal structure. Neu-
trons interact with atoms’ nuclei at positions Rj via the strong force at very short
distance, typically to the order of 10−12 cm. The potential V can thus be modelled by a
Fermi pseudopotential

V̂N (r) = 2π~2

mn

∑
j

bj δ (r −Rj) , V̂N (Q) = 2π~2

mn

∑
j

bje
iQ·Rj . (2.10)

We introduced the scattering length bj of the nucleus on site Rj . Their values have
been experimentally determined in [26] and are now tabulated. At this point, one must
distinguish coherent scattering from incoherent scattering. Assuming that the sites are
not correlated, the two associated cross-sections read(

dσ2

dEdΩ

)∣∣∣∣∣
coh

= kf
ki

1
2π~

∫
dt e−iωt

∑
j,j′

b̄j b̄j′〈eiQ·(Rj(t)−Rj′ (0))〉 (2.11)

(
dσ2

dEdΩ

)∣∣∣∣∣
inc

= kf
ki

1
2π~

∫
dt e−iωt

∑
j

(
b̄2j − (b̄j)2

)
〈eiQ·(Rj(t)−Rj(0))〉 . (2.12)

The former emerges from the average scattering length on each site, giving rise to
interference effects which makes it a collective phenomenon among atoms. This
results in the appearance of Bragg peaks at positions determined by the static structure
factor FN (Q) =

∑
j 〈bj〉 eiQ·Rj eWj , where Wj is de Debye-Waller factor, accounting

for fluctuations of the atoms about their equilibrium position due to thermal effects.
Equation 2.11 can be rewritten, with n being the number of unit cells, as(

dσ2

dEdΩ

)∣∣∣∣∣
coh

= n
(2π)3

V0
|FN (Q)|2 δ (Q−G) δ(~ω) . (2.13)

The latter comes from time fluctuations of the scattering length of an isotope. As an
example, let us consider Hydrogen atoms. The scattering length varies a lot depending
on the quantum state of the atom, jumping from b|t〉 = 1.085 · 10−12 cm in the triplet
state to b|s〉 = −4.750 · 10−12 cm in the singlet state. This leads to a very large inco-
herent cross-section and explains why one generally does not want to study systems
containing Hydrogen, but rather replaced by Deuterium. In the frame of this thesis,
incoherent effects will considered as background and disregarded.
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2.1.3 Magnetic scattering

In a similar way, a magnetic potential emerges from the interaction between the dipole
moments of the neutrons and the internal magnetic field B̂(r) of the crystal generated
by both the magnetic moments of unpaired electrons and their orbital motion. The
magnetic potential reads

V̂M (r) = −µ̂n · B̂(r) (2.14)

where µn = −γµN σ̂ is the magnetic dipole moment of the neutron, γ = 1.913 is the
gyromagnetic ratio, µN = e~

2m is the nuclear magneton and σ̂ is the Pauli spin operator.
Thus, the spin’s contribution to the interaction magnetic field has a pure quantum
origin. The spin’s angular momentum ŝ and the Pauli operators for neutrons are related
by a factor of two such that σ̂ = 2ŝ. Another contribution to this fieldB(r) comes from
the classical orbital motion of the spins. The magnetic field emerging from a magnetic
dipole and a single electron with velocity ve is given by

B̂(r) = B̂s(r) +BL(r) = µ0
4πr2

(
∇∧ µ̂e ∧ r −

2µB
~
p ∧R

)
, (2.15)

where µ̂e = −2µB ŝ is the magnetic moment operator of an unpaired electron and ŝ
is the spin angular momentum operator. The first term corresponds to the magnetic
vector potential of a dipolar field due to the electron spin moment, and the second is a
reformulation of Biot-Savart law for a single electron with linear momentum p. For
simplicity, the case of identical magnetic ions and a non polarised beam is considered.
Assuming a periodic configuration of magnetic moments, it can be proven that the
Fourier transform of 2.14 is

V̂M (Q) = −µ0µn ·M⊥(Q) . (2.16)

We introduced the Fourier transform of the magnetic moments in real space Si as
M(Q) =

∑
i Si e

iQ·Ri and the so-called magnetic selection ruleM⊥(Q) = Q̂∧(M(Q)∧
Q̂). After insertion of the potential 2.16 in the master formula 2.7, the scattering cross-
section reads(

dσ2

dEdΩ

)∣∣∣∣∣
mag

= kf
ki

(γr0)2 |f(Q)|2e−2W (Q)∑
α,β

(
δα,β −

QαQβ

Q2

)
Sαβ(Q, ω) , (2.17)

where r0 = µ0e
2/(4πm) is the classical radius of the electron, and Sαβ is the dynamic

structure factor (α, β = x, y, z), covering the time dependent spin-spin correlations

Sαβ(Q, ω) = 1
2π~

∑
j,j′

eiQ·(Rj−Rj′)
∫

dt e−iωt〈Sαj (t)Sβj′(0)〉 . (2.18)

This value is equal – up to a constant factor – to the response function derived in
Eq. 2.9. The magnetic form factor f(Q) corresponds to the Fourier transform of the
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magnetisation density of a single atom in space. It usually decreases with increasing
modulus ofQ. Its value for each magnetic atom has been tabulated in [27]. Another
important feature in 2.17 is the polarisation factor

(
δα,β −

QαQβ
Q2

)
which states that

neutrons can only probe spin fluctuations that are orthogonal to the scattering vector
Q. It is interesting to introduce the following notation :

Sαβ(Q, ω) = 1
2π~

∫
dt e−iωt〈Mα†(Q, 0)Mβ(Q, t)〉 . (2.19)

The response function Sαβ describes the evolution of a physical averaged quantity
under an external perturbation – here, the magnetic field created by an incoming
neutron. In the limit of a weak applied force, the response of the system will be linear.
In this context, as stated by the fluctuation-dissipation theorem, the response function
and the imaginary part of the susceptibility are closely related [28], and the following
formula has been derived by Van Hove [29], with Nm as the total number of magnetic
ions

Sαβ(Q, ω) = Nm~
π

(
1− e−

~ω
kBT

)−1
Imχαβ(Q, ω) . (2.20)

The elastic magnetic cross-section can be extracted from 2.17 by considering the limit
t→∞. In this case, the spin-spin correlations become independent of time and

lim
t→∞
〈Ŝαj (t)Ŝβj′(0)〉 = 〈Ŝαj 〉〈Ŝ

β
j′〉 . (2.21)

One derives the elastic differential cross-section by inserting this result in 2.17 and
integrating over energy

(
dσ2

dΩ

)∣∣∣∣∣
el

mag

= (γr0)2 n
(2π)3

V0

∑
G

δ(Q−G)
∣∣∣Q̂ ∧ (FM (Q) ∧ Q̂

)∣∣∣2 , (2.22)

which is the relation that governs magnetic Bragg peaks scattering. We have defined
the magnetic structure factor as

FM (Q) = f(Q) e−W (Q)∑
j

〈Sj〉 eiQ·Rj = f(Q) eW (Q)M(Q) . (2.23)

Importantly, the matrix elements of Eq. 2.7 corresponding to the spin Ms and to
the orbital motionML contributions defined in Eq. 2.15, between the eigenstates of
the atoms expressed through its total angular momentum, must satisfy the dipole
selection rules [30] leading to ∆S = 0,±1 for transition metals ions. Furthermore,
since the projection of the total (atom plus neutron) projection on the quantisation
axis is a scalar quantity, it must be conserved throughout the scattering process. ∆Sz

must correspond to the change in the neutron’s spin. This leads to the two scattering
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selection rules for neutrons :

∆S = 0, ±1, (2.24)

∆Sz = 0, ±1. (2.25)

2.1.4 Polarised neutrons

In the previous section, I decided to describe scattering events from a non-polarised.
However, their spin state is also susceptible to change after interacting with the sample
as highlighted in 2.7. In the most general state (spherical neutron polarimetry), the
scattering cross-section becomes a 3×3 matrix, where the basis for each measurement
is given by the three different quantisation axis. One can also restrict the polarisation
analysis to a single quantisation axis (longitudinal neutron polarimetry, SNP), but this
aspect has not been addressed throughout this thesis. Assuming a polarised beam
along any direction, and three orthogonal measurement channels corresponding to
each quantisation axis, a measurement then provides additional information about the
system. A full theoretical derivation of the partial differential cross-section has been
performed independently by Blume [31] and Maleev [32], leading to the Blume-Maleev
equations. Since neutrons are sensible to the orthogonal fluctuations only – with
respect to the scattering vector – we will hereafter work in a new coordinate system
called polarisation axis, defined by

x || Q ,

z perpendicular to the scattering plane ,
y completing the right-handed coordinates system .

(2.26)

in such a coordinate system, the component of the magnetisation along x cannot be
probed, which might already give significant insights on the direction of the magnetic
moments. Assuming an initial polarisation Pi of the neutron beam and elastic events
only, the total cross-section reads

σ = NN∗ +M⊥ ·M∗
⊥ + Pi · (M⊥N∗ +M∗

⊥N) + iPi · (M∗
⊥ ∧M⊥) , (2.27)

where we omitted of theQ dependencies in order to simplify the notation, as for the
rest of this section. The final polarisation of the beamPf can be written as follows [33]

Pfσ = Pfσ|N + Pfσ|M + Pfσ|C + Pfσ|I . (2.28)

A change in the neutron’s spin state can have various origins : nuclear, magnetic, chiral
and nuclear-magnetic interference. A detailed description of each contribution can be
found in Table 2.2.
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Table 2.2 – Description of each scattering contribution, presented in Eq. 2.28, heavily
inspired by [34].

Type Contribution Effects

Nuclear PiNN
∗ The polarisation remains

unchanged when
considering interactions
with the nuclear structure

Magnetic −Pi (M⊥ ·M∗
⊥)

+M⊥ (Pi ·M∗
⊥)

+M∗
⊥ (Pi ·M⊥)

Purely magnetic
scattering leads to a
spin-flip unless Pi ||M⊥

Chiral
magnetic

−iM∗
⊥ ∧M⊥ For certain types of

magnetic structures (e.g.
helicoidal),M∗

⊥ is not
parallel toM⊥, giving rise
to chiral terms

N-M-
Interference

NM∗
⊥ +N∗M⊥ −

i [(NM∗
⊥ −N∗M⊥) ∧ Pi]

If nuclear and magnetic
Bragg peaks coincide (e.g.
k = 0), the contribution
from nuclear and
magnetic scattering
interfere, creating some
polarisation alongM⊥
and inducing a precession
of the polarisation around
M⊥.

With these definitions, Blume-Maleev equations can be written in a tensor form as

Pf = P Pi + Pc , (2.29)

wherePc is the polarisation created during the process and P is the polarisation tensor
whose components can be deducted from Table 2.2. An explicit expression for P will
not be given here, but is expanded upon in the aforementioned literature, such as [35].
Blume introduced a quantity that can be deduced from observables, the polarisation
matrix Pαβ . It is related to the polarisation tensor as

Pαβ =
〈
PαβP βi + Pαc

P βi

〉
dom.

, (2.30)

where 〈. . .〉 denotes an average over the magnetic domains. For a single magnetic
domain, the polarisation matrix can also directly be extracted from measurements.
Considering neutrons initially with a state |β〉 scattered into a final spin state |α〉, it
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reads

Pαβ = | 〈α|V̂ (Q)|β〉 |2 − | 〈α|V̂ (Q)|β̄〉 |2

| 〈α|V̂ (Q)|β〉 |2 + | 〈α|V̂ (Q)|β̄〉 |2
=
σαβ − σαβ̄
σαβ + σαβ̄

. (2.31)

The cross-sections are then measured in the spin-flip and non-spin-flip channels.
Since the polarisation matrix is accessible both experimentally and theoretically, a
simple comparison can provide great insight on the orientation of the magnetic mo-
ments in the system. It has been previously established that the interaction potential
takes the form V̂ (Q) = V̂N (Q) + V̂M (Q), where each component has been defined
in Eqs. 2.10 and 2.16. If there is no magnetic contribution, the spins of the neutrons
are not affected by the scattering process and the polarisation matrix simply reads
Pαβ = δαβ .

When working with polarised neutrons, the most effective approach is to measure
peaks which provide a magnetic contribution only to the interaction potential, which is
the case when the propagation vector is not a reciprocal lattice vector, or on structurally
forbidden positions. In such a case, the cross-section reads, up to a proportionality
factor, σαβ = | 〈β|σyMy + σzMz|α〉 |2, where σi are the Pauli matrices. Assuming a single
magnetic domain, the polarisation matrix can be written as follows

Pαβ =

−1 0 0
H −K L

H L K

 . (2.32)

where the matrix components are defined by
HD = i

(
MyM

∗
z −M∗yMz

)
KD = |Mz|2 − |My|2

LD = MyM
∗
z +M∗yMz

D = |My|2 + |Mz|2 .

(2.33)

Importantly, in the msot general case, P xx gives great insight on the type of scattering
process occurring. A value of P xx close to -1 means that most of the spins have
been flipped, which is the case when magnetic scattering occurs. If P xx is close to
1, then nuclear scattering dominates. However, sometimes both scattering events
emerge at the same positions. This case is more complicated and will be considered in
detail in the last section of Chapter 4. Additionally, one must account for imperfect
beam polarisation such that, experimentally, |P xx| < 1. This will result in some
neutrons naturally scattering into the wrong channel which must be accounted when
comparing measured and computed matrices. It is useful to introduce the spin-flip
ratio R, commonly extracted from a purely nuclear reflection, defined as

R = σαα
σαᾱ

∣∣∣∣
N

= 1
2η(1− η) − 1 , (2.34)
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which naturally introduces the neutron beam polarisation efficiency η. Consequently,
η neutrons will have the correct polarisation |α〉, and (1 − η) neutrons will have the
wrong polarisation |ᾱ〉. Note that nuclear incoherent scattering might flip the spin and
be measured in all channels, slightly changing the effective spin-flip ratio value.

In a typical SNP diffraction experiment, one would measure as many inequivalent
reflections as possible, ideally with a strong magnetic to nuclear contribution ratio. The
comparison between experimentally extracted polarisation matrices and simulated
ones based on Eq. 2.31 will lead to the determination of the magnetic vector direction
with great accuracy. Note that polarised neutrons can also be used in inelastic mea-
surements, allowing separation of phonon signals from magnetic features, but this has
not been used in the scope of this thesis.
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2.2 Instrumentation

Although neutron scattering techniques are among the most powerful tools for struc-
ture determination and dynamic properties studies, they incur a cost. Neutrons are
hard to produce owing to the high energy scale needed to create them, and hence need
the construction of dedicated neutron scattering facilities all around the globe. All the
experiments performed in this thesis have been performed at PSI (CH), ILL and LLB
(FR), ISIS (UK), HZB and HML (GER), and finally NIST (USA).

There are two ways to produce neutrons: either with spallation or nuclear sources. In
the first method, protons are accelerated to very high energies (to the order of GeV)
and projected onto heavy metal targets (usually Ta or W). Collisions will take place with
nuclides which will hit other nuclides inside the same nucleus, inducing in a chain
reaction. The resulting excited – and unstable – nuclei will then evaporate protons,
mesons and, more importantly, neutrons. The latter will have a similar energy range to
the incident particle. Spallation processes are usually pulsed, with a frequency in the
range 10 to 100 Hz.
Neutrons can also be produced from fission processes. In this case, slow neutrons
are sent onto Uranium-235 atoms which will, in turn, break into fast neutrons and
other elements. Since this reaction is exothermal and releases more neutrons (nfast =
2.4nslow) than was required to be triggered, it is then self-sustaining. As an example of
reaction that describe a fission process:

235U + nfast −→ 144
56Ba + 89

36Kr + 2.4nslow + ∆E, (2.35)

where ∆E usually is of the order of 200 MeV. The resulting fast neutrons energy follows
a Maxwell distribution. Fission processes continuously produce neutrons.

As stated, scattering experiments require neutrons in the eV range maximum whereas
their energy can go up to 1 GeV just after creation. It is then necessary to drastically
cool them down, which can be achieved by colliding them with light elements such as
H2O or D2O. The choice of the moderator will depend on the type of incoming neutron
beam. If it is pulsed, one wants to cool them down in the shortest amount of time. If it
is continuous, one then needs to slow as many neutrons as possible.

Neutrons are then distributed to the instruments through neutron guides which greatly
improve loss reduction of the flux with distance. Indeed, the flux decreases as r−2

for isotropic radiation whereas the use of optimised neutron guides enable a loss not
higher than 2% per 10 m. Neutron guides are based on the total reflection principle,
which occurs when the scattering angle is smaller than a critical angle which depends
on the composition of the guide. Furthermore, constructing layers of variable thickness
with alternating positive and negative length results in so-called supermirrors which
dramatically increase the transmission of neutron beams. An example of a neutron
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experimental hall can be found in Fig. 2.2.

There are many ways of closing the scattering triangle defined in Fig. 2.1. In the
following, I present two types of instruments which can reach such a geometry and
that I used throughout this thesis.

Figure 2.2 – SINQ neutron guide hall, at PSI (CH). Neutrons are produced and then
distributed to the instruments via neutron guides. Figure taken from www.psi.ch

2.2.1 Time-of-Flight instruments

Time-of-Flight (ToF) instruments work on a very simple principle. Assuming that
neutrons are point-like particles and using position sensitive detectors, the energy
of the neutrons can be easily determined from their time-of-flight, i.e. between the
selection of a neutron by a chopper and its observation by a detector. This implies
the existence of a very large circular bank of detectors, such that they all lie at the
same distance from the sample. For inelastic scattering events, there exist two types of
scattering geometry. In the direct ToF configuration, the incident energy Ei is fixed,
usually by a chopper or a crystal, and the time of flight gives the final energy Ef . If
the spectrometer is in an indirect configuration, the sample is illuminated by a white
(polychromatic) beam and the final energy is determined by a crystal. The initial
energy is then obtained by the time-of-flight. Most ToF spectrometers work in a direct
configuration. A good instrument will reach an energy resolution to the order of 1%
of the incoming energy. In the case of diffraction, inelastic scattering processes are
neglected since their intensity usually lies several orders of magnitude below elastic
scattering on Bragg peaks. A white pulse of neutrons is sent towards the crystal and
is scattered at different wavelengths and angles. From the time of flight, one easily
extracts the wavelength of the neutron as τToF = α(L1 +L2)λ, where α = 252.7µs/m/Å ,
andL1,2 are the distances before and after the sample defined on Fig. 2.3. If the detector
coverage is big enough, one can measure a large portion of the reciprocal space in a
single sustained measurement to retrieve good statistics.
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Figure 2.3 – Schematic representation of the IN5 direct TOF spectrometer(ILL). Six
choppers select the initial neutron wavelength and tune the resolution of the instru-
ment. After a distance L1, the incoming neutrons are scattered in all directions. Those
whose energy satisfies the scattering condition shown inset are detected by the detec-
tors placed at a distance L2 from the sample. Adapted from www.ill.eu

2.2.2 Triple-Axis Spectrometers

Triple-Axis Spectrometers (TAS) work in a slightly different way. The main difference
is that the energy selection takes place both before and after the sample, to ensure
there is only one configuration that satisfies the scattering condition 2.1 for a given
incoming and outgoing energy, achieved by rotating the arms of the spectrometer
around its three axis, hence the name. A polychromatic beam of neutrons reaches to
the monochromator (typically made of pyrolitic graphite PG or Si) that, due to Bragg
scattering, will select only one wavelength by changing the scattering angle 2θM. A
similar process occurs at the analyser, where the outgoing energy is selected by a
rotation of the angle 2θA. All the angles are defined in Fig. 2.4. Since the neutron flux
drastically varies with ki (examples can be found in [16]), a typical TAS experiment
will fix ki to an optimal value and then allow kf to vary. The 4-dimensional resolution
depends strongly on the position in reciprocal space where the measurement is taken
from. It then takes the form of an ellipsoid and must be accounted for in the data
analysis. A full investigation on TAS data will then involve scans along all directions at
the elastic line level. It has been described theoretically [36, 37] and implemented in
some packages like ResLib, which can be found online.
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Figure 2.4 – Schematic representation of a Triple-Axis Spectrometer. The setup is
described in the paragraph above. Collimators are usually placed both before and
after the sample. Slits are used in order to remove any signal which does not emerge
from the sample. Beryllium (BE) or Graphite (PG) filters are added before and after the
sample to remove higher order wave vectors. Finally, monitors are placed along the
monochromator – sample, or the sample – analyser paths in order to normalise the
neutron flux. Figure taken from [38]
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Multiplex analysers

The last decade has witnessed the birth of a whole new generation of analysers, called
multiplex analysers. So far, in order to study low-energy excitations, one has to com-
promise between the large coverage but low flux of a ToF instrument, and the high flux
but very limited coverage of a TAS. Indeed, in a standard TAS experiment, only one
final wavevector is being measured at a time, which means that a significant amount
of scattering processes are not considered. By allowing neutrons to be scattered ver-
tically instead of horizontally, individual or 2D detectors can be placed at different
altitude scattering angles 2θ which are associated to sets of analysers, each of them
scattering a single wave vector with the angle 2θA, as represented in Fig. 2.5. Such
analyser systems can be fixed on the third axis of a TAS and are meant to compete
with TOF spectrometers. Here can be cited FlatCone (ILL) [39], MultiFLEXX (HZB)
[40] and more recently CAMEA (PSI) [41, 42, 43] on which I worked for a couple of
months during its commissioning phase. The near future will see the development of
MARMOT which is part of ILL’s endurance plan and should be operational in 2023, and
BIFROST (ESS) which will use the prismatic concept developed on CAMEA and that
will lead the creation of a whole new generation of neutron spectrometers.

Figure 2.5 – Multiplex analysers. (left) Array of analysers. Each of them vertically
scatters one wavelength only such that several final energies are being measured at
the same time. (right) Detectors bank of FlatCone, with internal shielding to avoid
cross-talking. Each detector measures neutrons with a different outgoing wave vector
kf , covering a huge part of the reciprocal space. Figures taken from [42] and [39].
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2.2.3 Polarisation analysis with TAS

Section 2.1.4 mentioned the possibility to integrate the neutron’s spin in the analysis
by tracking changes in its spin state during the scattering process. This is the basis
of Spherical Neutron Polarimetry (SNP). It is among the most challenging neutron
techniques in term of engineering, because one has to completely isolate the sample
space from any external source of magnetic field, including the Earth’s, in order to
control the orientation of the spin at all time. This is typically done on CryoPAD (ILL)
[33, 34, 44, 45] by shielding the region around the sample with superconducting Nb,
resulting in a Meissner effect, or by using highly permeable mu-metals which will
reduce any external field by a factor of 1000, as is the case for MuPAD (PSI) [46]. This
shielding unit will then sit around the sample place of a TAS, as described in detail in
Fig. 2.6. Although this configuration can be used to study inelastic processes in order
to separate the magnetic signal from phonon contributions, we will restrain ourselves
to the case of elastic scattering in the frame of this thesis. We used both CryoPAD and
MuPAD in order to determine the magnetic structure of antiferromagnets. Indeed,
since this technique relies on the absence of any magnetic field inside the sample
chamber, it excludes the investigation of compounds whose magnetic moments have
a ferromagnetic component. Another drawback is that although powerful, this method
implies a drastically reduced count rate because of the extra shielding and selection of
the outgoing polarisation.

Figure 2.6 – Spherical Neutron Polarimetry on MuPAD (PSI). The incoming beam is
polarised by super-mirrors or single crystal polarisers, along the arm of the TAS (3).
Guide-fields (1) are used to maintain the polarisation of the neutron. In the shielded
region (grey area), Helmotz coils (2) control the orientation of the polarisation with
magnetic fields. Neutrons are then scattered onto the sample (6) which lies in a cryostat
(5) and a beam shield (4), as for any TAS. The same elements are present on the other
arm of the spectrometer. The (x, y, z) coordinate system specific to polarised neutrons
is also highlighted. Figure adapted from www.psi.ch
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2.3 Linear Spin Wave theory

The Linear Spin Wave (LSW) approximation is widely used in studies of systems de-
scribed by a Heisenberg Hamiltonian in order to derive an upper estimate to the
ground state energy, and extract ground state and low-lying energy states proper-
ties. It is a very powerful tool, both for its simplicity and for its accuracy and has
been extensively adapted for the analysis of inelastic neutron scattering experiments.
This semi-classical method consists of introducing quantum fluctuations on top of a
highly degenerated classical ground state, which provides a reasonable estimate for
the quantum ground state of the system.

2.3.1 Square antiferromagnet

As a gentle introduction, let us start with the simple case of a square antiferromagnet,
as investigated by Kubo [47] and Anderson [48]. We consider the following Heisenberg
Hamiltonian, with J > 0 and 〈i, j〉 denotes a sum restricted to nearest-neighbour sites

Ĥ = J
∑
〈i,j〉

Ŝi · Ŝj . (2.36)

Assuming a Néel state |N〉 = |↑↓ . . . ↑↓〉, the lattice can be decomposed into two sublat-
tices, A and B with only spins up, and down respectively. We assume a quantisation
along the z axis. Although the Néel state is well-suited to describe the classical ground
state properties of the system, it does not correspond to its quantum ground state.
In fact, it is not even an eigenstate of the Hamiltonian. Nevertheless, it can act as a
reference state in order to get a reasonable approximate of the quantum ground state.
Indeed, local quantum fluctuations can be added on site i ∈ A (j ∈ B) through the
bosonic operators â and â†, as proposed by Holstein and Primakoff [49].

A:


Ŝ
z

i = S − n̂i

Ŝ
+
i =
√

2S
√

1− n̂i
2S âi

Ŝ
−
i =
√

2S â†i

√
1− n̂i

2S

, B:


Ŝ
z

j = −S + n̂j

Ŝ
+
j =
√

2S â†j

√
1− n̂j

2S
Ŝ
−
j =
√

2S
√

1− n̂j
2S âj

(2.37)

The term n̂i = â†i âi represents the magnon occupation number on site i. Assuming
n̂i � 2S allows us to keep the linear terms in S only in Eq. 2.37. This hypothesis
is justified for spin-1

2 antiferromagnets by the low amount of quantum corrections
〈â†i âi〉 ∼ 0.196 [50]. The Hamiltonian 2.36 reads :
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Ĥ = J
∑
i

∑
j(i)

(
S2 − Sâ†i âi − Sâ

†
j âj −

2S
2
(
âiâj + â†i â

†
j

))
(2.38)

= JS2Nz

2 −
JS

2
∑
τ

∑
k

(
2â†kâk + âkâ−ke

−ikτ + â†kâ
†
−ke

ikτ
)
, (2.39)

where j(i) denotes the sites j interacting with a fixed site i, τ = rj − ri and z is
the coordination number. We also used the Fourier transform of the ladder operators
âk = 1√

N

∑
i âie

−ikri . This Hamiltonian can be rewritten as sum of harmonic oscillators
with the appropriate unitary coordinate transformation, as proposed by Bogoliubov
[51].

âk = ukb̂k + vkb̂
†
−k (2.40)

The old magnon ladder operators â are now expressed as linear combination of bosonic
operators b̂which preserve the commutation rules

[
b̂k, b̂

†
k

]
= δk,k′ , with real coefficients

uk and vk which respect the relation u2
k − v2

k = 1. In this new basis, the Hamiltonian
can be rewritten as Ĥ = E0 + Ĥ2, where

E0 = JS2Nz

2 (2.41)

Ĥ2 =
∑
k

ωkb̂
†
kb̂k + ε0 . (2.42)

This quadratic Hamiltonian introduces a new type of excitations, called spin waves.
Their expression ωk can be derived from the commutation relation

[
Ĥ, b̂k

]
= ωkb̂k

which, for a square antiferromagnet, yields ωk = −JSz
√

1− γ2
k where γk =

∑
τ

cos(k·τ)
z

depends on the dimensionality of the system. The constant term E0 is the classical
energy of the system, and ε0 is the so-called zero point energy of the system, associated
to the quantum fluctuations of the ground state. It represents the energy of the unper-
turbed state |0〉, in the magnon representation such that â |0〉 = 0. An analytical form
can be deduced from the condition 〈0| Ĥ2 |0〉 = 0, which yields ε0 = JSz

2
∑
k (ωk − 1).

It has been proven that these spin waves provide a good description of the magnetic
excitations in many quantum system, assuming that quantum fluctuations are not too
important (∆S � S).
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Figure 2.7 – Representation of a spin wave in real space created by a single local spin
deviation defined by k. The fluctuations perpendicular to the quantisation axis z form
a cosine of period∼ 1/k. In the LSW formalism, many different spin deviations can be
created on the same site

2.3.2 Generalisation and applications to neutrons

In the case of real compounds, their nuclear structure and magnetic interactions
between the atoms make such that all spins are not necessarily collinear. To deal with
these more realistic cases, it becomes necessary to introduce local spin transformations
on each site which will leave the Hamiltonian invariant. First of all, LSW theory
assumes that there is long range order. This means that the classical spins of a magnetic
cell at position rm are built relatively to the ones in the original magnetic cell by
rotating all moments by φm = k · rm, where k is the propagation vector. In order to
recover a ferromagnetic state which is easy to work with because of the single choice
of quantisation axis, it is necessary to use a rotating frame defined by two rotations.
The first one will make such that all magnetic cells will be identical by defining new
operators Ŝ

′
m,i for each site i belonging to the mth unit cell.

Ŝm,i = RmŜ
′
m,i . (2.43)

The rotation matrixRm depends on the angle φm defined above. The second transfor-
mation ensures that all spins within the same magnetic unit cell are oriented ferromag-
netically

Ŝ
′
m,i = R′iŜ

′′
m,i . (2.44)

As mentioned previously, the Hamiltonian is invariant under these transformations. In
the most general case, it reads:

Ĥ =
∑
m,i

∑
n,j

Ŝ
†
m,iJm,i;n,j Ŝn,j +

∑
m,i

Ŝ
†
m,iAm,iŜm,i + µBH

∑
m,i

giŜm,i , (2.45)
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where J is the interaction matrix coupling site i to site j, including asymmetric ex-
changes such as the Dzyaloshinskii-Moriya interaction. The matrixA represents any
local anisotropy, such as the single ion anisotropy, and H accounts for an external mag-
netic field. Substituting the spin operators for their approximate expressions defined in
Eq. 2.37 provides the dispersion relation of this system. Another measurable quantity
is the dynamic structure factor introduced in Eq. 2.18. The same approximation can
be used in this expression, allowing for direct comparisons with experiments.

Of course, an analytical solution cannot always be obtained for more structurally
complex systems. Hence the development of softwares that would diagonalise large
bosonic Hamiltonians in their Hilbert space using an optimisation method proposed
by Colpa [52]. The Matlab package SpinW [53] has been developed in the past few
years and has rapidly become the most powerful software for a spin wave analysis of
real compounds. It has been widely used in the frame of this doctoral thesis. Being a
semiclassical theory, assuming 〈â†i âi〉 � 2S, this theory does not cover strong quantum
effects, nor cluster systems, but is extremely simple and powerful for the description
of long range ordered quantum magnets.

Beyond the LSWT

Some extensions to the LSWT have been developed throughout the years. The first
natural improvement is to include higher order terms in Eq. 2.37 which is necessary to
describe phenomena with symmetry breaking or vanishing order parameters as for
the Ginzburg-Landau so-called mexican hat potential [54]. Similarly, novel excitations
could be described with quartic terms, but the literature about this is, to the best of
my knowledge, very poor. A second improvement to the LSWT can be achieved by
assuming the existence of many condensates, each of them describing a quantum
state. This is the essence of the multi-boson spin wave theory which has been widely
used in the case of quantum systems with S > 1

2 that exhibit clustered long range order
such as tetrahedra based systems [55]. New bosonic operators are then introduced in a
similar fashion, probing higher order spin states. Finally, although not directly related
to the LSWT, one can present mean field bonds operators which are ideal in systems
that lie close to a quantum critical point [56, 57, 58]. It consists in the introduction of
new operators corresponding to clustered quantum states, for example triplets |t〉 and
singlets |s〉 in the Hamiltonian describing the system.
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In this chapter, I present a complete review of the magnetic excitations in the quan-
tum magnet SeCuO3. Prior susceptibility measurements suggested the existence of
localised quantum states at high temperature forming non-magnetic singlets [59].
The system exhibits a long range ordered magnetic behaviour at low temperature but
nevertheless retains features of its quantum ancestry. SeCuO3 forms an interesting
arena to study how localised effects evolve into, or coexist with, collective states. I will
demonstrate that three different types of excitations are present simultaneously in
SeCuO3, and, more importantly, that they show a high degree of entanglement. These
excitations are associated with two magnetic sublattices, one of which forms strongly
bound dimers resulting in triplonic excitations. The second one is responsible for long
range antiferromagnetic order, forming a network of interacting spin chains. Remark-
ably, the small amount of frustration in this system contributes to the presence of
spinon continua at energies above the magnon band. The coexistence of all three types
of excitations in a single quantum magnet and the presence of a spinon continuum
different from the traditional one-dimensional form open the door to a consistent
and combined theoretical treatment of multi-type excitations. Additionally, it calls for
further investigation on the criteria for the presence of a spinon continuum. The work
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presented in this chapter has been summarised in a paper published as a Letter in
Physical Review B [60].

3.1 Introduction

The most common type of magnetic excitations in a system are spin waves, emerging
from robust long range order. They are dominant in systems with weak quantum fluc-
tuations and are well-described by the semi-classical linear spin wave approximation,
which is a mastered technique. Thus they do not challenge new fields of quantum
physics any more. Real challenges appears when the spin quantum fluctuations drive
a system beyond this established long range order as is the case when the system has a
lower dimensionality, different geometries leading to exotic magnetic lattices, or when
it exhibits magnetic frustration. These scenarios result in new collective excitations,
such as triplons arising from spin dimerisation [61, 62, 63] and frustration [64], bond
states of magnons [65] or triplons [66, 67, 68], or fractional excitations such as spinons
[69, 70] solitons [71, 72] or even Majorana particles [73, 74, 75]. All these systems are
traditionally analysed in terms of one type of excitations, and great theories have been
developed for in-depth comparisons with experiments.
However, if magnetic order is present, nothing states that the remaining quantum
fluctuations are incoherent and should then be disregarded. Much less effort has been
put into the understanding of quantum systems in which magnons coexist with more
exotic quantum states. In TlCuCl3, the field-[76] and pressure-induced [77] quantum
phase transitions show an example of weak antiferromagnetic order on top of a dimer
system with triplon excitations. Another example is KCuF3, where a weak coupling of
1D spin chains produces magnetic order superposed to spinonic excitations, which is
revealed at high energy [78]. It is also known that spinons coexist with square lattice
antiferromagnetism [79] and some metal-organic systems offer the possibility to of
tuning their coexistence [80]. Similarly, in the tetrahedron material Cu2Te2O5X2(X
= Cl, Br)[81], theoretical studies predicted a non-ordered ground state [82], which
was subsequently confirmed experimentally [83]. Incommensurate magnetism [84]
coexists with coupled-clusters excitations [85] – a behaviour that has been observed in
other cluser materials [86, 87, 88]. More recently, another study pointed out the coexis-
tence and interaction of spinons and magnons [89], emerging from weakly coupled
antiferromagnetic and ferromagnetic chains.

32



3.1. Introduction

3.1.1 Magnetic excitations

As presented in the introduction of this thesis, quantum magnets can be seen as sets
of interacting particles defining a magnetic lattice, and characterised by a ground
state and a spectrum of excited states. These features depend mainly on the magnetic
interactions between the spins of interacting magnetic ions. Knowledge of the energy
spectrum En and the corresponding wave functions |ψn〉 is crucial, since both are used
in the computation of observables 〈O〉 =

∑
n pn 〈ψn|Ô|ψn〉. There exists a whole series

of excitations, semi-classical or purely quantum, that can be divided in two categories –
local or global. They are all very well captured by inelastic neutron scattering assuming
that the obey the selection rules ∆S = 1. Here, I propose a brief review of the main
types of excitations observed in SeCuO3.

Triplons

The simplest magnetic system is formed by two identical spins-1
2 , 1 and 2, whose

interaction strength is given by JD > 0. This is called a dimer. The total spin is given by
S = S1 + S2, and forms a new quantum number. The Hamiltonian of such a system is
given by

ĤD = JD Ŝ1 · Ŝ2. (3.1)

The spectrum is easily obtained after diagonalisation of the Hamiltonian, and is given
by the ground stateE0 = −3JD

4 , with a total spinS = 0, and the three times degenerated
energy level E1 = JD

4 associated with S = 1 states, described by the wave functions

|ψ0〉 = 1√
2

(|↑↓〉 − |↓↑〉)

|ψ1,1̄〉 = |↓↓〉
|ψ1,0〉 = 1√

2
(|↑↓〉+ |↓↑〉)

|ψ1,1〉 = |↑↑〉 .

(3.2)

Triplons excitations are, by essence, localised in space. In fact, they can then be
considered as a new entity, whose assembly forms a new magnetic lattice, allowing to
reach new quantum states. It is a rather common type of excitation, which nevertheless
results in interesting quantum states as in the Shastry-Sutherland quantum magnet
SrCu2(BO3)2 (SCBO) [68, 90, 91]. The structure factor of triplons is not constant in
reciprocal space. An expression can be derived by adapting the dynamic structure
factor in Eq. 2.7 to the singlet–triplet transition [92]. Of course, there exists similar
states for larger sets of atoms which result in doublons, quintuplons, septuplons, etc.
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Figure 3.1 – Triplet states (a) Energy levels in a magnetic dimer. An energy gap of
JD separates the non-magnetic ground state |ψ0〉 from the triply degenerated excited
states |ψ1,m〉. (b) Splitting of the triplet states (Sz = 0,±1) in SrCu2(BO3)2 due to
Zeeman effect induced by a 8 T vertical magnetic field. Figure taken from [90]

Magnons

The most common type of excitation in a magnetically ordered quantum magnet is
a magnon, also called a spin wave. Unlike in the previous section, it is a collective
– or delocalised – spin-1 excitation that can be seen as a periodic rotation of the
magnetic moments around their average direction. The existence of spin waves is
theoretically predicted by Golstone’s theorem [93], which states that new excitations
emerge when a continuous symmetry is spontaneously broken. In the present case,
this continuous symmetry is the SO(3) rotation of the magnetic moments. Magnons
are intrinsically dispersive and well described by the linear spin wave theory derived
in Sec. 2.3. In the case of a ferromagnetic system, the dispersion is given by ε(Q) =
JS

∑
τ

(
1− eiQ·τ

)
, where τ is the nearest neighbour distance. This expression resumes

to ε(Q) = 2JS (1− cos(Q · a)) in the case of a one dimensional problem, with a the
interatomic distance. Similarly, in the most general case of m atoms per magnetic unit
cell, one needs to describe the excitations with m magnetic sublattices. This implies
the existence of m potentially degenerated magnon modes in the excitation spectrum.
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Spinons

It is known that fundamental excitations in a ferromagnetic quantum chain take the
form spin waves. However, the situation is different for antiferromagnetic spin-1/2
chains. The exact solution for the ground state has been derived by Bethe [94]. The
excitation spectrum has been calculated by Des Cloizeaux and Pearson [95] and later
Faddeev [96], and consists of a macroscopic triplet such that Stot = 1. It can be seen as
a localised spin-flip, and requires the introduction of two domain walls separating a
spin-flip region and a non-spin-flip region [Fig. 3.2(b)]. Additionally, separation of the
walls do not cost energy. These domain walls represent fractional excitations, which are
called spinons. Since they describe a spin-1 excitation (spin-flip), each of them carries
a spin-1/2. A spinon pair can then be observed by neutrons. While each of them has a
momentumQi and energy ε(Qi), an excitation at a givenQ = Q1 +Q2 can then be
formed by an infinity of free spinon pairs and then results in a continuum of scattering
intensity at this position, such that ε(Q1 +Q2) = ε(Q1) + ε(Q2). An approximate [97]
and exact [98] solution for the two-spinon dynamic structure factor has been proposed
based on the Bethe ansatz, while tabulated values are given by Caux [99]. An example
is given in Fig. 3.2. An exact excitation spectrum has been theoretically predicted by
Haldane [100] and was observed for the first time in the S = 1/2 chain KCuF3 [101] a
few years later.

Figure 3.2 – Spinon excitations. (a) Spinon continuum measured on the antiferromag-
netic Heisenberg chain CuSO4·5D2O, and comparison with the two- and four- spinons
dynamic structure factor. (b) Sketch of an excitation on the 1D antiferromagnetic chain
and its time evolution. A spin-flip is represented by two domain walls, each carrying
a spin-1/2. In the Heisenberg limit, it can be written as a sum of an even number of
domain walls corresponding to two- four- 2m- spinon processes. Figures taken from
[70]

35



Chapter 3. Coexistence of multi-type excitations in SeCuO3

3.1.2 Crystal structure and magnetic properties

The S = 1/2 quantum magnet SeCuO3 crystallises in a monoclinic unit cell described
by the space group P21/n with lattice parameters a = 7.71 Å, b = 8.24 Å, c = 8.50 Å, and
β = 99.12◦ [102]. There are two crystallographically inequivalent Cu sites in the unit
cell. Each are surrounded by six O atoms, forming CuO4 plaquettes and the remaining
two Cu atoms form elongated octahedra, as represented in Fig. 3.3. The crystal field
generated by the position of the O ligands breaks the degeneracy of the energy levels,
favouring a dx2−y2 orbital state for the Cu spins. This structural configuration suggested
the presence of Cu1 dimer units of edge-sharing plaquettes with Cu1–O–Cu1 angles of
101.9◦, highlighted in orange. SeO4 tetrahedra serve as ligands between different Cu2
sites.

Figure 3.3 – Nuclear structure of SeCuO3 projected on the ac plane, showing Cu1
(orange), Cu2, Se (green) and O (pink) atoms. Dimer units are highlighted in orange
while CuO6 octahedra are in blue.

Due to the elongation of the octahedra, free electrons are more likely to lie in the dx2−y2

orbital. Superexchange processes Cu–O–Cu between two neighbouring Cu sites will
then follow the path dx2−y2–px(y)–dx2−y2 . This led to the initial proposal that SeCuO3
consists of a weakly coupled network of Cu2–Cu1–Cu1–Cu2 linear tetramers, with a
singlet ground state [103]. Magnetic susceptibility (χ = M/H) and specific heat mea-
surements have been performed in the same previous study. The low temperature
regime of the former shows a hint of an easy axis along [101] due to the low value of
the susceptibility, with a field along this direction compared to the other orthogonal
directions, and a narrow maximum around 18 K typical of three dimensional antiferro-
magnetic order. However, I note the presence of two distinctive energy scales. The first
one at TN = 8 K is associated with the emergence of long range order, as confirmed by
the sharp peak in the specific heat curve. The second one subsists until ∼90 K. The
behaviour of the susceptibility is well explained at higher temperature by a tetramer
model from thermodynamics considerations [104].
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Figure 3.4 – Magnetic susceptibility and specific heat measurements. (a) Suscep-
tibility measurements along three orthogonal directions on a single crystal, and on
powder. The red line corresponds to a fit to a high temperature tetramer model. (b)
Close up on the low temperature of the susceptibility, and specific heat measurements
(black line). Figure adapted from [103].

However, the tetramer picture could not completely explain the overall behaviour of
magnetic susceptibility below 90 K, as reported in Fig. 3.4. On the other hand, nuclear
quadrupole resonance (NQR) indicated the formation of singlet states at temperatures
below T . 200 K, emphasising the existence of a strong bond JD connecting two Cu1
atoms. Recent nuclear magnetic resonance (NMR), electron spin resonance (ESR) and
magnetic torque magnetometry experiments suggested [105, 106] a formation of two
decoupled subsystems, consisting of strongly interacting local Cu1 dimers and weakly
coupled Cu2 spins. This deduction is also supported by neutron diffraction measure-
ments performed on DMC (PSI). Indeed, despite the low statistics, a description of the
diffraction pattern has been proposed with non collinear spins on both sublattices and
site-dependent quantum correlations [107].
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3.1.3 Experimental setup

In order to reveal the magnetic excitations in SeCuO3, a standard chemical vapour
transport method has been used to grow single crystals, resulting in a 1 g elongated
and hollow single crystal shown in Fig. 3.5 that proved to be of high quality. It has
been mounted on an Al sample holder and aligned using Laue x-ray backscattering
at EPFL. Neutron scattering experiments have been carried out by previous members
and collaborators of the laboratory. To access high-energy dynamics, the sample has
been oriented in the (hkh) scattering plane and put in the thermal spectrometer IN8
(ILL) [108] with an incident wave vector of 2.66 Å−1, resulting in a resolution of 1.8(2)
meV (FWHM) at ω = 27 meV. Low-energy magnetic properties have been probed on
the cold spectrometer IN14 (ILL) [109], still in the (hkh) scattering plane, and 4F1 (LLB)
in the (hkh̄) scattering plane. In both cases, the incident neutron wave vector was 1.55
Å−1, allowing for a resolution at ω = 5 meV of 0.19(5) meV. PG(002) monochromators
and analysers have been used, as well as a Be filter placed between the sample and the
analyser to remove higher order scattering processes. On IN8, counting times were 4
minutes perQ-point for ω scans directly above of below the transition temperature,
and 30 s per measurement for the temperature dependence study. On IN14 and 4F1,
eachQ-point was measured for 5 and 3 minutes, respectively.

Figure 3.5 – Single crystal of SeCuO3 used for neutron scattering experiments. The
dimensions are approximatively 1.5 cm long by 0.5 cm wide for a mass of 1 g.
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3.2. Localised magnetic dimers

3.2 Localised magnetic dimers

As mentioned in Sec. 3.1.2, there are two energy scales in SeCuO3. Local states are
expected below T . 200 K, and long range order emerges at TN = 8 K. In order to probe
the physics in the higher energy scale, thermal neutron scattering has been performed
on IN8. Two sets of measurements have been made. The first one focuses on low tem-
perature properties by measuring I(ω) at constantQ positions in the high-symmetry
[0, k, 0] and [h, 3, h] directions. An example measurement is shown in Fig. 3.6(a).

Figure 3.6 – Low temperature high-energy dynamics of SeCuO3. (a) Representative
ω scan measured at low (blue) and intermediate (red) temperature. The difference is
drawn in black. (b) Dispersion ω(Q) of the mode at low temperature along two high-
symmetry directions. The shaded red area represents the extracted width (FWHM) of
the mode at each point in reciprocal space. (c) Corresponding integrated intensity
I(Q).

Each scan at T = 2 K exhibits a sharp peak fitted with a Gaussian distribution. At 15 K,
the peak shows a minimal downward shift and a slight broadening. The centres and
integrated intensities for each Q-point are extracted and show a weakly dispersive
behaviour around 26.5 meV [Fig. 3.6(b)]. This very weakQ dependence indicates that
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the nature of this mode corresponds to a singlet to triplet transition, associated with a
triplon quasiparticle, in the Cu1 dimers represented in orange in Fig. 3.3, with an energy
gap of JD. The weak dispersion is also a sign of a weak coupling between the dimers
and the rest of the magnetic lattice, hypothetically formed by Cu2 ions. This dispersion
has a smooth variation in intensity [Fig. 3.6(c)], whose line shape is different from
the standard dimer structure factor [92] (not shown here), even though the portion of
the reciprocal space I measured is too limited to reach a definitive conclusion. The
difference can also be explained by the weak coupling to the other sub-lattice.

In the second set of measurements, I probe the temperature dependence of the excita-
tion by performing similar ω-scans at different temperatures, atQ = (0 3 0).

Figure 3.7 – Temperature evolution of SeCuO3 measured atQ = (0 3 0). (a) Represen-
tative ω-scans (black) and Voigt profiles at different temperatures. (b)–(d) Thermal
evolution. (b) Extracted Lorentzian width (red) compared to KBT (blue). (c) ω(T );
shading accounts for the instrumental resolution of 0.75(8) meV (red) and for the
Lorentzian profile (blue). (d) Normalised integrated intensity I(T ) (red) and thermal
singlet population (blue).
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Each measurement up to 114 K shows a clear peak with a Voigt line shape [Fig. 3.7(a)],
confirming the persistence of the mode far above TN . The Gaussian component is
ruled by the instrumental resolution, and the Lorentzian part accounts for thermal
effects. The Lorentzian width reported in Fig. 3.7(b) increases linearly with temperature
until a value of∼4 meV which, as we will see in the next section, reflects the coupling
to the excitations of the Cu2 subsystem. More importantly, the mode amplitude is
comparable to the statistical thermal population of a singlet state given by 1/Z = [1 +
3 exp (−JD/kBT )]−1, where Z is the partition function of the dimer system [Fig. 3.7(d)].

To summarise the results presented in this section, I have observed a set of features that
confirm the triplon nature of the high-energy excitations in SeCuO3. Cu1 dimer units
form strong clusters that are weakly coupled to the Cu2 subsystem. Their magnetic
behaviour is well described by the two sites Hamiltonian

ĤD = JD
∑
〈i1,j1〉

Ŝi1 · Ŝj1 , (3.3)

where 〈i1, j1〉 denotes a sum over nearest-neighbour Cu1 atoms only, and JD is the
energy gap between the singlet and triplet states, JD = 26.5 meV.
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3.3 Three dimensional long-range order

We now turn to the low-energy dynamics of SeCuO3, where magnetic excitations
emerge from long range order below TN . A total of 74 line scans have been performed
at 2 K on the cold spectrometers ThALES and 4F1, and representative ω scans are
shown in Fig. 3.8 for different positions in reciprocal space.

Figure 3.8 – Magnonic excitations at eight differentQ-points measured on ThALES at
2 K. The measured intensity I(ω) (black) shows a clear peak that is fitted by a Gaussian
(red) in the low-energy edge. A scattering continuum (light green) is present at higher
energies in all directions.

It is clear that a strong low-energy mode is present at allQ. Surprisingly, some scat-
tering intensity persists above the magnon peak and at least up to 4.5 meV, along
all measured directions. This continuum cannot be explained by the instrumental
resolution and must have a different origin. For a better visualisation of this feature,
I gather the measured ω-scans in a colour plot representation in Fig. 3.9. A deeper
analysis of this three dimensional continuum will be addressed in Sec. 3.4.
Similarly, I extracted the spin wave intensity Ip(Q) by performing Gaussian fits at the
magnon peaks. The remaining intensity at higher energies is the contribution from the
continuum Ic(Q). The results are summarised in Fig. 3.9. The lower panel shows a well-
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Figure 3.9 – Low-energy dynamics. Coloured panels show the scattering intensity
I(Q, ω) along five different directions. Black lines show the simulated spin waves
extracted from a fit to the magnon peaks in Fig. 3.8, the dashed line has vanishing
intensity. Upper panels show the magnon (Ip(Q), red) and continuum (Ic(Q), light
green) integrated intensities, also taken from Fig. 3.8. Black lines correspond to mod-
elled spin waves intensities. The contribution of two modes is considered in the panel
at right.

defined band, which disperses in all five measured directions. I also note footprints
of a second mode, with much weaker intensity. These features are also well-defined
along [h, 2, h], despite the lower statistics of the measurements. The system has a
small measured gap of ∆ = 0.42(3) meV, probably emerging from a weak magnetic
anisotropy [110]. The two contributions to the scattering intensity are reported in the
upper panel. As expected, the value of Ip(Q) increases around the gap due to magnetic
order.

I expect the low-energy physics of the system to be described by a minimal Hamiltonian
containing Heisenberg interactions in all three dimensions, which takes the form

Ĥm =
∑

[i2,j2]m

Jm Ŝi2 · Ŝj2 . (3.4)

Here, i2 and j2 correspond to Cu2 sites, and [. . .]m denotes a sum over bonds in the
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set {Jm}, defined in Fig. 3.10. The set of interactions I propose then includes near-
neighbour couplings Jl (l = ||,⊥, b), as well as long-distance effective ones Jγ with
γ = α, β, which will be discussed in detail in Sec. 3.3.1. Together, they form the set
{Jm}. In the same spirit of previous studies [105] and according to the outcome of
the analysis of the higher-energy excitation, I consider atoms that belong to the Cu2
subsystem only, resulting in an effective magnetic decoupling between the two lattices.
I fit ω(q) extracted from the magnon peaks using linear spin wave (LSW) theory as
implemented in the Matlab package SpinW, mentioned in Sec. 2.3. As black lines from
Fig. 3.9 show, the extracted set of parameters reported in Table 3.1 delivers a very
accurate description of the low-lying energy excitations of the system. The modelled
spectrum contains two magnon branches, one of which has more than 90% of the
measured intensity in the magnon peak. The second one matches remarkably with
the aforementioned hints of neutron scattering intensity in dispersion. Moreover, this
set of parameters also delivers an accurate account of Ip(Q) in the first branch with
no further fitting, even though it slightly overestimates the contribution of the weak
mode to the total scattering intensity. Indeed, its intensity is of the order ofO(0.1%),
whereas the measured values lie between 1–5% of the first branch, rising to 10% at few
Q points. The low intensity in the second branch could be explained by the presence
of two identical quasi-independent Cu2 subsystems. The discrepancy in the intensity
would then emerge from weak magnetic interactions connecting both sublattices that
have not been considered, or cannot be captured by LSW theory. Finally, the magnon
gap can be reproduced by including a small exchange anisotropy of less than 1% on
the J|| bond, δJ|| = 0.018 meV. As this weak Ising behaviour has only limited influence
on the magnon dynamics away from the zone centre, I will then treat it as a marginal
feature in the system.

Table 3.1 – Strengths of the magnetic interactions, in meV, in the Cu2 subsystem.
These values were obtained by fitting the magnon peak positions from Fig. 3.8. The
geometry of the interactions is shown in Fig. 3.10.

J‖ J⊥ Jb Jα Jβ
3.39(13) 0.39(3) −0.19(2) 0.34(2) 0.35(2)
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The interactions presented in Table. 3.1 form an effective Cu2 magnetic lattice made
of parallel chains along the [101̄] direction, defined by J||. Its intrinsic energy scale is
on the order of 10 times greater than all inter-chain couplings in all three dimensional
directions. Figure 3.10 then emphasises the presence of the two orthogonal chains,
J|| and J⊥, forming corrugated planes which are connected by Jb on any second site
and by Jα and Jβ on all Cu1 dimer unit positions. These interactions ensure the three
dimensionality of the system and result in a weak inter-chains frustration. While it
is clear from Fig. 3.10(c) that Jb is mediated by the edge-sharing CuO6 octahedra, the
exchange paths responsible for the two chain-like interactions, J|| and J⊥ are less
obvious. Cu2 spins are connected through the SeO3 tetrahedra, an exchange path
that has not been considered in previous studies. Notably, their surprisingly large
magnitude was not expected, and any deeper understanding would require further
orbital chemistry analysis. Finally, it is crucial to mention that the superexchange paths
defining both Jα and Jβ are directly mediated by the central Cu1 dimer units, as can be
seen on Fig. 3.10(c). These interactions are naturally effective, and reveal an interesting
phenomenon. The central Cu1 dimer is treated by the system as a non-magnetic singlet
that provides additional exchange paths, without directly contributing to the magnetic
lattice. It this allows the presence of longer interaction paths. I will provide a detailed
description of this phenomenon in the next section.

Figure 3.10 – Magnetic interactions in SeCuO3 defined in the Hamiltonian 3.4. (a)
Projection on the ab and (b) on the ac planes, indicating the interactions of Table 3.1.
(c) Focus around a dimer unit, the effective interactions Jγ between Cu2 atoms are
described in terms of dimer couplings given by JD and Cu1–Cu2 interactions Jγ12 (green
and purple) defined in Sec. 3.3.1. (d) Perspective view highlighting the Cu2 chains
given by J|| and the interactions connecting them into coupled, buckled planes.
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3.3.1 Interpretation of the effective couplings

The dispersive behaviour of the triplon mode and the particular exchange path of what
I will hereafter denote as effective couplings Jγ (γ = α, β) indicate a weak coupling
between the two magnetic subsystems. These long paths involve the plaquette O
atoms (and hence the dx2−y2 Cu2 orbitals) for Jα, but an apical O atom for Jβ . In
order to restore crossed-effects, it is necessary to build a self-consistent model where
the effective couplings Jγ are reproduced from JD and two coupling parameters Jγ12
[Fig. 3.10(d) and Fig. 3.11]. For this, I replace replace the set {Jγ} terms in Eq. 3.4 by
the following coupling Hamiltonian

Ĥc =
∑
〈i1,i2〉γ

Jγ12 Ŝi1 · Ŝi2 , (3.5)

where i1 (i2) are Cu1 (Cu2) sites and 〈. . .〉γ is a sum restricted to nearest-neighbouring
spins that, together with JD form the effective pathJγ . The interactions Jγ12 are defined
in Fig. 3.11.

Figure 3.11 – Focus on a six sites unit defined by two Cu2–Cu1–Cu1–Cu2 tetramers
sharing the central Cu1 dimer. The two effective couplings Jγ are described in term of
dimer couplings JD and inter sublattices interaction Jγ12.

To get a good estimate of Jγ12, I will consider the four Cu atoms that contribute to the
effective interaction paths only. Accounting for real interactions only, this four-sites
system is described by the following tetramer Heisenberg Hamiltonian

Ĥt = Jγ12

(
Ŝ12 ·Ŝ21 + Ŝ31 ·Ŝ42

)
+ JD Ŝ21 ·Ŝ31 , (3.6)

where the sites and couplings are defined in Figs. 3.10(c) and 3.11. The ground-state
and lowest-lying excited energies are obtained by diagonalising the Hamiltonian in the
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16× 16 Hilbert space,

E0 = 1
4

(
− JD − 2Jγ12 − 2

√
J2
D − 2JDJγ12 + 4(Jγ12)2

)
,

E1 = 1
4

(
− JD − 2

√
J2
D + (Jγ12)2

)
,

(3.7)

with corresponding eigenstates

|Φ0〉 = |↑↑↓↓〉 −A |↑↓↑↓〉+B |↑↓↓↑〉+B |↓↑↑↓〉 −A |↓↑↓↑〉+ |↓↓↑↑〉 ,
|Φ−1 〉 = − |↑↓↓↓〉+ C |↓↑↓↓〉 − C |↓↓↑↓〉+ |↓↓↓↑〉 ,
|Φ0

1〉 = − |↑↑↓↓〉+D |↑↓↑↓〉 −D |↓↑↓↑〉+ |↓↓↑↑〉 ,
|Φ+

1 〉 = − |↑↑↑↓〉+ C |↑↑↓↑〉 − C |↑↓↑↑〉+ |↓↑↑↑〉 ,

(3.8)

in which the coefficients are given by

A =
2Jγ12 +

√
J2
D − 2JDJγ12 + 4(Jγ12)2

JD
,

B =
2Jγ12

(
2Jγ12 +

√
J2
D − 2JDJγ12 + 4(Jγ12)2

)
JD
(
JD +

√
J2
D − 2JDJγ12 + 4(Jγ12)2

) ,

C =
JD +

√
J2
D + (Jγ12)2

J12
,

D =
Jγ12 +

√
J2
D + (Jγ12)2

JD
.

(3.9)

In the limit of a strong dimer coupling given by JD � Jγ12, the coefficients become
A,D → 1, B → 0, and C � 1. The eigenstates may then be re-expressed as

|Φ0〉 = |↑↑↓↓〉 − |↑↓↑↓〉+ |↓↓↑↑〉 − |↓↑↓↑〉 = |s1〉 ⊗ |s2〉 ,
|Φ−1 〉 = |↓↓↓↑〉 − |↑↓↓↓〉+ C (|↓↑↓↓〉 − |↓↓↑↓〉) = C |s1〉 ⊗ |t−2 〉 − |s2〉 ⊗ |t−1 〉 ,
|Φ0

1〉 = |↑↓↑↓〉 − |↑↑↓↓〉+ |↓↓↑↑〉 − |↓↑↓↑〉 = − |s1〉 ⊗ |t02〉 ,
|Φ+

1 〉 = |↓↑↑↑〉 − |↑↑↑↓〉+ C (|↑↑↓↑〉 − |↑↓↑↑〉) = C |s1〉 ⊗ |t+2 〉 − |t
+
1 〉 ⊗ |s2〉 ,

(3.10)

where I introduced the familiar singlet-triplet notation. The ground state is then the
product of two singlets on each pair of Cu1 and Cu2 atoms, and the lowest excited
states correspond to a singlet state on the dimer, and a triplet |tk2〉, with k = +, 0,− on
the outer Cu2 sites. From Eq. 3.7, I deduce the energy gap of the first excited states
which corresponds to the effective coupling between the two Cu2 atoms. For each path
γ, we have

Jγ = Jγ12
2 + 1

4
[3(Jγ12)2 − 2JDJγ12]√

J2
D + (Jγ12)2

JD�Jγ12−−−−−→ 3
4

(Jγ12)2

JD
. (3.11)
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Inserting the fitted values of the effective couplings from Table 3.1 in this expression
gives the values of the microscopic interlattice coupling parameters

Jα12 = 3.47 meV and Jβ12 = 3.52 meV. (3.12)

Both values are of the same order as the leading interaction of this system, J||. Although
they are large compared to the other couplings in the Cu2 subsystem, their effects on
the spin dynamics is strongly suppressed by the dimer interaction JD as extracted from
Eq. 3.11. Furthermore, these values are consistent with the width of the triplon at high
temperature reported in Fig. 3.6, indicating its coupling to incoherent excitations. The
perturbative treatment of Eq. 3.11 is the opposite limit to the LSW approach, providing
then upper bounds for the Jγ12 values; using them in a LSW description of the complete
system of Cu1 and Cu2 atoms is then meaningless. Nevertheless, the two approaches
indicate the range of normalisation effects due to quantum fluctuations. To gauge the
quantum behaviour of both subsystems, I refer to the value of the magnetic moment
on the Cu1 subsystem µ1 ≈ 0.35 µB [107], which is much weaker than the one on the
other sublattice µ2 < 0.8 µB , meaning a significantly stronger quantum behaviour. The
interactions Jγ12 then only induce weak order on the Cu1 subsystem which provides
additional evidence that LSW theory cannot be used in a coupled analysis. Finally, I
comment that the microscopic interactions Jγ12 could explain the intensity transfer
to the weak magnon branch in Fig. 3.9. Furthermore, it could carry a symmetrically
allowed Dzyaloshinskii–Moriya interaction which explains the relative canting of the
µ1 and µ2 moment direction observed in neutron diffraction experiments [103] and
can contribute to the observed magnon gap ∆, as already proposed in a previous study
[110].
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3.4 A spinon-like continuum

I now return to the strongest, and most exotic, feature of Figs. 3.8 and 3.9 yet to be
explained – the continuum of scattering intensity above the one-magnon peak, along
several measured directions. This continuum could possibly emerge from two different
origins : multi-magnon processes or spinon quasiparticles.
In a scattering process, neutrons are generally scattered by single magnons, resulting
in excitations transverse to the ordered moment direction, δSxx + δSyy. However,
there are situations where the spin waves interfere, and a neutron would then be
scattered by a pair of magnons, or two independent spin waves. They are called two-
magnons scattering processes [111], and are allowed no matter the dimensionality
of the system [111, 112, 113]. Physically, they correspond to situations where two
magnons are created with opposite spins Sz = ±1 due the selection rule, which results
in a total ∆Sz = 0 process. Each process being associated to a transverse excitation,
the resulting scattering events correspond to longitudinal excitations δSzz [114]. Each
magnon would conserve its independent behaviour, so that its momentum and energy
does not change throughout the process. The new quasi-particles are then defined by

Q = Q1 +Q2, and ω(Q) = ω(Q1) + ω(Q2). (3.13)

This results in the formation of a scattering continuum above the one magnon line.
Since the origin of those processes is understood, one can compute the expected
intensities both in the longitudinal and transverse directions from the sum rules [115].
Similarly to the work on the S = 5/2 antiferromagnet Rb2MnF4 [113], I compare
the integrated intensity associated with one- (Ip) and potentially two-magnons (Ic)
scattering events whose ratio κ = Ic/Ip cannot exceed a certain limit κM. In Table 3.2, I
average these quantities along all meaningful directions in reciprocal space, obtaining
a lower bound to the ratio κmin because our measurements were experimentally limited
in energy [Fig. 3.8] and may not capture the upper edge of the continuum.

Table 3.2 – Integrated peak intensity, Ip, and continuum intensity, Ic, averaged along
four high-symmetry directions. The lower row presents the LSW theoretical result for
the spin reduction, ∆S2 = 0.13, on the Cu2 sublattice [107].

Direction Ip Ic κmin

[0, k, 0] 133(5) 99 0.85(4)
[1

2 , k,
1
2 ] 85(4) 56 0.65(4)

[h, 2, h] 90(4) 61 0.69(4)
[h, 3, h] 98(4) 125 1.28(4)
Theory (S −∆S) (2∆S + 1) ∆S (∆S + 1) κM

∆S2 = 0.13 0.47 0.15 0.32
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Here, Ic is of the same order of Ip. Their ratio then far exceeds typical values found in
previous multimagnon scattering studies [111, 113]. I also computed the prediction
from LSW theory, based on the measured reduced magnetic moment on the Cu2
sublattice [107]. As Table. 3.2 shows, these values are incompatible with multi-magnon
processes. Furthermore, from Eq. 3.13, the existence of a magnon gap implies the
existence of another gap between the magnon branch and the continuum, as observed
in Ref. [113]. However, Figs. 3.8 and 3.9 exclude the existence of such a gap – as small
as it could be – which is perhaps the most conclusive evidence that the observed
continuum in SeCuO3 cannot be explained by multi-magnon scattering events.

The second plausible explanation of the scattering intensity continuum is that it origi-
nates from spin-1/2 fractionalised excitations, or spinons, which have been introduced
in Sec. 3.1.1. Spinons were originally thought to exist in one dimensional systems only,
since are solutions of Bethe Ansatz. However, their presence has been observed in
the two dimensional material Cs2CuCl4 [116, 117], an interpretation mostly due to the
functional form of the measured excitation spectrum. Spinons were thought to be
bound by an attractive potential and to be deconfined at energies above the threshold
given by the one-magnon band. More recently, a weak continuum of intensity has
been observed in the square lattice J1–J2 antiferromagnet Cu(DCOO)2·4D2O at the
zone boundary Q = (0, π), explained by the coexistence of spinons and magnons
[79, 118, 119]. I also comment on another, and more conventional, interpretation of
the presence of spinons in non one-dimensional systems. The existence of spinons in
both Cs2CuCl4 [120] and, much more recently, Cu2(OH)3Br [89] has been explained by
the quasi-1D behaviour of those chain-like systems. I comment that this picture is only
realistic in the presence of frustration which would add strong quantum fluctuations
to the system, while it is known that coupled spin chains form a square lattice that
develops long range order in the presence of interchain couplings [121]. Recent studies
on frustrated two-dimensional lattices [122, 123, 124, 125, 126] predicted the presence
of partially confined spinons with a lower spectral weight than on a 1D chain where it
accounts for 71 % of the total scattered intensity [70, 98, 99].
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The quantum system SeCuO3 is, to my knowledge, the first purely three-dimensional
compound in which fractionalised spinonic excitations are present. As shown in the
previous sections, significant couplings exist in all three dimensions even though
some of them (Jγ12) are renormalised downwards by the presence of the singlet states.
Furthermore, as Fig. 3.9 shows, the continuum follows the established one-magnon
line that is well-described by LSW theory and, importantly, is present throughout the
3D Brillouin zone, unlike the familiar 1D case [70, 99]. Similarly to previous references,
I motivate its existence by the deconfinement of S = 1 magnons into S = 1

2 fractional
excitations above their binding energy given by the one-magnon band.

Figure 3.12 – Frustration in SeCuO3, present on two five-sites loops Cu2–Cu2–Cu2–
Cu1–Cu1, defined in Fig. 3.10(a) and 3.10(c). Dashed lines indicate ferromagnetic
couplings, while plain lines represent antiferromagnetic ones. The size of the bonds is
related to their strength, and coloured ones indicate the interactions frustrating the
system.

Indeed, in the case of a non frustrated three-dimensional antiferromagnet, the mag-
netic interactions stabilise a robust semi-classical long range ordered state, with weak
quantum fluctuations. However, the presence of frustration on the Jγ12 bonds in-
duced both by the upper and lower five-site loops [Fig. 3.12], as well as the possible
Dzyaloshinskii–Moriya interaction, provides the system with enough quantum fluc-
tuations to allow the presence of fractionalised excitations. At lower energies, their
most energetically favourable configuration is achieved by turning bound spinons
pairs into magnons, and being delocalised. This binding potential corresponds to the
one-magnon band. At higher energy, these fractionalised excitations are deconfined
and free to form new pairs resulting in the high-energy intensity continuum that I ob-
served in the INS spectrum. Since this paradigm is yet to be explored, my hope is that
the values of Tab. 3.2 as well as the position and functional form of the continua will
provide essential input for advanced experimental and theoretical studies of spinons
in high dimensional systems.

51



Chapter 3. Coexistence of multi-type excitations in SeCuO3

3.5 Summary

In this project, I analysed INS measurements of SeCuO3 which led to a complete
description of its magnetic dynamic spectrum. I first described it at the level of two
independent subsystems. In the first, Cu1 dimer units are in a non-magnetic singlet
ground state, and their first excited state is characterised by a triplon band whose
energy scale is given by JD. The second subsystem forms an effective 3D frustrated
network of interacting Cu2 chains, whose excitations are well-described at the level
of the LSW theory by the set of parameters reported in Tab. 3.1. In this picture, the
effective Hamiltonian of the system would be

Ĥeff = ĤD + Ĥm, (3.14)

where the terms are defined in Eqs. 3.3 and 3.4. Nevertheless, two features prove
that the two subsystems are not decoupled. First, the triplon band is weakly but
sensitively dispersive, which would not have been the case in the reverse scenario.
Since dimer units lie too far from each other to interact, I concluded that the only
possible coupling that would explain the dispersion connects to the Cu2 sublattice.
Second, in the frame of the LSW description of the system, I introduced the couplings
Jγ whose exchange paths pass through Cu1 dimer units. Of course, such a situation
is physically impossible, and in a self-consistent model they should be described by
a combination of JD and two Cu1–Cu2 couplings Jγ12. Using a perturbative approach
on Cu2–Cu1–Cu1–Cu2 tetramers, I proposed upper bounds for the value of those inter-
subsystems interactions. The self-consistent Hamiltonian of the system then reads

Ĥ = JD
∑
〈i1,j1〉

Ŝi1 · Ŝj1 +
∑

[i2,j2]m′

Jm′ Ŝi2 · Ŝj2 +
∑
〈i1,i2〉γ

Jγ12 Ŝi1 · Ŝi2 , (3.15)

where 〈...〉 denotes a sum restricted to nearest-neighbours bonds; i1, i2 and i2, j2 denote
Cu1 and Cu2 sites; 〈...〉γ a sum on bonds corresponding to inter-sublattices interactions
Jγ12; and [i2, j2]m′ corresponds to a sum over the bonds in the set {Jm} where we
removed all the couplings already covered in the third term of the Hamiltonian.

Finally, I observed a continuum of scattering intensity above the one-magnon line
along all directions. A multi-magnon origin having been ruled out, these energy con-
tinua are strong evidence for the presence of fractionalised excitations which are
closely associated with spin waves. I explained the presence of spinons by the decon-
finement of magnons at energies higher than the one-magnon band. SeCuO3 provides
the first quantified observation of spinons in a purely 3D magnetic network. Due to
the coexistence of these three excitations, SeCuO3 is an excellent candidate for the
understanding of systems at a higher level than an independent subsystems interpre-
tation, and is likely to mandate further theoretical treatments of similar systems where
the magnetic excitations show such a high degree of entanglement.
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A large part of this thesis is devoted to the analysis of the quantum chiral magnet family
A(BO)Cu4(PO4)4, where (A; B) = (Ba, Pb, Sr; Ti) and (K; Nb). In a systematic study
of a magnetic compound, the first step is to understand its static properties. While
specific heat and magnetic susceptibility measurements provide great insight on the
behaviour of the system, the most precise way to determine the magnetic structure of
a quantum magnet is through neutron diffraction (ND) measurements. As explained
in Chapter. 2, magnetic scattering of neutrons emerges when the system possesses a
periodic configuration of magnetic moments, and thus an appropriate experiment
can lead to the quantification of its magnetic order. It can be achieved in two ways.
First, assuming a non-polarised neutron beam, a direct comparison of the measured
diffraction pattern with simulations based on the magnetic structure factor of a spin
configuration is usually sufficient to derive its magnetic structure. This technique is
extensively used and many softwares have been developed in order to facilitate the
analysis. The most practised are the FullProf [127] suite, or Jana [128]. However, there
are situations in which a diffraction pattern can be equally well described by several
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inequivalent magnetic structures. Probably the best way to cope with such a situation
is to use polarised neutrons and measure the incoming and outgoing neutron flux in
three orthogonal channels corresponding to the polarisation axis. For each Bragg peak,
one can then build the so-called polarisation matrix, which is much more sensitive
to the orientation of the moments, and compare it with numerical calculations based
on the scattering cross section. This allows for a much accurate determination of the
magnetic structure of the system.
In this chapter, I present the outcome of Spherical Neutron Polarimetry (SNP) measure-
ments on three members of the A(BO)Cu4(PO4)4 family : (Ba; Ti), (Sr; Ti) and (Pb; Ti).
Prior neutron diffraction experiments have been performed on all three compounds,
which resulted in two candidates for their magnetic structure. I will demonstrate that
SNP is extremely powerful if the propagation vector has non-integer Miller indices, but
has some serious limitations if it corresponds to a reciprocal lattice vector because of
nuclear magnetic interference. Furthermore, my conclusions are consistent with the
presence of a strong Dzyaloshinskii-Moriya interaction which is directly responsible
for the unusual highly non-collinear magnetic structure that I extracted. I comment
that preliminary neutron diffraction results have been analysed by Peter Babkevich
before I started my thesis. The SNP results on (Ba; Ti) have been presented in a paper
published in Physical Review B [129].
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4.1 Introduction

The chiral quantum magnets family A(BO)Cu4(PO4)4 forms a really interesting play-
ground to study quantum effects. Indeed, it has been proven that cation (A2+) sub-
stitution changes the static magnetic properties of the system [130]. This behaviour
is naturally also expected in its dynamic properties, which makes this family ideal to
build a deeper understanding of quantum paradigms. I will expand this point in Chap-
ter 5. However, the series of compounds forming the (A; B) family have initially been
extensively studied for the presence of a linear magnetoelectric effect, which describes
the coupling between magnetism and ferroelectricity. The material’s magnetisation
can then be tuned using an external electric field, and reciprocally the polarisation of
the compound can be controlled using a magnetic field. Such an effect emerges when
both the time reversal and the spatial inversion symmetry are broken. The associated
interaction energy can be written as a multipole expansion containing monopole,
toroid, and quadrupole moments, which all change sign under time reversal or space
inversion.

There are two motivations behind this study. First, the magnetoelectric effect is directly
related to the moments configuration in a spin cluster. In the case of (A; B), it is be-
lieved that is originates from magnetic quadrupole moments [131], which would make
it the first experimental realisation of such systems. Secondly, before any dynamic
study of a quantum system, it is necessary to begin by building a solid understanding
of the static properties. Indeed, magnetic excitations naturally emerge from the ground
state. As the analytical expression of the inelastic neutron scattering cross section
clearly states, an accurate description of the dynamic structure factor of a system,
which will be the core of Chapter 5, cannot be made without prior knowledge of the
ordered ground state.
As mentioned in the previous paragraph, diffraction patterns could be equally well-
described by two spin configurations. However, the analysis was limited by (i) the small
magnetic moment on Cu ions which resulted in weak magnetic Bragg reflections and
(ii) the assumption of an isotropic magnetic form factor which is not always the case
due to the nature of electronic orbitals. Even though SNP is a challenging technique, it
does not directly suffer these limitations when the system shows magnetic scattering
events only. Indeed, the weak signal can be counterbalanced by long counting times.
This technique is then an ideal tool to solve this problem.
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4.1.1 Crystal structure and magnetic properties

The crystal structure of the cupola family A(BO)Cu4(PO4)4 is rather complicated, and
shown in detail in Fig. 4.1. There are eight equivalent Cu magnetic atoms in the unit
cell (S = 1

2 ). Groups of four corner-sharing CuO4 square planes form Cu4O12 cupolas
shown in blue in Fig. 4.1(b). These clusters are connected by PO4 tetrahedra into
square-lattice like layers in the (ab) plane where their c-orientation alternates, resulting
in an assembly of up- and down-pointing cupolas. Together with BO5 pyramids, the
PO4 structures form a non-magnetic layer separating two cupolas planes as shown
in Fig. 4.1(a), and ensuring a strongly two-dimensional magnetic behaviour. This
compound crystallises in a tetragonal chiral structure that is well-described by the
tetragonal P4212 spacegroup with a = 9.60 Å and c = 7.12 Å lattice parameters.

Figure 4.1 – Schematic representation of the nuclear structure of the cupola family
members, showing Cu (blue), A (green), B (red), P (yellow) and O (grey) atoms, to-
gether with the associated coordination polyhedra. (a) Side view, projection on the (bc)
plane showing buckled layers of CuO4 cupolas with alternating orientation along the
c-axis, and separated by non magnetic layers. (b) Top view, projection on the (ab) plane,
highlighting the square cupola structures as made of four connected CuO4 planes.

Interestingly, it was shown using polarised-light microscopy and x-ray diffraction
[130] that not only the direction of the cupolas changes every second unit in the (ab)
plane, but also that they have an alternating rotation about the c-axis quantified by the
angle ϕ, shown in Fig. 4.2(a). Furthermore, substitution of the A2+ cation controls the
strength of this structural chirality. While the plaquettes in (Sr, Pb, Ba; Ti) are tilted by
a finite angle, (K; Nb) reaches a highly symmetrical configuration and is then achiral
[Fig. 4.2(b)]. The latter compound has not been studied in the frame of this chapter,
and focus is on on the chiral ones. Finally, polarised light microscopy also highlighted
the coexistence of multiple domains in a single crystal, related by spatial inversion
symmetry and sample dependent. Thus, they also differ by the sign of the chiral angle
ϕ. I will denote these domains as dextro for a positive rotation, and levo for a negative
one. A previous study concluded that (Ba; Ti) was less likely to be mono-domained
than (Sr; Ti) which has been proven to be mainly dextro, due to its smaller chirality
strength. The reader is invited to consult this reference [130] for further considerations
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on the crystal structure.

Figure 4.2 – Quantification of the chirality strength. (a) Focus on a set of four cupola
units (blue bonds), with ϕ being defined as the angle between the a-axis and the
associated diagonal (green). (b) Representation of the chirality strength, where O(3)
denotes the oxygen atom binding the CuO4 planes together to form cupola units.

It has been proven through magnetic susceptibility measurements that structural
chirality has an effect on the magnetic properties of the system, as shown in Fig. 4.3.
The Curie-Weiss temperature ΘCW has been extracted from a linear fit to the inverse
susceptibility in the paramagnetic phase, and is negative for all three compounds. The
values are reported in Table 4.1. This is a sign of a leading antiferromagnetic coupling
since in a first order approximation the Curie-Weiss temperature is given by the sum
of all couplings of a given site i to its neighbours j, ΘCW ∼

∑
j Jij . A peak appears

in the susceptibility data around ∼ 10 K. Its large width is a direct evidence of low-
dimensional interactions, a hypothesis also supported by the layered structure of these
materials. The ordering temperature TN corresponds to the change of regime and is
highlighted by a kink in specific heat measurements (not shown here) [130]. Finally,
the finite value of the low-temperature susceptibility for all directions of applied field
is a strong hint of a non-collinear structure.

Table 4.1 – Weiss temperature ΘCW and Néel temperature TN of the (A;B) compounds
studied in this chapter, as extracted from magnetic susceptibility measurements.

(Sr; Ti) (Pb; Ti) (Ba; Ti)
ΘCW (K) -21 -21.3 -31.4
TN (K) 6.5 7.0 9.5
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Figure 4.3 – Susceptibility curves of (Sr, Pb, Ba; Ti) for a field along the [100] (black),
[001] (red) and [110] (blue) direction. Figure obtained from a private conversation with
K. Kimura, used with his permission.

To conclude this section, I comment that the nuclear structure of the (A;B) family sym-
metrically allows for the existence of an anisotropic Dzyaloshinskii–Moriya interaction
[132, 133] on the bond connecting two neighbouring Cu atoms from the same cupola
unit (blue bonds in Fig. 4.2). It takes the form of an antisymmetric matrixD such that
Dαβ=−Dβα. Effectively, this interaction is defined by a vector Dij orthogonal to the
segment connecting two neighbouring Cu2+ ions. In the present case, its direction is
given byDij ∝ di ∧ dj , where di,j are the vectors connecting the ligand oxygen atom
to the Cu at position ri,j . The DM Hamiltonian then readsD = −

∑
〈i,j〉Dij ·

(
Ŝi ∧ Ŝj

)
.

4.1.2 Theoretical elements of symmetry analysis

Crystallographic structures can be seen as sets of atoms that are placed in a very partic-
ular way. They are based on two properties : periodicity and symmetry. I propose here
a quick summary of basic operations in a solid and introduce some symmetry proper-
ties that will be used in the rest of the chapter in order to reduce the complexity of the
system. For further understanding, the reader is referred to the following textbooks
[134, 135].

The most important property in physics is probably symmetry. Indeed, with the
appropriate symmetry considerations, most complex systems can be simplified and
solvable. The same applies to the investigation of ground state properties of quantum
magnets. Let us start with a single unit cell given by a set of atoms at positions ri.
There is a set of rotation and reflection operations that leaves the nuclear structure
unchanged. For example, in the case of a cubic unit cell, a π/2 rotation around the
axis orthogonal to a face and intersecting it at its centre will leave the position of the
atoms unchanged. Mathematically, this operation reads rj = R · ri, whereR is the
matrix corresponding to a symmetry operation. Accounting for the crystallographic
restriction, there is a total of 32 inequivalent symmetry operations that are commonly
called point groups.
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Table 4.2 – List of the possible symmetry operations on a unit cell giving rise to the 32
point groups.

Symmetry operation Symmetry element Symbol
Identity – E
Rotation by 2π/n n-fold axis Cn
Reflection Mirror plane σi
Inversion Centre of inv. i
Rotation by 2π/n and inv. n-fold axis + centre of inv. Sn

Such a definition can be extended to a periodic assembly of unit cells, which then form
a crystal. In this case, translation operations are also possible, which can be combined
with the elements reported in Table 4.2 to form a total of 230 space groups, which are
commonly represented by the variable G0. There exist different notations to describe
a space group, but the most widely used was proposed by Hermann–Mauguin. In
their notation, the space group is defined by a letter followed by a series of numbers,
each of them corresponding to a symmetry operation. For example, members of the
(A, B) family are described by the space group P4212 (# 90). The "P" stands for the
type of Bravais lattice, here it is a primitive one where the lattice points lie on the cell
corners. For a tetragonal structure, the first "4" indicates a four-fold rotation along
the higher-order (or primary) axis, here c. The "21" in third position describes a screw
operation along the secondary axis, orthogonal to the primary one. It is formed by a
rotation of π followed by a translation of 1/2 of the lattice vector. Finally, the last "2"
indicates a two-fold rotation around the tertiary axis.

The symmetry analysis becomes really interesting when the magnetic properties of
the system are also considered. These properties are given by the moments on each
site Si and associated to the propagation vector k, which describes how a spin con-
figuration propagates throughout the crystallographic structure. Among all the set
of operations described in the space group G0, only a subset of symmetry elements
will leave the propagation vector unchanged (k = R · k) by the associated elementary
operationsR. Here, I comment that only the rotational part of the transformation is
likely to change the propagation vector. This new set defines the little group denoted
by Gk. Each symmetry operation defines an element of this set and is given by gn. All
the operations of a little group can be written as a large block diagonal matrix Γmag
under the appropriate basis transformation. Each block corresponds to an irreducible
representation Γ(µ)

ν of dimension µ, which I hereafter denote irrep. It is now important
to distinguish the effects of a symmetry operation on an atom’s position (polar) and
on its magnetic moment (axial). The effect of an operation on the nuclear structure is
simply to change the atom’s position such that rj = gnri, which results in an effective
permutation of two atoms in the unit cell. However, its effect on the magnetic moment
must account for the fact that it is a vectorial quantity, and must then remain invariant
under inversion. The associated transformation is then given by S′ = RS det(R). The
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determinant is here to ensure that the moment vector is not reversed by the inversion
operation. At this point, it is convenient to introduce the character χ of a symmetry
operation, which corresponds to the trace of the associated transformation matrix.
Thus, the magnetic representation is a direct product of the two independent polar
and axial representations such that

Γmag = Γperm ⊗ Γaxial , (4.1)

χmag = χperm · χaxial. (4.2)

In this orthogonal form, the magnetic representation can be written as a linear com-
bination of irreps, where I introduce nν as the number of basis vectors of Γν . This
quantity practically corresponds to the degree of freedom of the magnetic structure.
For instance, if nν = 1, then the only variable would be the angle of the moment, or its
length.

Γmag =
∑
ν

nν Γ(µ)
ν (4.3)

nν = 1
n(Gk)

∑
g∈Gk

χmag(g)χΓν (g)∗. (4.4)

Here, χmag(g) is the character of the magnetic representation, and χΓν (g)∗ is the com-
plex conjugate of the character of the irrep with index ν and element gν . The basis
vectorsψ can be computed with the help of test functions along the crystallographic
axis φa = (1, 0, 0), φb = (0, 1, 0) and φc = (0, 0, 1), which often is the most sensible
choice, and using the projector operator technique. The basis vectorψλα,ν for the irrep
Γν and using the test basis vector φα is then given by

ψλα,ν =
∑
g∈Gk

D∗λν (g)
∑
i

δi,gi det(Rg)Rgφα , (4.5)

where D∗λν (g) is the complex conjugate of λth column of the transformation matrix
associated with the νth irrep for the symmetry element g.

∑
g∈Gk

ensures that the sum
is restricted to the elements of the little group,

∑
i δi,gi denotes a sum on all sites from

the same sub-lattice. Practically, one first chooses an irrep of dimension µ. Then,
one arbitrarily picks a row in the associated matrix, which will be fixed during the
investigation of this irrep. If the latter is of dimension 1 (µ = 1), the problem is greatly
simplified andD∗λν (g) = χ∗ν(g). For each element λ of this row, one then projects out
the components that correspond to the test basis vector φα, which eventually give us
the basis functionψλα,ν . Of course, since three components are projected out for each
element λ, there is a total of 3µ projected components. This number must correspond
to the number of basis vectors nν derived in Eq. 4.4. For a better understanding of
these last steps, I strongly recommend to use Tables 4.3 and 4.4 as examples.
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4.1. Introduction

Having derived the basis vectors of an irrep, they can naturally be used to express
quantities. In the frame of our analysis, the most useful one is of course the magnetic
moment on site j which is defined as the Fourier transform of a linear combination of
basis vectorsψλα,ν associated to a propagation vector k such that

Sj =
∑
α,λ

Cλα ψ
λ
α e

2πik·τ , (4.6)

where τ is the translation vector from the reference site i to the atom at position j.

The sum contains nνµ elements, which correspond to as many coefficients Cλα to
be refined in the analysis of the data. However, this number is much smaller than
if all the spins were considered independently and thus the symmetry analysis is
tedious yet necessary, in order to reduce the complexity of the system and make it
solvable. Thankfully, dedicated softwares have been developed in order to reduce the
dimensionality of the problem and have proven their great efficiency over the years
[127, 128, 136, 137].

4.1.3 Previous neutron powder diffraction experiments

A first attempt to determine the magnetic structure of the cupola compounds has been
made by Peter Babkevich through neutron diffraction experiments on powder samples
at WISH (ISIS) and D20 (ILL). On WISH, a 8.1 g powder sample of (Ba; Ti) has been
measured for 25 minutes per temperature step, from 1.5 K to 20 K. Due to the particular
detector configuration of WISH, data was simultaneously collected for different ranges
of d-spacing and thus different resolutions. Fits have been made in the 0.7 < d < 18
Å range. On D20, a 5.4 g powder sample of (Sr; Ti), a 5.2 g powder sample of (Pb; Ti)
and a 6.6 g powder of (Ba; Ti) have been measured at 1.7 K and 12 K for 8 hours per
temperature, with an incoming (and outgoing) wavelength of λ = 2.41 Å . The resulting
diffraction patterns in the magnetically ordered phase are shown in Fig. 4.4.

The diffraction patterns of (Ba; Ti) and (Sr; Ti) show the same features [Figs. 4.4(a) and
4.4(c)]. Indeed, Bragg peaks emerge at the same diffraction angles 2θ, and only their
intensities differ, notably at 17◦ and 23◦. This is a hint that their magnetic structure
is similar, with a small difference in the orientation of the moment. In both cases,
Bragg peaks could be indexed by the propagation vector k = (0, 0, 1

2). The diffraction
pattern of (Pb; Ti) [Fig. 4.4(b)] is somewhat different and peaks could only be indexed
by a magnetic propagation wavevector k = (0, 0, 1), meaning that the cupolas stack
ferromagnetically along the c-axis. The group theory analysis described in Sec. 4.1.2
has been carried using BASIREP [127]. In the case of (A; B), the little groupGk contains
all elements of G0, which are listed in Table. 4.3.
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Chapter 4. SNP as a tool for magnetic structure determination

Figure 4.4 – Neutron diffraction patterns of (A;B) measured on (a–c) D20 (ILL) and (c,
d) WISH (ISIS). Paramagnetic measurements have been subtracted from the patterns
collected in the magnetically ordered phase in (a) (Sr; Ti), (b) (Pb; Ti), and (c) (Ba; Ti).
The results have been fitted by a model constrained to respect the Γ3 irrep (black line).
(d) and (e) show the high-temperature diffraction patterns of (Ba; Ti) from two detector
banks with different d-coverage, intensity and resolution. Fits based on two different
spin configurations in the same irrep Γ3(1) and Γ3(2) are proposed.

coucou
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4.1. Introduction

The magnetic representation of all members of the (A; B) cupola family can be written
as a direct sum of five irreps as Γmag(8g) = 3Γ1 + 3Γ2 + 3Γ3 + 3Γ4 + 6Γ(2)

5 , the last one
being two-dimensional. The corresponding character table is reported in Table. 4.4.
Among those irreps, diffractions patterns were best described by Γ3 for (Ba; Ti) and (Sr;
Ti), and Γ2 for (Pb; Ti). Both irreps are of dimension 1 and are described by three basis
vectors. The three Fourier coefficients [Cα = (u, v, w)] can be obtained from Eq. 4.6
projected on the crystallographic axis. Even though (Pb; Ti) obeys a different irrep, the
resulting spin configuration in a single magnetic layer is similar to those of its sister
compounds. A recap of all essential results from the symmetry analysis is reported in
Table. 4.5.

Table 4.3 – Elements of the little group Gk, which are equivalent to the symmetry
operators of the space group P4212. The rotational part R is shown, as well as the
IT notation as listed in the International Tables of Crystallography, and the Jones
representation.

Element Rotation matrix IT notation Jones symbol
gn R

g1

1 0 0
0 1 0
0 0 1

 1 (x, y, z)

g2

1̄ 0 0
0 1̄ 0
0 0 1

 2 0, 0, z (−x,−y, z)

g3

0 1̄ 0
1 0 0
0 0 1

 4+ 0, 1
2 , z (−y + 1/2, x+ 1/2, z)

g4

1̄ 0 0
0 1 0
0 0 1̄

 2(0, 1
2 , 0) 1

4 , y, 0 (−x+ 1/2, y + 1/2,−z)

g5

0 1 0
1̄ 0 0
0 0 1

 4− 1
2 , 0, z (y + 1/2,−x+ 1/2, z)

g6

1 0 0
0 1̄ 0
0 0 1̄

 2(1
2 , 0, 0) x, 1

4 , 0 (x+ 1/2,−y + 1/2,−z)

g7

0 1̄ 0
1̄ 0 0
0 0 1̄

 2 x, x̄, 0 (−y,−x,−z)

g8

0 1 0
1 0 0
0 0 1̄

 2 x, x, 0 (y, x,−z)

63



Chapter 4. SNP as a tool for magnetic structure determination

Table 4.4 – Character table of the little group Gk showing how the Γν irreps transform
according to symmetry operations g1, . . . , g8 from Table 4.3. For ν = 1 . . . 4, the element
g1 . . . g8 corresponds to the character χ of the transformation while it corresponds to
Dν(g) for Γ5.

ν g1 g2 g3 g4 g5 g6 g7 g8
1 1 1 1 1 1 1 1 1
2 1 1 1 1 1̄ 1̄ 1̄ 1̄
3 1 1 1̄ 1̄ 1 1 1̄ 1̄
4 1 1 1̄ 1̄ 1̄ 1̄ 1 1

5

(
1 0
0 1

) (
1̄ 0
0 1̄

) (
1 0
0 1̄

) (
1̄ 0
0 1

) (
0 1
1 0

) (
0 1̄
1̄ 0

) (
0 1̄
1 0

) (
0 1
1̄ 0

)

Table 4.5 – Magnetic propagation vector and irreducible representation for (A; B). The
magnetic moments Sj on site j = 1...8 are given in terms of the three real Fourier
coefficients (u, v, w) projected on a basis formed by the three vectors along the crystal-
lographic axes, for the best irrep. The extracted strength of the magnetic moments is
given by m0. Bottom rows show the Wyckoff Cu positions 8g.

(A; B) k Γmag(8g) Best Sj(u, v, w) m0 (µB)

(Ba; Ti) (0,0,1
2 )

3Γ1 + 3Γ2 + 3Γ3

+ 3Γ4 + 6Γ(2)
5

Γ3

1. (u, v, w); 2. (ū, v̄, w)
3. (v, ū, w̄) 4. (u, v̄, w)
5. (v̄, u, w̄); 6. (ū, v, w)
7. (v̄, ū, w̄); 8. (v, u, w̄)

0.80(1)

(Sr; Ti) (0,0,1
2 )

3Γ1 + 3Γ2 + 3Γ3

+ 3Γ4 + 6Γ(2)
5

Γ3

1. (u, v, w); 2. (ū, v̄, w)
3. (v, ū, w̄) 4. (u, v̄, w)
5. (v̄, u, w̄); 6. (ū, v, w)
7. (v̄, ū, w̄); 8. (v, u, w̄)

0.74(2)

(Pb; Ti) (0,0,1)
3Γ1 + 3Γ2 + 3Γ3

+ 3Γ4 + 6Γ(2)
5

Γ2

1. (u, v, w); 2. (ū, v̄, w)
3. (v, ū, w̄) 4. (ū, v, w̄)
5. (v̄, u, w̄); 6. (u, v̄, w̄)
7. (v, u, w); 8. (v̄, ū, w)

0.71(6)

Cu atom position
1. (x, y, z); 2. (−x,−y, z); 3. (−y + 1

2 , x+ 1
2 , z)

4. (−x+ 1
2 , y + 1

2 ,−z); 5. (y + 1
2 ,−x+ 1

2 , z); 6. (x+ 1
2 ,−y + 1

2 ,−z)
7. (−y,−x,−z); 8. (y, x,−z).
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4.1. Introduction

Figure 4.5 – Proposed spin configurations in the Γ3 irrep that describe the measured
spectrum of (Ba; Ti) equally well. In Γ3(1), the moments lie approximately in the CuO4
plane, whereas they are almost orthogonal to it in the Γ3(2) spin configuration.

The high-resolution data from the WISH diffractometer allowed for a more accurate
analysis of (Ba; Ti). As shown in Figs. 4.4(d) and 4.4(e), two different spin orienta-
tions within the Γ3 irrep with Fourier coefficients (u, v, w) = (0.49(1),0.36(2),0.58(2))
and (0.48(1),0.1(3),-0.64(2)) give similar quality of fit to the measured diffraction pat-
tern. I shall refer to these spin configurations as Γ3(1) and Γ3(2) respectively. The
former corresponds to a situation where the spins are lying approximately in the CuO4
plane, while in the latter the spins are pointing out of the CuO4 plane, forming a
two-in–two-out configuration within the Cu4O12 cupola. Both spin configurations
are shown in Fig. 4.5. A good metric to evaluate the quality of a fit is the magnetic

R-factor, Rmag =
∑

Q
|Iobs,Q−Icalc,Q|∑
Q
|Iobs,Q|

, which is found to be 18.5% for Γ3(1) and 11.5% for

Γ3(2). The latter has therefore been proposed for (Ba; Ti) [138]. We did not have such
high-resolution data on the sister compounds, but suspect that they follow a similar
behaviour. However, since the difference between the two irreps is too small to reach a
definitive conclusion, I propose in the following to use SNP as an extra tool to derive
the magnetic structure of all three sister compounds.
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Chapter 4. SNP as a tool for magnetic structure determination

4.2 The simple case of magnetic scattering processes only

The analysis of SNP data entirely relies on the computation of one quantity : the po-
larisation matrix defined in Eq. 2.31 as Pαβ = σαβ−σαβ̄

σαβ+σαβ̄
. As explained in Sec. 2.1.4, this

quantity can be extracted from a total of 18 scattering intensities, measured with an in-
coming and outgoing beam polarisation projected along the three orthogonal dynamic
axes (α, β). I recall here that these axes depend on the position of the measured Bragg
peakQ), as defined in Eq. 2.26. In the most general case, but with no consideration of
incoherent scattering events, the Fourier transform of the scattering potential for a set
of atoms at positions {ri} is given by

V (Q) =
∑
i

eiQ·ri V (ri) =
∑
i

eiQ·ri
[
bcoh
i − piS⊥i · σ

]
, (4.7)

where bcoh
i is the coherent scattering length of the atom; pi = (γr0/2) fi(Q) with the

gyromagnetic ratio γ = 1.913, the electron radius r0 = 2.82 fm, and the magnetic form
factor fi(Q); and finally σ̂ is the Pauli spin operator. The operator σ is given by the
Pauli matrices with the quantisation axis along z, and S⊥i is the orthogonal magnetic
interaction vector on site i. In the case of a propagation vector with non-integer Miller
indices, as it for (Ba; Ti) and (Sr; Ti) where k = (0, 0, 1

2) [Table. 4.5], nuclear scattering
does not occur at the same positions as magnetic scattering processes, in reciprocal
space. The interaction potential is then greatly simplified and resumes to the last term
of Eq. 4.7, V̂M (Q), that is equivalently defined in Eq. 2.16. When inserted in the master
Eq. 2.7, this potential yields a elastic scattering cross-section similar to Eq. 2.22. The
only difference comes from the extra projection on the polarisation states |σi,f 〉 given
by

|x〉 = 1√
2

(
1
1

)
, |y〉 = 1√

2

(
1
i

)
, |z〉 =

(
1
0

)

|x̄〉 = 1√
2

(
1
1̄

)
, |ȳ〉 = 1√

2

(
1
ī

)
, |z̄〉 =

(
0
1

)
.

With the definition M⊥(Q) = (0,My,Mz) in the new coordinates system, the cross
section, for magnetic scattering events only, is

σαβ ∝ |〈β|
(
Mz −iMy

iMy −Mz

)
|α〉|2. (4.8)

Being a ratio of intensities at a single Bragg peak position, the polarisation matrix is
not sensitive to the magnetic form factor, whose behaviour can be strongly influenced
by covalency [139] and bias the results of unpolarised neutron diffraction experiments.
However, measuring Bragg peaks at large |Q| becomes challenging because of the very
weak scattering intensity. In the case of a perfectly polarised beam, the polarisation
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4.2. The simple case of magnetic scattering processes only

matrix then resumes to Eq. 2.32, which I recall here

Pαβ =

−1 0 0
H −K L

H L K

 .

Importantly, H ∝ i(M ∧M∗), also called the chiral term, is a sign of non-collinear
magnetic order. When performing and analysing a SNP experiment, one must be
aware of the existence of potential domains – both magnetic and structural. Magnetic
ones might exist when the symmetry of the ordered phase is lower than that of the
paramagnetic phase [15]. As mentioned earlier, in the case of the cupola family, the
little group Gk contains all elements of G0 and then conserves its symmetry. In other
words, translation symmetry is preserved on the application of symmetry operators,
and no magnetic domain is expected. However, I mentioned earlier the observed
existence of structural levo and dextro chiral domains in (A; B) compounds [130].
These two domains are related by spatial inversion such that rlevo = −rdextro. In this
case, the computation of the polarisation matrices must account for the separate
domains. The cross-section then simply reads

σαβ →
∑
n

fnσ
n
αβ, (4.9)

where the fraction of the nth domain is given by fn and the computation of the polari-
sation matrix is performed as usual.
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Chapter 4. SNP as a tool for magnetic structure determination

4.2.1 Combined ND and SNP analysis of Ba(TiO)Cu4(PO4)4

The first compound that I studied in my thesis is (Ba; Ti). It is known to have a
domain population of roughly 50% levo and 50% dextro [130]. The eight equivalent
Cu ions are sitting at the Wyckoff positions originating from the original position
r0 = (0.27, 0.99, 0.40), in crystallographic cell unit.

Experimental setting

I have performed Spherical Neutron Polarimetry measurements on the TASP spec-
trometer using the MuPAD configuration at SINQ (PSI) [46, 140, 141], with an initial
neutron wavelength of 1.97 Å−1. A single crystal sample of 0.6 g has been mounted on
an Al sample holder which allowed for two scattering geometries. I initially probed
the (h0l) scattering plane and reoriented the crystal in the (hhl) scattering plane in the
second part of the experiment. Measurements of the flipping ratio R were performed
on theQ = (2 0 0), (2 2 0) and (0 0 2) nuclear Bragg peaks, giving a ratio of R = 13.2. It
corresponds to a polarisation efficiency of η = 96.4 % [Eq. 2.34], which was accounted
for the computation of polarisation matrices. Complete sets of positive Pαβ and nega-
tive P ᾱβ̄ were measured at 1.5 K and 20 K to eliminate scattering contribution from the
systematic errors and background. A total of 26 polarisation matrices were measured,
for a counting time of one hour per matrix.

Results

The main results are reported in Figs. 4.6 and 4.7, which show a representative set
of measured and calculated matrices, in the Γ3(1) and Γ3(2) irreps respectively, for 6
inequivalent positions in reciprocal space. Scattering intensities in the paramagnetic
phase at 20 K have been subtracted from low temperature data in order to remove
systematic errors. I observe that in our data, P yx 6= P zx, and that P xz 6= 0 for some of
the measured reflections. This is emerges from a known feature of MuPAD, where small
gaps in the shielding cause systematic errors. To account for these deviations, I also
included different equivalent reflections as well as negative matrices in the analysis. I
note the presence of weak chiral terms H for some reflections, meaning thatM∗

⊥(Q)
is not parallel toM⊥(Q), which is naturally the case when the spins are not aligned
along the same direction. However, no definitive conclusion can be reached based on
the form of these matrices and with no further fitting. The numbers in parentheses are
extracted from statistical errors on the total neutron count N given by

√
N for Poisson

statistics.
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4.2. The simple case of magnetic scattering processes only

Figure 4.6 – Representative polarisation matrices measured (left) and calculated
(right, no uncertainties) for different positions. The colour code goes from blue, corre-
sponding to a value of -1, to red (+1). High temperature background measurements
have been subtracted from data measured in the antiferromagnetic phase. Uncertainty
in the measured matrices are reported in parentheses. Here, the simulated polarisation
matrices were calculated for the Γ3(1) configuration in Table 4.6 and Fig. 4.5.

Figure 4.7 – Representative polarisation matrices, similar to Fig. 4.6 but the simula-
tions are for the Γ3(2) configuration.
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Chapter 4. SNP as a tool for magnetic structure determination

To start the discussion, I observe that no magnetic signal was measured for reflections
Q = (0 0 0.5) + [0, 0, l], with a typical count rate of two neutrons per minute in the
σxx̄ channel, which also explains the large uncertainties reported in Fig. 4.8. Since
neutrons only probe the component of the spin perpendicular to the scattering vector
Q, one may believe that the low magnetic signal indicates that moments are pointing
along the c axis. However, this can easily be disproved by examining other reflections,
such as Q = (1 1 0.5) for example, which then forms an angle of 46◦ with the c axis.
The diagonal elements P yy and P zz have measured values of -0.89(1) and +0.85(1),
respectively (not shown here). With a beam polarisation efficiency of η = 96.4%,
and spins pointing along the c axis, computations of the polarisation matrices give
P yy = +0.86 and P zz = −0.86, which is the exact opposite to our measurements.
Furthermore, including the complete set of matrices in the comparison results in a
goodness-of-fit of χ2 = 2000, which is extremely poor. This solution being ruled out, it
calls for further in-depth analysis of the results.

Figure 4.8 – Polarisation matrices measured at two magnetic reflections along [0, 0, l],
indicated below the matrices, and under similar conditions to Fig. 4.5.

Each matrix has a total number of four independent components – A,B,C,D in
Eq. 2.32 – which also correspond to a combination of M (∗)

y,z (Q). The refinement of
the moments has been carried using a Levenberg-Marquardt routine [142, 143], which
is ideal for non-linear problems as is the case here. As mentioned in the introduction
of this chapter, symmetry analysis reduced the number of variational parameters to
three: the projection of the magnetic moment vector on the crystallographic basis
(u, v, w). I recall that the quantities I am interested in here are intensity ratios, which
means that the length of the moment cancels out in this expression. I am thus left with
two parameters, namely the azimuthal and zenith angles. To this, in the specific case of
(Ba; Ti), I must add the domain population which gives, for each irrep, a total of three
parameters to be refined. I denote levo as the domain where all Cu atoms originate
from r0 = (0.27, 0.99, 0.40), and dextro from−r0. I comment that systematic errors are
not accounted for in the analysis, which can lead to large values of the chi-squared
parameter.
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4.2. The simple case of magnetic scattering processes only

Table 4.6 – Direction of the magnetic moment on the Cu ions, obtained by fitting the
SNP data with the two different spin configurations. The strength of the moment m0
has been taken from powder diffraction data on WISH. The domain population as well
as the fit quality are also shown.

SNP Γ3(1) Γ3(2)
u (µB) 0.56(2) 0.56(2)
v (µB) −0.01(1) 0.03(1)
w (µB) 0.59(2) −0.57(2)
m0 (µB) 0.81(1) 0.80(1)
levo-domain 64(7)% 36(7)%
χ2 18.9 18.9

Simulated matrices associated with best fits for the complete set of measurements are
reported, for each subirrep, in the right sub-columns of Figs. 4.6 and 4.7. The refined
parameters are reported in Table. 4.6, with the moment normalised to m0 obtained
from WISH refinement. I comment that both configurations Γ3(1) and Γ3(2) once again
provide an equally good description of the system with a chi-squared of χ2 = 18.9.
Interestingly, the values extracted from SNP are slightly different than the previous
ones from neutron diffraction. The b component of the spins is here greatly reduced
to nearly 0 compared to vND = 0.36µB. Interestingly, I point out the fact that the
contributions from the levo [dextro] domain population counterbalances the effects
of the Γ3(1) [Γ3(2)] irrep. Thus, the two sets {levo,Γ3(1)} and {dextro,Γ3(2)} provide
an extremely similar description of the measured data, which then makes an analysis
based only on SNP data extremely tedious.

Table 4.7 – Magnetic R-factors defined in [127] corresponding to magnetic structure
refinements based on different models. In the first case, only powder ND measure-
ments are considered and both the moment direction and strength are allowed to vary.
The second case, denoted as (SNP + ND), indicates the situation where the direction
of the moment has been fixed to the SNP values, but its strength is refined using ND
data. The last row corresponds to the case where only the banks covering the largest
d-spacings, resulting in a better resolution, were considered.

Γ3(1) Γ3(2)
ND (D20) 16.4% 11.4%
SNP + ND (D20) 32.6% 18.8%
ND (WISH) 18.5% 11.5%
SNP + ND (WISH) 21.3% 19.4%
SNP + ND (WISH) (4, 5) (35.5%, 42.9%) (18.0%, 14.3%)
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Chapter 4. SNP as a tool for magnetic structure determination

It is known that SNP has a greater sensitivity to the direction of the magnetic moments
than neutron diffraction on powder. In order to solve the magnetic structure of (Ba; Ti),
I propose to combine both analyses by refining the powder spectrum with the direction
of the moment fixed to the values obtained from SNP, and allowing only the strength
to vary. Fits on WISH data were performed on banks 4 and 5, which correspond to
the lowest values of |Q|. Besides having a better resolution, the associated diffraction
patterns are also the least affected by a possible anisotropic magnetic form factor that
would emerge from covalent bondings. Goodness-of-fits are reported in Table. 4.7.
Refinements purely based on neutron diffraction give equivalent results for both mod-
els, but the combined analysis results in a clear preference for the Γ3(2) configuration.
The difference is even stronger when the fitted region is restricted to low-|Q| values
where the effects of the form factor are minimised. Corresponding fits to the neutron
diffraction data from WISH are shown in Fig. 4.9. Even though the quality of the fit is
slightly poorer than if considering neutron diffraction data only, these two indepen-
dent measurements combine to provide solid evidence that Γ3(2), shown in Fig. 4.5(b),
models the system the best. An additional geometrical argument in favour of this
configuration will be given in Sec. 4.2.3.

72



4.2. The simple case of magnetic scattering processes only

Figure 4.9 – Fits to the neutron powder diffraction pattern collected on WISH. (a)
Analysis based on ND data only. (b) The moments direction is extracted from SNP data
and its strength is allowed to vary. Both cases were refined based on the Γ3(1) [red] and
Γ3(2) [blue] models.
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4.2.2 Spherical Neutron Polarimetry on Sr(TiO)Cu4(PO4)4

The case of (Sr; Ti) is extremely similar. Neutron powder diffraction patterns could be
equally well described by the two aforementioned subirreps, Γ3(1) and Γ3(2). However,
unlike the previous case, the single crystal that we used is known to be purely dextro
[144], which reduces the number of fitting parameters to two: the angles in spherical
coordinates (ϕ, θ). The Cu positions are generated from the original position −r0 =
(−0.27,−0.98,−0.40).

Experimental setup

Spherical Neutron Polarimetry has been performed on the IN20 spectrometer (ILL)
in the CRYOPAD configuration [44], with an incoming wavevector ki = 2.58 Å−1. A
0.28 g high-quality single crystal has been mounted on a non-magnetic holder, and
oriented in the (h0l) scattering plane. Collimators have been added to the setup both
before and after the sample to reduce diffuse elastic scattering. The flipping ratio R
has been determined from the (2 0 0) nuclear Bragg peak, for a polarisation efficiency
η = 98.12 %. Both positive and negative polarisation matrices have been collected on
a total of 13 matrices for a counting time of two hours each, both at 1.5 K and 20 K to
account for systematic errors.

Results

Figure 4.10 shows a representative selection of the collected polarisation matrices.
Unlike for the previous case of (Ba; Ti), all matrices show strong chiral terms P yx and
P zx, which is a direct evidence of a non-collinear structure. Since the parameter space
is now of dimension 2, given by the angles ϕ and θ, a quick way to start the analysis is
to map it out. This will provide direct information on the degeneracy of the optimal
candidates. The comparison has been made on the basis of 13 polarisation matrices,
and I define the quality criterion as follows

χ2 = 1
N

N∑
i=1

|f(xi)− yi|
|yi|

, (4.10)

where N is the number of matrix components included in the fitting routine, N =
9 · nmat; f(xi) is the predicted value of the matrix component xi, which depends on ϕ
and θ; and yi is the collected associated value. The result is reported in Fig. 4.11, for two
different grid sizes. I immediately note the presence of two minima at positions (ϕ0, θ0)
and (ϕ0 +π,−θ0), where (ϕ0, θ0) ∼ (0,−π

4 ). These two positions correspond to a spatial
inversion of the moment, and are naturally equivalent because of the k = (0, 0, 1

2)
propagation vector. I comment that the set∼(π,−π

4 ) that corresponds to Γ3(1) has a
χ2 value of almost twice the optimal value (0.96 and 0.54).
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4.2. The simple case of magnetic scattering processes only

Figure 4.10 – Selection of polarisation matrices measured on Sr(TiO)Cu4(PO4)4. Left
columns are measured polarisation matrices while right columns are simulated matri-
ces based on the (a) Γ3(1) and (b) Γ3(2) model. The colour code goes from blue (-1) to
red (+1). Intensities collected in the paramagnetic phase have been subtracted from
low temperature measurements to remove systematic errors and background noise.
Statistical errors are shown in parentheses.

75



Chapter 4. SNP as a tool for magnetic structure determination

Figure 4.11 – Colour map of χ2 for (Sr; Ti). The goodness-of-fit defined in Eq. 4.10
is reported for a (a) 10◦ × 10◦ grid and (b) 5◦ × 5◦ grid focused on one unit quadrant,
showing two clear equivalent minimum positions.

The second solution being ruled out, I can now refine the angles defining the magnetic
moment in a similar way as before, using a Levenberg-Marquardt algorithm. For the
sake of consistency with Table. 4.6, I report them in crystallographic basis units. The
following solution gives a minimal χ2 of 0.49, with

u = 0.46(2)µB, v = 0.03(1)µB, w = −0.58(3)µB .

The corresponding calculated matrices are reported in the right subcolumns of Fig. 4.10(a),
and present a very nice agreement with the collected ones. I also reported in Fig. 4.10(b)
the simulated polarisation matrices corresponding to the solution (ϕ0 + π,−θ0) which
was a local minimum in (Ba; Ti). Even though diagonal terms are reasonably well-
described, the main difference comes from the chiral terms which are completely off –
most of them even have the wrong sign. Interestingly, the key to magnetic structure
determination came from these off-diagonal chiral terms. In the previous case of
(Ba; Ti), the presence of inversion symmetry related domains made the analysis really
challenging because of its consequences on the chiral terms. Indeed, I recall that they
are defined as H ∝ i(M(Q) ∧M∗(Q)), where MD,[L](Q) ∝

∑
iM(ri)e[−]iQ·ri and D

[L] correspond to dextro [levo] domains. As presented in Eq. 4.9, the final scattering
cross-section is a weighted sum of the contribution from all domains. For an equal
domain population, the Fourier transform of the magnetisation becomes real and the
chiral terms H vanish.
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4.2.3 The importance of the Dzyaloshinskii-Moriya interaction

As presented in the previous sections, ND and SNP measurements provide clear evi-
dence that the magnetic structures of both Ba(TiO)Cu4(PO4)4 and Sr(TiO)Cu4(PO4)4
are modelled by the Γ3(2) irrep, shown in Fig. 4.12, with angle values reported in Ta-
ble. 4.8. The spins then form a two-in–two-out arrangement, pointing approximately
out of the CuO4 planes. More importantly, I mentioned previously the presence of a
Dzyaloshinskii-Moriya (DM) interaction between two nearest-neighbour Cu atoms
within a cupola unit, as shown in Fig. 4.12, such that

D = −
∑
〈i,j〉

Dij ·
(

Ŝi ∧ Ŝj
)
. (4.11)

The shared O atom is responsible for superexchange, but the Cu–O–Cu angle of 108◦

indicates a rather small coupling value, together with a strong DM interaction. The
latter will tend to stabilise a magnetic structure with orthogonal nearest-neighbouring
moments, while the former is likely to result in a collinear spin arrangement. The
direction of the DM vector is predicted to beDij ∝ di ∧ dj , where di,j are the vectors
connecting the ligand oxygen atom to the Cu atom at position ri,j , even though small
deviations around this direction are possible.

In the case of (Ba; Ti), a rather strong anisotropy is expected from fits to bulk mag-
netisation measurements [131], and from the existence of a large gap compared to
the bandwidth of the excitations in the powder spectrum [138]. Due to the similar
nuclear structure and bulk results, it is reasonable to think that the same holds for (Sr;
Ti). In both systems, for the case of the Γ3(2) model, the spins are found to be almost
perpendicular to the CuO4 plane, which results in a very small angle between Ŝi ∧ Ŝj
and Dij [Table 4.8]. This is obviously not the case for the Γ3(1) spin configuration,
where the Ŝi ∧ Ŝj vector lies approximately 130◦ fromDij . The effects of the DM inter-

Table 4.8 – Angles (in degree) defining (top rows) the direction of the magnetic moment
on the Cu ions derived from SNP measurements in the Γ3(2) irrep, both on (Ba; Ti) and
(Sr; Ti). The angle ϕ is defined between the crystallographic b axis and the projection
of the moment on the (ab) plane, while θ is the elevation angle. Parentheses indicate
the numerical uncertainties on the values. (bottom rows) Angles between the vector
orthogonal to two neighbouring spins and the DM vector, as well as between the
direction of the moment and the normal to the CuO4 planes. The larger uncertainties
on the latter account for the fact that O4 atoms do not lie exactly in the same plane.

Angles (Ba; Ti) (Sr; Ti)
ϕ 3(1)◦ 4(1)◦

θ −45(1)◦ −51(1)◦

(Ŝi ∧ Ŝj), Dij 15(1)◦ 7(1)◦

Ŝi, n̂CuO4 12(3)◦ 20(4)◦
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Figure 4.12 – Direction of the magnetic moments in (a) [Ba; Ti] and (b) [Sr; Ti]. Half
of a cupola unit is reported in each case. TheDij vector (yellow) defined in Eq. 4.11, as
well as the direction orthogonal to both spins Ŝi ∧ Ŝj (red) are included for each case.
The yellow plane is defined by the vectors ri and rj .

action would then be maximised in the Γ3(2) spin configuration and naturally stabilise
the highly non-collinear magnetic structure that I propose for these two compounds.
Furthermore, it is consistent with the large anisotropy gap observed in prior neutron
diffraction experiments. I finally comment that the results on (Ba; Ti) have been ver-
ified independently by another group with nuclear magnetic resonance techniques
[145].
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4.3 Combining nuclear and magnetic scattering processes

The situation is much more complicated if the propagation vector is equal to a recip-
rocal lattice vector. Indeed, this implies that nuclear and magnetic scattering events
emerge at the same positions in reciprocal space The cross-section of Eq. 2.28 must
consequently be considered, with the terms detailed in Table 2.2. The presence of
nuclear scattering events leads to the existence of two extra terms with respect to
magnetic scattering events only, which I report here for clarity :

σ|N = Pi ·NN? , σ|I = Pi · (M⊥N? +M?
⊥N) . (4.12)

In the polarisation matrix, the former term corresponds to a change in the norm
of the polarisation, and adds a correction to diagonal elements, which then go as
Pαα ∼ N2−M2

N2+M2 . The latter term corresponds to a rotation in the polarisation direction,
and can be observed in the chiral components P yx and P zx, as well as in the creation
of so-called nuclear-magnetic-interference (NMI) terms P xy and P xz. As can be read
from the analytical expression reported in Table 2.2, they are always present when
nuclear and magnetic scattering events occur with a phase that is different from 0 or π.

Two remarks can be made out of this. First, nuclear scattering events usually are much
stronger than nuclear ones. Thus, the final scattering intensities are less sensitive to
any change in the magnetic contribution, which makes the refinement of the magnetic
moment much less accurate. It is then naturally recommended to work on reflections
that are structurally forbidden, and exhibit magnetism events only, in order to recover
the situation described in the previous section. However, the number of inequivalent
measured points will surely be lower than in the previous case, which, again, results in
a less reliable conclusion. Secondly, the NMI terms mixes the nuclear and magnetic
signals. It is thus absolutely impossible to separate both contributions by performing
temperature subtraction. The addition of this nuclear term as such adds a clear
challenge to the analysis of SNP data from such non-collinear magnetic systems.
However, it has recently been proven that similar magnetic structures could be solved
under certain conditions, which reduce the complexity of the problem [146].

79



Chapter 4. SNP as a tool for magnetic structure determination

4.3.1 The unsolved case of Pb(TiO)Cu4(PO4)4

The chiral compound (Pb; Ti) is known from neutron diffraction measurements [147]
to have a propagation wavevector k = (0, 0, 1). Even though it is described by a
different irrep, its magnetic configuration is thought to be the same as those of its sisters
compounds, but with antiferromagnetically stacked plaquettes along the vertical axis.
Eight equivalent Cu atoms are generated from the position r0 = (0.27, 0.99, 0.40) in
crystallographic units. Unfortunately, the crystal has not be probed by polarised light,
thus no information on the domain is known. However, it is believed that a high degree
of structural chirality prevents the formation of domains [130], which may imply the
existence of a single structural phase in (Pb; Ti).

Experimental setup

Spherical Neutron Polarimetry has been performed on the IN20 spectrometer (ILL)
in the CRYOPAD configuration [44], with an incoming wavevector ki = 2.58 Å−1. A
0.47 g high-quality single crystal has been mounted on a non-magnetic holder, and
oriented in the (hh̄l) scattering plane. Collimators have been added to the setup both
before and after the sample to reduce diffuse elastic scattering. The flipping ratio R
has been determined from the (0 0 1) nuclear Bragg peak, for a polarisation efficiency
η = 96.67 %. Both positive and negative polarisation matrices have been collected on
a total of 24 matrices for a counting time of 45 minutes each, both at 1.5 K and 20 K to
account for systematic errors.

A second experiment has been performed on the IN22 spectrometer (ILL) also using
the CRYOPAD setup. A different sample of 1.68 g, but from the same growing batch,
was mounted in the (2hkh) scattering plane to probe extra reflections with a weak
nuclear term. The incident wavevector was ki = 2.662 Å−1. Two pyrolytic graphite (PG)
filters were added after the sample in order to reduce λ/2 scattering processes. Each
matrix results from a total counting time of 45 minutes. The flipping ratio has been
measured on the nuclear (0 2 0) reflection, for a polarisation efficiency η = 97.26 %.
The scattering planes chosen in both experiments have been selected in order to
maximise the number of weak nuclear reflections that could be probed, based on
neutron powder diffraction results. A list is shown in Table. 4.9.
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Results

A representative set of collected polarisation matrices is shown in Fig. 4.13, on which I
can make a few comments. First, I remark that even reflections that are known from
ND measurements to give a weak nuclear contribution show a behaviour strongly
influenced by nuclear scattering events. This is notably the case of (2 2̄ 0), where one
measurement gave a total of 257 neutron counts in the non spin-flip channel (xx) and
88 in the spin-flip channel (xx̄). However, three matrices [at positions (1 1̄ 0), (0 1 0)
and (0 3 0)] show evidence of an important magnetic contribution. I will then mainly
elaborate on them. Interestingly, their corresponding NMI terms reported in the P xy

and P xz components have vanishing intensity. Unfortunately, I comment that the
reflections (0 1 0) and (0 3 0) show evidence of nuclear scattering despite the fact they
should be structurally forbidden.

Figure 4.13 – Selection of collected polarisation matrices on (Pb; Ti), measured on
(a) IN20 and (b) IN22. The colour code goes from blue (-1) to red (+1). Data have
been collected at 1.5 K and no A3 subtraction has been performed due to the low
background observed. Matrices in the first row correspond to Bragg peaks which are
known to give a strong nuclear contribution [Table 4.9].

If both nuclear and magnetic scattering processes occur, the interaction potential
must take the form V̂ (Q) = V̂M(Q) + V̂N(Q) defined in Eqs. 2.10 and 2.22. I made
a first attempt to describe the data with this potential on the (1 1̄ 0) reflection. The
corresponding calculated polarisation matrices in the Γ2(2) irrep are shown in Fig. 4.14.
Surprisingly, the overall behaviour the collected polarisation matrix was better re-
produced in a situation where only the magnetic interaction was accounted for, as
Figs. 4.14(b) and 4.14(c) show. Chiral terms are strongly modified by the nuclear poten-
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tial, and more importantly P xy 6= P xz and P yx 6= P zx. However, in the purely magnetic
representation, the diagonal terms are too strong to describe the measurements accu-
rately. I made another attempt to describe the data by artificially introducing a ratio κ
between V̂M and V̂N, such that V̂ = V̂M + κ · V̂N. The best description was obtained for
κ = 0, which is inconsistent with the physics of the system. Furthermore, I performed a
complete mapping of the reduced parameter space, with κ = 0, similar to Fig. 4.11 (not
shown here). Unlike for (Sr; Ti), this defined the presence of a very broad minimum
region with only little variation from one point to another. I conclude that the problem
was badly defined, and decided to stop the analysis here.

Figure 4.14 – Polarisation matrices of the most promising reflection. (a) Measured,
(b) simulated with both nuclear and magnetic contributions, and (c) simulated with
the magnetic contribution only. Both (a) and (b) are based on the Γ2(2) irrep.

Table 4.9 – Predicted value of the nuclear structure factor |FN(Q)|2 for different reflec-
tions in the probed scattering planes, and k = 2.662 Å−1. Reflections with no scattering
intensities are not shown, and a value of 0 caused by rounding effects and is then finite.
The multiplicity is indicated by m and a set of equivalent reflections is shown in the
last column.

h k l dhkl |Qhkl| 2θhkl |FN|2hkl m Reflections

0 0 1 7.014 0.896 19.37 70 2 [0 0 -1],[0 0 1]
1 1 0 6.748 0.931 20.15 0 4 [-1 -1 0],[-1 1 0],...
1 1 1 4.863 1.292 28.09 147 8 [-1 -1 -1],[-1 -1 1],...
2 0 0 4.771 1.317 28.64 270 4 [-2 0 0],[0 -2 0],...
2 0 1 3.945 1.593 34.81 57 8 [-2 0 -1],[-2 0 1],...
2 1 1 3.646 1.723 37.77 1 16 [-2 -1 -1],[-2 -1 1],...
0 0 2 3.507 1.792 39.33 124 2 [0 0 -2],[0 0 2]
2 2 0 3.374 1.862 40.95 1 4 [-2 -2 0],[-2 2 0],...
1 1 2 3.112 2.019 44.57 32 8 [-1 -1 -2],[-1 -1 2],...
2 2 1 3.040 2.067 45.68 481 8 [-2 -2 -1],[-2 -2 1],...
2 2 2 2.431 2.584 58.08 591 8 [-2 -2 -2],[-2 -2 2],...
4 0 0 2.386 2.634 59.30 66 4 [-4 0 0],[0 -4 0],...
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Discussion

Unfortunately, I was not able to confirm nor deny the proposed magnetic structure of
(Pb; Ti). The difficulty that I encountered during the analysis can be explained by a few
factors. First, nuclear signals are usually stronger than magnetic ones. Thus, a small
variation in the nuclear structure factor with respect to its predicted value will have a
big influence on the resulting calculated polarisation matrices. Yet it is known from
experimental powder refinements that the measured value is rarely exactly the same
as the predicted one. For example, atQ = (1 1̄ 0), the measured intensity from ND is
Iobs = 0.3, while the value predicted from the structure factor is Ical = 0.1. Naturally,
the weaker the absolute signal, the bigger the relative difference, which leads to large
variations. Furthermore, in typical neutron experiments, the ratio α = Iobs/Ical has
been shown to be smaller than one, even for small intensities [148], and gets even
worse with increasing scattering signal. I made an attempt to include these intensity
corrections to the analysis, but the outcome was not very successful. Indeed, correcting
the intensities resulted in reduced off-diagonal terms, while diagonal ones were left
quasi unchanged. This then produces the opposite effect to expected. I conclude that
an analysis based on the predicted value of the structure factor becomes tedious, or
even impossible under certain conditions.

Figure 4.15 – Rocking curves measured on the 1.68 g single crystal of (Pb; Ti) both in
the antiferromagnetic (blue) and paramagnetic (red) phase, at positions (a)Q = (1 0 0),
and (b)Q = (0 3 0). Both reflections are structurally forbidden, yet some non-negligible
nuclear scattering intensity is observed. The measurement has been done on TASP
(PSI).
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Additionally, as I mentioned earlier, some nuclear scattering intensity has been ob-
served on two Bragg peak positions that are structurally forbidden – (0 1 0) and (0 3 0)
[Table 4.9], as reported in Figs. 4.15 and 4.16. This additional intensity could emerge
from λ/2 scattering events, or multiple scattering, from a change in the nuclear struc-
ture, or even by the presence of structural defects. The first possibility is very unlikely
due to the presence of PG(002) filters, which drastically reduce multiple order scat-
tering. No clear sign of structural change has been observed on this compound, and
neutron powder diffraction showed no sign of nuclear signal emerging from (0 1 0) nor
(0 3 0). Unfortunately, this unexpected scattering intensity implied that the two most
promising Bragg peaks could not be included in the polarisation analysis. It would be
interesting to repeat the experiment on a different crystal, taken from another growing
batch.

Figure 4.16 – Temperature evolution of the (0 1 0) reflection, collected on IN22. Each
point corresponds to the integrated intensity of an A3 scan aroundQ = (0 1 0) in the
non spin-flip (blue) probing structural effects, and spin-flip (red) probing magnetic
effects.

There are two ways to overcome the structure factor issue. The first one is to define it
as F (Q) = RQ e

iφQ , where both the magnitude and the phase depend onQ. However,
this method adds two extra variational parameters per polarisation matrix, and thus
cannot be used in the analysis of this experiment. Another method is to base the
description of the structure factor on high temperature diffraction data measured
on the very same single crystal Iobs(Q). Under the assumption that it is a real quan-
tity, which is true under certain circumstances that have to be verified beforehand,
V̂N(Q) = (τ · Iobs(Q))1/2. The tuning strength τ would then be the only extra varia-
tional parameter added to the analysis. Furthermore, the size of the magnetic moment
matters when both nuclear and magnetic contributions are considered. The parameter
τ would also capture this feature. Unfortunately, I have not implemented this method
so far.
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A second issue that has not been addressed in the case of (Pb; Ti) arises from the chi-
rality of the crystal, and the presence of structural domains. Since I used two different
samples for my experiments, including the domain population in the analysis becomes
tedious. Furthermore, no solid dedicated experiment on the domain population has
been performed to my knowledge. As I observed on both (Ba; Ti) and (Sr; Ti), the
domain population is a key element in the description of the magnetic structure. I
performed an in-depth investigation on the domain population, which emphasised
the significant influence of this factor on the chiral terms, and, to a smaller extent, on
the diagonal ones. As I pointed, assuming a vanishing nuclear contribution, a dextro
crystal described by a Γ2(1) irrep provides an equally good description of the data as
Γ2(2) on a levo crystal. Prior knowledge of the domain population is necessary in the
analysis of chiral structures, and is missing here.

Additionally, the low number of inequivalent polarisation matrices does not allow me
to push the analysis any further as it would result in the description of a system by
more parameters than its dimensionality. However, as I mentioned in the introduction
of this section, recent work proved that solving k = (0, 0, 0) magnetic structures was
indeed possible [146]. More effort towards this direction will certainly be done in the
next few years. Furthermore, the recent development of the Mag2Pol [149] analysis tool
will certainly be of great use to the neutron scattering community.

4.4 Summary

I this chapter, I used the spherical neutron polarimetry technique to extract the mag-
netic structure of three sister members of the A(BO)Cu4(PO4)4 structurally chiral
family – (Ba; Ti), (Sr; Ti) and (Pb; Ti). Prior neutron powder diffraction showed that
magnetic peaks in the first two compounds could be indexed by a propagation vector
k = (0, 0, 1

2). Nevertheless, two competing magnetic structures within the same irrep
described the diffraction pattern equally well, which I denoted Γ3(1) and Γ3(2). Both
correspond to non-collinear structures for which SNP is highly sensitive. It is known
that magnetic domains must be accounted for in the analysis of SNP data. However,
only little can be found in the literature when structural domains coexist. As it can
be read from Blume-Maleev equations, I confirmed experimentally that chiral terms
are sensitive to the domain population. Furthermore, in the case I was interested in,
domains were in direct competition with the magnetic structure, where {levo,Γ3(1)}
shows similar effects than {dextro,Γ3(2)}.

In the case of (Ba; Ti), the full analysis was made possible by the high number of
inequivalent collected polarisation matrices, as well as the high-resolution neutron
powder diffraction data. They allow for a joint analysis, which, importantly, also in-
cluded the domain population as a free parameter. For (Sr; Ti), prior knowledge of
the existence of a single chiral domain in the crystal greatly simplified the analysis. I
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thus comment that it is a key element of the analysis, and should always be considered.
Finally, I used the presence of a symmetrically allowed Dzyaloshinskii-Moriya interac-
tion, predicted form inelastic neutron scattering measurements, as a solid argument
in favour of a magnetic configuration where the spins would point out of the CuO4
planes. The extracted direction of the moments are reported below. I did not include
the strength of the moments since this quantity cannot be directly extracted from SNP
measurements.

Angles (Ba; Ti) (Sr; Ti)
ϕ 3(1)◦ 4(1)◦

θ −45(1)◦ −51(1)◦

I encountered notable complications in the final case of (Pb; Ti), which is known to
have a propagation wavevector k = (0, 0, 1) resulting in the presence of both magnetic
and nuclear scattering events simultaneously. Indeed, these SNP experiments did not
lead to a successful determination of its magnetic structure, although a recent study
successfully demonstrated the feasibility of such analyses on simpler systems. Several
reasons are responsible for this outcome. First, the single crystal that I used showed
clear evidence of nuclear scattering at forbidden positions. These scattering processes
were not observed on powder diffraction patterns, and point out that a complete de-
scription of its nuclear structure is still incomplete. Second, I commented on the huge
influence of the static structure factor on the resulting polarisation matrix. The results
are also easily biased by the fact that the measured structure factor does not always
match its theoretical value. Third, I noted the existence of structural domains whose
populations were not exactly known. This ended up being a key point in the analysis of
its sister compounds, and showed that prior structural knowledge was needed in order
to carry with the analysis. Unfortunately, I did not collect enough reliable polarisation
matrices for the dimensionality of the problem. Finally, I would like to highlight the
complexity of the system resulting from the non-collinear magnetic order. Efforts are
being put towards the understanding of non-simple magnetic structures, and (Pb; Ti)
is undoubtedly a great candidate to serve this purpose.
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In Chapter 4, I performed an in-depth investigation on the magnetic structure of three
compounds of the (A; B) family, revealing a highly non-collinear spin arrangement
reported in Fig. 5.1. However, the most interesting feature of this series of compounds
is probably their crystal structure, reported in both Figs. 5.1 and 5.2. I recall here
that polarised-light microscopy showed that the cupolas have an alternating rota-
tion about the c-axis, and that the extent of this structural chirality depends on the
A2+ cation [130]. It has been found by a range of thermodynamic measurements
[131, 138, 144, 150, 151, 152] that this tunable nuclear structure causes significant
changes in the magnetic interactions too. These structural and magnetic consider-
ations make A(BO)Cu4(PO4)4 an ideal playground to study tetramerisation effects
on the 2D spin-1/2 square antiferromagnetic magnetic lattice. A significant amount
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of dedicated studies have been undertaken in order to characterise static proper-
ties [131, 150, 152, 153, 154] , and to relate them to the particular structure of the
compounds. However, dynamic properties have not been truly investigated for this
purpose, yet. Additionally, I pointed out in the last chapter the presence of a strong
Dzyaloshinskii-Moriya (DM) interaction explaining the large gap observed in prelim-
inary inelastic neutron scattering experiments on powder samples [138], which was
a key element in the determination of the magnetic structure. Yet, the competition
between robust long range order and quantum disorder induced by frustration or
anisotropies is a frontier research domain in condensed matter physics. The chiral
family A(BO)Cu4(PO4)4 then provides a unique arena to understand the dynamics of
tetramerised “J1-J ′1-J2-J ′2” models in extended square-lattice systems.

In this chapter, I present the results of high-resolution inelastic neutron scattering
(INS) measurements that I performed on single crystals of two members of the chiral
family – (Ba; Ti) and (Pb; Ti) – as well as powder INS on the high-symmetry compound
(K; Nb). While an accurate determination of the couplings in the latter two is still
ongoing, I propose a definitive set of magnetic interaction parameters that describe
the dynamic structure factor of the former to high accuracy.

Figure 5.1 – Schematics of the crystallographic and magnetic structure of
Ba(TiO)Cu4(PO4)4. (a) Ordered magnetic moments (red) point almost perpendic-
ular to the CuO4 planes (blue) in a two-in–two-out configuration on each cupola, with
the relative directions between upward- and downward-oriented cupolas as shown.
(b) The DM vector (yellow) lies in a vertical plane equidistant from the two Cu atoms
and forms an angle θ with the horizontal (ab) plane.

5.1 Introduction

The antiferromagnetic (AF) spin-1
2 Heisenberg model has always shown remarkable

physics. While the one-dimensional (1D) chain is exactly solvable and its solution
describes a strongly fluctuating spin state with fractionalised excitations [155, 156, 157],
its 2D analogue shows spontaneous breaking of the continuous spin symmetry and
Néel-type magnetic order [23, 24], albeit with strong quantum renormalisation of the
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ordered moment [50]. Additionally, geometrical frustration induced by diagonal next-
nearest-neighbour interaction (J2) suppresses long range order (LRO). This system
has been extensively studied [158, 159, 160, 161, 162, 163, 164], although no definitive
conclusion has been drawn on the nature of the quantum disordered state around
J2 = J1/2.

In the frame of this study, two axes of research are of great interest. In the direction of
spatial anisotropy, numerical investigation of plaquette-based, or tetramerised, square
lattices with no frustration reveal a quantum phase transition (QPT) to a plaquette-
singlet state at an inter- to intra-plaquette coupling ratio α = 0.55 [165, 166]. Ex-
perimentally, while a certain numbers of compounds are now known to realise the
square lattice [116, 167, 168, 169], the most interesting two for my purpose are proba-
bly the tetramerised compound Na1.5VOPO4F0.5 [170], which opens a route towards
experimental studies of plaquette-based systems on the frustrated square lattice, and
La2O2Fe2O(Se,S)2, which offers a similar possibility for (“double”) checkerboard ge-
ometries [171]. However, most studies to date have focused on the static properties
of these materials, and the dynamics of such extended models are still unexplored.
In the direction of spin anisotropies, the effect of DM interactions remain somewhat
mysterious on square-lattice geometries; available studies concern spin ladders [172],
tetramer systems with pyrochlore geometry [82], and coupled chains treated by the
simplification of staggered magnetic fields [173]. Recent numerical work has explored
some of the parameter space for frustrated square lattices with exchange anisotropies
[174].

Figure 5.2 – Schematic representation of the structure ofA(BO)Cu4(PO4)4 , showing
Cu (blue), A (green), B (red), P (yellow), and O (grey) atoms with associated coordina-
tion polyhedra. (a) Projection on the ac plane, providing a side view of the buckled
layers. (b) Projection on the ab plane of the layers, highlighting the square cupola
structures as four CuO4 squares (blue) connected around a B atom.

Due to its crystallographic structure and bulk magnetic properties, which I will not
describe here in detail [see Fig. 5.2 and Sec. 4.1.1], the chiral quantum magnet family
A(BO)Cu4(PO4)4 forms an ideal proving ground to experimentally study how the
excitation spectrum of the extended square lattice evolves throughout the evolution of
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the composition series, which can be associated to the ratio between intra- (J) and
inter- (J ′) tetramer interactions, as well as the effects of the strong anisotropic gap on
the excitation spectrum.

5.2 Excitation spectrum of Ba(TiO)Cu4(PO4)4

A first attempt to extract the magnetic exchange parameters has been made on the basis
of ab initio calculations [138, 150], combined with fitting the high-field magnetisation
response for different field directions to a cluster mean field (CMF) approximation
[131, 152]. These studies suggest a model with dominant intra-plaquette interactions
and a strong DM vector, and provide a good description of the strong magnetoelectric
effect. However, despite their success in accounting for the static properties, the
proposed interaction parameters do not provide an accurate account of the spin
dynamics measured on a powder sample [138]. Indeed, the latter corresponds to an
intensity average over constant |Q| values, and thus does not provide an accurate
representation of the excitation spectrum, especially in a region where several modes
interfere. The next step is naturally to study the dynamics of this compound with
inelastic neutron scattering measurements on a single crystal, in order to extract an
accurate set of parameters that describe the magnetic interactions in the system. I
performed two distinctive set of measurements on the same sample. In the first, I
probe the excitation spectrum at zero magnetic field, which provides data for the
extraction of the isotropic exchange parameters in a large part of the reciprocal space.
In the second, I include a vertical magnetic field to a TAS setup in order to be able to
fine-tune the direction of the DM interactions, build a qualitative understanding of
the magnetic excitations, and of course confirm the accuracy of the aforementioned
set of magnetic interactions. The results reported in this section were sent for review
to PRB, and only minor adjustments have been made to the text.
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5.2.1 Experimental setups

To probe the dynamics of Ba(TiO)Cu4(PO4)4, three single crystals were grown by the
flux method [130], with a total mass of 3.3 g. They were co-aligned on an Al holder to a
precision of less than 1◦ in the (hk0) scattering plane using Laue x-ray diffractometry,
as shown in Fig. 5.3. The spin dynamics at zero magnetic field were measured on the
direct-geometry time-of-flight neutron spectrometer IN5 [175] whose functioning has
been explained in Chapter 2. I measured the excitation spectrum at three different
temperature to account for systematic errors and background : at 1.5 K in the ordered
phase, at 10 K just above TN , and deep in the paramagnetic phase at 30 K. Inelastic
data were collected by rotating the sample around its c axis by a total of 138◦, in steps
of 1◦. Counting times were 20 minutes per angular step at 1.5 K and 30 K, and 13
minutes per step at 10 K, for a total measurement time of 46 hours. I oriented the
crystals in order to maximise the accessible range in the (hk0) scattering plane, and
such that scattering in the orthogonal direction could be measured using the opening
of the orange cryostat. The incident energy was set to Ei = 7.08 meV, resulting in a
resolution of 0.25 meV (FWHM). I took advantage of the tetragonal symmetry of (Ba;
Ti) by summing the intensities from detection pixels corresponding toQ points that
are equivalent under crystal symmetry operations of the point group (4/mm). Due to
the non-dispersive behaviour of the excitations along [0, 0, l], I integrated the data over
±0.6 in l for higher statistics. The ToF data were processed exclusively using the Horace
software suite [176]. In both experiments, the intensity I(Q, ω) measured at each
wave-vector transferQ and energy transfer ω is directly proportional to the dynamic
structure factor, S(Q, ω), convolved with a Gaussian distribution that accounts for the
finite measurement resolution of the spectrometers.

I probed the spin dynamics of (Ba; Ti) in a magnetic field on the IN12 triple axis
spectrometer at ILL [177]. For a direct comparison of both experiments, I used the
same crystal as for the zero field experiment, shown in Fig. 5.3. All measurements
were made at a base temperature of 2 K, in the antiferromagnetic phase. In order
to maximise the resolution, the final wave vector was fixed to kf = 1.3 Å−1, giving a
resolution of 0.172(5) meV (FWHM). An 80 mm collimator was placed between the
monochromator and the sample; the monochromator had both horizontal and vertical
focusing, while the analyser was horizontally focused only. The sample was inserted in
a 10 T vertical cryomagnet, in which data were collected at field values up to 5 T in 1 T
steps. The counting time was 2 minutes per (Q, ω) point.
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Figure 5.3 – Co-alignment of three single crystals of (Ba; Ti) with a total mass of 3.3 g.
(left) Sample before insertion in the IN5 spectrometer. (right) Laue diffraction patterns
of two crystals, with the c-axis along the beam. The same sample was probed on IN12
in the field experiment.

5.2.2 Spin dynamics

Zero field measurements

In Figure 5.4, I report the scattering intensity I(Q, ω) at 2 K as colour maps of the
magnetic excitations integrated over selected constant energy ranges at Q values
throughout the Brillouin zone (BZ). This format highlights the fact that the spectrum
has the same fourfold symmetry as the atomic structure, as shown in Fig. 5.4(a), which
justifies averaging the measured intensity and discussing a single quadrant in the
remaining panels. Additionally, I comment that even though the dispersion relation
ω(Q) follows a periodic pattern, the intensity does not have the same periodicity, a
difference that cannot be explained by the magnetic form factor f(Q). As the energy
is increased, Fig. 5.4(b) shows that gapped spin excitations appear first at the Bragg
peak positions, at an energy of 1.13(3) meV. This branch shows a strong anisotropic
dispersion for wave vectors across the BZ [Fig. 5.4(c)], and at approximately 3 meV
they begin to merge while a different excitation branch also emerges at the zone
centres [Fig. 5.4(d)]. In the energy range up to 4 meV, scattering contributions from
several different branches disperse and merge, resulting in complicated patterns inQ
[Figs. 5.4(e) and 5.4(f)], but always retaining the same periodicity. Finally, above 4.4
meV one only finds weak remnant scattering [Fig. 5.4(g)].
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Figure 5.4 – Mapping of the excitations at constant energies ω. The scattering in-
tensity, I(Q, ω), is integrated over different ω ranges throughout the band width of
the excitations and shown as a function ofQ in the (hk0) scattering plane. The mea-
surement temperature is 2 K, the momentum step is dq = 0.01 Å−1, and the energy
integration range is indicated in each panel. (a) Unsymmetrised data across the full
accessible Brillouin zone, highlighting the fourfold symmetry of the excitations inQ.
The dashed red box marks the second quadrant, to which the remaining panels should
be referred. (b)-(g) Symmetrised data, folded onto the second quadrant, and shown for
six selected energy ranges. Orange dashed lines in panel (g) represent the scattering
directions reported in Fig. 5.6
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An alternative representation of the magnetic excitations is given in Fig. 5.5, where
I report the scattering intensity as a function of the energy transfer ω, at different
Q points along a single high-symmetry direction in reciprocal space. I observe the
presence of multiple shark peaks with various intensities, all of which are well described
by a Gaussian line shape, as red lines in Fig. 5.5 show. By extracting peak centres, width
and intensities of the multi-Gaussian profiles, I am able to identify a maximum of
seven different excitations in some parts of the BZ.

Figure 5.5 – ConstantQ,ω-scans. I(Q, ω) (black points) collected at 2 K for different
Q points along the [1̄, k, 0] direction and shown as a function of ω. The red lines are
an interpolated multi-Gaussian fit, from which the peak centres and widths were
extracted.

The greatest advantage of ToF measurements is that they allow for a full mapping
of the reciprocal space in only one long measurement by effectively collecting the
neutron intensity for each (Q, ω) point in the reciprocal space. Figure 5.6(a) collects this
information to display the dynamic structure factor, S(Q, ω), along several different
high-symmetry Q-space directions indicated in Fig. 5.4(g). The reported excitation
spectrum is extremely rich, much more so than reported from previous studies [138],
where it was thought that the spectrum was formed by a highly dispersive low-energy
band, and an almost flat high-energy band. To describe the excitation spectrum, I
begin by decomposing the observed excitations into three distinct regimes of energy,
which I define on the basis of the [0, k̄, 0] scattering direction (the third panel in Fig. 5.6).
First, there is a robust gap, ∆ = 1.13(3) meV, at the BZ centre, which repeats along
all measured directions. Second, a single, sharp excitation branch with a largely
cosinusoidal dispersion is present at 1–3 meV, to which I refer henceforth as the low-
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energy regime. At the BZ boundaries, this mode flattens in a manner reminscent of a
level-repulsion with the higher-energy excitations. The gradient with which the low-
energy mode disperses around the Bragg-peak positions indicates the magnitude of the
leading interaction, and the fact that this mode seems to have a periodicity of two BZs
[Figs. 5.4 and 5.6] suggests that this interaction corresponds to a potential that covers
half of the magnetic unit cell. Third, the high-energy regime at 3–4.5 meV contains
three distinct and continuous modes, one of which merges into the low-energy mode
at the lower edge of the energy window. I comment again that there are no well-defined
magnetic excitations above the upper edge of the high-energy regime [Fig. 5.4(g)].

Figure 5.6 – Excitation spectrum of (Ba; Ti). (a) Measured dynamic structure factor,
S(Q, ω), shown along the four high-symmetry Q directions indicated in Fig. 5.4(g).
The step size in energy is dE = 0.04 meV and in momentum it is dq = 0.01 Å−1

in the scattering direction for Q in the (hk0) plane and dq = 0.03 Å−1 for Q in the
[0, 0, l] direction. The integration range in the orthogonal direction is ±0.06 Å−1. No
smoothing effect has been added to the data. (b) S(Q, ω) modelled using a spin wave
description of the dispersion convolved with Gaussian functions representing the
spectrometer resolution.
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I also report a number of subtle details in Fig. 5.6(a), which are important for different
aspects of fitting the relevant interaction parameters. Above the low-energy mode
one may discern the presence of an additional scattering feature with very low inten-
sity; denoting the low-energy mode dispersion by E1(Q), this feature appears above
E2M(Q) = E1(Q) + ∆. This information identifies the feature as a two-magnon scatter-
ing continuum, which is sharpest at its lower boundary. I obtain further information
to confirm this identification in Sec. 5.2.2. Importantly, I observe the splitting of the
second most energetic mode at the zone centre, in the high-energy regime, which
strongly supports the presence of the DM interactions and, together with the gap,
provides the most accurate means of quantifying their strength. This feature at 3.2–3.5
meV is the most visible in the [0, k, 0] direction. In general the scattering intensity is
strongest near the zone centres, and primarily in the low-energy regime, although a
clear exception occurs in the second BZ, where the high-energy branches are equally
intense. I comment on the particular distribution of scattering intensity along the
[0, k, 0] direction, notably in the 3 meV region, which provides good comparison for
a future fit. As expected from the crystallographic structure, where non-magnetic
atoms lie between cupola layers [Fig. 5.2(a)], the magnetic excitations are only very
weakly dispersive in the direction orthogonal to the magnetic layers [right panel of
Fig. 5.6(a)], and thus I have chosen to integrate all of our scattered intensities over the
range−0.6 < l < 0.6 for better statistics.

Vertical magnetic field

I now turn to the spin dynamics of the system in the presence of a magnetic field
along the c axis, i.e. H=(0,0,Hz). I exploited the good resolution of a TAS in order to
resolve the bands in energy. Physically, the effects of a magnetic field are reflected in
an extra term Ĥm to the unperturbed Hamiltonian that I will present in Eq. 5.2 such
that Ĥ′ = Ĥ+ Ĥm and

Ĥm = −gµB
∑
i

H · Si , (5.1)

where the g-factor is assumed to be isotropic, and µB is the Bohr magneton. Aside
from building a better understanding of the degeneracy of the modes atH = 0, which
usually split in the presence of Hz, I expect that including a vertical magnetic field will
provide significant insight into the effect of the DM interaction, since [Ĥm,D] 6= 0 if
the angle between these two is different than 90◦, whereD is the DM Hamiltonian.

Figure 5.7 shows the evolution of the measured scattering intensities I(ω), represented
as ω-scans performed at constant-Q = (1 1 0), for field values of 0, 1, 2, 3 and 5 T. The
four modes observed at zero-field rapidly evolve and split. They are well-resolved at
5 T, represented by six clear peaks, all of which are well described by Gaussian profiles.
The lowest two show clear separation into two modes of near equal intensity, which
evolve symmetrically in energy with increasing field. Comparatively, the two modes at
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higher-energy show a more complex evolution of their energies and intensities. Finally,
the highest mode is observed as a wide hump of scattering intensity above 4 meV,
which shifts upwards with field. The spectrum evolution also shows an additional
feature in the form of a low-intensity excitation around 2.1 meV, which I previously
identified as a continuum of two-magnon scattering processes. This magnetic feature
is constant as a function of field, which strongly supports this hypothesis. Indeed, as
mentioned in Chapter 3, two scattering events are associated with the creation of two
spin waves with ∆Sz = 1 and−1, such that the effective excitation has ∆Sztot = 0 and
therefore does not respond to an external magnetic field. Furthermore, I comment that
a weak scattering continuum emerges above this peak. However, I did not quantify it
in the frame of this study.

Figure 5.7 – Scattering intensity I(ω) represented as ω-scans measured atQ = (1 1 0),
normalised by the monitor counts, and for increasing values of the vertical magnetic
field H . Black points denote measured intensities, and red lines correspond to fits to a
multi-Gaussian model.

The field-induced evolution of the modes is alternatively represented in Fig. 5.8(a)
as a colour map. A few comments can be made. I observe the clear presence of two
different regimes in the field evolution. While the low-energy mode and the broad
peak show a near-ideal field dependence, the peak in the intermediate region (2.5–
4 meV) remains somewhat flat at low fields (H . 2 T) before recovering a similar
gradient. This separation into two regimes indicates their sensitivity to the in-plane
(non-commuting) DM component (Dx). However, the particular geometry of the DM
interactions, pointing inwards/downwards in each plaquette, makes it difficult to
relate the field scale with |D|. The gradients of the linear evolution beyond 2 T ruled by
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Zeeman effects are similar to those of the lowest split excitations, whose peaks centres
move by -0.09(3) meV/T and 0.10(3) meV/T. These slopes are consistent with the value
gµB = 0.12 meV/T expected from a spin-1 excitation.

The peak separation shown in Fig. 5.8(a) allows for a better understanding of the origin
of the modes in the 2.5–4 meV regime. Of the two peaks apparent at H = 0, the one
centred around 3 meV contains in fact three branches, whilst the one at 3.5 meV is a
single mode. They are not degenerate at H = 0 because of the DM interaction, which
generates the∼ 0.5 meV separation of the ∆Sz = ±1 branches.

The dynamic structure factor at 5 T is extracted from several ω-scans of the type shown
in Fig. 5.7, at different positions in the momentum space. I report in Fig. 5.8(b) the
corresponding excitation spectrum in half of the BZ. These results verify that the effects
of the field on each branch are the same at eachQ. No additional splitting is observed
withQ, indicating that [1, k, 0] has no special symmetries. I additionally note that the
excitations show no evidence of avoided crossing at 5 T, associated with level mixing.

Figure 5.8 – (a) Measured scattering intensities I(Q, ω) from Fig. 5.7, normalised by
the monitor counts and presented as a colour map. Black dots denote the magnetic
excitations extracted from LSW calculations based on the Hamiltonian 5.1 with the
parameters from Table 5.1. (b) Measured and (c) modelled excitation spectrum in half
a BZ, in the presence of a 5 T vertical magnetic field. For a better visualisation of the
data, a linear interpolation has been applied on the measured data reported in panel
(a).
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5.2.3 Derivation of the magnetic Hamiltonian

To model the magnetic excitations, I propose a set of parameters that, when inserted
in the following Hamiltonian, describes the dynamic structure factor of the system
both in dispersion and in intensity:

Ĥ =
∑

[i,j]m

Jm Si · Sj −
∑
〈i,j〉

Dij · (Si ∧ Sj), (5.2)

where [i, j]m denotes a sum over relevant Cu–Cu bonds with Heisenberg interactions
of strength Jm. From a previous neutron scattering study [138], I have identified
the relevant magnetic interactions as those represented in Fig. 5.9(b), forming a 2D
magnetic lattice. In addition, any understanding of (Ba; Ti) requires DM interactions,
which are most likely to connect pairs of neighbouring Cu sites, 〈i, j〉, within each
cupola. By standard structure and symmetry considerations, the DM vectors on the
four cupola bonds [Fig. 5.9(c)] are perpendicular to the vector ri − rj connecting the
two concerned Cu atoms, and are oriented at an angle θ to the (ab) plane, as shown
in Fig. 5.1(b). I comment that the DM vector can equivalently be described by (|D|, θ),
or (Dx, Dz), where x denotes the direction perpendicular to the aforementioned bond
carrying the interaction J1, in the ab plane, and z is parallel to c. The presence of a
significant |D| and the importance of the angle θ to a detailed understanding of the
magnetic order was suggested in the early studies of Ref. [138]. The DM interaction
naturally frustrates the Heisenberg interactions on each cupola and stabilises a highly
non-collinear spin configuration, best understood as a two-in, two-out structure
[Fig. 5.1], as explained in detail in Chapter 4.

In a material with a plaquette-like structure, as it the case for Ba(TiO)Cu4(PO4)4,
[Fig. 5.9], there are a priori two separate possibilities for opening the observed gap
: tetramerisation effects and a strong anisotropy of the form of the DM interaction.
Motivated by the relatively large bandwidth of the low-energy excitation [Fig. 5.6(a)]
and the parameters estimated on the basis of static measurements [131], I adopt the
hypothesis that the system is not strongly tetramerised and that the gap will then arise
primarily from the DM term. In addition, the robust ordered moment of (Ba; Ti) of
∼ 0.8µB suggests that a semi-classical linear spin wave (LSW) theory should provide a
good approximation in which to describe the magnetic order and excitations, and thus
I employ the SpinW package [53] to extract the coupling strengths.
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Figure 5.9 – Magnetic lattice of Ba(TiO)Cu4(PO4)4, similar to Fig. 5.2. (a) Projection of
the nuclear structure on the (ab) plane. (b) Associated magnetic interactions, defined
in Eq. 5.2. Another representation centred on the DM vector is given in Fig. 5.1.

The optimal parameter set is obtained by fitting only the measured dispersions through-
out the BZ [Fig. 5.6(a)], with additional information taken from the finite-field disper-
sion [Fig. 5.8]. They are reported in Table 5.1, and the resulting magnetic lattice is
shown in Fig. 5.9(c). The corresponding ordered ground state is very similar to that
deduced from SNP measurements [129], with the Cu spins oriented almost normal to
the CuO4 squares and forming a canted two-in–two-out arrangement on each cupola.
A direct comparison of the elevation angles gives 45◦ for the SNP extracted ground
state [Chapter 4, Fig. 5.1], and 63◦ for the ground state obtained with the LSW approxi-
mation. Thus, two neighbouring spins have a mutual angle of 37◦ according to LSW. I
comment based on Table 5.1 that given the relative values of the Heisenberg couplings,
which favour a collinear alignment, and those of the DM interaction, which favours an
orthogonal spin configuration, the value of 37◦ is consistent. Once again, the accurate
LSW description confirms the initial hypothesis that the system is weakly tetramerised.
The excitation spectrum produced with these model parameters is shown at zero field
in Fig. 5.6(b), and in a finite magnetic field in Figs. 5.8(a) and 5.8(c). It is clear that all
the primary features of the measured bands are captured with quantitative accuracy in
both cases, even though LSW slightly overestimates the gradient of the most energetic
mode, in its linear regime [Fig. 5.8(a)]. A strong confirmation of this parameter set is
provided by the fact that the scattered intensities are very well reproduced with no fur-
ther fitting. The level of the remaining discrepancies is extremely small, and concerns
mostly details of (anti-)crossing events between rather flat modes in the high-energy
regime, although some of these may be a consequence of only low intensities. A small
amount of discrepancies is of course expected because of a semi-classical description
of a S = 1/2 spin system. I note in particular that the feature E2M(Q) with onset
around 2 meV is not present in the fitted spectrum, consistent with the conclusion
that it is not an elementary spin wave but a two-magnon scattering state.
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Table 5.1 – Interaction parameters, in meV, used in the LSW description of the magnetic
spectrum of Fig. 5.6. The geometry of these interactions is shown in Fig. 5.9(b) and the
two components of the DM vector in Fig. 5.1(b).

J1 J2 J ′2 J ′11 J ′12 Dx Dz |D| θ

2.03 0.52 2.22 0.17 0.17 1.05(3) 0.18 1.07(3) 10◦

The Heisenberg interactions of Table 5.1 define a magnetic lattice of square antiferro-
magnetic plaquettes, J1, with a small diagonal intra-plaquette J2 coupling generating
rather weak frustration. The dominant inter-plaquette interaction linking the plaque-
ttes in the ab plane is the crossed coupling, J ′2. Surprisingly, this interaction, being
slightly stronger than the plaquette couplings, is the leading one in the system. Rel-
atively, the plaquettes have a coupling twice as strong as the value that could be
estimated on the basis of static measurements [131]. Finally, the structure of (Ba; Ti)
requires two different J ′1 bonds, which I label J ′11 and J ′12, and these are similar in value
but weak by comparison with J ′2.

Figure 5.10 – Illustration of the J ′1i and J ′2 bonds. Two neighbouring alternated pla-
quettes formed by Cu ions (blue) are connected by two pairs of both J ′1i (purple,
"straight-") and J ′2 (purple, "crossed-") bonds, which use the non-magnetic p orbitals
of the P (yellow) and O (grey) atoms.

One further point of difference between the fitted parameters deduced from static
and dynamic measurements emerges from these inter-plaquette J ′11 and J ′12 crossed-
interactions. Two considerations can be made. First, in the spin wave spectrum, these
are necessary for an accurate description of the separation between the low- and high-
energy regimes, and my fitting quality quickly deteriorates when they are not equal
and antiferromagnetic. By contrast, these two parameters were given opposite signs
in fitting the magnetisation data [131], suggesting that smaller values in the global
fit can be subject to large relative uncertainties. Secondly, one might be surprised by
the large strength of the crossed bonds (J ′2) with respect to the straight ones (J ′11 and
J ′12, denoted as J ′1i in the following paragraph). This can be explained structurally in
terms of Cu–O–P–O–Cu superexchange paths, which are both represented in Fig. 5.10.
Interestingly, the only difference between these interactions comes from the last P–O–
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Cu path, which leads to two comments. First, the absence of direct straight Cu-O-Cu
exchange path naturally explains the low value of J ′1i. Secondly, due to the shape of
the p orbital, the superexchange path connecting two opposing Cu ions (J ′2) is overall
rather direct (or straight, ironically) with∼ 180◦ angles, whereas it forms a∼ 90◦ angle
in the case of straight bonds (J ′1i). Additionally, any set of parameters with these two
parameter values inverted did not provide a satisfying description of the system at all.

The other strong interaction in Table 5.1 is the DM term. For the sake of coherence with
the rest of the thesis, it is represented in Table. 5.1 by both its vector components in
the local coordinate system of a bond, such thatD = (Dx, 0, Dz), and by its magnitude
|D| and elevation angle, relative to the (ab) plane. Naturally, these coordinates systems
are related by Dx = D cos θ and Dz = D sin θ. By symmetry, the vectorDij lies in the
plane orthogonal to the Cu–Cu path of J1 and its direction alternates between all-in or
all-out [Fig. 5.9(c)] with the upward or downward cupola orientation. On structural
grounds one would expect this angle to take the value θp = 14◦ obtained for a single
cupola bond fromDij ∝ di × dj , where di is the bond vector connecting two Cu site at
positions ri,j to the O atom shared by their CuO4 squares [Fig. 5.1]. My result θ = 10◦

being consistent with this value, which recall does not depend on quantum effect, once
again confirm the accuracy of the calculation. The strong J ′2 interaction means that
the origin of the gap must lie in the DM term, and thus it is no surprise to find a large
magnitude, |D|, which is also required to reproduce some of the mode separations in
the high-energy regime reported in Fig. 5.6. The direction of the DM vector is also a key
parameter in the fitting process, because its in- and out-of-plane components have
quite different effects on the eigenstates of the Heisenberg terms in Eq. 5.2.

Describing the data with these couplings ended up being a rather tedious task because
of the high number of independent parameters, as well as the high sensitivity of some
features to these variables. However, the quantity best described is the gap, mostly
due to the DM interaction. In Fig. 5.11, I report the difference between the measured
gap ∆m = 1.13(3) meV and the gap extracted from LSW calculation, with the other
parameters set to the values reported in Table. 5.1. At low angles, the size of a gap does
not depend strongly on the Dz component until Dz ∼ 0.8 meV, but sets some strict
boundaries for the Dx component, such that Dx = 1.05(3) meV. The second strongest
signature of the DM interaction comes from the splitting of the high-energy regime,
especially along the [0,k̄,0] direction. It opens the gap between the 3.5 meV and 3.2
meV excitations (at the zone centre), which would merge and form only one without
it. However, the strongest effect of the Dz component emerges in a magnetic field.
Indeed, I observed in LSW calculations similar to Fig. 5.8 that the 2.5 meV mode splits
for values of Dz greater than 0.18 meV, which sets an upper limit for this quantity.
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Figure 5.11 – Evolution of the gap with the DM. Difference, in absolute value, between
the measured ∆m and simulated ∆s gaps, in the frame of the LSW approximation. (in-
set) Close up on a smaller region in the parameter space, centred around the predicted
value of the DM vector in (Ba; Ti).

Finally, I remark that a weak interlayer interaction, J⊥, is required to ensure the ob-
served antiferromagnetic order. In principle this parameter could be fitted from the
very weakly dispersive behaviour of the low-energy mode for wave vectors orthogonal
to the scattering plane. In the present experiment, geometrical and resolution factors
were such that my data for the out-of-plane direction are of qualitative value only, and
thus I did not attempt to include J⊥ in our fitting procedure. All of our observations are
consistent with the order-of-magnitude estimate J⊥ ≈ J1/100 proposed in previous
studies.

5.2.4 Comparison with high-field magnetisation measurements

The higher sensitivity of the dynamic excitations to the coupling parameters of the
system allowed for a more accurate account of the magnetic interactions than was
possible on the basis of static measurements, primarily of the high-field magnetisation,
which were performed up to full saturation [131, 138] around 60 T. As a consistency
check, the authors of the previous study repeated their cluster mean-field (CMF)
analysis of the system with the derived parameters from Table. 5.1. The results are
shown in Fig. 5.12.

The CMF modelled magnetisation curves are in semi-quantitative agreement with
the measurements. Both highlight the presence of a field-induced phase transition
at values Bc, where the gap closes, and a saturation at high-fields Bsat. Qualitatively,
this saturation field appears to be overestimated by approximately 20 % with the
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Figure 5.12 – Magnetisation curves. (a,b) Magnetisation curves M(B), (a) measured
and (b) obtained from a CMF analysis using the magnetic interaction parameters from
Table 5.1, for magnetic fields applied in the three primary crystallographic directions of
the tetragonal structure. (c,d) Magnetisation derivatives dM(B)/dB, which highlight
the discontinuous features in M(B). The calculated steps at different fields Bc, at
which the gap is closed, andBsat, where saturation is achieved, show semi-quantitative
agreement with the measurements, and highlight the presence of two distinct magnetic
phases. The left side panels are extracted from Ref. [131], with the permission of the
authors.

set of parameters obtained from LSW calculations. However, this saturation field is
proportional to the sum of all coupling parameters, which is known to be overestimated
by a factor of 1.18 in a pure Heisenberg model described by the LSW theory [118]. This
difference is a direct consequence of the fact that quantum corrections are not included
in the LSW approximation, and I observe that a qualitative agreement in Bsat would be
reached with the consideration of this correction.

However, an equally good description of the magnetisation curves was previously
proposed with an interplaquette interaction J ′2 twice as small, which raises the question
of the uniqueness of the set of parameters. To gauge its variability, I comment that the
two methods of analysis are intrinsically different. The CMD method assumes weakly
coupled plaquette units, whereas LSW theory is based on robust magnetic long range
order. However, my set of parameters describes rather well both the magnetisation
curves and the excitation spectrum, whilst the previous one gives a poor account of
the latter. This sets the parameters from Table 5.1 as the updated benchmark for (Ba;
Ti).

104



5.2. Excitation spectrum of Ba(TiO)Cu4(PO4)4

5.2.5 Future dedicated work

The previous section demonstrates that (Ba; Ti) is well-described by a set of parameters
indicating that the system is not strongly tetramerised. However, the intrinsic nature of
the modes is not yet understood. I propose here a few directions for future investigation
of these systems.

In order to build a deeper understanding of the spectrum, and motivated by the
cluster behaviour of the DM interaction, I computed the excitation spectrum at the
BZ centre in order to disregard the dispersive effects of the modes, obtained by the
diagonalisation of a four sites plaquette with the interactions J1, J2 andDij taken from
Table 5.1. The corresponding Hamiltonian reads:

Ĥp = J1
∑
〈i,j〉

Ŝi · Ŝj + J2
∑
〈〈i,j〉〉

Ŝi · Ŝj −
∑
〈i,j〉

Dij ·
(

Ŝi ∧ Ŝj
)
, (5.3)

where 〈. . .〉 denotes a sum over nearest-neighbours only (e.g. 1 –2) and 〈〈. . .〉〉 represent
opposite Cu sites (e.g. 1–3).

Figure 5.13 shows a direct comparison between the measured field evolution and
the excitation spectrum of a four-site plaquette. I observe clear similarities between
the two spectra in panels (a) and (b). First, the ED spectrum naturally shows the
presence of three distinct energy regions formed by the lowest triplet, followed by
the two remaining triplets and the singlet, and finally the high-energy quintuplet.
Secondly, the field-induced dependence equivalently shows the presence of the linear
(Zeeman) and DM dominated regimes. Interestingly, the triplet modes at 4 meV shows
the longest flat regime, similar to what I measured. However, the persistence of this
regime could also be due to the strong mode mixing occurring at these energies. I also
remark that the DM interaction induces a large energy separation within each of the
two intermediate triplet states. This induced gap is equivalent in magnitude to the
measured one of∼ 0.5 meV around 3 meV. A direct comparison would imply that the
measured 3 meV region of Fig. 5.13(a) is not formed by a set of 3 + 1 branches as I
claimed in Sec. 5.2.3, but rather by the 2 + 2 triplet states, each triplet being naturally
split because of the DM interaction. Finally, the gradients of the triplets and ∆Sz = ±1
quintuplets are similar to those of the lowest measured excitation, with a value of
0.09(2) meV/T.

It is tempting to conclude that my INS measurements probed the ∆Sz = ±1 excitations
(two pairs of triplets, and one quintuplet) of (Ba; Ti). However, one should be cautious
since it requires identification of the modes based on stronger arguments. Furthermore,
this implies that ∆Sz = 0 processes are not probed by neutrons, which opposes the
selection rules. Additionally, the alternated geometry of the DM vectors (pointing
alternatively inwards and outwards of the plaquette) is not considered in this basic
calculation and requires further work.
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Figure 5.13 – Comparison of the field-induced evolution of the branches. (a) Field-
induced evolution of the excitations, measured on (Ba; Ti). Same as Fig. 5.8(a). (b)
Excited states of the four-sites plaquette unit sketched in the inset atQ = 0, extracted
from an exact diagonalisation (ED) calculation of the Hamiltonian 5.3, with the values
of J1 (green), J2 (purple) and Dij (orange) taken from Table 5.1. Black lines represent
singlet states |s〉, red ones are triplets |t〉, while blue lines denote quintuplet states |q〉.

Nevertheless, this introduces the next axis of research on which I started working in
part. At the beginning of this chapter, I introduced the (A; B) family as an ideal play-
ground to study the phase diagram of structurally gapped J–J ′ plaquettised systems.
It is now known that the isotropic J1-J ′1 model has a quantum phase transition from
a gapless magnetically ordered phase to a gapped singlet phase at αc = J ′1/J1 ≈ 0.55
[165, 166]. Further effort has been put towards the theoretical understanding of plaque-
tte phases [160, 178, 179] on the square lattice, but the presence of an extra anisotropy
has not been considered yet. In gapped systems, the critical point αc is not as well
defined and the question arises whether the gap emerges from an anisotropy, or has a
quantum origin.

In similar fashion, future work will be dedicated to building a deeper understanding of
the effects of the two-component DM interaction on the quantum states of the system,
and of the excitation spectrum. Similarly to what has been done on the dimer system
Sr3Ir2O7 [180], or on coupled tetrahedra systems [82], the goal is to build the phase
diagram of gapped plaquettised systems based on (Ba; Ti), with a plaquette-operator
theory. Indeed, this approach allows for a qualitative description of both the long
range ordered and the tetramerised phases. The excitation spectrum derived from the
Hamiltonian 5.3 will be used to define the elementary excitations in the frame of the
plaquette-operator approach.
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5.3 Qualitative description of Pb(TiO)Cu4(PO4)4

In the frame of this thesis, I also performed neutron scattering measurements on
Pb(TiO)Cu4(PO4)4, both in the presence and absence of a vertical magnetic field. As
Fig. 4.2 shows, (Pb; Ti) has a smaller chirality strength than (Ba; Ti), and I expect
the magnetic interactions to vary accordingly. Prior neutron diffraction experiments
[138] reported in Chapter 4 proved that this compound had an integer propagation
wavevector k = (0, 0, 1). However, similarly to (Ba; Ti), I believe that the compound
behaves as a 2D system, which means that the difference in the propagation wavevector
should not have any influence on the magnetic excitation spectrum.

I comment that the analysis of the results reported in the rest of this section is ongoing.
I will then give a qualitative description of the measured excitation spectrum and
provide hints for any further investigation.

5.3.1 Experimental setups

I report here the outcome of three experiments performed on different neutron spec-
trometers. I used the same crystal of 1.68 g for all experiments, oriented in different
scattering planes.

In the first experiment, I used the triple axis spectrometer FLEXX (HZB) [181], with the
outgoing wavevector kf = 1.48 Å−1. The sample was aligned in the (hk0) scattering
plane on a x-ray Laue diffractometer, and set in a 14.8 vertical field cryomagnet. Each
(Q, ω) point at 2 K has been measured for∼ 3 minutes. The data were collected at field
values up to 13.5 T, above the observed magnetic transition similar to the one shown
in Fig. 5.12, in 2 T steps.

On the PANDA TAS (MLZ) [182], the crystal has been oriented in the (hhl) scattering
plane in order to probe the direction orthogonal to the magnetic layers. A final wavevec-
tor kf = 1.33 Å−1 has been used, and each point has been measured for 14 minutes.
Both the analyser and mochromator had vertical focusing for higher resolution.

Finally, the same crystal has been set in the multiplexing spectrometer CAMEA (PSI)
[42, 43] during its commissioning phase. To cover the full bandwidth of the excitations
of ∼ 4 meV, I needed to use two different incoming energies given by ki = 1.62 Å−1

(Ei = 5.5 meV) and ki = 1.85 Å−1 (Ei = 7.1 meV). Various final energies were analysed
simultaneously with wavevector from kf = 1.24 Å−1 to kf = 1.55 Å−1 (corresponding
to energies fromEf = 3.2 meV toEf = 5 meV), for an energy range of 1.8 meV. In order
to have a full coverage of the reciprocal space, one must also account for dark angles
between wedges, which requires the acquisition of A3 scans for different A4 values,
which are 4◦ apart. For each (A4, Ei) configuration, four A3 scans were then performed
from 0◦ to 180◦ in 1◦ steps, for a counting time of 2 minutes per point.
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5.3.2 Excitation spectrum in zero field

I first report in Fig. 5.14 the results of the zero field experiment as ω-scans along the
[h, 1, 0] direction, as measured on FLEXX. Similarly to (Ba; Ti), I comment that the
excitation spectrum can also be divided in three energy regions, showing the same
behaviour even though its overall bandwith is smaller than in (Ba; Ti), with no strong
feature being observed above 3.5 meV. The observed anisotropy gap is slightly weaker
too, with ∆ = 0.98(5) meV. The lower branch follows a cosinusoidal dispersion from 1
to 2.3 meV. At these energy values it seems to interfere with the high-energy regime,
which is not as well defined than on (Ba; Ti), probably due to the lower statistics and to
the resolution ellipsoid. Despite having to exclude some high-energy regions in my
fit, I managed to extract a maximum of five distinctive Gaussian peaks perQ-point.
As with its sister compound (Ba; Ti), I also comment on the presence of two-magnon
scattering events, which are noticeable at the zone centres and at energies given by
E2M(Q) = E1(Q) + ∆. This feature appears to be stronger in intensity in (Pb; Ti) than
in (Ba; Ti).

Figure 5.14 – ConstantQω-scans measured on FLEXX, on a singly crystal of (Pb; Ti).
Black dots indicate measured points whilst the red lines represent multi-Gaussian fits
to the data.

An alternative representation of the excitation spectrum, this time along the [h, h, 0]
direction, is given in Fig. 5.15(a). It is the result of one of the first measurements
performed on the multiplexing spectrometer CAMEA during its commissioning phase
in November 2018. Figure 5.15(b) showsQ-scans taken at constant energy. At the time,
numerical constraint did not allow for ω-scans. However, excitations are well-resolved
in the low-energy regime, while peaks tend to merge at higher energy.
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Figure 5.15 – Results of the CAMEA experiment. (a) Excitation spectrum of (Pb; Ti)
along the [h, h, 0] direction, measured during the commissioning of the CAMEA (PSI)
multiplex spectrometer with ns = 8. This figure is the result of 48 h of counting time
with two different incident energies Ei, and integrated over −1 < l < −0.35. (b)
Q-scans for different values of energy transfer ω.

The dynamic structure factor of Fig. 5.15(a) is to be compared with the first direction
shown in Fig. 5.6, with |Q| ∼ 0.98 corresponding to Q = (1 1 0). A few remarks can
be made. First, as I mentioned previously, the energy of the system is downscaled
with respect to (Ba; Ti). However, this rescaling is not uniform. Indeed, while the
low-energy region is rescaled by a factor 2/3 (∆E = 2 meV compared to ∆E = 3 meV),
the high-energy regime is more dispersive in (Pb; Ti) than in its sister compound. This
could be explained by a weaker leading interaction J ′2, and changes in the crossed
inter-plaquettes terms J ′11 and J ′12. However, since the chirality strength has no effect
on a single plaquette, I do not expect J1 and J2 to vary much.

Secondly, while the intensity distribution does not seem to differ a lot aroundQ = (1 1 0)
with two very intense modes between the two energy regimes, the high-energy region
looks more intense than in (Ba; Ti) at Q = (0 0 0). Once again, this implies a change
in the inter-plaquette interactions, as expected from the nuclear structure shown in
Fig. 5.2. Finally, I comment on the anisotropy gap that is weaker than predicted in (Ba;
Ti) from LSW calculations, implying a weaker DM interaction. Another hint for it can
be found in the ω-scans shown in Fig. 5.14, where the modes in the high-energy region
are not as well resolved as in (Ba; Ti). This is a direct consequence of a weaker mode
splitting, as I explained in Sec. 5.2. Unfortunately, a more in-depth LSW analysis of
(Pb; Ti) ended up being rather complicated, due to the low statistics in the high-energy
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region. Since this regime is the most affected by structural changes, I believe that
high-resolution and high-statistics data are necessary in order to push the analysis
further. Additionally, I would recommend collecting data along other directions as
well, since an accurate description of (Ba; Ti) would not have been possible without
ToF data.

As a side note, I take the opportunity to comment on one of the biggest strength of
this spectrometer : the prismatic concept [183]. Indeed, as can be seen in Fig. 5.16(a),
the smaller the sample size, the smaller the divergence of the neutron beam that
propagates through the instrument. This, with the neutron guide width and the
dimension of the detector, defines a set of geometrical constraints denoted as distance
collimation. It is known that a fine mosaicity in the analyser means the selection
of a very narrow energy range at the cost of a weaker flux, while a coarse mosaicity
selects a larger energy range in exchange for a poorer resolution. However, if the
sample is small enough, the resulting resolution is not driven by the mosaicity of the
analyser, but by the distance collimation [Fig. 5.16(b)]. Relaxing the mosaicity of the
analyser then allows for a bigger neutron flux with no concession on the detector
resolution. Additionally, CAMEA is constructed with a series of 1D detectors, which are
position sensitive. Dividing them in ns segments of 1024/ns pixels each is conceptually
equivalent to placing ns sub-detectors along the main one. It is then possible to study
ns times more transfer energies with no change on their resolution since it is governed
by the detector distance collimation. As Fig. 5.15(a) shows with ns = 8, the results
are impressive and this new generation of spectrometers can easily compete with ToF
instruments in the near future.

Figure 5.16 – Resolution effects on CAMEA. (a) Illustration of the dependence of the
beam divergence on geometrical parameters. (b) Comparison of the resolution from
distance collimation (blue, numerically calculated) and a typical PG(002) analyser
mosaicity (25’) (red) for the reference Ef = 5 meV CAMEA analyser. Panels (a) and (b)
are taken from [183].

I conclude the description of the zero-field measurements with a quick note on the
interlayer dispersion, measured on PANDA. I tracked the value of the anisotropic gap
along the [0, 0, l] direction, and reported the resulting dispersion in Fig. 5.17. A fit to the

function ω(ql) =
√
A2 sin2(πql) + ∆2 gave a value for ∆ similar to that obtained from
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FLEXX measurement. Furthermore, for 1D chains, the amplitude of the oscillation
is given by ∆ω ∼ 4J . In this particular case, ∆ω = 0.053 meV which directly gives an
interlayer interaction J⊥ ∼ 0.01 meV, akin to what has been predicted on (Ba; Ti).

Figure 5.17 – Dispersion along the interlayer direction. First excited state (red)
extracted from Gaussian fits to ω-scans at different positions in reciprocal space,
whereby the uncertainties correspond to statistical errors. Fit to the function ω(ql) =√
A2 sin2(πql) + ∆2 (blue), with the extracted parameters shown in the legend.

5.3.3 Excitation spectrum in a vertical magnetic field

I report in Fig. 5.18 the results of ω-scans measured on FLEXX at the zone centre and
zone boundary for different values of the vertical magnetic field. A few comments
can be made. First, this figure confirms that the field dependence of the modes is
very similar to (Ba; Ti). However, the poorer resolution does not allow for a precise
tracking of the excitations. At Q = (1 1 0), the two lowest modes have a slope of α =
−0.09(4) meV/T and 0.08(3) meV/T, which is similar to the reported values on its sister
compound [−0.09(3) and 0.10(3) meV/T] and also consistent with spin-1 excitations.
I observe the field-induced phase transition between 12 T and 13.5 T, which was
predicted from susceptibility measurements at 12.2 T. This transition naturally emerges
when the lowest-lying excitation becomes the most energetically favourable (i.e. when
the field closes the gap). Assuming a purely linear response to the magnetic field
with the slope α defined above, a 12.2 T field transition would correspond to a ∆H =
1.1(5) meV gap. This value gives an indication of the influence of the DM interaction
on the low-field dynamics of the system, where the evolution of the excitations is not
linear.
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Figure 5.18 – Field dependence of the magnetic excitations. (a) Scattering intensity
I(ω) measured atQ = (1 1 0) and T = 2 K, normalised by the monitor counts and for
increasing values of the vertical magnetic field H . (b,c) Colour map representation
produced from an assembly of ω-scans, measured at (b)Q = (1 1 0) and (c)Q = (1.5 1 0).
The colour scale goes from blue (low intensity) to red (high intensity).

Unfortunately, the poor resolution of the modes in the high-energy regime does not
allow for a more in-depth analysis of the excitation spectrum. However, this series
of measurements provides qualitative insight on (Pb; Ti), which can be used in the
future for a direct comparison with the excitation spectrum of (Ba; Ti). Additionally,
the field dependence can be qualitatively compared with theoretical models such as
four-site exact diagonalisation results similar to the ones derived on (Ba; Ti). However,
I recommend to collect new high-resolution data in a field up to 6 T with 0.5 T step in
order to perform a quantitative analysis of this system.
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5.4 K(NbO)Cu4(PO4)4 as a strongly quantum system

The last member of the (A; B) that I briefly studied throughout my thesis is the non-
chiral compound (K; Nb), which can be described by the space group P4/nmm. It is
probably the most interesting member of the family, but technical difficulties encoun-
tered during the growth of single crystals made a consistent analysis of its dynamic
properties extremely complicated. Specific heat measurements of (K; Nb) report the
presence of an ordered phase below TN = 8.6 K. However, unlike for (Ba, Sr, Pb; Ti),
little entropy is released during the transition, as Fig. 5.19(a) shows. An upturn in the
specific heat around 20 K is a signature of short range interactions. The entropy is then
released at higher temperature, where it reaches a stable value of R ln(2), consistent
with S = 1/2 systems. It is thought that long-range antiferromagnetism is strongly sup-
pressed and that the ground state of (K; Nb) is then very close to a non-magnetic singlet
state. Additionally, a Curie-Weiss temperature of θCW = −61.5 K was extracted from
magnetic susceptibility curves (not shown here), which is much larger in magnitude
than those for the other members [144].

Furthermore, unpublished powder diffraction results measured on D20 [Fig. 5.19(b)]
and analysed by P. Babkevich suggested that the spin configuration of (K; Nb) is differ-
ent than the other compounds, with the spins lying approximately in the CuO4 plane.
Additionally, magnetic peaks were indexed by the propagation vector k = (0, 0, 1

2).
However, strong incoherent scattering from unknown origin has been observed, and
the magnetic signal was extremely weak, such that a definitive magnetic structure
could not be proposed from the data. On the other hand, the very weak magnetic
scattering is a sign of a low ordered moment, which suggests much stronger quantum
fluctuations in the system. This is consistent with the presence of a non-magnetic
singlet ground state.

Figure 5.19 – Previous measurements on (K; Nb). (a) Specific heat curves of four sister
compounds of the A(BO)Cu4(PO4)4 family. (b) Magnetic powder neutron diffraction
pattern. Data collected in the paramagnetic phase (12 K) has been subtracted from
data measured in the ordered phase (at 2 K) to extract magnetic scattering events only.
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5.4.1 Powder spectrum of (K; Nb)

I report here the first inelastic neutron measurements on (K; Nb), performed on a 5.3 g
sample of powder on the ToF spectrometer LET (ISIS). Data have been collected at
1.8 K for 18 h, and for 7 h at 9 K, 30 K and 80 K. The multi-chopper setting at LET is
designed to take several non-overlapping measurements from a single neutron pulse
of 100 ms [184]. I thus collected data at incident energies Ei = 1.03, 1.77, 3.70 and
12.14 meV. The aim of this experiment is to have a direct comparison with the powder
spectrum of (Ba; Ti), previously measured on FOCUS (PSI).

The corresponding spectra are reported in Fig. 5.20. I start by reporting the presence
of spurious signal in panels (a–c) emerging at |Q| ∼ 2.75 meV and likely due to Al
scattering from the can. It should be disregarded in the analysis. As expected from
2D systems, panel (b) shows that some magnetic order is retained slightly above the
transition temperature. However, the corresponding excitations vanish at 30 K. The
magnetic excitations from panel (d) are extremely sharp and well defined, probably
due to the tetragonal symmetry of (K; Nb). Similar to (Ba; Ti), it is composed of three
regimes: namely the magnon gap ∆ = 0.96 meV, the low-energy region and the high-
energy region. Remarkably, the excitations bandwidth of (K; Nb) is much greater than
those of its sister compounds (8 meV compared to∼4 meV), as the large value of θCW
suggested. However, the gap value does not change accordingly. Measurements with
Ei = 22 meV indicated the absence of any magnetic excitation above 8 meV.

Figure 5.20 – Powder excitation spectrum of (K; Nb) (a) 2 K measurements with Ei =
12.14 meV. The whole excitation range is captured. (b) Process repeated at 9 K. The
excitations are still present, but are broader. (c) Repeated at 30 K. There is no longer
sign of magnetic ordering. (d) Background subtraction
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Figure 5.21 provides a direct comparison of the excitation spectrum with the one of
(Ba; Ti) measured on FOCUS. As just mentioned, despite the difference in energy range,
the overall structure of both spectra is similar. If I denote the first peak as P1 and the
second as P2, then their relative position is similar after deduction of the gap, as the
first row of Table 5.2 shows. However, the spectral weight distribution differs slightly
in two ways. First, in a similar manner, the ratio of intensities indicates that more
scattering intensity is present in the low-energy regime of (K; Nb) than in (Ba; Ti), as
the second row of Table 5.2 demonstrates. This is also clear from Figs. 5.21(c) and
5.21(d), which clearly show a difference in the scattering intensity in the 0 – P1 region.
Additionally, I report that the "intermediate" region between P1 and P2 is better defined
in (K; Nb) than in (Ba; Ti). Indeed, it is clear from Fig. 5.21(c) that there is as much
scattering intensity in this region than in the low-energy one, which results in a stronger
decoupling between the low- and high-energy regions. A hypothesis is that this is a
sign of a decoupling between two energy scales. The first one is associated to long
rande order, while the second is related to local effects. Finally, I conclude by noting
the presence of three shoulders around the main peak P2 in the high-energy regime
of (K; Nb), which were not observed in (Ba; Ti), perhaps because of the resolution of
the instrument. Nevertheless, these peaks indicate that complex physics takes place at
these energies.

Figure 5.21 – Direct comparison of (K; Nb) with (Ba; Ti). (a–b) Powder spectrum of
both compounds measured on the two different spectrometers. (c–d) Arbitrary cut
through the data, integrated over 1.3 < |Q| < 1.6, and with an energy step dE = 0.01
meV
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Table 5.2 – Description of the two energy regimes, defined Fig. 5.21, in terms of ampli-
tude Ii and centre position Ei of the peaks P1 and P2.

(Ba; Ti) (K; Nb)
E2/E1 1.42 1.49
I2/I1 1.67 1.42

The last comment that I would like to make on the excitation spectrum concerns the
gap at the zone centres. For this purpose, I report in Fig. 5.22 the spectrum collected
with a lower incoming energy Ei = 3.70 meV, which implies a higher resolution. From
panel (b), I extract a precise value for the gap ∆ = 0.96(3) meV. However, I also report
the presence of a second peak atE1 = 1.43 meV that was not observed in the spectrum
of (Ba; Ti), nor measured in a powder sample or single crystal. This peak certainly
corresponds to the minimal value of an excitation. A hypothesis is that the lowest
excited states split in two, and that this mode splitting is reported in the powder data.
Unfortunately, it is hard to reach any conclusion without more consistent data from
single crystal measurements.

Figure 5.22 – Focus on the gap. The measurements were taken with a different incident
energy, Ei = 3.70 meV to reach a higher resolution. (a) Measured excitation spectrum.
(b) ω-scan at the zone centre corresponding toQ = (1 0 0) and equivalent reflections.

To conclude this section, I remark that although beautiful, the present data do now
permit a precise refinement of the interaction parameters for two reasons. First, the
measured powder spectrum as well as the knowledge of (Ba; Ti) that I have built
throughout this thesis implies that the richness of the high-energy region provides
essential features in order to verify the validity of a model. A precise refinement of the
parameters is then only possible on the basis of single crystal measurements. Secondly,
the weak magnetic moment as well as specific heat and susceptibility measurements
indicate the presence of a quantum singlet ground state with short range interactions.
Such a situation cannot be described by the LSW theory, which is intrinsically suited
for the modelling of quasi-classical systems, but the aforementioned plaquette-bond
approach should provide significant insight on the physics in this system.
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5.5 Summary

In this chapter, I reported the outcome of extensive inelastic neutron scattering mea-
surements on three members of the A(BO)Cu4(PO4)4 cupola family. I extracted the
relevant interactions in (Ba; Ti) based on high-resolution measurements at zero-field,
and from fits based on the LSW approximation. Based on their hierarchy, I describe the
magnetic lattice as coupled (J ′2), weakly tetramerised plaquettes (J1). Additional weak
intra- (J2) and inter- (J ′1i) plaquettes interactions were necessary in order to explain
the high-energy dynamics of the system. The large observed gap then emerges from
the symmetrically allowed DM interaction placed on each plaquette bond. Although
an accurate determination of its magnitude could be performed based on zero-field
data only, knowledge of the field-induced evolution of the excitations was necessary in
order to extract a precise estimate of its direction.

The analysis of the INS measurement on (Pb; Ti) was somewhat more complicated
both because of the lower resolution of the data, and the high number of coupling
parameters in the system. However, its excitation spectrum revealed many similarities
with (Ba; Ti), a clear sign that its interaction strengths only slightly differ from those of
its sister compound. The smaller bandwidth implies a weaker leading interaction. The
relative configuration of a plaquette being exactly the same as in (Ba; Ti), suggesting
that J1 and J2 remain unchanged, the spectrum should then be well-described by a
smaller J ′2 coupling strength. On these grounds, I firmly believe that a precise estimate
of the coupling strength in (Pb; Ti) could be extracted from extra high-resolution INS
data.

The case of (K; Nb) is slightly different, and definitely more interesting. Unlike for its
sister compounds, specific heat data show that only little entropy is released during
the low-temperature phase transition, and that the entropy is mainly built around 20 K.
This behaviour is a strong sign of short range interactions, which indicates that the
ground state of (K; Nb) could be of quantum origin. First measurements of the powder
spectrum revealed an overall similar spectrum, which I characterised, although its
bandwidth is twice as large as those of (Ba, Pb; Ti).

All in all, the strongly 2D nature of the A(BO)Cu4(PO4)4 family of compounds, com-
bined with the clearly resolvable effects of all the different interaction parameters,
makes them excellent candidates for investigating quantum phases in tetramerised
and gapped square-lattice models, which are yet still unexplored. For this purpose, we
started building a plaquette-operator theory based on a four-site unit with DM interac-
tions. The analysis is ongoing, but will certainly provide great insight on the influence
of the DM on the J–J ′ phase diagram, which is always gapped but not necessarily
ordered, as well as on the nature of the measured excitations.
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6 Conclusion and outlook

In this thesis, I investigated static and dynamic properties of two different classes
of magnetic compounds using neutron scattering techniques and basic numerical
methods. I present a complete overview of my results as well as some remarks for
future work below.

The dynamics of the spin- 1
2 antiferromagnet SeCuO3 exhibit really rich physics. Inelas-

tic neutron scattering measurements revealed the presence of two distinctive energy
scales in the system. Cu1 dimers are responsible for singlet to triplet transitions, whose
presence could be tracked at temperatures up to∼110 K. Long range order emerges on
a second lattice formed by interacting Cu2 ions, resulting in the presence of spin waves
well-described by the semi-classical linear spin wave approximation. I consequently
described associated magnetic sublattice as chains coupled in three dimensions. How-
ever, despite the effective decoupling of these two sublattices due to the energy scale
difference, clear evidence of an entangled behaviour are observed in the weak disper-
sion of the triplon excitations, as well as in the surprising superexchange path of one
of the excitations necessary in order to accurately describe the low-energy dynamics
of the system. I extracted an upper estimate for the value of this interlattices interac-
tion from perturbative theory on a four sites clusters, which is of the same order of
magnitude as the chain-like coupling. Furthermore, I commented on the presence
of a high-energy scattering intensity continuum above the one-magnon band along
all measured directions. Having ruled out the possibility of two-magnon scattering
events due to the absence of a gap between the spin wave and the continuum, and
especially because of the strong continuum intensity, I attributed its origin to the pres-
ence of spinon excitations. These fractionalised excitations correspond to deconfined
magnons above their binding energy given by the one-magnon band. It is the first
observation of spinons in a purely 3D magnetic system.
In my opinion, future work on this system should follow three distinctive axes. First,
the quantitative description of the energy continua was limited by the experimental
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Chapter 6. Conclusion and outlook

cut-off at high energy. It is then necessary to map out the entire reciprocal space
with time-of-flight measurements in order to provide accurate benchmarks for future
comparison. Secondly, following recent work on 2D systems, this work reveals that
the existence of spinon-like excitations is not restricted to 1D chains. It provides sup-
plementary information on their existence, such as frustration which enhances the
quantum behaviour of the system. Finally, the outcome of this project extends the
concepts of collective quantum spin excitations in a new direction, and mandates
further, and combined, theoretical treatment of systems where the excitations show
such a high degree of entanglement.

I then used spherical neutron polarimetry to refine the magnetic structure of three
members of the A(BO)Cu4(PO4)4 family, denoted as (A; B). The analysis of the single
chiral domain k = (0, 0, 1

2) compound (Sr; Ti) was straightforward and confirmed the
existence of a highly non-collinear two-in–two-out magnetic structure, as previously
proposed based on neutron powder diffraction measurements.
The analysis of (Ba; Ti), which also has k = (0, 0, 1

2), was more complicated because
of the coexistence of two structural chiral domains called levo and dextro, which are
related by spatial inversion. Two similar irreps provided an equally good description of
the SNP data. However, the magnetic structure was extracted from a combined SNP
and ND analysis, where the direction of the moments was determined by the best fit to
the SNP data for each irrep and the neutron diffraction pattern was described in term
of the norm of the moments only. The refined magnetic structure also corresponds
to a two-in–two-out spin arrangement on each cupola. Additionally, the presence of
a strong Dzyaloshinskii-Moriya interaction expected from the observed large gap in
powder inelastic neutron scattering measurements is consistent with this magnetic
structure. Indeed, the small angle between the presumed DM vector and the vector
orthogonal to two neighbouring spins is the smallest for the two-in–two-out structure.
The DM interaction then plays an important role in stabilising this highly non-collinear
order. For both these compounds, a careful analysis of the chiral components of the
polarisation matrix was the key of the analysis. I finally explored the case of (Pb; Ti),
where the propagation vector has integer Miller indices. This implies the presence of
both nuclear and magnetic scattering events at the same positions. Unfortunately, the
complexity of the system, coupled with strong nuclear magnetic interference terms
made a complete analysis not possible.

Motivated by their crystallographic structure that made them good realisations of the
two dimensional spin- 1

2 antiferromagnet model on the square lattice, the last chapter
of my thesis was dedicated to an extensive investigation of the excitations spectrum of
three members of the aforementioned (A; B) family, measured by means of inelastic
neutron scattering. Using the LSW approximation, I modelled (Ba; Ti) as a network
of interacting plaquettes, with weak intraplaquette couplings. This system is conse-
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quently weakly plaquettised and the large measured gap comes essentially from the
DM interaction which I quantified both in magnitude and direction.
I performed a qualitative description of the dynamics of its sister compound (Pb;
Ti), whose excitations spectrum reveals extremely similar features. Due to its smaller
measured bandwidth, the leading interplaquette interaction is probably downscaled,
while the intraplaquette ones should remain unchanged. An accurate determination
of the coupling parameters was impossible to carry due to the poor resolution of the
data coupled to the large number of parameters. My opinion is that the extraction
of these values could be greatly simplified by another five days of experiment on a
high-resolution triple-axis spectrometer, both with and without magnetic field, in
which the excitations would be collected along two inequivalent scattering directions,
as well as their field-induced evolution at the zone centre.
The highly-symmetric compound (K; Nb) shows really interesting physics. Specific
heat measurements indicate that most of the entropy is not released during the low-
temperature phase transition but emerges at slightly higher temperature. I performed
the first measurements of its dynamic properties on a powder sample, which reveals
neat spin waves that form a spectrum similar to those of the other members of the
family. However, its bandwidth is approximately twice larger, which rises the question
of the effects of the symmetry on the magnetic properties. The next step is naturally to
measure the same excitation spectrum on large single crystals. However, its growth
has proven to be challenging.
Finally, efforts towards a deep understanding of the excitations spectrum as well as of
the influence of the vector DM on plaquette phases on the square lattice have been put
with the development of a plaquette-bond approach to describe the magnetic system.
This method will provide significant help in the investigation of systems where a gap is
always present, but its origin could be attributed both to an anisotropy or to quantum
effects.

What makes the beauty of research is when the description of systems, which are
thought to be simple at first glance, reveals the existence of very interesting phenom-
ena, and of new mysteries to be solved. This was the case of SeCuO3, which will
certainly motivate new theoretical and experimental treatments of multi-type exci-
tations and spinons. Sometimes, research faces a dead end, in which case the most
sensible choice is sometimes to give up as in the SNP analysis of (Pb; Ti). At other times,
research takes a sudden turn in another direction, and requires the development of
new methods. Who would have thought that the last weeks of my thesis would be
devoted to building a theoretical approach on cluster systems? This unpredictability,
and capacity to situate phenomena in a global context are, in my humble opinion,
what makes science so exciting. These remaining thoughts, dear reader, put an end to
this thesis.
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J. Dolinšek, and H. Berger, Phys. Rev. B 73, 214408 (2006).

127

http://dx.doi.org/ 10.1103/PhysRevLett.118.177202
http://dx.doi.org/ 10.1038/nphys4117
http://dx.doi.org/ 10.1103/PhysRevB.59.1008
http://dx.doi.org/ 10.1038/nphys2652
http://dx.doi.org/10.1103/PhysRevB.28.3873
http://dx.doi.org/10.1103/PhysRevB.28.3873
http://dx.doi.org/ 10.1038/s41567-018-0126-8
http://dx.doi.org/https://doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1103/PhysRevLett.105.027204
http://dx.doi.org/10.1103/PhysRevLett.123.197201
http://dx.doi.org/10.1038/nature01617
http://dx.doi.org/ 10.1103/PhysRevLett.100.205701
http://dx.doi.org/ 10.1103/PhysRevLett.100.205701
http://dx.doi.org/10.1038/nmat1327
http://dx.doi.org/ 10.1038/nphys3172
http://dx.doi.org/ 10.1038/nphys3172
http://dx.doi.org/ 10.1103/PhysRevB.96.020414
http://dx.doi.org/10.1021/cm000218k
http://dx.doi.org/10.1103/PhysRevB.70.214401
http://dx.doi.org/10.1103/PhysRevB.70.214401
http://dx.doi.org/ 10.1103/PhysRevB.73.214408


Bibliography

[84] O. Zaharko, A. Daoud-Aladine, S. Streule, J. Mesot, P.-J. Brown, and H. Berger,
Phys. Rev. Lett. 93, 217206 (2004).

[85] K. Prsa, H. M. Rønnow, O. Zaharko, N. B. Christensen, J. Jensen, J. Chang,
S. Streule, M. Jiménez-Ruiz, H. Berger, M. Prester, and J. Mesot, Phys. Rev. Lett.
102, 177202 (2009).

[86] R. Becker, M. Johnsson, R. K. Kremer, and P. Lemmens, J. Solid State Chem. 178,
2024 (2005).

[87] O. Zaharko, J. Mesot, L. A. Salguero, R. Valentí, M. Zbiri, M. Johnson, Y. Filinchuk,
B. Klemke, K. Kiefer, M. Mys’kiv, T. Strässle, and H. Mutka, Phys. Rev. B 77, 224408
(2008).

[88] K.-Y. Choi, S. Do, P. Lemmens, J. van Tol, J. Shin, G. S. Jeon, Y. Skourski, J.-S.
Rhyee, and H. Berger, Phys. Rev. B 90, 184402 (2014).

[89] H. Zhang, Z. Zhao, D. Gautreau, M. Raczkowski, A. Saha, V. Garlea, H. Cao,
T. Hong, H. Jeschke, S. Mahanti, T. Birol, F. Assaad, and X. Ke, Phys. Rev. Lett 125,
037204 (2020).

[90] M. E. Zayed, C. Rüegg, T. Strässle, U. Stuhr, B. Roessli, M. Ay, J. Mesot, P. Link,
E. Pomjakushina, M. Stingaciu, K. Conder, and H. M. Rønnow, Phys. Rev. Lett.
113, 067201 (2014).

[91] M. E. Zayed, C. Rüegg, J. Larrea J., A. M. Läuchli, C. Panagopoulos, S. S. Sax-
ena, M. Ellerby, D. F. McMorrow, T. Strässle, S. Klotz, G. Hamel, R. A. Sadykov,
V. Pomjakushin, M. Boehm, M. Jiménez-Ruiz, A. Schneidewind, E. Pomjakushina,
M. Stingaciu, K. Conder, and H. M. Rønnow, Nature Physics 13, 962 (2017).

[92] J. T. Haraldsen, T. Barnes, and J. L. Musfeldt, Phys. Rev. B 71, 064403 (2005).

[93] J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127, 965 (1962).

[94] H. Bethe, Zeitschrift für Physik 71, 205 (1931).

[95] J. des Cloizeaux and J. J. Pearson, Phys. Rev. 128, 2131 (1962).

[96] L. Faddeev and L. Takhtajan, Physics Letters A 85, 375 (1981).

[97] G. Müller, H. Thomas, H. Beck, and J. C. Bonner, Phys. Rev. B 24, 1429 (1981).

[98] M. Karbach, G. Müller, A. H. Bougourzi, A. Fledderjohann, and K.-H. Mütter,
Phys. Rev. B 55, 12510 (1997).

[99] J.-S. Caux, R. Hagemans, and J. M. Maillet, Journal of Statistical Mechanics:
Theory and Experiment 2005, P09003 (2005).

[100] F. D. M. Haldane, Phys. Rev. Lett. 66, 1529 (1991).

128

http://dx.doi.org/10.1103/PhysRevLett.93.217206
http://dx.doi.org/10.1103/PhysRevLett.102.177202
http://dx.doi.org/10.1103/PhysRevLett.102.177202
http://dx.doi.org/https://doi.org/10.1016/j.jssc.2005.04.011
http://dx.doi.org/https://doi.org/10.1016/j.jssc.2005.04.011
http://dx.doi.org/10.1103/PhysRevB.77.224408
http://dx.doi.org/10.1103/PhysRevB.77.224408
http://dx.doi.org/10.1103/PhysRevB.90.184402
http://dx.doi.org/ 10.1103/PhysRevLett.125.037204
http://dx.doi.org/ 10.1103/PhysRevLett.125.037204
http://dx.doi.org/ 10.1103/PhysRevLett.113.067201
http://dx.doi.org/ 10.1103/PhysRevLett.113.067201
http://dx.doi.org/ 10.1038/nphys4190
http://dx.doi.org/10.1103/PhysRevB.71.064403
http://dx.doi.org/10.1103/PhysRev.127.965
http://dx.doi.org/10.1007/BF01341708
http://dx.doi.org/10.1103/PhysRev.128.2131
http://dx.doi.org/https://doi.org/10.1016/0375-9601(81)90335-2
http://dx.doi.org/ 10.1103/PhysRevB.24.1429
http://dx.doi.org/ 10.1103/PhysRevB.55.12510
http://dx.doi.org/10.1088/1742-5468/2005/09/p09003
http://dx.doi.org/10.1088/1742-5468/2005/09/p09003
http://dx.doi.org/10.1103/PhysRevLett.66.1529


Bibliography

[101] D. A. Tennant, T. G. Perring, R. A. Cowley, and S. E. Nagler, Phys. Rev. Lett. 70,
4003 (1993).

[102] H. Effenberger, Z. Krist 175, 61 (1986).
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T. Pardini, R. R. P. Singh, A. Mitrushchenkov, O. V. Yazyev, and H. M. Rønnow,
Phys. Rev. Lett. 117, 237203 (2016).

[169] A. A. Tsirlin and H. Rosner, Phys. Rev. B 79, 214417 (2009).

[170] A. A. Tsirlin, R. Nath, A. M. Abakumov, Y. Furukawa, D. C. Johnston, M. Hemmida,
H.-A. Krug von Nidda, A. Loidl, C. Geibel, and H. Rosner, Phys. Rev. B 84, 014429
(2011).

[171] J.-X. Zhu, R. Yu, H. Wang, L. L. Zhao, M. D. Jones, J. Dai, E. Abrahams, E. Morosan,
M. Fang, and Q. Si, Phys. Rev. Lett. 104, 216405 (2010).

132

http://dx.doi.org/10.1103/PhysRevB.99.024415
http://dx.doi.org/10.1103/PhysRevB.99.024415
http://dx.doi.org/ https://doi.org/10.1016/j.physb.2017.10.101
http://dx.doi.org/10.7566/JPSJ.88.093707
http://dx.doi.org/10.1007/BF01341708
http://dx.doi.org/https://doi.org/10.1016/0375-9601(81)90335-2
http://dx.doi.org/ 10.1103/PhysRevB.24.1429
http://dx.doi.org/10.1103/PhysRevB.79.024409
http://dx.doi.org/10.1103/PhysRevB.85.224424
http://dx.doi.org/10.1103/PhysRevB.85.224424
http://dx.doi.org/10.1103/PhysRevB.89.104415
http://dx.doi.org/ 10.1103/PhysRevLett.113.027201
http://dx.doi.org/ 10.1103/PhysRevLett.113.027201
http://dx.doi.org/10.7566/JPSJ.84.024720
http://dx.doi.org/10.1103/PhysRevLett.121.107202
http://dx.doi.org/10.1103/PhysRevB.97.1744408
http://dx.doi.org/10.1103/PhysRevB.78.132402
http://dx.doi.org/10.1103/PhysRevLett.101.127202
http://dx.doi.org/ 10.1103/PhysRevLett.87.037202
http://dx.doi.org/ 10.1103/PhysRevLett.87.037202
http://dx.doi.org/10.1103/PhysRevLett.117.237203
http://dx.doi.org/10.1103/PhysRevB.79.214417
http://dx.doi.org/10.1103/PhysRevB.84.014429
http://dx.doi.org/10.1103/PhysRevB.84.014429
http://dx.doi.org/10.1103/PhysRevLett.104.216405


Bibliography

[172] S. Miyahara, J.-B. Fouet, S. R. Manmana, R. M. Noack, H. Mayaffre, I. Sheikin,
C. Berthier, and F. Mila, Phys. Rev. B 75, 184402 (2007).

[173] B. Xi, S. Hu, J. Zhao, G. Su, B. Normand, and X. Wang, Phys. Rev. B 84, 134407
(2011).

[174] S. Rufo, J. R. de Sousa, and J. A. Plascak, Physica A 518, 349 (2019).

[175] P. Babkevich, L. Testa, H. M. Rønnow, K. Kimura, and J. Ollivier, (2016),
doi:10.5291/ILL-DATA.4-01-1528.

[176] R. A. Ewings, A. Buts, M. D. Le, J. van Duijn, I. Bustinduy, and T. G. Perring, Nucl.
Instrum. Methods Phys. Res., Sect. A 834, 132 (2016).

[177] L. Testa, H. M. Rønnow, and S. Raymond, (2019), doi:10.5291/ILL-DATA.CRG-
2652.

[178] A. V. Syromyatnikov, Phys. Rev. B 98, 184421 (2018).

[179] A. V. Syromyatnikov, Phys. Rev. B 102, 014409 (2020).

[180] M. Moretti Sala, V. Schnells, S. Boseggia, L. Simonelli, A. Al-Zein, J. G. Vale,
L. Paolasini, E. C. Hunter, R. S. Perry, D. Prabhakaran, A. T. Boothroyd, M. Krisch,
G. Monaco, H. M. Rønnow, D. F. McMorrow, and F. Mila, Phys. Rev. B 92, 024405
(2015).

[181] Habicht, Klaus, Quintero-Castro, Diana Lucía, Toft-Petersen, Rasmus, Kure,
Mathias, Mäde, Lucas, Groitl, Felix, and Le, Manh Duc, EPJ Web of Conferences
83, 03007 (2015).

[182] Heinz Maier-Leibnitz Zentrum, Journal of large-scale research facilities 1 (2015),
http://dx.doi.org/10.17815/jlsrf-1-35.

[183] J. O. Birk, M. Markó, P. G. Freeman, J. Jacobsen, R. L. Hansen, N. B. Christensen,
C. Niedermayer, M. Månsson, H. M. Rønnow, and K. Lefmann, Review of Scien-
tific Instruments 85, 113908 (2014), https://doi.org/10.1063/1.4901160 .

[184] R. Bewley, J. Taylor, and S. Bennington., Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associ-
ated Equipment 637, 128 (2011).

133

http://dx.doi.org/10.1103/PhysRevB.75.184402
http://dx.doi.org/10.1103/PhysRevB.84.134407
http://dx.doi.org/10.1103/PhysRevB.84.134407
http://dx.doi.org/https://doi.org/10.1016/j.physa.2018.12.015
http://dx.doi.org/ doi:10.5291/ILL-DATA.4-01-1528
http://dx.doi.org/ doi:10.5291/ILL-DATA.4-01-1528
http://dx.doi.org/ https://doi.org/10.1016/j.nima.2016.07.036
http://dx.doi.org/ https://doi.org/10.1016/j.nima.2016.07.036
http://dx.doi.org/doi:10.5291/ILL-DATA.CRG-2652
http://dx.doi.org/doi:10.5291/ILL-DATA.CRG-2652
http://dx.doi.org/10.1103/PhysRevB.98.184421
http://dx.doi.org/10.1103/PhysRevB.102.014409
http://dx.doi.org/10.1103/PhysRevB.92.024405
http://dx.doi.org/10.1103/PhysRevB.92.024405
http://dx.doi.org/ 10.1051/epjconf/20158303007
http://dx.doi.org/ 10.1051/epjconf/20158303007
http://dx.doi.org/http://dx.doi.org/10.17815/jlsrf-1-35
http://dx.doi.org/http://dx.doi.org/10.17815/jlsrf-1-35
http://dx.doi.org/ 10.1063/1.4901160
http://dx.doi.org/ 10.1063/1.4901160
http://arxiv.org/abs/https://doi.org/10.1063/1.4901160
http://dx.doi.org/https://doi.org/10.1016/j.nima.2011.01.173
http://dx.doi.org/https://doi.org/10.1016/j.nima.2011.01.173
http://dx.doi.org/https://doi.org/10.1016/j.nima.2011.01.173




Luc Testa
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