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Abstract
Machine intelligence greatly impacts almost all domains of our societies. It is profoundly
changing the field of mechanical engineeringwith new technical possibilities and processes.
The education of future engineers also needs to adapt in terms of techniques and even skills.

Using the design of electro-mechanical actuators as a common thread, this work explores
the many-facets of automated design: modeling, optimization, and education, and looks for
the prerequisites essential to its successful application.

The journey starts by building a modular and integrated model. It focuses on the prediction
of system-level specifications that yield high added-value for decision-makers and shorten
the path from the model to the final product. Combined with multiobjective evolutionary
algorithms (MOEAs) and visualization tools, the model forms an automated design tool
that helps engineers and decision-makers to rapidly get important insights into their design
task. Its potential and benefits are validated through two specific applications. The results,
however, also highlight a gap between the reported performance of optimizers on common
benchmark problems and the actual performance on these problems.

To further develop optimizers, appropriate and realistic benchmark problems are needed. A
subset of the integrated design model is used to formulate a new test suite called MODAct,
composed of 20 constrained multiobjective optimization problems (CMOPs) with variable
levels of complexity. In addition, numerical approaches to evaluate the constraint landscape
of CMOPs are introduced and applied to identify the differences in features of MODAct
against 45 benchmark problems from literature. Further, the convergence performance of
three algorithms on the same problems highlights the key role of constraints and, specifi-
cally, the number of simultaneously violated constraints in MODAct problems.

In a next step, existing constraint handling strategies suitable forMOEAs alongwith a newly
proposed technique formany-constraint problems are evaluated. Their parameters are tuned
for different problems. The performance of the various configurations further highlights the
difference between MODAct and other benchmark problems and show the highly compet-
itive results of the proposed constraint handling technique on realistic design problems.

As the technical limits are removed, the impact of automated design on the work of future
engineers should be considered. On the one hand, the development of professional skills
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by students working on team project in different settings has been evaluated thanks to 205
students from three classes. Explicitly addressing these skills within the project seems key
to support stronger and broader learning, suggesting changes that do not require a full cur-
riculum redesign. On the other hand, nine groups (33 students) have been asked to design
an actuator using a conventional approach followed by an automated design approach. The
actuators suggested by students using the automated tool outperform the designs obtained
through the traditional approach. Six groups even suggest solutions cheaper, three of which
are also smaller, than the product of experienced industry engineers. Students proved thus
capable of leveraging the tool within a short time. The analysis of their mistakes suggests
possible improvements for future tools. As these students leave university, they carry the
hope to see such methods spread in industry.

Keywords: integrated design, design optimization, design automation, computational think-
ing, professional skills, engineering education
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Résumé
L’intelligence artificielle a un impact considérable sur de nombreux domaines dans nos so-
ciétés. L’ingénieriemécanique n’est pas épargnée et voit l’apparition de nouvelles techniques
et de nouveaux procédés. La formation des futurs ingénieurs doit s’adapter à cette nouvelle
réalité, en changeant les techniques, mais aussi les compétences enseignées.

En utilisant la conception d’actionneurs électromécaniques comme fil conducteur, ce tra-
vail explore les nombreuses facettes de la conception automatisée de systèmes : modélisa-
tion, optimisation et éducation. Il recherche en particulier les conditions nécessaires à une
utilisation réussie.

Le travail commence par la construction d’un modèle intégré modulaire. Les prédictions
des spécifications au niveau système sont privilégiées puisqu’elles apportent une forte va-
leur ajoutée pour les décideurs et réduisent la distance entre le modèle et le produit fini.
Un outil de conception automatisé est créé en combinant ce modèle à des algorithmes évo-
lutifs multiobjectifs et à des outils de visualisation des résultats. Cet outil vise à présenter
rapidement aux ingénieurs et aux décideurs des informations pertinentes sur leur travail de
conception. Le potentiel et les avantages de l’outil sont validés par deux exemples concrets.
Toutefois, les résultats mettent également en évidence un écart dans les performances des
algorithmes d’optimisation entre des problèmes de référence et des problèmes de concep-
tion.

Afin d’améliorer ces algorithmes, des problèmes de référence appropriés et réalistes sont né-
cessaires. À cette fin, un sous-ensemble du modèle de conception intégrée est utilisé pour
formuler une nouvelle suite de tests appelée MODAct. Cette dernière est composée de 20
problèmes d’optimisation multiobjectifs sous contraintes avec des niveaux de complexité
variables. En outre, des méthodes numériques pour évaluer la morphologie de l’espace de
recherche sont formulées et utilisées pour identifier les différences entre les caractéristiques
deMODAct par rapport à 45 problèmes de référence tirés de la littérature. De plus, les perfor-
mances de convergence de trois algorithmes sur ces mêmes problèmes mettent en évidence
le rôle clé des contraintes, et en particulier, le nombre de contraintes simultanément violées
dans MODAct.

Dans un second temps, une nouvelle technique de gestion des contraintes adaptée aux al-
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gorithmes évolutifs et pensée pour les problèmes fortement contraints est décrite. Elle est
comparée à de nombreuses stratégies existantes de gestion des contraintes. Pour s’assurer
des meilleures performances, les paramètres de toutes ces méthodes sont ajustés selon une
procédure de méta-optimisation. La comparaison de la convergence des diverses configura-
tionsmet à nouveau en évidence une différence entreMODAct et les problèmes de référence.
De plus, la nouvelle méthode représente le meilleur compromis en matière de performance
sur l’ensemble des problèmes d’optimisation considérés.

À mesure que les limitations techniques sont supprimées, le travail des ingénieurs ainsi
que la formation des futurs ingénieurs se retrouvent impactés par la conception automa-
tisée. D’une part, le développement de compétences dites professionnelles des étudiants
à travers leur travail sur deux types de projets d’équipe a été évalué grâce à 205 étudiants
de trois cours. Leur apprentissage était plus solide et plus complet quand ces compétences
étaient abordées explicitement en cours. Ces résultats suggèrent qu’il est possible de favo-
riser l’apprentissage de compétences transversales sans forcément revoir complètement les
programmes d’études. D’autre part, neuf groupes (33 étudiants) ont été invités à concevoir
un actionneur en utilisant d’abord une approche conventionnelle, puis des méthodes de
conception automatisée. Les actionneurs suggérés par les étudiants issus de l’outil automa-
tisé surpassent les solutions obtenues par l’approche traditionnelle. Six groupes proposent
même des solutions moins coûteuses, dont trois sont également plus petites, que le produit
industriel, conçu par des ingénieurs expérimentés. Les étudiants ont prouvé qu’ils étaient
capables d’utiliser le potentiel de l’outil en un temps relativement court. L’analyse de leurs
erreurs suggère des améliorations possibles pour de futurs outils. En quittant l’université,
ces étudiants emportent avec eux l’espoir de voir de telles méthodes s’installer dans l’indus-
trie.

Mots-clés : conception intégrée, conception optimale, conception automatisée, pensée com-
putationnel, compétences transversales, formation des ingénieurs
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Allons, à mes dépens
je vois que l’on veut rire.
Il en peut coûter cher. Eh bien! soit.
J’y consens.

Raoul (Les Huguenots, G. Meyerbeer) 1
Introduction

Machine intelligence1—also referred to as artificial intelligence (AI)—has
seen a sharp extension of its capabilities and its outreach to the general pub-
lic over the past decade. Not a single day passes without announcements
of the launch of new AI-powered tools: from trivial photo filters in social

media apps to conservation and monitoring of forests—e.g., the TreeSatAI project by TU
Berlin [180]—to diagnostic and prognosis tools for healthcare practitioners —e.g., [74, 88,
177, 196]. Initially thought to be limited to the automation of routine tasks, machine intel-
ligence is extending into creative domains [21, 22, 69, 163, 164]. Its impact could be deep
and affect the kind of skills required in numerous professions including the engineers [57].

The AI revolution has also hit the traditionally conservative field of mechanical engineer-
ing [129]. In combination with AI, advancedmanufacturing—amongwhich 3-D printing—
robotics, and electronics are transforming the way people interact, build or create products.
For example, electric and autonomous cars have disrupted the automotive industry, once
driven by purely mechanical considerations [4]. The electricity market once dominated by
rotating conversion machines sees an uptake of different technologies using photovoltaic
and other electrochemical processes.

The promise of these revolutions is to be able to solve increasingly complex problems and
tackle the challenges posed for example by climate change. Pushing systems to their limits
and improving their efficiency requires considering the systems as a whole and breaking the
barrier of disciplines [159]. Especially since humans struggle to cope with coupled effects
and lack system-level awareness [199], machine intelligence seems capable to open up new
perspectives. However, for these opportunities to be successful, all their ingredients need to
match and engineers should take the risk to seize the moment.

1Machine intelligence is used here as a generic concept describing all kinds of uses of computer programs to
perform intelligent tasks. The definition of intelligence is purposely omitted in this work, since it is debated for
humans [55, 168], let along machines [120].
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Figure 1.1: Comparison of (A) the ‘Systematic Approach’ by Pahl et al. [134] with (B) a
schematic representation of its application in practice.

1.1 Background

1.1.1 Design and optimal design

Design is a complex decision-making process whose aim is the selection of a set of suitable
entities to form a system capable of performing a function [137]. While some see it as amys-
terious and creative process only, design has and is being extensively studied [10], and sev-
eral authors suggested descriptions of the process and recommendations [44, 62, 134, 181].
In the German engineering school [134] for example, this process undergoes several steps:
1. task clarification, 2. conceptual, 3. embodiment, and 4. detail design, see Figure 1.1(A).
The first step aims at understanding and refining the design task and the associated spec-
ifications. The conceptual design step is a divergent thinking step where creative working
principles that could fulfill the task are sought. The embodiment and detailed design phases
are successive convergent steps, where concepts are put into physical form, refined and de-
tailed up to having all production documents. These steps should, in theory, be performed
in order, with iterations only within each step [92].

Such description seems to suggest an overly simplistic linear process, which is far from re-
alistic. Decisions taken throughout the stages have sometimes complex implications, re-
quiring repeated feedback loops to progress. The role of the stakeholder or client is also
neglected, implying that the requirements are to be settled before the design process starts.
Yet, in practice, discussions with the client move along the process and can in turn trigger
loops as specifications are clarified and refined, see Figure 1.1(B). Others go further and lay
the analysis at the center of the process since it informs every step [75].
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Since design is a decision-making process, it is legitimate to look into how, ideally informed,
decisions are taken. Traditionally, after generating—synthesizing—several physical config-
urations, their performances with respect to the specifications are evaluated. This evalu-
ation can be done through prototypes [90] or based on engineering science and its mod-
els [137]. Once knowledge is gained about the configurations, the “best” option is selected.
While the concept might seem intuitive, there a few subtleties behind what is “best”, and its
formal definition forms the field of optimal design.

Papalambros andWilde [137] define design optimization “as the selection of the ‘best’ design
within the availablemeans”. When designs can be described by a vector of 𝑛 design variables
𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑛], design optimization can be formally transposed into a mathematical
optimization problem, arbitrarily defining the “best” as the one having the smallest objective
value:

min
𝒙∈𝒮

𝑓(𝒙)

subject to 𝑔𝑗(𝒙) ≤ 0, 𝑗 = 1, 2, … , 𝑝
ℎ𝑘(𝒙) = 0, 𝑘 = 1, 2, … , 𝑞

(1.1)

where 𝑓 is the selection criterion or objective, 𝒮 the design space, and the “available means”
are described by 𝑝 inequality and 𝑞 equality constraints. Feasible or valid designs satisfy all
𝑝 + 𝑞 constraints, and the set of all feasible solutions forms the feasible space ℱ ⊆ 𝒮.

Given that one is capable of formulating numerical objectives and constraints, finding the
optimal design comes down to solving the optimization problem Eq. (1.1). While designs
could also be evaluated experimentally with prototypes, this definition suggests nowadays
the use of computer models. The latter are very convenient since they allow the prediction
of many designs without having to build the real systems. Models are an abstraction and
are generally derived based on assumptions and care must be given to find a good balance
between modelling level, model computation speed, and accuracy.

One might be tempted to go for the most detailed models possible. The caveat is, however,
that one should consider the final goals of design optimization. In this context, the numer-
ical constraints and objective serve to order the design and select the “best”. So, it is the
correct delimitation of the feasible space and the order of the solutions that is paramount.
Detailed models are often complex, computationally expensive, and therefore, currently,
limited in their scope. This often leads to a segregated design approach: components of a
system are considered and optimized individually. Multiple iterations are then required to
converge on the whole product [197]. Further, this approach does not guarantee that an op-
timal systemwill be obtainedwhen sub-components are coupled—i.e., they depend on each
other, which is often the case formechanical systems. Indeed, Schiffmann [159] showed that
the seasonal efficiency of a heat pump system could be increased by 12 points when, instead
of a segregated approach, an integrated design approach was followed. Integrated models
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Figure 1.2: Introductory example to multiobjective optimization showing the trade-off be-
tween price and portability for some generic smartphone, tablet, laptop, and desktop com-
puter.

consider a system as a whole, and since design task specifications often express constraints
at the system-level, fewer assumptions are needed to ensure that a valid system is found.

1.1.2 Multiobjective optimization

As an example, consider the selection of a smart device using the principle of optimal design.
The available options are a smartphone, a tablet, a laptop and a desktop computer. The
price of the device is often an important criterion. Assuming the prices of these devices
are CHF1200, CHF700, CHF2200 and CHF1500, respectively, it would mean that, in this
example, the tablet should be selected. It is, however, obvious that such devices cannot be
compared solely by price. Considering another criterion such as portability, the best device
would probably be the smartphone. If one wanted to optimize both objectives, on could for
example combine the objectives using weights:

𝑓(𝒙) = 𝑤1 ⋅ cost(𝒙) + 𝑤2 ⋅ portability(𝒙) (1.2)

This approach is simple, but selecting the weights is difficult. If both objectives are equally
important, one could set 𝑤1 = 𝑤2 = 0.5, but the price and portability have different scales
and units. If portability is a score between 0 and 1, and both objectives are conflicting with
each other, these weights would actually favor the price.

Instead of deciding the trade-off through weights a priori, another approach is to consider
both objectives simultaneously through a multiobjective optimization (MOO) approach.
Figure 1.2 shows how in the example, the devices are spread in a price-portability map,
the objective space in this case. From it, it seems clear that in such a case the smartphone
and the tablet are both optimal solutions representing different trade-offs, while the laptop
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1.1 Background

and the desktop computer are so-called dominated solutions.

More formally, in a MOO setting, the optimization problem Eq. (1.1) is rewritten as:

min
𝒙∈𝒮

𝒇(𝒙) = [𝑓1(𝒙), 𝑓2(𝒙), … , 𝑓𝑚(𝒙)]
𝑇

subject to 𝑔𝑗(𝒙) ≤ 0, 𝑗 = 1, 2, … , 𝑝
ℎ𝑘(𝒙) = 0, 𝑘 = 1, 2, … , 𝑞

(1.3)

where now 𝒇 ∶ 𝒮 → R𝑚 is a vector of 𝑚 > 1 objective functions. MOO compares solu-
tions using the concept of Pareto optimum [45, 138], which leads to the notion of Pareto
dominance [26].

Definition 1.1 (Pareto dominance). 𝒙1 is said to weakly Pareto dominate 𝒙2, written 𝒙1 ⪯
𝒙2, if and only if ∀𝑖 ∈ {1, … ,𝑚}, 𝑓𝑖(𝒙1) ≤ 𝑓𝑖(𝒙2). 𝒙1 is said to Pareto dominate 𝒙2, written
𝒙1 ≺ 𝒙2, if in addition, there exists one 𝑖 ∈ {1, … ,𝑚} for which 𝑓𝑖(𝒙1) < 𝑓𝑖(𝒙2).

The optimum of a multiobjective optimization problem becomes thus a set of solutions: the
Pareto optimal set 𝒫∗, which is the set of all non-dominated solutions, i.e.,

𝒫∗ ∶= {𝒙∗ ∈ 𝒮 ∣ ¬∃𝒙 ∈ 𝒮 ∶ 𝒙 ≺ 𝒙∗} (1.4)

The image of 𝒫∗ in the objective space is called the Pareto front 𝒫ℱ∗.

Engineers often have to make compromises between conflicting interests in order to find
a solution most suitable with respect to the specifications. MOO is ideal to handle such
situations, since it gives insights into the trade-offs within a problem. As such, it promotes
informed decision-making.

In general, however, solving the global optimization problem (1.3) is difficult. Engineering
problems can be particularly challenging, since the objectives and constraints can be compu-
tationally expensive to calculate, offer no guarantee about continuity or convexity, and their
behavior cannot be inferred a priori from equations—at least for simulation-based models.
For such problems, diverse stochastic meta-heuristics have been successfully applied [26].
Contrary tomost deterministic optimizer derived fromgradient-descentmethods, stochastic
meta-heuristics are biased random search algorithms and have therefore minimal require-
ments about the nature of the optimization problem. Their downside is their convergence,
which is not always repeatable. While some algorithms have a theoretical convergence guar-
antee at 𝑡 → ∞, this is not the case for all algorithms and depends on the chosen heuris-
tics [7].

Among all the meta-heuristics for MOO, the field of evolutionary computation has been ex-
tremely active in recent years proposing numerous multiobjective evolutionary algorithms
(MOEAs). Some examples include evolutionary strategies like MO-CMA-ES [185], genetic
algorithms like NSGA-II [37], differential evolution like MOEA/D-DE [103], ant colony op-
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timization like MO-ACO [109], or particle swarm optimization like MOPSO [23]. Algo-
rithm 1.1 shows the major steps of a generic elitist MOEA. Most of the algorithms follow
indeed a similar skeleton, but differ in the specific sub-functions. Despite the richness of al-
gorithms, NSGA-II byDeb et al. [37] remains very popular among engineers, mostly because
its source code is available, and it has few parameters.

Algorithm 1.1 Generic elitist evolutionary algorithm
1: 𝑃0 ← InitializePopulation
2: 𝑡 ← 0
3: while Stopping criterion not met do
4: 𝑀𝑡 ← SelectParents(𝑃𝑡)
5: 𝑄𝑡 ← Variate(𝑀𝑡) ▷ Crossover & Mutations
6: EvaluteFitness(𝑄𝑡)
7: 𝑅𝑡 ← 𝑃𝑡 ∪ 𝑄𝑡
8: 𝑃𝑡+1 ← Select(𝑅𝑡)
9: 𝑡 ← 𝑡 + 1
return 𝑃𝑡

Further, most available MOEAs have been developed for unconstrained optimization prob-
lems [122] and need additional constraint handling strategies (CHSs) to cope with con-
straints [24, 38, 58], a must for mechanical design problems. Recent results have however
reported that their performance on real problems was unreliable, although the same algo-
rithms and CHSs have good performance on typical benchmark problems of the field [59,
142]. Indeed, the latter problems have been shown to be too simple and unrealistic in gen-
eral [173].

It is worthwhile mentioning that there are also deterministic multiobjective optimization
algorithms. MO-DIRECT is a parameterless Lipschitzian optimizer [188, 195], but it is not
adapted to constrained optimization. NOMAD is a general nonlinear optimizer based on
adaptive mesh search, but it is limited to biobjective problems [6, 101]. They are thus not
suitable for the applications considered in this work.

1.1.3 Automated design

Design automation is a broad field encompassing different concepts and dates back sev-
eral decades—the first Design Automation Conference (DAC) from the American Society
of Mechanical Engineering (ASME) took place in 1974 [126]. In this work, design automa-
tion refers to the automation of part of the design process by means of computational de-
sign synthesis (CDS), and it is seen as a superset of design optimization. CDS approaches
support engineers by generating and evaluating numerous alternatives early in the design
stages [15], see Figure 1.3. Their goal is to speed up and formalize steps of the process with
the intent to increase the knowledge about a design task by easing feedback loops, and to
allow clients to better participate throughout the process. The desired side effect is to free
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Figure 1.3: Proposed updated design process to include automated design steps.

engineers from tedious and repetitive tasks to allow them to focus on creative tasks [19].

With the advances in computers, it is nowadays even possible to consider design automation
past routine tasks and to have it tackle the creative process of generating concepts [69].
Recently, researchers have been able to obtain creative behavior using generative adversarial
networks (GANs), allowingmachines to explore beyond known designs [21, 22]. Combined
with rapid manufacturing, such tools could help drastically reduce the time needed from
the definition of a design problem to the first touchable prototypes.

While research is making steady progress, the simplest form of automated design are barely
used in industry as reported by several authors in 2016 [190], 2018 [153], and 2020 [154].
The technology transfer to industry is hampered by (i) a lack of awareness of existing meth-
ods and challenges to identify potential tasks [153], (ii) a lack of published methods and
applicable guidelines [190], (iii) limited knowledge about the currently applied design pro-
cess [154], and (iv) general mistrust in automated processes [190]. The benefits, however,
are important, especially for companies with established technologies, mostly doing design
variants based on updated specifications or requirements from new customers. Tailored
tools fitted to their application could help boost initial design phases and cut down the time-
to-market, a powerful economic argument. To promote such practices, Rigger et al. [154]
proposed a methodology to conduct workshops and training sessions to guide engineering
teams to identify opportunities and implement automated design approaches.

1.1.4 Engineering education

Both the lack of transfer to industry and the fear of engineers to be replaced by automation
is an important motivation to look at how the education of future engineers can be adapted.
In addition to increasing awareness about existing design automation methods, the skill set
of future engineers should be reviewed. Indeed, Frey and Osborne [57] estimated the like-
lihood for jobs to get computerized and linked it to the required skills. They found that the
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Chapter 1. Introduction

more the jobs required skills such as “social perceptiveness”, “negotiation” or “originality”
the less susceptible to computerization they were.

Many engineering accreditation bodies have already recognized the need to include “pro-
fessional skills” in engineering education programs [162, 191]. Although the many names
referring to “professional skills”—like “21st Century” or “soft” skills—suggest there is no
unique set of skills under these labels, there is a consensus on the need for engineering
education to address domains beyond strictly engineering and science, including elements
of ethics, social responsibility and organizational aspects [96, 191]. Such skills also appear
prominently as needs for engineers in alumni and employer surveys [16, 29, 86].

As a consequence, many institutions have done significant efforts either to amend their cur-
riculum and introduce specialized courses [123] or to redesign their curricula by integrating
interdisciplinary team-based cornerstone and capstone projects [65, 77, 179], or by follow-
ing new approaches like the problem-based learning (PBL) or conceive-design-implement-
operate (CDIO) approaches [30, 46]. In all cases, the focus is set on active learning mainly
through projects. Multiple studies suggest that, despite these measures, the professional
skill sets of graduated engineers do still not match the expectations of employers [29, 86, 96,
147].

In addition to professional skills for interpersonal interactions, engineers of all fields also
need to prepare for increased interaction with machines and for this, they need “compu-
tational thinking” skills, a concept first formalized in 2006 by Wing [192]. It is defined as
the thought process that allows framing a problem such that it can be carried out by a com-
puter [66]. It puts the focus on the formulation of the problem as an important step [66] and
is closely related to problem-solving. Indeed, proper framing of design requirements has
been shown as an important factor on the outcome of the design process [18], even more
so, if machines perform part of the task. Similarly to problem-solving skills that are best
taught within disciplinary practice [191], “computational thinking” should become an im-
portant part of engineering education and the best approach to support its learning should
be investigated.

1.2 Electro-mechanical actuators

In order to address the various topics and issues related to automated design, the design
of electro-mechanical geared actuators will be the particular system considered, forming
the backbone of this work. Electro-mechanical actuators are systems used to control the
position of other components—e.g., valves, printer heads or gates. They are built around
a similar set of components—a motor, a gearbox, and a housing. They can nonetheless be
very different depending on their applications and requirements. Some examples are shown
in Figure 1.4.

The specific design task is twofold: (i) find the components—type of motor and gearbox
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1.2 Electro-mechanical actuators

Figure 1.4: Examples of automotive electro-mechanical actuators—courtesy of Johnson
Electric (JE).

technology—sometimes called configuration problem, and (ii) find their parameters that
satisfy a given performance at the output shaft for different specified operating points, while
ensuring mechanical integrity and packaging limitations. Actuators offer thus several re-
search opportunities:

1. The problem is generic enough to be applicable to many real applications.

2. They are relatively simple, easing their analysis. Yet, it is a coupled multi-disciplinary
system with the challenges associated to it.

3. Specifications are mostly set at the system level.

Most studies related to such systems have so far only focused on particular elements: the
gearbox [40, 67, 97, 106, 169], the electric motor [150] or the packaging of components [14,
64, 170]. There are, to the best of the author’s knowledge, no published work integrating
all three aspects. While it is sometimes needed to develop new motor architectures, or to
investigate specific gears, most actuator manufacturers rarely start from scratch, but rather
look for combinations of existingmotors and adapt prior gearboxes tomatch new or updated
specifications. In this context, typical specifications only define the output performance and
a packaging form factor, which are both system-level constraints. Since motor, gearbox and
housing are all interdependent, the use of an integrated approach is important to suggest
qualitative and ready-to-use solutions.
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1.3 Problem statement

In summary, the following shortcomings have been identified:

1. Actuator design is a complex task, for which automated and integrated approaches
are needed;

2. State-of-the-art MOO algorithms struggle with real-world problems;

3. Benchmark problems used to evaluate the performance of MOEAs are not realistic
and representative of constrained design problems;

4. Automated design approaches are rarely used in industry;

5. Too little is known about the impact of projects on the learning of professional skills;

6. Students are underprepared for the upcoming challenges of AI-based design.

1.4 Goals and objectives

The goal of this thesis is to investigate three facets of design automation: modelling, opti-
mization, and education, and for each to discuss the challenges and develop new tools and
methodologies to address them. These topics are investigated using the design of geared
electro-mechanical actuators as a common thread. Whenever possible, generic and extend-
able approaches are preferred. The following objectives are set to attain this goal:

1. Development of an integrated numerical model to predict the performance of many
geared electro-mechanical actuator configurations suitable for different applications;

2. Implementation of an automated design tool based on multiobjective optimization
using the integrated model;

3. Validation of the usefulness of the tool for real applications;

4. Numerical assessment of realisticmultiobjective problems and comparison to existing
benchmark;

5. Formulation of a novel and more efficient constraint handling strategy for multiob-
jective optimization;

6. Assessment of means to promote stronger professional skill learning of students;

7. Assessment of the behavior of students when faced with a novel automated design
tool.
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1.5 Outline of the thesis

The main body of this thesis is divided in four chapters.

Chapter 2—Automated Design of Electro-mechanical Actuators introduces the de-
veloped integrated model for the design of geared electro-mechanical actuators. The gen-
eral architecture to build an integrated model from modular components is presented. The
chapter shows how computer graphics techniques can be applied to consider system-level
constraints such as packaging or ease of assembly. The obtained model is then coupled to a
multiobjective optimizer and to an interactive result visualization tool to form an automated
design framework. The potential of the latter is investigated through several case studies.

Chapter 3—Realistic Benchmark Problems details how a subset of the previously pre-
sented model is used to derive MODAct: a novel constrained multiobjective optimization
test suite focused on constraints. Further, the chapter introduces existing and new tools to
quantify the constrained search space even for not explicitly formulated problems such as
many “real-world” problems. The tools are used to compare MODAct to constrained multi-
objective optimization problems (CMOPs) from literature. A convergence study on the same
problems usingNSGA-II, NSGA-III, andC-TAEAhighlights further differences to published
CMOPs. The chapter emphasizes the key role constraints and in particular the number of
constraints simultaneously violated play in MODAct.

Chapter 4—An Improved Constraint Handling Strategy: cEpsilon investigates the ef-
fectiveness of several published CHSs. Based on observations from the number of simul-
taneously violated constraints of MODAct problems, a novel per-constraint 𝜖-constrained
method, called cEpsilon, is introduced and evaluated. An automatic algorithm configura-
tion approach is applied to generate several configuration variants of the considered CHSs.
In total, 12 configurations are tested using 64 problems. The analysis suggests the new cEp-
silon CHS to be the most competitive technique for different test suites.

Chapter 5—Educating Future Engineers presents two studies conductedwith students to
(i) investigate their learning of professional skills through two different kinds of projects and
(ii) understand the impact on design of the use of machine intelligence. Using a question-
naire in a pre-post design, the changes in the students’ self-efficacy beliefs regarding profes-
sional skills are evaluated. The results obtained from Bachelor students having worked on
an in-course project are compared to the ones fromMaster students havingworked on a cap-
stone project. The comparison allows identifying differences between the two formats. The
effect of machine intelligence is studied by asking students to perform a design task once
using a traditional approach and a second time using an automated design tool. A special
online modelling platform is developed and used by students to access the component and
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the integrated models, as well as an optimizer. An analysis of the suggested actuators and
the requests in the online platform highlights important differences in the products and in
the design process.
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Tamino (Die Zauberflöte, W.A. Mozart) 2
Automated Design of

Electro-mechanical Actuators

Electro-mechanical actuators are small systems used in various applica-
tions where position control or rotational motion is required. They have the
advantage to be relatively simple systems. Yet, they are multi-disciplinary cou-
pled systems that require iterative work to be designed, even for experienced

engineers. Indeed, actuators can be composed of different technologies and components,
that need to be selected, optimized, and positioned to form a functional system, which also
has to satisfy several constraints, see Figure 2.1. Design automation offers the promise to
design an electric machine and a gearbox, and to package all the components in a single
step.

DC 
motor
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Figure 2.1: Multiple ways to make one actuator, actuator image courtesy of JE.

Various pieces of research have tackled the components of this problem: electric motor
optimization [150], gearbox design [40, 67, 97, 106, 169] or packaging [14, 64, 170]. The
latter, in particular, is a difficult problem both for computers and human engineers [14].
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Modern computer graphics technologies, such as ray tracing, have enabled efficientmethods
to be developed [64]. Stochastic meta-heuristics are the optimization method of choice in
all of these studies.

This chapter exposes how all the components are assembled to build an integrated model of
an actuator that performs component-specific simulations and a system-level analysis. More
than component modelling accuracy, the focus is on modelling system-level constraints,
since those are the requirements defined by the customers. Through the use of 3-D meshes
to represent the components within a whole system, packaging or ease of automated assem-
bly can be considered in themodel. Following themodelling details, several case studies are
presented to highlight the potential and advantages.

Part of the content of this chapter has been published in:

C. Picard and J. Schiffmann. “Automated Design Tool for Automotive Control Actu-
ators”. In: IDETC-CIE2020. ASME 2020 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference. Volume 11B:
46th Design Automation Conference (DAC), Aug. 17, 2020. doi: 10.1115/DETC2020-
22390

C. Picard and J. Schiffmann. “RealisticConstrainedMultiobjectiveOptimizationBench-
mark Problems FromDesign”. In: IEEETransactions on Evolutionary Computation 25.2
(Apr. 2021), pp. 234–246. doi: 10.1109/TEVC.2020.3020046

Author contributions: CP and JS designed research; CP performed research, and wrote
the articles himself.

2.1 Building an integrated model

For the purpose of this work, an actuator is considered as a sequence of 𝑘 + 1 components
inside a housing. Amotor first transforms electrical power intomechanical power that then
gets conditioned by successive stages of gearbox technologies and shafts. This power chain
also forms the backbone of the layout, since the position of the components exchanging
power is constrained. With this in mind, it is possible to build an integrated model that
remains modular: component-specific discipline is hidden behind a generic component in-
terface upon which system-level models are added. This approach is similar to the object-
oriented paradigm in computer science.

To be interoperable, each component 𝑖 needs:

1. a cost model 𝑐𝑖;

2. a physical model for predicting the output speed 𝜔𝑖 and torque 𝑇𝑖 depending on input
conditions, and component-specific constraints 𝒈𝑖;
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2.2 Component models
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Figure 2.2: Schematic representation of the way individual components are connected to
form an integrated model.

3. a 3-D tessellated description or 3-D triangular mesh, including spatial configuration
rules giving the coordinates (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) for the next component.

Figure 2.2 illustrates the architecture that allows the integration of these components into
a system. Starting from a driving condition for the first component (𝜔0, 𝑇0), and an initial
reference coordinate, the system is iteratively built by passing the output condition and posi-
tion to the next components. The matching component-specific constraints are aggregated,
keeping the worst case. All 3-D meshes are merged to form a 3-D representation of the
whole system, which is used to predict the volume—bounding box or convex hull—of the
whole assembly and upon which additional queries can be performed. The following sec-
tions describe the component model details and how they are combined to form a system.

This modular approach offers great flexibility. New components can be added whenever
needed and as long as the interface is unaffected, the inside model of each component can
be changed. So, improved accuracy or additional physics can be added incrementally. As
such, it forms an actuator modelling framework.

The framework itself is coded in Python [146], an open-source programming language that
offers a strong set of open-source libraries and that allows an easy interoperability with li-
braries from other languages. Indeed, many parts of the algorithms presented and used in
this work take advantage of fast C or C++ routines.

2.2 Component models

For all components, fast models with acceptable accuracy have been preferred over detailed
and expensive models, since the advantage of speed seems particularly important for tools
used in the early design phases. The following component models have been implemented:
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(i) stepper motors, (ii) DC motors, (iii) spur gears, (iv) crossed helical gears, and (v) plane-
tary gears. The stepper motor and spur gear models have been written by the author and are
described in the following subsections, while the DCmotor, crossed helical gear and plane-
tary gear models have been coded by Spaeth [165] for his Master thesis under the author’s
supervision.

2.2.1 Stepper motor

Physical model

Stepper motors are permanent magnet motors that are most often controlled in an open-
loop manner by switching the stator phases to trigger steps. Since the control is open-loop,
the absolute position of the rotor is in theory unknown. However, in normal operating con-
ditions, it is assumed that no steps are lost, i.e., every electrical step results in a mechanical
step. In that case, the rotational speed of the rotor 𝜔𝑚 is related to the electrical stepping
pulsation 𝜔𝑒𝑙 through the number of rotor teeth 𝑝1: 𝜔𝑒𝑙 = 𝑝𝜔𝑚.

In addition to a step-by-step control, stepper motors can also be used in a continuous oper-
ation mode, where the steps are performed continuously. This is called high-speed opera-
tion [1] and resembles the operation of brushless DC (BLDC) motors, except the steps are
executed with no feedback.

In general, the simulation of the dynamic behavior of stepper motors is done by solving the
coupled ordinary differential equations (ODEs) of the electrical circuit and the mechanical
motion [157]. The prediction of the speed-torque characteristic of steppers is obtained by
repeatedly solving these ODEs for various speeds and loads until step losses are detected.
Even though an optimized C++ implementation by the project’s industry partner exists,
the procedure to get the full speed-torque characteristics for a stepper takes several seconds.
This is impractical for integrated modelling and optimization purposes.

Instead, assuming high-speed and steady operations, an algebraic torque equation can be
derived based on published recommendations by Acarnley [1, Eq. (5.14)].

𝑇𝑝𝑜 =
𝑘𝑚𝑉

(𝑅2 + 𝜔2𝑒𝑙𝐿2)
1/2 −

𝜔𝑚𝑘2𝑚𝑅
(𝑅2 + 𝜔2𝑒𝑙𝐿2)

(2.1)

with 𝑉 = 4𝑉𝑠/𝜋 for a two-phase-on scheme with the supply voltage 𝑉𝑠, 𝑘𝑚 the motor con-
stant, 𝑅 the total circuit resistance, and 𝐿 the winding inductance.

The original equation (2.1) misses important physical considerations present in the ODEs
of Johnson Electric (JE), such as magnetic flux saturation in the stator, maximum current

1𝑝 can thus be considered as a “transmission ratio” since it links to electric input “speed” to the mechanical
output speed.
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2.2 Component models

limitation, friction, and temperature-dependent flux and resistance. It is, however, possible
to include these concepts in this steady-state equation.

Induction machines are often simulated with the hypothesis of linear magnetics, i.e., the
magnetic flux is proportional to the current applied in the windings. For small steppers or
stepper statorsmade out of less premium steel, however, the flux path can become saturated,
reducing the useful flux and thus the torque at the rotor side. In the ODEs, saturation is
accounted for by penalizing the motor constant for high currents.

𝑘𝑚 = 𝑘𝑚0𝜇(𝑁𝑤𝐼) (2.2)

with 𝜇(𝑥) = e
−( 𝑥

𝑁𝐼𝑠𝑎𝑡
)
2

(2.3)

where 𝑘𝑚0 is the unsaturated motor constant, 𝑁𝑤 is the number of turns in the windings, 𝐼
is the instantaneous current through the windings, and 𝑁𝐼𝑠𝑎𝑡 is the saturation constant.

To be included, some steady-state equivalent current needs to be derived. Eq. (2.1) can be
transformed by factorizing 𝑘𝑚 into Eq. (2.4) and since the units of 𝑘𝑚 are NmA−1, the
content of the parenthesis can thus be interpreted as an equivalent current.

𝑇𝑝𝑜 = 𝑘𝑚

⎛
⎜
⎜
⎜
⎝

𝑉

(𝑅2 + 𝜔2𝑒𝑙𝐿2)
1/2

⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝐼𝑠

−
𝜔𝑚𝑘𝑚𝑅

(𝑅2 + 𝜔2𝑒𝑙𝐿2)⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝐼𝑒𝑚

⎞
⎟
⎟
⎟
⎠

(2.4)

The obtained 𝐼𝑒𝑞 = 𝐼𝑠 − 𝐼𝑒𝑚 is an average current, while Eq. (2.2) uses an instantaneous
current. To bridge the two, a constant correction is assumed 𝐼 = 𝑘𝑠 ⋅ 𝐼𝑒𝑞. The effect of
saturation can then be calculated with 𝐼𝑒𝑞 in Eq. (2.2). Since 𝐼𝑒𝑞 depends on 𝑘𝑚, loops are
needed to converge on both values. However, for the sake of speed, this step is omitted, and
instead, has been factored into 𝑘𝑠, whose value is obtained through tuning (𝑘𝑠 = 1.15).

In the physical system, current is limited by the drive controlling the stepper. The limitation
is implemented by reducing the apparent voltage seen by the windings by means of pulse-
width modulation (PWM). Following a similar approach, the supply voltage is reduced to
respect a maximum current 𝐼max when set.

𝑉 ′
𝑠 = min {

𝑉𝑠
𝑘𝑠
; (𝐼max + 𝐼𝑒𝑚)(𝑅2 + 𝜔2𝑒𝑙𝐿2)

1/2𝜋
4 } (2.5)

Finally, the viscous 𝜔𝑚𝑓𝑑𝑦𝑛 and Coulomb 𝑇𝑐 friction torques are added to the model, and
the effects of a difference of ambient temperature are built into the motor parameters 𝑅 and
𝑘𝑚0. Given a set of motor parameters obtained for example through finite-element method
(FEM) simulations, and winding parameters 𝑁𝑤 and 𝑑𝑤, the diameter of the coil wire, the
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Chapter 2. Automated Design of Electro-mechanical Actuators

available torque 𝑇𝑚 is calculated using Eq. (2.6) to (2.12).

𝑓𝑒𝑙 = 1 + 𝛼𝑒𝑙(𝑇𝑠 − 𝑇𝑛𝑜𝑚) (2.6)
𝑓𝑚𝑎𝑔 = 1 − 𝛼𝑚𝑎𝑔(𝑇𝑠 − 𝑇𝑛𝑜𝑚) (2.7)

𝑅 = 𝑅𝑛𝑜𝑚
𝑁𝑤𝑑2𝑤,𝑛𝑜𝑚
𝑁𝑤,𝑛𝑜𝑚𝑑2𝑤

⋅ 𝑓𝑒𝑙 (2.8)

𝑘𝑚0 = 𝑝𝑁𝑤𝜙0 ⋅ 𝑓𝑚𝑎𝑔 (2.9)
𝐿 = 𝐿𝑛𝑜𝑚𝑁𝑤2 (2.10)

𝐼𝑒𝑞 =
4𝑉 ′

𝑠 /𝜋

(𝑅2 + 𝜔2𝑒𝑙𝐿2)
1/2 −

𝜔𝑚𝑘𝑚0𝑅
(𝑅2 + 𝜔2𝑒𝑙𝐿2)

(2.11)

𝑇𝑚 = max {𝑘𝑚0𝜇 (𝑁𝑤𝐼𝑒𝑞𝑘𝑠) 𝐼𝑒𝑞 − 𝜔𝑚𝑓𝑑𝑦𝑛 − 𝑇𝑐 ; 0} (2.12)

where 𝛼𝑒𝑙 and 𝛼𝑚𝑎𝑔 arematerial properties, 𝑇𝑠 is the actual system temperature, 𝑇𝑛𝑜𝑚, 𝑅𝑛𝑜𝑚,
𝑑𝑤,𝑛𝑜𝑚, 𝑁𝑤,𝑛𝑜𝑚 and 𝐿𝑛𝑜𝑚 are the nominal motor parameters, and 𝜙0 the linkage flux.

In this formulation, the possible values for 𝑁𝑤 and 𝑑𝑤 are motor dependent. In order to
allow for a dimensionless control over the windings, two scaling parameters are introduced:
the fill factor𝐹𝐹 and the resistance scaling factor𝑅𝑠𝑐𝑎𝑙𝑒, so that, thewindings of a basemotor
can be adapted and its performance simulated.

𝐹𝐹≔
𝑁𝑤𝑑2𝑤

𝑁𝑤,𝑛𝑜𝑚𝑑2𝑤,𝑛𝑜𝑚

𝑅𝑠𝑐𝑎𝑙𝑒≔
𝑁𝑤𝑑2𝑤,𝑛𝑜𝑚
𝑁𝑤,𝑛𝑜𝑚𝑑2𝑤

⎫
⎪⎪
⎬
⎪⎪
⎭

⇔

⎧
⎪

⎨
⎪
⎩

𝑁𝑤= 𝑁𝑤,𝑛𝑜𝑚√𝐹𝐹

𝑑𝑤= 4

√
𝐹𝐹
𝑅𝑠𝑐𝑎𝑙𝑒

𝑑𝑤,𝑛𝑜𝑚

(2.13)

With this, the simplified algebraic model to predict the speed-torque characteristic of step-
per motors is complete. Figure 2.3 illustrates the good agreement between this new steady-
state model and the ODEs. It also shows the important effect flux saturation and current
limitation have on the torque at low speed, and that their additions can capture the same
effects. Even if the original Eq. (2.1) is applicable only to high-speed operations, the addi-
tional model features allow the model to be used for predicting low-speed torques. Further
comparisons between the two models on different steppers are shown in Appendix A.

With a steady-statemodel between 10 000 and 100 000 times faster than the resolution of the
ODEs, the loss in accuracy is largely compensated. In the end, it remains the users’ choice
to decide if the accuracy is sufficient for their needs. In particular, there are several tunable
parameters that can be further adjusted, based on experimental data for example.
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Figure 2.3: Comparison between the speed-torque characteristics obtained through the sim-
ulation of the ODEs and through the steady-state model, highlighting the effect of different
features: (A) stepper with friction, (B) adding saturation and (C) adding a current limita-
tion.
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Figure 2.4: Representation of the available mesh geometries for the motors and their pa-
rameters.

Cost model

The cost of a motor 𝑐𝑚 is calculated based on the volume and materials for the rotor, the
stator and the windings, assuming a density 𝜌 and a specific cost per kilo 𝑐 for eachmaterial.
Since the rotor and stator geometry are fixed for a given stepper motor, the cost can be split
into a fixed contribution and a variable contribution depending on the fill factor. The cost
is thus linear with respect to 𝐹𝐹.

𝑐𝑚 = 𝑐fixed + 𝑐variable (2.14)
𝑐fixed = 𝑉rotor𝜌rotor𝑐rotor + 𝑉stator𝜌stator𝑐stator (2.15)

𝑐variable = 𝐹𝐹 𝑉Cu,nom𝜌Cu𝑐Cu (2.16)

3-D model

Three different stepper body geometries are available, see Figure 2.4: a cross, a 3-branch star
and a cylinder. The dimensions are obtained from the corresponding motors.
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Chapter 2. Automated Design of Electro-mechanical Actuators

2.2.2 Spur gears

Spur gears are extremely common in gearboxes and theirmodelling is well-documented and
governed by numerous norms [79–82, 183, 184]. The implemented model follows the ISO
norms [79–82] with a few exceptions that are highlighted below.

Each gear is defined by a number of teeth 𝑍, a profile shift coefficient 𝑥, a module 𝑚, a
thickness 𝑏, a tooth profile ℎ∗𝑓𝑝, 𝜌

∗
𝑓𝑝, and ℎ

∗
𝑎𝑝, a pressure angle 𝛼, and a material, see ISO

1122-1:1998 [82] for a definition of the terms and ISO 21771:2007 [81] for the geometrical
relations. A gear stage is composed of two gears: the pinion (subscript 1) and the wheel
(subscript 2). Their numbers of teeth fix the input-output speed relation 𝑖 = 𝑍2/𝑍1—also
called transmission ratio. To be able to engage properly, two gears need to share the same
module and to respect four geometrical constraints:

1. avoid tooth interference along the contact path;

2. have a sufficient contact ratio for smooth operation (𝜖𝛾 ≥ 1.1);

3. limit large specific sliding at the engagement point (𝜁𝑓1 ≥ −5), and

4. at the disengagement point (𝜁𝑓2 ≥ −5).

Beyond these geometrical considerations, the chosen materials and their properties need
to be included. Since, in the targeted applications, the gears are manufactured by polymer
injection, there are some differences to standard metal gears [111]:

1. any module value can be selected;

2. the efficiency of the transmission is set to a fixed 95% since it is hard to predict and
depends on the applied lubricant, the type and density of fiber reinforcement, the
humidity levels and wear [125];

3. the tooth root𝜎𝐹 and toothflank𝜎𝐻 stresses are calculated following the ISO6336:2006
method B [79] and VDI norms [183, 184], with 𝐾𝐻𝛽 = 𝐾𝐻𝛼 = 𝐾𝐹𝛽 = 𝐾𝐹𝛼 = 1 and
𝐾𝐴 = 1.25;

4. the calculation of themechanical safety factors and fatigue damage fraction is adapted
to include temperature-dependent fatigue based on Wöhler curves, also called S-N
curves [160], provided by the polymer manufacturers.

To maintain their mechanical integrity over their entire lifetime, the safety factors need to
be ≥ 1 and the damage fraction ≤ 1.
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2.3 System-level models

Figure 2.5: Planar view of the special geometry used to model a gear pair: with respect to
the real gear geometry (left) or with the key variables (right).

Cost model

The cost of a gear pair is based on the approximate cylindrical volume of the pinion and the
wheel, assuming a density 𝜌 and a specific cost per kilo 𝑐 for each material.

𝑐𝑔𝑝 =
𝜋
4 (𝑑

2
1𝑏1𝜌mat1𝑐mat1 + 𝑑22𝑏2𝜌mat2𝑐mat2) (2.17)

3-D model

The 3-D representation of gears requires further considerations. On the one hand, gener-
ating the exact toothed geometry is certainly overly complex. On the other hand, gears are
often represented as simple cylinders of the primitive diameter 𝑑 = 𝑚𝑍 of the gear, which
underestimates their volume, an important point for the system-level modelling. It is also
possible to use cylinders with the addendum circle diameter 𝑑𝑎, but then, the meshes of a
gear pair are overlapping in the contact zone. In order to combine both advantages, a “cut”
cylinder geometry is created, as shown in Figure 2.5. It is a cylinder with a diameter of 𝑑𝑎,
except at the point of contact between the pinion and the wheel, where it is truncated to 𝑑.
The cut angle 𝜃 is set to 𝜃 = cos−1(𝑑𝑓/𝑑𝑎), where 𝑑𝑓 is the root circle diameter.

2.3 System-level models

Now that the components are defined, they can be assembled to form a system. Although
the code is more generic, the explanations are, for the sake of clarity, restricted to systems
composed of a motor followed by 𝑘 gears. Some quantities can be calculated directly, like
the geometrical gear constraints, or by aggregating the individual contributions, such as the
cost of the components 𝑐comp, Eq. (2.18), the gearbox transmission ratio 𝑖𝑔𝑏, Eq. (2.19), or the
total transmission ration 𝑖𝑡𝑜𝑡, Eq. (2.20).
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𝑐comp =
𝑘

∑
𝑖=0

𝑐𝑖 (2.18)

𝑖𝑔𝑏 =
𝑘

∏
𝑖=1

𝑍𝑖,2
𝑍𝑖,1

(2.19)

𝑖𝑡𝑜𝑡 = 𝑝 ⋅
𝑘

∏
𝑖=1

𝑍𝑖,2
𝑍𝑖,1

(2.20)

Operating condition dependent constraints—the stresses in the gears—and system-level
quantities can only be calculated once the state of the system is known. This means:

1. calculating the operating conditions of all components;

2. positioning the components with respect to each other.

The following subsections first introduce the procedure applied to the operating conditions.
Second, the packaging operation is described, followed by several algorithms performing
queries on the obtained 3-D model of the system.

2.3.1 Operating conditions

An operating condition is defined as a set of supply voltage, a maximum current, a system
temperature, a rotational angle or speed, a torque, the number of cycles to consider for this
point and its mode. The system considers two types of operating mode:

1. In running mode, the output rotates continuously at a given speed.

2. In holding mode, the output rotates by a small angle.

The operating points for all components are resolved sequentially by propagating the output
condition of a component to the next. The procedure requires the driving conditions—i.e.,
the input conditions to the first component—to be given. They can be imposed by the users,
or calculated to match desired output speed or torque. The most common and straight-
forward approach is the speed-matched approach, where the driving speed is set from the
desired output speed using the total transmission ratio: 𝜔𝑖𝑛 = 𝜔𝑜ᵆ𝑡 ⋅ 𝑖𝑡𝑜𝑡. The same approach
can be applied to the output angle in the holding mode.

The holding mode is similar to the running mode, except for the handling of the number
of cycles. In running mode, the number of cycles performed by each component is directly
related to its rotational speed. Whereas in a holding situation, since the components are
stationary, all components are loaded and unloaded once per cycle. In practice however, for
actuators with large gearboxes, a very small rotation of the output can still represent several
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rotations at themotor, and thus also several loading cycles. For this reason, in holdingmode,
an angle information is passed from component to component, and the number of cycles
gets adapted in consequence.

Once the operating conditions are resolved for all components, it is possible to calculate the
effective stresses in the gears. When a set of operating points is defined, the procedure is
repeated for each point. The resulting safety factors are aggregated, and only the smallest
for each component is kept. For the fatigue, the damage fractions from each condition are
summed per component to form the cumulative damage fraction. The constraints can be
further reduced, by keeping only the worst value over components of the same kind. For
example, the minimum safety factor for the tooth root stress is given by:

𝑆𝐹,min = min {𝑆𝐹,1, … , 𝑆𝐹,𝑘} (2.21)

It is also possible to aggregate all safety factors using the harmonic mean:

𝑆harm = (
∑𝑘

𝑖=1 𝑆
−1
𝐹,𝑖 + 𝑆−1𝐻,𝑖

2𝑘 )

−1

(2.22)

It is important to note that the stresses, and hence safety factors, are calculated based on
the effective loads acting on the gears, that might not match with the desired load. The
difference between the desired and effective torque at the output is called the torque excess,
defined for the 𝑗th operating point as:

Δ𝑇𝑗 = 𝑇𝑗 − 𝑇desired,𝑗 (2.23)

The advantage of this approach is that it allows evaluating the resulting trade-offs of more
powerful actuators. When this is not desired, the code offers a “limit torque” feature, which,
if the system has some torque excess, loops once more to recalculate the loads for each com-
ponent to match the desired output torques.

At this stage, other quantities related to the operation of the actuator can be calculated,
such as for example, the electrical to mechanical energy conversion efficiency 𝜂𝑗 of the 𝑗th

operating point:

𝜂𝑗 =
𝜔𝑗𝑇𝑗
𝑉𝑠𝐼𝑒𝑞,𝑗

(2.24)

2.3.2 Packaging

Packaging consists in defining the coordinates of all the components. In general, each com-
ponent being a rigid body, its position in a given reference frame is given by six variables:
three coordinates (𝑥, 𝑦, 𝑧) and three angles (𝜙, 𝜃, 𝜓). In an actuator however, there are fewer
degrees of freedom and successive components are positioned relative to the previous one
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Figure 2.6: Schematic representation of an actuator with a crossed helical gear stage and
two spur gear stages, showing the relative positioning procedure of the components, and
the resulting bounding box (side and top views).

using only two variables: (i) a translation 𝑑𝑖 along the rotational axis (the shaft), and (ii) a
rotation 𝛾𝑖 around that same axis, see Figure 2.6. Within components, additional transla-
tions or rotations are possible, e.g., in crossed helical gears, but their definition is controlled
within the components.

The absolute positions are calculated sequentially by starting from a reference frame arbi-
trarily set at 𝑂 = (0, 0, 0). There are two procedures depending on whether the position of
the motor shaft or the output shaft should be known a priori:

1. The forwardmode calculates the coordinates from themotor to the output—as shown
in Figure 2.6;

2. The backwardmode starts from the output to the motor.

The coordinates from a component used as a starting point for the next translation and ro-
tation is called a hook. Each component defines a set of hooks for both procedures, and
for positive and negative values of 𝑑𝑖. Figure 2.7 shows the positions of the hooks for the
different cases for spur and crossed helical gears. Figure 2.8 compares the effects of the
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Figure 2.7: Location of the positive and negative hooks for spur gears and crossed helical
gears in forward (left) and backward (right) mode

two procedures on the resulting layout. The translation is implemented in the model by
“stretching” the gears, as in Figure 2.6, or by adding a shaft, as in Figure 2.8. In both cases,
the additional element is assumed infinitely rigid.

Once the coordinates of all components are known, the 3-D mesh of each component can
be generated and assembled to form a mesh of the whole system. The meshes are man-
aged through the Trimesh [34] library. With this systemmesh, it is then possible to estimate
various volumes, such as the bounding box—the smallest axis-aligned box—or the convex
hull—the smallest convex polyhedron. The latter is also used to predict the housing shape.
Similarly to other components, the cost of the housing is volume-dependent and is calcu-
lated based on its surface 𝐴ℎ and on the chosen material, assuming a fixed thickness ℎ.
Adding it to the cost of the components yields the estimated total cost of the system.

𝑐housing = ℎ𝐴ℎ𝜌ℎ𝑐ℎ (2.25)
𝑐tot = 𝑐comp + 𝑐housing (2.26)
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Figure 2.8: Comparison of the resulting actuator layout for the forward (left) and backward
(right) modes, for an actuator composed of a stepper motor and two spur gear pairs.

Figure 2.9: Illustration of an actuator with and without internal collision. Colliding faces
detected by FCL are shown in red.

Internal collisions

Most importantly, the 3-D meshes enable valuable system-level constraints to be evaluated.
One of these is the internal collision detection. Indeed, the layout procedure does not en-
force that the resulting actuators are physically possible, i.e., that no components are collid-
ing with each other, see Figure 2.9. This collision detection is performed with the C++
flexible collision library (FCL). FCL organizes the space in bounding volume hierarchies
and applies efficient sweep-and-prune algorithms to reduce the number of required inter-
component collision checks [135]. The only requirement is that the meshes use triangular
faces.

The goal is not just to have an indicator function, but to quantify an “amount of collision”.
The proposed approach groups the components by shaft; since by construction, elements
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on a shaft cannot collide and form a single part. The procedure detailed in Algorithm 2.1
calculates a score with the number of colliding faces detected by FCL, normalized by the
total number of faces of the meshes. The algorithm typically requires about 100 µs. The
obtained score is equal to 0 for valid layouts and increases proportionally with the number
of collisions. In order to ensure sufficient vertical spacing between the components, the
component meshes are generated with a changeable 0.2mm excess thickness.

Algorithm 2.1 Assess collisions between groups of components
Require:

𝐴 = {𝑀𝑖}
𝑛
𝑖=1 a set of 𝑛 group meshes

1: procedure InternalCollision(𝐴, with_inclusion)
2: 𝑛𝑓 ←∑𝑛

𝑖=1|Faces(𝑀𝑖)|
3: 𝐹𝑐 ← broad-phase collision query(𝐴) ▷ Face collision query with FCL
4: 𝛿 ← |𝐹𝑐|/𝑛𝑓
5: return 𝛿

Inclusion within a given external hull

In many applications, actuators are required to have a given form factor, such as the two
examples shown in Figure 2.10. These specifications are typically necessary when actuators
are further integrated into larger existing systems, such as heating, ventilation, and air con-
ditioning (HVAC) units. Modelling this constraint is thus key, since it can be very restrictive
in terms of acceptable design. Its restrictive nature makes it particularly important that the
numerical value of the constraint reflects how much of an actuator is outside the hull, and
thus guides the optimizer towards valid solutions.

Figure 2.10: Examples of possible hulls for actuators where the black dot illustrates the
position of the origin of the reference frame and corresponds to the required position of the
output shaft. The volumes are obtained by extruding these shapes.

In that context, collision detection algorithms are insufficient to have an inclusion score
that increases the more an actuator protrudes from the hull. Such a score can be obtained
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by identifying the vertices of the actuator that are outside the hull and by calculating their
distance to the nearest point on the surface of the hull. The latter is done using a nearest-
neighbor search method, such as the one implemented in Trimesh. It uses a k-d tree—a
data structure used to partition space—to speed-up the search [118].

A naive approach would be to calculate for all vertices the signed distance to the nearest
point on the hull, where the sign indicates whether the vertex is inside (positive) or outside
(negative) the surface. So, the point the furthest outside the hull is themost negative one and
its distance can be used as a score. In the naive approach, the computation time is constant
for a given problem, and depends on the number of vertices in the actuator mesh and in the
hull mesh.

Algorithm 2.2 Selective method to assess if an actuator is within a hull
Require:

𝐴 = {𝑀𝑖}
𝑛
𝑖=1 a set of 𝑛 group meshes

𝐻 the mesh of the hull

1: procedure InsideOtherMesh(𝐴, 𝐻)
2: 𝐹𝑐 ← broad-phase collision query(𝐴, 𝐻) ▷ Face collision query with FCL
3: 𝐺← GroupMesh(𝐹𝑐) ▷ Get set of groups in collision

4: 𝛿 ← 0
5: 𝑉← {} ▷ Set of candidate vertices for distance calculation
6: for all 𝑔 ∈ 𝐺 do
7: if Inside(𝑔, 𝐻) then ▷ Give a fixed penalty if 𝑔 just touches 𝐻
8: 𝛿 ← 𝛿 + 10−3
9: else
10: 𝑉← 𝑉∪Vertices(𝑔)
11: 𝑂← {𝑔 ∈ 𝐴\𝐺|¬Inside(Center(𝑔), 𝐻)}
12: 𝑉← 𝑉 ∪ Vertices(𝑂)

13: 𝛿 ← 𝛿 +
|min SignedDistance(𝑉,𝐻)|
BoudingBoxLength(𝐴)

14: return 𝛿

Applying the expensive nearest-neighbor search to all vertices of the actuator mesh is the
bottleneck of the procedure. In particular, as actuators are closer to fulfilling the require-
ment, lots of time is lost calculating neighbors of points inside the hull that are of no inter-
est for the inclusion score. So, if faster methods to filter the vertices that are outside exist,
the best-case complexity of the naive method could be improved. Collision detection and
ray tracing are two such methods. Ray tracing is a rendering technique commonly used in
computer graphics to simulate the path of light to accurately draw textures and shadows.
Ray-tracing algorithms have been extensively optimized for speed. They cast virtual rays
through 3-D scenes and record the faces that have been hit. This principle can be applied
to evaluate if a point is inside a mesh by casting a ray of light from it in a random direction.
The point is inside if the ray hits the hull an odd number of times. The Embree [187] library
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handles the ray-tracing procedure itself.

The selective inclusion test procedure, detailed inAlgorithm 2.2, applies a first filter through
collision detection. The groups in collision with the hull are either inside but in contact
with the casing or at least partially outside. In the first case, a fixed penalty is added to the
inclusion score, while in the second, the vertices of the group are added to a list of vertices
to test. The second filter evaluates if the remaining groups are outside or inside by applying
the ray-tracing method described above to the center point of these groups. The vertices of
the groups that are outside are also added to the list of vertices, which is then passed to the
signed distance calculation. Finally, the distance of the point the furthest away is added to
the inclusion score after normalizing the distance by the largest extent of the bounding box.

Since the procedure returns a violation distance, it is continuous and decreasing as the com-
ponents are moved inside. In order to illustrate this, Figure 2.11 shows the evolution of the
constraint value as an actuator fully inside a given hull is rotated away. It also highlights
that the procedure can handle any hull shape.
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Figure 2.11: Evolution of the constraint value for the inclusion in the hull as the actuator is
rotated around the first gear pair by an angle 𝜃 = 𝜋/2.

In terms of speed, in many cases and in particular as more actuators respecting the con-
straints are found, it reduces the number of vertices included in the expensive distance
calculation from several hundreds to tens. Indeed, running the same virtual experiment
as before but focusing on execution time, see Figure 2.12, a clear speed-up can be noticed
when comparing the naive and selective methods, especially for low violation cases. Yet,
the computation of this constraint remains, comparatively to the previous one, much more
expensive.

Many mesh formats, such as STL, can be loaded, allowing objects generated through stan-
dard computer-aided design (CAD) software to be used. Yet, to minimize the computational
effort and the optimization complexity, the hull objects should be as simple and as permis-
sive as possible. When the inclusion score is calculated, the “backward” layout mode is the
most suitable and the origin of the hull should represent the desired output position.

29



Chapter 2. Automated Design of Electro-mechanical Actuators

0.0 /6 /3 /2
0

10

20

30

40

50

60

Ex
ec

ut
io

n 
tim

e (
m

s)

Selective
Naive

Figure 2.12: Comparison of the naive versus selective method in terms of execution speed
for the example shown in Figure 2.11—calculations done on a 2.7 GHzQuad-Core Intel Core
i7 laptop, number of vertices: 96 for the hull and 252 for the actuator.

2.3.3 Assembly feasibility assessment

In many applications, actuators are mass-produced, and automated assembly lines are in-
creasingly used to achieve high through-put and reliability. Typically, the assembly process
involves inserting the components in the bottom part of the housing, that is then closed as
a final step. Such process is well suited to automation, but automated assembly lines are
expensive. Their cost roughly depends on the number and the complexity of each assembly
step. For this reason, actuators that can be assembled in few simple steps are preferred.

Inspired by Grignon and Fadel [64], ray tracing is applied, in this context, to determine if
shaft groups can be inserted following a single translation, and the minimum number of
steps to perform the assembly. An assembly dependency graph is built by identifying the
components that shadow each other along the assembly axis—usually aligned with the out-
put axis. For each group, rays are cast from its vertices in the assembly direction, and colli-
sions with faces of other groups add edges in the graph. The minimum number of assembly
step corresponds to the height of the obtained graph, while deadlocks are detected by the
presence of loops. The details of the procedure are summarized in Algorithm 2.3.

The advantage of being able to predict the ease of assembly are highlighted through several
illustrative examples. Figure 2.13 compares two different actuator layouts for four-stage
actuators: on the one side, a step-like layout, on the other, an interlaced layout. Both can be
assembledwith an automated assembly line, but the first needs at least five steps, while some
shaft groups could be inserted simultaneously in the second, thus reducing the number of
steps to two. Figure 2.14 shows that the same algorithm can be applied with components
with different shaft directions. Finally, Figure 2.15 shows an example of an actuator with
an assembly deadlock. Indeed, the motor and shaft group ① are both a requirement and a
dependency of each other.
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Algorithm 2.3 Automated assembly evaluation procedure

Require: 𝐴 = {𝑀𝑖}
𝑛
𝑖=1 a set of 𝑛 group meshes and 𝒅 the preferred assembly direction

1: procedure AssemblyScore(𝐴, 𝒅)
2: 𝒅 ← FindAssemblyDirection(𝐴, 𝒅) ▷ Direction of the output shaft or 𝒅
3: 𝑉←⋃𝑛

𝑖=1 Vertices(𝑀𝑖)
4: 𝐸 ← {} ▷ Set of dependency edges
5: 𝐹𝑐+, 𝑅+ ← RayIntersectAll(𝐴, 𝑉, 𝒅)

▷ All faces of 𝐴 intersected by rays from 𝑉 cast in direction 𝒅
6: for all 𝑓, 𝑟 ∈ 𝐹𝑐+ × 𝑅+ do
7: 𝑡𝑎𝑟𝑔𝑒𝑡 ←MeshIndex(f)
8: 𝑜𝑟𝑖𝑔𝑖𝑛 ←MeshIndex(r) ▷ Get mesh associated with 𝑓 or 𝑟
9: if 𝑡𝑎𝑟𝑔𝑒𝑡 ≠ 𝑜𝑟𝑖𝑔𝑖𝑛 then
10: 𝐸 ← 𝐸 ∪ {(𝑡𝑎𝑟𝑔𝑒𝑡, 𝑜𝑟𝑖𝑔𝑖𝑛)}
11: 𝐹𝑐−, 𝑅− ← RayIntersectAll(𝐴, 𝑉,−𝒅)
12: for all 𝑓, 𝑟 ∈ 𝐹𝑐− × 𝑅− do
13: 𝑡𝑎𝑟𝑔𝑒𝑡 ←MeshIndex(r)
14: 𝑜𝑟𝑖𝑔𝑖𝑛 ←MeshIndex(f)
15: if 𝑡𝑎𝑟𝑔𝑒𝑡 ≠ 𝑜𝑟𝑖𝑔𝑖𝑛 then
16: 𝐸 ← 𝐸 ∪ {(𝑡𝑎𝑟𝑔𝑒𝑡, 𝑜𝑟𝑖𝑔𝑖𝑛)}
17: if HasLoops(𝐸) then
18: return 𝑛 + 1
19: else
20: return Height(𝐸)
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Figure 2.13: Two four-stage actuators examples—(A) a step-like actuator layout and (B)
the interlaced actuator layout—and their respective assembly dependency graph, where the
shaft groups are numbered successively. Each arrow indicates a dependency.
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Figure 2.14: (A) Example of an actuator with a crossed helical gear stage and two spur gear
stages showing the rays of the assembly evaluation procedure. The group in red corresponds
to ②, which can only be inserted after the two gear shafts. (B) The resulting assembly de-
pendency graph, where each arrow indicates a dependency. The motor is not connected,
indicating it has no requirement and is not a dependency for any other component.
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Figure 2.15: Example of a four-stage actuator with an assembly deadlock.
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Figure 2.16: Illustrations of the method used to detect if shafts can be supported by the
housing for two actuators. Collisions between the rays and gears not belonging to the cor-
responding shaft group are shown in red.

2.3.4 Shafts supported by the housing

Another way to reduce cost and simplify the actuators is to support the shafts directly with
the housing. Indeed, it is easy to create a simple bearing directly in the polymer-injected
housing. Further, with proper lubrication, the shaft-housing contact—a polymer metal
interface—offers relatively good performance with respect to its complexity. Supporting
shafts through the housing implies, however, that the shafts are extended to both sides of
the housing, i.e., shafts need to “pass-through”. Such restrictions can have important impli-
cations on the design of the gearbox: independently of the required transmission ratio or
load, larger gears might be needed to increase their center distance.

Since the idea is to see if shafts interfere with components, ray tracing is well-suited for this
task. Themethod consists in casting a set of rays forming a tube around the location of each
shaft and to record collisions with components that are not part of the shaft group. The
diameter of the tube can be set on a per-shaft basis, usually 2 to 4mm. The principle of the
method is illustrated in Figure 2.16.

The procedure, detailed in Algorithm 2.4, first collects the coordinates of the center of all
shafts and projects them along the direction of the shafts onto the bounding box of the sys-
tem. A circle with the desired diameter is formed and the rays are cast in the opposite di-
rection. The faces colliding with the rays belonging to another shaft group are counted. The
constraint value is obtained by normalizing this face count by the number of rays and the
number of groups. In some cases, multiple parts rotating around the same shaft are accept-
able, and a “shaft overlap” feature can be enabled. This feature removes the collided faces
of groups, whose center coordinates are within one shaft radius of each other. An example
of the effect of the “shaft overlap” feature is shown in Figure 2.17.
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Algorithm 2.4 Procedure to evaluate if the shafts can be supported by the housing
Require:

𝐴 = {𝑀𝑖}
𝑛
𝑖=1 a set of 𝑛 group meshes

𝑅 = {𝑟1, … , 𝑟𝑛} the radius for the shaft of each group
𝑓shaft overlap ∈ {0, 1} the flag for the “shaft overlap feature”

1: procedure PassThroughShafts(𝐴, 𝑅, 𝑓shaft overlap)
2: 𝐵box ← BoundingBox(𝐴) ▷ Get the vertices of the bounding box
3: 𝐶←⋃𝑛

𝑖=1 Center(𝑀𝑖)
4: 𝐷←⋃𝑛

𝑖=1Direction(𝑀𝑖)
5: 𝑉←⋃𝑛

𝑖=1 ShaftVertices(𝑪𝑖, 𝑫𝑖, 𝑟𝑖, 𝐵, )
▷ Project 𝑪𝑖 along 𝑫𝑖 onto 𝐵 and generate a circle of radius 𝑟𝑖

6: 𝐹, 𝑅 ← RayIntersectAll(𝐴, 𝑉, 𝐷)
▷ All faces of 𝐴 intersected by rays cast from 𝑉 in directions 𝐷

7: 𝛿 ← 0
8: 𝑟min ←min𝑅
9: for all 𝑓, 𝑟 ∈ 𝐹 × 𝑅 do
10: 𝑡 ←MeshIndex(f)
11: 𝑜 ←MeshIndex(r) ▷ Get mesh associated with 𝑓 or 𝑟
12: if 𝑡 ≠ 𝑜 then
13: 𝜆 ← 1

14: if
𝑓shaft overlap and ⟨𝑫𝑜, 𝑫𝑡⟩ ∈ {−1, 1}

and ¬IsMotor(𝑜) and ¬IsMotor(𝑡)
then

15: 𝒅𝐶 ←𝑪𝑡 − 𝑪𝑜

16: 𝒅⟂ ← 𝒅𝐶 −
⟨𝒅𝐶, 𝑫𝑜⟩
‖𝒅𝐶‖

𝑫𝑜

17: 𝜆 ←max {0,min {
‖𝒅⟂‖2 − 𝑟min
𝑟𝑜 + 𝑟𝑡 − 𝑟min

, 1}}

18: 𝛿 ← 𝛿 + 𝜆

19: return 𝛿
𝑛 ⋅ |𝑉|
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Figure 2.17: Evolution of the pass-through constraint value with and without the “shaft
overlap” feature for a two-gear-pair system—shown in top and side views—where the top
gear pair is rotated from an initial position, where all axes are aligned, to an angle 𝜃 = 𝜋/3.

2.4 Automated Design Tool

2.4.1 Overview

The presented actuator design framework is versatile and powerful. It is well-suited to serve
as the backbone to build an automated design tool capable of designing various actuator
configurations considering numerous constraints and performance metrics. By linking the
numerical model with (i) a multiobjective optimizer to search for alternatives and to find
trade-offs, and (ii) a reporting interface to support decision-making, one is able to build an
automated design tool.

The built tool works following the chart shown in Figure 2.18. Engineers and stakehold-
ers analyze and define the specifications that are supplied to the automated design tool. Its
process starts by converting the specifications into a numerical optimization problem, that
is then solved by a multiobjective optimizer. Reports are regularly stored for engineers to
monitor the progress. With these ingredients, the obtained tool is capable of getting well-
converged solutions within 30 minutes to 1 hour—on a regular laptop with an Intel Core
i7 4 cores at 2.7 GHz. This enables engineers to perform fast iterations including the stake-
holders, as envisioned in Figure 1.3.

The conversion step, the multiobjective optimizer, and the reporting interface are briefly
described in the following subsections.

2.4.2 Defining the problem

Before being solved by an optimizer, the design problem needs to be formulated as an op-
timization problem. Typically, optimizer software work with vectors and expect objectives
and constraints to follow a certain convention, like the one of Eq. (1.3). Moving from the
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Figure 2.18: Overview of the working principle of the automated design tool for actuators.
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data representation of the model, which is close to the engineers’ way of thinking about ac-
tuators, to the representation for an optimizer is a tedious task. This step is therefore taken
over by the automated design tool.

Defining a problem requires setting the objectives and constraints, specifying the search
bounds of the design variables and listing the desired operating points at which the actua-
tors are simulated. For the objectives, users need to specify which one is to be minimized
or maximized, allowing an automatic conversion of all objectives into minimization form.
Similarly, constraints are usually defined in the form 𝑔𝑗(𝒙) ≤ 𝑏𝑗, and are reformulated using
Eq. (2.27), as suggested in [87].

𝑔𝑗(𝒙) ≤ 𝑏𝑗 ⇔
⎧⎪
⎨⎪
⎩

𝑔𝑗(𝒙)
𝑏𝑗

− 1 ≤ 0 if 𝑏𝑗 > 0

−𝑔𝑗(𝒙)
𝑏𝑗

+ 1 ≤ 0 if 𝑏𝑗 < 0
(2.27)

The most important part, however, is the transformation from the engineers’ design vari-
ables to the numerical vectors, and vice versa. Engineers specify for each component type
the variables to be optimized, and their acceptable range. The motors have up to three de-
sign variables: an integer that defines which motor to pick from a predefined list, and two
numbers: 𝐹𝐹 and 𝑅𝑠𝑐𝑎𝑙𝑒. The spur gears have up to 14 design variables: two integers select-
ing their material from a predefined list, two integers 𝑍{1,2}, and 10 numbers: 𝑚, 𝑏∗ = 𝑏/𝑚,
𝑥{1,2}, ℎ∗𝑓𝑝,{1,2}, 𝜌

∗
𝑓𝑝,{1,2} and ℎ

∗
𝑎𝑝,{1,2}. The variables of the crossed helical and planetary gears

are given in [165]. Not all variables need, however, to be part of the optimization. Users
can set fixed values for certain parameters or let default values be used. For example, the
tooth profile A from the ISO norm 53:1998 [80]—ℎ∗𝑓𝑝 = 1.25, 𝜌∗𝑓𝑝 = 0.38, ℎ∗𝑎𝑝 = 1.0—is used
unless otherwise specified.

Further, users define a desired actuator configuration. This sets the components to use and
their order, e.g., onemotor, one crossed helical gear stage, and two spur gear stages. Combin-
ing this with the given bounds allows the search space to be calculated. Indeed, the search
space corresponds to the union of the design spaces of all components, including the two
layout variables 𝑑𝑖 and 𝛾𝑖 for each.

Initial experiments suggested that due to the high number of integer variables, the problems
were very challenging to solve. To reduce their number, some of them are combined with
physically related continuous variables. The resulting number is composed of the integer
and its fractional part ismapped to the continuous variable. This is applied for the following:

1. the motor selection integer and the fill factor 𝐹𝐹 form the combined𝑚𝐹𝐹;

2. the numbers of teeth 𝑍{1,2} and their profile shift 𝑥{1,2} form the combined 𝑍𝑥{1,2}.

Only the material selection variable remains formulated as an integer variable, but their
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Table 2.1: List of crossover and mutation operators used in the adaptive variation operator.

Crossover operators

1 Simulated binary crossover [39] 𝜂𝑐 = 20, 𝑝𝑐 = 0.9
2 Simulated binary crossover [39] 𝜂𝑐 = 5, 𝑝𝑐 = 0.9
3 Two-point crossover
4 Blend crossover [48] 𝛼 = 0.5

Mutation operators

1 Polynomial mutation [39] 𝜂𝑚 = 20, 𝑝𝑚 = 1/𝑛
2 Polynomial mutation [39] 𝜂𝑚 = 5, 𝑝𝑚 = 1/𝑛
3 Uniform mutation 𝑝𝑚 = 1/𝑛

number is also reduced by considering that gears of the same shaft share the samematerial—
i.e., they are injected as one part. This assumption corresponds to the reality for the consid-
ered applications, but can be deactivated if necessary.

The definition of the design problem by the users is done through:

1. structured text files that are processed by a standard script;

2. custom python scripts.

The first method is the easiest, but offers limited options, since only predefined quantities
are calculated and can be included. For full control, custom python scripts need to be writ-
ten.

2.4.3 Multiobjective optimizer

Despite all code optimization efforts, the evaluation of an actuator design takes 1ms to
100ms depending on the activated features. While it might seem little—it is fast—when
hundreds of thousands of solutions need to be evaluated it still takes a while. In this con-
text, population-based multiobjective evolutionary algorithms (MOEAs) allowing multiple
solutions to be evaluated in parallel offer a significant time advantage. In the automated
design tool, a modified version of NSGA-II [37] is the main multiobjective optimizer. The
base implementation by DEAP [35, 56] has been modified to include an adaptive variation
operator inspired by AMALGAM [186] and Borg [68], see Algorithm 2.5, that aims at choos-
ing the best operators at any given moment of the search process. Typically, the exploration
probability is set to 𝜌𝑒 = 0.2 and the generic operators in Table 2.1 are considered.

To handle the constraints, different strategies can be activated, but by default, the novel
method cEpsilon, described in Chapter 4, is recommended with parameters 𝜆 = 0.5, 𝑐𝑝 = 4
and 𝛾 = 0.6. Finally, the population size and the number of generations can be chosen by
the user—within the constraints of NSGA-II.
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Algorithm 2.5 Adaptive variation operator
Require:

𝒑1 and 𝒑2 two mating parents
𝜌𝑒 the exploration probability
𝐶𝑋 and𝑀 the lists of available crossover and mutation operators

1: procedure Variate(𝒑1, 𝒑2, 𝜌𝑒, 𝐶,𝑀)
2: if Rand < 𝜌𝑒 then
3: crossover← PickRandomly(𝐶𝑋)
4: else
5: if Rand < 0.5 then
6: crossover←𝒑1.crossover
7: else
8: crossover←𝒑2.crossover
9: 𝒐1, 𝒐2 ← ApplyCrossover(crossover, 𝒑1, 𝒑2)
10: 𝒐1.crossover, 𝒐2.crossover← crossover
11: for all 𝒐 ∈ {𝒐1, 𝒐2} do
12: if Rand < 𝜌𝑒 then
13: mutation← PickRandomly(𝑀)
14: else
15: mutation← 𝒐.mutation
16: 𝒐 ← ApplyMutation(mutation, 𝒐)
17: 𝒐.mutation←mutationreturn 𝒐1, 𝒐2
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2.4.4 Interactive result visualization

For the tool to support engineering teams, it needs to (i) store its data in a format readable by
machines and humans, (ii) have a traceable process, and (iii) display actuators using familiar
representations. A reporting tool has been developed for this purpose. Web technologies are
leveraged to build interactive reports in the form of HTML documents that can be opened
on any platform and easily shared with colleagues or with the client. The report displays the
candidate actuators in four different panels:

1. a scatter plot of the objective values;

2. a parallel coordinate plot with the design variables;

3. a table with the design variables;

4. a WebGL viewer for a CAD-like preview of the actuators.

A screenshot of such a report is shown in Figure 2.19. The reports are generated thanks
to the bokeh library2 [11], which also enables interactivity. Selecting a design in one view,
automatically highlights the same design in the other plots. The mesh of an actuator is
shown in theWebGL viewer and can be rotated to view it from any desirable angle. Further,
themesh can be downloaded as an STL file—for example to be 3-D printed—or a screenshot
can be taken. Since the interactivity is completely managed in the web browser, no software
is required.

These reports along with the data as a CSV file are saved regularly during the optimization
process. This allows engineers to closely monitor the optimization process and to look at
potential results even before the search is completed. This increases the traceability of the
process, assists in debugging ill-posed problems and ensures results are available in a timely
manner.

2.5 Case studies
The content of this section has already been published in:

C. Picard and J. Schiffmann. “Automated Design Tool for Automotive Control Actu-
ators”. In: IDETC-CIE2020. ASME 2020 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference. Volume 11B:
46th Design Automation Conference (DAC), Aug. 17, 2020. doi: 10.1115/DETC2020-
22390

Minor adjustments have been made to the text and to the images to match the style of
this thesis.

2https://docs.bokeh.org
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Pareto front Design variables: parallel plot

Design variables: table3-D viewer

Figure 2.19: Screenshot of the HTML reporting interface.
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Table 2.2: Set of operating points for the HVAC valve application.

𝜔desired 𝑇desired Temp. # cycles 𝑉𝑠 𝐼max
4.0 rpm 0.4Nm −40 °C 25 000 13V 0.2A
5.5 rpm 0.4Nm −40 °C 25 000 16V 0.2A
4.5 rpm 0.4Nm 23 °C 25 000 13V 0.2A
6.0 rpm 0.4Nm 23 °C 25 000 16V 0.2A
4.0 rpm 0.4Nm 85 °C 25 000 10V 0.2A
2.0 rpm 0.4Nm 85 °C 25 000 13V 0.2A

Figure 2.20: Acceptable hull for the HVAC valve actuator application with the position of
the output shaft shown as a black dot along with the simplified contour used for the opti-
mizations as a dashed line.

In order to demonstrate the various capabilities of the design tool, two case studies have
been selected and explored: an HVAC valve actuator and an HVAC flap actuator. Both ac-
tuator types are mounted on the outside of HVAC units of cars and need to be operational
at temperatures between −40 °C and 85 °C and for battery voltages between 9V and 16V.

In the scenarios considered in this section, the optimization budget has been set to a maxi-
mum of 320 000 solution evaluations in order to have good convergence despite the various
constraints.

2.5.1 HVAC Valve Actuators

HVAC valve actuators are used in car HVAC systems to control valves that manage the flow
of refrigerant in the air conditioning unit. The design problem is to find an actuator that
delivers 0.4Nm at a speed of 5 rpm, see Table 2.2 for a complete list of conditions, and that
fits inside a given package, see Figure 2.20. In addition, the system should be driven by a
DC motor and be irreversible.

The automated design tool is thus configured to search for actuators with a DC motor, a
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Figure 2.21: Comparison of the proposed designs in terms of total cost and torque excess
between an optimization without and with system-level constraints: (A) entire range and
(B) zoomed view. The calculated properties of an existing actuator are shown as well.

worm-gear stage and two spur-gear stages. The trade-off between low cost and high output
torque is explored, since often performance could be compromised if there is a significant
difference in cost.

Based on this case, two scenarios are investigated to illustrate the importance of the system-
level constraints: an optimization including all described constraints (including desired
packaging) and an optimization without the system-level constraints. The obtained set of
solutions for both scenarios along with the characteristics of an existing product—also eval-
uated by the integrated model—are compared in Figure 2.21.

Since no system dimensions have been included in the first scenario, the automated design
tool proposes designs that can generate very large torque, although the gears would never
fit in the space constraints. Figure 2.22 shows a design taken from this optimization with
comparable performance to the existing actuator. Obviously, substantial work is still needed
to package the candidate design appropriately with no guarantee that it is actually possible.

Including system-level constraints allows the tool to directly produce useful design candi-
dates and to determine the maximum torque, an actuator contained within the imposed
packaging, can deliver. The identification of the trade-off between output torque and cost
helps engineers in their discussion with a client. Compared to the existing product, the tool
suggests an actuator 3.6% cheaper with a similar torque or 69% more torque for the same
cost. For both designs, the shafts can all be supported directly by the housing and they both
respect the assembly and packaging constraints.

Figure 2.23(A) shows the solution with a similar torque output as the existing product. Not
only is it cheaper, it is also sensibly smaller. These are key arguments suggesting that the
algorithm is capable of finding competitive solutions even when compared to designs that
have been improved over several years.

In terms of design, this candidate actuator has a gearbox with a ratio of 165, which is sig-
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Figure 2.22: Example of a design returned by the tool when not considering layout con-
straints.

A B

Figure 2.23: Comparison of two alternate designs that match the requirements for anHVAC
valve actuator using (A) a DC motor or (B) a stepper motor.

nificantly smaller than the ratio of 419 of the original product. This is an important shift in
the equilibrium between the motor and the gearbox, that is easily assessed in an integrated
design setting. Here, the motor runs at lower speeds, which may also help reduce noise and
wear of the brushes in the motor.

Finally, since the tool is so fast, designswith different technological choices can be generated
rapidly and used to suggest viable alternatives to the client. For example, Figure 2.23(B)
shows that it is also possible to fit an actuator driven by a stepper motor with four stages
of spur gears in the same package and achieve equal performance. The tool thus allows to
explore the full design space and gives tangible support to decision-makers.
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Table 2.3: Set of operating points to evaluate HVAC flap actuators.

Output 𝑇desired Temp. # cycles 𝑉𝑠 𝐼max Condition

0.314 rad s−1 0.3Nm −40 °C 10 000 9V 0.15A running
0.314 rad s−1 0.3Nm 25 °C 50 000 9V 0.15A running
0.314 rad s−1 0.3Nm 40 °C 20 000 9V 0.15A running
0.314 rad s−1 0.3Nm 80 °C 10 000 9V 0.15A running

0.0056 rad 1.21Nm −40 °C 1000 9V 0.32A holding
0.0056 rad 1.21Nm 25 °C 5000 9V 0.32A holding
0.0056 rad 1.21Nm 40 °C 2000 9V 0.32A holding
0.0056 rad 1.21Nm 80 °C 1000 9V 0.32A holding

2.5.2 HVAC flaps actuators

The second case study focuses on the design of an HVAC flap actuator. They are used to
control the orientation of flaps to adjust themixture between hot and cold air before it enters
the interior of cars. The design problem is to find an actuator that delivers 0.3Nm at 3 rpm
and 1.21Nm in holding condition, see Table 2.3 for a complete list of conditions. Stepper
motors should be used and there is a required minimal resolution of 6400 steps per turn
at the output. The package information for this application is shown in Figure 2.10(right).
For these optimizations, all system-level constraints are considered: packaging, assembly
capabilities and shaft supported by the housing. Further, the diameter used to validate the
clearance of the output shaft is set to 6mm to have enough space to include the linkage plug
of the flap directly in the output gear.

Actuators with three, four and five stages of spur gears are evaluated using the automated
design tool. The corresponding Pareto fronts are shown in Figure 2.24. Note that the actu-
ators with five stages slightly violate the shaft clearance constraint. Further, the actuators
with four stages offer the best trade-off given the limited space. For a performance similar to
the existing actuator, cost can be reduced by 11% or torque can be increased by 170% while
also cutting cost by 7.7%.

Figure 2.25 compares the layout of the existing product to a candidate actuator with a sim-
ilar performance and shows that the latter is more compact, eliminating the need for the
protrusion at the bottom for the electrical connector. The engineering team can still further
work on the proposed design, for example, by rotating the whole motor-gear system around
the output shaft to better balance the margins with the different sides of the housing.

In terms of design, the proposed actuator has a transmission ratio of 485 and a height of
11.5mm compared to 561 and 14.5mm for the existing product. The gains in cost come
mostly from smaller coils for the motor.

In order to better understand the impact of the housing-supported-shaft constraint, another
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Figure 2.24: Comparison between the obtained Pareto fronts for HVAC flap actuators with
three, four, and five stages of spur gears.

A B

Figure 2.25: Comparison of the layout of (A) the existing flap actuator and (B) a candidate
actuator generated by the automated design tool.
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Figure 2.26: (A) Pareto front of the flap actuator design problem when the shaft pass-
through constraint is set as an objective and (B) an example of a compact actuator design.

optimization in which this constraint is now considered as a third objective, has been per-
formed. The obtained Pareto front is shown in Figure 2.26(A) and emphasizes the important
role this constraint plays in the previous optimizations. By relaxing this constraint, more
compact and even cheaper (-6%) actuators can be considered. Figure 2.26(B) shows what
such an actuator would look like. It would now be the work of the engineering team to find
solutions to effectively support the shafts in such a compact design.

Through the use of 3-D meshes in the automated design tool, candidate designs exist in
a tangible form that can be understood and apprehended by anyone. In order to further
promote discussion between engineers and customers, actuators can be 3-D printedmaking
it easy to show around and comment, see Figure 2.27.

2.6 Optimization challenges

As good results as shown in the case studies are possible thanks to the work described in
Chapters 3 and 4, and in particular to the novel cEpsilon constraint handling strategy (CHS).
The use of the original CHS for NSGA-II in the automated design tool presented one im-
portant challenge for its practical use: optimization outcome reliability. To highlight this
challenge, Figure 2.28 shows the fronts obtained by running NSGA-II with its original CHS
four times on the same optimization problem. The differences between the outcomes are
important. Further, themore constrained the design problem, themore the originalmethod
struggles to find any feasible solutions.

It serves as motivation to investigate why a state-of-the-art algorithm performs so poorly,
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Figure 2.27: Picture of a 3-D printed candidate design.
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Figure 2.28: Fronts obtained for the HVAC flap actuator design problem for four different
optimization runs.
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and how MOEAs can be improved to better work on such design problems. The design
problems that are being solved in this chapter are certainly complex, but they are quite sim-
ple if one thinks about extending this approach to systems like heat pumps, airplanes or
artificial hearts.

2.7 Concluding remarks

In this chapter, a framework for the design of geared electro-mechanical actuators has been
introduced. It relies on fast component models that are assembled like bricks to form a
whole system. Methods and procedures to simulate important system-level specifications
are formulated. They tackle diverse challenges related to packaging that are typical for these
systems. With these constraints, the obtained numerical model is an integratedmodel since
it simulates multiple components and disciplines in a single pass.

This versatile model serves as the core of an automated design tool, whose aim is to speed
up the design of actuators, to provide the engineering team and the stakeholders with a
better picture of the trade-offs, and to support well-informed decisions. The automated de-
sign tool achieves this by linking the integratedmodel withmultiobjective optimization and
interactive reports.

The potential is highlighted through two real case studies from the automotive industry: the
design of actuators for HVAC valves and HVAC flaps. In both cases, the tool proposed in-
teresting and valuable alternatives, outperforming the current products in terms of cost and
available power, while respecting the packaging specifications. These results were obtained
within an hour on a regular laptop.

The case studies highlight the importance of the presented system-level constraints. Indeed,
the candidate designs obtained, if those constraints are not considered, are of significantly
less interest to the engineers, exaggerating the achievable performance, while leaving the
engineers with the complex and repetitive work of laying out the components. And while
optimization challenges related to the CHS of NSGA-II have been identified, they are ad-
dressed in the coming chapters, opening up the way to a tool to thoroughly investigatemany
design alternatives.

The potential of the framework is much greater than the two case studies shown in the
work. There are possible extensions of the integrated model, for example to include the
use of standard components from a database or to evaluate complete series of actuators
sharing components. Both additions can be game-changing for actuator manufacturer, en-
abling great economies of scale. Further, the simultaneous optimization of configuration
and parameters of actuators offers many challenges and opportunities, including a broader
reflection about optimality in this context. The Master thesis of Lemaitre [102], performed
under the author’s supervision, discusses some aspects of this vast topic.
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Realistic Benchmark Problems

Designing ‘good’ multiobjective optimization algorithms and selecting the ap-
propriate ones for a given class of problems require that common evaluation
procedures are defined. For this purpose, researcher typically follow recom-
mended methodologies [94] and use so-called benchmark problems, making

their results comparable among each other. These benchmark optimization problems should
typically be representative of various challenges found in actual problems.

Most benchmark constrainedmultiobjective optimization problems (CMOPs) currently used
are synthetic problems [87, 202], i.e., mathematical formula created for the purpose of test-
ing multiobjective optimizers. While their advantages are that they are fast to evaluate and
that their properties and Pareto fronts can be explicitly calculated, they tend to have rather
unrealistic features. Indeed, recently reported results [142, 173, 174, 200] including the re-
sults presented in Section 2.6 suggest that although state-of-the-art optimization algorithms
have good performance on benchmark problems, they fail at reliably solving simple ‘real-
world’ problems. As such, more realistic benchmark problems are needed to promote the
development of multiobjective optimization (MOO) that can be successfully applied in en-
gineering.

Further, better problem characterization is needed to have a proper understanding of the
reasons that lead certain algorithms to perform differently, but determining the properties
of many engineering problems is not straight-forward. Their objectives and constraints are
resulting fromexpensive simulations and cannot be explicitly solved. Therefore, appropriate
numerical methods are needed.

In this chapter, existing benchmark problems and numerical methods to characterize prob-
lems are introduced. Then, a realistic benchmark framework, calledMulti-Objective Design
of Actuators (MODAct), is presented. The core is a simplification of the numerical model
from Chapter 2, fromwhich 20 CMOPs with up to five objectives and adjustable constraints
are derived. Their characteristics are evaluated with an extended constraint landscape anal-
ysis and compared to existing CMOPs from literature.
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3.1 Related work

3.1.1 Constrained multiobjective optimization benchmark problems

Various CMOPs have been proposed over the years. Some of the oldest are the SRN [166],
the TNK [175] and the OSY [133] functions. They have been commonly used to benchmark
algorithms [37, 194]. These are two objective problems with few decision variables—two
for SRN and TNK, and six for OSY—and the same number of inequality constraints. Mostly
due to the low dimensionality of their decision space, their complexity is low [41].

Based on this observation, Deb et al. proposed a new scalable framework for CMOPs [41].
Functions derived from this framework have, in theory, an unbounded dimensionality and
their complexity can be adjusted by the selection of a helper function. This framework has
been used to derive the CTP test suite [41] with 7 functions (CTP1 to CTP7), which are typi-
cally limited to two objectives, two decision variables and one or two inequality constraints
and remains therefore quite simple. The framework is also the base of the CF test suite
[202] created for the IEEE CEC2009 MOEA Competition. Compared to CTP, CF problems
have a larger search space (𝑛 = 10) and three out of the ten functions have three objectives.
The results of the competition showed that some of these functions are difficult to solve.
The number of constraints is also low (two inequality constraints). More recent variants
of this framework have been proposed (e.g., NCTP [104]), but the shortcomings mentioned
previously remain.

With the need to solve optimization problems with an increasing number of objectives,
many-objective optimizers have been developed along with appropriate test problems. The
DTLZ test suite [42], which is scalable also in terms of objectives, has been extended with
constraints to form theC-DTLZ test suite [87]. There are three inequality constraint sets (C1,
C2 and C3) that can be combined with the unconstrained DTLZ functions (e.g., C1-DTLZ1
or C1-DTLZ3). C1 and C2 types add one constraint, while the C3 type adds one constraint
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per objective. While promising, Tanabe andOyama showed that even algorithms discarding
the constraints could solve some of the C-DTLZ problems [173].

In order to represent real-world problems better, Ma andWang proposed a new framework
to build test functions with more inequality constraints and a large infeasible search space
[112]. They derived the MW test suite with 14 instances with up to four inequality con-
straints and a feasability ratio (FsR) very close to zero. Three instances are scalable in terms
of objectives and they cover various front geometries.

The DAS-CMOP and DAS-CMaOP test suites [51] introduce the concept of tunable con-
straints through a difficulty triplet (𝜂, 𝜁, 𝛾), with 𝜂, 𝜁, 𝛾 ∈ [0, 1]. DAS-CMOP is composed of
nine base problems with two or three objectives and 11 or 7 constraints. DAS-CMaOP adds
another nine base problems for 𝑚 > 3, extending the WFG framework [78] with 2𝑚 + 1
similarly tunable constraints. 16 given difficulty triplets are suggested, four of which result
in equality constraints. In total, this generates 288 test functions, 144 of which are scal-
able in terms of objectives. This massive test suite offers a great potential that has yet to be
evaluated.

Given the strong ties between optimization and engineering applications, real-world like
problems have also been proposed as benchmark problems [38, 40, 87, 142, 148]. Among
those, the car-side impact [87] and the water problem [38, 148] have more than two objec-
tives. Their decision space is relatively small, but they have a large number of constraints
(10 and 7 respectively). It has been shown, however, that most solutions generated during
optimization only violate one of the constraints and that unconstrained NSGA-II could also
solve them fairly well [173].

Based on these considerations, the following benchmark CMOPs have been selected for this
study: the CTP and CF functions to allow for comparison with prior work, the recent MW
test suite and a subset of DAS-CMOP with the hard difficulty triplets 9, 10, 11 and 12 and
the car-side impact and water problems as existing real-world like problems. They are sum-
marized in Table 3.1.

3.1.2 Constraint landscape analysis

The complexity of CMOPs is often discussed using the feasibility ratio, the number of con-
straints and some descriptive adjectives (e.g., multi-modal, non-linear, rugged, active,...)
[107, 173, 194]. The limitations of these means to characterize complexity has already been
suggested by various researchers [115, 173]. With C-DTLZ, Jain and Deb [87] proposed a
classification scheme for constraints based on the changes they introduce with respect to
the unconstrained problem:

• Type-1 constraints introduce an “infeasible barrier” in the objective space, but the
Pareto front is not affected.
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Table 3.1: Number of objectives, search variables and constraints of the selected benchmark
CMOPs along with their FsR—calculated as explained in Section 3.3 ©IEEE 2021

𝑚 𝑛 𝑝 𝑞 FsR

CTP1 2 2 2 0 0.997
CTP2 2 2 1 0 0.990
CTP3 2 2 1 0 0.989
CTP4 2 2 1 0 0.967
CTP5 2 2 1 0 0.989
CTP6 2 2 1 0 0.493
CTP7 2 2 1 0 0.643

CF1 2 10 2 0 0.521
CF2 2 10 2 0 0.994
CF3 2 10 2 0 1.000
CF4 2 10 2 0 0.503
CF5 2 10 2 0 0.512
CF6 2 10 2 0 0.307
CF7 2 10 2 0 0.319
CF8 3 10 2 0 0.004
CF9 3 10 2 0 0.160
CF10 3 10 2 0 0.000

MW1 2 15 1 0 0.000
MW2 2 15 1 0 0.000
MW3 2 15 2 0 0.000
MW4 ≥ 3 12 +𝑚 1 0 0.000
MW5 2 15 3 0 0.000
MW6 2 15 1 0 0.000
MW7 2 15 2 0 0.000
MW8 ≥ 3 12 +𝑚 1 0 0.000
MW9 2 15 1 0 0.000
MW10 2 15 3 0 0.000
MW11 2 15 4 0 0.000
MW12 2 15 2 0 0.000
MW13 2 15 2 0 0.002
MW14 ≥ 3 12 +𝑚 1 0 0.000

DAS-CMOP3_9 2 30 11 0 0.334
DAS-CMOP3_10 2 30 11 0 0.000
DAS-CMOP3_11 2 30 11 0 1.000
DAS-CMOP3_12 2 30 11 0 0.000
DAS-CMOP6_9 2 30 11 0 0.333
DAS-CMOP6_10 2 30 11 0 0.000
DAS-CMOP6_11 2 30 11 0 1.000
DAS-CMOP6_12 2 30 11 0 0.000
DAS-CMOP8_9 3 30 7 0 0.111
DAS-CMOP8_10 3 30 7 0 0.000
DAS-CMOP8_11 3 30 7 0 1.000
DAS-CMOP8_12 3 30 7 0 0.000

Car-side impact 3 7 10 0 0.181
Water 5 3 7 0 0.920
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• Type-2 constraints make a part of the unconstrained Pareto front infeasible.

• Type-3 constraints make the full region of the unconstrained Pareto front infeasible
and the location of the Pareto front is governed by the constraints.

While, this classification and other similar ones [51, 112] offer insights into the effects of the
constraints in the objective space, they do neither quantify these effects nor do they consider
the changes due to the constraints in the search space.

In recentwork on constrained single-objective continuous and combinatorial optimizations,
Malan et al. [114, 115] propose to look at the constraints as defining a “violation landscape”
that can be analyzed much in the same fashion as the fitness landscape. This landscape can
be described in the search space using the FsR and the ratio of feasible boundary crossing
(RFB×) and in the objective space with the fitness violation correlation (FVC) and the ideal
zone (IZ) metrics. The definition of these metrics is given as follows:

• TheRFB×measures the proportion of steps, which imply crossing the feasibility bound-
ary on a progressive random walk [113] through the search space and quantifies the
disjoint nature of the feasible space.

• The FVC is the Spearman’s rank correlation between the fitness and the constraint
violation 𝐶𝑉 (3.1), measuring the contradiction between the objective and the con-
straints.

• The IZ quantifies the proportion of points present in the good unconstrained fitness,
low violation zone of the fitness-violation plot and represents the likelihood of finding
points in that zone.

𝐶𝑉(𝒙) =
𝑝

∑
𝑗=1

⟨𝑔𝑗(𝒙)⟩ +
𝑞

∑
𝑘=1

|ℎ𝑘(𝒙)| (3.1)

with ⟨𝛼⟩ = {
𝛼 if 𝛼 > 0
0 otherwise

(3.2)

Malan et al. [115] applied this approach on the constrained single-objective optimization
problems of the CEC2010 competition [117] andwere able to link the achieved performance
of the competing algorithms to the score of these metrics. Thus, they show the potential of
this method to better characterize problems and partially address the algorithm selection
problem.

While the FsR and theRFB× can be translated directly toMOO, the FVC and IZ require a sin-
gle numerical fitness value, which is ambiguous in a multiobjective context. Two alternate
metrics adapted to multiobjective problems will be presented in Section 3.3.
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3.2 Multi-Objective Design of Actuators (MODAct)

The framework for the design of electro-mechanical actuators presented inChapter 2 is used
in this context to derive a test suite. Yet, in order to make the code easier to use by other
researchers, a reduced version of the framework is created. While it may seem counter-
intuitive to use “simplified”models whenwanting to define challenging CMOPs, the results
from the following sections will show that they nevertheless offer sufficient complexity for
their purpose. The reduced framework is called MODAct and its source code is available
online1. Like the original framework, MODAct is written in Python, but additional inter-
faces to common programming languages (C++ or MATLAB) are proposed and allow the
use of many optimizers. In particular, examples showing how to use it with the following
optimizer software are provided: Borg [68], NOMAD [101], PlatEMO [176] and pymoo [9].

Compared to the original model, MODAct has a few limitations:

1. Only two-phase steppers and steel spur gears are available;

2. The torque prediction uses only Eq. (2.1) with static and dynamic friction and the
motor parameters are taken from five existing steppers;

3. Fatigue and temperature dependent effects are removed from the gear model;

4. Only cylindrical meshes are used both for the motors and the gears;

5. The layout constraints relying on ray-tracing are omitted.

With these changes, the computational time to evaluate one actuator (including objectives
and constraints) is of about 20 ms on 2016 laptop. This offers the advantage that it is both
fast enough to follow traditional benchmarking methodologies, while allowing researchers
interested in the development of parallelization and distributed computation approaches to
also test their algorithms.

3.2.1 Definition of the various problems

UsingMODAct and inspired by the industrial applications from Section 2.5, 20 optimization
problems can be built. The aim of these optimization problems is to find suitable three-stage
actuators (𝑘 = 3) that operate at two operating points, see Table 3.2. For simplicity, the tooth
profile A is used and the material of the gears is set to steel.

Five possible objectives are considered:

• minimize total cost (C), Eq. (2.26);

• maximize minimum torque excess for each considered operating point (T), Eq. (2.23);
1https://github.com/epfl-lamd/modact
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Table 3.2: Operating point requirements for all MODAct problems ©IEEE 2021

# Rotational speed Desired torque Voltage Max current

1 1.35 rad/s 0.6 N ⋅m 9 V 2 A
2 0.3 rad/s 1 N ⋅m 12 V 2 A

• maximize harmonic mean of the safety factors to bending 𝑆𝐹 and to pitting 𝑆𝐻 for all
gears (S), Eq. (2.22);

• maximize electrical to mechanical energy conversion efficiency (E), Eq. (2.24);

• minimize transmission ratio (I), Eq. (2.19).

From these objectives, five possible combinations are considered and identified by grouping
the capital letters: CS, CT, CTS, CTSE, CTSEI. Each forms a problem class.

Further, 11 common constraints are considered to be combined with these problem classes.
They fit into five categories:

• gear constraints (𝜖𝛾 ≥ 1.1, 𝜁𝑓1,2 ≥ −5, no interference, 𝑆𝐹, 𝑆𝐻 ≥ 1);

• required minimum torque excess;

• bounding box dimensions limited to 𝑏𝑏𝑦 ≤ 50mm and 𝑏𝑏𝑧 ≤ 35mm;

• output shaft within 5 mm of a desired location.

Four levels of constraint complexity (1, 2, 3 and 4) are created using these constraints. In
practice, which level is selected depends upon the development stage or the application. In
this context, it allows to offer a variety of challenges for optimizers, since each level can
be associated with all previously defined problem classes. In total, 20 unique benchmark
problems are available, see Table 3.3. Each problem is named by appending the constraint
complexity level to the objective class (class CTSE combined with constraint level 3 forms
problems CTSE3). Important to note, constraints are mostly unaffected by the chosen ob-
jectives, expect for the required minimum torque excess (two different settings).

57



Chapter 3. Realistic Benchmark Problems

Ta
bl
e
3.
3:
Su
m
m
ar
y
of
th
e
20

fu
nc
tio
ns
of
M
O
D
A
ct
in
cl
ud
in
g
de
ta
ils
ab
ou
tt
he
ir
co
ns
tr
ai
nt
sa
nd

th
e
se
ar
ch

sp
ac
e
©
IE
EE

20
21

Constraintlevel
𝑛

𝑚
𝑝

𝑞

Gearconstraints(6)

Min.torqueexcess(1)

3-DCollisions(1)

Boundingbox(2)

Outputshaft(1)

Se
ar
ch

sp
ac
e
bo
un
ds

[𝑚
𝐹
𝐹
,𝑅

𝑠𝑐
𝑎
𝑙𝑒

𝑍
𝑥 1

1,
𝑍
𝑥 1

2,
𝑚

1,
𝑏 1
,𝑑

1,
𝛾 1
,

𝑍
𝑥 2

1,
𝑍
𝑥 2

2,
𝑚

2,
𝑏 2
,𝑑

2,
𝛾 2
,

𝑍
𝑥 3

1,
𝑍
𝑥 3

2,
𝑚

3,
𝑏 3
,𝑑

3,
𝛾 3
]

C
S1

1
20

2
7

0
Ye
s

≥
−
0.
00
1

N
o

N
o

N
o

𝒙(
𝐿
)
=
[0
,0
.3
,

9,
30
,0
.3
,5
,−

20
,−

𝜋
,

9,
30
,0
.3
,5
,−

20
,−

𝜋
,

9,
30
,0
.3
,5
,−

20
,−

𝜋
]

𝒙(
𝑈
)
=
[5
−
10

−
6 ,
2,

41
−
10

−
6 ,
81

−
10

−
6 ,
1,
15
,2
0,
𝜋
,

41
−
10

−
6 ,
81

−
10

−
6 ,
1,
15
,2
0,
𝜋
,

41
−
10

−
6 ,
81

−
10

−
6 ,
1,
15
,2
0,
𝜋
]

C
S2

2
20

2
8

0
Ye
s

≥
−
0.
00
1

Ye
s

N
o

N
o

C
S3

3
20

2
10

0
Ye
s

≥
−
0.
00
1

Ye
s

Ye
s

N
o

C
S4

4
20

2
9

0
Ye
s

≥
−
0.
00
1

Ye
s

N
o

Ye
s

C
T1
,C
TS
1,

C
TS
E1
,C
TS
EI
1

1
20

2,
3,
4,
5

7
0

Ye
s

≥
−
0.
59
9

N
o

N
o

N
o

C
T2
,C
TS
2,

C
TS
E2
,C
TS
EI
2

2
20

2,
3,
4,
5

8
0

Ye
s

≥
−
0.
59
9

Ye
s

N
o

N
o

C
T3
,C
TS
3,

C
TS
E3
,C
TS
EI
3

3
20

2,
3,
4,
5

10
0

Ye
s

≥
−
0.
59
9

Ye
s

Ye
s

N
o

C
T4
,C
TS
4,

C
TS
E4
,C
TS
EI
4

4
20

2,
3,
4,
5

9
0

Ye
s

≥
−
0.
59
9

Ye
s

N
o

Ye
s

58



3.3 Multiobjective constraint landscape analysis

3.3 Multiobjective constraint landscape analysis

Calculating the objectives and constraints of such an actuator involves several steps. It is
therefore not straight-forward to predict their mathematical model characteristics. Thus,
MODAct problems need to be analyzed with metrics characterizing the effect of the con-
straints on both the search and objective spaces.

This section presents the metrics for the constraint landscape analysis introduced by [115],
as well as additional methods suited for multiobjective problems. The analysis relies on
both repeated independent uniform samplings and progressive random walks [113] of the
decision space.

Definition 3.1. Given an independent uniform sampling 𝒰 ⊂ 𝒮, the FsR is defined as:

FsR ≔
|{𝒖 ∈ 𝒰 ∣ feasible(𝒖)}|

|𝒰| (3.3)

where feasible(𝒙) is an indicator function indicating if a solution 𝒙 is feasible, i.e., 𝐶𝑉(𝒙) =
0.

Definition 3.2. Given a sequence of 𝑠 samples𝒲 generated by a randomwalk of 𝑠−1 steps
𝒲 = {𝒘𝟏, 𝒘𝟐, … ,𝒘𝒔}, the RFB× is defined as:

RFB× ≔
1

𝑠 − 1

𝑠−1

∑
𝑖=1

𝜒(𝑖) (3.4)

𝜒(𝑖) = {
0 if feasible(𝒘𝒊) = feasible(𝒘𝒊+𝟏)
1 otherwise

(3.5)

where the helper function 𝜒 indicates when the feasibility boundary is crossed.

TheRFB×metric should be high for a disjoint feasible space and low for a contiguous feasible
space. Yet, the possible values of RFB× also depend on the number of feasible points 𝑠𝑓
encountered during a walk𝒲, thus making the comparison between functions difficult. In
order to compare, onewould need to know, given the ratio of encountered feasible points per
walk, how disjoint the space is. In other words, one wants to identify themaximum possible
RFB× and define this as an upper bound for a given ratio 𝑠𝑓/𝑠. In general, this is equivalent
to trying to spread out the feasible or infeasible points (depending on which ones are the
minority) in a sequence to maximize the number of transitions. Following this approach, it
can be shown that the upper bound of RFB× for a given walk is:

RFB×,max =
2

𝑠 − 1 ⋅min{𝑠𝑓, 𝑠 − 𝑠𝑓,
𝑠 − 1
2 } (3.6)
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This upper bound is used to define thenormalized ratio of feasible boundary crossing (nRFB×):

nRFB× = {
0 if RFB× = 0
RFB×

RFB×,max
otherwise

(3.7)

An nRFB× value of 1 is obtained for walks in the search space that are as disjoint as possible
given their 𝑠𝑓/𝑠 ratio.

For the analysis of the objective space, two new metrics are introduced: PFd and PFcv. The
main idea is to capture the interactions between the image in the objective space of randomly
selected points in the search space and the Pareto fronts. Bothmetrics rely on the previously
obtained aggregated set of samples ℒ = 𝒰1 ∪ … ∪ 𝒲1 ∪ … and the Pareto front 𝒫ℱ∗ of the
problem.

PFd is constraint independent and represents the average minimal distance from the Pareto
front to the cloud of points formed by 𝒇(ℒ). It measures the ease of randomly generating
points near the Pareto front. In order tomake it comparable between functions, the points in
the objective space are normalized using the ideal 𝒛∗ and nadir 𝒛nad vectors of 𝒫ℱ∗, leading
to the normalized objective function 𝒇𝑛 and the normalized Pareto front 𝒫ℱ∗

𝑛 . PFd corre-
sponds to the inverted generational distance (IGD) [25] between 𝒫ℱ∗

𝑛 and 𝒇𝑛(ℒ).

Definition 3.3. Given a set of samples ℒ and their normalized image 𝒇𝑛(ℒ) and given the
normalized Pareto front 𝒫ℱ∗

𝑛 , PFd is defined as:

PFd ≔ 1
|𝒫ℱ∗

𝑛 |
∑

𝒛∈𝒫ℱ∗
𝑛

min
𝒍∈𝑓𝑛(ℒ)

‖𝒛 − 𝒍‖2 (3.8)

where ‖⋅‖2 is the Euclidean norm.

PFcv measures the average constraint violation 𝐶𝑉 value of neighbors of the Pareto front
in the sample set. This represents the sensitivity in terms of constraints of solutions on the
Pareto front.

Definition 3.4. Given a set of samplesℒ, the Pareto front 𝒫ℱ∗ and 𝐾 the number of neigh-
bors to consider, PFcv is defined as:

PFcv ≔ 1
𝐶𝑉95|𝒫ℱ∗| ∑

𝒛∈𝒫ℱ∗

1
𝐾 ∑

𝒙∈ℬ(𝒛,𝐾)
𝐶𝑉(𝒙) (3.9)

where 𝐶𝑉95 is the 95th percentile of the 𝐶𝑉 values found in ℒ andℬ(𝒛, 𝐾) is the set of the 𝐾
closest neighbors of 𝒛 in ℒ.
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3.4 Methods of the numerical investigations

MODAct problems are compared to five groups of benchmark problems identified from lit-
erature in Section 3.1: the CTP, the CF, the MW and some DAS-CMOP functions and two
real-world like problems (water and car-side impact). The comparison is done based on the
presented constraint landscape analysis approach and on a convergence study. The next
sections present the parameters used for the various steps.

3.4.1 Constraint landscape analysis

Both uniform samplings and progressive random walks have been performed using the pa-
rameters mentioned in [115]: 30 independent uniform sampling 𝒰 of |𝒰| = 1000𝑛 points
and 30𝑛 independent progressive random walks𝒲 of 1000 steps (|𝒲| = 𝑠 = 1001) each
with maximum step size of 1% of the decision space. The reported FsR, RFB× and nRFB×
scores are obtained by averaging over all independent samplings.

The PFd and PFcv metrics are calculated with the best-known Pareto front obtained from
the convergence studywhen the true Pareto front is unknown. The𝐾 = 20 closest neighbors
are considered for PFcv.

3.4.2 Convergence study

In addition to these characteristics, the main interest is to investigate how well these design
optimization problems can be solved and understand how the different constraint levels in-
fluence convergence. This is achieved by performing a convergence study where the prob-
lems are compared among each other and against two kinds of optimizers: the commonly
used algorithms NSGA-II [37] and NSGA-III [36] on one side and C-TAEA [105] a recent al-
gorithm developed specifically to tackle CMOPs on the other side. NSGA-II and NSGA-III
follow a feasibility first approach and rely in the survival step on the constrained-dominance
principle (CDP) introduced in [37]:

Definition 3.5. Given two solutions 𝒙1 and 𝒙2, 𝒙1 is said to
constrained-dominate 𝒙2, if one of the following is true:

1. 𝒙1 is feasible and 𝒙2 is not;

2. 𝒙1 and 𝒙2 are infeasible and 𝐶𝑉(𝒙1) < 𝐶𝑉(𝒙2);

3. 𝒙1 and 𝒙2 are feasible and 𝒙1 (Pareto-)dominates 𝒙2.

C-TAEA maintains two separate archives—one for diversity, the other for convergence—
and has a special restricted mating approach to balance between the two.

The study is performed using pymoo [9]. NSGA-II is used for all problems with𝑚 = 2 and
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Table 3.4: Parameters used to configure each run of NSGA-II, NSGA-III andC-TAEA©IEEE
2021

Parameter NSGA-II/III C-TAEA

Population size 𝜇 200 210 or 220 (𝑚 = 4)

Number of function
(i.e., solution)
evaluations

300 000

Mutation 𝜂𝑚 20
Mutation rate 1/𝑛
Crossover 𝜂𝑐 15
Crossover probability
(CXPB) 0.9

NSGA-III for all problems with more objectives. Each optimization is performed 30 times
with the parameters specified in Table 3.4, following common practice for these algorithms.
The number of reference directions for NSGA-III is chosen as close to the population size,
while following Das and Dennis’s approach [33]. The same approach is used for C-TAEA,
except the population size and number of reference directions are set to the same value. An
unbounded external archive (UEA) is added to the algorithms, as recommended in [12], to
collect all feasible non-dominated solutions along the optimization.

ForMODAct problems, the solutions of the archives from all runs are aggregated and sorted
to determine the best-known Pareto front. The estimated ideal 𝒛∗ and nadir 𝒛nad points are
collected to provide per-problem front normalization.

The convergence and diversity are evaluated with the hypervolume indicator [204]. In par-
ticular, the exact and fast implementations by the Walking-Fish Group are used [28, 189].
Since the objective functions of the various problems have different scales and since there
is a mix of minimization and maximization objectives, the Pareto front and the archives
are transformed into minimization only problems and normalized with the correspond-
ing 𝒛∗ and 𝒛nad. Only then the hypervolume is calculated using a common reference point
𝒓 = (1.1, … , 1.1)𝑇. Finally, the comparison is made through the relative hypervolume error
Δ𝐻𝑉𝑛 (3.10) with respect to the best-known Pareto front:

Δ𝐻𝑉𝑛 =
𝐻𝑉(𝒫ℱ∗

𝑚,𝑛, 𝒓) − 𝐻𝑉(𝒜𝑚,𝑛, 𝒓)
𝐻𝑉(𝒫ℱ∗

𝑚,𝑛, 𝒓)
(3.10)

where 𝒜 denotes a given external archive and the subscript 𝑚 that the problems have been
converted to minimization.

For the statistical difference betweenoptimization algorithms, the non-parametricWilcoxon
rank-sum test with the null hypothesis that all algorithms are equal is applied with a confi-
dence interval of 99%.
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Figure 3.1: Best-known Pareto fronts for (A) CS and (B) CT problems

3.5 Results and discussion

3.5.1 Design trade-offs and constraints

The analysis of MODAct problems starts by looking at some of the best-knownPareto fronts.
All best-known Pareto fronts can be downloaded [143]. Figure 3.1 shows the best-known
Pareto fronts for CS and CT problems, while Figure 3.2 represents the CTS problems. The
best-known Pareto fronts of CS problems consist of a smooth convex segment, while CT
problems have several step-like disconnected segments. CTS problems combine the two
features to form a complex surface with concave/convex and disconnected parts.

The discontinuities are indeed expected for these design problems since some variables rep-
resent discrete physical choices. In particular, the motor selection is dominating these ef-
fects. With different cost and power ranges, the motor designs do not overlap, leading to the
visible steps. This feature is common in design problems and should therefore also appear
in benchmark problems. For engineers, this is of particular interest since these steps imply
important design trade-offs.

Lookingmore closely at the effects of the constraints, it can be noticed, that constraint levels
2 and 4 slightly shift the found fronts towards higher costs compared to level 1. Constraint
level 3 is the most restrictive: the limit on the size of the bounding box of the actuator does
not allow large gears ormotors, which significantly reduces the available options. While the
impact is limited in the objective space, this is not the case in the decision space. An analysis
of neighbors in the objective space between CT1 and CT2 confirms important differences,
mostly on the number of teeth of the wheels 𝑍𝑖2 and the spatial positioning variables 𝑑𝑖 and
𝛾𝑖.

For problems with more objectives, the best-known Pareto front of CTSEI3 is shown as an
example in Figure 3.3 projected into the various objective planes. It shows that there are
indeed up to five competing objectives with different shapes.
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Figure 3.2: Best-known Pareto fronts for CTS problems

3.5.2 Convergence analysis

In a second step, the ease of convergence and the repeatability are compared. Figure 3.4 rep-
resents box plots of the obtained relative hypervolume errors (3.10) over the 30 optimization
runs for each problem byNSGA-II/III and by C-TAEA. Starting withMODAct problems, the
results suggest the following:

1. The proposed instances pose a wide range of optimization challenges to NSGA-II/III
and C-TAEA.

2. Within the same classes, constraint levels 1 and 2 are generally equally well solved
with rare outliers that may exhibit early convergence to local optima.

3. Constraint levels 3 and 4 are increasingly difficult and the various optimization runs
achieve very different levels of convergence.

4. There is also a clear trend of increasing hypervolume error with the number of objec-
tives, but this is certainly related to the nature of the indicator itself.

5. The more restrictive threshold on the minimum torque excess of CS problems seems
to negatively impact convergence for all constraint levels. In particular, C-TAEA is
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Figure 3.3: Best-known Pareto front for CTSEI3, for rendering questions, the numbers of
points displayed has been reduced by eliminating points that were too close to each other

barely able to find any solutions within the boundaries of the reference point for CS3
and CS4.

In comparison, the CTP, car-side impact, water, most MW and DAS-CMOP8 problems are
effectively solved by the considered algorithms. MW10, MW11 and MW13 are the most dif-
ficult of MW and can be compared to MODAct constraint levels 1 and 2. The CF family
offers a broader range of challenging problems. The findings that the biobjective problems
CF3, CF5 and CF7 are the hardest are consistent with the outcomes of the CEC2009 MOEA
Competition [201]. Among the three-objective problems, CF8 and CF10 are the most chal-
lenging in particular for NSGA-III. The DAS-CMOP3 problems seem to be challenging for
both algorithms. DAS-CMOP6 problems are effectively solved by C-TAEA, while NSGA-II
struggles for DAS-CMOP6_11 and DAS-CMOP6_12.

In terms of algorithms, NSGA-II/III is overall significantly better than C-TAEA (better on 30
problems, no difference on 18 and worse on 17), despite using a simple constraint handling
strategy. NSGA-II/III is always better for CTP and for the car-side impact problem, although
the difference is minor. The results are more balanced for the other benchmark problems.
For the MW test suite, C-TAEA performs better on the difficult problems. C-TAEA also
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Figure 3.4: Box plot of the relative hypervolume errors Δ𝐻𝑉𝑛 of the external archives ob-
tained for each problem by NSGA-II/NSGA-III versus C-TAEA, where the ∗ or † after the
function name is used to indicate that C-TAEA is, respectively, significantly worse or better
than NSGA-II/NSGA-III

performs better on the three-objective CF problems and is on a par for biobjective problems.
The opposite is true for DAS-CMOP: NSGA-III is better for three-objective problems, while
C-TAEA shows solid performance on biobjective instances. Finally on MODAct problems
NSGA-II/III has a clear advantage for biobjective problems and is at least as good as C-TAEA
otherwise.

In general, the performance of NSGA-II/III and C-TAEA is insufficient on MODAct in-
stances with constraint levels 3 and 4, although they represent very common and simple
mechanical design problems. The observed large variance of the optimization outcomes
has important practical consequences. Considering problems CS3 and CS4, more than 75%
of the optimization runs of NSGA-II obtain approximate Pareto fronts with a hypervolume
of 50% or smaller than the best-known Pareto fronts, while C-TAEA fails to find interesting
solutions. As an example, the best run of NSGA-II and of C-TAEA along with two opti-
mization runs are compared to the best-known Pareto front for problem CS4 in Figure 3.5
to illustrate the large difference in the proposed solutions with a lack of convergence and
diversity. Using partially converged solutions for decision-making can lead to significantly
different engineering outcomes.

In order to better understand the optimization process of MODAct problems, the evolu-
tion of the relative hypervolume error of the external archives of NSGA-II, C-TAEA and
NSGA-II without constraint handling are compared in Figure 3.6. For all four problems,
the unconstrained optimization clearly fails to get many feasible solutions, confirming that
the constraints play a key role in MODAct problems. While for problems CT1 and CT2 the
optimization budget is more than sufficient, better results may be possible for CT3 and CT4.
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Yet, while the mean relative hypervolume error seems to be decreasing, the spread remains
almost constant (NSGA-II) or increasing (C-TAEA). Running the optimization algorithms
longermight thus not necessarily address the repeatability issue. It is also interesting to note
that while CT3 and CT4 are challenging problems, feasible solutions are rapidly found: on
average after 800 evaluated solutions for CT3, and after 2000 for CT4.

3.5.3 Link between convergence and constraints

Finally, the objective is to use the results from the constraint landscape analysis to identify
the underlying characteristics that affect convergence most and how the newly introduced
problems differ from the existing benchmarks functions.

The obtainedmetrics for all problems are summarized inTable 3.5. To begin, the advantages
of nRFB× are evaluated. CF1, CTP6 and CTP7 have the three highest RFB× scores. They
also have an FsR close to 0.5. For problems with a high or a low FsR, the definition of RFB×
necessarily decreases its possible values, thus masking the level of discontinuity of small
infeasible or feasible spaces. In such cases, the nRFB× metric acts as an amplifier of the
scores through the normalization. The nRFB× values indicate that all CTP problems have a
relatively disjoint search space, which is known a priori from their definition [41]. MODAct
problems have nRFB× values ranging between the CTP and the CF problems, suggesting
a rather disjoint search space. The same applies to DAS-CMOP problems with difficulty
triplet 9, DAS-CMOP3_11 and MW13. nRFB× values can also remain low such as for the
car-side impact and water problems, suggesting a contiguous feasible space. It is noted that
some limitations remain, in particular for highly feasible or infeasible search spaces, where
boundaries are hard to find. This is the case for the rest of DAS-CMOP and MW.
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Figure 3.6: Evolution of the median relative hypervolume error including 5th and 95th per-
centiles for CT problems comparing: NSGA-II with the constrained-dominance strategy
(CDP-NSGA-II), C-TAEA and NSGA-II discarding constraints (Unconstrained NSGA-II)
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Table 3.5: Calculated metrics resulting from the constraint landscape analysis ©IEEE 2021

Function FsR RFB× nRFB× PFd PFcv

CS1 0.0022 0.0016 0.1155 0.0015 0.4158
CT1 0.0342 0.0278 0.3081 0.0071 1.7115
CTS1 0.0343 0.0281 0.3095 0.0788 0.8317
CTSE1 0.0342 0.0283 0.3050 0.1235 0.7521
CTSEI1 0.0347 0.0287 0.3075 0.1369 1.2519
CS2 0.0010 0.0007 0.0593 0.0021 0.4703
CT2 0.0160 0.0156 0.3097 0.0068 1.6274
CTS2 0.0158 0.0158 0.2947 0.0796 0.7688
CTSE2 0.0160 0.0161 0.3075 0.1242 0.7226
CTSEI2 0.0162 0.0161 0.3110 0.1411 1.1255
CS3 0.0000 0.0000 0.0000 0.0012 0.6763
CT3 0.0000 0.0001 0.0126 0.0029 2.2518
CTS3 0.0000 0.0001 0.0112 0.0551 0.9973
CTSE3 0.0000 0.0001 0.0178 0.0643 1.5531
CTSEI3 0.0000 0.0001 0.0259 0.0336 8.4287
CS4 0.0000 0.0000 0.0000 0.0013 0.7802
CT4 0.0000 0.0000 0.0000 0.0039 0.7694
CTS4 0.0000 0.0000 0.0000 0.0483 0.7807
CTSE4 0.0000 0.0000 0.0000 0.0569 0.9021
CTSEI4 0.0000 0.0000 0.0000 0.0277 1.6211

CF1 0.5199 0.1539 0.2007 0.0301 0.7801
CF2 0.9942 0.0033 0.1682 0.1114 0.0116
CF3 1.0000 0.0000 0.0000 1.9014 0.0000
CF4 0.5001 0.0154 0.0169 0.3835 0.1432
CF5 0.5068 0.0080 0.0090 2.8356 0.0574
CF6 0.3056 0.0089 0.0222 0.4670 0.0306
CF7 0.3151 0.0169 0.0325 2.5682 0.0896
CF8 0.0042 0.0012 0.0427 0.7449 0.1984
CF9 0.1597 0.0340 0.1259 0.3445 0.2047
CF10 0.0001 0.0001 0.0298 2.8237 0.1391

CTP1 0.9972 0.0048 0.7769 0.0429 0.0001
CTP2 0.9899 0.0100 0.4902 0.0505 0.0771
CTP3 0.9892 0.0100 0.4659 0.0481 0.0653
CTP4 0.9656 0.0287 0.4402 0.0363 0.5128
CTP5 0.9893 0.0099 0.4695 0.0509 0.0117
CTP6 0.4888 0.4108 0.4208 0.0206 0.0133
CTP7 0.6458 0.4171 0.5856 0.0220 0.0222

DAS-CMOP3_9 0.3337 0.0999 0.1496 0.7515 0.4267
DAS-CMOP3_10 0.0000 0.0024 0.0795 0.0241 0.0002
DAS-CMOP3_11 0.9996 0.0137 0.1214 0.5173 0.1614
DAS-CMOP3_12 0.0000 0.0001 0.0177 0.0138 0.0065
DAS-CMOP6_9 0.3330 0.1000 0.1501 23.7690 0.3444
DAS-CMOP6_10 0.0000 0.0000 0.0000 17.5318 0.1394
DAS-CMOP6_11 1.0000 0.0000 0.0000 14.7336 0.0000
DAS-CMOP6_12 0.0000 0.0000 0.0000 22.9593 0.1433
DAS-CMOP8_9 0.1114 0.0614 0.2835 22.0217 0.6104
DAS-CMOP8_10 0.0000 0.0000 0.0000 21.0716 0.1383
DAS-CMOP8_11 1.0000 0.0000 0.0000 22.1774 0.0000
DAS-CMOP8_12 0.0000 0.0000 0.0000 21.3521 0.1358

MW1 0.0000 0.0000 0.0000 8.9253 0.5888
MW2 0.0000 0.0000 0.0000 0.6848 0.0549
MW3 0.0000 0.0000 0.0000 0.5878 0.0704
MW4 0.0000 0.0000 0.0000 4.3189 0.6268
MW5 0.0000 0.0000 0.0000 7.8080 0.3784
MW6 0.0000 0.0000 0.0000 0.6881 0.0079
MW7 0.0000 0.0000 0.0000 0.4555 0.0178
MW8 0.0000 0.0000 0.0000 0.8002 0.0080
MW9 0.0000 0.0000 0.0000 4.2789 0.0246
MW10 0.0000 0.0000 0.0000 0.7595 0.0003
MW11 0.0000 0.0000 0.0017 0.1222 0.0000
MW12 0.0000 0.0000 0.0000 4.4956 0.3126
MW13 0.0018 0.0029 0.1765 0.0587 0.0000
MW14 0.0003 0.0002 0.0391 0.1815 0.0218

Car-side impact 0.1827 0.0048 0.0284 0.1054 0.0281
Water 0.9198 0.0058 0.0612 0.0505 0.0012

In order to get a better overview of the differences between functions and function groups,
each problem is shown in the FsR-nRFB× plane, Figure 3.7(A), and in the PFd-PFcv plane,
Figure 3.7(B). The FsR-nRFB× plane confirms the initial analysis of Table 3.5. In addition,
the following points are highlighted:

1. MODAct, MW, DAS-CMOPwith triplets 10 and 12, CF8 and CF10 are all located near
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Figure 3.7: Map of the problems based on their (A) FsR-nRFB× and (B) PFd-PFcv scores
grouped by constraint levels or test suites

FsR = 0.

2. The feasibility ratio of MODAct problems is decreasing with increasing constraint
level.

3. The CTP family has a unique signature with high FsR and high nRFB×.

Yet, there is no clear relationship between these metrics and convergence. In particular, the
MW test suite is a good example that very low FsR is not directly related to convergence
challenges.

Analyzing Figure 3.7(B), the newly introduced metrics exhibit the following problem clus-
ters:
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1. MODAct problems in the low PFd, high PFcv zone;

2. three groups with high PFd: (i) DAS-CMOP6 and DAS-CMOP8, (ii) MW1, MW4,
MW5, MW9 and MW12 and (iii) CF3, CF5, CF7 and CF10;

3. a large groupwith low PFd and low PFcv, includingmost CTP, the car-side impact and
water problems, MW11, MW13 and DAS-CMOP3_12.

Further, for the problem class CS, there is a relation between increasing PFcv values and
decreasing convergence as shown in Figure 3.4. OtherMODAct problems do not exhibit the
same trend across constraint levels. The difficult CF functions (CF3, CF5, CF7 and CF10)
have a high PFd. The opposite is true for the most difficult DAS-CMOP and MW problems.
Hence, thesemetrics seem to capture different optimization challenges, but certainly not all
of them.

In order to better understand the qualitative difference between PFd and PFcv scores and
convergence, four particular functions—CT3 (low PFd, high PFcv), CF7 (high PFd, low
PFcv), DAS-CMOP3_12 (low PFd, low PFcv) and MW11 (low PFd, low PFcv)—are further
analyzed. Figure 3.8 shows color-maps of the minimum constraint violation values in the
objective space based on the samples from ℒ along with the respective best-known (CT3)
or true Pareto front. It becomes apparent that PFd measures the ease of randomly sampling
points in the vicinity of the Pareto front and PFcv the constraint violation of the closest
known points. These particular problems represent four different situations:

1. While it is possible to find samples near the best-known Pareto front for CT3, it is
harder to find feasible solutions.

2. For CF7, the sampling near the Pareto front is challenging, but it seems easier to find
feasible solutions scattered all over the objective space, in particular in the direction
of the Pareto front.

3. Random samples of DAS-CMOP3_12 are located in a narrowband reaching to the
Pareto front and some constraints clearly guide the search process towards the opti-
mum. Finding points outside this band is a clear challenge for diversity.

4. More uniformly distributed feasible samples near the Pareto front can be found for
MW11 and here as well, some constraints clearly guide in the right direction.

The optimization challenges of the four situations are different and might thus require a
different set of tools to be addressed efficiently. CF7 might, for example, be better solved
by specific search operators regardless of constraints, while a specific constraint handling
strategy or diversity generating operators would be needed for the others. And indeed, C-
TAEA was better at solving DAS-CMOP3_12 and MW11.

Finally, an additional specificity of MODAct problems is their high number of constraints.
Figure 3.9(A) represents the relative share of solutions from the random samplesℒ grouped
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Figure 3.8: Color-maps of the normalized constraint violation values as a function of the
objective values based on the random samples in ℒ for CT3, CF7, DAS-CMOP3_12 and
MW11with their respective (best-known or true) Pareto front in red dots. For the generation
of the color-map, the constraint violation values of points very close to each others in the
objective space are aggregated using the lowest value

by number of simultaneously violated constraints for all the investigated problems with
more than two constraints. The results suggest that MODAct problems are heavily con-
strained and have at least 50% of the search space where at least two constraints are simul-
taneously violated, or even at least three for themore challenging problems. For these levels,
up to five constraints can be violated simultaneously in a non negligible part of the search
space.

With that respect, the car-side impact problem is comparable to problems with constraint
level 1. The search space of the water problem, despite its six constraints, is mostly uncon-
strained and when constrained, there is only one violated constraint. DAS-CMOP problems
have 11 or 7 constraints most of which, however, are not simultaneously violated. The ex-
ceptions are DAS-CMOP problems with triplet 12, which have up to three simultaneous
violations. MW problems have less constraints, but nonetheless, MW10 and MW11 show
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Figure 3.9: (A)Relative share of samples fromℒ and (B) average share of evaluated solutions
byNSGA-II orNSGA-III by number of simultaneously violated constraints for all considered
problems with more than two constraints

two violated constraints throughout the samples.

This analysis is based on the whole search space and is therefore not necessarily represen-
tative of what an optimizer would encounter during its search. Figure 3.9(B) shows the
average share of simultaneously violated constraints encountered during the optimizations
performed by NSGA-II/III. Following the results reported by Tanabe and Oyama [173], only
a small fraction of the generated solutions for the car-side impact and water problems—
about 5.4% and 7.0% respectively—yield one or more simultaneously violated constraints.
While the number is similar to what is shown in Figure 3.9(A) for the water problem (8.1%),
the difference is significant for the car-side impact problem (80%) and suggests that in prac-
tice, not all constraints are as critical as expected.

This reduction is also observed to a more limited extent for the other problems. Yet, three
and more simultaneous constraint violation have only been encountered onMODAct prob-
lems with constraint levels 3 and 4 and their share still represents 5-10%. This is a key and
unique feature algorithms have to be able to deal with.

3.6 Concluding remarks

3.6.1 Key messages

In this chapter, the design problem introduced in Chapter 2 has been used to create a set
of 20 constrained multiobjective optimization problems, which are representative of typical
mechanical design problems. The set is built around combinations of up to five objectives
and four levels of constraints, which, compared to existing test suites, puts more focus on
constraints.
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In order to study these problems, an extended constraint landscape analysis approach that
can be applied to CMOPs has been introduced. In particular, three new metrics (nRFB×,
PFd and PFcv) have been defined and complement two existing ones (FsR andRFB×). These
allow a numerical investigation of the characteristics of problems in a black-box manner.

Through this approach and through a convergence study with three algorithms (NSGA-
II, NSGA-III and C-TAEA), MODAct has been compared to existing benchmark problems:
CTP, CF, car-side impact, water, MW and selected DAS-CMOP. The results lead to these
remarks:

• The convergence study shows that the convergence quality decreases for MODAct
problems as constraints are added irrespectively of the used algorithm. For the tight-
est constraints, getting a front near the best-known Pareto front becomes unlikely,
suggesting that MODAct does cover various levels of complexity.

• In terms of algorithm selection, while C-TAEA should be preferred on many bench-
mark problems from literature, NSGA-II or NSGA-III perform better on the newly
introduced problems.

• Many problems have a very small FsR, irrespectively of their ease of optimization.

• Different signatures in the PFd-PFcv plane have been identified and could represent
different optimizations challenges: spreading the solutions along the Pareto front,
sampling feasible candidates or converging to the optima. These might not all be af-
fected by the constraints though.

• The analysis of the number of simultaneously violated constraints highlights the key
role constraints in MODAct. In particular, many generated solutions violate more
than one constraint.

Thefinding that neitherNSGA-II/III andC-TAEAperformwell enoughon these constrained
mechanical design problems is a clear motivation to further investigate constraint handling
strategies taking into account severe constraints and their combination, and this will be the
focus of the next chapter of this thesis. In addition, theMODAct test suite should help other
researcher jump into this important topic to further improve multiobjective optimizers, in
particular for mechanical design applications.

3.6.2 Creating variants of the proposed MODAct instances

The potential of MODAct exceeds the problems presented in this chapter. Once optimizers
and their constraint handling strategies are capable of performing reliably on the newly
introduced 20 problems, further benchmark problem can be generated. There are numerous
options to do so, both withinMODAct or by extending it. An easy first exploration would be
the analysis of the number of stages. By looking for actuators with four or five gear stages,
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not only is the search space increased, but also the constraints themselves can becomemore
complex, e.g., more gears need to fit in the same volume. Other changes can be made on
the considered operating points or new combinations of objectives would result in different
Pareto front shapes. Finally, constraints from the original framework could be ported to
MODAct and add additional constraint levels.
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Wo ist nun meinWissen gegen dies Wirrsal?
Wo sind meine Runen gegen dies Rätsel?

Brünnhilde (Götterdämmerung, R. Wagner) 4
An Improved Constraint Handling

Strategy: cEpsilon

The formal definition of appropriate benchmark problems does not solve the pre-
viously reported core issue of performance of state-of-the-art algorithms. They
do however offer a way for a standardized evaluation of existing methods and
the development of new ones that may yield better performance for the type of

problems of interest in this work and for mechanical design in general.

While there are algorithms specifically designed to solve constrained multiobjective opti-
mization problems (CMOPs)—e.g., C-TAEA [105] used in Chapter 3)—most evolutionary
algorithms (EAs) use so-called constraint handling strategies (CHSs) that are added to ex-
isting algorithms to handle the constraints. Typically, these CHSs change the ordering of
solutions in the mating or the selection phase of EAs, but constraint-aware variation opera-
tors also exist [122].

In multiobjective optimization, algorithms need to balance between convergence (finding
optimal solutions) and diversity (finding solutions with different trade-offs between objec-
tives) [26]. In constrained multiobjective optimization, algorithms need on top to (i) find
feasible regions, (ii) avoid getting trapped in non-optimal feasible regions, and (iii) main-
tain decision space diversity to explore the whole space.

In this chapter, existing constraint handling strategies are presented and a new method for
many-constraint problems—where ‘many-constraint’ is defined similarly to many-objective
problems: more than 3 constraints—is introduced. A total of eight methods, including the
original strategy, are implementedwithin the framework of NSGA-III [36, 87] and evaluated
on 64 benchmark problems, including 13 mechanical design problems.
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4.1 Background

4.1.1 Overview

Over the past 30 years, numerous CHSs have been proposed both for single and multiobjec-
tive optimization [122]. Many researchers have suggested their own classification, e.g., [60,
105, 122, 167, 172]. In general, classifications differ depending onwhether (i) the integration
in the algorithm, (ii) the balance between objectives and constraints, or (iii) the numerical
treatment of the constraints are considered.

There are five generic ways to integrate CHSs into algorithms [122]:

1. Penalty functionmethods embed the constraints within the objectives using a penalty
function 𝜙:

min
𝒙∈𝒮

𝒇′(𝒙) = 𝒇(𝒙) + 𝜙(𝒙) (4.1)

Common penalty functions include: feasibility indicator functions (also called death
penalty) and linear or quadratic weighted sum of constraint violations.

2. Objectivization methods add constraints as one or several additional objectives, e.g.,
IDEA [149].

3. Feasibility rules alter the ranking of solutions, e.g., constrained dominance principle
(CDP) [41], see Definition 3.5.

4. Special operators affect either the search operators themselves or come after the algo-
rithm’s original crossovers andmutations as ‘repair’ operators. They aim at easing the
generation of valid solutions or repairing infeasible solutions by moving them to the
feasible space [156].

5. Ensembles of techniques leverage multiple techniques to try to outperform any single
approach, e.g., [116].

Penalty function and objectivization methods are often the easiest to implement and the
first, in particular, is oftenused due to simplicity. There are however several pitfalls. Through
their transformation of the fitness landscape, penalty functions can generate problems that
are harder to solve. So, the effectiveness of these methods strongly depends on the appro-
priate selection of penalty function andweights, which is difficult [24, 152]. Adaptivemeth-
ods address these issues [24, 89, 198], but most of them are not available as out-of-the-box
packages. Objectivization can also significantly increase the difficulty of problems [54, 84].
Feasibility rules are also quite straight-forward to implement and in particular, CDP is at the
core of many common algorithms (e.g., NSGA-II [37] andNSGA-III [36, 87]). Other feasibil-
ity rules include stochastic ranking (SR) [61, 155], a large collection of 𝜖 constraint-handling
methods [5, 49, 167, 171], or the angle-based constrained dominance principle [52].

The latter aim at softening the ‘feasibility-first’ paradigm of the constrained dominance by
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accepting certain constraint violations: randomly in SR or using a relaxation threshold 𝜖.
Indeed, when feasible solutions are systematically preferred over infeasible solutions, al-
gorithms tend to be pushed to feasible areas faster, but can get trapped in non-optimal ar-
eas. Further, it is not uncommon for optimal solutions to lie on the boundaries of feasible
space—in particular for mechanical system, it is expected that at least some constraints are
so-called active. By systematically discarding infeasible solutions, their information is lost.
On the contrary, 𝜖-constrained handling methods preserve solutions within 𝜖 of the feasible
space, and by progressively reducing the gap, hope to more easily find solutions lying close
to the feasibility border. These different approaches lead to a second classification:

1. feasibility-driven: feasible solutions are always preferred;

2. optimality-driven: better solutions are always preferred;

3. balanced: objectives and constraints are both considered.

In addition, algorithms can follow fixed or dynamic strategies. NSGA-II or NSGA-III use for
example a fixed feasibility-driven approach, while the push and pull framework [53] has an
optimality-driven phase, followed by a balanced phase and finally a feasibility-driven phase.
The 𝜖-constrained methods follow a balanced first and then feasibility-driven phase.

Finally, there are multiple ways for constraints to be numerically treated by an algorithm—
i.e., the measure of the ‘amount’ of violation:

1. the constraint violation 𝐶𝑉, see Eq. (3.1);

2. the number of active constraints;

3. the rank of the solutions in terms of constraints;

4. combinations of the above.

While the use of the 𝐶𝑉 value is most common, alternate approaches exist [24]. Solely re-
lying on the 𝐶𝑉 can indeed induce numerical biases if multiple constraints with different
scales are combined. The multiple constraint ranking method [60] relies for example on
ranking the solutions in terms of constraints and using the obtained rank as the fitness.
Others proposed alternate 𝐶𝑉 definitions, e.g., Asafuddoula et al. [5] suggest the use of 𝐶𝑉 ′

which combines 𝐶𝑉 and number of active constraints:

𝐶𝑉 ′(𝒙) = 𝑚1

𝑝

∑
𝑗=1

⟨𝑔𝑗(𝒙)⟩ + 𝑚2

𝑞

∑
𝑘=1

|ℎ𝑘(𝒙)| (4.2)

where𝑚1 and𝑚2 are the number of active inequality and equality constraints.

While CDP remains the most used strategy today, it is not due to a lack of alternatives, but
rather thanks to its parameterless nature and the lack of readily available implementations
and systematical performance review also on applied optimization problems.
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4.1.2 Selected 𝜖 constraint-handling methods

Following the observed challenges of CDP in Chapter 3, more balanced approaches are
sought to solve MODAct problems. In particular, 𝜖-constrained methods are thought to be
effective for highly constrained problems [50], since they introduce a relaxation scheme. 𝜖-
constrained methods are also common in operational research—e.g., in NOMADS [6, 101]
where it is called barrier method. In this section, selected 𝜖-constrained methods for EA are
detailed.

Takahama and Sakai [171] introduced the original 𝜖-constrained method (𝐸) by modifying
CDP to have some tolerance 𝜖:

Definition 4.1. Given two solutions 𝒙1 and 𝒙2 and for any 𝜖 ≥ 0, 𝒙1 is said to 𝜖-constrained-
dominate 𝒙2, written 𝒙1 ⪯𝜖 𝒙2, if:

𝒙1 ⪯𝜖 𝒙2 ⇔
⎧⎪
⎨⎪
⎩

𝒙1 ⪯ 𝒙2 if 𝐶𝑉(𝒙1), 𝐶𝑉(𝒙2) ≤ 𝜖
𝒙1 ⪯ 𝒙2 if 𝐶𝑉(𝒙1) = 𝐶𝑉(𝒙2)
𝐶𝑉(𝒙1) < 𝐶𝑉(𝒙2) otherwise

(4.3)

where ⪯ is the Pareto dominance operator, recall Definition 1.1.

Definition 4.1 can be seen as a generalization of CDP, sincewhen 𝜖 = 0, they are equivalent1.
In addition, Takahama and Sakai [171] suggest that 𝜖 should be updated at each generation
using the following scheme.

𝜖(0) = 𝐶𝑉(𝒙𝜃) (4.4)

𝜖(𝑡) = {
𝜖(0)(1 − 𝑡

𝑇𝑐
)
𝑐𝑝

if 0 < 𝑡 < 𝑇𝑐

0 otherwise
(4.5)

where𝒙𝜃 is the top 𝜃th individual of the initial population, 𝑐𝑝 ∈ [2, 10] a parameter to control
the reduction rate, 𝑇𝑐 the cut-off generation after which 𝜖 = 0 and 𝑡 the current generation.
𝜃 represents the number of solutions considered valid initially, and is set as a fraction of the
population size 𝜇 of the used algorithm: 𝜃 = ⌊𝛾𝜇⌋. Similarly, 𝑇𝑐 is set as a fraction of the
total number of generations 𝑇max: 𝑇𝑐 = 𝜆𝑇max.

With this scheme, 𝜖 is strictly decreasing until it reaches 0 at 𝑇𝑐. Its general shape and the
effects of 𝑐𝑝 and 𝑇𝑐 are illustrated in Figure 4.1. Its initial value depends on the initial pop-
ulation and 𝜃 allows to select the proportion of the population that should be considered
‘feasible’.

1There is a small difference for two infeasible solutions with the same constraint violation level.
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Figure 4.1: Evolution of 𝜖 along generations for different parameter values.

The challenges of thismethod are the high number of parameters, which need to be adapted
for each problem and the strict decay, which could trap the algorithm in sub-optimal feasible
area. To address these shortcomings, Asafuddoula et al. [5] proposed the adaptive epsilon
method (𝑎𝐸). It uses the same dominance relation (4.3), but the acceptable violation thresh-
old is set based on the feasability ratio (FsR)—see Definition 3.1—of the current population
and its average 𝐶𝑉 ′:

𝜖 = 𝐶𝑉 ′
meanFsR (4.6)

That way the threshold is set to 0 for either totally feasible (𝐶𝑉 ′ = 0) or infeasible pop-
ulations (FsR = 0). In between, FsR adjusts the part of the population with acceptable
constraint violation.

Fan et al. [49] proposed their own improvement of the originalmethod that includes amech-
anism to dynamically increase the value of 𝜖 for given situations. Their improved epsilon
method (𝑖𝐸) uses the same dominance relation (4.3), but the 𝜖 update scheme is changed:

𝜖(0) = 𝐶𝑉(𝒙𝜃) (4.7)

𝜖(𝑡) =
⎧⎪
⎨⎪
⎩

𝜖(0)(1 − 𝑡

𝑇𝑐
) if FsR < 𝛼 and 0 < 𝑡 < 𝑇𝑐

(1 + 𝜏)𝐶𝑉max if FsR ≥ 𝛼 and 0 < 𝑡 < 𝑇𝑐
0 otherwise

(4.8)

where 𝐶𝑉max is the maximum 𝐶𝑉 value seen during an optimization, and 𝜏, 𝛼 ∈ [0, 1] are
two additional parameters that control when and by how much 𝜖 increases.
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In 2020, Stanovov et al. [167] proposedfive newvariants, tested on single-objective optimiza-
tion problems so far. Two of these variants can be used in a multiobjective setting. These
methods are ‘population-based’: the 𝜖 value is set at each generation based on the CV values
of the current population and instead, the parameter 𝜃 is decreased iteratively. Their first
method (𝑝𝐸) still keeps the dominance relation (4.3), but changes the update of 𝜖 to:

𝜃(𝑡) = ⌊𝛾𝜇(1 − 𝑡
𝑇𝑐
)
𝑐𝑝
⌋ (4.9)

𝜖(𝑡) = {
𝐶𝑉(𝒙𝜃(𝑡)) if 𝑡 < 𝑇𝑐
0 otherwise

(4.10)

Their second method (𝑖𝑝𝐸) introduces a per-constraint 𝜖𝑗 value that is controlled similarly
to 𝑝𝐸, assuming that the optimization problem only has inequality constraints2.

𝜖𝑗(𝑡) = {
𝑔𝑗 (𝒙𝜃(𝑡)) if 𝑡 < 𝑇𝑐
0 otherwise

(4.11)

Moving to a per-constraint view affects the dominance relation since the individual con-
straints 𝑔𝑗 need now to be compared against their respective 𝜖𝑗.

𝒙1 ⪯𝜖,𝑖𝑝 𝒙2 ⇔
⎧⎪
⎨⎪
⎩

𝒙1 ⪯ 𝒙2 if 𝐶𝑉𝜖(𝒙1), 𝐶𝑉𝜖(𝒙2) ≤ ∑𝑝
𝑗=1 𝜖𝑗

𝒙1 ⪯ 𝒙2 if 𝐶𝑉𝜖(𝒙1) = 𝐶𝑉𝜖(𝒙2)
𝐶𝑉𝜖(𝒙1) < 𝐶𝑉𝜖(𝒙2) otherwise

(4.12)

where 𝐶𝑉𝜖 is calculated using these equations:

𝜙𝜖𝑗 (𝒙) = {
𝑔𝑗(𝒙) if 𝑔𝑗(𝒙) > 𝜖𝑗
0 otherwise

(4.13)

𝐶𝑉𝜖(𝒙) =
𝑝

∑
𝑗=1

𝜙𝜖𝑗 (𝒙) (4.14)

With this approach, Stanovov et al. [167] make a first step to consider inequality constraints
individually, but they keep some sort of ‘group-level’ 𝜖 formed by the sum of all individual
𝜖𝑗.

2In practice, this is not a strong assumption since strict equality constraints are difficult to implement numeri-
cally and are thus transformed into inequality constraints: |ℎ𝑘(𝒙)| − 𝛿 ≤ 0, where 𝛿 is a small number.
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4.2 Adapted per-constraint epsilon values

Per-constraint relaxation has existed for many years in non-stochastic optimizers [6, 101].
The concept itself is, however, of great interest in the case of problems with many con-
straints. Indeed, when CMOPs have multiple simultaneously active constraints—and of
potentially different scales—the 𝐶𝑉 value can become blurry. A reduction of the CV value
could actually hide increased violations of other constraints. Thus, the 𝜖-constrained meth-
ods acting on the 𝐶𝑉 cannot guarantee that all constraints effectively improve at each iter-
ation.

A new strategy called cEpsilon (𝑐𝐸) is introduced here to address this shortcoming. The
update scheme for 𝜖𝑗 is a per-constraint transposition of the original 𝜖-constrained method.

𝜖𝑗(0) = 𝑔𝑗(𝒙𝜃) (4.15)

𝜖𝑗(𝑡) = {
𝜖𝑗(0)(1 −

𝑡

𝑇𝑐
)
𝑐𝑝

if 0 < 𝑡 < 𝑇𝑐

0 otherwise
(4.16)

Using the same 𝐶𝑉𝜖 as 𝑖𝑝𝐸, the preference relation is, however, adapted to be stricter:

𝒙1 ⪯𝜖,𝑐 𝒙2 ⇔
⎧⎪
⎨⎪
⎩

𝒙1 ⪯ 𝒙2 if 𝐶𝑉𝜖(𝒙1), 𝐶𝑉𝜖(𝒙2) = 0
𝒙1 ⪯ 𝒙2 if 𝐶𝑉𝜖(𝒙1) = 𝐶𝑉𝜖(𝒙2)
𝐶𝑉𝜖(𝒙1) < 𝐶𝑉𝜖(𝒙2) otherwise

(4.17)

The proposedmethod guarantees that at each step the thresholds for all constraints are low-
ered and the requirements are effectively tightened. Thus, thismethod generates a relatively
high selection pressure towards finding good feasible regions, while offering some tolerance
adjusted to the scale of each constraint. In addition, it is possible to have per-constraint 𝜃, 𝑐𝑝
and 𝑇𝑐 parameters, allowing a very fine control over each individual constraint. The down-
side, however, is the steep increase in the number of parameters. So, unless domain specific
knowledge is available that can guide the selection of the parameters, this approach remains
quite theoretical.

4.3 Methods of the numerical investigations

A large-scale investigation is conducted to evaluate the performance of the 𝜖-constrained
methods previously presented along with CDP and SR. To limit the impact of additional
effects, a single base algorithm is chosen and only the CHS is changed. NSGA-III [36, 87] is
selected. NSGA-III is a reference-direction based many-objective optimizer. In the context
of this work, it offers two important advantages:

1. NSGA-III allows a parallel evaluation of the objective and constraint functions, which
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is important in the context of ‘real-world’ benchmark problems such as MODAct.

2. Decomposition-based algorithms strugglewith certain Pareto front shapes [85], which,
from the performance of C-TAEA, seems to apply to MODAct problems.

This section clarifies the integration of the considered CHSs and details the methods used
for the numerical investigation.

4.3.1 Integration within NSGA-III

The handling of constraints by NSGA-III is described by Jain and Deb [87]. Compared to
the algorithm for unconstrained problems, two parts are adapted:

1. Modification of the non-dominated sorting procedure to use CDP, effectively sort-
ing the population by 𝐶𝑉 value and additionally ranking feasible solutions into non-
dominated fronts.

2. Modification of parent selection procedure, replacing the random parent selection by
a binary tournament preferring less constrained solutions.

This forms the original CHS for NSGA-III and is referred to as the CDPmethod. The imple-
mentation of NSGA-III within pymoo [9] is used and the additional 𝑆𝑅, 𝐸, 𝑖𝐸, 𝑝𝐸, 𝑖𝑝𝐸, and
𝑐𝐸 methods have been implemented to fit into the same frame. Only an initialization and
an update steps have been added for the 𝜖-constrained methods, see Algorithm 4.1.

Algorithm 4.1 Overview of NSGA-III with an 𝜖 update scheme
1: 𝑃0 ← InitializePopulation
2: InitializeCHS(𝑃0)
3: 𝑡 ← 0
4: while 𝑡 < 𝑇max do
5: 𝑀𝑡 ← SelectParents(𝑃𝑡)
6: 𝑄𝑡 ← Variate(𝑀𝑡)
7: 𝑅𝑡 ← 𝑃𝑡 ∪ 𝑄𝑡
8: 𝑃𝑡+1 ← Select(𝑅𝑡)
9: UpdateCHS(𝑃𝑡+1)
10: 𝑡 ← 𝑡 + 1

return 𝑃𝑡

Consequently, the non-dominated sorting procedure is changed to follow the preference
relation of eachmethod. The binary tournament is also adapted to use the appropriate pref-
erence relation to discriminate between “feasible” and “infeasible” solutions, followed by
random selection if both parents fit in the same category.

Finally, a stochastic ranking 𝑆𝑅method is also implemented. In the 𝑆𝑅method, infeasible
solutions have a probability 𝑝𝑓 to be treated as feasible solutions [61, 155]. In practice, this
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is achieved by randomly setting the𝐶𝑉 value of infeasible solutions to 0 with a probability of
𝑝𝑓 and then applying the original procedure of NSGA-III. In the binary tournament, this is
repeated at every tournament, while it is done only once prior to the normal non-dominated
sorting. Thus, this implementation slightly deviates from the original ‘bubble-sort’ proce-
dure [155], to benefit from the fast sorting algorithm.

4.3.2 Experimental conditions and data analysis

Building on the results from Chapter 3, the following benchmark problems are selected:
C3DTLZ4 [87], DAS-CMOP with complexity level 9, 10, 11, and 12 [51], and MW [112]. In
addition, 12 problems from MODAct as well as the windturbine design problem proposed
at the 3rd Evolutionary Computation Competition by the Japanese Society of Evolutionary
Computation [91] are included. In total, the various CHSswill be tested on 64 problemswith
different properties, summarized in Table 4.1, which also indicates the number of optimiza-
tion generations 𝑇max performed for each problem. 𝑇max has been adapted to the complexity
of the various problems. The only exception is the Windturbine problem where each ob-
jective and constraint evaluation takes about 3 s and the number of evaluations had to be
restricted due to time considerations3.

Each optimization (pair of problem and CHS) is executed 30 times. The parameters for
NSGA-III are specified in Table 4.2 and follow common practice for this algorithm. The
reference directions are generated using Das and Dennis’ approach [33]. As recommended
by Brockhoff et al. [12], an unbounded external archive (UEA) is used to collect all feasible
non-dominated solutions generated through an optimization run.

The hypervolume indicator [204] is used to evaluate the convergence and diversity of the
obtained archive of each run, and is calculated by the implementations of the Walking-
Fish Group [28, 189]4. The best-known Pareto fronts of each problem, as provided by their
authors or obtained by aggregating all the solutions from the UEAs, are used to estimate the
ideal 𝒛∗ andnadir 𝒛nad points. They serve then to normalize the obtained fronts and calculate
the hypervolume with a common reference point 𝒓 = (1.1, … , 1.1)𝑇. In this context, where
no cross problem comparison is required, there is no need to go all the way to the relative
hypervolume error, Eq. (3.10).

For the statistical analysis of the difference between the CHSs, the non-parametric Kruskal-
Wallis test [98] is applied with the null hypothesis that all CHSs perform equally well on a
given problem with a confidence interval of 99%. If the null hypothesis is rejected, Mann-
Whitney U tests [119] with Holm’s correction for family-wise error control [73] are applied
with a confidence interval of 99% to perform the multiple pairwise comparisons. The statis-
tics are calculated with pingouin [182].

3With a total budget of 42 000 per optimization, this experiment already greatly exceeds the budget of 10 000 of
the competition.
4A python interface has been developed and is available at: https://github.com/epfl-lamd/hvwfg
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Table 4.1: Number of objectives, decision variables and constraints of the selected bench-
mark CMOPs and the defined number of generations for each problem.

𝑚 𝑛 𝑝 𝑞 𝑇max
C3DTLZ4 3 12 3 0 750

CS1, CT1 2 20 7 0 1500
CS2, CT2 2 20 8 0 1500
CS3, CT3 2 20 10 0 1500
CS4, CT4 2 20 9 0 1500
CTS1 3 20 7 0 1500
CTS2 3 20 8 0 1500
CTS3 3 20 10 0 1500
CTS4 3 20 9 0 1500

MW1, MW2, MW6, MW9 2 15 1 0 600
MW3, MW7, MW12, MW13 2 15 2 0 600
MW4, MW8, MW14 3 15 1 0 600
MW5, MW10 2 15 3 0 600
MW11 2 15 4 0 600

DAS-CMOP{1..6}_9 2 30 11 0 1500
DAS-CMOP{1..6}_10 2 30 11 0 1500
DAS-CMOP{1..6}_11 2 30 11 0 1500
DAS-CMOP{1..6}_12 2 30 11 0 1500
DAS-CMOP{7..9}_9 3 30 7 0 1500
DAS-CMOP{7..9}_10 3 30 7 0 1500
DAS-CMOP{7..9}_11 3 30 7 0 1500
DAS-CMOP{7..9}_12 3 30 7 0 1500

Windturbine 5 32 22 0 200

Table 4.2: Parameters used to configure each run of NSGA-III.

Parameter NSGA-III

Population size 𝜇 210

Number of function (i.e., solution) evaluations 𝜇 ⋅ 𝑇max
Mutation 𝜂𝑚 20
Mutation rate 1/𝑛
Crossover 𝜂𝑐 20
Crossover probability (CXPB) 0.9

86



4.4 Results

Table 4.3: Parameters and their range for the parameter tuning configuration of irace.

Parameter Accepted value Condition

CHS {𝐸, 𝑖𝐸, 𝑝𝐸, 𝑖𝑝𝐸, 𝑐𝐸, 𝑆𝑅} -
𝑝𝑓 [0, 1] Only for 𝑆𝑅
𝜆 [0, 1] Except for 𝑆𝑅
𝑐𝑝 [2, 10] Except for 𝑆𝑅
𝛾 [0, 1] Except for 𝑆𝑅
𝛼 [0, 1] Only for 𝑖𝐸
𝜏 [0, 1] Only for 𝑖𝐸

4.3.3 Parameter tuning setup

Since most considered CHSs have many parameters, a parameter tuning step—also called
automatic algorithm configuration or meta-optimization—is performed using irace [110].
Irace is configured to search for the CHS and its parameters that maximize the hypervol-
ume of the obtained Pareto front following the procedure suggested for multiobjective evo-
lutionary algorithms (MOEAs) [108]. The acceptable parameter values are summarized in
Table 4.3. To consider only the effects of the CHS, only those parameters are considered and
the parameters of NSGA-III are excluded. The tuning procedure is executed repeatedly for
a maximum of 5000 experiments per run and for the different problem families—MODAct,
MWandDAS-CMOPgrouped by complexity level. Due to time limitations, theWindturbine
problem has not been used for tuning.

4.4 Results

4.4.1 Automated tuning of parameters

The best and second-best configuration of each run of irace have been collected. Similar
configurations were manually aggregated. In the end, a total of 10 configurations were se-
lected for the six methods with parameters. Including the two parameterless methods (CDP
and 𝑎𝐸), 12 configurations are to be evaluated, see Table 4.4. Interestingly, the tuning pro-
cess suggested the stochastic ranking method with 𝑝𝑓 = 1 (𝑆𝑅2), which is equivalent to
solving the unconstrained problem, despite the fact that only feasible solutions contribute
to the hypervolume.

4.4.2 Performance comparison

With 12 configurations and 64 problems, a total of 23 040 optimizations have been per-
formed using the school’s high power computing clusters. The median achieved hypervol-
ume and the interquartile range (IQR) for each configuration on each problem is reported
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Table 4.4: List of the considered CHSs with the parameters of the various configurations
obtained through the tuning procedure.

Name Symbol Parameters

Constrained dominance principle CDP –
Adaptive epsilon 𝑎𝐸 –
Stochastic ranking 𝑆𝑅1 𝑝𝑓 = 0.36

𝑆𝑅2 𝑝𝑓 = 1
Epsilon 𝐸1 𝜆 = 0.18, 𝑐𝑝 = 8.76, 𝛾 = 0.72
Improved epsilon 𝑖𝐸1 𝜆 = 0.26, 𝑐𝑝 = 9.51, 𝛾 = 0.66, 𝛼 = 0.52, 𝜏 = 0.8

𝑖𝐸2 𝜆 = 0.4, 𝑐𝑝 = 8.11, 𝛾 = 0.6, 𝛼 = 0.57, 𝜏 = 0.66
Population epsilon 𝑝𝐸1 𝜆 = 0.73, 𝑐𝑝 = 6.96, 𝛾 = 0.87

𝑝𝐸2 𝜆 = 0.57, 𝑐𝑝 = 7.55, 𝛾 = 0.38
Individual population epsilon 𝑖𝑝𝐸1 𝜆 = 0.93, 𝑐𝑝 = 3.19, 𝛾 = 0.23
Per-constraint Epsilon 𝑐𝐸1 𝜆 = 0.11, 𝑐𝑝 = 9.11, 𝛾 = 0.66

𝑐𝐸2 𝜆 = 0.5, 𝑐𝑝 = 4.52, 𝛾 = 0.59

in Table 4.5. Without statistical considerations, the following trends are visible:

1. CDP seems best for the Windturbine design problem;

2. 𝑐𝐸 seems most interesting for MODAct problems;

3. 𝑖𝐸 performs best on C3DTLZ4 and MW problems;

4. 𝑆𝑅 seems most suitable for DAS-CMOP problems.

In particular, the unconstrained optimizer 𝑆𝑅2 seems to be the most suitable method for
DAS-CMOP with complexity level 11, while it fails to find feasible and interesting solutions
formost optimization runs on theWindturbine andMODAct problems. There are few other
singularities:

1. None of the 360 optimizations has been able to find any feasible solutions to DAS-
CMOP1_12.

2. Some methods have not been able to find any feasible solutions for problems CS3,
DAS-CMOP3_12, and DAS-CMOP6_12.

3. Excluding DAS-CMOP1_12, 𝑖𝑝𝐸 and 𝑐𝐸 are the only methods that have found solu-
tions for all other problems.

The numerical results, however, also suggest that multiple methods have similar perfor-
mance. The results of the statistical analysis are reported in Table 4.6 by indicating how
many times a given strategy was better/equal/worse than others for each problem. For eight
problems—namely DAS-CMOP1_11, DAS-CMOP1_12, DAS-CMOP4_9, DAS-CMOP5_9,
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DAS-CMOP7_11, DAS-CMOP8_11, MW5, and MW6—no significant difference between
themethods can be detected. Additionally, for 15 problems, there are three configurations or
more that share the best performance. This leaves 41 problems, for which one or two con-
figurations are best. The statistical analysis mostly confirms the previously stated trends,
expect for MW problems where 𝐸1 instead of 𝑖𝐸1 is more commonly among the bests.

To obtain a global view of the results, the methods are ranked from the best to the worst
using these statistical outcomes. A dense ranking approach is used and ties are given the
same rank. With the ranks, family-wise means are calculated. The resulting ranks are re-
ported in Table 4.7. Mean ranks offer a chance to identify versatile methods that have good
performance over several individual problems and the closer to one the better the expected
performance.

Across all problems, the configuration 𝑐𝐸1 followed by 𝑐𝐸2 seem to be the best compromises.
However, the mean overall ranks of all algorithms are quite close to each other, except for
𝑆𝑅2, which seems performing well only on DAS-CMOP with complexity level 11. 𝑆𝑅1 has
overall the second worst rank and performs best only on DAS-CMOP with complexity level
10. The original𝐸1 performs best onMW.The 𝑖𝐸method obtains the best ranks onC3DTLZ4
andDAS-CMOPwith complexity level 12. The population-basedmethods by Stanovov et al.
[167] only obtain good ranks on DAS-CMOP with complexity level 9. Their per-constraint
method does not perform well for any problem family, although it shares its main concept
with 𝑐𝐸. In particular, its performance is relatively poor on MODAct. There, the newly
proposed 𝑐𝐸 and its configuration 𝑐𝐸2 obtains the best rank. Finally, the promise of the
parameterless 𝑎𝐸method is not delivered and its performance is disappointing.

In order to visualize the practical differences, the final populations achieving the best and
themedianhypervolume for four configurations (𝑐𝐸1, 𝑐𝐸2, 𝑖𝐸1 and𝑝𝐸2) are compared against
the best-known Pareto fronts for two difficult problems from MODAct: CS4 and CT4, Fig-
ure 4.2. Key observations are:

1. Both 𝑐𝐸 configurations have good convergence and spread forCT4 even for themedian
case, while 𝑐𝐸2 is clearly outperforming all others on CS4. Fronts obtained by 𝑐𝐸1
remain however of engineering quality.

2. The fronts obtained by 𝑖𝐸1 are of very limited use to engineers. These results suggest
that the algorithm got trapped on all runs in a sub-optimal feasible region (CS4) or
was not able to maintain sufficient diversity (CT4).

3. The best front obtained by 𝑖𝑝𝐸1 could be of engineering value. Yet, the outcome seems
not sufficiently reliable.

Some insights into themechanisms at play in the differentmethods can be gained by looking
at their respective 𝜖 values. Figure 4.3 shows the mean 𝜖 value for 𝐸1, 𝑐𝐸2, 𝑖𝐸1, 𝑖𝑝𝐸1, and 𝑝𝐸2
along generations when optimizing CS4 and CT4. While by definition, 𝜖 could increase
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4.4 Results

Table 4.6: Results from the statistical comparison procedure summarizing for each method
and problem how many times the method performed better/equal/worse than the others.
For problems where the null hypothesis of the Kruskal-Wallis test could not be rejected, all
methods are considered equivalent. Best performing methods are highlighted in gray.

CDP 𝑎𝐸 𝐸1 𝑐𝐸1 𝑐𝐸2 𝑖𝑝𝐸1 𝑖𝐸1 𝑖𝐸2 𝑝𝐸1 𝑝𝐸2 𝑆𝑅1 𝑆𝑅2

C3DTLZ4 3/5/3 3/5/3 9/1/1 3/5/3 9/1/1 3/5/3 1/1/9 10/1/0 2/5/4 3/5/3 3/0/8 0/0/11

CS1 1/9/1 2/9/0 1/10/0 2/9/0 2/8/1 1/9/1 2/9/0 2/9/0 6/5/0 1/9/1 1/4/6 0/0/11
CS2 2/9/0 2/9/0 2/9/0 2/9/0 2/9/0 1/10/0 2/9/0 2/9/0 2/9/0 1/10/0 1/2/8 0/0/11
CS3 4/5/2 4/5/2 0/3/8 4/5/2 10/1/0 4/5/2 0/3/8 0/3/8 10/1/0 4/5/2 4/5/2 0/3/8
CS4 2/7/2 3/6/2 1/5/5 10/0/1 11/0/0 2/7/2 2/7/2 3/6/2 1/1/9 3/6/2 2/7/2 0/0/11
CT1 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 0/0/11
CT2 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 1/9/1 1/10/0 2/9/0 1/10/0 0/0/11
CT3 5/6/0 5/6/0 1/3/7 5/6/0 5/6/0 4/7/0 1/3/7 1/2/8 2/4/5 5/6/0 4/7/0 0/0/11
CT4 5/4/2 5/4/2 1/2/8 10/0/1 11/0/0 5/4/2 1/2/8 1/2/8 4/0/7 5/4/2 5/4/2 0/0/11
CTS1 6/5/0 7/4/0 1/4/6 7/4/0 7/4/0 7/4/0 1/2/8 1/2/8 3/2/6 6/1/4 3/2/6 0/0/11
CTS2 6/3/2 6/5/0 2/3/6 8/3/0 8/3/0 6/5/0 1/1/9 1/2/8 3/2/6 6/3/2 3/2/6 0/0/11
CTS3 1/10/0 1/10/0 1/8/2 7/4/0 7/4/0 1/10/0 1/8/2 1/8/2 1/8/2 1/8/2 1/8/2 0/0/11
CTS4 1/5/5 1/5/5 7/3/1 7/3/1 11/0/0 1/4/6 7/3/1 7/3/1 3/3/5 1/4/6 1/5/5 0/0/11

DAS-CMOP1_9 0/11/0 1/10/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 1/10/0 1/10/0 1/10/0 0/7/4
DAS-CMOP1_10 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/10/1 0/11/0 0/11/0 2/9/0 0/10/1
DAS-CMOP1_11 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0
DAS-CMOP1_12 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0
DAS-CMOP2_9 1/10/0 1/10/0 1/10/0 0/11/0 0/11/0 1/10/0 0/11/0 0/11/0 1/10/0 0/11/0 1/10/0 0/5/6
DAS-CMOP2_10 0/10/1 0/9/2 0/10/1 2/9/0 0/10/1 0/10/1 0/10/1 0/10/1 0/10/1 0/10/1 10/1/0 0/9/2
DAS-CMOP2_11 0/10/1 0/10/1 0/10/1 0/10/1 0/10/1 0/10/1 0/10/1 0/10/1 0/10/1 0/10/1 0/10/1 11/0/0
DAS-CMOP2_12 0/10/1 0/9/2 0/11/0 0/11/0 0/11/0 0/10/1 1/10/0 6/5/0 0/11/0 0/10/1 0/10/1 0/10/1
DAS-CMOP3_9 5/6/0 3/8/0 2/6/3 2/9/0 0/2/9 5/6/0 0/5/6 0/2/9 4/7/0 5/6/0 3/8/0 2/5/4
DAS-CMOP3_10 6/4/1 6/4/1 1/4/6 1/4/6 1/4/6 6/4/1 1/4/6 1/5/5 6/4/1 5/5/1 11/0/0 0/0/11
DAS-CMOP3_11 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 0/0/11
DAS-CMOP3_12 0/3/8 0/3/8 5/6/0 5/6/0 7/4/0 4/5/2 5/5/1 6/5/0 5/6/0 0/3/8 0/3/8 4/1/6
DAS-CMOP4_9 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0
DAS-CMOP4_10 6/5/0 6/5/0 1/3/7 2/6/3 1/9/1 4/7/0 1/4/6 1/5/5 3/5/3 4/7/0 7/4/0 0/0/11
DAS-CMOP4_11 0/9/2 0/9/2 0/9/2 0/9/2 0/9/2 0/9/2 0/9/2 0/9/2 0/9/2 0/9/2 10/0/1 11/0/0
DAS-CMOP4_12 0/8/3 0/8/3 0/11/0 0/8/3 0/10/1 0/8/3 10/1/0 8/2/1 0/8/3 0/8/3 0/8/3 7/2/2
DAS-CMOP5_9 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0
DAS-CMOP5_10 7/4/0 7/4/0 1/4/6 3/5/3 1/5/5 5/5/1 1/5/5 1/3/7 2/6/3 5/5/1 9/2/0 0/0/11
DAS-CMOP5_11 0/9/2 0/9/2 0/9/2 0/9/2 0/9/2 0/9/2 0/9/2 0/9/2 0/9/2 0/9/2 10/0/1 11/0/0
DAS-CMOP5_12 0/11/0 0/11/0 0/10/1 0/11/0 1/10/0 1/10/0 1/10/0 1/10/0 0/11/0 0/10/1 0/11/0 2/5/4
DAS-CMOP6_9 1/10/0 1/10/0 0/10/1 0/10/1 1/10/0 1/10/0 1/10/0 0/10/1 0/10/1 1/10/0 0/10/1 5/0/6
DAS-CMOP6_10 0/10/1 0/10/1 0/11/0 0/10/1 6/5/0 0/11/0 0/11/0 0/11/0 0/10/1 0/10/1 0/11/0 0/10/1
DAS-CMOP6_11 0/9/2 0/9/2 0/9/2 0/9/2 0/9/2 0/9/2 0/9/2 0/9/2 0/9/2 0/9/2 10/0/1 11/0/0
DAS-CMOP6_12 0/6/5 0/5/6 6/3/2 0/7/4 1/7/3 5/3/3 11/0/0 9/1/1 0/7/4 0/6/5 0/6/5 8/1/2
DAS-CMOP7_9 1/10/0 1/10/0 2/9/0 2/9/0 2/9/0 1/10/0 1/10/0 1/10/0 2/9/0 2/9/0 1/5/5 0/0/11
DAS-CMOP7_10 7/3/1 7/3/1 3/1/7 5/3/3 1/0/10 5/5/1 3/1/7 2/0/9 5/3/3 5/5/1 11/0/0 0/0/11
DAS-CMOP7_11 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0
DAS-CMOP7_12 8/3/0 8/3/0 3/1/7 5/4/2 1/1/9 5/4/2 3/1/7 1/1/9 5/3/3 5/6/0 6/5/0 0/0/11
DAS-CMOP8_9 1/10/0 2/9/0 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 2/9/0 1/10/0 1/8/2 0/0/11
DAS-CMOP8_10 5/5/1 6/4/1 3/1/7 5/4/2 1/0/10 5/5/1 3/1/7 2/0/9 5/5/1 5/5/1 11/0/0 0/0/11
DAS-CMOP8_11 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0
DAS-CMOP8_12 6/5/0 6/5/0 3/1/7 5/6/0 1/0/10 5/6/0 3/1/7 2/0/9 5/2/4 6/5/0 6/5/0 0/0/11
DAS-CMOP9_9 0/10/1 0/11/0 0/11/0 0/10/1 0/10/1 0/10/1 0/11/0 0/10/1 0/11/0 0/10/1 0/10/1 7/4/0
DAS-CMOP9_10 0/8/3 0/8/3 0/10/1 0/10/1 0/10/1 0/8/3 6/5/0 6/5/0 0/8/3 0/8/3 9/2/0 0/8/3
DAS-CMOP9_11 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 0/1/10 0/11/0
DAS-CMOP9_12 0/6/5 0/6/5 4/7/0 0/9/2 0/9/2 0/6/5 4/7/0 7/4/0 0/9/2 0/6/5 7/4/0 4/7/0

MW1 0/11/0 0/11/0 0/11/0 0/11/0 1/10/0 0/11/0 2/9/0 2/9/0 0/9/2 0/11/0 0/8/3 0/11/0
MW2 0/10/1 0/6/5 3/8/0 4/7/0 1/10/0 0/11/0 1/10/0 1/10/0 0/11/0 0/9/2 0/9/2 0/11/0
MW3 2/9/0 1/10/0 2/9/0 2/9/0 2/9/0 2/9/0 2/9/0 2/9/0 1/10/0 1/10/0 1/3/7 0/0/11
MW4 1/10/0 1/10/0 2/9/0 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 1/10/0 1/9/1 0/0/11
MW5 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0
MW6 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0 0/11/0
MW7 2/9/0 2/9/0 2/9/0 2/9/0 2/9/0 2/9/0 2/9/0 2/9/0 2/9/0 2/9/0 0/1/10 0/1/10
MW8 0/11/0 0/11/0 4/7/0 5/6/0 0/7/4 1/10/0 0/9/2 0/8/3 5/6/0 2/9/0 0/6/5 0/8/3
MW9 1/4/6 1/4/6 7/4/0 5/1/5 7/4/0 1/4/6 7/4/0 7/4/0 1/4/6 1/4/6 0/1/10 7/4/0
MW10 1/6/4 1/6/4 1/8/2 0/1/10 6/5/0 1/9/1 6/5/0 7/4/0 0/7/4 1/6/4 1/6/4 8/3/0
MW11 0/4/7 0/4/7 11/0/0 6/4/1 6/4/1 0/4/7 7/3/1 7/3/1 0/5/6 0/4/7 4/1/6 6/2/3
MW12 1/9/1 0/9/2 1/10/0 1/9/1 1/9/1 1/9/1 10/1/0 1/9/1 1/9/1 1/9/1 1/9/1 1/0/10
MW13 0/4/7 1/5/5 5/6/0 3/8/0 3/8/0 1/6/4 5/6/0 5/6/0 5/6/0 1/3/7 0/1/10 4/7/0
MW14 0/11/0 0/5/6 3/8/0 1/10/0 3/8/0 0/9/2 1/10/0 2/9/0 0/11/0 0/11/0 0/8/3 1/10/0

Windturbine 6/5/0 5/6/0 4/3/4 5/6/0 6/5/0 4/7/0 1/2/8 1/1/9 4/5/2 4/7/0 2/1/8 0/0/11
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Table 4.7: Mean rank for each CHS per problem family. Rank is dense and ties are given the
same rank (smaller is better). Best ranked CHSs are marked in bold.
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Figure 4.2: Comparison between the best andmedian final populations obtained by 𝑎𝐸, 𝑐𝐸1,
𝑐𝐸2, and 𝑖𝐸1 and the best-known Pareto fronts for CS4 and CT4.
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Figure 4.3: Evolution of the mean 𝜖 value in logarithmic scale across all optimization runs
(and if applicable, across the multiple 𝜖𝑗) for four configurations on CS4 and CT4.
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Figure 4.4: Evolution of the mean individual 𝜖𝑗 values in logarithmic scale across all opti-
mization runs with 𝑐𝐸2 and 𝑖𝑝𝐸1 of CS4 and CT4.

with 𝑖𝐸, 𝑖𝑝𝐸, and 𝑝𝐸, in practice, an increase is seen only for 𝑖𝐸1 on both problems and for
𝑖𝑝𝐸1 for CS4. The update scheme of 𝑖𝐸 seems very sensitive, jumping from small to very
high tolerances. Given the fronts shown in Figure 4.2, it seems that the method designed to
allow the search process to get out of traps might not have worked as expected. The mean 𝜖
values of 𝑐𝐸1 while somewhat lower than expected from its 𝛾 follows the expected trend.

𝑐𝐸2 and 𝑖𝑝𝐸1 maintain individual 𝜖𝑗 values. Figure 4.4 shows the individual 𝜖𝑗 values for
these two configurations for the same two problems. The interesting observation is that not
all constraints are relaxed. In particular, 𝑐𝐸2 only relaxes four constraints of the nine for
these problems. Figure 4.4 also highlights the radically different approach of the two meth-
ods. While 𝑐𝐸2 has a strictly decreasing tolerance, whose scale is appropriately scaled, 𝑖𝑝𝐸1
has per-constraint tolerance levels, but there is no imposed decrease of its values. Some con-
straints that were not relaxed previously can have high tolerances at the end of the search.
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4.5 Concluding remarks

4.5.1 Discussion

The executed large-scale investigation of seven existing CHSs and a novel per-constraint
𝜖 strategy cEpsilon on 64 CMOPs has revealed important performance differences between
the strategies for the different problems. The analysis performed bymeans of ranking shows
that the per-constraint relaxation methods 𝑐𝐸2, 𝑐𝐸1, and 𝑖𝑝𝐸1 form the top 3 in terms of
overall performance. Grouping the problems by family reveals, however, important differ-
ences. The original 𝜖-constrained method, for example, performed best on MW problems.
Remembering the differences in characteristics of these problems highlighted in Chapter 3,
it is no surprise to see that some methods are more effective at solving specific problems.
DAS-CMOP problems with complexity level 11, for example, have a high “convergence-
hardness” [51], which means the constraints are blocking convergence, but the optimal so-
lutions are not affected by the constraints. Hence, an optimizer disregarding constraints, like
𝑆𝑅2, is the ideal candidate. This is however, an unrealistic scenario for ‘real-world’ design
applications. Considering the 13 mechanical design problem, the novel cEpsilon method
obtained the best rank, suggesting that an individually controlled relaxation of each con-
straint offers significant benefits.

The analysis of the 𝜖 value on twoMODAct problems revealed that eachmethod does indeed
have a different relaxationmethod. Themethods where 𝜖 is allowed to increase, worked bet-
ter on problems C3DTLZ4 and DAS-CMOP complexity levels 9 and 12, but not forMODAct.
At least, themechanism that can lead to an increase of 𝜖 in𝑝𝐸 and 𝑖𝑝𝐸 did not appear inCT4.
𝑐𝐸2 starts with a lower tolerance, but has a slower decrease. While this is expected from the
selected parameters, all configurations have been suggested by the parameter tuning pro-
cedure. In that sense, all methods were given the same opportunity to select competitive
parameters. Further, the analysis of the per-constraint 𝜖𝑗 revealed that only four constraints
were relaxed by 𝑐𝐸2 and confirmed that the cEpsilon guarantees a constraint appropriate
scale for 𝜖𝑗 and a strict decrease of all constraints.

4.5.2 Path forward

The proposed cEpsilon method has proven to be a robust method across several families of
problems with best performance on mechanical design problems. While it offers sensible
improvements over existing constraint relaxation methods, it does not solve their core is-
sue: numerous parameters. The use of high power computing capabilities—with at times
up to 500 cores running in parallel—made it possible to run the tuning procedure and per-
formance evaluation campaignwithin a reasonable time, even for the slowerMODAct prob-
lems. In practice, however, this is an important limitation, especially for computationally
expensive problems. Original ideas are needed that are effective on realistic benchmark
problems and that are applicable in practice. One idea could be to more tightly integrate
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the constraint handling within multiple components of algorithms, such as adaptive search
operators based on relaxation stage.

The reported results also reaffirm the need for better and more realistic benchmark prob-
lems. Indeed, the behavior of the evaluatedCHSs differed betweenMODAct or theWindtur-
bine design problem and themore traditional synthetic problems. As long asmost proposed
optimization techniques are tested only on the latter problems, their transfer into other dis-
ciplines and practice is limited.
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Tout change et grandit en ces lieux.
Quel air pur !

Guillaume (Guillaume Tell, G. Rossini) 5
Educating Future Engineers

Machine intelligence and its use in engineering might substantially im-
pact the work of engineers in the coming years. The motto ‘adapt or die’
seems accurate in this context. Researchers stand at the front line of inno-
vation andmay be themost capable of foreseeing the changes ahead. When

researchers are also educators, they can play an ideal and critical role in shaping the future
of engineering education.

Regarding the skills needed by engineers, an analysis of the skills listed for engineering po-
sitions in occupational databases—like O*NET—reveals that professional skills represent
nowadays already an important part of the required skills, and some future-looking studies
predict that such skills will become increasingly important with automation and digitaliza-
tion [57, 129]. Also being able to work with, or even cooperate withmachines, is fundamen-
tal, and requires computational thinking skills [66].

Two studies have been designed and performed with the participation of students from sev-
eral classes with the aim to address two sets of research questions. On the one hand, the first
study investigates the learning of professional skills by students working on team-based en-
gineering projects. On the other hand, the second study exposes students to the developed
automated design tool for actuators from Chapter 2, with the objectives to observe their
design process, and to evaluate their use of the tool.

After an introduction of the context of the studies and their participants, this chapter is
split into two parts. Section 5.2 discusses the topic of professional skills, and starts with the
background about learning by doing in projects and the challenges of assessing professional
skills. Then, through the use of a questionnaire applied in a pre-post study design, the im-
pact of two kinds of projects on the students’ self-efficacy beliefs is assessed and discussed.
Section 5.3 focuses on the effects of the use by students of the automated design tool. The
study design and the online platform, through which students interact with the tool, are
presented first. The analysis is then performed considering the students’ reports and the
traces they left in the platform.
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5.1 Context of the studies

5.1.1 Involved courses and study design

A total of three classes taught by Prof. Schiffmann in the department of mechanical engi-
neering of EPFL have been included in these two studies: “systèmesmécaniques” (mechan-
ical systems, 2nd year Bachelor), “dynamique des systèmes mécaniques” (dynamics of me-
chanical systems, 3rd year Bachelor) and “applied mechanical design” (Master). Figure 5.1
shows an overview of the timelines associated with each course.

The two Bachelor (BA) courses are mandatory for all mechanical engineering students and
cover engineering fundamentals. They include 14 weeks of classes (ex cathedra lectures and
exercise sessions), a written exam and a structured in-course group project (groups of four
to five) with a final report. The in-course project starts on week 10. The final report (one per
group) needs to be submitted onweek 14 and evaluates the group’s technical work. Teaching
assistants are available every week to answer questions. The in-course project contributes
to 20% of the students’ grade (one grade per report) and its workload is estimated to 1 ECTS
(about 28 hours) for each student.

The Master (MA) course is an optional capstone-like design project course where students
work on a product design task (open-ended problem) in groups of three to four for thewhole
duration of the course. The design task is common to all groups, making it similar to a de-
sign challenge. The students need to hand in 3 written reports (week 3, week 10 and week
17) and do an oral presentation in front of the class (week 14), contributing to 10%, 40%, 40%
and 10% of their grade respectively. In addition to the product, the grading process reviews
project planning, risk assessment, and design process, which can be tracked through the
repeated assessment. In parallel to the project, the students receive six theoretical lectures:
the design process (four lectures), project management, and creativity fostering. As a sup-
port, each group has a dedicated teaching assistant. They meet weekly for followups. The
total workload is estimated to 4 ECTS (about 112 hours) for each student.

The three courses are used to evaluate the development of professional skills by students
through their participation in in-course or capstone projects. The interest is to see if there
are differences in the learning betweenmostly technical short in-course projects and longer
running capstone projects focusing on process skills. While in both cases, the group-project
environment forces the students to practice their professional skills, theMA course includes
theoretical lectures and a grading process that also considers planning and risk assessment.
The changes are investigated through a questionnaire in a pre-post study design and since
both BA classes are built using the same approach, their results are grouped in this study.

The effects of automated design on the product selection, the design process and the ap-
proaches followed by students for the use of such tools are investigated in the frame of the
MA course. For this purpose a single design task is given to the students, and they are asked
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W1
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project start report

IPMQ pre

IPMQ pre IPMQ post

IPMQ post

traditional automated

W2 W19

Exam
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MA

Figure 5.1: Overview of the timeline for the three courses highlighting the different phases
and when the questionnaires were collected.

to provide two product propositions, once using a traditional approach and once using the
automated design tool presented in Chapter 2. The timing of the two phases is shown in
Figure 5.1. The traditional design phase starts on week 2 and ends on week 10 with the sub-
mission of the students’ report containing their design. The automated design phase follows
and ends on week 17 with the submission of the report containing the outcome of the au-
tomated phase. Other key milestones are report 1 occurring on week 3, which is used to
clarify and formally validate the specifications, and the oral presentation on week 14 where
the students present their designs to the rest of the class.

In order to contextualize the student data, their responses have been compared against those
of experienced industry professional by having them fill the same questionnaire (profes-
sional skills) and by using an existing commercial product.

The specific details of the study design and the used instruments are given more in details
in the corresponding sections.

5.1.2 Data collection protocol and population

Since the studies use data collected in the frame of teaching, students are required to give
their informed consent for the use of their data for research. To ensure that the teaching
is unaffected by the decision of students to participate or not in the study, the informed
consents have been collected byCécileHardebolle from the teaching support center of EPFL
and the consent information was only released after the grades had been validated. The
corresponding data was anonymized by assigning each student a random ID. This protocol
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has been reviewed and approved by the EPFL Human Research Ethics Committee (HREC
046-2018).

The studies were performed in the fall semester 2018 (MA class) and in the spring semester
2019 (BA classes). From a total of 339 students, 205 gave their consent—174/306 BA and
33/33 MA students. All data produced by these students in the frame of teaching have been
collected. These students did however not necessarily participate in all activities. The details
of the collected data for each instrument are given in the corresponding sections.

5.2 Professional skills’ development through projects
The work presented in this section stems from a collaboration between the Laboratory
for Applied Mechanical Design (LAMD) and the Teaching Support Center (CAPE) of
EPFL. The content reproduces, with minor stylistic changes and with the agreement of
all authors, the following preprint:

C. Picard, C. Hardebolle, R. Tormey and J. Schiffmann. “Which Professional Skills do
Students Learn in Engineering Team-Based Projects?”. Accepted for publication in the
European Journal of Engineering Education, April 2021.

Author contributions: CP, CH, RT, and JS designed research; CP and CH performed
research; RT and CH wrote the related work; CP wrote the results and discussion.

In this section, we focus on the following research questions:

• Which professional skills do students learn from projects?

• How can we assess those skills and their evolution while taking into account scale
issues of large-size engineering classes?

• Which characteristics of projects make students develop professional skills?

Using a previously validated instrument [99], we have assessed students’ self-efficacy beliefs
regarding their skills in five different areas: planning, risk assessment, ethical sensitivity,
communication, and interprofessional competence. This instrument has allowed drawing
comparisons across different levels of studies and careers, as well as assessing the progress
students have made over the course of one specific project. Further, an analysis of students’
answers to open-ended questions through a feedback survey has allowed investigating what
non-technical skills students feel they have acquired from the projects and also which ones
they have found to be the most challenging. Finally, comparing the format of the courses
has led to the identification of some project characteristics, which might improve the devel-
opment of professional skills for students.

In the following, a review of existing literature in the field is introduced, before present-
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ing the context and the methodology used. Finally, the results are presented and discussed
before concluding.

5.2.1 Related work

In 2005, while reflecting on the importance of the professional skills included in the ABET
“Engineering Criteria 2000”, Shuman and his colleagues acknowledged the range of meth-
ods applicable to teaching professional skills [162]. The methods included decision-making
exercises, project management or business simulations, project driven classes, case studies,
as well as embedded modules. More recently, Winberg et al. [191] have attempted to clas-
sify these approaches in a systematic review of engineering employability studies. While
reporting important variations in what the reviewed studies called “professional skills”, the
authors defend the idea that professional skills cannot be considered as generic but are in-
stead linked to disciplinary practices. Therefore, they argue that engineering knowledge
and professional skills should be better integrated.

Teaching professional skills through projects

As Prince and Felder [145] highlight in their review, projects used in teaching may vary
significantly in scope and scale. From in-course to semester to BA or MA projects, the com-
plexity of the problem, their duration and the size of the student group vary a lot. There
are also variations in the ways in which projects are embedded in engineering curricula.
This can be conceptualized as a continuum which ranges from projects being embedded in
traditional engineering education programs in parallel to traditional courses, to projects be-
ing seen as central to a re-imagining of the whole engineering curricula. Some examples of
the latter are the conceive-design-implement-operate (CDIO) approach or some variants of
project/problem-based learning (PBL) [20, 30, 46, 95, 158]. In traditional program designs,
projects frequently come at or near the end of a program through “capstone projects” or the-
sis [30], as a way to integrate learning and prepare students for the professional world. They
are also increasingly being introduced earlier in the curriculum (“cornerstone” projects) as
a way to scaffold students’ understandings of real-life educational practice [65]. Although
‘whole curriculum approaches’ are influential within the literature and in the engineering
education research community, they are perhaps less widely practiced thanmore traditional
curricular approaches. Chen et al. [20], for example, found that two-thirds of the reviewed
studies on project-based learning focused on projects within courses (rather than across
courses or across whole curricula). Similarly, the large-scale cross-institutional survey of
capstone design courses in the United States by Howe et al. [77] shows that most capstone
projects are run with traditional lectures in parallel or before.

There is evidence that the inclusion of projects has a positive impact on some aspects of
student learning. The presence of capstone-type projects has been found to generally im-
prove employer satisfaction and employment ratios – possibly indicating an indirect effect
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on professional skills, but also student motivation and retention [76]. Studies within the
PBL framework also point to an impact on some types of learning: Gijbels et al. [63] and
Newman [127], for example, found that while problem-based learning had little impact on
the learning of knowledge and facts, PBL did, however, have a notable and positive impact
on understanding of principles and on the ability to apply what is learned.

Hattie’s (2009) review of meta-analyses of learning provides a useful benchmark for eval-
uating such impacts: he argues that effect sizes (i.e., Cohen’s d statistic) of less than 0.15
should be regarded as indicating effectively a lack of teaching, effects between 0.15 and 0.4
reflect normal teaching effects, and effects greater than 0.4 should be regarded as being in
the desired zone. He noted few effects were greater than 𝑑 = 0.7. The effect of PBL on
ability to apply knowledge has been identified as 𝑑 = 0.4, and for ability to use principles as
𝑑 = 0.75 [63].

This highlights that one of the challenges with project-based learning is the validity of as-
sessment – that is, are we assessing the things that we actually want to teach using project-
based learning? There are numerous lists of professional or transversal skills to be learned
by engineers. Accreditation bodies, for example, typically identify skills including ability to
scope, plan, and design solutions to complex and ill-defined problems, ability to communi-
cate, towork in teams, and to apply ethical reflection in theirwork (see for example, [47]). In
their review of assessment tools for professional skills, Cruz et al. [31] focused on a similar
set of skills: communication, lifelong learning, innovation/creativity and teamwork. Given
that engineers are faced with complex problems that can often not be solved by any one dis-
cipline, interdisciplinary and interprofessional work has also been increasingly identified as
an important professional competence [93, 100].

Conditions for learning professional skills during projects

One specific difficulty in projects comes from the tension between two different outcomes:
the final product or solution on one hand, and student learning on the other hand. As Shu-
man et al. [162] highlight, professional skills have a strong “process” component, meaning
that students need to learn about the processes behind communication, teamwork, project
management, etc. Projects should therefore be an opportunity for students to focus their
attention on such processes. This has not only been shown to be difficult by nature when
“learning from doing” [8, 72] but can become even more challenging when projects are ex-
pected to lead to usable results, such as in industry-sponsored projects. Howe et al. [77]
show that instructors are conscious about this issue since more than two thirds of respon-
dents reported that they found the process to be equally ormore important than the product.
However, from the same survey, the finalwritten report, the final oral presentation, and the
final product play the biggest role when evaluating the students’ work in projects. Whether
such sources allow assessing how much students have developed process skills, is a key
question that we will discuss in the next section. Another question is the type of support
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that can help students to focus their attention on the process during projects, thus fostering
the development of professional skills.

In their review, Shuman et al. [162] argue that conditions for the effective development of
process skills are that students should not be “thrown into team projects without support”
but do not provide details about the instructional techniques behind such support. The
same holds for the review by Winberg et al. [191], which underlines the importance of us-
ing adequate pedagogical approaches when integrating professional skills with engineering
knowledge and skills. Unfortunately, the authors do not specifically review the associated
instructional techniques. Overall, we were able to find much advice but very few studies
looking at evidence concerning how professional skills development can be best supported
during students projects. One such study, a large scale study by Cabrera et al. [13] has exam-
ined how teaching practices in team-based and hands-on design projects relate to students’
gain in professional competencies. Using self-reported measures of both teaching practices
and professional competencies as perceived by undergraduate engineering students, this
multi-institutional study has shown that the practices used in class contributed more to the
learning gains perceived by students than their background, demographics, or motivation.
Interaction with and feedback from instructors as well as collaborative learning were the
two instructional practices shown to predict gains in professional competencies, defined in
this case as group skills, problem-solving skills and professional awareness. While very in-
teresting by its scale, this study dates back almost twenty years and uses students as the only
source of information, in a post-only survey. In a more recent but smaller qualitative study,
Costa and her colleagues used focus groups to investigate the professional skills students
considered to have developed during an interdisciplinary engineering project. The teaching
techniques involved in the project were not the focus of the study but the authors do sum-
marize a set of best teaching practices and conclude by emphasizing the critical importance
of supervising and guiding students [27].

It was noted above that teamwork is an important engineering skill. There is evidence that
the relatively homogeneous environment of engineering education makes student teams a
potentially unpleasant environment for those who are not part of the majority group (e.g.,
[2]). The importance of guidance has been explored in studies focusing on teamwork skills
more specifically [132, 144]. Because group work has the potential to lead to challenging
experiences and outcomes for students (e.g., [83]), the explicit steps taken by instructors
have been shown to be essential to assure learning. Reflection and self-assessment were
shown to be effective techniques. Other studies focusing on engineering design projects,
but not necessarily on professional skills, also underline the importance of guidance and
supervision for student learning. Feedback, in particular, has been identified as a key factor
for helping students learn by making them reflect on the process [8, 72].
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The challenge of assessing professional skills

As introduced above, appropriate assessment methods are key to determine whether stu-
dents do or do not develop professional skills in engineering design projects. However, sev-
eral studies report that assessing professional skills is a challenge. Shuman et al. [162] state
that efforts have been made to develop assessment tools for these skills but that “the litera-
ture remains sparse with respect to robust, effective measures for these outcomes”. Some of
the issues they identified are a lack of consensus on the definition of the skills, a difficulty
to identify the moment when the skills should be assessed when learning is distributed over
the curriculum, the very nature of the skills to assess and the cost in time and efforts when
assessing those skills in large size classes. These difficulties continue to be acknowledged
in more recent studies such as [13, 71, 144, 151], suggesting that this is a lingering concern.

Although there are a diversity of assessment methods [20, 77], the most widely used meth-
ods for assessing projects are final reports, presentations, and/or products. It is doubtful
that these would allow valid assessment of students’ professional skills. Project manage-
ment skills such as planning illustrate this issue well: besides splitting the work into de-
fined tasks, evaluating the time necessary to accomplish them, and organizing them along
a timeline, appropriate planning requires a continuous adjustment, taking into account the
evolution of the work as well as imponderables. A final project report alone is not likely to
provide reliable information on the process through which students have made their plan
evolve over time. More generally, the nature of professional skills makes the choice of the
type of learning traces to collect, when to collect them, and the criteria and scales to eval-
uate them, challenging. In the context of projects, the adequate alignment between assess-
mentmethods, learning objectives and teachingmethods is an additional difficulty [71, 191].
As a result, various other assessment formats have been explored in the literature, among
which multi-source feedback (mixing peer feedback, self feedback, and instructor feed-
back [[121]]), portfolios – often in combination with rubrics [151, 191], and self-assessment
questionnaires [71].

Cruz et al. [31] have recentlymapped the range of assessment tools that can be used to assess
some of the professional skills at issue in PBL: communication, lifelong learning, innova-
tion/creativity and teamwork. They note that the kind of assessment used depends in part
on the purpose of the assessment: where the goal is to assess students’ learning, rubrics
were the preferred assessment tool. However, where the goal is to assess the effectiveness
of the course, questionnaires were commonly used. Such questionnaires typically rely on
student self-reports of their own beliefs about their skills or their attitudes. Although Cruz
et al. mention in passing their belief that self-report questionnaires are open to bias, this
question has been subject to more detailed analysis in both psychological and statistical
domains. From a psychometric point of view, it has been speculated that self-reports are
biased when those with low skills in a domain are poor at assessing their own skill level in
the domain (known as the Dunning-Kruger effect). More recent explorations of this appar-
ent phenomenon suggest that this apparent bias is actually an artifact of the experiments
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designed to test it [130, 131]. They suggest that while self-reports are susceptible to mea-
surement error (as with any measure), these measurement errors are not biased and are
already taken into account in standard measures of reliability. From a psychological per-
spective, self-report measures are widely used in areas such as personality, metacognition,
and self-efficacy. As Paulhus and Vazire [139] note, self-reports are popular in some do-
mains in psychology not just because they are cheap and get a good response rate but also
because they can provide access to information on the internal working of a person’s psy-
chological processes which would not otherwise be available, and because they assess how
a person perceives something and this – rather than begin simply a source of bias – is ac-
tually a meaningful thing to measure in itself. This is particularly relevant in the case of
self-efficacy beliefs, defined as a person’s judgments of their own capabilities to undertake
the actions needed to attain a designated goal. Students with higher self-efficacy beliefs have
been found to choose more challenging tasks in the domain, to put in greater effort, to per-
sist longer in the face of challenges, and to suffer reduced anxiety and stress. Self-efficacy
beliefs also show a moderate to strong correlation with performance [203]. Overall then,
there are good grounds for saying that self-report questionnaires may be a valuable assess-
ment tool, if they are psychometrically assessed as valid and reliable (see also [13]). Where
self-assessment tools are valid and reliable they can also have other benefits. Chen et al.
[20] have highlighted that the challenges of assessing such learning in PBL are addressed
both through more traditional assessment modes (such as quizzes and exams) as well as
less traditional models (self-assessment, peer review, portfolios etc.). This, in turn raises
problems for comparing learning from different PBL approaches – if all assessments are dif-
ferent (assessing different learning goals and with different psychometric characteristics) it
is hard to draw meaningful conclusions about the impact on student learning of different
ways of organizing PBL. The use of standard instruments means that it is possible to com-
pare the impact of one type of pedagogy to another. This can provide valuable information
to teachers who are seeking to enact pedagogies with demonstrated effectiveness.

It is worth noting that self-assessment questionnaires also have pedagogical advantages. In
particular, responding to self-assessment questions can trigger students’ self-reflection and
draw their attention to what they learn, a key to “learning from doing” [8, 72]. Previous
studies have shown that such tools could enhance learning and help students develop self-
monitoring habits that are essential for the self-regulation of learning [161]. Panadero et al.
[136] even propose that self-assessment tools originally designed for measurement could be
considered as pedagogical interventions because of these effects.

Overall then, it is clear that professional skills are an important component of engineering
education and these include the kinds of skills that are needed when working on complex
and open-ended projects. Such skills include scoping, and organizing to design solutions
to complex problems, integrating ethical considerations into one’s work, communicating
effectively in teams and working within interdisciplinary and interprofessional contexts. It
is also clear that in engineering education, these skills are often targeted through projects—
typically projects in courses. These seem to be organized in a wide variety of ways, even
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Table 5.1: Summary of the different participants and the data collected.

Group Study type # Students # Participants

Bachelor (BA) IPMQ pre 306 168 (55%)
IPMQ post 306 47 (15%)
Survey 306 253 (83%)

Master (MA) IPMQ pre 33 32 (97%)
IPMQ post 33 29 (88%)

Professionals (Pro) IPMQ single – 40

if there is evidence that coaching, direction and feedback are all likely to be important in
student learning. The assessment of different ways of organizing these projects in courses
is made more complex by the use of a wide range of assessment instruments which may
not actually address the competencies in question. This paper aims to contribute to this
literature by exploring the differential impact of different approaches to organizing projects
within a traditional engineering curriculum, using a psychometrically validated and reliable
standardized assessment.

5.2.2 Methodology

Participants

Crossing the collected consents and questionnaires, 168 pre- and 47 post-questionnaires
from BA students and 32 pre- and 29 post-questionnaires fromMA students were collected.
While the low number of respondents to the post questionnaire could imply biases in the
data, the comparison of the answers to the pre questionnaires of the students that answered
the post against the ones that did not, returned no statistical difference (two-sided indepen-
dent t-test, 𝑝 = 0.27). As such, it may be reasonable to hypothesize that this sub-group is
representative of the wide class. In addition to the questionnaires, 253 anonymous student
feedback forms were collected from the BA students.

Answers from 51 professionals were collected through anonymous survey links sent to en-
gineering and technology companies collaborating with the university between Oct. 2019
and Jan. 2020. Based on the reported years of experience, professionals with less than 4
years of experience have been discarded (11 answers) to retain only the experienced ones.

The breakdown of participants is summarized in Table 5.1.

Instruments

The Interprofessional Project Management Questionnaire (IPMQ) was used as main quan-
titative instrument for this research. The IPMQ is a 24-item questionnaire available in two
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languages designed to assess one’s self-efficacy beliefs in five domains: (A) planning, (B) risk
assessment, (C) ethical sensitivity, (D) communication, and (E) interprofessional compe-
tence. This questionnaire was previously identified as having good factorial validity and
reliability [99]. The questions and their factors are listed in appendix in Table B.1. Each
question is evaluated with a 5-level Likert scale. The processing of the IPMQ implies the
calculation of per-factor scores (average over the questions related to the factor) and a total
score (average over all questions). After filling the questionnaire, the students received a
feedback sheet summarizing their score with instructions on how to understand it and tips
for further improving their skills. As such, the IPMQ can be considered as an educational
intervention [161].

In addition to the IPMQ, data from anonymous student feedback have been collected from
BA students. They were asked to report:

• “The 3 most important non-technical things I learned while carrying out the team
project are” (open answer)

• “The 2 biggest challenges I encountered during the realization of the team project:”
(open answer)

• “For the [first/second] of these challenges, I learned the skills to better manage a sim-
ilar problem in the future” (two Likert questions associated to the previous question)

Research design and analysis

The students were asked to fill the IPMQ twice in a pre-post design. BA students could
fill out the pre-questionnaire from week 7 until week 10 (start of project), and the post-
questionnaire was open for answers starting after week 14 (end of project), see Figure 5.1.
Additional questions have been added to the questionnaire to have students report their
prior experience (pre) or gained experience (post). The students were asked to report the
number of projects they had worked on, the number of project management courses fol-
lowed, and the number of risk assessment courses followed. MA students were asked to
fill the pre-questionnaire between weeks 3 and 5 (project started on week 1). The post-
questionnaire was opened after the end of the project on week 17, see Figure 5.1. For the
pre/post analysis, only the answers of students that responded to both questionnaires were
considered.

Using the single questionnaire filled by professionals, a cross-sectional study comparing
pre-scores of students against professionals was performed.

The statistical difference between two sets of answers is evaluated using independent (be-
tween population) or dependent (within population) t-tests. T-tests have been shown to be
appropriate and robust for data from Likert scales even with moderate violation of normal-
ity [193]. When reporting the significance level of statistical tests, the APA star notation is
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Figure 5.2: Cross-sectional comparison of pre-scores of students and professionals per factor
and of the total score of the IPMQ. The 1.5 interquartile range (IQR) convention is used for
the whiskers and the outlier identification. In addition, the mean value of the distributions
is shownwith a red triangle. Statistically significant differences between populations within
factors are shown using the star notation, see Table 5.3.

Table 5.2: Mean and standard deviation (SD) of students’ pre-scores and professionals’
scores per factor of the IPMQ.

Factor BA (𝑁 = 168) MA (𝑁 = 32) Pro (𝑁 = 40)

Planning 3.65 (𝑆𝐷 = 0.56) 3.60 (𝑆𝐷 = 0.57) 3.87 (𝑆𝐷 = 0.62)
Risk Assessment 3.34 (𝑆𝐷 = 0.61) 3.49 (𝑆𝐷 = 0.48) 3.74 (𝑆𝐷 = 0.51)
Ethical sensitivity 3.62 (𝑆𝐷 = 0.73) 3.84 (𝑆𝐷 = 0.61) 3.68 (𝑆𝐷 = 0.77)
Communication 3.71 (𝑆𝐷 = 0.60) 3.84 (𝑆𝐷 = 0.57) 3.75 (𝑆𝐷 = 0.50)
Interprofessional competence 3.68 (𝑆𝐷 = 0.59) 3.76 (𝑆𝐷 = 0.54) 3.96 (𝑆𝐷 = 0.49)

Total IPMQ Score 3.60 (𝑆𝐷 = 0.46) 3.71 (𝑆𝐷 = 0.41) 3.80 (𝑆𝐷 = 0.39)

used: * when 𝑝 < 0.05, ** when 𝑝 < 0.01 and *** when 𝑝 < 0.001.

The open-ended survey questions have been analyzed using a coding approach. The code-
book has been created through two iterations, ensuring a none overlapping coding and a
common code for all questions.

5.2.3 Results

Cross-sectional view of professional skills

In a first step, the evolution of IPMQ scores across student levels to professionals is analyzed.
For this analysis, only the pre-scores of the students are considered. Figure 5.2 is a box plot
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Table 5.3: Results of the independent T-test statistical pairwise comparison between popu-
lations (BA, MA and Pro) within factors of the IPMQ with the alternative hypothesis that
scores improve from BA to Pro (one-sided tail).

BA vs MA BA vs Pro MA vs Pro
Factor T DoF p-value T DoF p-value T DoF p-value

Planning 0.442 43.08 0.6696 -2.033 55.11 * 0.0234 -1.892 68.55 * 0.0314
Risk Assessment -1.567 52.17 0.0616 -4.282 68.33 *** 3.0e-5 -2.118 68.12 * 0.0189
Ethical sensitivity -1.833 49.21 * 0.0364 -0.407 56.74 0.3427 1.038 70.00 0.8485
Communication -1.124 44.97 0.1335 -0.343 67.61 0.3663 0.723 62.53 0.7638
Interprofessional
competence -0.743 46.25 0.2305 -3.083 68.73 ** 0.0015 -1.612 63.37 0.0559

Total IPMQ Score -1.310 47.23 0.0983 -2.762 67.84 ** 0.0037 -0.950 64.88 0.1729

of the reported scores by population and factor and Table 5.2 reports the mean and standard
deviation values.

Looking at the average scores per factor, it can be seen that there are differences and trends
between students and professionals on the factors they are better at or worse. For students,
risk assessment has the lowest score, while communication has the highest. For profession-
als, interprofessional competence has the highest score and ethical sensitivity the lowest.

More than the ranking of factors, it is the changes within factors from Bachelor students
to professionals that are of interest. On the total IPMQ score, the mean value gradually
increases, suggesting a progression from the first years of engineering education to profes-
sional practice. A similar trend is visible on planning, risk assessment, and interprofessional
competence. Further, the lowest individual scores are within Bachelor students.

In order to confirm this trend, a statistical pairwise comparison between populations within
factors is conducted and its results are reported in Table 5.3. This analysis confirms that
there is a statistically significant increase between Bachelor students and professionals on
planning (𝑝 < 0.05), risk assessment (𝑝 < 0.001), interprofessional competence (𝑝 < 0.01),
and on the total IPMQ score (𝑝 < 0.01). There is also a significant increase between Master
students and professionals on planning (𝑝 < 0.05) and risk assessment (𝑝 < 0.05). The
difference between Bachelor and Master students is less clear. Statistically, they differ only
on ethical sensitivity (𝑝 < 0.05).

Evaluation of an in-course project

Focusing on in-course projects first, their effect on the development of professional skills
is assessed by running a pre-post comparison of IPMQ scores and by an analysis of course
evaluation survey data.

Figure 5.3 shows the pre-post score distribution for the BA courses. The effective differ-
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Figure 5.3: Box plot comparing pre/post scores of BA students per factor (mean value in-
dicated by a red triangle). Only students that answered both questionnaires are considered
(𝑁 = 47). Statistically significant differences within factors are shown using the star nota-
tion, see also Table 5.4.

Table 5.4: Mean and standard deviation, and results of the paired T-tests between pre/post
scores per factor for BA students with the alternative hypothesis that post scores are better
(one-sided tail). Only students that answered both questionnaires are considered (𝑁 = 47).

Factor Mean pre-score Mean post-score T p-value Cohen’s d

Planning 3.81 (𝑆𝐷 = 0.56) 3.89 (𝑆𝐷 = 0.59) -0.697 0.2445 0.136
Risk Assessment 3.40 (𝑆𝐷 = 0.67) 3.57 (𝑆𝐷 = 0.58) -1.538 0.0654 0.280
Ethical sensitivity 3.72 (𝑆𝐷 = 0.67) 3.80 (𝑆𝐷 = 0.62) -0.714 0.2395 0.124
Communication 3.75 (𝑆𝐷 = 0.58) 3.96 (𝑆𝐷 = 0.57) -1.897 * 0.0321 0.371
Interprofessional competence 3.64 (𝑆𝐷 = 0.59) 3.85 (𝑆𝐷 = 0.51) -2.038 * 0.0237 0.379

Total IPMQ Score 3.66 (𝑆𝐷 = 0.46) 3.81 (𝑆𝐷 = 0.45) -1.632 0.0547 0.333

ences within factors between pre and post has been statistically assessed and the analysis is
summarized in Table 5.4, along with the mean and standard deviation for each factor.

The results show a positive trend on the total IPMQ score and a significant increase over
the course of the project on interprofessional competence (𝑝 < 0.05) and communication
(𝑝 < 0.05). However, with Cohen’s d of 0.379 and 0.371 respectively, the effect sizes lie
slightly below average for educational interventions. The other factors show no statistical
difference.

While the primary objective of in-course projects is the development of technical skills, these
projects are considered to be an important contribution to the development of professional
skills. Yet, the results suggest none or limited impact of these projects on the learning of
professional skills, even though students participated in several projects during the same
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Table 5.5: Reported prior experience and training by BA students and evolution during the
semester.

Prior to the semester During the semester

Number of projects Median = 3; IQR = 3-4 Median = 2; IQR = 1-4
Courses on project management Median = 0; IQR = 0-1 Median = 0; IQR = 0
Courses on risk assessment Median = 0; IQR = 0-1 Median = 0; IQR = 0

time frame (Median 2, IQR = 1-4, see Table 5.5). During the same time, the students also
reported that they had no additional courses addressing project management or risk assess-
ment. As a consequence, the lack of explicit instructions and guidance is hypothesized as
an important reason for the reported learning.

In complement to the IPMQ, the open-ended questions from the anonymous feedback sur-
veys were processed. Since the survey is anonymous, the answers cannot be matched with
the IPMQ, but they nevertheless offer additional insights into similar topics. The coded
items reported by students in their top 3 of important non-technical things they learned are
presented in Table 5.6, sorted by descending number of occurrences. Among the most com-
monly reported topics are communication (49), organization and coordination (46), time
management (41) and task distribution (41). Although less frequent (29), team up chal-
lenges are also reported, inline with existing literature on difficulties of students in team
projects [83]. With communication topics being reported first, the survey data are consistent
with the significant increase and medium effect size found with the IPMQ on the commu-
nication factor.

The results of the secondopenquestion on challenges that students encountered andwhether
they feel they learned how to address themare reported inTable 5.7. There, the same aspects
of planning are frequently reported as important challenges and have a relatively higher
share of students disagreeing that they have learned how to address them.

Finally, inlinewith the learning goals of the project,mechanical engineering designmethod-
ology aspects are the most reported challenges, but have the highest share of students posi-
tive about their learning, confirming that the project achieves its primary goal.

Evaluation of a capstone project

Regarding the effect of capstone projects, the analysis is performed using a pre-post compar-
ison of IPMQ scores. The results of the comparison are shown in Figure 5.4. The associated
statistical tests including the mean and standard deviation are summarized in Table 5.8.
Visually, there seems to be a clear increase in the reported scores for almost all factors. Sta-
tistically, planning (𝑝 < 0.001), risk assessment (𝑝 < 0.05), interprofessional competence
(𝑝 < 0.05) and the total IPMQ score (𝑝 < 0.01) show a significant increase between the pre
and post questionnaires.
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Table 5.6: Analysis of students’ answers to the open question “The 3 most important non-
technical things I learned while carrying out the team project are:”, N=136. The table
presents only answers with more than 4 occurrences, grouped by topic with verbatim ex-
amples and ordered by decreasing frequency.

“The 3 most important non-technical things I learned while carrying out
the team project are:” # Occurrences

Communicate, share information
“Communication with other members of the group”, “Good discussion in the group”

49

Organize, coordinate, manage work
“Organize work”, “Coordination”

46

Manage time and workload
“Do a job with a deadline”, “Plan”, “Work regularly”

41

Split and distribute tasks
“Share work”, “Distribute tasks”

41

Interpersonal attitude
“Trust others”, “Be patient”, “Listen to others”, “Cope with others’ motivation”

35

Collaborate, cooperate, work in group
“Cooperate”, “Work together”, “Teamwork”

29

Team up, get along
“Work with unknown people”, “Get to know people”,
“Highlighting the qualities of each person is important”

29

Mechanical engineering design methodology
“Check results”, “Work specifications out”

10

Anticipate and solve issues
“Learn to prevent issues”, “Issues need to be addressed as soon as they occur”

5

The gains on the planning and risk assessment factors and on the total IPMQ score show
an effect size (𝑑 = 0.538, 𝑑 = 0.453 and 𝑑 = 0.465 respectively) above the 0.4 threshold,
suggesting an above average effect of the educational interventions on professional skills.

A closer analysis reveals that this is actually notably affected by a single outlier who scored
extremely low on the post test (e.g., risk assessment at 1.4). For example, if this student is
excluded, the effect size for the risk analysis factor rises from a moderate effect (𝑑 = 0.453)
to a very strong effect (𝑑 = 0.718) among educational interventions.

5.2.4 Discussion

Reverting to our research questions, we first look at our results in terms of the professional
skills’ development. In general, professional skills tend to be implicitly and not explicitly
treated as part of traditional curricula [77]. For example, project planning skills are seen as a
prerequisite for higher education (e.g., ABET), but are nevertheless only addressed in ad hoc
classes. Indeed, both BA and MA students in our study showed a significantly lower score
compared to professionals. So while, planning is required to deal with the project in class,
the students don’t seem to develop their skills through their studies in general. Further,
neither students nor professionals seem to learn certain skills, such as ethical sensitivity,
which has also been reported by Cech [17] or Tormey et al. [178]. This calls for a broadening
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Table 5.7: Analysis of students’ answers to the open question “The 2 biggest challenges I
encountered during the realization of the team project:”, combined with two Likert ques-
tions: “For the [first/second] of these challenges, I learned the skills to better manage a sim-
ilar problem in the future”. The number of students having answered all three questions is
N=110. Answers are grouped by topic, presented with examples and ordered by decreasing
number of occurrences on “Agree”. Answers with 4 occurrences or fewer are not presented.

“For the [first/second] of these
challenges, I learned the skills
to better manage a similar
problem in the future”

“The 2 biggest challenges I encountered during
the realization of the team project:”

# Agree # Disagree

Mechanical engineering design methodology
“Understand the problem”, “Gearbox dimensioning”,
“Calculate the forces”

68 6

Manage time and workload
“Time management”, “Meeting deadlines”, “Work”

59 13

Split and distribute tasks
“Allocation of work”, “Split tasks”

55 13

Team up, get along
“Working with unknown people”, “Make sure everyone
is involved in the project”

43 11

Organize, coordinate, manage work
“Organize as a group”, “Coordination”, “Decision making”

24 5

Communicate, share information
“Intra-group communication”, “Information sharing”

21 3

Use software tools, Matlab
“Code in Matlab”, “Use Matlab”, “Use of digital tools”

18 5

Interpersonal attitude
“Trust”, “Stay calm”

18 4

Availability of teaching assistants
“Not enough assistants”, “Have access to assistants”

6 1

Collaborate, cooperate, work in group
“Work in group”

5 1

use of professional skills assessment tools as teacher reflective devices about the content of
one’s courses and as reflective devices for students to make the learning goals of projects
explicit.

There has been a growing focus on the methods – and their quality – used to assess pro-
fessional skills [31], which echoes our second question about assessment methods. In this
study, we have evaluated the use of a standardized questionnaire: the IPMQ. The usefulness
of the IPMQ as a measure of students’ learning seems confirmed by the benchmark against
experienced professionals. The latter indeed scored higher than students except in ethical
sensitivity and communication. Their relative low score on ethical sensitivity may actually
well reflect the reality of industry, where such questions are not necessarily the highest pri-
ority. Within courses, the IPMQ was able to capture different gains between in-course and
capstone projects. Students increase a bit their self-efficacy beliefs on courses where profes-
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Figure 5.4: Box plot comparing pre/post scores of MA students per factor (mean as a red
triangle). Only students that answered both questionnaires are considered (𝑁 = 29). Sta-
tistically significant differences within factors are shown using the star notation, see also
Table 5.8.

sional skills can be learned, and more when they are explicitly taught.

Yet, the IPMQ may not be sensitive to all learning. In the BA courses, students reported,
through their answers to a survey, learning coordination, time management and task split-
ting that correspond mostly to items from the planning factor of the IPMQ (define work
plan Q2, breaking work into tasks Q3 and keep track of tasks Q5) on which there was no
significant difference. This could be explained by the individual framing of IPMQ questions
whereas students see those as group activities, or they feel their learning are not sufficient
to state that “they are good at”.

While there have been recent publications discussing the characteristics of projects that
make students develop professional skills more [27, 191], these are mostly prescriptive stud-
ies. With respect to that, our data specifically suggest that:

1. A broader learning is obtained from bigger and more complex projects than from
smaller in-course projects.

2. A stronger learning is obtained when there is explicit teaching and regular formative
and summative feedback on process skills.

There are, however, a few open questions and limitations to our study. The reported gains in
self-efficacy beliefs of interprofessional competence are unexpected and cannot be related
to the settings of the projects (all students were from the same department) nor was it part
of the teaching. Since this could be due to a transfer by the students from interprofessional
to intra-group interindividual concepts, it also highlights the challenges of self-assessment.

116



5.2 Professional skills’ development through projects

Table 5.8: Mean and standard deviation (SD), and results of the paired T-test statistical com-
parison of pre/post IPMQ scores per factor for MA students with the alternative hypothesis
that post scores are better (one-sided tail). Only students that answered both questionnaires
are considered (𝑁 = 29).

Factor pre post T p-value Cohen’s d

Planning 3.59 (𝑆𝐷 = 0.60) 3.90 (𝑆𝐷 = 0.58) -3.622 *** 0.0006 0.538
Risk Assessment 3.48 (𝑆𝐷 = 0.50) 3.75 (𝑆𝐷 = 0.66) -1.817 * 0.0400 0.453
Ethical sensitivity 3.85 (𝑆𝐷 = 0.63) 4.01 (𝑆𝐷 = 0.70) -1.330 0.0971 0.234
Communication 3.78 (𝑆𝐷 = 0.56) 3.96 (𝑆𝐷 = 0.58) -1.682 0.0518 0.312
Interprofessional competence 3.74 (𝑆𝐷 = 0.56) 3.95 (𝑆𝐷 = 0.64) -2.030 * 0.0260 0.347

Total IPMQ Score 3.69 (𝑆𝐷 = 0.43) 3.91 (𝑆𝐷 = 0.54) -2.583 ** 0.0077 0.465

Indeed, while self-efficacy beliefs have been shown to correlate with performance [203], it is
still unknown if this correlation stands for professional skills. The use of objectivemeasures
would limit this issue, but objective measures of performance in these domains that can
standardize across disciplines and courses still need to be developed. Further, while Likert
scale based self-assessment tools are simple to apply and score, motivating large classes to
participate remains a challenge of its own and certainly even more if the questionnaires are
not well aligned with the explicit learning objectives of courses.

5.2.5 Concluding remarks

While the results suggest that even in in-course projects student develop their communi-
cation and interprofessional skills, capstone projects seem to support a broader set of skills
and a deeper development, in particular of risk assessment and planning skills. However,
the results also highlight the remaining gap with respect to professionals, emphasizing the
need for greater practice through the curriculum.

In terms of tool, the IPMQ proved to be capable of measuring differences in pre-post assess-
ments. The collection, scoring, and report generation for student feedback can be highly
automated, making it practical to assess in a standardized way the self-efficacy beliefs of
many students. The challenge remains, however, the participation of the students in larger
classes. The other shortcomings of the questionnaire are the lack of context specific aspects,
highlighted by the students, including team-up and team organization issues.

Professional skills are gaining importance for future engineers and need to be included in
modern curricula. However, simply replacing traditional classes by projects and implicitly
expecting students to develop such skills without explicit teaching and adequate feedback is
not supported by our data. Broad and strong learning can be achieved by explicitly including
profession skills in the instructions and by providingmultiple feedback loops. Such changes
are possible today, without whole curriculum redesign, and should help better prepare the
engineers of the 21st century.
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Figure 5.5: Overview of the models accessible to the students in each phase.

5.3 Use of machine intelligence by novice engineers

In this section, the consequences of the use of machine intelligence by novice engineers are
investigated by observing its impact on the obtained designs and on the design process. The
goals are to clarify the challenges faced by students, while also demonstrating the effective-
ness of the automated design tool.

In the following, the study design is presented along with the Online MODelling platform
(OMOD), through which students perform simulation requests. Then, the data analysis
approach is detailed. Finally, the results are exposed by focusing first on the differences in
terms of obtained actuators from the use of the automated tool, and second, on the processes
applied by students.

5.3.1 Study design

In addition tomore pronouncedprofessional skills,modern engineers also need to be trained
to interact and to take advantage of the growing machine intelligence tools. In order to
gather evidence about these questions, the students of the MA design class have been given
the task to design an electro-mechanical actuator for automotive HVAC flap control. The
specifications given to the students are the same as an existing product and are summarized
in Table 5.9.

The 33 students formed nine groups of three to four. They repeated the design task twice:
once following a traditional approach and once using the developed automated design tool.
At the end of eachphase, each group submits one report—report 2 and report 3 respectively—
which presents the design of their actuator, including detailed information and drawings.
The students are given access to different models, see Figure 5.5, through a web app named
OMOD, which also allows data collection. The platform is described in more details in Sec-
tion 5.3.2.
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Table 5.9: Relevant specifications for the actuator to be designed.

Min Nominal Max

Output specifications

C1 Operating temperature -40 25 80 °C
C2 Voltage supply 9 14 16 V
C3 Operating torque (3 rpm) 0.4 0.6 Nm

Fatigue 10 000 cycles at −40 °C
50 000 cycles at 25 °C
20 000 cycles at 40 °C
10 000 cycles at 80 °C

C4 Holding torque 1.21 Nm
Fatigue 1000 cycles at −40 °C

5000 cycles at 25 °C
2000 cycles at 40 °C
1000 cycles at 80 °C

C5 Efficiency 60 %
C6 Motor drive 0.5 A
C7 Minimal resolution 6400 steps/rev

Manufacturing / Assembly

C8 Allowed processes Plastic injection for gears
(given list of materials)

C9 Single component Consecutive pinion and wheel
are injected as a single part

C10 Stepper motors Chosen based on given list
Coil Fill factor 0.5 1.2 -
Resistance scaling 0.5 1.2 -

C11 Assembly Components are inserted se-
quentially in housing following
the z (height) axis

C12 Axis locations Axis supports should be part of
housing

System level

C13 Housing dimensions 46mm x 79mm x 24mm
C14 Cost To be minimized

In the traditional design phase, students only had access to component models from the au-
tomated design tool and had to rely on their own tools and skills in particular for the system
integration steps. This phase is considered “traditional”, since it corresponds to the most
common state in many industries: numerical models are available for specific components
and team work following a segregated approach. While, there was no rule that prohibited
the use of optimization techniques, the setting made it difficult in the allotted time. In the
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automated design phase starting W10, students were given access to the actuator and the
optimization module, and thus to the whole automated design tool.

In order to support students, a one hour lecture is given on week 2 to present OMOD, a
two-hour lecture on week 9 to introduce the principles of automated design, and another
two-hour lecture on week 10 to present the automated design tool in OMOD.

5.3.2 OMOD – User interface

The automated design tool and its models is made available through OMOD, which is a
web interface built using the Python web framework: tornado1. It allows students to access
complex software through a modern web browser requiring only a computer with internet
connection. The web interface allows students to:

1. start new calculations—called ‘evaluation’—of one of the four available models, see
Figure 5.5;

2. visualize the results of previous evaluations;

3. download the data related to an evaluation for offline processing.

Each student from the course is granted individual access—managed through the school’s
central identity provider service—but each member of a group can view the results from
evaluations of the other group members.

The general architecture of OMOD is illustrated inFigure 5.6. OMOD is coupled to a database
to store the evaluation requests and their results, and acts as an intermediary between the
students and the actual automated design code. Through a queue, it can dispatch calcula-
tions to “workers” and results become available when processing is completed. The results
are shown as tabular data, interactive plots generated by bokeh2 [11], and 3-Dmeshes using
three.js3 [32] depending on the type of evaluation.

To start motor or gear-pair evaluations, students fill out an online form asking for the pa-
rameters and operating conditions of the respective models. Due to the large number of
parameters, actuator simulations and optimizations are started by submitting “job files”.
An example for each type has been provided to the students, and is shown in Appendix C.
While this interface does not allow students to define arbitrary objectives and constraints, a
generic function has been set up and can be customized through these job files. With over
30 variables to choose from to define the objectives (from two to three) and constraints, stu-
dents can activate almost all options—available in 2018—of the integrated model. Some of
these variables have even been added following specific requests by students. Students can

1https://www.tornadoweb.org
2https://bokeh.org
3https://threejs.org
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OMOD

Figure 5.6: General architecture overview of the OMOD interface.

also configure the population size and the optimization budget—limited to 150 000 solution
evaluations. Regarding the results, all available outputs from the models are returned—
geometrical, kinematic, mechanical strength, system-level, and so on. For the optimiza-
tions, the results include graphs representing the convergence process (minimum andmax-
imum𝐶𝑉 values andhypervolume evolution), the Pareto front, a parallel coordinate plot and
a table for the decision variables, and the meshes of all actuators. The data can be down-
loaded as JSON or CSV files for tabular results, interactive HTML for plots and Wavefront
OBJ for meshes.

OMODand its workers run on a single server featuring an Intel XeonE5-1650 v4 (6 cores, 3.6
GHz)with 64GBof RAM.There are twoworkers running in parallel to process all evaluation
requests from the groups. A third worker was set up during the automated design phase to
process all non-optimization requests to ensure small jobs would not get queued for hours.
For the optimization, each worker can use up to 3 cores to evaluate the solutions in parallel.
NSGA-II with adaptive search operators—the same as presented in Section 2.4—and the
𝜖-constrained method (𝜆 = 0.5, 𝑐𝑝 = 5, 𝛾 = 0.5)4 are used for the optimization.

5.3.3 Approach to the analysis of data

The analysis aims at investigating the changes in the design and also in the process followed
by students during the two phases. The collected data for this purpose includes for each
group: (i) three reports (R1, R2, and R3), (ii) the stored evaluations in OMOD, and (iii) the
self-reported time sheets. Most analyses are performed at the group level where each group
is identified by a group ID (GID).

The selected design for each group in each phase is extracted manually from their reports
and converted into an actuator definition understandable by the automated design. The
performance metrics of the actuators are evaluated using the same ‘actuator’ module that
was available to students, but a unified set of operating points is used, see Table 5.10. This

4The better constraint handling strategy cEpsilon was not ready back then.
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Table 5.10: Most critical operating points based on Table 5.9 used to evaluate the actuators
and assess their performance.

Output 𝑇desired Temp. # cycles 𝑉𝑠 𝐼max Condition

0.314 rad s−1 0.4Nm −40 °C 10 000 9V 0.5A running
0.314 rad s−1 0.4Nm 25 °C 50 000 9V 0.5A running
0.314 rad s−1 0.4Nm 40 °C 20 000 9V 0.5A running
0.314 rad s−1 0.4Nm 80 °C 10 000 9V 0.5A running

0.0056 rad 1.21Nm −40 °C 1000 9V 0.5A holding
0.0056 rad 1.21Nm 25 °C 5000 9V 0.5A holding
0.0056 rad 1.21Nm 40 °C 2000 9V 0.5A holding
0.0056 rad 1.21Nm 80 °C 1000 9V 0.5A holding

ensures that all solutions are evaluated on equal foot and that the actuators fulfill the min-
imum requirements from the specifications. For comparison purposes, the same process is
applied to the existing industrial product. Relative performance metrics are calculated by
normalizing the value with the ones obtained by the industrial design.

Another preprocessing step is a similarity analysis between the selected designs of each
group and the components and actuators that have been simulated in OMOD. Two motors
or gear pairs are considered similar if their decision variables are each within a 1 × 10−6

absolute or 1 × 10−4 relative tolerance. The similarity of two optimizations is calculated, if
the searched actuator configuration is the same, by counting the number of entries of the
definition file that are equal. Finally, the similarity of two actuators is calculated, for actu-
ators sharing the same configuration, by counting the number of design variables that are
within 1 × 10−3 absolute tolerance of each other. These similarity scores also allow linking
actuator simulations and optimizations.

Finally, the different optimizations are classified into one of these eight categories (first fit):

1. Example if 80% or more similar to the example file;

2. Error if the definition contains unknown variables (mostly typo errors);

3. Test if the optimization budget is smaller than 10 000 or the configuration only in-
cludes two gear stages;

4. Badly defined when a constraint or an objective is incorrectly configured (e.g., min-
imizing compactness or requiring the resolution to be smaller than 6400);

5. Missing constraint when constraints related to the specifications or the chosen ob-
jectives aremissing (e.g., impose aminimum torque excess unless it is an optimization
objective);

6. Invalid OP when there are no 9V supply condition or the total number of cycles is
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Figure 5.7: Comparison of the proposed actuators based on selectedmotor, number of stages
and the use of multiple materials for the gears.

lower than 99 000 cycles for the chosen operating points;

7. Constrained if the optimization did not find any feasible solution;

8. OK otherwise.

In addition to this categorization, the sequences of optimization submissions is considered
with the aim to identify batched submissions. In sequential submission, students submit an
optimization, wait for the results, and submit a follow-up optimization based on the previ-
ous outcomes. In contrast, batched submissions are series of optimizations submitted by a
group within a short time and that run in parallel, prohibiting feedback between the opti-
mizations of the batch. Unfortunately, the dataset does not allow knowing precisely when
an evaluation was completed. However, the chosen optimization budget allows estimating
a lower bound for the computation time. Optimizations that are started before this estimate
from the previous submission and at the latest within 15min are considered to form a batch.

5.3.4 Impact on the selected products

Results

Startingwith a high-level comparison, Figure 5.7 displays all the actuators from the students
grouped by selected motor, number of stages and whether a single polymer is used for all
gears. In the traditional approach, actuators have 4 or 5 gear stages and diverse motors, but
about half are restricted to a single material. The actuators selected during the automated
design phase use motor F only, have mostly 4 stages with a single 3-stage actuator and are
composed of more different materials.

Moving to the quantitative analysis, Figure 5.8(A) shows paired plots comparing the ac-
tuators from the traditional to the automated phase based on four metrics related to the
specifications. Looking at the torque excess, the security factor to gear tooth bending and
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Figure 5.8: Paired plots comparing actuators between the two phases based on (A) speci-
fications and (B) performance objectives. All individual solutions are represented as dots
and colored in green and red to indicate an increase or a decrease from the traditional to
the automated design respectively. Grayed zones indicate specification violation zones. The
industrial product is shown as an olive point.

the fatigue margin, it appears that with the automated design tool, students have chosen so-
lutions closer to the specifications, thus avoiding unnecessary overdesign. For the first two
metrics, one also sees a reduction in the inter-group variability. On the contrary, a broader
spectrum of resolutions—linked to the transmission ratio—is achieved by actuators from
the automated design phase. In terms of objective metrics, Figure 5.8(B) shows paired plots
for cost and three volume-based metrics. Seven out of nine groups have been able to reduce
cost by using the automated design tool, while two groups have actuators with similar cost.
The reduction of cost can be related to an important reduction of volume, an increase of
compactness—fraction of useful volume in total volume—and a decrease of housing sur-
face. With narrower margins to the specifications, the inter-group variability of cost and
volume is similarly decreased. Overall, both figures suggest a more efficient use of material
and volume in actuators originating from the automated design phase.

Figure 5.9 compares all actuators using two volume metrics against cost and further high-
lights that most groups were able to improve their product on multiple aspects simultane-
ously using the automated design suite. In addition, seven designs Pareto dominate the
industrial product on cost and compactness, four of which also dominate it on volume. Fig-
ure 5.9 also highlights the diversity of the obtained designs.

It is worthwhile noting, however, that not all actuators respect the requested specifications.
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Figure 5.9: Biobjective comparison of the actuatorswhere colors represent each group (GID)
and marker styles each phase.

Violated specification Traditional Automated

Gear quality (gliding speed) 8 4
Min. torque & stresses 4 6
Packaging (assembly, collisions) 2, 7, 9 -

Table 5.11: GID of the groups whose design violates certain specifications.

This is the case of five traditional designs and 2 automated designs. Table 5.11 summarizes
the violations. The number of issues with packaging is surprising since two of the three
groups have chosen the simpler step-like stacking of gears—each gear pair is put on top
of the previous one. While automated design did not help resolve all issues, even if it can
handle them, it did eliminate packaging related issues.

Improvements in packaging are, however, not the only reason for better use of space. Fig-
ure 5.10 shows the diameters of pinion and wheel, and the thickness of the gears per stage.
Compared to the gears designed by the students, the automated design tool suggested:

1. more differentiated wheels depending on the stage;

2. smaller pinions across all stages;

3. thinner gears up until the output stage.

In addition, the diameters of the pinions and wheels selected by the automated tool are
closer to those of the industry product. The reduction in pinion size is possible, because
contrary to most student groups, the automated design tool leverages the profile shifts of
the gears to use pinions with down to nine teeth. Indeed, five out of nine groups have used
a single pair of profile shifts for all stages, three of which have not even followed the recom-
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Figure 5.10: Comparison of three gear parameters by stages between traditional and auto-
mated design. Individual points are represented by dots. Since not all designs have the same
number of stages, the number of points varies by stage. The parameters of the gears of the
industrial product are shown in olive.

mended long and short addendum—or “V-Null”—rule [128], suggesting that the students
were not familiar enough with the concept of profile shift. In such conditions, it is difficult
to design pinions with less than 16 teeth.

Discussion

Considering the products, the use of an automated design tool has enabled students to find
designs that are less overdesigned and that make better use of the material and available
space. The obtained actuators are also closer to the industrial product in terms of selected
motor and gear design, which is not necessarily a surprise since the tool has been developed
for that purpose. Particularly striking however, is that some groups have been able to suggest
actuators that outperform the industrial product on several metrics simultaneously.

While purely in terms of performance, the actuators designed by students during the tra-
ditional phase are fully competitive, the fact that a majority violates the required specifica-
tions highlights the difficulty of this design task. Indeed, the design of a 4-stage actuator
is a coupled parameter design problem with 35 variables requiring system-level awareness,
something humans are known to strugglewith [199]. The typical trial-and-error approached
followed by novice engineers [3] due to their lack of domain knowledge [19] is in such cases
very time-consuming. The selection of the motor and the gearbox are interdependent and
have a significant influence on the packaging. Further, several specifications concern the
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whole system, which thus needs to be completely defined in order for these specifications
to be assessed.

It is therefore interesting to look at the strategies used by the students and their effects on
the product. In the traditional segregated design approach, one would typically decouple
the motor from the gearbox by choosing a priori the transmission ratio of the gearbox. The
minimum angular output resolution sets, with that respect, a lower threshold on the trans-
mission ratio and most students (7/9 groups) seem to have followed this path, leading to
actuators all very close to the required resolution. In addition, the following simplifications
made by the students are visible in their design:

1. Limited pinion designs (one or two different numbers of teeth), and large and safe
number of teeth which avoids the need to use profile shifts;

2. “Constant” wheel sizes across stages, allowing easier packaging;

3. Restricted choice of materials (5/9 use a single material);

4. “Step-like” gear layout.

Most simplifications hinder however to find a truly optimal design and certain design deci-
sions can seem counter-intuitive. This explains the large conceptual changes in the actua-
tors recommended by the students from one approach to the other. As an example, choosing
the smallest allowed output resolution might seem to be an adequate decision when trying
to obtain smaller systems. The actuators obtained through optimization are more compact,
while having a greater output resolution, providing a counter-example to this intuition.

5.3.5 Understanding the process

The traces left by the students in OMOD offer more information than just a snapshot of
the final product. They suggest the design path taken by them and this section analyzes
and discusses what the logged evaluations can tell and what not. To get a first sense of the
amount of work done by the students, Table 5.12 summarizes the number of requests made
by each student. With a total of 4792 requests in the first phase and 1218 requests in the
second one—of which 686 are optimizations—it seems clear that the platform has been
extensively used.

Traditional design phase

The numbers in Table 5.12 seem to confirm a decoupling between motor and gears, since in
most groups, students seem to have simulated either one or the other. Additionally, the stu-
dents seem to have put, comparatively, more efforts into numerically exploring the motors
than the gears. Indeed, excluding group 8 which accounts for 60% of the evaluated gears,
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Table 5.12: Number of unique simulations by available model per student.

GID UID Motor Gears Actuators Optimizations

1 5 16 87 116 18
10 20 7 18 3
30 16 6 3 1

2 1 0 114 23 36
8 106 0 5 62
11 38 0 0 53
31 1 73 0 51

3 12 21 130 1 23
24 31 12 4 7
25 11 117 57 22
27 10 33 0 0

4 6 0 29 0 3
17 8 100 11 10
23 65 0 0 7

5 3 10 131 5 6
4 52 8 9 25
15 64 46 65 48
16 15 0 2 13

6 2 0 81 22 14
13 0 0 0 0
18 64 69 6 64

7 21 29 68 21 55
22 15 82 6 5
26 2 100 12 30
33 0 58 0 53

8 7 1 3 0 0
9 6 0 26 15
19 16 46 67 33
29 11 2275 0 0

9 14 68 0 34 27
20 101 0 16 2
28 79 122 2 0
32 119 0 1 0

Total 995 3797 532 686
Average 30 115 16 21
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there are 961motor against 1473 gear simulations, whereas in terms of complexity, there are
three variables for motors against eight per gear stage. Nevertheless, all groups seem to have
followed a data-driven exploration approach. Indeed, a singular value decomposition—also
called generalized eigendecomposition—of the matrix with all the simulated variants re-
turns a full or almost full rank for all groups, suggesting that the influence of each variable
has been evaluated to some level.

Figure 5.11 shows the spread in time of the requests for motor and gear simulations during
the traditional design phase. It highlights the different approaches followed by each group.
The following trends can be noted:

1. The decoupling between motor and gearbox is also temporal for many groups.

2. Most groups started by exploring the motor (7 of 9 groups).

3. On average students spent less time on gears (20 d 7.56 h, SD 15 d 6.7 h) than on the
motor (37 d 7.36 h, SD 13 d 19.1 h).

4. Groups 4, 6 and 8 did not simulate all selected stages—group 9 uses the same gear
design for all stages.

Within the gearbox, some groups seem to go from themotor to the output, e.g., group 2 or 3,
while others go the other way around, e.g., group 6. Overall, however, it is difficult to offer
conclusive statements, since it is not possible to know whether a component simulation is
part of a general search process or the result of directed refinement. Especially for the gears,
since some calculations could have happened outside the platform, it is difficult to interpret
the intentions of the students.

Besides, an analysis trying to identify the stage to which each gear simulation belonged was
not successful. In fact, the analysis revealed numerous inconsistencies in the defined input
speed, torque, and number of fatigue cycles that hinder the classification of the simulations
with sufficient confidence.

Studying the chosen operating points for their simulations also reveals that three groups (5,
8, and 9) have not performed, in the platform, the required simulations to ensure their gears
fulfill the specifications. Three groups (4, 6, and 8) have not simulated the performance of
their chosen motor in worst-case conditions (9V supply and extreme temperatures). Lack
of validation does not, however, imply that the actuators do not meet the specifications.
Indeed, only group 4 endeduphaving too little torque and failing the fatigue specifications—
although this group performed the simulations confirming they would not pass fatigue.

To summarize, students executed numerous simulations certainly as a way to understand
how the models they were given worked. In particular, the comparatively large number of
simulations and the longer duration of the search for the motor—which is not the primary
domain of mechanical engineering students—are inline with the findings of trial-and-error
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Figure 5.11: Heat map of the number of simulations per day and per group. The shown
time window starts from the start of OMOD to report 2. The colorbars are cropped at the
98th (A) and 99th (B) percentiles. The ticks of the x-axis correspond to the days on which
the weekly lectures or meetings were scheduled. The blue and red bars indicate for each
group the start and the end of the search process, meaning that there are more than 4 (A)
or 5 (B) consecutive simulations with less than an hour in between each. (A) displays the
motor simulations, and for each group distinguishes between the simulations of the same
motor kind “S” and the others “O”. The orange dots show the first time the exact motor
configuration selected in report 2 is evaluated. (B) displays the gear simulations. The colored
dots show the first time a stage of the actuator of report 2 is simulated.
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Table 5.13: Number of optimizations by category (see Section 5.3.3).

GID Ex. Error Test Badly def. Missing c. Invalid OP Constrained OK

1 3 1 4 10 0 4 0 0
2 5 2 68 6 59 17 7 41
3 2 3 15 32 0 0 0 0
4 1 0 8 0 8 0 0 3
5 1 10 55 11 10 0 1 5
6 5 0 26 45 3 5 2 0
7 1 1 107 7 0 0 6 31
8 12 0 9 11 3 16 1 0
9 2 2 11 0 0 0 0 15

Total 32 19 303 122 83 42 17 95

approaches by novice engineers [3]. These results also echo the findings that the use of
prototypes—and numerical models can be seen as virtual prototypes—by novice engineers
is often unintentional [43]. Under such conditions, it is difficult to “optimize” solutions
within the allotted time.

Automated design phase

The start of the automated design phases means students get their hands on an integrated
model for actuators and an optimization module. Based on the categorization method, Ta-
ble 5.13 lists the number of optimizations by category performed by each group. Overall,
the largest share of optimizations falls into the test category. Since the computational re-
sources were limited, students had been asked to perform optimizations with little budget
until they were more confident about their configurations. It also appears that all groups
have run at least once the example file. Then, depending on the groups, different behaviors
and approaches can be seen: few, but mostly well-configured optimizations—e.g., group 9
with 50% OK—many tests like group 5 or 7, and everything in between. Group 3 did not
perform any simulation past the badly defined category, and groups 1, 6, and 8 have no opti-
mization using the worst-case operating points. Translated in terms of total computational
budget, the groups have evaluated for all their optimizations between 527 000 and 7 392 520
solutions.

In terms of evolution, Figure 5.12 shows a heat map of the number of optimizations per-
formed by each group per number of stages. The map shows that most groups started their
optimizations about a week after the beginning of the second phase and stopped few days
before their final oral presentation. Two groups performed additional optimizations into
the Christmas break (W15 and W16). On average, students spent only 20 d 15.8 h (SD 7 d
14.1 h) on optimizations, but as for the traditional design phase, there are various behaviors.
As had been recommended by the teachers, six groups have rapidly implemented their actu-
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Figure 5.12: Heat map of the number of submitted optimizations per day, per group and per
number of gear stages (showing only ≥ 3). The shown time window spans the automated
design phase. The oral presentation is shown as a brown bar. The colorbar is cropped at
the 98th percentiles. The ticks of the x-axis correspond to the days on which the weekly
lectures or meetings were scheduled. The blue and red bars mark the first and last day
when optimizations that are not the provided example are executed. The orange dots show
when the optimization from which the final design stems is performed. The pink dots and
diamonds show when the actuator in or the closest to report 3 has been simulated in the
actuator module (first appearance). The green and purple dots indicate when the actuator
of report 2 and the first actuator linked to an optimization has been simulated in the actuator
module.

ator from report 2 into OMOD to help themunderstand theway the integratedmodel works.
In addition, five groups have started to test obtained actuators in the actuator module early
in their exploration process.

Another interesting way to look at this mass of optimizations is to count the number of dif-
ferent inputs the students gave for the various settings, see Table 5.14. The numbers high-
light the exploratory behavior followed by most groups. Specifically, students have investi-
gated many objective combinations, constraints, but also, more surprisingly, many search
bounds for the gears. There are not many settings that students have not tried to change.
Table 5.15 shows the number of times optimizationwith the same set of settings—excluding
optimization configuration like the budget or the bounds—have been performed, which fur-
ther confirms the significant exploration effort done by students. Most optimization config-
urations have been run only once and few have been run more times, probably to try longer
optimizations or to adjust the number of stages searched for.
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Table 5.14: Number of different settings evaluated by students in their optimizations, ex-
cluding example optimizations.

GID # stages OP set Objectives Constraints Motor bounds Gear bounds

1 2 6 5 11 3 4
2 3 15 44 60 9 31
3 3 4 11 18 4 13
4 2 2 7 10 1 4
5 4 9 40 43 8 18
6 2 3 25 24 8 5
7 5 5 31 21 11 9
8 5 3 16 18 8 11
9 2 3 9 18 5 4

Table 5.15: Number of times similar optimizations—differing solely in terms of optimiza-
tion settings (budget or search bounds)—have been performed.

GID 1 2 3 4 ≥ 5

1 14 2 0 1 0
2 72 40 11 2 1
3 20 7 0 1 2
4 13 2 1 0 0
5 70 3 1 1 2
6 39 10 3 3 1
7 40 12 8 4 6
8 23 7 5 0 0
9 18 6 0 0 0
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Considering the class as a whole, Figures 5.13(A) and (B) show two patterns that develop
over time. Figure 5.13(A) distinguishes between batched and non-batched optimizations
and shows that while mostly absent initially, batched optimizations are gradually increas-
ing until they become dominant in the last week before the oral presentation. Once one
knows how to use the automated design tool, batched submissions are the most effective to
evaluate multiple different possible designs. Figure 5.13(B) considers the similarity to the
example and shows how the submission by the students gradually diverge from it. It seems
students have performed numerous small steps away from the example to experiment with
their effects until they found the settings they thoughtweremost appropriate. Figure 5.13(C)
shows the validity with respect to the specifications of the simulated actuators originating
from an optimization. While at first, no valid actuator was simulated, the quality of the ob-
tained actuators seems to increase. The search for valid actuators peeks following the last
course and seems to suggest a certain learning process.

However, Figure 5.13(C) also shows that throughout the automated design phase, there are
an approximately constant amount of simulated actuators that do not produce sufficient
torque for the application. They represent 40% of the simulated actuators and the lack of
torque is the violation in 75% of the cases. It seems peculiar that students did not correct
their optimizations and it is questionable whether the students did realize this problem.
Looking at the set of operating points for these actuators reveals that their performance are
mostly verified at 12V or higher. Compared to the other actuators (𝑁 = 182), the actuators
lacking torque (𝑁 = 130) have been simulated with a significantly lower running torque
requirement (𝑝 < 0.001, two-sided Mann-Whitney U test [119]) and a significantly higher
supply voltage (𝑝 < 0.001, two-sided Mann-Whitney U test). This difference in the chosen
supply voltage for the operating points can also be traced back to the linked optimizations
(𝑝 < 0.001, two-sidedMann-WhitneyU test). Thus, the incorrect identification of theworst-
case conditions to guarantee the specifications is the key reason behind invalid actuators.
The results also suggest students might not have been aware of it, and the teachers missed
pointing this out.

Nonetheless, there has been a total of 138 valid actuators simulated by the students. Fig-
ure 5.14 displays them in a relative cost and relative volume map, and reveals the great
diversity of the solutions found by the students. In particular, an impressive 49 actuators
are below the (1, 1) threshold, meaning they outperform the existing industrial product on
both metrics. Yet, not all groups have contributed to these solutions, and groups 7 and 9
account for 43 of those solutions.

The relations between the optimizations from which the selected designs have been chosen
and the products described in report 3 are shown in Table 5.16. Considering the optimiza-
tions, most groups have restricted themselves to biobjective optimizations and all groups
haven chosen to minimize cost along with a volume-related metric. The chosen optimiza-
tions fall into the OK (4x), invalid OP (3x) and missing constraint (2x) categories. The in-
valid actuators are related to a missing constraint and an invalid OP optimization. Yet, not
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Figure 5.13: Per day view between the start of the automated design phase and the final
presentation. (A) Number of optimizations separated based on their inclusion in a batch.
The daily means for each week are shown as a solid line. (B) Number of optimizations
colored by the number of attributes (e.g., chosen objective combinations or constraints) they
share with the given example file. (C) Number of actuator simulations originating from an
optimization colored depending on how they respect the specifications.
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Table 5.16: Overview of the optimizations from which the actuators in report 3 have been
chosen and the differences.

GID Objectives Budget Opt. category Differences to opt. Simulated R3 Valid

1 Min. cost
Min. assembly steps

60 000 Invalid OP 𝑑3, 𝑑4 Yes Yes

2 Min. cost
Max. safety factor
Min. volume

48 000 OK Exact Yes Yes

3 Min. cost
Min. volume

150 000 Missing constraint 𝐹𝐹,𝑅𝑠𝑐𝑎𝑙𝑒, 𝑑1, 𝑑2, 𝑑3, 𝑑4 No Yes

4 Min. cost
Min. thickness

100 000 Missing constraint Exact No No

5 Min. cost
Max. compactness
Min. volumne

150 000 OK 𝑑1, 𝑑2, 𝑑3 No Yes

6 Min. cost
Max. compactness

148 000 Invalid OP 𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝛾3 No No

7 Min. cost
Min. volume

144 000 OK 𝑑1, 𝑑2, 𝑑3, 𝑑4 No Yes

8 Min. cost
Max. safety factor

150 000 Invalid OP 𝑅𝑠𝑐𝑎𝑙𝑒, 𝛾1, 𝛾4, 𝑏2, 𝑏3, 𝑏4 Yes Yes

9 Min. cost
Min. length
Min. thickness

50 000 OK Exact Yes Yes

all actuators selected from such optimizations are invalid and adjustments made by stu-
dents of group 3 and 8, for example, have allowed their design to pass the specifications.
In fact, a majority of groups have decided to manually adjust—beyond simple rounding—
the optimized design, mostly to increase inter-component spacing. As a matter of fact, the
automated design tool available to the students could return unrealistically small spacing
(< 1 µm). However, only two out of six groups investigated the impact of their changes on
the predicted quality, as seen by model. Finally, there is no correlation between the cost of
the actuator and the budget of the associated optimization, e.g., group 9 has the lowest cost
and the second lowest budget.

5.3.6 Discussion

In general, students have proven to be remarkably curious and dedicated to mastering the
various tools. Not yet conditioned by experience and fearful of a trial-and-error approach,
students have tried to understand the mechanics behind all modules following a black-box-
like exploration. In the context of automated design tools, where structured processes and
guidelines are not established [153, 190], this approach has allowed them to learn and apply
a novel tool and method unknown to them within on average 20 d 15.8 h (SD 7 d 14.1 h).
Doing so, theywere able to suggest actuators that were better than the ones that theyworked
on for an average 42 d 1.56 h (SD 7 d 8.07 h), and even better than the industrial product this
application is based on. As an extension, they confirmed the validity and usefulness of the
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Figure 5.15: Anonymous student feedback for the MA course (𝑁 = 30).

developed automated design framework.

The integrated model is essential to tackle system design and allowed students to reduce
the packaging-related violations of their design. It offers a real support to better include
system-level constraints, a challenge for most humans [199]. It did, however, not help to
address other violations, among which the lack of torque. This could be related to an erro-
neous identification of the operating points to input. While some misconfigurations could
and should be automatically detected—it might have saved the students time if they had
received a warning about all the badly defined optimizations—not all can be inferred by
the tool. Human engineers still have to translate customer requirements into engineering
specifications, and then into “computer specifications”, a challenge common to many engi-
neering software. This clearly suggests that stronger problem analysis and computational
thinking skills should be promoted in engineering education.

When thinking of artificial intelligence, people often associate it with expensive computer
hardware requirements. While “BigData” approaches oftenneed large infrastructure,s some
automated design tools, such as the one used here, do not necessarily need such investments.
OMODand itsworkerswere running on a single 6-coremachine that could handle thework-
load of nine teams. Including queuing and optimization time, most results were available
within 1.46 h (excluding example and test optimizations, IQR [0.33 h, 4.19 h]), which is rea-
sonable for the obtained advantages.

Finally, out of all these technical considerations, the feedback of students regarding the
course they attended is shown in Figure 5.15. Overall, the students were extremely satis-
fied by the content of the course, and they mostly feel they learned from the experience.
In particular, they think they will be able to use this experience in their future occupation,
although given the answers, it seems they don’t know yet how this transfer will exactly hap-
pen. Here, while this only reflects the students’ beliefs, a similar question remains if the
demonstrated correlation between self-efficacy beliefs and performance [203] holds and if
this will indeed promote the use of machine intelligence driven engineering tool in industry.
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Limitations

The decision to perform the study in real conditions and in a teaching setting conditions
the study design. The size of the studied population may be limited but corresponds to
the traditional size of this class. The behavior of students is not predictable and is subject
to external and unknown disturbances and motivations. For example, the collected time
sheets show large deviations in the reported time worked on the project: [59.5, 272.25] h,
and with the data at hand, it is impossible to explain whether these differences are real or
not. Yet, this setting makes it realistic, because much of this also happens in industry, even
if not many would admit it.

Despite the best intentions, this study design cannot answer all questions. Many students
argue, for example, that having performed the design task by hand help them learn the au-
tomated design tool. In addition, the developed platform did not gather data on the interac-
tions of the students with the results or ask students to state their intentionwhen submitting
evaluations. These are many important points to investigate to further develop the use and
the education of machine intelligence in mechanical engineering.

5.4 Concluding Remarks

In this chapter, the results from two different investigations performed with students have
been reported. They yield valuable outcomes regarding the education of future engineers,
as well as the development of design automation tools.

In terms of skills, the results suggest that students can develop their professional skills
through projects, but that appropriate support and feedback are needed to strengthen their
learning, like for any other skill. Further, the results show that when technical computa-
tions are handed over to computers, the importance of problem-solving and computational-
thinking skills becomesmore apparent. Indeed, the inappropriate selection of the operating
points in the tool was related to the generation of invalid designs. So, educating future en-
gineers also means highlighting to students those challenges.

Through their use of the automated design tool, students were able to:

1. propose more qualitative designs, both in terms of performance metrics—e.g., cost or
volume—and specification violations;

2. get rid off packaging errors;

3. simulate 49 actuators that outperform the existing industrial product in terms of cost
and volume;

4. investigate several trade-offs.

Furthermore, they did all of this on average in just over 20 days, including learning time.
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Given that students also had other courses in parallel, this performance is certainly un-
precedented for novice engineers. With most optimization results available within 1.46 h,
students could experience the fast iterations and decision-making loops envisioned in the
introduction of this work in Figure 1.3.
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Et maintenant,
Maître, c’est moi qui te convie
À vider cette coupe où fume en bouillonnant
Non plus la mort, non plus le poison; mais la vie!

Méphistophélès (Faust, C. Gounod) 6
Conclusion

Design automation is a central concept to tackle the design of complex me-
chanical systems. Within the framework of the design of electro-mechanical
actuators, three important ingredientswere investigated: integratedmodelling,
efficient constrained multiobjective optimization, and future-looking educa-

tion of engineers. Through this work, like pieces of a puzzle, as the shortcomings are ad-
dressed, these ingredients come together to build an effective automated design tool.

6.1 Summary

The developed numerical model of actuators uses a modular approach to build up a sys-
tem view starting from interconnected components, such that different configurations can
be simulated. The focus was put on fast component models to free resources for modelling
complex system-level constraints, which are close to typical specifications. At the compo-
nent level, a steady-state model for stepper motors was derived from a set of ordinary differ-
ential equations (ODEs), while standard norms were applied for gears. At the system-level,
the layout of the actuator was considered and a 3-D representation of each systemwas built.
Leveraging fast techniques developed for the computer graphics industry, packaging and
assembly constraints were modelled.

The multiobjective optimization problems to obtain optimal actuators proved hard to solve
by state-of-the-art algorithms. This was highlighted by proposing a realistic benchmark
framework: Multi-Objective Design of Actuators (MODAct). This is one of few other at-
tempts to provide the evolutionary computation—and the broader operational research—
community with challenging optimization problems that better capture the properties of
problems from real applications. MODAct offers a standardized way for anyone to test
the performance of their optimization algorithms on mechanical design problems without
needing domain knowledge. The constraint landscapesd of the 20 new problems were char-
acterized using existing metrics of the decision space—feasability ratio (FsR) and ratio of
feasible boundary crossing (RFB×)—as well as newly suggested metrics—PFd and PFcv—
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aiming at quantifying the effect of constraints in the objective space. This analysis and a
convergence study using NSGA-II, NSGA-III and C-TAEA confirmed differences between
MODAct and benchmark problems from literature.

Building on this new test suite, a large investigation of relaxation-based constraint handling
strategies (CHSs) was performed. The investigation has, once more, shown that MODAct
problems are different to many existing benchmark problems. The novel cEpsilon CHS,
introduced in this work to tackle many-constraint problems, proved to be the best compro-
mise across all problems, with in particular, outstanding performance onmechanical design
problems.

Based on the integratedmodel andmultiobjective optimization, a tool for the automated de-
sign of actuators was created. Its qualities and potential were highlighted through two case
studies by the author, and more importantly, by the outstanding designs, which students—
i.e., novice engineers—were able to generate within a short time. Both author and students
found numerous design alternatives that show improvements over existing and established
industrial products. And while students were not always able to satisfy packaging specifica-
tions when designing “by hand”, the system-level constraints of the automated design tool
eliminated this iterative and tedious task. These constraints were also shown to be key to
ensure that qualitative and realistic solutions were generated by the tool. Further, the gen-
eration of 3-D representations allowed a rapid transfer from numerical vectors to tangible
concepts. All in all, the promise of fast iteration loops of design automation is fulfilled.

The increasing automation and digitalization are favoring professional and computational-
thinking skills. Two studieswith the participation of studentswere performed to understand
how to better shape the future of engineering education. On the one hand, the study sug-
gests that students’ learning of professional skills through team-based project is limited in
general, but can be supported by explicitly teaching those skills and by providing feedback
to students about them. These results suggest that promoting the development of such skills
by students does not require a full curriculum redesign, and that instruments for assessing
professional skills even in large classes exist. On the other hand, students were asked to de-
sign actuators for an automotiveHVACapplication using a traditional approach, followed by
an automated design approach. The students were given access to the developed numerical
models through a web interface, allowing their requests to be stored. The students learned
how to use the platform and themodels by performing black-box-like searches. They put sig-
nificant effort in understanding the effects of themany parameters, and their efforts paid off.
This study showed, in particular, that once the technical challenges related to the design task
were taken care of by the automated design tool, only problem-solving and computational-
thinking related questions remained to be supported by educators. Through this study, stu-
dents had a unique opportunity to experience design automation and its process. Satisfied
with their experience, they will carry it over into their professional careers.

Finally, handing over the automated design tool to many students also contributed to im-
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proving the tool itself. Not only were bugs identified and corrected, the learning path fol-
lowed by students emphasized the importance of early error detection and rapid feedback.
These two key characteristics should be part of any developed tool. In addition, contrary to a
widespread belief, not all machine intelligence applications require extensive and expensive
hardware.

6.2 Outlook

Several contributions of this thesis form the basis for future investigations:

1. The automatic selection of the most interesting actuator configurations is a valuable
extension to the framework presented in Chapter 2. The optimization of variable-
length decision vectors is a challenge that comes on top of proper constraint handling.
The methodology, however, is of interest both for the design of many mechanical sys-
tems, for example high-speed turbocompressors, but also in other fields, such the con-
figuration of neural networks. Adapted and meaningful search operators are one way
to approach the optimization problem. The topic also questions the validity of the
calculated performance metrics with different configurations and asks for strategies
to include subjective configuration preferences that might be hard to capture numer-
ically.

2. Further numerical assessment methods to better identify and quantify the properties
of constrained multiobjective optimization problems should be developed. The mo-
tivation for such metrics is both practical and theoretical. In practice, they could be
used to select the most appropriate optimization methods for a given problem, or to
develop adaptive algorithms that require less tuning. They could also participate in
transferring the properties of MODAct problems back into better “synthetic” problems
that are useful for advancing theoretical research in the field.

3. There are still many open aspects of constrained multiobjective optimization to be
investigated. MODAct offers the tools required to develop algorithms that are specif-
ically targeted at similar applications and most importantly, that consider the con-
straints as a key part. Hybrid and ensemble techniques seem promising in that con-
text, but the field may benefit from opening up to fresh ideas.

4. The level of knowledge and skills needed to use intelligent tools is a very important
open question in the field and should be further investigated. Since in the presented
study, students gained experience by solving the same design task using conventional
methods before using the automated design tool, the question remains if prior expe-
rience supports the use of such tools.

Finally, as a general goal, researchers-educators should thrive to promote evidence-based
education and think about how their research impacts the engineers and scientists of to-
morrow.
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Chapter A. Comparison of the steady-state stepper motor model
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Figure A.1: Comparison between stepper models for all defined steppers at 𝑉𝑠 = 12V and
with no current limitation.
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B
Interprofessional project

management questionnaire (IPMQ)

The questions of the Interprofessional Project Management Questionnaire (IPMQ) [99] are
reproduced here to ease the understanding, with the permission of its authors.

Table B.1: List of the questions of the IPMQ in English and in French along with the factors
they are linked to (A=planning, B=risk assessment, C=ethical sensitivity, D=communica-
tion, E=interprofessional competence).

Questions Factors

Q1 I am good at making a clear problem statement to clarify the goals when I start working on
a project.

A

Je suis compétent.e pour formuler un énoncé clair du problème afin de clarifier les objectifs
lorsque je commence à travailler sur un projet.

Q2 I am good at defining a clear work plan early in a project. A
Je suis compétent.e pour définir un plan de travail clair dès le début d’un projet.

Q3 I am good at breaking a large project into a number of smaller work packages. A
Je suis compétent.e pour diviser un grand projet en plusieurs petits lots de travail.

Q4 I am good at analyzing a project work plan to identify the order, priority and importance of
work tasks.

A

Je suis compétent.e pour analyser un plan de travail de projet afin d’identifier l’ordre, la priorité
et l’importance des tâches à accomplir.

Q5 I am good at identifying how to keep track of which tasks have been completed and how a
project is progressing.

A

Je suis compétent.e pour identifier comment suivre les tâches qui ont été accomplies et comment
un projet se déroule.

Q6 I am good at clarifying how likely it is that something will go wrong with a project. B
Je suis compétent.e pour clarifier la probabilité que quelque chose tourne mal dans un projet.
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Table B.1: (continued)

Questions Factors

Q7 I am good at identifying how much damage or trouble may be caused by something going
wrong with a project.

B

Je suis compétent.e pour identifier les dégâts ou les problèmes qui peuvent se produire si quelque
chose ne va pas bien avec un projet.

Q8 When working on a project, I am good at estimating the likelihood and potential impact of
something going wrong with a project.

B

Je suis compétent.e pour estimer la probabilité et l’impact potentiel d’un problème lié au projet
sur lequel je travaille.

Q9 I am good at identifying what actions should be taken to minimize or alleviate something
going wrong with a project.

A, B

Je suis compétent.e pour identifier les mesures à prendre pour minimiser ou atténuer les pro-
blèmes liés à un projet.

Q10 I am good at recognizing that other teammembers’ definition of what it means for something
to “go wrong” may be different from my own.

B, D

Je suis compétent.e pour reconnaître que la définition des autres membres de l’équipe quant à
ce que veut dire “tourner mal” peut différer de la mienne.

Q11 When working on a project, I am good at asking myself if a project like this could have a
positive impact on someone else’s life.

C

Quand je travaille sur un projet, je suis compétent.e pour me demander si un projet comme
celui-ci pourrait avoir un impact positif sur la vie de quelqu’un d’autre.

Q12 When working on a project, I am good at asking myself if a project like this could have a
negative impact on someone else’s life.

C

Quand je travaille sur un projet, je suis compétent.e pour me demander si un projet comme
celui-ci pourrait avoir un impact négatif sur la vie de quelqu’un d’autre.

Q13 I am good at puttingmyself in the shoes of someonewhose life could be affected by a project’s
results.

C

Je suis compétent.e pour me mettre à la place de quelqu’un dont la vie pourrait être affectée par
les résultats d’un projet.

Q14 I am good at identifying all the people who could be impacted by a project, no matter how
directly or indirectly.

C

Je suis compétent.e pour identifier toutes les personnes qui pourraient être touchées par unprojet,
que ce soit directement ou indirectement.

Q15 I am good at trying to understand the perspective of other team members. D
Je suis compétent.e pour essayer de bien comprendre le point de vue des autres membres de
l’équipe.

Q16 I am good at making sure that all the necessary information is shared with other teammem-
bers.

D

Je suis compétent.e pourm’assurer que toute l’information nécessaire est partagée avec les autres
membres de l’équipe.

Q17 I am good at explaining my ideas in ways that other people can understand. D
Je suis compétent.e pour exposer mes idées de façon qu’elles soient bien comprises par les autres.
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Questions Factors

Q18 When someone disagrees with me, I am good at paying close attention to see if I can learn
something from their alternative perspective.

D

Quand quelqu’un est en désaccord avec moi, je suis compétent.e pour voir si je peux apprendre
quelque-chose de leur point de vue.

Q19 I can normally work productively with another teammember even if I am angry or frustrated
with them.

D

Je peux généralement travailler de façon productive avec un autre membre de l’équipe même si
je suis en colère ou frustré contre lui.

Q20 I am good at recognizing the knowledge and skills of different professions involved in a
project team.

E

Je suis compétent.e pour reconnaître les connaissances et les compétences des différentes disci-
plines engagées dans un projet d’équipe.

Q21 I am good at being sensitive to the way inwhich different professionsmay use the sameword. E
Je suis sensible à la façon dont différentes disciplines peuvent utiliser le même mot.

Q22 I am good at clarifying with people from other professions how their knowledge and skills
contribute to each stage of a project.

E

Je suis compétent.e pour clarifier avec les personnes d’autres disciplines comment leurs connais-
sances et leurs compétences contribuent à chaque étape d’un projet.

Q23 I am good at identifying the skills or knowledge that other professions in the team have,
which I should try to develop.

E

Je suis compétent.e pour identifier les connaissances ou compétences dont disposent les per-
sonnes des autres disciplines au sein de l’équipe et que je devrais développer moi-même.

Q24 I am good at sharing responsibility with the other professions in the team for the overall
success of a project.

E

Je suis compétent.e.e pour partager les responsabilités entre les personnes de différentes disci-
plines dans l’équipe afin d’assurer la réussite globale d’un projet.
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C
OMOD: Example Files

Content of the YAML example file given to students and that serves as a template to config-
ure the optimizations:

1 # Topology allows to test different number of gearpairs (here: 1 motor, 2 gearpairs)
2 topology:
3 - motor
4 - gearpair
5 - gearpair
6 # Objectives to maximize (1) or minimize (-1)
7 # The order is kept for the graph of the results x -> 1, y -> 2, z (color) ->3
8 # Choose from the available variables
9 objectives:
10 - ["cost", -1]
11 - ["hmean_security_f", 1]
12 - ["passthrough_axes", -1]
13 # Objectives to maximize (1) or minimize (-1)
14 # The order is kept for the graph of the results x -> 1, y -> 2, z (color) ->3
15 # Choose from the available variables (variables cannot appear twice)
16 constraints:
17 - interference
18 - contact_ratio
19 - ss1
20 - ss2
21 - security_f
22 - cycles_left_1
23 - cycles_left_2
24 - collision
25 - i_tot
26 # Under constraints_specs you can specify the way and the value the form the constraint.
27 # In the example below, it means that i_tot is >= 1600
28

29 # The following constraints are taken into account the following way if you add them to
the list above↪

30 # without the need to specify them here:
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31 # interference >= 0 <-- means no interference
32 # contact_ratio >= 1.1 <-- if you want to change this email me
33 # ss1 >= -5 <-- if you want to change this email me
34 # ss2 >= -5 <-- if you want to change this email me
35 # cycles_left_1 >= 0
36 # cycles_left_2 >= 0
37 # assembly_constraint <= 0 <-- meaning assembly is feasible if this is 0 (not to confuse

with assembly score)↪

38 # passthrough_axes <= 0 <-- meaning all axes passthrough
39 # collision <= 0 <-- meaning no collision
40

41 constraints_specs:
42 i_tot: [">", 1600]
43

44 # Optimization settings
45 # nfe = Number of function evaluations
46 # mu = Number of solutions evaluated per generation
47 optimization:
48 nfe: 1000
49 mu: 40
50

51 # Specify the bounds (lower / upper) allowed for the design
52 bounds:
53 gear:
54 allowed_materials: ['Ultramid-A3EG6', 'Genestar-N1001A', 'POM', 'Grivory-HT2V-5H',

'Grivory-GV-4H'] # <-- set materials to consider↪

55 Z1: [9, 40]
56 x1: [-0.1, 0.6]
57 Z2: [40, 100]
58 x2: [-0.6, 0.6]
59 m: [0.3, 1.0]
60 b: [5., 15.]
61 disp: [-40., 40.]
62 angle: [-3.15, 3.15]
63 motor:
64 allowed_motors: ['A', 'B', 'C', 'D', 'E', 'F'] # <-- set motors to consider
65 ff: [0.6, 0.8]
66 r_scale: [0.5, 1.]
67

68 # Specify the operating points of the output to test the actuator
69 op:
70 - speed: 0.314
71 torque: 0.1
72 temperature: 40
73 ncycles: 10000
74 type: "running"
75 V: 12
76 imax: 0.5
77 - speed: 0.0056
78 torque: 0.2
79 temperature: -40
80 ncycles: 10000
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81 type: "stall"
82 V: 12
83 imax: 0.5
84

85 # Settings of the model
86 settings:
87 shaft_r: 1.25 # default radius to consider for shaft
88 raddii: # possibility to specify the radius of a particular shaft, here the 4th shaft
89 3: 2
90 limit_torque: True # if True, motor torque is reduced if the output torque is higher

than requested↪

91 shaft_overlap: True # if True allows multiple parts (pinion-wheel, pinion-wheel) to
be on the same shaft↪

92

93 # For info only
94 variables:
95 - cost # sum of the cost of motor + gears
96 - cost_with_hull # cost + chull_area*1.5*rho*cost of Ultramid
97 - min_torque_excess # smallest torque excess (t_effective - t_desired) over all

operating points↪

98 - mean_torque_excess # mean torque excess over all operating points
99 - passthrough_axes # 0 all axis passthrough / >= 0 some axis are "blocked" by other

gears↪

100 - assembly_constraint # only constraint, 0 if assembly feasible, 1 if not feasible
101 - assembly_score # number of minimum asssembly steps (integer variable) / if greater

than number of components --> assembly not feasible↪

102 - hmean_security_f # harmonic mean of the effective flexion security factor over all
gear pairs↪

103 - i_tot # total transmission ratio from electric signal to output : i_tot = i_tot_gp
* Nm↪

104 - i_tot_gp # total transmission ratio of gears
105 # Bounding box dimensions --> smallest axis aligned box that fits system (gears + motor

only)↪

106 - bb_dx
107 - bb_dy
108 - bb_dz # z axis aligned with output shaft
109 # Oriented bouding box dimensions : rotation matrix optimized to have to smallest box

that fits the system↪

110 # No alignement guarantee
111 - obb_dx
112 - obb_dy
113 - obb_dz
114 # Minimum flexion security factor over all gear pairs shifted by -1 (security_f = 0.1

--> real security factor = 1.1)↪

115 - security_f
116 - cycles_left_1 # minimum number of cycles left over all pinions
117 - cycles_left_2 # minimum number of cycles left over all wheels
118 - ss1
119 - ss2
120 - interference
121 - contact_ratio
122 - collision # 0 <-- no collision / 1 <-- every face is colliding
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123 - compactness # volumes of components (gears + motor) / convex hull volume
124 - bb_compactness # volumes of components (gears + motor) / bounding box volume
125 - bb_volume # bounding box volume
126 - obb_compactness # volumes of components (gears + motor) / oriented bounding box

volume↪

127 - obb_volume # oriented bounding box volume
128 - chull_volume # convex hull volume

Content of the YAML example file to start full actuator evaluations:

1 topology:
2 - motor
3 - gearpair
4 - gearpair
5 actuator:
6 0_motor_name: 'B'
7 0_fill_factor: 1.0
8 0_r_scale: 1.0
9 1_Z1: 13
10 1_Z2: 67
11 1_b: 10
12 1_m: 0.5
13 1_mat1: 'POM'
14 1_mat2: 'POM'
15 1_x1: 0.3
16 1_x2: -0.3
17 1_disp: 5
18 1_angle: 0
19 2_Z1: 17
20 2_Z2: 70
21 2_b: 10
22 2_m: 0.5
23 2_mat1: 'POM'
24 2_mat2: 'POM'
25 2_x1: 0.0
26 2_x2: -0.0
27 2_disp: 5
28 2_angle: 1.2
29 settings:
30 shaft_r: 1.25
31 limit_torque: True
32 op:
33 - speed: 0.314
34 torque: 0.1
35 temperature: 40
36 ncycles: 80000
37 type: "running"
38 V: 12
39 imax: 0.5
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40 - speed: 0.0056
41 torque: 0.3
42 temperature: -40
43 ncycles: 80000
44 type: "stall"
45 V: 14
46 imax: 0.5

155





Bibliography

[1] P. Acarnley. Stepping Motors: A Guide to Theory and Practice. IET, Jan. 2002. 174 pp.

[2] P. Aeby et al. “The Impact of Gender on Engineering Students’ GroupWork Experi-
ences”. In: International Journal of Engineering Education 35.3 (2019), pp. 756–765.

[3] S. Ahmed, K. M. Wallace, and L. T. Blessing. “Understanding the Differences be-
tween How Novice and Experienced Designers Approach Design Tasks”. In: Re-
search in Engineering Design 14.1 (Feb. 1, 2003), pp. 1–11. doi: 10.1007/s00163-002-
0023-z.

[4] A. Alsin. Inside Tesla – And What’s Really Disrupting The Automotive Industry.
Forbes. Sept. 14, 2017. url: https : / / www . forbes . com / sites / aalsin / 2017 / 09 /
14/inside-tesla-and-whats-really-disrupting-the-automotive-industry/ (visited on
10/21/2020).

[5] M. Asafuddoula et al. “An Adaptive Constraint Handling Approach Embedded
MOEA/D”. In: 2012 IEEECongress onEvolutionaryComputation. 2012 IEEECongress
on Evolutionary Computation. June 2012, pp. 1–8. doi: 10.1109/CEC.2012.6252868.

[6] C.Audet and J. E.Dennis. “MeshAdaptiveDirect SearchAlgorithms forConstrained
Optimization”. In: SIAM Journal on Optimization 17.1 (Jan. 1, 2006), pp. 188–217.
doi: 10.1137/040603371.

[7] J. Bader and E. Zitzler. “HypE: An Algorithm for Fast Hypervolume-Based Many-
Objective Optimization”. In:Evol. Comput. 19.1 (Mar. 2011), pp. 45–76. doi: 10.1162/
EVCO_a_00009.

[8] B. J. Barron et al. “DoingWith Understanding: Lessons From Research on Problem-
and Project-Based Learning”. In: Journal of the Learning Sciences 7.3-4 (July 1998),
pp. 271–311. doi: 10.1080/10508406.1998.9672056.

[9] J. Blank and K. Deb. “Pymoo: Multi-Objective Optimization in Python”. In: IEEE
Access 8 (2020), pp. 89497–89509. doi: 10.1109/ACCESS.2020.2990567.

[10] L. T. Blessing and A. Chakrabarti. DRM, a Design Research Methodology. London:
Springer London, 2009. doi: 10.1007/978-1-84882-587-1.

[11] Bokeh Development Team. Bokeh: Python Library for Interactive Visualization. 2014.

157

https://doi.org/10.1007/s00163-002-0023-z
https://doi.org/10.1007/s00163-002-0023-z
https://www.forbes.com/sites/aalsin/2017/09/14/inside-tesla-and-whats-really-disrupting-the-automotive-industry/
https://www.forbes.com/sites/aalsin/2017/09/14/inside-tesla-and-whats-really-disrupting-the-automotive-industry/
https://doi.org/10.1109/CEC.2012.6252868
https://doi.org/10.1137/040603371
https://doi.org/10.1162/EVCO_a_00009
https://doi.org/10.1162/EVCO_a_00009
https://doi.org/10.1080/10508406.1998.9672056
https://doi.org/10.1109/ACCESS.2020.2990567
https://doi.org/10.1007/978-1-84882-587-1


Bibliography

[12] D. Brockhoff, T.-D. Tran, and N. Hansen. “Benchmarking Numerical Multiobjective
Optimizers Revisited”. In: Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation (Madrid, Spain). GECCO ’15. New York, NY, USA: ACM,
2015, pp. 639–646. doi: 10.1145/2739480.2754777.

[13] A. F. Cabrera, C. L. Colbeck, andP.T.Terenzini. “Developing Performance Indicators
for Assessing Classroom Teaching Practices and Student Learning”. In: Research in
Higher Education 42.3 (June 2001), pp. 327–352. doi: 10.1023/A:1018874023323.

[14] J. Cagan, K. Shimada, and S. Yin. “A Survey of Computational Approaches to Three-
Dimensional Layout Problems”. In: Computer-Aided Design 34.8 (July 1, 2002),
pp. 597–611. doi: 10.1016/S0010-4485(01)00109-9.

[15] J. Cagan et al. “A Framework for Computational Design Synthesis: Model and Ap-
plications”. In: Journal of Computing and Information Science in Engineering 5.3
(Sept. 1, 2005), pp. 171–181. doi: 10.1115/1.2013289.

[16] L. Carter. “Ideas for Adding Soft Skills Education to Service Learning and Capstone
Courses for Computer Science Students”. In: Proceedings of the 42nd ACMTechnical
Symposium on Computer Science Education. SIGCSE ’11. Dallas, TX, USA: Associ-
ation for Computing Machinery, Mar. 2011, pp. 517–522. doi: 10 . 1145 / 1953163 .
1953312.

[17] E.A.Cech. “Culture of Disengagement inEngineeringEducation?” In:Science,Tech-
nology,&HumanValues 39.1 (Jan. 1, 2014), pp. 42–72. doi: 10.1177/0162243913504305.

[18] A. Chakrabarti, S. Morgenstern, and H. Knaab. “Identification and Application of
Requirements and Their Impact on the Design Process: A Protocol Study”. In: Re-
search in Engineering Design 15.1 (Mar. 1, 2004), pp. 22–39. doi: 10.1007/s00163-
003-0033-5.

[19] A. Chakrabarti et al. “Computer-Based Design Synthesis Research: An Overview”.
In: Journal of Computing and Information Science in Engineering 11.2 (June 1, 2011).
doi: 10.1115/1.3593409.

[20] J. Chen, A. Kolmos, and X. Du. “Forms of Implementation and Challenges of PBL in
Engineering Education: A Review of Literature”. In: European Journal of Engineer-
ing Education 0.0 (Feb. 2020), pp. 1–26. doi: 10.1080/03043797.2020.1718615.

[21] L. Chen et al. “An Artificial Intelligence Based Data-Driven Approach for Design
Ideation”. In: Journal of Visual Communication and Image Representation 61 (May 1,
2019), pp. 10–22. doi: 10.1016/j.jvcir.2019.02.009.

[22] W. Chen and F. Ahmed. “PaDGAN: Learning to Generate High-Quality Novel De-
signs”. In: Journal of Mechanical Design 143.031703 (Nov. 10, 2020). doi: 10.1115/1.
4048626.

[23] C. A. Coello Coello and M. S. Lechuga. “MOPSO: A Proposal for Multiple Objective
Particle Swarm Optimization”. In: Proceedings of the Evolutionary Computation on
2002. CEC ’02. Proceedings of the 2002 Congress - Volume 02. CEC ’02. USA: IEEE
Computer Society, May 12, 2002, pp. 1051–1056.

158

https://doi.org/10.1145/2739480.2754777
https://doi.org/10.1023/A:1018874023323
https://doi.org/10.1016/S0010-4485(01)00109-9
https://doi.org/10.1115/1.2013289
https://doi.org/10.1145/1953163.1953312
https://doi.org/10.1145/1953163.1953312
https://doi.org/10.1177/0162243913504305
https://doi.org/10.1007/s00163-003-0033-5
https://doi.org/10.1007/s00163-003-0033-5
https://doi.org/10.1115/1.3593409
https://doi.org/10.1080/03043797.2020.1718615
https://doi.org/10.1016/j.jvcir.2019.02.009
https://doi.org/10.1115/1.4048626
https://doi.org/10.1115/1.4048626


[24] C. A. Coello Coello. “Use of a Self-Adaptive Penalty Approach for Engineering Opti-
mization Problems”. In: Computers in Industry 41.2 (Mar. 1, 2000), pp. 113–127. doi:
10.1016/S0166-3615(99)00046-9.

[25] C. A. Coello Coello and N. C. Cortés. “Solving Multiobjective Optimization Prob-
lems Using an Artificial Immune System”. In: Genetic Programming and Evolvable
Machines 6.2 (June 1, 2005), pp. 163–190. doi: 10.1007/s10710-005-6164-x.

[26] C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen. Evolutionary Algo-
rithms for SolvingMulti-Objective Problems. 2. ed. Genetic and Evolutionary Compu-
tation Series. New York, NY: Springer, 2007. 800 pp.

[27] A. R. Costa et al. “Impact of Interdisciplinary Learning on the Development of Engi-
neering Students’ Skills”. In: European Journal of Engineering Education 44.4 (July
2019), pp. 589–601. doi: 10.1080/03043797.2018.1523135.

[28] W. Cox and L. While. “Improving and Extending the HV4D Algorithm for Calcu-
lating Hypervolume Exactly”. In: AI 2016: Advances in Artificial Intelligence. Ed. by
B. H. Kang and Q. Bai. Springer International Publishing, 2016, pp. 243–254.

[29] S. Craps et al. “Professional Roles and Employability of Future Engineers”. In: Pro-
ceedings of the 45th SEFI Annual Conference 2017 - Education Excellence for Sustain-
ability, SEFI 2017. European Society for Engineering Education SEFI, Sept. 2017,
pp. 499–507.

[30] E. F. Crawley et al. Rethinking Engineering Education: The CDIO Approach. 2nd ed.
2014. Cham: Springer International Publishing : Imprint: Springer, 2014. doi: 10 .
1007/978-3-319-05561-9.

[31] M. L. Cruz, G. N. Saunders-Smits, and P. Groen. “Evaluation of Competency Meth-
ods in Engineering Education: A Systematic Review”. In: European Journal of En-
gineering Education 45.5 (Sept. 2020), pp. 729–757. doi: 10 .1080/03043797 .2019 .
1671810.

[32] B. Danchilla. “Three.Js Framework”. In: BeginningWebGL forHTML5. Berkeley, CA:
Apress, 2012, pp. 173–203. doi: 10.1007/978-1-4302-3997-0_7.

[33] I. Das and J. Dennis. “Normal-Boundary Intersection: A New Method for Gen-
erating the Pareto Surface in Nonlinear Multicriteria Optimization Problems”.
In: SIAM Journal on Optimization 8.3 (Aug. 1, 1998), pp. 631–657. doi: 10 . 1137 /
S1052623496307510.

[34] Dawson-Haggerty et al. Trimesh. Version 3.2.0. Dec. 8, 2019.

[35] F.-M. DeRainville et al. “DEAP: A Python Framework for EvolutionaryAlgorithms”.
In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolution-
ary Computation. GECCO ’12. New York, NY, USA: ACM, 2012, pp. 85–92. doi: 10.
1145/2330784.2330799.

159

https://doi.org/10.1016/S0166-3615(99)00046-9
https://doi.org/10.1007/s10710-005-6164-x
https://doi.org/10.1080/03043797.2018.1523135
https://doi.org/10.1007/978-3-319-05561-9
https://doi.org/10.1007/978-3-319-05561-9
https://doi.org/10.1080/03043797.2019.1671810
https://doi.org/10.1080/03043797.2019.1671810
https://doi.org/10.1007/978-1-4302-3997-0_7
https://doi.org/10.1137/S1052623496307510
https://doi.org/10.1137/S1052623496307510
https://doi.org/10.1145/2330784.2330799
https://doi.org/10.1145/2330784.2330799


Bibliography

[36] K. Deb and H. Jain. “An Evolutionary Many-Objective Optimization Algorithm Us-
ing Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Prob-
lems With Box Constraints”. In: IEEE Transactions on Evolutionary Computation
18.4 (Aug. 2014), pp. 577–601. doi: 10.1109/TEVC.2013.2281535.

[37] K. Deb et al. “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II”. In:
IEEE Transactions on Evolutionary Computation 6.2 (Apr. 2002), pp. 182–197. doi:
10.1109/4235.996017.

[38] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley &
Sons, July 5, 2001. 540 pp.

[39] K. Deb and R. B. Agrawal. “Simulated Binary Crossover for Continuous Search
Space”. In: Complex systems 9.2 (1995), pp. 115–148.

[40] K. Deb and S. Jain. “Multi-Speed Gearbox Design Using Multi-Objective Evolution-
ary Algorithms”. In: Journal of Mechanical Design 125.3 (2003), p. 609. doi: 10.1115/
1.1596242.

[41] K. Deb, A. Pratap, andT.Meyarivan. “ConstrainedTest Problems forMulti-Objective
EvolutionaryOptimization”. In:EvolutionaryMulti-CriterionOptimization. Ed. by E.
Zitzler et al. Springer Berlin Heidelberg, 2001, pp. 284–298.

[42] K. Deb et al. “Scalable Test Problems for Evolutionary Multiobjective Optimiza-
tion”. In: Evolutionary Multiobjective Optimization. Ed. by A. Abraham, L. Jain, and
R. Goldberg. Advanced Information and Knowledge Processing. Springer London,
2005, pp. 105–145. doi: 10.1007/1-84628-137-7_6.

[43] M. Deininger et al. “Novice Designers’ Use of Prototypes in Engineering Design”. In:
Design Studies 51 (July 2017), pp. 25–65. doi: 10.1016/j.destud.2017.04.002.

[44] Design Council. What Is the Framework for Innovation? Design Council’s Evolved
Double Diamond. Design Council. Mar. 17, 2015. url: https://www.designcouncil.
org . uk / news - opinion /what - framework - innovation - design - councils - evolved -
double-diamond (visited on 02/10/2021).

[45] F. Y. Edgeworth.Mathematical Psychics: An Essay on the Application of Mathematics
to the Moral Sciences. London, UK: P. Keagan, 1881.

[46] K. Edström and A. Kolmos. “PBL and CDIO: Complementary Models for Engineer-
ing Education Development”. In: European Journal of Engineering Education 39.5
(Sept. 2014), pp. 539–555. doi: 10.1080/03043797.2014.895703.

[47] ENAEE. EUR-ACE Label Authorisation Process. ENAEE, Mar. 2017.

[48] L. J. Eshelman and J. D. Schaffer. “Real-Coded Genetic Algorithms and Interval-
Schemata”. In: Foundations of Genetic Algorithms. Ed. by L. D.Whitley. Vol. 2. Foun-
dations of Genetic Algorithms. Elsevier, Jan. 1, 1993, pp. 187–202. doi: 10 . 1016 /
B978-0-08-094832-4.50018-0.

160

https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1109/4235.996017
https://doi.org/10.1115/1.1596242
https://doi.org/10.1115/1.1596242
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1016/j.destud.2017.04.002
https://www.designcouncil.org.uk/news-opinion/what-framework-innovation-design-councils-evolved-double-diamond
https://www.designcouncil.org.uk/news-opinion/what-framework-innovation-design-councils-evolved-double-diamond
https://www.designcouncil.org.uk/news-opinion/what-framework-innovation-design-councils-evolved-double-diamond
https://doi.org/10.1080/03043797.2014.895703
https://doi.org/10.1016/B978-0-08-094832-4.50018-0
https://doi.org/10.1016/B978-0-08-094832-4.50018-0


[49] Z. Fan et al. “An Improved Epsilon Constraint Handling Method Embedded in
MOEA/D for Constrained Multi-Objective Optimization Problems”. In: 2016 IEEE
Symposium Series on Computational Intelligence (SSCI). Dec. 2016, pp. 1–8. doi:
10.1109/SSCI.2016.7850224.

[50] Z. Fan et al. “An Improved Epsilon Constraint-Handling Method in MOEA/D for
CMOPs with Large Infeasible Regions”. In: Soft Computing 23.23 (Dec. 1, 2019),
pp. 12491–12510. doi: 10.1007/s00500-019-03794-x.

[51] Z. Fan et al. “Difficulty Adjustable and Scalable Constrained Multiobjective Test
Problem Toolkit”. In: Evolutionary Computation (May 23, 2019), pp. 1–40. doi: 10.
1162/evco_a_00259.

[52] Z. Fan et al. “MOEA/D with Angle-Based Constrained Dominance Principle for
Constrained Multi-Objective Optimization Problems”. In: Applied Soft Computing
74 (Jan. 1, 2019), pp. 621–633. doi: 10.1016/j.asoc.2018.10.027.

[53] Z. Fan et al. “Push and Pull Search for Solving Constrained Multi-Objective Op-
timization Problems”. In: Swarm and Evolutionary Computation 44 (Feb. 1, 2019),
pp. 665–679. doi: 10.1016/j.swevo.2018.08.017.

[54] M. Farina and P. Amato. “On the Optimal Solution Definition for Many-Criteria
Optimization Problems”. In: 2002 Annual Meeting of the North American Fuzzy In-
formation Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622).
2002 Annual Meeting of the North American Fuzzy Information Processing Soci-
ety Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622). 2002, pp. 233–238. doi:
10.1109/NAFIPS.2002.1018061.

[55] J. R. Flynn.What Is Intelligence ? : Beyond the Flynn Effect. 1st expanded paperback
ed. [with 3 new chapters]. Cambridge ; New York: Cambridge Univ. Press, 2009. 259
p.

[56] F.-A. Fortin et al. “DEAP: Evolutionary Algorithms Made Easy”. In: Journal of Ma-
chine Learning Research 13 (Jul 2012), pp. 2171–2175.

[57] C. B. Frey and M. A. Osborne. “The Future of Employment: How Susceptible Are
Jobs to Computerisation?” In: Technological Forecasting and Social Change 114
(Jan. 1, 2017), pp. 254–280. doi: 10.1016/j.techfore.2016.08.019.

[58] H. Fukumoto and A. Oyama. “A Generic Framework for Incorporating Constraint
Handling Techniques into Multi-Objective Evolutionary Algorithms”. In: Applica-
tions of Evolutionary Computation. International Conference on the Applications of
Evolutionary Computation. Springer, Cham, Apr. 3, 2018, pp. 634–649. doi: 10.1007/
978-3-319-77538-8_43.

[59] H. Fukumoto and A. Oyama. “Benchmarking Multiobjective Evolutionary Algo-
rithms and Constraint Handling Techniques on a Real-World Car Structure Design
Optimization Benchmark Problem”. In: Proceedings of the Genetic and Evolutionary
Computation Conference Companion. GECCO ’18. New York, NY, USA: ACM, 2018,
pp. 177–178. doi: 10.1145/3205651.3205754.

161

https://doi.org/10.1109/SSCI.2016.7850224
https://doi.org/10.1007/s00500-019-03794-x
https://doi.org/10.1162/evco_a_00259
https://doi.org/10.1162/evco_a_00259
https://doi.org/10.1016/j.asoc.2018.10.027
https://doi.org/10.1016/j.swevo.2018.08.017
https://doi.org/10.1109/NAFIPS.2002.1018061
https://doi.org/10.1016/j.techfore.2016.08.019
https://doi.org/10.1007/978-3-319-77538-8_43
https://doi.org/10.1007/978-3-319-77538-8_43
https://doi.org/10.1145/3205651.3205754


Bibliography

[60] R. d. P. Garcia et al. “A Rank-Based Constraint Handling Technique for Engineer-
ing Design Optimization Problems Solved by Genetic Algorithms”. In: Computers &
Structures 187 (July 15, 2017), pp. 77–87. doi: 10.1016/j.compstruc.2017.03.023.

[61] H. Geng et al. “Infeasible Elitists and Stochastic Ranking Selection in Constrained
Evolutionary Multi-Objective Optimization”. In: Simulated Evolution and Learning.
Ed. by T.-D. Wang et al. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2006, pp. 336–344. doi: 10.1007/11903697_43.

[62] J. S. Gero and U. Kannengiesser. “The Situated Function–Behaviour–Structure
Framework”. In: Design Studies 25.4 (July 1, 2004), pp. 373–391. doi: 10 . 1016 / j .
destud.2003.10.010.

[63] D. Gijbels et al. “Effects of Problem-Based Learning: A Meta-Analysis From the An-
gle of Assessment”. In: Review of Educational Research 75.1 (Mar. 2005), pp. 27–61.
doi: 10.3102/00346543075001027.

[64] P. M. Grignon and G. M. Fadel. “A GA Based Configuration Design Optimization
Method”. In: Journal of Mechanical Design 126.1 (Mar. 11, 2004), pp. 6–15. doi: 10.
1115/1.1637656.

[65] M. Grimheden. “From Capstone Courses To Cornerstone Projects: Transferring Ex-
periences From Design Engineering Final Year Students To First Year Students”. In:
114th Annual ASEEConference and Exposition, 2007. ASEEConferences, June 2007,
pp. 12.768.1–12.768.12.

[66] S. Grover and R. D. Pea. “Computational Thinking: A CompetencyWhose Time Has
Come”. In: Computer Science Education: Perspectives on Teaching and Learning in
School. London ; New York: Bloomsbury Academic, 2018.

[67] J. Gu et al. “Parameter Optimization Design of Two-Planetary-Gear Power-Split Hy-
brid System Configuration Using the RAD-MOPSO Algorithm”. In: Proceedings of
the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
(July 24, 2020), p. 0954407020937527. doi: 10.1177/0954407020937527.

[68] D. Hadka and P. Reed. “Borg: AnAuto-AdaptiveMany-Objective Evolutionary Com-
puting Framework”. In: Evolutionary Computation 21.2 (May 2013), pp. 231–259.
doi: 10.1162/EVCO_a_00075.

[69] J. Han et al. “A Computational Tool for Creative Idea Generation Based on Ana-
logical Reasoning and Ontology”. In: AI EDAM 32.4 (Nov. 2018), pp. 462–477. doi:
10.1017/S0890060418000082.

[70] J. Hattie. Visible Learning: A Synthesis of over 800 Meta-Analyses Relating to Achieve-
ment. London ; New York: Routledge, 2009.

[71] R. Hernandez-Linares et al. “Transversal Competences of University Students of En-
gineering”. In:Croatian Journal of Education :Hrvatski časopis za odgoj i obrazovanje
17.2 (June 2015), pp. 383–409. doi: 10.15516/cje.v17i2.1062.

162

https://doi.org/10.1016/j.compstruc.2017.03.023
https://doi.org/10.1007/11903697_43
https://doi.org/10.1016/j.destud.2003.10.010
https://doi.org/10.1016/j.destud.2003.10.010
https://doi.org/10.3102/00346543075001027
https://doi.org/10.1115/1.1637656
https://doi.org/10.1115/1.1637656
https://doi.org/10.1177/0954407020937527
https://doi.org/10.1162/EVCO_a_00075
https://doi.org/10.1017/S0890060418000082
https://doi.org/10.15516/cje.v17i2.1062


[72] C. E. Hmelo, D. L. Holton, and J. L. Kolodner. “Designing to Learn About Complex
Systems”. In: Journal of the Learning Sciences 9.3 (July 1, 2000), pp. 247–298. doi:
10.1207/S15327809JLS0903_2.

[73] S. Holm. “A Simple Sequentially Rejective Multiple Test Procedure”. In: Scandina-
vian Journal of Statistics 6.2 (1979), pp. 65–70.

[74] N. Houssami et al. “Artificial Intelligence for Breast Cancer Screening: Opportunity
or Hype?” In: The Breast 36 (Dec. 1, 2017), pp. 31–33. doi: 10.1016/j.breast.2017.09.
003.

[75] T. Howard, S. Culley, and E. Dekoninck. “Describing the Creative Design Process
by the Integration of Engineering Design and Cognitive Psychology Literature”. In:
Design Studies 29.2 (Mar. 2008), pp. 160–180. doi: 10.1016/j.destud.2008.01.001.

[76] S. Howe. “Where AreWe Now? Statistics on Capstone Courses Nationwide”. In: Ad-
vances in Engineering Education 2.1 (2010), p. 27.

[77] S. Howe, L. Rosenbauer, and S. Poulos. “The 2015 Capstone Design Survey Results:
Current Practices and Changes over Time”. In: International Journal of Engineering
Education 33.5 (2017), pp. 393–1421.

[78] S. Huband et al. “A Review of Multiobjective Test Problems and a Scalable Test Prob-
lem Toolkit”. In: IEEE Transactions on Evolutionary Computation 10.5 (Oct. 2006),
pp. 477–506. doi: 10.1109/TEVC.2005.861417.

[79] International Organization for Standardization. Calculation of Load Capacity of
Spur and Helical Gears. ISO 6336:2006. Geneva, Switzerland: ISO, 2006.

[80] International Organization for Standardization. Cylindrical Gears for General and
HeavyEngineering –StandardBasicRackToothProfile. ISO53:1998.Geneva, Switzer-
land: ISO, 1998.

[81] International Organization for Standardization. Gears – Cylindrical Involute Gears
and Gear Pairs – Concepts and Geometry. ISO 21771:2007. Geneva, Switzerland: ISO,
2007.

[82] International Organization for Standardization. Vocabulary of Gear Terms – Part 1:
Definitions Related to Geometry. ISO 1122-1:1998. Geneva, Switzerland: ISO, 1998.

[83] S. Isaac and R. Tormey. “Undergraduate Group Projects: Challenges and Learning
Experiences”. In: Engineering Leaders Conference 2014 on Engineering Education.
Vol. 2015. Hamad bin Khalifa University Press (HBKU Press), Aug. 2015, p. 19. doi:
10.5339/qproc.2015.elc2014.19.

[84] H. Ishibuchi, N. Akedo, and Y. Nojima. “Behavior of Multiobjective Evolutionary
Algorithms on Many-Objective Knapsack Problems”. In: IEEE Transactions on Evo-
lutionary Computation 19.2 (Apr. 2015), pp. 264–283. doi: 10 . 1109 /TEVC . 2014 .
2315442.

163

https://doi.org/10.1207/S15327809JLS0903_2
https://doi.org/10.1016/j.breast.2017.09.003
https://doi.org/10.1016/j.breast.2017.09.003
https://doi.org/10.1016/j.destud.2008.01.001
https://doi.org/10.1109/TEVC.2005.861417
https://doi.org/10.5339/qproc.2015.elc2014.19
https://doi.org/10.1109/TEVC.2014.2315442
https://doi.org/10.1109/TEVC.2014.2315442


Bibliography

[85] H. Ishibuchi et al. “Performance of Decomposition-Based Many-Objective Algo-
rithms Strongly Depends on Pareto Front Shapes”. In: IEEE Transactions on Evo-
lutionary Computation 21.2 (Apr. 2017), pp. 169–190. doi: 10 . 1109 /TEVC . 2016 .
2587749.

[86] Itani Mona and Srour Issam. “Engineering Students’ Perceptions of Soft Skills, In-
dustry Expectations, and Career Aspirations”. In: Journal of Professional Issues in
Engineering Education and Practice 142.1 (Jan. 2016), p. 04015005. doi: 10 . 1061/
(ASCE)EI.1943-5541.0000247.

[87] H. Jain and K. Deb. “An Evolutionary Many-Objective Optimization Algorithm Us-
ing Reference-Point Based Nondominated Sorting Approach, Part II: Handling Con-
straints and Extending to an Adaptive Approach”. In: IEEE Transactions on Evo-
lutionary Computation 18.4 (Aug. 2014), pp. 602–622. doi: 10 . 1109 /TEVC.2013 .
2281534.

[88] M. S. Jain andT. F.Massoud. “PredictingTumourMutational Burden fromHistopatho-
logical Images UsingMultiscale Deep Learning”. In:Nature Machine Intelligence 2.6
(6 June 2020), pp. 356–362. doi: 10.1038/s42256-020-0190-5.

[89] M. A. Jan and Q. Zhang. “MOEA/D for Constrained Multiobjective Optimization:
Some Preliminary Experimental Results”. In: 2010 UKWorkshop on Computational
Intelligence (UKCI). Sept. 2010, pp. 1–6. doi: 10.1109/UKCI.2010.5625585.

[90] M. B. Jensen, C. W. Elverum, and M. Steinert. “Eliciting Unknown Unknowns with
Prototypes: Introducing Prototrials and Prototrial-Driven Cultures”. In:Design Stud-
ies 49 (Mar. 2017), pp. 1–31. doi: 10.1016/j.destud.2016.12.002.

[91] JPNSEC. 3rd Evolutionary Computation Competition. 2019.

[92] U. Kannengiesser and J. S. Gero. “Can Pahl and Beitz’ Systematic Approach Be a
Predictive Model of Designing?” In: Design Science 3 (2017). doi: 10.1017/dsj.2017.
24.

[93] R. G. Klaassen. “Interdisciplinary Education: A Case Study”. In: European Journal of
Engineering Education 43.6 (Nov. 2018), pp. 842–859. doi: 10.1080/03043797.2018.
1442417.

[94] J. Knowles, L. Thiele, and E. Zitzler. A Tutorial on the Performance Assessment of
StochasticMultiobjective Optimizers. 214. Computer Engineering andNetworks Lab-
oratory (TIK), ETH Zurich, Switzerland, Feb. 2006.

[95] A. Kolmos, E. de Graaff, and X. Du. “Diversity of PBL: - PBL Learning Principles and
Models”. In: Research on PBL Practice in Engineering Education (2009), pp. 9–21.

[96] A. Kolmos and J. E. Holgaard. “Employability in Engineering Education: Are Engi-
neering Students Ready for Work?” In: The Engineering-Business Nexus: Symbiosis,
Tension and Co-Evolution. Ed. by S. H. Christensen et al. Philosophy of Engineering
and Technology. Cham: Springer International Publishing, 2019, pp. 499–520. doi:
10.1007/978-3-319-99636-3_22.

164

https://doi.org/10.1109/TEVC.2016.2587749
https://doi.org/10.1109/TEVC.2016.2587749
https://doi.org/10.1061/(ASCE)EI.1943-5541.0000247
https://doi.org/10.1061/(ASCE)EI.1943-5541.0000247
https://doi.org/10.1109/TEVC.2013.2281534
https://doi.org/10.1109/TEVC.2013.2281534
https://doi.org/10.1038/s42256-020-0190-5
https://doi.org/10.1109/UKCI.2010.5625585
https://doi.org/10.1016/j.destud.2016.12.002
https://doi.org/10.1017/dsj.2017.24
https://doi.org/10.1017/dsj.2017.24
https://doi.org/10.1080/03043797.2018.1442417
https://doi.org/10.1080/03043797.2018.1442417
https://doi.org/10.1007/978-3-319-99636-3_22


[97] C. Königseder and K. Shea. “Comparing Strategies for Topologic and Parametric
Rule Application inAutomated Computational Design Synthesis”. In: Journal of Me-
chanical Design 138.1 (Jan. 1, 2016), p. 011102. doi: 10.1115/1.4031714.

[98] W. H. Kruskal andW. A.Wallis. “Use of Ranks in One-Criterion Variance Analysis”.
In: Journal of the American Statistical Association 47.260 (Dec. 1, 1952), pp. 583–621.
doi: 10.1080/01621459.1952.10483441.

[99] M. Laperrouza and R. Tormey. “Developing a Questionnaire to Assess Interdisci-
plinary Project Management Skills”. In: Lunch&LEARN. EPFL, Lausanne, Switzer-
land, Feb. 2019.

[100] L. R. Lattuca et al. “Supporting the Development of Engineers’ Interdisciplinary
Competence”. In: Journal of Engineering Education 106.1 (2017), pp. 71–97. doi:
10.1002/jee.20155.

[101] S. Le Digabel. “Algorithm 909: NOMAD: Nonlinear Optimization with the MADS
Algorithm”. In: ACM Transactions on Mathematical Software 37.4 (Feb. 1, 2011),
44:1–44:15. doi: 10.1145/1916461.1916468.

[102] E. S. Lemaitre. “Actuator Synthesis and Optimization: Evaluation of Graph-Based
Approaches”. Master thesis. Lausanne, Switzerland: EPFL, June 19, 2020.

[103] H. Li and Q. Zhang. “Multiobjective Optimization Problems With Complicated
Pareto Sets, MOEA/D and NSGA-II”. In: IEEE Transactions on Evolutionary Com-
putation 13.2 (Apr. 2009), pp. 284–302. doi: 10.1109/TEVC.2008.925798.

[104] J. Li et al. “AComparative Study of Constraint-HandlingTechniques in Evolutionary
Constrained Multiobjective Optimization”. In: 2016 IEEE Congress on Evolutionary
Computation (CEC). 2016 IEEE Congress on Evolutionary Computation (CEC). July
2016, pp. 4175–4182. doi: 10.1109/CEC.2016.7744320.

[105] K. Li et al. “Two-Archive Evolutionary Algorithm for Constrained Multiobjective
Optimization”. In: IEEETransactions on Evolutionary Computation 23.2 (Apr. 2019),
pp. 303–315. doi: 10.1109/TEVC.2018.2855411.

[106] Y.-s. Lin et al. “A Method and Software Tool for Automated Gearbox Synthesis”. In:
Volume 5: 35th Design Automation Conference, Parts A and B. ASME 2009 Interna-
tional Design Engineering Technical Conferences and Computers and Information
in Engineering Conference. San Diego, California, USA: ASME, 2009, pp. 111–121.
doi: 10.1115/DETC2009-86935.

[107] Z.-Z. Liu and Y. Wang. “Handling Constrained Multiobjective Optimization Prob-
lems With Constraints in Both the Decision and Objective Spaces”. In: IEEE Trans-
actions on Evolutionary Computation 23.5 (Oct. 2019), pp. 870–884. doi: 10.1109/
TEVC.2019.2894743.

[108] M. Lopez-Ibanez and T. Stutzle. “The Automatic Design of Multiobjective Ant
Colony Optimization Algorithms”. In: IEEE Transactions on Evolutionary Com-
putation 16.6 (Dec. 2012), pp. 861–875. doi: 10.1109/TEVC.2011.2182651.

165

https://doi.org/10.1115/1.4031714
https://doi.org/10.1080/01621459.1952.10483441
https://doi.org/10.1002/jee.20155
https://doi.org/10.1145/1916461.1916468
https://doi.org/10.1109/TEVC.2008.925798
https://doi.org/10.1109/CEC.2016.7744320
https://doi.org/10.1109/TEVC.2018.2855411
https://doi.org/10.1115/DETC2009-86935
https://doi.org/10.1109/TEVC.2019.2894743
https://doi.org/10.1109/TEVC.2019.2894743
https://doi.org/10.1109/TEVC.2011.2182651


Bibliography

[109] M. López-Ibáñez and T. Stützle. “Automatic Configuration of Multi-Objective ACO
Algorithms”. In: Swarm Intelligence. International Conference on Swarm Intelli-
gence. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, Sept. 8,
2010, pp. 95–106. doi: 10.1007/978-3-642-15461-4_9.

[110] M. López-Ibáñez et al. “The Irace Package: Iterated Racing for Automatic Algorithm
Configuration”. In: Operations Research Perspectives 3 (Jan. 1, 2016), pp. 43–58. doi:
10.1016/j.orp.2016.09.002.

[111] A. F. Lourenço. “Testing of Low-Loss Polymer Gears”. Master thesis. Porto, Portugal:
Faculdade de Engenharia da Universidade do Porto, July 20, 2015.

[112] Z. Ma and Y. Wang. “Evolutionary Constrained Multiobjective Optimization: Test
Suite Construction and Performance Comparisons”. In: IEEE Transactions on Evo-
lutionary Computation 23.6 (Dec. 2019), pp. 972–986. doi: 10 . 1109 /TEVC .2019 .
2896967.

[113] K. M. Malan and A. P. Engelbrecht. “A Progressive Random Walk Algorithm for
Sampling Continuous Fitness Landscapes”. In: 2014 IEEE Congress on Evolutionary
Computation (CEC). 2014 IEEE Congress on Evolutionary Computation (CEC). July
2014, pp. 2507–2514. doi: 10.1109/CEC.2014.6900576.

[114] K. M. Malan and I. Moser. “Constraint Handling Guided by Landscape Analysis in
Combinatorial and Continuous Search Spaces”. In: Evolutionary Computation 27.2
(Mar. 12, 2018), pp. 267–289. doi: 10.1162/evco_a_00222.

[115] K. M. Malan, J. F. Oberholzer, and A. P. Engelbrecht. “Characterising Constrained
Continuous Optimisation Problems”. In: 2015 IEEECongress on Evolutionary Com-
putation (CEC). Sendai, Japan: IEEE, May 2015, pp. 1351–1358. doi: 10.1109/CEC.
2015.7257045.

[116] R. Mallipeddi and P. N. Suganthan. “Ensemble of Constraint Handling Techniques”.
In: IEEE Transactions on Evolutionary Computation 14.4 (Aug. 2010), pp. 561–579.
doi: 10.1109/TEVC.2009.2033582.

[117] R. Mallipeddi and P. N. Suganthan. “Problem Definitions and Evaluation Criteria
for the CEC 2010 Competition on Constrained Real-Parameter Optimization”. In:
Nanyang Technological University, Singapore (2010).

[118] S.Maneewongvatana andD.M.Mount. “Analysis of Approximate Nearest Neighbor
Searching with Clustered Point Sets”. In: (Jan. 26, 1999).

[119] H. B.Mann andD. R.Whitney. “On aTest of Whether One of TwoRandomVariables
Is Stochastically Larger than the Other”. In: Annals of Mathematical Statistics 18.1
(Mar. 1947), pp. 50–60. doi: 10.1214/aoms/1177730491.

[120] J. McCarthy. “What Is Artificial Intelligence?” In: (2007), p. 15.

[121] J. McGourty. “Using Multisource Feedback in the Classroom: A Computer-Based
Approach”. In: IEEE Transactions on Education 43.2 (May 2000), pp. 120–124. doi:
10.1109/13.848062.

166

https://doi.org/10.1007/978-3-642-15461-4_9
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1109/TEVC.2019.2896967
https://doi.org/10.1109/TEVC.2019.2896967
https://doi.org/10.1109/CEC.2014.6900576
https://doi.org/10.1162/evco_a_00222
https://doi.org/10.1109/CEC.2015.7257045
https://doi.org/10.1109/CEC.2015.7257045
https://doi.org/10.1109/TEVC.2009.2033582
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1109/13.848062


[122] E.Mezura-Montes andC.A.CoelloCoello. “Constraint-Handling inNature-Inspired
Numerical Optimization: Past, Present and Future”. In: Swarm and Evolutionary
Computation 1.4 (Dec. 1, 2011), pp. 173–194. doi: 10.1016/j.swevo.2011.10.001.

[123] A.Mohan et al. “Professional Skills in the Engineering Curriculum”. In: IEEETrans-
actions on Education 53.4 (Nov. 2010), pp. 562–571. doi: 10.1109/TE.2009.2033041.

[124] V. Mounier, C. Picard, and J. Schiffmann. “Data-Driven Pre-Design Tool for Small
Scale Centrifugal Compressors in Refrigeration”. In: Journal of Engineering for Gas
Turbines and Power (July 27, 2018). doi: 10.1115/1.4040845.

[125] D. Muhammad and M. Asaduzzaman. “Friction andWear of Polymer and Compos-
ites”. In: Composites and Their Properties. Ed. by N. Hu. InTech, Aug. 22, 2012. doi:
10.5772/48246.

[126] “New Perspectives on Design Automation: Celebrating the 40th Anniversary of
the ASME Design Automation Conference”. In: Journal of Mechanical Design
137.050301 (May 1, 2015). doi: 10.1115/1.4030256.

[127] M. Newman. Problem Based Learning: An Exploration of the Method and Evaluation
of Its Effectiveness in a Continuing Nursing Education Programme. Project on the ef-
fectiveness of problem based learning (PEPBL) research report. Middlesex: Middle-
sex University, 2004.

[128] G. Niemann andH.Winter.Getriebe allgemein, Zahnradgetriebe - Grundlagen, Stirn-
radgetriebe. 2., völlig neubearb. Aufl., 2. berichtigter Nachdr., korrigierter Nachdr.
Maschinenelemente G. Niemann; H. Winter ; Bd. 2. Berlin: Springer, 2003. 376 pp.

[129] A. K. Noor. “AI and the Future of the Machine Design: Artificially Intelligent Sys-
tems Are Learning How to Develop New Products and Design. What Does That
Leave theEngineers toDo?” In:Mechanical Engineering 139.10 (Oct. 1, 2017), pp. 38–
43. doi: 10.1115/1.2017-Oct-2.

[130] E. Nuhfer et al. “How RandomNoise and a Graphical Convention Subverted Behav-
ioral Scientists’ Explanations of Self-Assessment Data: Numeracy Underlies Better
Alternatives”. In: Numeracy 10.1 (Jan. 2017). doi: http://dx.doi.org/10.5038/1936-
4660.10.1.4.

[131] E. Nuhfer et al. “Random Number Simulations Reveal How Random Noise Affects
the Measurements and Graphical Portrayals of Self-Assessed Competency”. In: Nu-
meracy 9.1 (Jan. 2016). doi: http://dx.doi.org/10.5038/1936-4660.9.1.4.

[132] B. Oakley et al. “Turning StudentGroups into EffectiveTeams”. In: Journal of student
centered learning 2.1 (2004), pp. 9–34.

[133] A. Osyczka and S. Kundu. “A New Method to Solve Generalized Multicriteria Opti-
mization ProblemsUsing the SimpleGenetic Algorithm”. In: Structural optimization
10.2 (Oct. 1, 1995), pp. 94–99. doi: 10.1007/BF01743536.

[134] G. Pahl et al. Engineering Design: A Systematic Approach. 3rd ed. London: Springer-
Verlag, 2007.

167

https://doi.org/10.1016/j.swevo.2011.10.001
https://doi.org/10.1109/TE.2009.2033041
https://doi.org/10.1115/1.4040845
https://doi.org/10.5772/48246
https://doi.org/10.1115/1.4030256
https://doi.org/10.1115/1.2017-Oct-2
https://doi.org/http://dx.doi.org/10.5038/1936-4660.10.1.4
https://doi.org/http://dx.doi.org/10.5038/1936-4660.10.1.4
https://doi.org/http://dx.doi.org/10.5038/1936-4660.9.1.4
https://doi.org/10.1007/BF01743536


Bibliography

[135] J. Pan, S. Chitta, and D. Manocha. “FCL: A General Purpose Library for Collision
and Proximity Queries”. In: 2012 IEEE International Conference on Robotics and
Automation (ICRA). St Paul, MN, USA: IEEE, May 2012, pp. 3859–3866. doi: 10 .
1109/ICRA.2012.6225337.

[136] E. Panadero, J. Klug, and S. Järvelä. “Third Wave of Measurement in the Self-
Regulated Learning Field: When Measurement and Intervention Come Hand in
Hand”. In: Scandinavian Journal of Educational Research 60.6 (Nov. 2016), pp. 723–
735. doi: 10.1080/00313831.2015.1066436.

[137] P. Y. Papalambros and D. J. Wilde. Principles of Optimal Design: Modeling and
Computation. 3rd ed. Cambridge University Press, Jan. 9, 2017. doi: 10 . 1017 /
9781316451038.

[138] V. Pareto. Course of Political Economy. Lausanne: F. Rouge, 1896.

[139] D. L. Paulhus and S. Vazire. “The Self-Report Method”. In: Handbook of Research
Methods in Personality Psychology. New York, NY, US: The Guilford Press, 2007,
pp. 224–239.

[140] C. Picard and J. Schiffmann. “Realistic Constrained Multiobjective Optimization
Benchmark Problems FromDesign”. In: IEEETransactions on Evolutionary Compu-
tation 25.2 (Apr. 2021), pp. 234–246. doi: 10.1109/TEVC.2020.3020046.

[141] C. Picard and J. Schiffmann. “Automated Design Tool for Automotive Control Ac-
tuators”. In: IDETC-CIE2020. ASME 2020 International Design Engineering Techni-
cal Conferences and Computers and Information in Engineering Conference. Vol-
ume 11B: 46th Design Automation Conference (DAC), Aug. 17, 2020. doi: 10.1115/
DETC2020-22390.

[142] C. Picard and J. Schiffmann. “Impacts of Constraints and Constraint Handling
Strategies for Multi-Objective Mechanical Design Problems”. In: Proceedings of the
Genetic and Evolutionary Computation Conference. GECCO ’18. NewYork, NY, USA:
ACM, 2018, pp. 1341–1347. doi: 10.1145/3205455.3205526.

[143] C. Picard and J. Schiffmann.Multi-Objective Design of Actuators: Pareto Fronts. Zen-
odo, May 13, 2020. doi: 10.5281/zenodo.3824302.

[144] A. Planas-Lladó et al. “An Analysis of Teamwork Based on Self and Peer Evaluation
in Higher Education”. In: Assessment & Evaluation in Higher Education 0.0 (May
2020), pp. 1–17. doi: 10.1080/02602938.2020.1763254.

[145] M. J. Prince and R. M. Felder. “Inductive Teaching and Learning Methods: Defini-
tions, Comparisons, and Research Bases”. In: Journal of Engineering Education 95.2
(Apr. 2006), pp. 123–138. doi: 10.1002/j.2168-9830.2006.tb00884.x.

[146] Python Software Foundation. Python Language Referene. Version 3.7.

168

https://doi.org/10.1109/ICRA.2012.6225337
https://doi.org/10.1109/ICRA.2012.6225337
https://doi.org/10.1080/00313831.2015.1066436
https://doi.org/10.1017/9781316451038
https://doi.org/10.1017/9781316451038
https://doi.org/10.1109/TEVC.2020.3020046
https://doi.org/10.1115/DETC2020-22390
https://doi.org/10.1115/DETC2020-22390
https://doi.org/10.1145/3205455.3205526
https://doi.org/10.5281/zenodo.3824302
https://doi.org/10.1080/02602938.2020.1763254
https://doi.org/10.1002/j.2168-9830.2006.tb00884.x


[147] E. Ramadi, S. Ramadi, and K. Nasr. “Engineering Graduates’ Skill Sets in theMENA
Region: A Gap Analysis of Industry Expectations and Satisfaction”. In: European
Journal of Engineering Education 41.1 (Jan. 2016), pp. 34–52. doi: 10.1080/03043797.
2015.1012707.

[148] T. Ray, K. Tai, and K. C. Seow. “Multiobjective Design Optimization by an Evolution-
ary Algorithm”. In: Engineering Optimization 33.4 (Apr. 1, 2001), pp. 399–424. doi:
10.1080/03052150108940926.

[149] T. Ray et al. “Infeasibility Driven Evolutionary Algorithm for Constrained Opti-
mization”. In: Constraint-Handling in Evolutionary Optimization. Ed. by E. Mezura-
Montes. Studies in Computational Intelligence. Berlin, Heidelberg: Springer, 2009,
pp. 145–165. doi: 10.1007/978-3-642-00619-7_7.

[150] J. Régnier et al. “Optimal Design of Electrical Engineering Systems Using Pareto
Genetic Algorithms”. In: 10th European Conference on Power Electronics and Appli-
cations, Toulouse. Vol. 21. 2003, pp. 259–261.

[151] G. Reynders et al. “Rubrics to Assess Critical Thinking and Information Processing
in Undergraduate STEM Courses”. In: International Journal of STEM Education 7.1
(Dec. 2020), p. 9. doi: 10.1186/s40594-020-00208-5.

[152] J. T. Richardson et al. “Some Guidelines for Genetic Algorithms with Penalty Func-
tions”. In: Proceedings of the Third International Conference on Genetic Algorithms.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1989, pp. 191–197.

[153] E. Rigger, K. Shea, andT. Stankovic. “TaskCategorisation for Identification of Design
Automation Opportunities”. In: Journal of Engineering Design 29.3 (Mar. 4, 2018),
pp. 131–159. doi: 10.1080/09544828.2018.1448927.

[154] E. Rigger et al. “A Top-down Method for the Derivation of Metrics for the Assess-
ment of DesignAutomation Potential”. In: Journal of EngineeringDesign 31.2 (Feb. 1,
2020), pp. 69–99. doi: 10.1080/09544828.2019.1670786.

[155] T. Runarsson and X. Yao. “Stochastic Ranking for Constrained Evolutionary Op-
timization”. In: IEEE Transactions on Evolutionary Computation 4.3 (Sept. 2000),
pp. 284–294. doi: 10.1109/4235.873238.

[156] S. Salcedo-Sanz. “A Survey of Repair Methods Used as Constraint Handling Tech-
niques in Evolutionary Algorithms”. In: Computer Science Review 3.3 (Aug. 1, 2009),
pp. 175–192. doi: 10.1016/j.cosrev.2009.07.001.

[157] S. Santoso. Standard Handbook for Electrical Engineers, Seventeenth Edition. 17th
edition. New York, NY: McGraw-Hill Education, 2017.

[158] J. Savery. “Overview of Problem-Based Learning: Definitions and Distinctions”. In:
Interdisciplinary Journal of Problem-Based Learning 1.1 (May 2006). doi: 10.7771/
1541-5015.1002.

169

https://doi.org/10.1080/03043797.2015.1012707
https://doi.org/10.1080/03043797.2015.1012707
https://doi.org/10.1080/03052150108940926
https://doi.org/10.1007/978-3-642-00619-7_7
https://doi.org/10.1186/s40594-020-00208-5
https://doi.org/10.1080/09544828.2018.1448927
https://doi.org/10.1080/09544828.2019.1670786
https://doi.org/10.1109/4235.873238
https://doi.org/10.1016/j.cosrev.2009.07.001
https://doi.org/10.7771/1541-5015.1002
https://doi.org/10.7771/1541-5015.1002


Bibliography

[159] J. Schiffmann. “Integrated Design and Multi-Objective Optimization of a Single
Stage Heat-Pump Turbocompressor”. In: Journal of Turbomachinery 137.7 (July 1,
2015), pp. 071002-071002–9. doi: 10.1115/1.4029123.

[160] J. Schijve. “Fatigue of Structures and Materials in the 20th Century and the State of
the Art”. In: International Journal of Fatigue 25.8 (Aug. 1, 2003), pp. 679–702. doi:
10.1016/S0142-1123(03)00051-3.

[161] B. Schmitz and F. Perels. “Self-Monitoring of Self-Regulation during Math Home-
work Behaviour Using Standardized Diaries”. In: Metacognition and Learning 6.3
(Dec. 2011), pp. 255–273. doi: 10.1007/s11409-011-9076-6.

[162] L. J. Shuman, M. Besterfield‐Sacre, and J. McGourty. “The ABET “Professional
Skills” — Can They Be Taught? Can They Be Assessed?” In: Journal of Engineering
Education 94.1 (2005), pp. 41–55. doi: 10.1002/j.2168-9830.2005.tb00828.x.

[163] D. Silver et al. “Mastering the Game of Go with Deep Neural Networks and Tree
Search”. In:Nature 529.7587 (Jan. 28, 2016), pp. 484–489. doi: 10.1038/nature16961.

[164] D. Silver et al. “Mastering the Game of Go without Human Knowledge”. In: Nature
550.7676 (7676 Oct. 2017), pp. 354–359. doi: 10.1038/nature24270.

[165] G. Spaeth. “Automated Design Tools for Electro-Mechanical Actuators”. Master the-
sis. Lausanne: EPFL, Jan. 17, 2020.

[166] N. Srinivas and K. Deb. “Multiobjective Optimization Using Nondominated Sorting
in Genetic Algorithms”. In: Evolutionary Computation 2.3 (Sept. 1, 1994), pp. 221–
248. doi: 10.1162/evco.1994.2.3.221.

[167] V. Stanovov, S. Akhmedova, andE. Semenkin. “Combined Fitness–ViolationEpsilon
Constraint Handling for Differential Evolution”. In: Soft Computing (Mar. 10, 2020).
doi: 10.1007/s00500-020-04835-6.

[168] R. J. Sternberg. “The Concept of Intelligence and Its Role in Lifelong Learning and
Success”. In: American Psychologist 52.10 (1997), pp. 1030–1037. doi: 10.1037/0003-
066X.52.10.1030.

[169] A. Swantner andM. I. Campbell. “Topological and Parametric Optimization of Gear
Trains”. In: Engineering Optimization 44.11 (Nov. 1, 2012), pp. 1351–1368. doi: 10.
1080/0305215X.2011.646264.

[170] S. Szykman and J. Cagan. “Constrained Three-Dimensional Component Layout Us-
ing Simulated Annealing”. In: Journal of Mechanical Design 119.1 (Mar. 1, 1997),
pp. 28–35. doi: 10.1115/1.2828785.

[171] T. Takahama and S. Sakai. “Constrained Optimization by the ε Constrained Differ-
ential Evolution with Gradient-Based Mutation and Feasible Elites”. In: 2006 IEEE
International Conference on Evolutionary Computation. July 2006, pp. 1–8. doi:
10.1109/CEC.2006.1688283.

170

https://doi.org/10.1115/1.4029123
https://doi.org/10.1016/S0142-1123(03)00051-3
https://doi.org/10.1007/s11409-011-9076-6
https://doi.org/10.1002/j.2168-9830.2005.tb00828.x
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270
https://doi.org/10.1162/evco.1994.2.3.221
https://doi.org/10.1007/s00500-020-04835-6
https://doi.org/10.1037/0003-066X.52.10.1030
https://doi.org/10.1037/0003-066X.52.10.1030
https://doi.org/10.1080/0305215X.2011.646264
https://doi.org/10.1080/0305215X.2011.646264
https://doi.org/10.1115/1.2828785
https://doi.org/10.1109/CEC.2006.1688283


[172] T. Takahama and S. Sakai. “Efficient Constrained Optimization by the 𝜀Constrained
Differential Evolution with Rough Approximation”. In: Evolutionary Constrained
Optimization. Ed. by R. Datta and K. Deb. Infosys Science Foundation Series. New
Delhi: Springer India, 2015, pp. 157–180. doi: 10.1007/978-81-322-2184-5_6.

[173] R. Tanabe and A. Oyama. “A Note on Constrained Multi-Objective Optimization
Benchmark Problems”. In: 2017 IEEE Congress on Evolutionary Computation (CEC).
2017 IEEECongress onEvolutionaryComputation (CEC). June 2017, pp. 1127–1134.
doi: 10.1109/CEC.2017.7969433.

[174] R. Tanabe andH. Ishibuchi. “An Easy-to-Use Real-WorldMulti-Objective Optimiza-
tion Problem Suite”. In: Applied Soft Computing 89 (Apr. 1, 2020), p. 106078. doi:
10.1016/j.asoc.2020.106078.

[175] M. Tanaka et al. “GA-Based Decision Support System for Multicriteria Optimiza-
tion”. In: 1995 IEEE International Conference on Systems, Man and Cybernetics.
Intelligent Systems for the 21st Century. Vol. 2. Oct. 1995, 1556–1561 vol.2. doi:
10.1109/ICSMC.1995.537993.

[176] Y.Tian et al. “PlatEMO:AMATLABPlatform for EvolutionaryMulti-ObjectiveOpti-
mization [Educational Forum]”. In: IEEE Computational Intelligence Magazine 12.4
(Nov. 2017), pp. 73–87. doi: 10.1109/MCI.2017.2742868.

[177] Y. Tolkach et al. “High-Accuracy Prostate Cancer Pathology Using Deep Learning”.
In: Nature Machine Intelligence 2.7 (7 July 2020), pp. 411–418. doi: 10.1038/s42256-
020-0200-7.

[178] R. Tormey et al. “The Formal and Hidden Curricula of Ethics in Engineering Ed-
ucation”. In: 43rd Annual SEFI Conference. 43rd Annual SEFI Conference. CONF.
2015.

[179] M. F. Torres, A. J. Sousa, and R. T. Torres. “Pedagogical and Technological Replan-
ning: A Successful Case Study on Integration and Transversal Skills for Engineering
Freshmen”. In: International Journal of Technology and Design Education 28.2 (June
2018), pp. 573–591. doi: 10.1007/s10798-017-9399-y.

[180] TU Berlin. Forests in Distress. Sept. 29, 2020. url: https://www.tu.berlin/en/about/
profile/pressemitteilungen-nachrichten/2020/september/forests-in-distress/ (vis-
ited on 10/21/2020).

[181] D. G. Ullman. The Mechanical Design Process. McGraw-Hill Higher Education US,
1992.

[182] R. Vallat. “Pingouin: Statistics in Python”. In: Journal of Open Source Software 3.31
(Nov. 19, 2018), p. 1026. doi: 10.21105/joss.01026.

[183] VDI-Fachbereich Getriebe undMaschinenelemente. VDI 2736 Blatt 2 - Thermoplas-
tic gear wheels - Cylindrical gears - Calculation of the load-carrying capacity. Düssel-
dorf: VDI-Verlag GmbH, June 2014.

171

https://doi.org/10.1007/978-81-322-2184-5_6
https://doi.org/10.1109/CEC.2017.7969433
https://doi.org/10.1016/j.asoc.2020.106078
https://doi.org/10.1109/ICSMC.1995.537993
https://doi.org/10.1109/MCI.2017.2742868
https://doi.org/10.1038/s42256-020-0200-7
https://doi.org/10.1038/s42256-020-0200-7
https://doi.org/10.1007/s10798-017-9399-y
https://www.tu.berlin/en/about/profile/pressemitteilungen-nachrichten/2020/september/forests-in-distress/
https://www.tu.berlin/en/about/profile/pressemitteilungen-nachrichten/2020/september/forests-in-distress/
https://doi.org/10.21105/joss.01026


Bibliography

[184] VDI-Fachbereich Getriebe undMaschinenelemente. VDI 2736 Blatt 3 - Thermoplas-
tic gear wheels - Crossed helical gears - Mating cylindrical worm with helical gear -
Calculation of the load-carrying capacity. Düsseldorf: VDI-Verlag GmbH, May 2014.

[185] T. Voß, N. Hansen, and C. Igel. “Improved Step Size Adaptation for the MO-CMA-
ES”. In: ACM Press, 2010, p. 487. doi: 10.1145/1830483.1830573.

[186] J. A. Vrugt and B. A. Robinson. “Improved Evolutionary Optimization from Geneti-
cally Adaptive Multimethod Search”. In: Proceedings of the National Academy of Sci-
ences 104.3 (Jan. 16, 2007), pp. 708–711. doi: 10.1073/pnas.0610471104.

[187] I. Wald et al. “Embree: A Kernel Framework for Efficient CPU Ray Tracing”. In:
ACM Transactions on Graphics 33.4 (July 27, 2014), pp. 1–8. doi: 10.1145/2601097.
2601199.

[188] L. Wang et al. “Examination of Multi-Objective Optimization Method for Global
Search Using DIRECT and GA”. In: 2008 IEEE Congress on Evolutionary Compu-
tation (IEEEWorld Congress on Computational Intelligence). 2008 IEEE Congress on
Evolutionary Computation (IEEE World Congress on Computational Intelligence).
June 2008, pp. 2446–2451. doi: 10.1109/CEC.2008.4631125.

[189] L. While, L. Bradstreet, and L. Barone. “A Fast Way of Calculating Exact Hypervol-
umes”. In: IEEE Transactions on Evolutionary Computation 16.1 (Feb. 2012), pp. 86–
95. doi: 10.1109/TEVC.2010.2077298.

[190] O.Willner, J. Gosling, and P. Schönsleben. “Establishing aMaturityModel forDesign
Automation in Sales-Delivery Processes of ETO Products”. In:Computers in Industry
82 (Oct. 1, 2016), pp. 57–68. doi: 10.1016/j.compind.2016.05.003.

[191] C. Winberg et al. “Developing Employability in Engineering Education: A System-
atic Review of the Literature”. In: European Journal of Engineering Education 45.2
(Mar. 2020), pp. 165–180. doi: 10.1080/03043797.2018.1534086.

[192] J.M.Wing. “Computational Thinking”. In:Communications of theACM 49.3 (Mar. 1,
2006), pp. 33–35. doi: 10.1145/1118178.1118215.

[193] J. C. F. D. Winter and D. Dodou. “Five-Point Likert Items: T Test versus Mann-
Whitney-Wilcoxon”. In: Practical Assessment, Research & Evaluation 15 (2010), p. 11.
doi: 10.7275/bj1p-ts64.

[194] Y. G. Woldesenbet, G. G. Yen, and B. G. Tessema. “Constraint Handling in Multiob-
jective Evolutionary Optimization”. In: IEEE Transactions on Evolutionary Compu-
tation 13.3 (June 2009), pp. 514–525. doi: 10.1109/TEVC.2008.2009032.

[195] C. S. Y. Wong, A. Al-Dujaili, and S. Sundaram. “Hypervolume-Based DIRECT for
Multi-Objective Optimisation”. In: Proceedings of the 2016 on Genetic and Evolution-
ary Computation Conference Companion. GECCO ’16 Companion. New York, NY,
USA: ACM, 2016, pp. 1201–1208. doi: 10.1145/2908961.2931702.

172

https://doi.org/10.1145/1830483.1830573
https://doi.org/10.1073/pnas.0610471104
https://doi.org/10.1145/2601097.2601199
https://doi.org/10.1145/2601097.2601199
https://doi.org/10.1109/CEC.2008.4631125
https://doi.org/10.1109/TEVC.2010.2077298
https://doi.org/10.1016/j.compind.2016.05.003
https://doi.org/10.1080/03043797.2018.1534086
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.7275/bj1p-ts64
https://doi.org/10.1109/TEVC.2008.2009032
https://doi.org/10.1145/2908961.2931702


[196] L. Yan et al. “An Interpretable Mortality Prediction Model for COVID-19 Patients”.
In: Nature Machine Intelligence 2.5 (5 May 2020), pp. 283–288. doi: 10.1038/s42256-
020-0180-7.

[197] A. Yassine et al. “Information Hiding in Product Development: The Design Churn
Effect”. In: Research in Engineering Design 14.3 (Nov. 1, 2003), pp. 145–161. doi: 10.
1007/s00163-003-0036-2.

[198] G.G.Yen. “AnAdaptive Penalty Function forHandlingConstraint inMulti-Objective
Evolutionary Optimization”. In: Constraint-Handling in Evolutionary Optimization.
Ed. by E. Mezura-Montes. Studies in Computational Intelligence 198. Springer
Berlin Heidelberg, 2009, pp. 121–143. doi: 10.1007/978-3-642-00619-7_6.

[199] B. Y. Yu et al. “Human Behavior and Domain Knowledge in Parameter Design of
Complex Systems”. In: Design Studies 45 (July 2016), pp. 242–267. doi: 10.1016/j.
destud.2016.04.005.

[200] S. Zapotecas-Martínez et al. “A Review of Features and Limitations of Existing Scal-
ableMultiobjective Test Suites”. In: IEEETransactions on Evolutionary Computation
23.1 (Feb. 2019), pp. 130–142. doi: 10.1109/TEVC.2018.2836912.

[201] Q. Zhang and P. N. Suganthan. Final Report on CEC ’09 MOEA Competition. Tech.
Rep. UK: The School of CS and EE, University of Essex, 2009.

[202] Q. Zhang et al. “Multiobjective OptimizationTest Instances for the CEC 2009 Special
Session and Competition”. In: University of Essex, Colchester, UK and Nanyang tech-
nological University, Singapore, special session on performance assessment of multi-
objective optimization algorithms, technical report 264 (2008).

[203] B. J. Zimmerman. “Self-Efficacy: An Essential Motive to Learn”. In: Contemporary
Educational Psychology 25.1 (Jan. 2000), pp. 82–91. doi: 10.1006/ceps.1999.1016.

[204] E. Zitzler and L. Thiele. “Multiobjective Evolutionary Algorithms: A Comparative
Case Study and the Strength Pareto Approach”. In: IEEE Transactions on Evolution-
ary Computation 3.4 (Nov. 1999), pp. 257–271. doi: 10.1109/4235.797969.

173

https://doi.org/10.1038/s42256-020-0180-7
https://doi.org/10.1038/s42256-020-0180-7
https://doi.org/10.1007/s00163-003-0036-2
https://doi.org/10.1007/s00163-003-0036-2
https://doi.org/10.1007/978-3-642-00619-7_6
https://doi.org/10.1016/j.destud.2016.04.005
https://doi.org/10.1016/j.destud.2016.04.005
https://doi.org/10.1109/TEVC.2018.2836912
https://doi.org/10.1006/ceps.1999.1016
https://doi.org/10.1109/4235.797969




Acronyms

AI artificial intelligence
ASME American Society of Mechanical Engineering
BLDC brushless DC
CAD computer-aided design
CDIO conceive-design-implement-operate
CDP constrained dominance principle
CDS computational design synthesis
CHS constraint handling strategy
CMOP constrained multiobjective optimization problem
DAC Design Automation Conference
DoF degrees of freedom
EA evolutionary algorithm
FCL flexible collision library
FEM finite-element method
FsR feasability ratio, see Definition 3.1
FVC fitness violation correlation
GAN generative adversarial network
HVAC heating, ventilation, and air conditioning
IGD inverted generational distance
IPMQ Interprofessional Project Management Questionnaire
IQR interquartile range
IZ ideal zone
JE Johnson Electric
MODAct Multi-Objective Design of Actuators
MOEA multiobjective evolutionary algorithm
MOO multiobjective optimization
nRFB× normalized ratio of feasible boundary crossing, see Eq. (3.7)
ODE ordinary differential equation
OMOD Online MODelling platform
PBL problem-based learning
PWM pulse-width modulation
RFB× ratio of feasible boundary crossing, see Definition 3.2
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Acronyms

SD standard deviation
SR stochastic ranking
UEA unbounded external archive
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