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A B S T R A C T

Biological systems are complex and often only partially observable. These
systems also often exhibit emergent behaviours which are central to their
functioning. One of these is regulation, how a system reacts to its environ-
ment in a dynamic manner. In the case of biological systems the aim of
regulation is often to ensure proper functioning and ultimately survival. By
better understanding how the basic building blocks of biological systems
fit together to create these emergent behaviours we can tune them to our
advantage or fix them when they malfunction. For example, we may try to
optimise the internal layout of cells that produce insulin for medical use, or
try to block pathogens from infecting healthy cells. A hurdle to studying
these systems is that experimental methods are often only able to measure
certain aspects such as relative changes in the amounts of proteins. Because
of these limitations it isn’t possible to exhaustively probe every detail of
these systems, only specific readouts.

This becomes a problem when trying to come up with a hypothesis to
better describe the system in question. Because it is only possible to mea-
sure a limited number of aspects, it is not straightforwards to integrate their
interaction with the larger system and with each other. Without a mecha-
nistic description of how the system works it is not possible to holistically
understand its functioning nor its response to new perturbations. In other
words, there is data but no knowledge has been created from it.

In this thesis we will show that using the partial information from ex-
perimental data combined with mathematical modelling, we can still ex-
tract knowledge of how these systems work. We will incorporate expert
knowledge from the appropriate fields as well as multiple different types
of experimental data in order to create models which provide a holistic
understanding of how specific proteins are regulated.

We will demonstrate that mathematical models of Post-Translational Mod-
ification (PTM) can elucidate how this mechanism regulates various proteins.
Given a set of dynamic time-series experiments and relative changes in pro-
tein levels, we will propose a tailored workflow that incorporates these data
into a model. This model can then be used as a tool for understanding the
mechanisms by which cells regulate their proteins. Creating a model makes
it possible to place multiple sources of experimental data into a single uni-
fied system, as well as predicting how the protein would react to conditions
which are not experimentally feasible.

A second aspect we will deal with is that of uncertainty in kinetic models.
We will use Global Sensitivity Analysis (GSA) in order to better understand
how different parameters affect biological behaviours. For example, how
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multiple parameters interact and influence the half-life of a protein. We
will then also apply this method to large scale models of metabolism. In this
case, we will show that GSA can be used as a method to guide experimental
efforts in order to refine model predictions while measuring a minimal
number of parameters.
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Z U S A M M E N FA S S U N G

Biologische Systeme sind komplex und oft nur teilweise beobachtbar. Diese
Systeme zeigen oft Verhalten, welche sich nicht auf die einzelnen Kom-
ponenten zurück führen lässt sondern kollektive oder »emergente« Eigen-
schaften des gesamten Systems sind. Solche emergenten Eigenschaften sind
von zentraler Bedeuting das Funktionieren dieser biologischen Systeme.
Eine davon ist die Regulation des dynamischen Verhaltens nach dem das
System durch Umwelt einflüsse beinflusst wurde. Im Falle biologischer Sys-
teme besteht das Ziel der Regulation oft darin, das ordnungsgemäße Funk-
tionieren und damit letztlich das Überleben zu sichern. Wenn wir besser
verstehen, wie die Grundbausteine biologischer Systeme zusammenpassen,
um diese emergente Verhaltensweisen zu erzeugen, können wir sie zu un-
serem Vorteil abstimmen oder bei Störungen reparieren.

Wir können zum Beispiel versuchen, die innere Anordnung von Zellen
optimieren, die Insulin für die medizinische Verwendung produzieren, oder
Krankheitserreger daran hindern, gesunde Zellen zu infizieren. Eine Hürde
bei der Untersuchung dieser Systeme besteht darin, dass experimentelle
Methoden oft nur bestimmte Grössen messen können, wie z.B. relative
Veränderungen in den Mengen der Proteine. Aufgrund dieser Einschränkun-
gen ist es nicht möglich, sämtliche Aspekte solcher Systeme erschöpfend zu
untersuchen. Es können nur bestimmte Messwerte erfasst werden.

Dies wird zum Problem sobald versucht wird, eine Hypothese zur besseren
Beschreibung des betreffenden Systems aufzustellen. Da es nur möglich
ist, eine begrenzte Anzahl von physikalischen Grössen zu messen, ist es
schwierig die Interaktion von Teilsystemen mit dem gesamten System und
untereinander zu verstehen. Ohne eine mechanistische Beschreibung der
Funktionsweise des Systems ist es nicht möglich, seinen Funktioneren und
seine Reaktion auf neue Störungen ganzheitlich zu verstehen. Anders aus-
gedrückt, obschon Daten erfasst wurden, haben diese noch zu keinem besseren
Verständnis beigetragen.

In dieser Arbeit zeigen wir auf, dass es möglich ist, aus einer Kombi-
nation von Teilinformationen aus experimentellen Daten und mathematis-
cher Modellierung eine Verständnis der Funktionsweise dieser Systeme zu
gewinnen. Wir ziehen Expert*innenwissen aus den entsprechenden Bere-
ichen und eine Vielzahl verschiedener Arten von experimentellen Daten
bei, um Modelle zu erstellen, die mittels eines ganzheitlichen Verständnis
aufzeigen, wie bestimmte Proteine reguliert werden.

Wir zeigen auf, dass mathematische Modelle des Posttranslationale Modi-
fikation (PTM) erklären können, wie dieser Mechanismus verschiedene Pro-
teine reguliert. Ausgehend von einer Reihe dynamischer Zeitreihenexperi-
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mente und Angaben zu relativen Veränderungen der Proteinmengen schla-
gen wir einen maßgeschneiderten Arbeitsablauf vor, der diese Daten in ein
Modell einbezieht. Dieses Modell kann dann als Werkzeug zum Verständ-
nis der Mechanismen verwendet werden, mit denen Zellen ihre Proteine
regulieren. Die Erstellung eines Modells macht es möglich, Daten aus ver-
schiedenen Experimenten in ein ganzheitliche System zu integrieren und
damit prediktive Aussagen bezüglich der Reaktionen von Proteinen auf
spezifische Bedinungen zu machen, die auf diese Art nicht in Experimenten
umgesetzt werden könne.

Des Weiteren befaasen wir uns in dieser Arbeit mit der Unsicherheit in
kinetischen Modellen. Wir werden eine Globale Sensitivitäts Analyse (GSA)
durchführen, um besser zu verstehen, wie verschiedene Parameter das bi-
ologische Verhalten beeinflussen. Diese Methode macht es z.B. möglich
zu verstehen, wie der Interkation verschiedener Parameter die Halbwert-
szeit eines Proteins beeinflusst. Wir wenden diese Methode auch auf groß-
maßstäbliche Modelle des Stoffwechsels an. In diesem Fall zeigen wir auf,
dass die GSA als Methode im Aufbau von Experimenten eingesetzt werden
kann, um so die Modellvorhersagen bei gleichzeitiger Messung einer mini-
malen Anzahl von Parametern zu verfeinern.
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1 I N T R O D U C T I O N

1.1 systems biology

Before diving into the central questions that this thesis strives to answer,
a small background on the field of Systems Biology may place the work
in context. Specifically that of understanding and engineering complex liv-
ing systems. Systems Biology is a relatively young field that primarily uses
mathematical and computational modelling in the study of complex biolog-
ical systems. Its birth can be linked to the beginning of the genomics era,
when increasingly large amounts of genetic information were being made
available through Deoxyribonucleic Acid (DNA) sequencing. A natural ques-
tion with all this information was how it fits together to give rise to living
organisms and all their associated behaviours. As such, Systems Biology is
characterised by its holistic approach of putting together building blocks to
describe larger complex systems. The large amounts of information require
the use of efficient mathematical and computational methods.

Some of the problems that Systems Biology can help address are impor-
tant biological questions. Understanding the development of cancer cells in
a healthy organism, for example [1–5]. Other applications are closely tied
to Biotechnology, using living systems as a means of production [6, 7]. The
production of the anti-malarial drug Artemisin and that of Insulin have
been greatly improved by Systems Biology approaches [8–10]. Systems Bi-
ology can help design better treatment therapies [11, 12], where the amount
and timing of drug administration are optimised to minimise side effects
and cost while maximizing drug efficacy [13–16]. The human digestive sys-
tem is a rich community of different bacteria working together [17, 18]. Un-
derstanding the relationship between these bacteria and the host requires a
holistic, systems-level approach. But Systems Biology can also contribute to
more conventional industries [19–21]. From producing biofuels, to upgrad-
ing waste biomass and replacing traditional petrochemical feedstocks, the
applications are numerous.

1.2 cell regulation and signalling

A big question in cell biology is describing how cells regulate themselves.
How do they sense the outside world for potential threats such as excessive
heat or toxins? How do they put defense mechanisms into place? How do
they reduce their defenses once a threat has passed? How do they adapt
and regulate their internal composition to ensure their proper functioning?
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1.2 cell regulation and signalling

To explain some of these behaviour we first need to understand how cells
function.

All cells contain the complete instructions for their growth and reproduc-
tion, irrespective of whether it is a cell in a multi-cellular organism like a
human, or a single-cell bacteria. This set of instructions is encoded in DNA.
Simply put, DNA is a very long sequence of just four letters: C, G, A and T.
These four letters correspond to the four molecules which are attached one
after another to form DNA: Cytosine, Guanine, Adenosine and Thymine.
These can be attached in any order, forming a long strand containing all in-
structions for the organism to grow and reproduce. In practice, DNA doesn’t
exist as a single strand, but a second "mirror image" strand bonds along the
first and they are both twisted together to form a spiral-like shape. The
code in the first strand is mirrored in the second according to a pairing of
the four letters. C is always paired to G and A is always paired to T. If a C
is in the first strand, it is bonded to a G in the second strand. Human DNA
contains about 3.2 billion of these pairs, while a bacteria like E. coli contains
4-5 million.

The code contained in the DNA can be translated into proteins, a large
family of biomolecules which are essential for life. For example, the protein
keratin is found in hair, nails, claws and hooves. Proteins are found in the
digestive system in the form of enzymes, where they break down food
into smaller molecules that cells may directly use. Proteins are also key to
the immune system, where they recognise and destroy disease-inducing
bacteria. Proteins are themselves used to translate DNA into more proteins,
as well as making sure this translation is free of errors.

Once synthesized, proteins have variable lifetimes, and must be continu-
ously monitored for correct functioning. Depending on the environmental
situation, more or less proteins may be needed. After a large meal, a lot of
enzymes are needed to digest all the food. During a severe flu, many im-
mune system proteins are needed to clear out the viruses causing the dis-
ease. One method of quickly regulating protein levels is Post-Translational
Modification (PTM). Once a protein has been translated from the DNA code
into a physical molecule, additional small molecules can be added and re-
moved. These can function as flags that carry information. Depending on
the PTM, this may cause a protein to be degraded, transported elsewhere or
modified in other ways. Palmitate is one such small molecule that can be at-
tached to proteins. This process is called S-Palmitoylation, often referred to
as just Palmitoylation. The attachment of these molecules is generally done
by an enzyme, and in cases such as Palmitoylation can also be reversed by
another enzyme. This reversibility makes it possible for Palmitoylation to
be used to dynamically regulate a protein in response to changing environ-
mental conditions.
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1.3 studying palmitoylation in cells

In order to study how Palmitoylation can regulate proteins, there are several
experimental methods at our disposal. Radiolabelling can be used to study
the synthesis and degradation of proteins. This replaces Sulfur atoms in
the external nutrients of the cells with the radioactive Sulfur isotope 35S.
The cells uptake these radioactive Sulfur atoms and incorporate them in
their proteins. By measuring the radioactivity of a particular protein, we
can obtain information on how fast this protein is synthesized and how
fast it is degraded. A second method involves labelling not the protein
but the palmitate attached to the protein during Palmitoylation. Similar to
35S labelling, the palmitate available to the cell is labelled by replacing the
Hydrogen atoms with the radioactive isotope 3H. In this case, instead of
following the synthesis and degradation of the protein itself, we can now
follow the attachment and detachment of palmitate to the protein.

Using 3H palmitate labelling, it is also possible to estimate the fraction
of palmitoylated vs. non-palmitoylated protein using a method called acyl-
RAC [22], which attaches a molecule to the sites on the protein that are not
occupied by palmitate.

With Immunofluorescence microscopy [23] it is possible to observe the
distribution of a protein in a cell, making it possible to estimate the fraction
of protein in each cellular compartment. In addition to all these methods,
it is possible to modify the normal functioning of the cell and repeat the
previous experiments.

Palmitoylating enzymes can be removed using siRNA, a molecule similar
to DNA that can be tailored to block the translation of a protein.

It is also possible to change the DNA describing a protein so that it may
not be palmitoylated anymore, creating a mutant. By changing the site on
the protein where palmitate is attached, palmitoylation is blocked without
changing the structure of the protein.

The choice and variety of methods makes it clear there is a combinatorial
increase in the amount of experimental data that can be collected. Further-
more, there may be several enzymes that palmitoylate a single protein, and
multiple palmitoylation sites on a single protein, adding to the complexity
of protein regulation.

1.4 mathematical modelling of palmitoylation

The challenge with this large number of different experimental methods is
an overflow of information. It becomes hard to reason about the regulation
mechanisms while keeping in mind all the experimental data simultane-
ously. This is exacerbated in biological systems, where results are often par-
tial observations of a complex system. An analogy is taking snapshots of
an intricate machine from a few limited viewpoints in a dark room. These
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snapshots correspond to the experimental data, and the machine to the
biological system being studied. It is simply not feasible to exhaustively
quantify all properties of this machine in this situation. Furthermore, the
relationship between dynamic properties (how the machine functions over
an entire day) and static ones (how it functions just when the snapshot is
taken) is not easy to deduce, requiring careful design of experiments and
hypothesis testing. In order to be able to make sense of the pile of snap-
shots, working hypotheses are formulated that need to be consistent with
all available data. In turn we will be able to verify our understanding of
the system against each piece of experimental data to hopefully reach a
consistent hypothesis.

In order to verify the hypotheses that have been formulated, we may put
them into a more rigorous mathematical form. In this way, we may use
mathematical modelling as a tool for hypothesis building and verification.
In building these models, we will borrow many methods and approaches
from Systems Biology and related fields. A particular advantage of Sys-
tems Biology is its holistic approach, the consideration of entire systems
and their interactions. This approach lends itself particularly well to our
goal of building mathematical models that can describe an entire set of ex-
perimental data. In defining the model, we also define its boundaries, in
particular: which behaviours we want to reproduced with a mathematical
model and which behaviours are beyond the scope of the model.

Once the experimental data has been collected we will use several dif-
ferent modelling and numerical methods in order to build and calibrate a
mathematical model that can adequately explain the experiments. The first
task is to classify the different types of reactions in the model. In the models
we will build there are generally four types of reactions:

1. Synthesis - producing a protein

2. Transport - moving a protein between cellular compartments

3. Enzymatic - for example, palmitoylation and depalmitoylation, which
involve an enzyme attaching or removing palmitate

4. Degradation - breaking down a protein

Depending on the type of reaction, we will assign a mechanism to it,
describing the rate of the reaction as a function of the relevant conditions.
These conditions cover factors such as concentrations of enzymes and pro-
teins in different compartments, temperature and catalytic activity of the
enzymes.

Once we have determined the type of every reaction in the model and
assigned it a mechanism we can move on to connecting these reactions
together. Here we need to figure out where synthesis of the protein occurs,
through what path it is transported to different parts of the cell and where
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it can be degraded. Previous knowledge from the field is very useful at this
stage. Information regarding which enzymes can modify a protein, or in
which compartments a protein is present can greatly simplify the model.
This results in a model structure, a map describing the possible evolution
of the protein in the cell with corresponding mathematical equations.

The next step involves translating this into computer code so that these
mathematical equations may be computationally solved. If a small number
of mathematical equations describe the model, it may be feasible to trans-
late these mathematical equations into code by hand. Otherwise, a com-
putational tool to automatically generate this code from the mathematical
equations is needed.

At this point, we can already use the model to simulate experiments such
as 35S labelling, but we don’t have information on the model parameters
yet. These characterise the catalytic activity of the enzymes, how fast the
protein is synthesized, transported and degraded. These parameters will
be estimated using heuristic optimisation algorithms with the goal that the
model should accurately reproduce the experimental results. In essence, the
model is calibrated using the experimental data.

After having completed this process of building and calibrating, we can
use the resulting model to explain and better understand the behaviour ob-
served during the experiments. Ideally, if the calibration was successful, all
experimental data is well reproduced and the model is consistent with the
system we are studying, in this case the regulation of a specific protein by
palmitoylation. This gives a unifying view of how the protein is regulated
through palmitoylation, while also pinpointing which mechanisms are re-
sponsible for different behaviour. Because the experimental data is a partial
observation of multiple superposed behaviours, a model provides a clear
picture of how the basic building blocks fit together to create the observed
behaviours. A subsequent step is to use the model to simulate conditions
which are not experimentally feasible, providing another layer of insight.

Although a successful calibration yields a model consistent with exper-
imental data, there is still the problem of uncertainty. Firstly, by using
heuristic optimisation methods, we obtain a population of models that ex-
plain the data equally well. Meaning that we obtain a range of suitable
parameters, rather than exact values. This means there is uncertainty in the
model parameters. The parameters may have multiple values that are con-
sistent with the data. Secondly, heuristic optimisation does not guarantee
finding all suitable solutions. Even though our population of models may
seem to cover the parameter space, we cannot exclude that there are un-
explored regions in the parameter space that would provide equally good
or even better models. This is a problem with heuristic optimisation itself,
and cannot be easily solved without reformulating the problem and opti-
misation method. The first issue of the population of models can however
be characterized using uncertainty quantification. Using these methods we
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can quantify the propagation of uncertainty in model parameters to model
behaviours. In doing so, it is possible to identify parameters that greatly
change model behaviour and others that don’t have a significant effect
within the parameter space.

1.5 uncertainty in kinetic models of metabolism

In the second part of this thesis, we will be studying models of bacterial
metabolism. In doing so, we will tailor the same methods of uncertainty
quantification to kinetic models of metabolism.

The process of building a metabolic model is vastly different from the
protein regulation models previously discussed. The DNA of the organism
to model first needs to be determined by sequencing. Once the DNA se-
quence is obtained, it is possible to analyze it in order to find all enzymes
that are encoded within. As enzymes are the principal catalyzers of biolog-
ical systems, a list of enzymes can be tranlated to a list of reactions. Using
previous knowledge concerning which reactions an enzyme can catalyze, a
reaction network of the organism’s metabolism can be drafted. This model
draft is often then curated to match experimental data. Using this draft
model it is possible to predict the biomass yield, how efficiently a carbon
source such as glucose can be converted to biomass. This can be compared
to the experimentally measured biomass yield in order to identify missing
reactions [24–26]. It is also possible to determine which genes in the DNA
sequence are essential for the organism to grow. This can be compared be-
tween the draft model and experimental data in order to further refine the
model [27, 28].

From this curated metabolic model it is then possible to build a kinetic
model. Reaction fluxes and metabolite concentrations first need to be es-
timated with methods such as Flux Balance Analysis (FBA) [29, 30] and
Thermodynamics-based Flux Analysis (TFA) [31–34]. The mechanism of
each reaction then needs to be determined. Experimental data can be used
where available, and educated guesses made using reaction stoichiometry
otherwise. Then the kinetic parameters are either incorporated form the lit-
erature or sampled [35, 36]. At this point the model can be integrated in
order to study dynamic response over time.

Another analysis that can be performed is Metabolic Control Analysis
(MCA) [36–42], which is a type of local sensitivity analysis describing the
change in fluxes and concentrations as a function of a change in kinetic
parameters. The quantitative change in flux or concentration in response to
a change in a kinetic parameter is described by the corresponding control
coefficient [36–42].

We will focus on uncertainty quantification in the context of MCA. Specif-
ically, what we are interested in is how to improve the precision of control
coefficients calculated with MCA. Because kinetic parameters are sampled,
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we end up with a population of kinetic models, and a population of con-
trol coefficients. This leads to the similar issue of uncertainty as that of the
palmitoylation models. Although MCA can predict which kinetic parame-
ters will increase or decrease fluxes and concentrations, the population of
control coefficients describe a range of predictions, sometimes contradict-
ing each other. By identifying how uncertainty propagates from the kinetic
parameters to the control coefficients, we can rank which kinetic parame-
ters to measure in order to reduce the uncertainty in the control coefficients.
This avoids the need for experiments to exhaustively measure every kinetic
parameter. Instead, those which have the most impact on the control coef-
ficient of interest can be measured first, greatly reducing the experimental
resources needed.

1.6 thesis overview

The chapters of this thesis are organised in the following way
Chapter 2 starts with a published model of the chaperone protein Cal-

nexin [43]. This model is already calibrated to experimental data. The goal
of this chapter is to introduce the various biological and modelling concepts
that will be used throughout the thesis. We will also provide an example of
how uncertainty quantification can be applied to a model and what addi-
tional information can be extracted.

Chapter 3 discusses the building and calibration of a model describing
the regulation by palmitoylation of Cytoskeleton-linking Membrane Pro-
tein 63 (CLiMP63). CLiMP63 has several different functions in different cellu-
lar compartments, and two currently known palmitoylating enzymes. The
biological background as well as the discoveries enabled by the model will
be discussed here.

Chapter 4 details the building of a Capillary Morphogenesis Gene 2 (CMG2)
model. Another protein which has multiple functions, and whose palmitoy-
lation plays a key role in the infection of cells by the anthrax toxin. We will
discuss the experimental data available, how the model was built and cali-
brated and how palmitoylation regulates CMG2.

Chapter 5 deals with implementing uncertainty quantification into the
Metabolic Control Analysis (MCA) of a kinetic model of metabolism. In
particular, we will show the challenges of applying Global Sensitivity Anal-
ysis (GSA) to these models, and propose an efficient approach tailored to
large scale metabolic models.
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2 C A L N E X I N

In this chapter we will go over some of the fundamental concepts that will
be used throughout the thesis. Reaction kinetics, and enzyme kinetics in
particular, are central to all models in this thesis. These are the building
blocks with which all subsequent models will be built. We will describe the
experimental data on the protein Calnexin and the biological background
necessary to understand how it can be used for modelling. We will also
go through the basics of Global Sensitivity Analysis (GSA), how the sen-
sitivity indices are calculated, what they mean and how to interpet them.
Finally, a previously calibrated model of the protein Calnexin will be used
to illustrate the kinds of information that can be extracted with GSA.

The Calnexin model mentioned and experimental methods described in
this chapter has been developed by Dallavilla et al. [43]. The experimental
data pertaining Calnexin was produced by various members of the Van der
Goot lab, and has been published in two papers [43, 44].

2.1 reaction kinetics

Ordinary Differential Equations (ODE) are profusely used to model chem-
ical and biochemical reactions in many different contexts. But before we
dive into the particular kinetics used, we will discuss their origin and the
assumptions necessary for their validity. A summary relevant to this thesis
will be given here, for a more in-depth explanation of the mathematical
derivation the reader is referred to the excellent explanations of Desmond
Higham [45].

2.1.1 Chemical Master Equation

The following equations are widely used to model reactions in a variety of
chemical and biological systems. The common assumptions on which they
all rely on are homogeneity, thermal equilibrium and constant volume. The
assumption of homogeneity is often what is meant when discussing a well-
mixed system. This means that physical characteristics such as concentra-
tions, pressure and temperature are homogeneously distributed throughout
the system, without an accumulation in a subvolume.

Next we introduce the state vector x, which describes the probability of
the system being in a certain state at time t. It has a length n that corre-
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2.1 reaction kinetics

sponds to the total number of possible states of a system. The evolution of
the state vector can be described with the Chemical Master Equation (CME):

dP(x, t)
dt

= Σmj=1αj(x− νj)P(x− νj, t) −αj(x)P(x, t) (1)

P(x, t) describes the probability of being in the different system states at
time t. Like x it is also of length n. νj is the reaction vector corresponding
to reaction j. It describes the change in the state vector x when reaction j
occurs. αj(x) describes the propensity of reaction j occuring given the state
of the system x. The propensities for first order reactions and some second
order reactions are given for illustration purposes:

1st Order SM → ... αj(x(t)) = cjxM(t) (2)
2nd Order SM + SN → ... αj(x(t)) = cjxM(t)xN(t) (3)

Dimerisation SM + SM → DM αj(x(t)) = cj
1

2
xM(xM − 1) (4)

Although the CME is an ODE describing the probability of each state
over time, the size of the state vector scales with respect to the number
of molecules in the system. For a simple system where k molecules may
exist in two different forms, there are a total of k+ 1 states. This means that
for many systems, the sheer size of the state vector x makes analytical or
computational analysis impractical or infeasible.

Instead, we can solve single realisations of the CME rather than the en-
tire probability distribution. This algorithm is called the Stochastic Simu-
lation Algorithm, also known as Gillespie’s algorithm [46, 47]. Using the
current state and the propensity functions, Gillespie’s algorithm performs
the equivalent of a random dice roll to estimate the time to the next reac-
tion and selects a reaction using a weighting derived from the propensity
functions.

In order to make Gillespie’s algorithm faster, we can take larger time
steps in which multiple reactions occur, called Tau-leaping. For this ap-
proximation to be valid, it is important that αj(x(t)) changes only slightly
during the time step Tau.

A further development to Tau-leaping can be made when the number of
molecules in the system is large. Making these assumptions leads to the
Chemical Langevin Equation (CLE):

dy(t) = Σmj=1νjαj(y(t))dt+ Σ
m
j=1νj

√
αj(y(t))dWj(t) (5)

The state variable has been changed to y(t) to underline the fact that it
is now a continuous variable describing the number of molecules in each
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state. Each Wj(t) is a normally-distributed variable used to represent an
independent scalar Brownian motion. This is the the random selection com-
ponent of this time-stepping algorithm, similar to the dice roll in Gillespie’s
algorithm. The Wj(t) term means that there is still a degree of stochasticity
in the system. There is still a random process by which Wj(t) must be se-
lected. In practice, this means sequential simulations of the system may be
different, so that multiple simulations are often run to obtain a distribution
of possible outputs.

In order to finally obtain the deterministic description that we will use
for the rest of this thesis, we need to take the ’thermodynamic limit’ as
Desmond [45] calls it. This is the limit where the system volume and molecule
counts tend to infinity but the concentrations remain constant. This is equiv-
alent to a large system that has a large number of molecules. Because Wj(t)

is normally distributed with mean 0, taking this limit yields the Reaction
Rate Equation (RRE):

dy(t)

dt
= Σmj=1νjαj(y(t)) (6)

And in this case the reaction propensities are given as follows:

1st Order SM → ... αj(y(t)) = kjyM(t) (7)
2nd Order SM + SN → ... αj(y(t)) = kjyM(t)yN(t) (8)

Dimerisation SM + SM → DM αj(y(t)) = kjyM(t)2 (9)

Note that the constants cj have been replaced with kj to underline the
change of units from number of molecules to concentrations. In order to
convert from one type of constants to the other, all that is needed is to com-
pare the relevant propensity equations αj(y(t)). Converting from molecule
counts to concentrations is done using the volume and Avogrado’s number:

yM(t) =
xM(t)

nAvol
(10)

For example, comparing Equation 2 and Equation 9 for a first order reac-
tion implies cj =

kj
nAvol

2.1.2 Law of Mass action

The law of mass action states that the rate of a chemical reaction is a func-
tion of the concentration of reactants and a kinetic constant [48]. It is actu-
ally a specific case of the RRE for first order reactions.
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For example, given the reaction:

A→ B (11)

In this example, the law of mass action describes the rate of reaction as
k[A] where [A] denotes the concentration of species A and k is the kinetic
constant of the reaction. The stoichiometric coefficients of A and B denote
how many species are produced and consumed in the reaction. In this case
the stoichiometric coefficients for A and B are 1 and −1 respectively. By
multiplying the stoichiometric coefficient with the rate of reaction, one gets
the rate of change of a species. For this example:

d[A]

dt
= −k[A]

d[B]

dt
= k[A] (12)

This system of ODEs can then be solved using one of the many existing
numerical integration algorithms. As mentioned earlier the law of mass
action is valid for a homogeneous, well-mixed system [48]. Both A and B
must be uniformly distributed, as well as other variables that may affect the
rate of reaction, such as temperature, pressure, inhibitors or catalysts.

2.1.3 Enzyme kinetics

In biological systems, enzymes play a critical role as catalysts. A typical
irreversible enzymatic reaction can be represented as follows:

S+ E↔ SE→ P+ E (13)

Where S is the substrate of enzyme E, SE the enzyme-substrate complex
that is formed when the two bind together, and P the product of the re-
action. The final step of product formation is considered irreversible, an
assumption that is justified if the reaction is highly exothermic, ∆G� 0, or
if there is much more substrate than product, S� P [49, 50].

Using the law of mass action, we can write out the differential equations
for the four species in the system:

d[S]

dt
= −kb[E][S] + kub[ES] (14)

d[E]

dt
= −kb[E][S] + kub[ES] + kcat[ES] (15)

d[ES]

dt
= kb[E][S] − kub[ES] − kcat[ES] (16)

d[P]

dt
= kcat[ES] (17)
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Where kb and kub are the binding and unbinding constants of the sub-
strate to the enzyme. kcat is the constant of the irreversible reaction step
producing P.

Although accurate, having four differential equations to describe one re-
action has a high computational cost, especially when considering bigger
models with tens to hundreds of reactions. What is of interest is the over-
all rate of the reaction, i.e. S + E → P + E. To this end there are several
approximations that can be made:

1. Equilibrium approximation [51]. The Enzyme and substrate are imme-
diately in equilibrium, i.e.

kb[E][S] = kub[ES] (18)

This approximation is valid when kcat � kub. In other words, the rate
constant of product formation must be much lower than that of dis-
sociation. In this way, the equilibrium between free enzyme, substrate
and the enzyme-substrate complex is maintained even as substrate is
transformed into product.

2. Quasi Steady-State Approximation (QSSA) [52]. The concentration of
the intermediate complex ES does not change on the time scale of
product formation, i.e.

kb[E][S] = kub[ES] + kcat[ES] (19)

This approximation is valid if the enzyme concentration is much less
than the substrate E � S, or if the Michaelis constant Km = kub+kcat

kb
is large.

3. Total Quasi Steady-State Approximation (tQSSA) [53, 54]. The total sub-
strate St = S+ ES and total enzyme Et = E+ ES are introduced. The
concentration of the total substrate does not change on the time scale
of product formation. This approximation is valid in cases where en-
zyme concentration is both high and low relative to substrate concen-
tration.

Generally speaking, tQSSA has a wider range of validity [53], accounting
for situations with both and high and low amounts of enzyme relative to
the substrate. Compared to the domain of validity of the QSSA, the tQSSA
actually overlaps and extends it [54]. Furthermore, it is easy to account for
competition between multiple substrates for the same enzyme using tQSSA.
The general form of an enzymatic reaction using tQSSA is then:

dSi
dt

=
kcatEtSi,t

Km,i(1+
∑ Sj,t

Km,j
) + Si,t + Et

(20)
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Where Si is one of the substrates of the enzyme E. The competition be-
tween substrates is accounted for in the

∑ Sj,t
Km,j

term. tQSSA is used to model
all enzymatic reactions in palmitoylation models unless stated otherwise.

2.2 experimental data

In this section we will explain the biological background and experimental
data which are used to calibrate the Calnexin model, as well as the CLiMP63

model in Chapter 3 and the CMG2 model in Chapter 4. We explain how the
PTM palmitoylation works on a molecular level, and what the experiments
measure. We will then talk of the different types of experimental methods
used and how they are combined to produce the experimental data we will
later use.

Details of the experimental protocols are available in the paper published
by Dallavilla et al. [43].

2.2.1 Palmitoylation Background

S-Palmitoylation is a PTM consisting in the attachment of a C16 acyl chain
(palmitate) to a cysteine residue through a thioester bond (Figure 1) [55],
often called simply "palmitoylation".

Figure 1: Illustration of a thioester bond
between Cysteine and a fatty
acid. The cysteine residue is in
black, the thioester bond in red
and the fatty acid in blue.

This process is a subclass of the
more general S-Acylation. It is also
the only known reversible lipid
modification that proteins may un-
dergo [56]. The interconvertible be-
haviour of a reversible PTM such
as palmitoylation may play a role
in cellular signaling and regulation
through a switch-like behaviour,
like phosphorylation or ubiquitina-
tion. Depending on whether the
protein is modified or not its be-
haviour can be altered in a tunable
manner.

Several hundred proteins have al-
ready been identified as palmitoyla-
tion targets in mammals [57]. The known roles of palmitoylation are di-
verse, it plays a role in protein localisation, bacterial and viral infections,
and also interacts with other signalling mechanisms such as phosphoryla-
tion [58–62]. The enzymes that catalyse palmitoylation belong to a family
of proteins containing a DHHC-motif domain: named for the repetition of
the sequence of the four amino acids Aspartic Acid (D), Histidine (H) and
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Cysteine (C) [63]. It is this DHHC domain that is the active site of the en-
zyme, catalysing the addition of a palmitate [55, 64]. These enzymes are
also sometimes called Palmitoyl Acyltransferase (PAT). The corresponding
class of de-palmitoylation enzymes are APT. Certain enzymes involved in
palmitoylation, such as zDHHC6 and its corresponding APT, may be palmi-
toylated themselves [65], creating the possibility of a signalling cascade us-
ing interconvertible enzymes, similar to phosphorylation cascades [66].

2.2.2 Radiolabelling

The general technique of labelling proteins with radioactive atoms goes
back at least to the early 1970s [67]. It has been more recently tailored to
probe palmitoylation of specific proteins in cultured cells [68]. This involves
using molecules which contain radioactive isotopes, such that the chemical
properties are the same, but they can be identified from their radioactivity.
Using a culture medium in which a specific molecule contains radioactive
atoms, we can follow the incorporation and turnover of these in the cell’s
proteins. By replacing certain molecules in the culture medium by their
radioactive or non-radioactive variants, radiolabelling can be turned on or
off as shown in Figure 2.

Many different molecules in the culture medium can be replaced with a
variant where some of the atoms are radioactive. In our experiments, two
different kinds of radiolabelling will be used, as shown in Figure 3. The first
replaces the non-radioactive hydrogen atoms in palmitate with radioactive
3H atoms. This can be used to track the dynamics of palmitoylation and de-
palmitoylation, the attachment and removal of palmitate from the protein.
The second replaces the sulfur atoms in cysteine with radioactive 35S atoms.
This can be used to track the synthesis and decay of the protein itself.

In practice, radiolabelling is carried out in a cell culture where the medium
is changed multiple times to turn labelling on and off. For a pulse-chase ex-
periment, the medium will first be the radioactive variant, the pulse, before
being changed to the non-radioactive variant, the chase. Several samples
will be taken at different time points of the chase phase. These samples
will be lysed and then ran on a western blot. The radioactivity of the band
corresponding to the protein of interest is then measured. Because the half-
lives of both 3H and 35S are in the order of years and months, this means
relatively little will decay between sample collection and analysis. 3H has a
half-life of roughly 12 years [69] while 35S has a half-life of about 87 days
[70].

Because we are studying cells in an in vitro culture, this means that the
observations are of a population of cells rather than a single cell. There are
therefore not only many copies of the same protein within each cell, but
also many cells in the culture. This means that the data is measuring the
presence of a large number of proteins. Recall in Section 2.1.1, that a large
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Figure 2: Illustration of a pulse-chase experiment. The labelled compound is made
available through the medium at t = 0, for a pulse duration of about
500 a.u. The chase starts at t = 500 when the labelled compound is re-
moved from the system’s environment. During the pulse, the radioactive
signal increases as radioactive atoms are incorporated into newly syn-
thesized proteins. When the culture medium is changed back to being
non-radioactive, newly synthesized protein are once again made with
non-radioactive species. Hence the radioactive signal decreasing during
the chase. Note that the plateau during the pulse phase means that all
protein has been replaced with the labelled variant. Depending on the
protein turnover and the pulse duration this isn’t necessarily the case.

Figure 3: The different atoms in a palmitoylated protein which can be radiola-
belled. The sulfur atom in red can be replaced by 35S. The hydrogen
atoms in the palmitate chain can be replaced by tritium atoms, 3H.
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number of molecules is important for the RRE approximation to be valid,
and therefore also for validity of the tQSSA. Because of the many copies per
cell and the many cells in the culture, we can therefore justify using the
kinetics described in Section 2.1.2 and Section 2.1.3.

Another note of interest is that the experimental data itself is determinis-
tic. When repeating the experiments they all reproduce a behaviour similar
to that shown in Figure 2. Further experimental data can be found in Sec-
tion 3.2 and Section 4.2. Indeed, repeating the experiment is a deterministic
measurement because it is a population of proteins within a population of
cells that are being measured. Any single-cell noise will disappear in the
culture of cells. Since we want to reproduce the deterministic exponential
shape of the experiment in any case, the RRE is ideal. Furthermore, the dy-
namics observed are also relatively slow, on the scale of hours, whereas the
time scale of most enzymatic reactions is less than a second [71].

2.2.3 siRNA

silencing RNA (siRNA) are short, double-stranded Ribonucleic Acid (RNA)
molecules that are naturally occuring. They form part of the defense mecha-
nism against viral infections. When viruses attempt to hijack the translation
and transcription machinery of the host cell, siRNA are crucial in identify-
ing foreign messenger RNA (mRNA) and eliminating them through RNA
interference (RNAi). Once a foreign mRNA is identified by siRNA binding to
it, it is cleaved. Subsequent proteins will recognise this mRNA as abnormal
and degrade it, preventing expression of the protein it encodes.

Although naturally occuring, siRNA can also be used for experimental
purposes. In the cell, it needs to efficiently bind to the mRNA of the gene that
should be silenced. For each different gene to be silenced, an appropriate
siRNA has to be tailored. If it binds sufficiently well, this siRNA can be used
to alter protein levels in the cell. Although this is not a gene knockout, it has
the similar effect of reducing the expression of a gene. In a gene knockout
the encoding gene is actually removed from the cell’s genome. However, in
the case of siRNA the transcription of the gene will continue. In practice, an
efficient siRNA can greatly reduce the levels of protein, achieving a similar
effect to gene knockout.

siRNA can therefore be used to reduce the amount of a PAT. Given that
there is significantly less enzyme present, the rate of palmitoylation cat-
alyzed by the enzyme should also decrease. In practice, the enzyme should
actually be active beforehand and the siRNA should have a strong enough
effect on the enzyme levels for a difference to be observed. In this way, it
is possible to study the effect that different PATs have on a protein. In a
first step, this method can be used to identify which PATs influence protein
stability. This method can also be used to characterize the effect of a PAT
on palmitate turnover. By silencing a PAT and performing a 3H pulse-chase
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2.2 experimental data

Figure 4: The amino acids Cysteine and Alanine. They are identical except for the
thiol group that is absent from Alanine. By replacing a Cysteine with
Alanine, it is possible to disable palmitoylation at a specific site.

experiment, it can be observed if palmitate turnover is affected. Silencing
multiple PATs may also reveal additive or cooperative effects.

2.2.4 Mutants

Plasmids can be used to introduce genetic material into the cell that will be
transcribed and translated into proteins. By modifying the coding sequence
present in the plasmid, it is possible to introduce mutated proteins into the
cell or overexpress endogenous proteins.

If the the amino acid sequence and palmitoylation sites of a protein are
known, mutation can be performed on these sites. By replacing a Cysteine
with an Alanine, there is no longer a Sulfur atom available for the thioester
bond to form and palmitoylation is no longer possible (Figure 4). By picking
a cell line where the expression of a protein is low or absent, it is possible
to study the behaviour of a mutant protein without the influence of the WT
protein. Ideally, the plasmid and the transfection through which it is intro-
duced into the cell are tuned so that the WT protein levels are reproduced.
In this way, mutants can be prepared where one or several palmitoylation
sites are disabled. This makes it possible to study the kinetics of palmitoyla-
tion and depalmitoylation of the individual sites. It also enables determin-
ing the effect of each palmitoylation site on properties such as stability and
localization of the protein. This technique can be combined with siRNA to
identify which enzymes palmitoylate which Cysteines.

2.2.5 Cell Lines

As mentioned in Section 2.2.4, it is possible to pick different human cell
lines in which to study proteins. In our case, the choice was made to gen-
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erally use HeLa cells. This is because they have been succesfully used in
the past to study many human disease, such as polio [72] and cancer [73].
They have a long history of use in research and have therefore been well
studied and characterised. Due to this history, the experimental methods
for handling them in a laboratory setting are also mature and robust.

However, it mustn’t be excluded that a protein may behave differently
between human cell lines. As disccused in Section 2.2.4, certain cell lines
may not express the protein in question.

2.2.6 Fluorescence Microscopy

Fluorescence microscopy is a term regrouping several microscopy tech-
niques which utilise fluorophores to perform imaging in vivo or in vitro.
The general similarity betwen these methods is that of using fluorophores
for observation. These may be specifically targeted to molecules of inter-
est. This can be accomplished in multiple different ways. A mutant protein
with an additional fluorescent sequence may introduced into the cell as de-
scribed in Section 2.2.4. It is also possible to use antigens that strongly bind
to the protein of interest. The fluorophore is then tagged onto the antigen.
When a sample is illuminated with light of a specific frequency, the flu-
orophore first absorbs light and then re-emits it at a lower frequency. By
filtering only the light emitted by the fluorophore, an image showing the
presence and distribution of the targeted molecule is produced. An exam-
ple is shown in Figure 5, which shows the protein Calnexin in HeLa cells.
From the image it can be observed that the majority of Calnexin is located
in the ER.

By observing these images it is possible to get a rough estimate of the
distribution of protein in a cell. In particular, which compartments contain
the majority of a protein. Combining this technique with siRNA or perform-
ing it on mutant cells also makes it possible to verify the effects of these
perturbations on protein localization.

2.3 model structure

2.3.1 Calnexin Background

Calnexin is a single-pass transmembrane protein of 67kDa. It is a part of
the Ribosome-Translocon Complex (RTC) and thus aids in protein folding
and quality control, an essential cellular function.

It has two palmitoylation sites which are situated close to its transmem-
brane domain. Palmitoylation of both these sites is performed by one PAT
enzyme: zDHHC6 [44]. The palmitoylation of Calnexin has been shown to
be crucial for its association to the RTC, its localisation [44] and the confor-
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2.3 model structure

Figure 5: Fluorescence microscopy image of Calnexin in HeLa cells, reproduced
with permission from Sandoz et al. [74]. The nuclei can be seen as grey
oval shapes around which Calnexin, in the ER, is much whiter and ex-
tends towards the cell periphery.
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2.3 model structure

Figure 6: MD simulations showing the effect of palmitoylation on the conforma-
tion of Calnexin, figure reproducing with permission from Lakkaraju et
al. [44]. The orientation of the cytosolic tail with respect to the transmem-
brane helix is palmitoylation-dependent. The effect of the two palmitoy-
lation sites is different. Palmitoylation on both sites seems to have an
additive effect.

mation of its cytosolic tail (Figure 6). It has also been shown that palmi-
toylation is used to shift Calnexin from its role in protein quality control to
regulation of Calcium signalling [75]. In this way, the palmitoylation state of
Calnexin is changed in response to ER stress [75], assigning more Calnexin
to protein quality control.

2.3.2 Model overview

The model described here was previously published by Dallavilla et al. [43].
A schematic overview of the model structure is shown in Figure 7. The
palmitoylation/de-palmitoylation cycles were setup similarly to the inter-
convertible cycles descrbied by Goldbeter and Koshland [76]. This approach
of building models from small interconvertible cycles has been succesfully
used to model signalling pathways such as the MAPK pathway [77, 78].
tQSSA kinetics described in Section 2.1.3 were used for all enzymatic reac-
tions, in this case palmitoylation and de-palmitoylation. All other reactions,
such as synthesis, transport and degradation, are modelled with mass ac-
tion kinetics as described in Section 2.1.2.

In this model, Calnexin is first synthesized in the ER, producing an un-
folded form rCAL shown in Figure 7. Folding then occurs following mass
action kinetics, producing fCAL. At this point, the enzyme zDHHC6 can
palmitoylate Calnexin on either the first or second site, producing c1CAL or
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Figure 7: Illustration of the structure of the Calnexin model, reproduced with per-
mission from Dallavilla et al. [43]. Synthesis leads to an unfolded form,
’rCAL’, which must first fold into the mature protein ’fCAL’. Either palmi-
toylation site can be palmitoylated first. All palmitoylation reactions are
catalyzed by zDHHC6, and a corresponding APT catalyzes the reverse re-
actions. Decay, palmitoylation and depalmitoylation all depend on palmi-
toylation state.
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c2CAL respectively. A final palmitoylation leads to the fully palmitoylated
calnexin species c12CAL. De-palmitoylation can occur at any stage, and is
also catalyzed by a single enzyme. Although the de-palmitoylating APT has
not yet been identified, it is modelled as a single enzyme. In the case there
are multiple APTs, this would merely increase the apparent enzyme activity,
so the model would remain correct. Degradation can also occur at any time,
except for the unfolded species, for which there is no degradation.

The species fCAL, c1CAL and c2CAL all compete for the zDHHC6 en-
zyme. While the species c1CAL, c2CAL and c12CAL all compete for the
APT enzyme. This is easily taken into account using tQSSA kinetics (Sec-
tion 2.1.3).

2.3.3 Calibration and Results

The Calnexin model was calibrated using 35S and 3H radiolabelling exper-
iments. These experiments used combinations of palmitoylation site mu-
tation, zDHHC6 silencing and zDHHC6 overexpression. A Genetic Algo-
rithm (GA) was used to calibrate the model, yielding a population of kinetic
parameters. Specifically, NSGA-II was used [79]. The experiments were split
into calibration and validation sets. The model was calibrated on the cali-
bration experiments and the result was verified to reproduce the validation
experiments. More details are available in the published paper [43].

Several interesting findings were obtained from the calibrated model.
Most importantly it was shown that the fully palmitoylated form was the
most stable, significantly more so than the other three forms. Furthermore,
it was also shown that at steady-state, around 70% of the Calnexin was in
this fully palmitoylated form. The turnover of palmitate was found to be
surprisingly slow, on the order of 32 hours. This showed that 3H radiola-
belling experiments were mostly describing the turnover of palmitate on
the single palmitoylated species, which were much less stable.

2.4 global sensitivity analysis

The goal of GSA in the context of the Calnexin model is to extract as much
knowledge as possible. Although useful insights were already obtained
from simulating the model in conditions that were infeasible in vitro, we
will show that additional knowledge can be gained using GSA. In this sec-
tion, we will give an introduction to SA in general, how the Sobol indices
used in GSA are derived, how to interpret them, and finally the application
of GSA to the Calnexin model.
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2.4.1 Introduction to Sensitivity Analysis

Sensitivity Analysis (SA) refers to a broad array of methods that may be
used in the design and analysis of mathematical models. SA methods make
it possible to study the relation between uncertainty in model outputs and
uncertainty in input parameters [80]. Depending on the exact nature of
the SA performed, it is possible to attribute model characteristics back to
input parameters. SA can be used to verify current understanding of the
model, in terms of seeing which input parameters are responsible for an
observed output, as well as leading to further understanding of the model
or directing attention towards areas of interest.

Historically, the early uses of SA took the local approach [80], also known
as local sensitivity. These methods use small perturbations in input param-
eters around a certain value, for example the mean of an input parameter,
and observe the resulting perturbation in model output. Local Sensitivity
Analysis (SA) is very similar to the concept of elasticities and metabolic
control coefficients [40], which are performed around steady-state. This lo-
cal approach can be useful in elucidating which input parameters have the
most impact in a certain regime.

Some background as to how local SA is performed is helpful to inter-
preting GSA results. Let Y be a scalar model output that is continuous and
continuously differentiable. Local Sensitivity indices s(Y,Xi) can be calcu-
lated by taking the derivative of a model output Y in relation to a single
input parameter Xi , also known as first-order local sensitivity [81]:

s(Y,Xi) =
∂Y

∂Xi
(21)

This describes the change in model output vs the change in model input.
The larger the absolute value of the derivative, the more a small change
in input parameter Xi will have a large effect on model output Y. Local
sensitivity analysis is performed at a specific point in the input parame-
ter space. Therefore its value will depend on the point that is chosen. An
issue that may be encountered in more complex systems is the feasibility
of analytically calculating the derivative in Equation 21. To circumvent this
problem, the Finite Difference Method (FDM) may be used to approximate
the derivative by a ∆Xi [81]:

s(Y,Xi) =
∂Y

∂Xi
≈ ∆Y

∆Xi
=
Y(∆Xi +Xi) − Y(Xi)

∆Xi
(22)

The limit of this expression as ∆Xi tends to 0 gives the same result as the
analytical derivative. The obvious issue here has to do with the accuracy
of choosing a sufficiently small ∆Xi. If the derivative is not linear within
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Figure 8: Variance propagation through a model. The variance of the input param-
eter is high, while the resulting variance in the model output is relatively
low. This would indicate a parameter with low sensitivity.

∆Xi of the reference point, different ∆Xi values lead to different results
[81]. Although still useful, the local sensitivity approach has the limitation
of not considering input parameters over their entire range [80]. From the
late 1980s a new class of SA known as GSA was developed with roots in
statistics [80]. Another definition of SA in this context is the study of how
variance in the input parameters is propagated to variance in the model
output [82]. An example of this interpretation is shown in Figure 8. As
variance travels through the model from an input parameter to a model
output, an amplification of this variance signifies a critical parameter, while
a dampening is synonymous with a less important parameter.

Contrasting to local SA, the advantages GSA offers are a consideration of
input parameters over their entire range, and thus an avoidance of possi-
ble local behaviour. GSA also avoids linearity assumptions [80], and may
indicate more subtle effects such as interactions between different input pa-
rameters. It is for these reasons that GSA was chosen as a tool for further
analysing the previously developed Calnexin model, both for the purpose
of validation and attempting to extract any additional understanding of the
underlying phenomena.

2.4.2 Sobol Sensitivity indices

Let Y be the model output of square-integrable function f acting on inde-
pendent input parameters X1 to Xk.

Y = f(X1,X2, . . . ,Xk) (23)
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Because the function f is square-integrable, an expansion into terms of in-
creasing dimensionality can be performed, also called a High Dimensional
Model Representation (HDMR):

f = f0 +

k∑
i

fi +

k∑
i

k∑
j>1

fij + · · ·+ f1,2,...,k (24)

In this expansion each term is also square-integrable. The term f0 corre-
sponds to the mean of the model output Y. The

∑k
i fi term corresponds

to additive effects of single input parameters on the model output, i.e. no
interactions with other parameters. Terms of higher order correspond to in-
teractions between parameters, for example

∑k
i

∑k
j>1 fij corresponds to all

two-way effects, that is, effects between exactly two parameters.
The Russian mathematician Ilya M. Sobol proved that if all the terms

of the decomposition, apart from f0, have a zero mean then these terms
are orthogonal in pairs and conditional expected values may be used to
compute them [82]. For example, in the case of two input parameters i and
j:

f0 = E(Y)

fi = E(Y|Xi) − E(Y)

fj = E(Y|Xj) − E(Y)

fij = E(Y|Xi,Xj) − fi − fj − E(Y)

(25)

In order to obtain the Analysis of Variance (ANOVA) HDMR decomposi-
tion, all that is needed is to take the variance of each side of Equation 24

[82]. The mean of all terms apart from f0 has to be 0 for this step to be valid,
in this case the terms are independent:

Var(Y) =

k∑
i

Var(fi) +

k∑
i

k∑
j>1

Var(fij) + · · ·+ Var(f1,2,...,k) (26)

The so-called Sobol’ indices are then obtained by normalising each term
in this expansion by the total variance Var(Y) of the model output. Com-
bining this with the identities shown in Equation 25 yields:

Si =
Var(fi)

Var(Y)
=
VarXi(EX∼i(Y|Xi))

Var(Y)
(27)

The notation EX∼i indicates that the model output Y is averaged across all
values of X∼i, i.e. all parameters other than Xi . The notation VarXi means
that the variance is calculated across all values of Xi . Si is known as the
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main effect or first order sensitivity index of input Xi. It represents the
fraction of the total output variance Var(Y) that is attributed to variance in
the input parameter Xi. The first order index neglects interaction effects of
Xi with other parameters.

Interactions between parameters can be characterised by applying the
same procedure to the higher order terms in Equation 24. However, as the
number of input parameters increases, the number of terms in Equation 24

increases exponentially and it becomes very costly to calculate all the pos-
sible interactions effects individually. In order to avoid this issue, the total
effect index was introduced. The total effect is the sum of an input parame-
ter’s first order effect as well as all higher-order effects in which it appears
[82]. The total effect for input parameter i:

St,i = Si +

∑k
i

∑k
j>1 Var(fij)

Var(Y)
+ · · ·+

Var(f1,2,...,k)

Var(Y)
(28)

In order to simplify calculations, the total effect of Xi can be considered
as the total variance of the model output minus all other first order effects
and interactions between parameters excluding Xi, all of this normalised
with the output variance. This is equivalent to [82]:

St =
Var(Y) − VarX∼i(EXi(Y|X∼i))

Var(Y)
= 1−

VarX∼i(EXi(Y|X∼i))

Var(Y)
(29)

This makes computation faster by avoiding the need to individually cal-
culate all interaction terms of the HDMR. The value St–Si can serve as a
good indicator for the interaction effects of parameter Xi [82]. In models
with a large number of parameters, it is more economical to only compute
the first order and total effect indices first. If additional insight is required,
interactions between specific parameters can then be selected for compu-
tation based on previous results, i.e. selecting parameters that are already
shown to have some kind of interaction effects.

Furthermore, since both the first order index Si and the total effect index
St are normalised by the variance of the model output Var(Y), this means
that they are both in the interval [0, 1].

2.4.3 Computing Sobol Sensitivity indices

Although we now know how the Sobol sensitivity indices are derived, the
next step is their numerical calculation. If we look at the equations for the
first order and total effect sensitivity indices (Equation 27, Equation 29), we
can see they both involve the variance of a conditional expectation:

VarXi(EX∼i(Y|Xi)) (30)
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This expression can be calculated by:

1. Generating N samples of all input parameters

2. Fixing Xi to its value in the first sample

3. Calculating the expected model output EX∼i(Y|Xi) by generating an-
other N samples to assign values to the remaining parameters X∼i.

4. Calculating the variance of the model output Y by moving through the
rest of the sampled values of Xi. Re-calculating the expected model
output EX∼i(Y|Xi) each time

5. Once an array of expected model outputs is obtained, the variance of
this can be calculated using Var(Y) = E(Y2) − E2(Y)

Although this would work, because there are kN2 samples, the model
producing the output Y from input paramters X would need to be evalu-
ated kN2 times. The quadratic term comes from having the same number
of samples to calculate the inner expectation and the outer variance of the
expectation. This is of course a problem when increasing the sample size,
as the number of model evaluations will scale quadratically, quickly becom-
ing very computationally intensive. Saltelli et al. appropriately called this a
"brute force method" [82].

In order to address this issue the Saltelli method [82] can be used. Three
matrices of size (N,k) are generated, A, B and Ci. WhereN is the number of
samples and k the number of parameters. Each row of these matrices corre-
sponds to a parameter set generated by sampling. Each column represents
a parameter, namely its values generated by sampling.
A and B are independently generated by sampling, while Ci is con-

structed from all columns of B, except column i that is taken from A. There
is therefore one matrix Ci for each model parameter. The model outputs
are then evaluated and stored in vectors of length N:

A =


a1,1 · · · a1,k

... . . . ...

aN,1
... aN,k

B =


b1,1 · · · b1,k

... . . . ...

bN,1
... bN,k



Ci =


b1,1 · · · a1,i · · · b1,k

... . . . ... . . . ...

bN,1
... aN,i · · · bN,k


(31)

yA = f(A)

yB = f(B)

yCi
= f(Ci)

(32)
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The first order and total effect sensitivity indices are calculated in the
following way:

Si =
VarXi(EX∼i(Y|Xi))

Var(Y)
=
yAyCi/N− f20
yAyA/N− f20

St = 1−
VarX∼i(EXi(Y|X∼i))

Var(Y)
= 1−

yByCi/N− f20
yAyA/N− f20

(33)

Where terms such as yAyCi are vector products and f0 is the mean of the
model output calculated from yA and yB.

An approximate explanation of these formulae is that if Xi is an influen-
tial parameter, the model output between yA and yCi will not change signif-
icantly, thus high values will be preferentially multiplied together, resulting
in a large first order sensitivity index [82]. This approximate explanation is
also valid for the total effect index, however as it is now only the values of
Xi that change between the matrix B and Ci, if Xi is an influential parameter
this will yield low values for the numerator and a high total effects index.

Compared to the brute force method, 2N evaluations would be needed
for matrices A and B, followed by kN evaluations for matrices Ci if the sen-
sitivity indices of all parameters were to be calculated. This gives a total of
N(2+ k) evaluations, with the significant advantage of being linear with re-
spect to N. There is therefore no longer an increasingly large computational
cost as the sample size is increased.

2.4.4 Sampling Methods

Although the Saltelli method for calculating Sensitivity Indices has previ-
ously been shown and discussed, the method by which samples are gen-
erated is an entirely independent choice. Random number generators are
easily available; however, these do not always provide satisfactory results.
Particularly when using crude Monte Carlo sampling, clustering may oc-
cur if the sample size is insufficient. The consequence being that the input
space is not uniformly sampled and the results obtained not necessarily
reliable. One way to avoid the issue of clustering is to use Design of Ex-
periments (DOE) methods in order to ensure that sampling is performed
more uniformly within the input space. The most simple and well known
sampling method is the Full Factorial design. In the case of three input pa-
rameters that take values of either 1 or -1, there are a total of 23 possible
combinations. As shown in Figure 9, the DoE in this case would correspond
to evaluating the model at each corner of the cube. In this case the values 1

and -1 represent two different levels that the parameter values may take. To
generalise: when performing a full factorial design for k parameters with s
different levels, the total number of combinations is sk [82].
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Figure 9: Representation of a Full Factorial design with 3 parameters and 2 levels,
reproduced with permission from Saltelli et al. [82]

X1 X2

0 0

1 1

2 2

3 3

0 0

1 1

2 2

3 3

Randomise→

X1 X2

0 0

3 1

2 3

1 2

0 3

2 1

3 2

1 0

Table 1: Example of generating a LH design for two parameters, four levels and
eight samples

Full Factorial designs can be performed with more than two levels in
order to capture non-linear effects of input parameters. However, as the
number of parameters and levels increases, the cost associated with model
evaluations rises exponentially. In order to reduce the computational cost,
a fraction of these points can be selected. A Latin Hypercube (LH) design
assures uniform sampling of the input space by first dividing each param-
eter range into a given number of sub-intervals or levels, an equal number
of points is then sampled from each level. An example of this is shown in
Table 1.

The advantage of randomising the two groups of simulations indepen-
dently is that each group can be an independent estimate of the mean
model output, making it possible to calculate a variance of the mean. This
is similar in nature to performing several LH designs and calculating the
uncertainty of the mean model output between them. Furthermore, these
LH designs tend to converge faster than simple Monte Carlo sampling.
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When considering only two levels that parameter values may take, FF
methods make use of Hadamard matrices in order to quickly generate de-
signs. Elements in a Hadamard matrix are either 1 or -1. These matrices are
orthogonal and can be generated recursively from the smallest Hadamard
matrix H2.

H2 =

(
1 1

1 −1

)

H2n =

(
H2n−1 H2n−1

H2n−1 −H2n−1

) (34)

These matrices have the interesting property of any two columns repre-
senting perpendicular vectors. Note also that when comparing two columns,
half of the entries are the same, while the other half is different. These two
properties also hold when looking at the rows of the matrix. In DOE terms,
this is equivalent to a design of Resolution III [82]. It is possible to improve
this using the following matrix concatenation:

M2n =

(
H2n

−H2n

)
(35)

By concatenating the original Hadamard matrix with its negative, addi-
tional combinations are created. This leads to a design of Resolution IV [82].
This can be related to the Full Factorial design in Figure 9. The cube repre-
sents the input space formed by any three parameters chosen from the total
k input parameters. When picking any three parameters, there are an equal
number of points in each corner of the cube.

It is possible to combine FF and LH designs in order to benefit from the
advantages of both. In the LH, the main point of interest is that the input
parameters are divided into levels along their range, and that there are
an equal number of points in each level. Using a FF method it is possible
to attain a Resolution IV design, which is equivalent to having the same
number of points in each corner of the cube formed by any three input
parameters. An illustration of these design criteria is shown in Figure 10.

As it is not immediately evident how to combine these two designs, the
following outline adapted from [82] is a good starting point. For the case of
four parameters, four levels and four simulations:

1. Generate the Hadamard matrix:

H4 =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 (36)
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Figure 10: Combined LH/FF design, reproduced with permission from Saltelli et al.
[82]. A Resolution III design is shown on the left and Resolution IV on
the right. There are the same number of points in each level and corner
between any two parameters (Resolution III) or any three parameters
(Resolution IV).

2. Generate a LH design for four parameters, four levels and four simu-
lations:

lh =


1 0 3 3

3 2 1 0

2 1 0 2

0 3 2 1

 (37)

All that is needed here is to generate random permutations of the
integer sequence from one to four

3. The two designs are combined in the following way

• If the entry in the Hadamard matrix is 1, the value in the LH
design is added to the number of levels, 4 in this case.

• If the entry in the Hadamard matrix is -1, the value in the LH
design is subtracted from (number of levels -1), 3 in this case

Applying this to the previously generated LH design gives:

lh =


5 4 7 7

7 1 5 3

6 5 3 1

4 0 1 5

 (38)
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4. The number of rows is doubled by calculating the complement: each
value in the previous matrix is subtracted from (2*number of levels
-1), 7 in this case. This gives the final combined LH/FF design:

lh =



5 4 7 7

7 1 5 3

6 5 3 1

4 0 1 5

2 3 0 0

0 1 2 4

3 7 6 2

5 4 7 7


(39)

The initial LH design had 4 levels and 4 simulations; these numbers
are doubled when calculating the complementary matrix, yielding a
design with 8 levels and 8 simulations.

Although this example has a lower number of parameters and simula-
tions for illustrative purposes, steps one and two can easily be modified or
repeated to yield the much larger designs that are used in practice. Namely,
the Hadamard matrix generated in step one simply needs to have as many
columns as there are input parameters. The LH design in step 2 can be re-
peated and the matrixes concatenated to increase the number of simulations
up to the desired amount.

There are many different ways to perform sampling, but the combined
Latin Hypercube and Fractional Factorial design was chosen based on the
description by Saltelli et al. [82].

2.4.5 Interpreting the Sobol indices

The first order sensitivity index Si represents the average reduction in model
output variance Var(Y) when the parameter Xi is fixed. This is of particular
interest when we want to measure parameters in order to improve model
predictions. Because Xi is unknown, we have a distribution of its possible
values. This distribution approximates the ’true’ value of Xi. If Xi is mea-
sured, it could fall anywhere in an interval described by its distribution. De-
pending on the measured value, this may give larger or smaller reductions
in variance. Hence Si doesn’t give a guarantee of the variance reduction of
Y, but only a mean reduction that takes into account the distribution of Xi.

Considering only Si doesn’t describe the interactions that may occur be-
tween parameters. Let us consider Figure 11 as an example. This figure
describes irreversible Michaelis-Menten kinetics (Equation 40). It shows the
reaction rate as a function of substrate concentration. The ’model’ in this
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case, has one output: the reaction flux v. There are three input parameters:
the maximum reaction rate Vmax, the substrate concentration S and the
Michaelis constant Km.

v = Vmax
S

Km + S
(40)

Let us first consider the sensitivity of the reaction flux v with respect to
the maximum reaction rate Vmax. From Equation 40 we can see that any
change in Vmax will always have an effect on the reaction rate v. In other
words, the sensitivity of v with respect to Vmax is independent of the values
of the other parameters. Translating this into the Sobol sensitivity indices
means that Si = St for the sensitivity of v with respect to Vmax. There are
no other parameters in the model that will amplify or dampen the effect of
Vmax on v.

However, the effect of substrate concentration S on reaction rate v is not
independent of other parameters. Depending on the value of Km, the re-
action will be operating close to or far from saturation. When Km is large
compared to S, the enzyme is unsatured. Therefore, more substrate will ac-
celerate the rate of reaction. Conversely, when Km is low compared to S, the
enzyme is saturated, and increasing S will no longer increase the reaction
rate. In the saturated regime St > Si for the sensitivity of vwith respect to S.
This means that the effect of S on v is no longer independent, but depends
on the value of Km.

Looking only at the first order sensitivity index Si makes it possible to
quickly identify single parameters that will reduce uncertainty in a model.
In this case, uncertainty is the variance of the model output Y. A high value
of St − Si indicates strong interaction effects. This means two or more pa-
rameters interact in order to influence the model output. A parameter that
has a very high St but Si of zero still indicates a parameter critical for
model output, but it is through interactions with other parameters that it
modulates the output. If St is high but Si is zero it means there is no reduc-
tion in model uncertainty on average when the parameter is measured. But
because St is high, model uncertainty can be reduced if other interacting
parameters are also measured.

2.4.6 Application to the Calnexin model

When calibrating the Calnexin model Dallavilla et al. [43] assigned a fitness
score to each parameter set based on its deviation from experimental data.
This score is calculated in the following manner:

score =
(ysimulated − yexperimental)

2

σexperimental
(41)
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Figure 11: Illustration of reaction rate v as a function of the normalised substrate
concentration S/Km. The grew line shows the effect of increasing Vmax.

The values of y correspond to the amount of labelled Calnexin present
at different time points of the pulse-chase experiments. The standard de-
viation of the experimental results is obtained by repeating the in-vitro
pulse-chase experiments [43]. The difference between the in-silico and the
in-vitro experiments is therefore a value to be minimised when fitting the
model parameters. A higher score indicates a worse fit with experimental
data, and a lower one a better fit.

When performing GSA, the bounds of each input parameter must be spec-
ified. Two different ways of setting these bounds were tested:

1. Constrained: the minimum and maximum of each parameter were the
same as those in the population obtained with NSGA-II.

2. Wide: The maximum and minimum of each parameter from the con-
strained bound are either multiplied or divided by 10 in order to de-
fine the new maximum and minimum. This generates a larger input
space.

It is critical to underline that the parameter sets generated in GSA and
those from the NSGA-II are not the same. When using the constrained pa-
rameter bounds, the only similarities are the maxima and minima of all
parameters. The input space defined by these bounds will be sampled dur-
ing GSA, as described in Section 2.4.4. This means that new combinations of
parameter values will be generated that are not present in those produced
by the NSGA-II.

Figure 12 shows the effect on the fitness score when using the wide
bounds. The solid lines represent the mean of all parameter sets, while
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Figure 12: Fitness scores as a function of time for NSGA-II parameter sets and the
wide sets generated in GSA. The parameter sets given in [43] were used
as a reference. The solid lines show the mean, and the shaded area
shows the first and third quartile. The GSA parameter sets were obtained
by randomly sampling 100 parameters sets using the wide parameter
bounds.

the edges of the lighter areas show the first and third quartiles of the model
output. Increasing the upper and lower bounds for all parameters has the
general effect of worsening the fit in relation to experimental data.

This worsening of fit when choosing wider parameter bounds is some-
thing to be expected. NSGA-II is an optimisation method that attempts to
find a region in the input space where the fit is the best. It is therefore
unsurprising that the fit be worsened when the bounds of this region are
widened. The difference in fit is particularly pronounced at the 5-hour mark
of the pulse-chase experiments. Indicating a very good point to start should
the fit need to be further improved.

Figure 13 shows the same graph as Figure 12, except that the constrained
parameter bounds are used for the GSA. When choosing the same parameter
bounds as those of the NSGA-II optimisation results, the fitness score is not
noticeably affected. This demonstrates a non-trivial aspect of the NSGA-II
results. As long as the bounds of the input space are kept the same, any
combination of parameter values within this space will not significantly
impact the fitness score. In other words, the NSGA-II has identified an entire
input space with an adequate fit, rather than just individual parameter sets.
The results of the NSGA-II can therefore be reduced to the maximum and
minimum values of each parameter, rather than the multitude of sets that
are returned.
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Figure 13: Fitness scores as a function of time for NSGA-II parameter sets and the
constrained sets generated in GSA. The parameter sets given in [43] were
used as a reference. The solid lines show the mean, and the shaded
area shows the first and third quartile. The GSA parameter sets were ob-
tained by randomly sampling 100 parameters sets using the constrained
bounds.

Figure 14 supports this conclusion. When looking at the in-silico pulse-
chase experiments, the results produced with parameter sets from the NSGA-II
or constrained GSA are virtually the same; the NSGA-II is robust in the con-
strained space. This explains why the fitness scores are also the same, as
they are based on the pulse-chase curves. It can be noted that the shift
between the two regimes of the biphasic decay occurs around the 5-hour
mark. It is also at the 5-hour mark that the fit with experimental data is
the worst. This suggests that the model struggles to accurately capture this
shift in decay phases, although the fit once firmly in either regime is much
better.

The following results are generated by taking 16’000 samples using the
previously described combined LH/FF sampling method. All samples are
taken from the constrained parameter space. The sensitivity indices are
calculated using the Saltelli method. The entire process of GSA is repeated
three times in order to calculate the standard error of all sensitivity indices.

Figure 15A shows first order and total effect sensitivity indices of the
four most important model parameters with respect to half-life of the total
amount of 35S-labelled protein. The total amount of 35S-labelled protein is
calculated by simply adding the amounts of all labelled species. This metric
therefore does not take into account the relative amounts of each Calnexin
species and the change in population during the decay.

As can be immediately seen, there are only two parameters that impact
the half- life of the total amount of 35S-labelled protein. Furthermore, the
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Figure 14: In-silico pulse-chase experiment, with NSGA-II parameter sets or con-
strained GSA sets. The parameter sets given in [43] were used as a refer-
ence. The solid lines show the mean, and the shaded area shows the first
and third quartile. The GSA parameter sets were obtained by randomly
sampling 100 parameters sets using the constrained bounds.

first order and total effect sensitivity indices have similar values, and their
sums are close to one. This indicates that within the constrained input space,
the model behaves close to perfectly additive. There is little to no interac-
tion between parameters; the effect of a change in one parameter does not
depend on the value of other parameters. kdecay3 is the decay constant of
the double palmitoylated species c12CAL. It is not surprising that this is the
most influential parameter; at steady-state it is mostly this species which is
present [43], therefore most of the decay flux is controlled by kdecay3. The
second most important parameter is the maximum speed of palmitoylation,
Vmaxfwd. This is related to the smaller pool of fCAL that is also present at
steady-state [43]. It appears that in the parameter space that was studied,
the decay constant associated with fCAL, kdecay1, does not have much of
an effect on the total protein half-life, although Vmaxfwd definitely does.
This could be explained by the parameter Vmaxfwd having a large effect
on the species present, a higher value would mean more flux going from
fCAL to c12CAL, leading to a bigger pool of c12CAL with a different decay
constant. Although this result may be somewhat surprising, it is not incom-
prehensible, as the input space that is chosen can have a large effect on GSA
results.

Figure 15B shows sensitivity indices for the steady-state concentrations of
both fCAL and c12CAL, supporting the previous explanation that Vmaxfwd
changes the species present. Although not the most important parameter,
Vmaxfwd does change the steady-state concentrations of both fCAL and
c12CAL. It is thus possible that changing this parameter can change the
distribution of Calnexin species, changing the relative amount of c12CAL
and thus the stability of the labelled Calnexin pool.
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Figure 15: GSA was performed on various characteristics of the Calnexin model
using 16‘000 samples generated with the LH/FF smapling method. The
mean and standard deviation of the sensitivty indices are shown. A)
First order and total effect sensitivity indices for the half-life of total
35S-labelled and 3H-labelled Calnexin. Constrained parameter bounds.
Other parameters with sensitivity indices of 0 are omitted for clarity. B)
First order and total effect sensitivity indices for the steady-state concen-
trations of fCAL and c12CAL. Constrained parameter bounds. C) First or-
der and total effect sensitivity indices for the half-lives of rCAL, c1CAL
and c12CAL. D) First order and total effect sensitivity indices for the
half-life of total 35S labelled Calnexin. The difference between wide and
constrained parameters bounds is shown. Results from local SA are also
shown for comparison.
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Figure 15A is similar to Figure 15A, however only the 3H-labelled protein
is now considered. As fCAL is non-palmitoylated, it is not labelled with 3H-
palmitate and therefore not a part of the total 3H-labelled protein. This
can be seen from the close to null sensitivity indices of Vmaxfwd; now
that fCAL is not counted in total labelled protein this parameter no longer
has an effect. It is virtually only labelled c12CAL that is present, and its
decay constant is the only significant parameter for half-life. This is a good
example of the usefulness of the two different labelling methods; different
sub-sections of the Calnexin palmitoylation model can be targeted for study.

Figure 15C shows another key property of the half-lives of various species
in the model; these are often determined by only one or two parameters.
As long as the parameters stay within the defined input space, it is possible
to easily tune the half-life of specific species without necessarily affecting
that of others. If these parameters would need to be tuned beyond their
constrained bounds, it would be easy to perform GSA with new parameter
bounds and study the results, although the change in parameter space may
mean the model no longer accurately reproduces the experiments.

The previous GSA results were generated using the constrained parame-
ter space defined by the NSGA-II. The following section widens this space in
order to identify potential changes in model behaviour. Figure 15D shows
the same objective function as previously discussed; the half-life of the total
amount of 35S labelled protein. However, the difference in GSA results with
wide and constrained parameter bounds is shown. The results give a good
insight of what may happen when the input space is enlarged. According to
the total effects index, the most important parameters remain the same and
the ranking does not change. However, the first order effect of Vmaxfwd en-
tirely disappears. As there are only two significant parameters, this means
that there is an interaction between kdecay3 and Vmaxfwd; the impact that
either one has will depend on the value of the other one. This intuitively
makes sense, as the speed of palmitoylation determines how much Cal-
nexin ends up in the fully palmitoylated c12CAL form, which then decays
with rate constant kdecay3. Although some very slight interaction was visi-
ble previously, it is much more pronounced in the wider parameter space.
Local sensitivity was also performed in the middle of the input space (the
mean of every parameter) in order to have a comparison. Absolute values
are taken to simplify comparison when the derivative is negative. The local
sensitivity produces a similar ranking to GSA, although it does not capture
any interaction effects. It also assigns a high sensitivity to the protein syn-
thesis rate vsynth, which GSA reports as being negligible.

Table 2 shows the different parameter bounds for the decay constants
kdecay1 and kdecay3, associated with fCAL and c12CAL respectively. The im-
portant aspect here is that in the constrained space they do not overlap.
This means that fCAL will systematically decay faster than c12CAL. How-
ever, once the bounds are widened, these parameters do overlap. When
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Parameter Constrained Wide

Maximum Minimum Maximum Minimum

kdecay1[h
−1] 0.1589 0.0760 1.589 0.00760

kdecay3[h
−1] 0.0268 0.0101 0.268 0.00101

Table 2: Parameter bounds for kdecay1 and kdecay3 with either constrained or
wide bounds.

Vmaxfwd is thus changed, it is entirely possible that the fCAL and c12CAL
species have similar rates of decay, depending on the value of kdecay3. This
means that the effect of Vmaxfwd will depend on whether kdecay3 is higher
or lower than kdecay1. In the wider parameter space, the total effect sensi-
tivity index of kdecay1 is slightly higher than in the constrained space, but
still too small to be significant. This is another surprising result, and may
be due to the vast majority of Calnexin being in the c12CAL state, there-
fore very little decay flux goes through kdecay1. This explanation does not
exclude the possibility of interaction between Vmaxfwd and kdecay3 either,
the population will change, but its half-life is still mostly dependent on the
decay constant of c12CAL.

2.5 conclusion and future directions

Many additional aspects of the previously built Calnexin model have been
further investigated. These include:

• Half-lives of various Calnexin species

• Steady-state concentrations

• Parameter interactions

• Effects of parameter bounds on model behaviour

In the process of performing GSA, the fitness functions of different pa-
rameter sets were studied, revealing some of the more subtle qualities of
NSGA-II. Namely that, in this case, the result returned by the NSGA-II is in
fact an entire parameter space in which the fit to experimental data is good,
not just a population of isolated parameter sets.

One particular point of the pulse-chase experiments was highlighted in
which the fit of the simulated data was significantly poorer than elsewhere.
This point coincided with a shift between the two regimes of biphasic decay.
If the fit of the parameters would need to be further improved, starting at
this point would be the most logical choice.
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The results concerning half-life show that it would be very easy to en-
gineer the half-life of different species in the model by acting on only a
handful of parameters. This is also true of other model properties, such as
steady-state concentrations. GSA can identify parameters and subsets that
determine different model properties. It is even possible to modify the half-
life of certain species, such as c1CAL or rCAL, without affecting any of the
others.

Finally, it was shown that the chosen input space can have a significant
effect on the results generated by GSA. In this particular case, the ranking
of the parameters according to total effect did not change, but interactions
between parameters appeared and some first order indices were reduced to
negligible values. These results were compared to those of Local Sensitivity.
Although in both cases the ranking was the same, local sensitivity identified
important parameters that GSA classified as unimportant. This is most likely
because GSA takes into account the entire parameter space, determining on
average if a parameter has an effect on a model output. Furthermore, GSA
supplies additional information in terms of the interactions between param-
eters. This is one of its the key strengths, being able to distinguish between
first order effects of a parameter and interactions with other parameters. If
desired, it is possible to compute two-way, three-way or higher parameter
interactions. As models become more complex and the potential for interac-
tions increases, GSA can yield significantly improved holistic understanding
of how models work.

As was mentioned in the introduction; Calnexin is an interesting protein
not only because of its twin palmitoylation sites, but also because it is palmi-
toylated by the enzyme zDHHC6, which is itself palmitoylated. Building a
more complex model that includes zDHHC6 and a corresponding APT is an
exciting step on the way to creating a system which more closely resembles
what occurs in the cell. Figure 16 shows what a palmitoylation network
could resemble when including zDHHC6 and APT in addition to Calnexin.
The number of input parameters as well as the model outputs that may be
of interest increases significantly in this more complex model. There may
also be a higher potential for interactions between different parameters of
the model due to this increased complexity, making it a perfect candidate
for the GSA algorithms already used for Calnexin. The ability to distinguish
parameter interactions may become even more valuable in this context. Fur-
ther refining and improving the efficiency of the algorithms will also be
necessary in order to deal with the much larger number of input parame-
ters, which increases about one order of magnitude. Although efforts have
been made towards creating such a model, it remains a work in progress.
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Figure 16: Representation of a possible palmitoylation network of Calnexin, includ-
ing both PAT6 (zDHHC6) and its corresponding APT. Other palmitoyla-
tion targets of PAT6 are also shown

42



3 C L I M P 6 3

The results in this chapter were used to prepare a manuscript in collabo-
ration with several authors. The manuscript was submitted to a preprint
server [74] and is currently awaiting re-submission to a journal. All figures
in this chapter are either taken from or based on this manuscript. The ex-
periments were performed by various members of the Van der Goot Lab,
namely: Patrick Sandoz, Laurence Abrama, Sylvia Ho, Béatrice Kunz.

In this chapter we will create a kinetic model of the Cytoskeleton-linking
Membrane Protein 63 (CLiMP63). We will show the different types of ex-
perimental data that were succesfully integrated into the model and the
difficulties in properly calibrating the model. Although we started with a
similar approach as that used to create the Calnexin model in Chapter 2,
we encountered several difficulties and had to radically rethink the model
construction and calibration phases. After an overhaul of the methodology,
we obtained a model that could accurately reproduce all of the experimen-
tal data. We were able to estimate half-lives of the seven different forms of
CLiMP63, and describe how this protein was regulated through palmitoyla-
tion. Most importantly, our approach showed that the multimers formed by
CLiMP63 are crucial to its function.

3.1 climp63 background

Cytoskeleton-linking Membrane Protein 63 (CLiMP63) is 63 kDa single-pass
transmembrane protein. It was discovered in the 1990s [83, 84], where it
was both identified as an antigen for specific monoclonal antibodies and a
highly palmitoylated protein during cell mitosis.

It’s main roles include generation and maintenance of ER sheets, where it
acts as a spacer [74], and binding microtubules in order to anchor the ER to
the cytoskeleton. It also has other roles which are less well studied. These
include being reccruited to the ribsome-translocon complex [74], as well as
acting as a receptor for multiple different ligands at the PM [85–87].

Disregulation of CLiMP63 has been linked to multiple different types of
cancer, where its upregulation has been linked to poor prognoses [88–90].
It has also been found that CLiMP63 is downregulated in patients that have
undergone surgery for abdominal aortic aneurysm [91].

In addition to palmitoylation, CLiMP63 can also undergo phosphorylation,
but not glycosylation, being devoid of any glycan modifications [84]. Hu-
man CLiMP63 has a cytosolic tail that is 106 residues long, and has a single
palmitoylated cysteine just six residues away from its transmembrane do-
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main. Furthermore, this cytosolic tail is predicted to be intrinsically disor-
dered by the IUPred in silico computational tool [92].

It was also found that CLiMP63 is an abundant protein, at least in the ER,
where its copy numbers were estimated between 100,000 and 400,000 [2, 93,
94].

CLiMP63 is therefore a protein with many different roles, most of them at
the ER, where it is primarily located. A small subpopulation is also located
at the PM, where it is a receptor for multiple different ligands.

3.2 experimental data

In this section, we will talk about the experimental data that was available
to build and calibrate the CLiMP63 model. The experimental data can be
broadly classified into two categories. The first is used in order to inform
choices when defining the model structure, whereas the second is used in
determing parameter values during model calibration.

Initial experiments were performed in order to determine if any cross-talk
between phosphorylation and palmitoylation existed, and also to identify
the PATs targeting CLiMP63. These experiments belong to the first category,
used for defining model structure.

All the experimental methods that were described in Section 2.2 were
also used for studying CLiMP63. Namely, radiolabelling with either 35S or
3H, siRNA to reduce enzyme levels, overexpression to increase enzyme lev-
els and mutants to disable palmitoylation sites. However, in this case there
were two PATs targeting CLiMP63: zDHHC6 and zDHHC2. In contrast with
Calnexin, CLiMP63 has only one palmitoylation site. These series of exper-
iments belonged to the second category, being used during calibration to
determine the values of model parameters.

Details concerning the experimental protocols can be found in the preprint
by Sandoz et al. [74].

3.2.1 Cross-talk with Phosphorylation

Because CLiMP63 is also phosphorylated, it was important to determine
whether there was a cross-talk between phosphorylation and palmitoyla-
tion. Especially as palmitoylation occurs on the cytosolic domain, which
is where microtubules attach. As phosphorylation prevents microtubules
from attaching to CLiMP63, microtubules were either stabilized using the
drug taxol or their depolymerization promoted with nocodazole. Using 3H

labelling, the incorporation of palmitate after two hours was compared un-
der these three conditions. It was observed that palmitate incorporation
wasn’t affected (Figure 17), and therefore that it appears to be independent
from microtubule interaction and phosphorylation.
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Figure 17: 3H labelling for two hours showing the effect of promoted microtubule
stabilization using taxol, or increased microtubule depolymerization us-
ing nocodazole. Reproduced with permission from [74]

3.2.2 Identifying palmitoylating enzymes

It was previously reported that CLiMP63 is a target of the PAT zDHHC2 [95].
However, as the majority of CLiMP63 is localised to the ER and zDHHC2 is at
the PM [74], it was thought that there must be another PAT targeting CLiMP63.
Experiments were thus performed in order to confirm the activity of zD-
HHC2 and identify any other PATs targeting CLiMP63. This was done by
first performing 3H palmitate labelling for two hours in control conditions,
and then silencing zDHHC6 or zDHHC2, for a total of three experiments.
The results in Figure 18 clearly show that both these enzymes contribute to
CLiMP63 palmitoylation, although zDHHC6 appears to be more important
for palmitate incorporation.

3.2.3 Determining palmitoylated fraction

The Acyl-RAC experimental protocol was used to determine the fraction
of palmitoylated CLiMP63 at steady-state. This protocol works by first col-
lecting the protein from the cell at steady-state. The free cysteines are then
labelled with a fluorescent chemical. The experiment is then repeated by
adding hydroxylamine, which cleaves the thioester bonds, effectively de-
palmitoylating occupied cysteines. By comparing the fluorescent readout
from both these experiments, it is possible to estimate the fraction of palmi-
toylated cysteines. If no fluorescence is observed when hydroxylamine is
not added, this means that all cysteines are palmitoylated. On the other
hand, if the fluorescence readout is the same with or without hydroxy-
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Figure 18: Quantification of 3H labelling of CLiMP63 (N=4) done for two hours
in control conditions and with siRNA targeting either zDHHC6 or zD-
HHC2. Mean, standard deviation and p-values (***p < 0.01, ****p <
0.001) are shown. Reproduced with permission from [74].

lamine, it means that none of the cysteines are palmitoylated. A schematic
of the process is shown in Figure 19.

The Acyl-RAC protocol was applied to CLiMP63, the results are shown
in Figure 20. With an acylated fraction of 87 percent, the vast majority of
CLiMP63 is palmitoylated in cells.

3.2.4 Quantifying surface population

In order to observe how localisation of CLiMP63 is affected by palmitoylation,
surface biotinylation was used. This method works by covalently attaching
biotin to the protein of interest. Using streptavidin beads, for which biotin
has a particularly high affinity, the tagged proteins can be purified. A west-
ern blot can then be performed in order to identify the different proteins
and their relative amounts.

One advantage is the particularly small size of the biotin molecule, which
decreases the possibility for interference in the functioning of the tagged
protein.

Many different biotinylation agents exist. Some require enzymes in or-
der to be attached to proteins, while chemical biotinylation agents have a
reactive group that is attached to the biotin. This reactive group influences
the solubility of the biotinylation agent. NHS-Biotin is soluble in water but
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Figure 19: Schematic representation of the Acyl-RAC experimental protocol. Im-
munoprecipitation is used to capture the protein of interest. The palmi-
toylated cysteines can then be cleaved using hydroxylamine (NH2OH).
Fluorescent labelling is done using iodoacteamide-oregon- green-488

(IAA-OG488). Comparing the fluorescent readout with that of proteins
that weren’t cleaved with hydroxylamine makes it possible to calculate
the fraction of acylated protein. Reproduced with permission from [74].

Figure 20: Results of the Acyl-RAC experiment on CLiMP63 (N=3), showing the es-
timated palmitoylated (acylated) fraction. Error bars represent the stan-
dard deviation. Reproduced with permission from [74].
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Figure 21: Quantification of CLiMP63 population at the surface using surface bi-
otinylation (N=3). Mean, standard deviation and p-values are shown
(***p < 0.001). The effect of silencing zDHHC6 and zDHHC2 are shown
relative to Control conditions. Reproduced with permission from [74].

does not penetrate the cell membrane, meaning that it will biotinylate all
proteins on the cell membrane, but no intracellular proteins. In this way,
it is possible to estimate the relative change of CLiMP63 at the surface un-
der different conditions, namely when silencing zDHHC6 or zDHHC2, as
shown in Figure 21.

3.2.5 Fluorescence Microscopy

As with Calnexin (Section 2.2.6), fluorescence microscopy was also used to
study CLiMP63. From the images shown in Figure 22, it can be seen that
CLiMP63 is also predominately localised in the ER. However, what can also
be noted is that the distribution is not significantly affected when one of the
palmitoylating enzymes, zDHHC6, is knocked out. This information can in
fact be used either for model calibration or validation. This can be done by
assigning a penalty when the fraction of CLiMP63 in the ER is under a certain
threshold.

3.3 modelling goals

Given the previous knowledge described in Section 3.1 and the experimen-
tal data in Section 3.2, several questions could be formulated.

One of these involves localisation of CLiMP63, which has important roles
in two distinct cellular compartments, the ER and the PM. This raises the
question of how both roles in the different compartments are balanced. An-

48



3.3 modelling goals

Figure 22: Confocal immunofluorescence microscopy images of CLiMP63 in HeLa
cells. Reproduced with permission from [74]. Control conditions and
zDHHC6 knockout are shown. The nucleii can be identified by dark
circle-like shapes, around which CLiMP63 shows up as white dots.
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other question is how this distribution is controlled and regulated by zD-
HHC6 and zDHHC2. Experimental data shown in Figure 21 suggests that
both zDHHC6 and zDHHC2 modulate the localisation of CLiMP63. How-
ever, the exact mechanism by which this happens isn’t clear. Furthermore,
it is not easy to verify that a proposed mechanism is consistent with the rest
of the experimental data. A model can give quantitative answers to these
questions. Not only can it propose a mechanism by which localisation is
controled, but it can also quantitavely estimate how the different enzymes
affect the stability and traficking of CLiMP63. As multiple sets of experimen-
tal data can be integrated in the calibration process, it is possible to create
a model that is consistent with the entirety of the experimental data.

As is shown in Figure 31, the apparent stability of 35S labelled CLiMP63 is
high, while palmitate turnover is also high. This would suggest that palmi-
toylation of CLiMP63 is highly dynamic, while the majority is palmitoylated,
it is constantly undergoing depalmitoylation-palmitoylation cycles. This
begs the question of how this dynamic palmitoylation fits in with regu-
lation and localisation of CLiMP63. In particular, which species are present
and how do they evolve over time. Given that CLiMP63 is present in two
compartments and has one palmitoylation site that may be occupied or not,
there are thus at least four different CLiMP63 species.

Although 35S radiolabelling experiments give a general sense of how sta-
ble a protein is, in practice they only monitor newly synthesized proteins.
These must undergo a folding and maturation process, meaning that they
do not necessarily have the same properties as the bulk of the protein. This
problem of partial observability is the same in the case of 3H palmitate
labelling, it is only newly attached palmitate which is monitored. If there
is a large bulk of the protein that undergoes very little palmitoylation, its
palmitate turnover will not be measured by these experiments. This is a
recurring challenge when building these models of palmitoylation, the ex-
perimental data is only in fact a partial observation of the system. In order
to better understand how a protein is regulated, it is very useful to esti-
mate the properties of the individual CLiMP63 species. For example, using
the model in order to estimate bona fide half lives of the different CLiMP63

species helps in understanding how regulation works, and is not possible
using only experimental data and current knowledge.

In addition to estimating half-lives and the evolution of different species,
we will use the model to estimate the palmitoylation and depalmitoyla-
tion fluxes of different species. We aim to identify which species are prefer-
entially palmitoylated and depalmitoylated, and how this differs between
compartments.
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3.4 model construction

As was discussed in Section 3.1, it was already known that CLiMP63 is
present in the ER and PM. The results in Section 3.2.2 identifyed two en-
zymes that palmitoylate CLiMP63: zDHHC6 and zDHHC2. Given that these
enzymes were localised in the ER [74] and PM, respectively, a rough model
structure could already be constructed, as shown in Figure 23.

This model included the two compartments in which CLiMP63 was known
to be present, as well as the CP through which it needs to be transported to
reach the PM. In this model, a constant synthesis flux first leads to an un-
folded form of CLiMP63, from which it folds to a mature form according to
first order kinetics. Palmitoylation can only occur once CLiMP63 has folded.
All transports and decay reactions are modelled according to first order
kinetics. All palmitoylation and depalmitoylation reactions are modelled
with tQSSA kinetics, as was the case in the Calnexin model (Section 2.3.2).

Although no APT targeting CLiMP63 has been identified, we assigned an
APT enzyme in each compartment where palmitoylation by a PAT occured.
Furthermore, as no other PAT apart from zDHHC6 and zDHHC2 has been
identified so far, it was assumed that no palmitoylation or depalmitoylation
occurs in the CP. Since the CP was only a transitory compartment, no decay
reactions were included, according to the principle of parsimony.

3.5 model calibration

In this section we will go over the process of calibrating the CLiMP63 model.
We will talk about some of the different numerical methods and software
tools that were used. We will also show the unsuccessful attempts and the
solutions implemented to reach a satisfactory model calibration.

3.5.1 Rule-based modelling

Once the initial model structure had been established, we then needed to
translate this into a computational form in order to be numerically tractable.
In the Calnexin model the code for the system of ODEs was written by
hand. One of the difficulties in writing code for these models is keeping
track of the different labelling states. Because there are several different
radioactive labels, the number of combinations rises significantly. Every la-
bel, and whether it is on or off, must be accounted for in the model. For a
protein with a single palmitate attached to it, this means there are 22 = 4

different labelling combinations possible, arising from the combination of
the 35S and 3H labels. For a protein with three palmitates attached, this rises
exponentially to 24 = 16.
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3.5 model calibration

Figure 23: Initial CLiMP63 model structure, containing three compartments and a to-
tal of six species (not counting the unfolded form of CLiMP63). M denotes
the monomeric CLiMP63 protein, the subscript its cellular localisation
and the superscript its palmitoylation state, 0 for non-palmitoylated and
1 for palmitoylated. Synthesis, folding, transport and decay are mod-
elled according to mass action kinetics. Palmitoylation and Depalmitoy-
lation are modelled with tQSSA kinetics.
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In order to better manage this combinatorial complexity, we opted for a
rule-based modelling approach using RuleBender [96, 97]. In this approach
rules are used instead of writing out each reaction multiple times to take
into account all the different labelling combinations. Rules are similar to
reactions in that they specify products, substrates and a reaction rate, but
they also match multiple substrates and products based on the expressions
used. For example, a palmitoylation site is represented by C for the Cysteine
to which a palmitate is attached. This Cysteine can either be unoccupied
C ∼ 0, palmitoylated C ∼ P or palmitoylated with a labelled palmitate
C ∼ PL. It may also have the sulfur present in its amino acids labelled
35S ∼ 1 or not labelled 35S ∼ 0. Writing a reaction rule, for a generic molecule
or protein M:

M(C ∼ 0)→M(C ∼ P) (42)

Corresponds to attaching a non 3H labelled palmitate to a protein. The
M(C ∼ 0) expression will match any proteins that are non-palmitoylated.
Because the 35S labelling property is not specified, it will match both 35S

labelled and non-labelled proteins and treat them equivalently. In fact this
rule corresponds to writing out two reactions, one with 35S ∼ 1 and the
other with 35S ∼ 0.

Writing the rules for protein decay:

M(C ∼ 0)→ �
M(C ∼ P ∼ PL)→ �

(43)

The first rule matches any protein that is non-palmitoylated and the sec-
ond any protein that is palmitoylated (P) or palmitoylated with a labelled
palmitate (PL). In this example, 2 rules are written instead of 6 explicit reac-
tions. In this way, rules can be written which are independent of the labelled
state of the protein, while generating a system of ODEs which still keeps
track of the labelled and non-labelled population in all their combinatorial
complexity.

Combining these rules with observables allows easy interfacing with the
complex system of ODEs that is created. For example:

M(35S ∼ 1) (44)

Would match all proteins that are 35S labelled, i.e. contain a 35S Cysteine,
irrespective of their palmitoylation state and 3H labelling. Various software
packages exist which implement this sort of rule-based model building, for
example BioNetGen[96] or PySB[98].

As we have seen, rule-based modelling is very well suited to describing
radioactive labelling experiments. In particular, it facilitates handling the
combinatorial explosion that occurs due to the large amount of labelling
combinations.
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Figure 24: Subset of the calibration experiments (N=5) obtained after the initial
calibration attempts. Experimental data points are shown in red with
the error bars showing standard deviation. Model output is shown with
the blue curves. The shaded areas represent the first and third quartile
of the model output.

3.5.2 Initial Calibration attempts

The same general approach to model calibration was taken as that used for
the Calnexin model [43]. Specifically, the NSGA-II optimisation algorithm
was used to minimse a sum of squares objective function that was designed
to minimise the difference between experimental data and model output.
The biggest difference was that a rule-based modelling approach was used
(Section 3.5.1) in order to facilitate model generation and make it more
tractable.

Although this approach had been successful for the Calnexin model, ini-
tial results for the CLiMP63 model were not satisfactory. Reproducing the
pulse-chase experiments was not successful, as shown in Figure 24. It was
not only that the decay curves were not reproduced, but some of these ex-
periments were missing the typical biphasic shape which was evident in
the data. This pointed to a larger underlying issue than just a failure to
find a suitable parameter space. Indeed, in order to be able to reproduce a
biphasic decay like that of the 3H WT chase experiment (Figure 24), there
need to be at least two different CLiMP63 species that are decaying with dif-
ferent rate constants. The model outputs in Figure 24 are not a biphasic
decay, meaning that there is only one predominant species decaying with a
single rate constant.

Furthermore, the distribution obtained with the model did not agree with
microscopy experiments (Section 3.2.5), which indicated that a majority of
the protein was localised in the ER both in WT conditions and upon zD-
HHC6 knockout. Figure 25 shows that the model had less than half of the
CLiMP63 at the ER in WT conditions. Upon zDHHC6 knockout, the model
had only a negligible fraction of the protein left in the ER. Clearly, such
a drastic change would have been visible in the microscopy experiments.

54
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Figure 25: Population distribution obtained during the initial model calibration.
The mean of 100 parameter sets is shown. The error bars represent
the standard deviation. Both normal (WT) conditions and silencing zD-
HHC6 are shown. In both cases, the majority of CLiMP63 is at the PM,
whereas when silencing zDHHC6 almost none is present in the ER. Re-
produced with permission from [74].

Additionally, the surface biotinylation experiments (Figure 21) showed that
although the majority of the protein stays in the ER when zDHHC6 is si-
lenced, there is a significant increase of the amount at the PM. The model,
however, showed no sensitivity of the PM subpopulation to zDHHC6 silenc-
ing.

Given these large disparities between the model and experimental data,
it was decided that an in-depth overhaul of the approach should be under-
taken. Although the core structure of the model would be kept the same,
multiple changes would be individually tested, as well as trying out a dif-
ferent optimisation algorithm and error function.

3.5.3 Optimisation algorithms

The most obvious place to start improving model calibration is the optimi-
sation algorithm. Generally, there are two parts to a heuristic optimisation
algorithm like NSGA-II. The first is the fitness function, also called error func-
tion. This defines a certain fitness score based on the model parameters. In
our case, the model parameters are used to simulate a system of ODEs with
the goal of reproducing experimental data. The fitness function then pro-
duces a score based on the similarity to experimental data. The second part
is the heuristic optimisation algorithm itself. This determines how the itera-
tive optimisation takes place, how the next iteration is chosen based on the
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Figure 26: Error function used for comparing experimental data to model output.
Experimental data is shown with red dots, and is used to create a piece-
wise linear curve. The area between the experimental and model curves
is the output of the error function. Even though there is no data between
five and twenty hours in this example, using the area ensures that the
last data point is properly taken into account.

current one, and generally how the parameter populaton and its associated
fitness scores are taken into account when exploring the parameter space.

Although a sum of squares error function worked well for calibrating
the Calnexin model, this approach breaks down when the experimental
data points are not evenly spread out in time. As can be seen in Figure 26,
there is a grouping of data points between one and five hours, followed by
a single data point at twenty hours. When using a sum of squares error
function, a disproportionate amount of weight is given to the data points
grouped at the beginning of the experiment. If the model reproduces the
data accurately before the five hour mark, and then diverges afterwards,
the fitness score will not be significantly affected. Although there is only
one data point at the twenty hour mark, it provides crucial information
on the rate of decay between five and twenty hours. Instead, we can use
the experimental data points to construct a piecewise linear curve and then
calculate the area between this curve and the model output curve. In this
way, all experimental data points will be taken into account even if they are
not evenly spread out in time, as the area in Figure 26 illustrates.

We can also change the heuristic optimisation algorithm itself, hopefully
improving the results obtained. Calibration of the Calnexin model used the
NSGA-II algorithm, which belongs to the general class of GAs. These work
in a way inspired by the natural selection of individuals in a population, il-
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lustrated in Figure 27. The idea is to mimic evolution as it occurs in nature
to find an optimal parameter space. Each set of parameters is synonymous
with an individual of the larger population. Using the previously defined
fitness function, we can assign a numerical fitness score to each individual.
Based on this fitness score, only a fraction of the population survives an
iteration of the algorithm. The surviving individuals then reproduce, cre-
ating new individuals by exchanging some of their parameters. Random
mutations also occur at this point. The fitness score of the new population
is evaluated and the algorithm repeats until a stopping criteria is met. This
can be a target fitness, or merely a fixed number of iterations of the algo-
rithm.

Algorithms based on Covariance Matrix Adaptation (CMA) work in a sim-
ilar way as GAs. They also use a population that is iteratively evolved based
on the fitness value of the individuals. However, instead of randomly cross-
ing over parameters during reproduction, CMA builds a covariance matrix
from the fittest individuals of the population and updates it every itera-
tion. This matrix is used instead of the reproductive step. In this way, the
algorithm has some concept directionality. Although there is not a clear
vector indicating the direction of optimality, new individuals are sampled
based on the covariance matrix. This ensures that parameters which must
have certain values relative to other parameters stay in this required range.
Whereas parameters which are free to vary irrespective of other parameters
may do so. An illustration of what this looks like is shown in Figure 28. We
chose to use the CMA-ES algorithm for calibrating the CLiMP63 model.

3.5.4 Alternative model structures

In order to investigate additional reasons why the initial calibration was
not successful, it was decided to try different model structures. Based on
the literature and background of the CLiMP63 protein (Section 3.1), three ad-
ditional model structures were explored. These are all shown in Figure 29.

The first alternate structure introduces a recycling compartment at the PM.
This is to simulate the constant sorting and renewal of transmembrane pro-
teins in the cell membrane. In this compartment, CLiMP63 is merely taken up
and then released back to the PM. Transport to and from the recycling com-
partment follow first order kinetics and have their own rate constant. The
rate constant is also different based on palmitoylation state of CLiMP63. No
decay or palmitoylation is possible in this compartment, as it is only meant
to simulate CLiMP63 being erroneously included in the sorting process of
membrane proteins.

The second introduces zDHHC6 in the CP. Although zDHHC6 is primar-
ily localised in the ER, it is possible that it may transported in the same
vesicles as CLiMP63, due to their both being transmembrane proteins. The
concentrations of zDHHC6 in the CP and ER were made independent, as
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Figure 27: Illustration of the general functioning of a GA such as NSGA-II. An initial
population is first sampled from the parameter space. A user-defined
fitness function is used to calculate the fitness score of every member of
the population. Based on their fitness scores, the members of the popu-
lation "reproduce" by crossover and mutation of their parameters. Based
on the characteristics of this new population and the stoping criteria the
process is either repeated or stopped.

Figure 28: Illustration of the CMA-ES algorithm functioning. The fitness landscape
is shown by white concentric circles, with the optimum being shaded a
lighter colour. Members of the population are shown by black dots. The
dashed orange oval represents the current direction of the algorithm,
which is described by the covariance matrix. Reproduced with permis-
sion from [99].
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Calnexin CLiMP63

# of compartments 1 3

# of parameters 17 60

# of species 19 58

Table 3: Increase in complexity between the Calnexin model and the the complete
CLiMP63 model, including all proposed structures

there was no prior knowledge in this respect. The kinetic parameters, how-
ever, were kept the same, as there was no obvious reason for them to change
between the two compartments.

The last structure that was tested involved expanding the unfolded form
of CLiMP63. The difference in this case was that the unfolded form could get
palmitoylated before folding. There is currently no clear experimental evi-
dence of folding or palmitoylation occuring first or fastest, and it is most
likely to depend on the protein. Including palmitoylation before folding
in the model therefore accounts for both possibilites. As palmitoylation of
CLiMP63 occurs close to the transmembrane domain, this may alter its inter-
action with the membrane and possibly affect the folding process. For this
reason, two folding constants were given, one for the palmitoylated form
and one for the non-palmitoylated form.

3.5.5 Integration using Julia

Although rule-based modelling facilitated generating increasingly large mod-
els of palmitoylated proteins, actually integrating the systems of ODEs also
becomes computationally more expensive as model size grows. Table 3

shows the increase in model size going from Calnexin to CLiMP63.
In order to make the full CLiMP63 dimerisation model more computa-

tionally tractable it was decided to try and improve the computational effi-
ciency of the model calibration. Refactoring the MATLAB code in order to
improve performance and legibility only yielded small improvements. Be-
cause a well established ODE integrator was already being used (SUNDI-
ALS [100]) it was decided that larger changes would be beneficial, namely
using the Julia programming language [101–104]. The advantages of Julia
are numerous: it is a high-level, high-performance programming language
that is compiled, in the likes of C. At the same time it can directly inter-
face with C, while there are also well tested packages for interfacing with
Python. All this is free and open source published under an MIT license.
Furthermore, a Julia interface to the SUNDIALS package was already avail-
able in the DifferentialEquations.jl package [105], making comparison easy.
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Figure 29: Illustration of the multiple model structures proposed. Each modifica-
tion to the monomer CLiMP63 model is highlighted in a specific colour.
A recycling exosome was added to simulate membrane recycling at
the PM. No reactions could occur in this compartment. A palmitoyla-
tion/depalmitoylation catalysed by zDHHC6 and its corresponding APT

was added in the CP. Palmitoylation/depalmitoylation of the unfolded
CLiMP63 catalysed by zDHHC6 in the ER was added.
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# of Workers Julia 0.6 s MATLAB R2016a s

2 1.15 44

4 0.3 14

8 0.2 6.5
12 0.17 6.5
16 0.15 additional licenses needed

Table 4: Speed Comparison of Julia and MATLAB. One hundred CLiMP63 models
were integrated to steady-state as an indication of performance.

Table 4 shows the difference in computation time when using Julia or
MATLAB. Results are also shown for different levels of parallelisation, where
the number of workers denotes how many models are being solved simul-
taneously. Remarkably, a speedup of factor of 30-40 was obtained merely by
switching languages while keeping the same ODE integrator backend. The
reasons for this won’t be discussed in depth here, as this is not the main
focus of the thesis. It is most likely the ODE evaluation step which is the bot-
tleneck in this case, as the integrator has to still evaluate the system of ODEs
in either Julia or MATLAB. As one is compiled and the other interpreted,
this most probably where the large increase in performance came from.

Using the easy C-interfacing capabilities of Julia, it was straightforwards
to use the C implementation of the CMA-ES optimisation algorithm de-
scribed in Section 3.5.3.

3.6 results

After incorporating the multiple changes described in Section 3.5 and fol-
lowing many subsequent calibration attemps, a satisfactory model structure
was finally found by taking dimerisation into account. Unfortunately, none
of the model structures proposed in Section 3.5.4 or combinations thereof,
were suitable. However, adding a CLiMP63 dimer in the ER is not only biolog-
ically plausible [83], but led to a good calibration. The final structure of the
model is shown in Figure 30. Dimerisation can occur between two CLiMP63

proteins in any palmitoylation state, leading to a dimer with three different
palmitoylation states. The rates of dimerisation, dimer dissociation, palmi-
toylation and depalmitoylation were assumed to be independent of palmi-
toylation state. Dimerisation and dissociation were modelled according to
first order kinetics, while palmitoylation and depalmitoylation were mod-
elled with tQSSA kinetics.

The transport of palmitoylated CLiMP63 monomer away from the ER was
also removed from the model. Because the parameter sets obtained from
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Figure 30: Final CLiMP63 model structure, containing three compartments and eight
species (excluding unfolded protein). M denotes the monomeric CLiMP63

protein, the subscript its cellular localisation and the superscript its
palmitoylation state, 0 for non-palmitoylated and 1 for palmitoylated.
D denotes a CLiMP63 dimer, the subscript its cellular localisation and
the superscript its palmitoylation state, 0 for non-palmitoylated, 1 for
single palmitoylation and 2 for double palmitoylation. Compared to the
initial structure, a dimer was added and transport of the palmitoylated
monomer was removed. Reproduced with permission from [74].

the optimisation algorithm didn’t use this transport path, it was removed
in order to simplify the model representation.

As can be seen in Figure 31, the quality of the model calibration improved
substantially compared to the initial efforts (Figure 24). The decay curves
which have a pronounced biphasic shape, such as that of 3H WT, were well
matched by the model. The 35S C100A experiment, where palmitoylation
is blocked by mutating a cysteine to an alanine (Section 2.2.4), was not as
well reproduced as the other experiments. However, the experimental error
of this experiment was particularly large, and the model output still within
two standard deviations at most. The validation set, shown in Figure 32,
was also well reproduced by the model. The experimental curves with a
biphasic shape were equally well matched. The last time point 3H WT in-
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Monomer Recycling
in the PM

zDHHC6

in the CP
Unfolded
species in
the ER

Dimer

# of pa-
rameters

41 45 45 45 48

# of ODEs 27 33 27 31 48

Table 5: Comparison of number of model parameters and ODEs for the different
CLiMP63 model structures which were tested.

corporation experiment was not quite reached by the model, but this point
had a large error in any case.

Not only were the pulse-chase experiments well matched by the model,
but the population distribution was also consistent with the experimental
data. As shown in Figure 33, not only is the majority of CLiMP63 at the
ER in both WT and zDHHC6 silencing conditions, but there is a significant
increase in the surface population when silencing zDHHC6 compared to
WT. The palmitoylated fraction of CLiMP63 was very high, also in agreement
with the experimental data in Figure 21.

Given the successful calibration which was enabled by the addition of
a dimer, it was decided to experimentally validate its presence. Figure 34

shows a Blue native blot using either Digitonin or SDS as a surfactant. Using
a Blue Native gel makes it possible to conserve protein complexes such as
dimers or multimers, and still separate them according to size. Using Digi-
tonin as a surfactant instead of the more aggressive SDS limits the break-
down of these protein complexes. As shown in Figure 34 it is obvious that
a CLiMP63 complex is formed in the cells. However, more investigation is
needed to determine the exact composition and stoichiometry of this com-
plex. Nevertheless, the modelling approach here led to the discovery of
the central role of the CLiMP63 dimer as an integral part to its regulation,
opening up additional avenues of research.

3.7 discussion

Using the calibrated CLiMP63 model it is possible to get a better understand-
ing of how the system works and make certain predictions that go beyond
what is experimentally possible.

One of the first things we can use the model for is to study how the
different species of CLiMP63 interconvert during the various experiments.
Figure 35 shows WT 35S and 3H chases.

Let us first look at the 35S chase. At the beginning of the chase we can
see that the main species present is the unpalmitoylated monomer. Very
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Figure 31: Experimental data set that was used for calibration of the CLiMP63 model.
Red dots represent the experimental data points (N=5), and their error
bars the standard deviation. Solid grey lines show the median of 100

models, with the shaded area representing the first and third quartile.
Reproduced with permission from [74].
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Figure 32: Validation set of the CLiMP63 model. Red dots represent the experimen-
tal data points (N=5), and their error bars the standard deviation. Solid
grey lines show the median of 100 models, with the shaded area repre-
senting the first and third quartile. Reproduced with permission from
[74].

Figure 33: Population distribution of species in the model under normal (WT) con-
ditions and when silencing zDHHC6. The mean of a 100 models is
shown. Error bars represent the standard deviation. Reproduced with
permission from [74].
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Figure 34: HeLa cells were ran on either Blue Native gel or SDS-PAGE. Two different
surfactants, Digitonon and SDS, were used.

rapidly, a large fraction of this monomer is palmitoylated. The majority
of the protein is then in the palmitoylated monomeric form. As the chase
continues, the majority of the palmitoylated monomer dimerises to form
the fully palmitoylated dimer. A small part of the remaining unpalmitoy-
lated monomer is also transported to the plasma membrane where it is
immediately palmitoylated. The deconvolution of this experiment into the
individual species gives insight into how CLiMP63 is formed. And shows
the importance of both the palmitoylated and umpalmitoylated monomeric
form in the ER. One will dimerise and the other is transported to the PM
where it is palmitoylated. The fully palmitoylated dimer and palmitoylated
monomer at the PM are the long-lived, stable forms of CLiMP63. It is also
these forms which carry out the functions of CLiMP63. The dimer most prob-
ably influences the shape of the ER, and the monomer at the surface acts as
a ligand receptor [23].

Now let us focus on the 3H chase in Figure 35. Because we are labelling
with palmitate, we will only see species which have at least one palmitate
attached. Similarly to the 35S chase, the dominant species at the beginning
is the palmitoylated monomer, while the second most abundant species is
the fully palmitoylated dimer. The palmitoylated monomer then quickly de-
cays, leaving mostly dimer and a minority of monomer at the PM. Although
it may appear form the 3H WT chase that the palmitoylated monomer is
highly unstable, we must keep in mind that 3H labelling accounts for in-
terspecies conversion, decay and depalmitoylation. Indeed, when looking
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Figure 35: Deconvolution of WT 35S and 3H chases into the individual labelled
species. The model was used to predict the evolution of the individual
species over time. Experimental results are shown in red dots (N=5).
The error bars represent the standard deviation. Solid grey lines repre-
sent the calibrated model output, and the shaded areas represent the
first and third quartiles. Solid coloured lines show the evolution of indi-
vidual species over time, their quartiles are ommited for clarity. Repro-
duced with permission from [74].

at the rates of palmitoylation and depalmitoylation (Figure 36), we can see
that the monomer undergoes highly dynamic cycles of palmitoylation and
depalmitoylation in the ER, whereas these cycles are much less active at
the PM. This is why the monomer decays much faster in the 3H labelling
experiment than in the 35S one. On the other hand, we can see from Fig-
ure 36 that although the rate of dimer palmitoylation is relatively small, its
depalmitoylation is almost zero. The rate of dimer palmitoylation also prob-
ably appears low because there are more palmitoylated monomers than
non-palmitoylated (Figure 33). Because of this, dimer formation mostly oc-
curs between already palmitoylated monomers. However, the almost non-
existant depalmitoylation of the dimer shows that dimerisation protects
CLiMP63 from depalmitoylation.

The model can also be used to predict bona fide half lives of the individ-
ual species. Because model calibration is carried out in an unbiased way,
no prior information as to the general stabilising effect of palmitoylation
is given. Any differences in decay constants, and therefore half-lives, are
purely a result of calibrating the model parameters with the experimental
data. In silico half-lives are estimated by labelling a particular species at
steady-state, then integrating the model until the labelled fraction drops to
half its initial value.

As we can see from Figure 37, the fully palmitoylated dimer is by far
the most stable species. Another observation is that palmitoylation does
not significantly contribute to stability in the ER. It is the combination of
dimerisation and complete palmitoylation which lead to a significant in-
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Figure 36: Palmitoylation (blue) and Depalmitoylation (orange) rates at steady-
state for the different species in the model. The mean of 100 models
is shown. Error bars show first and third quartiles. The palmitoylation
rates for the various dimer species are summed. The same summing is
done for the depalmitoylation rates of all dimer species. Reproduced
with permission from [74].

crease in stability and therefore half-life. The monomeric subpopulation at
the PM is more stable than its counterpart in the ER. The effect of palmitoy-
lation of the monomer at the PM also leads to a drastic increase in stability,
causing the half live to increase more than two fold.

After having predicted that the fully palmitoyled CLiMP63 dimer had a
half life of approximately eighty hours, we tried to validate this experi-
mentally. This was done by expressing a SNAP-tag on mutated CLiMP63

protein. A range of fluorescent reporters will spontaneously form a cova-
lent bond with this tag, enabling in vivo labelling of mature proteins. In
this case, the fluorescent reporter TMR-star was used. Using this method,
any CLiMP63 protein in the cell will be tagged, not just newly synthesized
or newly palmitoylated proteins as is the case with radiolabelling. Because
the fully palmitoylated dimer was predicted to be the dominant species,
labelling with this method will mostly target this species.

The results shown in Figure 38 agree with the predicted half-life of the
fully palmitoylated dimer. Over a time period of twenty four hours no de-
cay was observed. Because of experimental limitations, a longer monitoring
period was not possible. Assuming a half-life of eighty hours and an expo-
nential decay arising from first order kinetics, the amount of dimer present
after twenty four hours should be 87.5% of the original amount. Looking
at the experimental data, this is within two standard deviations of the mea-
sured amount. Given large uncertainty in the predicted half life shown in
Figure 37, the experimental data confirms the validity of this prediction.
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Figure 37: Half-lives of the various CLiMP63 species predicted with the model. The
mean of a 100 models is shown. Error bars represent the first and third
quartiles. Reproduced with permission from [74].

Figure 38: Quantification of CLiMP63 decay labelled with TMR-star (left) (N=3). Flu-
orescent and Western blot of CLiMP63 labelled with TMR-star (right). The
error bars represent the standard deviation. Reproduced with permis-
sion from Sandoz et al. [74].
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Figure 39: The effect of zDHHC6 silencing. Knockout and overexpression on total
CLiMP63 levels is shown. Model predictions are shown on the left plot
and experimental validation (N=8, ***p < 0.01, ****p < 0.001) on the right.
Error bars represent standard deviation. Reproduced with permission
from [74].

Using the model, we made predictions of the effect of zDHHC6 silenc-
ing and overexpression on the amount of CLiMP63, shown in Figure 39. Al-
though it is not possible to experimentally measure the amount of each
individual species, we can still measure how the total amount changes
in relation to zDHHC6. As expected, an increase in zDHHC6 levels in-
crease palmitoylation, therefore increasing stability and the total amount
of CLiMP63. Because the radiolabelling experiments contained experiments
where zDHHC6 was silenced or knocked out, the silencing and overexpres-
sion factors were already estimated during model calibration. Figure 39

clearly shows that the model and experimental measurements are in very
good agreement.

Since palmitoylation increases the amount of CLiMP63 dimers and there-
fore the morphology of the ER, we wanted to simulate what happens when
depalmitoylation is reduced. Figure 40 shows a slower palmitate turnover
(to be expected), a slightly faster dimer formation, and a slower protein
decay. This supports the conclusion that palmitoylation is key to forming
mature CLiMP63, and that this can be modulated by either increasing the ac-
tivity of the palmitoylating enzyme zDHHC6, or reducing depalmitoylation
of the corresponding APT. Because the APT of CLiMP63 hasn’t yet been identi-
fied, these model predictions couldn’t be directly experimentally validated.
Instead, by inserting a second cysteine next to the first, another palmitoyla-
tion site was created, so that instead of one palmitate to be removed by the
APT there were now two. In this way, palmitoylation was reduced and the
model predictions could be validated, as shown in Figure 40.
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3.7 discussion

Figure 40: Computational prediction of reduced depalmitoylation. The top three
figures show predictions of the effect of reduced depalmitoylation on
3H labelling decay, dimer formation and 35S labelling decay. Experimen-
tal data points (N=3) are shown by red dots and the error bars represent
standard deviation. The bottom two graphs show the experimental data
corresponding to the 3H and 35S decay (N=3). Error bars represent stan-
dard deviation. Reduced depalmitoylation was obtained experimentally
by introducing a second cysteine adjacent to the endogenous one. Re-
produced with permission from Sandoz et al. [74].
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3.8 conclusion

In this chapter we showed the entire lifecycle of a model, from its devel-
opment, to its calibration and finally the predictions and additional knowl-
edge it can bring. We highlighted the importance of expert knowledge from
the field, and the richness that combining different kinds of experiments
can bring. We were able to propose a model which consistently explains all
available experimental data and led to the discovery of the importance of
the dimeric form of CLiMP63.

Initially using a similar approach to that used for the Calnexin model,
we constructed a model of CLiMP63 synthesis, trafficiking, palmitoylation,
depalmitoylation, dimerisation and decay. We used a combination of first or-
der kinetics and tQSSA for describing enzymatics reactions. Given the back-
ground knowledge and available experimental data on CLiMP63 we were
able to come up with a model spread across three compartments. Within
two of these, enzymatics reactions were present that could palmitoylate and
depalmitoylate the single site of CLiMP63. However, calibrating this model
was unsuccessful and we would need to rethink the entire pipeline of model
construction and calibration.

In order to obtain a model that could accurately reproduce the exper-
imental data we proposed and tested multiple different model structures.
With the aim of easily iterating through these different model structures, we
used rule-based modelling to facilitate model generation. Because of the in-
creased computational load, we moved to a new programming language
called Julia, a high-level, high-performance language targeted at numeri-
cal computing. We also changed optimisation algorithms from NSGA-II to
CMA-ES and reformulated the error functions to take into account the pulse-
chase experiments in an unbiased way. All these efforts made it possible
to finally propose a model which included dimerisation of CLiMP63, and
which could accurately reproduce the experimental data.

Using this model, we showed that dimerisation is the principal mecha-
nism of retention in the ER. The combination of dimerisation and palmitoy-
lation leads to a particularly stable species of CLiMP63, effectively anchoring
it in the ER and regulating its morphology. This combination also prevents
its depalmitoylation, possibly by rendering the palmitoylation sites inaccesi-
ble to any depalmitoylating enzymes. We showed that membrane targeting
is regulated through zDHHC6. Although levels of CLiMP63 are relatively
constant when silencing this enzyme, reduced palmitoylation leaves more
unpalmitoylated monomer available to be transported to the PM. While
palmitoylation by itself has little effect on stability of CLiMP63 at the ER,
at the PM it increase half-life more than two fold.
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4 C M G 2

In this chapter we will describe the construction and calibration of a kinetic
model describing the synthesis, transport, palmitoylation and decay of Cap-
illary Morphogenesis Gene 2 (CMG2). The modelling approach and experi-
mental methods are an extension of those already mentioned in Chapter 3

and Chapter 2. However, in the case of CMG2 there is signficiantly more
data available, as well as an increased combinatorial complexity due to the
presence of three palmitoylation sites on CMG2.

We will go through the experimental data pertaining to CMG2, and show
how the palmitoylation enzymes were identified and their localisation de-
duced. We will also see that the experimental data already indicate that
localisation and palmitoylation of CMG2 are tightly coupled.

Once we have build and calibrated a kinetic model of CMG2, we will use
it to answer several questions concerning its behaviour and how it is mod-
ulated by palmitoylation. Firstly, the known roles of CMG2 are exclusively
those of a receptor located at the PM, where CMG2 is a collagen VI receptor
and can also be hijacked by the anthrax toxin. Given its role at the PM, we
will evalute how palmitoylation affects the biosynthetic flux of CMG2, ulti-
mately influencing the amount of mature, functional CMG2 at the PM. We
will also quantify the influence of different enzymes on this biosynthetic
flux, and evalute any interactions between them. Another question con-
cerns the effect of palmitoylation on subcellular localisation. Specifically,
how palmitoylation may modulate the distribution of CMG2 throughout the
different subcellular compartments. We will also estimate the half-lives of
the various CMG2 species, with the aim of evaluating how palmitoylation
and localisation affect the stability of CMG2. The half-life of the CMG2 sub-
population at the PM is of crucial interest, as this is where its function is
carried out.

The experiments on CMG2 were performed by various members of the
Van der Goot lab, namely: Sanja Blaskovic, Laurence Abrami, Fransico
Mesquita and Oksana Sergeeva.

4.1 cmg2 background

Capillary Morphogenesis Gene 2 (CMG2) is a transmembrane protein that
functions as a collagen VI receptor and regulator [106], and is involved
in the regulation of the Extracellular Matrix (ECM). Its absence causes the
accumulation of collagen VI, which is one of the symptoms of the disease
Hyaline Fibromatosis Syndrome (HFS) [106, 107].
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There are multiple different mutations in CMG2 that can cause HFS [108–
110]. In some cases, single point mutations are sufficient. HFS causes ac-
cumulation of extracellular matrix [106], which manifests as nodules. The
current treatment of HFS are limited to alleviating the pain and symptoms
while being unable to address the root cause. Rather than a precise set of
symptoms, HFS manifests itself across a spectrum, where many children
with a more severe form die in early childhood, while some of those with
a milder form survive until adulthood [111].

Capillary Morphogenesis Gene 2 (CMG2) is also involved in anthrax toxin
endocytosis [112, 113], hence why it is sometimes called Antrax toxin recep-
tor 2 (ANTXR2). Palmitoylation, as well as phosphorylation and ubiquityla-
tion, have all been shown to be required for anthrax toxin endocytosis [114].
Furthermore, it has also been shown that Palmitoylation influences the sur-
face residence time of the anthrax toxin [115].

Similarly to Calnexin and many other signalling proteins, it has a long
disordered cytosolic tail [116]. An illustration of this protein’s structure is
shown in Figure 41. Multiple PTMs target this cytosolic tail. These include
phosphorylation, ubiquitylation and palmitoylation [115]. CMG2 has a total
of three palmitoylation sites. Two of these are adjacent to the transmem-
brane domain, as depicted in Figure 41, while the third palmitoylation site
is located along the disordered cytosolic tail [117]. As we will show in Sec-
tion 4.2, CMG2 has two palmitoylating enzymes: zDHHC7 which is located
in the ER, and zDHHC3 which is found in the Golgi apparatus.

4.2 experimental data

The experimental methods used to study CMG2 are similar to those used for
CLiMP63 (Section 3.2). Namely, 35S and 3H radiolabelling, siRNA for lower-
ing enzyme levels, mutants for disabling palmitoylation sites, TCE western
blots for measuring protein levels and surface biotinylation for measuring
surface protein levels. More details on the experimental protocols can be
found in the publication by Blaskovic [117].

Like CLiMP63, we will show that CMG2 has two palmitoylating enzymes in
two different compartments. However, it has a total of three palmitoylation
sites [117], meaning that there are eight different CMG2 species once the oc-
cupation of these palmitoylation sites are taken into account. Furthermore,
we will also show experiments from two different cell lines, whereas in pre-
vious models all data was obtained from a single cell line. The RPE1 cell line
was used because it expresses CMG2 endogenously, whereas the HeLa cell
line does not and was therefore transfected with CMG2 mutants.
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Figure 41: Representation of the structure of CMG2, reproduced with permission
form Deuquet et al. [118]. On the left panel, cysteines are shown in yel-
low. The two palmitoylated cysteines C344 and C345 can be seen on
the cytosolic side adjacent to the transmembrane domain. On the right
panel, mutations linked to HFS are shown in red.
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Figure 42: PAT screening experiment for CMG2. 3H palmitate incorporation was per-
formed in WT conditions, and when silencing multiple different PATs in
order to determine which ones palmitate CMG2. The notation ’R1’ indi-
cates that zDHHC1 was silenced. Error bars show standard deviation
calculated from experimental repeats (N=8).

4.2.1 Identifying the palmitoylating enzymes

One of the first questions that need to be answered before building the
model, was which PATs palmitoylate CMG2 and where are they located. Fig-
ure 42 shows a screening experiment where 3H palmitate incorporation
was measured when silencing various PATs. As we can see from the figure,
the only two PATs that seem to have an effect on CMG2 are zDHHC3 and
zDHHC7.

Although there are several reports of zDHHC3 and ZDHHC7 being lo-
calised at both the ER and the Golgi apparatus [119–123], these tend to con-
tradict each other, either saying they are localised in both compartments
or only one. Compounded with the fact that these observations are based
on different cell lines, new experiments were performed in RPE1 cells to
clarify the localisation of these two PATs. Two drugs were used for this pur-
pose. The drug Brefeldin removes the Golgi apparatus by fusing it to the
ER, whereas Cycloheximide prevents protein synthesis in the cell. In short,
these drugs act either at the ER or at the Golgi, respectively. As shown in
Figure 43, once zDHHC3 is silenced and only zDHHC7 remains, palmi-
tate incorporation is only affected by Cycloheximide and not Brefeldin.
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Figure 43: 3H incorporation experiment on CMG2 . Different experimental condi-
tions were used: silencing zDHHC7 (R7) or zDHHC3 (R3), or using
the drugs Brefeldin (bref) or Cycloheximide (CHX). Brefeldin fuses the
Golgi apparatus to the ER and Cycloheximide prevents protein synthesis.
Error bars represent the standard deviation calculated from experimen-
tal repeats (N=4).

This means that zDHHC7 is active only in the ER and not the Golgi. Con-
versely, once zDHHC7 is silenced and only zDHHC3 remains, palmitate is
affected Brefeldin but not Cycloheximide. Showing that zDHHC3 palmitoy-
lates CMG2 in the Golgi apparatus.

Therefore, zDHHC7 and zDHHC3 were identified as enzymes palmitoy-
lating CMG2. They are localised at the ER and the Golgi apparatus, respec-
tively.

4.2.2 Characterising the third palmitoylation site

In order to get a better idea of how the individual palmitoylation sites con-
tribute to CMG2 stability, multiple mutants were prepared. As shown in
Figure 44, the single mutation which reduces the amount of CMG2 the most
is the first site. If we look at the double mutants, it seems the second site
has the second biggest contribution to stability and that the third site has
no effect. Finally, by comparing the AAA mutant, where all palmitoylation
sites are disabled, to the AAC mutant, it seems that the third palmitoyla-
tion has no discernible effect on protein levels. We can also see this when
comparing the ACC and ACA mutants, which have similar protein levels.
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Figure 44: Experiment showing the influence of different mutants on CMG2 levels.
Results are normalised to WT conditions. CMG2 has three palmitoylation
sites. A ’C’ indicates that the Cysteine is still present and the palmitoy-
lation site active. An ’A’ indicates the site was mutated to alanine so
that palmitoylation is no longer possible. Error bars represent standard
deviation calculated from experimental repeats (N=9).
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Figure 45: Various experiments showing how 3H palmitate incorporation changes
in response to silencing zDHHC enzymes and mutating the third palmi-
toylation site of CMG2. Error bars show standard deviation calculated
from experimental repeats (N=4).

To better characterise this third palmitoylation site which appeared inac-
tive, experiments were performed silencing both PATs and using the CCA
mutant, whose third palmitoylation site is mutated to Alanine and there-
fore cannot be palmitoylated. As shown in Figure 45, it truly seems that this
third site is almost completely inactive, as palmitate incorporation does not
change when it is mutated, irrespective of which PAT enzyme is present.

4.2.3 Subcellular distribution

Total cell extract and surface biotinylation were used to study how the sub-
populations of CMG2 behave differently. Namely, the two subpopulations
studied were the total amount of CMG2 and the subpopulation which is lo-
cated at the cell surface. The total cell extract quantifies the total amount
of CMG2, whereas surface biotinylation quantifies the amount of protein at
the PM. These two experimental methods were used in conjunction with
PAT and APT silencing to determine how palmitoylation modified the total
amount of CMG2 and its distribution in the cell. As shown in Figure 46,
the total amount of CMG2 isn’t significantly affected when either zDHHC7

or zDHHC3 are silenced. It is, however, slightly reduced when both are
silenced at the same time. On the other hand, the surface population is
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Figure 46: Comparison of TCE and surface biotinylation experiments when silenc-
ing various PATs or APTs. Total cell extract values are shown in blue bars,
and the values of the surface biotinylation experiment are shown in or-
ange. The top of the bars show the mean, and the error bars show the
standard deviation calculated from experimental repeats (N=4).

very sensitive to silencing of either of these enzymes. This shows that al-
though palmitoylation doesn’t appear to affect the total amount of CMG2,
its primary function is targeting CMG2 to the surface of the cell.

Two APTs that were suspected to target CMG2 were also silenced, with
only APT2 having a measurable effect. This may help to identify the APTs of
CMG2 in the future. More importantly it underlines how important palmi-
toylation is for surface targeting. Showing that palmitoylation generally pro-
motes localisation of CMG2 to the cell surface.

4.2.4 Radiolabelling

Figure 47 shows multiple 35S pulse-chase experiments. These results sug-
gest that zDDHC3 is downstream from zDHHC7. This is because silenc-
ing zDHHC7 affects the beginning of the chase, while silencing zDHHC3

does not. Because this is 35S labelling, the signal we are seeing is that of
newly synthesized protein as it moves through the biosynthetic pathway.
Given that silencing zDHHC3 only affects the latter part of the chase, this
must mean it located further down the biosynthetic pathway than zDHHC7.
This also supports the localisation of both these enzymes discussed in Sec-
tion 4.2.1.
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Figure 47: Multiple CMG2
35S pulse-chase experiments showing the effect of silenc-

ing zDHHC7 and/or zDHHC3. Error bars represent standard deviation
calculated from experimental repeats (N=3).

The 3H pulse-chase experiment shown in Figure 48 also supports the
proposition of the third cysteine being less active than the other two. This
experiment shows that relatively little depalmitoylation occurs on the third
cysteine, while the second one is more active.

4.2.5 Comparing RPE1 and HeLa cell lines

Because experiments had been done in both RPE1 and HeLa cell lines, it was
important to verify that CMG2 in both these cell lines was behaving similarly.
Figure 49 shows a 3H palmitate pulse-chase experiment where endogenous
CMG2 in RPE1 behaves identically to transfected CMG2 in HeLa. This exper-
iment also shows that CMG2 responds identically to the depalmitoylating
enzyme APT2 in both these cell lines.

A subset of the TCE and surface biotinylation experiments were repeated
in both cell lines to verify that CMG2 was behaving similary. From the results
shown in Figure 50 it is clear that the endogenous and transfected CMG2 is
behaving identically.

Based on these experiments, there was no reason to suspect that CMG2

was behaving differently between the cell lines. For this reason, one model
was subsequently calibrated for both cell lines.
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Figure 48: Multiple CMG2
3H pulse-chase experiments showing the effect of mu-

tating the cysteines of different palmitoylation sites.Error bars represent
standard deviation calculated from experimental repeats (N=4).

Figure 49: 3H pulse-chase experiment in WT conditions and silencing APT2. Exper-
iments are shown in both RPE1 and HeLa cell lines. Error bars represent
standard deviation calculated from experimental repeats (N=4)
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Figure 50: A subset of the TCE and surface biotinylation experiments showing the
overlap of experiments performed in both RPE1 and HeLa cell lines. Er-
ror bars represent standard deviation calculated from experimental re-
peats (N=4).

4.2.6 Palmitoylation and anthrax endocytosis

Endocytosis of the anthrax toxin is a multistep process, involving CMG2 and
multiple other proteins. The different steps necessary for endocytosis have
been well described in the literature [124], an overview of these is shown in
Figure 51.

A 3H palmitate pulse-chase experiment was performed in the presence
of Protective Antigen (PA), which is part of the anthrax toxin, to determine
if there was any link to palmitoylation. As shown in Figure 52, when in
presence of PA, the depalmitoylation of CMG2 is much faster than in control
conditions. Not only does this demonstrate that the anthrax toxin somehow
interacts with palmitoylation, but also suggests that an APT must be present
at the PM in order to depalmitoylate CMG2.

Although this suggests that depalmitoylation is important for CMG2-mediated
anthrax endocytosis, it does not clarify why this is.

4.3 model structure

Using knowledge from the literature (Section 4.1) and the experimental
data (Section 4.2), an initial model structure could be drafted. The part of
the model that describes CMG2 in the ER is shown in Figure 53. Given that
CMG2 has three palmitoylation sites, there are at least eight different species,
creating an intricate network of interconversion. Because single point mu-
tations in CMG2 can cause HFS, it is most likely a poor folding protein. For
this reason, the model also allows palmitoylation of the unfolded species.
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Figure 51: Illustration of the entry mechanism of the anthrax toxin, reproduced
with permission from Göttle et al. [124]. The Protective Antigen (PA) first
binds to an anthrax receptor such as CMG2. Several of these complexes
then form a heptamer. Both lethal factor (LF) and edema factor (EF) can
then bind to this heptamer. Once in the cell, LF and EF are released and
disrupt cell signalling pathways.

Figure 52: 3H palmitate pulse-chase experiment following CMG2 in WT conditons
and in the presence of the Protective Antigen (PA) that is part of the
anthrax toxin. Error bars show standard deviation calculated from ex-
perimental repeats (N=3).
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Figure 53: Illustration of the CMG2 model showing its structure in the ER. The ’u’
prefix denotes unfolded CMG2 and ’f’ indicates the folded species. The
numbers indicate the palmitoylation sites that are occupied. For exam-
ple, ’f12’ indicates folded CMG2 which is palmitoylated on both the first
and second site.

Because palmitoylation occurs on the cytosolic tail which is intrinsically dis-
ordered, the folded and unfolded species have the same palmitoylation and
depalmitoylation kinetics. The only difference is that the unfolded species
have different decay constants and cannot be transported out of the ER.
Again, since palmitoylation occurs on the disordered cytosolic tail, folding
was modelled with first order kinetics that are independent from the palmi-
toylation state.

As was the case with the Calnexin and CLiMP63 models, the decay rates
depend on palmitoylation, folding and localisation. Palmitoylation and de-
palmitoylation are modelled with tQSSA and their rates also depend on
palmitoylation state and localisation.

Transport from the ER to the Golgi apparatus is not reversible and does
not depend on palmitoylation state. It is modelled with first order kinetics.
Once in the Golgi, a similar set of interconvertible reactions occur, but cat-
alyzed by zDHHC3. Unfolded CMG2 is no longer present, as it cannot be
transported from the ER. Figure 54 shows the structure of the model in the
Golgi.

Once transported to the PM, CMG2 can undergo depalmitoylation and
degradation but not palmitoylation. As discussed in Section 4.2.6, depalmi-
toylation of CMG2 at the PM is linked to anthrax endocytosis, hence an APT
was included in this compartment. It also appears that depalmitoylation is
central to membrane targeting of CMG2. For this reason, transport from the
Golgi apparatus to the PM was made to be dependent on palmitoylation
state. Since no additional PATs have been identified that target CMG2, and

85



4.4 model calibration

Figure 54: Illustration of the CMG2 model showing its structure in the Gogli appar-
tus.

because neither zDHHC7 nor zDHHC3 were reported to be present at the
PM, no palmitoylation was included in this compartment.

4.4 model calibration

The same approach was taken to model calibration as for the CLiMP63 model.
Namely, rule-based modelling for model creation and CMA-ES for optimisa-
tion. The same area-based error function was used for radiolabelling ex-
periments. One difference was that surface biotinylation experiments are
available for CMG2. However, due to the nature of the experiment, a dif-
ferent error function was used. Figure 55 shows the the two types of er-
ror function used for TCE and surface biotinylation experiments. Given the
experimental nature of a surface biotinylation experiment, any values infe-
rior to the measured reduction are biologically plausible. Therefore, if the
value obtained through model simulation was less than the experimentally
measured value, it was assumed to be accurate and the value of the error
function was therefore 0, as illustrated in Figure 55. The reason for this be-
haviour is because the proteins are concentrated during the pull-down step
of the surface biotinylation experiment, whereas this is not done when mea-
suring the TCE. It is therefore not possible to accurately and quantitatively
compare low values in a surface biotinylation. What can be concluded from
this experiment is whether or not the amount of protein at the PM has been
significantly affected.

The calibration set was randomly chosen among the experimental data
such that it covered approximately a third of the experimental data.
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Figure 55: Illustration of the different error functions used for TCE and surface bi-
otinylation experiments. Because the surface biotinylation experiments
can not accurately measure small signals, any model output under the
measured value is given a zero error.
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4.5 results

4.5.1 Calibration and Validation

Figure 56 shows the calibration set of pulse-chase radiolabelling experi-
ments. Incidentally, this calibration set contains only experiments from the
HeLa cell line. A total of 250 models were obtained from the CMA-ES opti-
misation. Almost all of the experiments in the calibration set are very well
reproduced. The only exception is the 3H pulse-chase with the CAC mutant,
which could still be improved.

Figure 58 shows both the calibration and validation set of the TCE and
surface biotinylation experiments. Experiments that were used for model
calibration are highlighted in red. Only 8 experiments out of a total of 25

were used for calibration. Two variants of the TCE experiment were per-
formed. The first doesn’t use any kind of labelling and is called simply TCE,
which measures the protein level. By combining 3H palmitate labelling and
TCE, the relative amount of palmitoylated protein can be measured instead.

In the surface biotinylation experiment shown in Figure 58, as discussed
in Section 4.4 we can see the effect of the error function used for the surface
biotinylation experiments: the model produces values which are much less
than those measured. This is to be expected given the error function, as long
as the simulated values of the surface biotinylation are less than or equal to
the experimental values the biological behaviour is well reproduced by the
model. All calibration experiments are well reproduced, with the exception
of TCE 3H palmitate labelling when silencing zDHHC3. In the validation
experiments the trends are generally well reproduced, although the exact
values are not perfectly reproduced.

Figure 59 shows the pulse-chase validation experiments performed with
the HeLa cell line. All experiments except one are very well reproduced.
The good agreement between model and experimental data is also appar-
ent in Figure 61, which shows the pulse-chase validation experiments done
in the RPE1 cell line. In this set, the two WT 3H palmitate labelling experi-
ments out of eight are quite far from the experimental data and could be
better reproduced. However, given that about a third of the pulse-chase
experiments were put in the calibration set this is still a positive result.

Overall, given the large model size and numerous experiments, these re-
sults are promising. They can still be improved in order to reach a better
agreement between model and experimental data, but they are already ac-
curate enough to make predictions. Specifically, the dynamic properties of
CMG2 captured by the radiolabelling experiments are well reproduced by
the model. In particular, improvement could be done in the 3H-labelling ex-
periments in the RPE1 cell line. Therefore predictions based on these experi-
ments should be experimentally validated. Otherwise, care should be taken
when comparing protein levels with different mutants or upon combining
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Figure 56: Pulse-chase radiolabelling experiments performed on CMG2. Only the
calibration experiments are shown. Experimental results are shown in
orange circles, with error bars indicating the standard deviation (N=3

for 35S experiments and N=4 for 3H experiments). Solid blue lines show
the median of 200 models, with the shaded area representing the first
and third quartile. In this case, the models are all very tightly grouped
so that the quartiles are not discernible. The type of labelling, the pulse
time in hours, as well as any mutants or PAT silencing is indicated in
the title of each experiment. The notation ’R3’ indicates that zDHHC3 is
silenced by RNAi. While the ’R3R7’ notation indicates that both zDHHC3

and zDHHC7 are silenced by RNAi.
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Figure 57: % Error for Pulse-chase radiolabelling experiments performed on CMG2.
Only the calibration experiments are shown. The % error is shown be-
tween the mean of each experimental data point and the median of the
model output. The type of labelling, the pulse time in hours, as well as
any mutants or PAT silencing is indicated in the title of each experiment.
The notation ’R3’ indicates that zDHHC3 is silenced by RNAi. While the
’R3R7’ notation indicates that both zDHHC3 and zDHHC7 are silenced
by RNAi.
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Figure 58: Surface biotinylation and TCE experiments done on CMG2. Experimental
results are shown with orange circles, the error bars represent standard
deviation (N=4 for surface biotinylation, N=9 for TCE and N=4 for TCE
3H experiments). Simulated results from the model are shown with blue
bars, the error bars correspond to the interquartile range. Calibration
experiments are highlighted in red, all other experiments belong to the
validation set. Both normal TCE and 3H-labelling TCE were performed.

enzyme silencing and CMG2 mutants. In all the TCE and surface biotinyla-
tion validation experiments, the trends are well reproduced, but in some
cases the exact values don’t agree with experimental data.

4.5.2 Biosynthetic Flux

One of the key questions regarding CMG2 is how does palmitoylation af-
fect the biosynthetic flux, ultimately leading to mature CMG2 at the PM.
In order to better understand this, we used the model to simulate these
fluxes while silencing zDHHC7 and zDHHC3. Several Sankey diagrams of
the flux between compartments is shown in Figure 63. We can see that in
WT conditions, only about half of the synthesized CMG2 arrives at the PM.
However, when silencing zDHHC7 this falls to 28%, due to an increased
degradation in the ER. When silencing zDHHC3, only 35% reaches the PM,
the reduction being caused by an increased degradation in the Golgi. How-
ever, when silencing both enzymes this falls to 11%, showing an additive
effect of zDHHC7 and zDHHC3 on membrane targeting.

It should also be noted that the predictions in this section rely on the
model correctly reproducing the change in CMG2 levels upon enzyme si-
lencing. As discussed in Section 4.5.1, the experimental data which involved
silencing zDHHC3 or zDHHC7 was generally well reproduced.
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Figure 59: Pulse-chase radiolabelling experiments performed in the HeLa cell line.
Only validation experiments are shown. Experimental results are shown
in orange circles, with error bars indicating the standard deviation
(N=3). Solid blue lines show the median of 200 models, with the shaded
area representing the first and third quartile. In this case, the models
are all very tightly grouped so that the quartiles are not discernible. The
type of labelling, the pulse time in hours, as well as any mutants or PAT

silencing is indicated in the title of each experiment. The notation ’R3’
indicates that zDHHC3 is silenced by RNAi. While the ’R3R7’ notation
indicates that both zDHHC3 and zDHHC7 are silenced by RNAi.
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Figure 60: % Error for Pulse-chase radiolabelling experiments performed in the
HeLa cell line. Only the validation experiments are shown. The % error
is shown between the mean of each experimental data point and the
median of the model output. The type of labelling, the pulse time in
hours, as well as any mutants or PAT silencing is indicated in the title of
each experiment. The notation ’R3’ indicates that zDHHC3 is silenced
by RNAi. While the ’R3R7’ notation indicates that both zDHHC3 and
zDHHC7 are silenced by RNAi.
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Figure 61: Pulse-chase radiolabelling experiments performed in the RPE1 cell line.
Only validation experiments are shown. Experimental results are shown
in orange circles, with error bars indicating the standard deviation (N=3

for 35S experiments and N=4 for 3H experiments). Solid blue lines show
the median of 200 models, with the shaded area representing the first
and third quartile. In this case, the models are all very tightly grouped
so that the quartiles are not discernible. The type of labelling, the pulse
time in hours, as well as any mutants or PAT silencing is indicated in
the title of each experiment. The notation ’R3’ indicates that zDHHC3 is
silenced by RNAi. While the ’R3R7’ notation indicates that both zDHHC3

and zDHHC7 are silenced by RNAi.
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Figure 62: % Error for Pulse-chase radiolabelling experiments performed in the
RPE1 cell line. Only the validation experiments are shown. The % error
is shown between the mean of each experimental data point and the
median of the model output. The type of labelling, the pulse time in
hours, as well as any mutants or PAT silencing is indicated in the title of
each experiment. The notation ’R3’ indicates that zDHHC3 is silenced
by RNAi. While the ’R3R7’ notation indicates that both zDHHC3 and
zDHHC7 are silenced by RNAi.
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Figure 63: Sankey diagrams showing model predictions of how the synthesis flux
of CMG2 is distributed throughout the cell. WT condtions as well as zD-
HHC7 silencing and zDHHC3 silencing are shown. The median and
standard deviation of 200 models are shown on the graph.
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Figure 64: In silico 35S labelling of surface-resident CMG2. Both zDDHC7 and zD-
HHC3 were silenced and the experiment reproduced in order to esti-
mate the apparent half-life of surface-resident CMG2. For each of the
four conditions shown, the values were normalised with respect to the
initial value at at t=0 hours. The solid lines represent the median of 200

models. The shaded area the interquartile range.

4.5.3 Half-life of surface subpopulation

A similar question is how does palmitoylation affect the half life of CMG2

once it arrives at the PM. Using the model, we performed an experiment
analogous to 35S labelling but where only the surface resident species were
labelled. This was then repeated while silencing zDHHC7 and zDHHC3,
the results are shown in Figure 64. We can see that the decay of the surface
population is only minimally affected when silencing any of the palmitoy-
lation enzymes. This is quite striking considering that silencing either zD-
HHC has a strong impact on the amount of CMG2 transported to the PM.
However, if we look at the absolute values of these radiolabelling experi-
ments (Figure 65) instead of the normalised ones, we can see that there is
still significantly less CMG2 when silencing either zDHHC, as we previously
showed. The reason for the half-life not changing is that the distribution of
palmitoylation states does not change. This is shown in Figure 66, where
we can see that the total amount is greatly reduced, but that the majority of
CMG2 is still in the fully palmitoylated form.

4.5.4 Effect of palmitoylation on surface subpopulation

Given how important depalmitoylation is for anthrax endocytosis, we should
also study how this affects CMG2. In Figure 67 we perform the same 35S la-
belling of surface CMG2 as previously, except that this time we overexpress
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Figure 65: In silico 35S labelling of surface-resident CMG2. Total amounts of CMG2

are shown. The solid lines represent the median of 200 models. The
shaded area the interquartile range.

Figure 66: Distribution of palmitoylation states of CMG2 at the PM. WT condtions
and silencing both zDHHC7 and zDHHC3 are shown. The mean and
standard deviation of 200 models are shown.
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Figure 67: In silico 35S labelling of surface-resident CMG2. WT condtions and APT

overexpression are shown. The solid lines represent the median of 200

models. The shaded area the interquartile range.

the APT at the PM, to simulate the depalmitoylation that occurs in the pres-
ence of PA. We picked a factor of 100 for overexpression, which is compara-
ble to the silencing factor of both zDHHC enzymes. We can see that the half
life is now drastically reduced. However, the change in amount of CMG2 is
less drastic, as shown in Figure 68. What has changed is the distribution
of palmitoylation states. When overexpressing the APT, depalmitoylation is
increased so there is much less of the fully palmitoylated form of CMG2.

Half-life is therefore significantly reduced by depalmitoylation of CMG2

at the surface. While the total amount of CMG2 at the surface is only slightly
reduced. Furthermore, it isn’t possible to achieve the same effect by acting
upstream of the PM, either in the Gogli or the ER. This is because the trans-
port between the Gogli and PM is dependent on palmitoylation, leading to
a surface population which is mostly fully palmitoylated.

4.6 discussion

As we have seen in Section 4.5.1, calibration and validation of the CMG2

model was successfully carried out. The radiolabelling experiments describ-
ing the dynamic behaviour of CMG2 were very well reproduced, however
some of the TCE experiments describing the change in total amounts of
CMG2 were not as satisfactory. Although the general trend for these exper-
iments was accurately reproduced by the model, the exact values in some
experiments were off.

Using this model, we then quantified how palmitoylation by zDHHC7

and zDHHC3 affects the biosynthetic flux of CMG2. That is, the amount of
CMG2 that is synthesized and trafficked to the PM. We showed that both
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Figure 68: Distribution of palmitoylation states of CMG2 at the PM. WT condtions
and APT overexpression are shown. The mean and standard deviation
of 200 models are shown.

enzymes have an additive positive effect on the biosynthetic flux, although
zDHHC7 has the bigger effect of the two.

We then went on to show that neither zDHHC7 nor zDHHC3 affect the
half-life of CMG2 at the PM, but rather it is the total protein level which is
modulated. Given the difficulty in calibrating the model, the exact quanti-
tative effect of these enzymes on CMG2 should be considered an estimate.
Improvements in the calibration would yield more accurate predictions of
the change in protein levels when silencing various enzymes.

Contrary to reducing palmitoylation by silencing zDHHC7 or zDHHC3,
we showed that increasing depalmitoylation at the cell surface has a large
effect on CMG2 half-life. Higher depalmitoylation drastically reduces the
half-life of surface-resident CMG2. However, the total levels of CMG2 are
only mildly affected when increasing depalmitoylation, the change in half-
life being instead caused by a change in palmitoylation state. Again, due
to difficulties in calibration the exact values of the distribution of palmitoy-
lation states under increased depalmitoylation should be interpreted with
caution. Although the general trends can be considered trustworthy.

4.7 conclusion

We started the process of modelling CMG2 by assembling all the experimen-
tal data from multiple sources and organising it in a coherent way. Not
only was this a significant task given the amount of data, but this already
gave some insight into the considerations to be taken later during model
construction. One of the key questions at this point was whether endoge-
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nous CMG2 in RPE1 and CMG2 transfected in HeLa had similar behaviour.
A subset of pulse-chase experiments, TCE and surface biotinylation experi-
ments suggested this was the case, and we proceeded with building a single
model for both cell lines.

Given the size of the model and the amount of data, we managed a very
promising calibration. Using less than a third of the experimental data for
calibration, we reproduced almost all the pulse-chase experiments and cap-
tured the most important trends in the TCE and surface biotinylation exper-
iments. Although promising, this calibration could still be improved in the
future.

We then used the model to study PM targeting of CMG2 and its inter-
play with palmitoylation. We showed how zDHHC7 and zDHHC3 have an
additive effect of increasing the amount of CMG2 at the PM by stabilising
it through palmitoylation. Although these enzymes have a large influence
on the protein levels at the PM, they have no discernible influence on the
half-life of the surface population. This is because the final transportation
step from the Golgi to the PM is dependent on palmitoylation, resulting in
a majority of fully palmitoylated CMG2 making it to the PM.

In order to simulate the presence of anthrax toxin, we increased depalmi-
toylation at the PM by overexpressing the relevant APT. We showed that this
had a significant effect on the half-life of the surface population by alter-
ing the distribution of palmitoylation states. These predictions also make
it clear why promoting depalmitoylation at the PM would increase anthrax
endocytosis. By making CMG2 less stable without reducing its level signif-
icantly there is plenty of CMG2 to bind to, but it is now internalised at a
faster rate.

4.7.1 Future Outlook

Although a promising calibration was obtained using relatively few exper-
iments, some experiments were not adequately reproduced. This should
be improved in the future, by more careful optimisation attempts and by
analysing precisely why certain experiments are not well reproduced.

Given the increasing size of the model and amount of experimental data,
it could also be worth looking into other modelling paradigms and problem
formulations. This may also help make the model more tractable and easier
to calibrate.

Another aspect that could be investigated in more depth is the selec-
tion of calibration and validation sets. Although the calibration set was
randomly chosen to cover approximately a third of the experimental data,
this selection could potentially impact calibration quality. It would be of
interest try and calibrate the model based on other calibration sets, with
the goal of improving the calibration quality. However, some of the chal-
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lenges in doing this are the manual interventions needed to obtain a good
calibration, and the computational cost due to the size of the model.

There are clearly more questions to be answered by using the CMG2

model. The issue of specificity between the two zDHHCs and the different
palmitoylation sites hasn’t been adressed. Indeed, discerning the function
of each palmitoylation site would help better understand this protein. This
is especially relevant when considering the position of the first two palmi-
toylation sites next to the transmembrane domain, while the third site is
much further along on the disordered cytosolic tail.

The CMG2 model developed can also serve as a tool in developing an
approach to treating HFS. Namely, it can help to better understand disregu-
lation of CMG2 in HFS patients. The quantitative nature of kinetic models can
help determining which cellular conditions synthesize sufficient functional
CMG2. For example, the different enzyme levels which lead to a sufficient
biosynthetic flux which therefore lead to a sufficient amount of CMG2 at the
cell surface so that the ECM may be properly regulated.

This work also raises questions concerning mitigating the toxicity of an-
thrax. As has been described, depalmitoylation of CMG2 appears to be essen-
tial for toxin endocytosis. A natural mitigation may be reducing the amount
of depalmitoylating APT at the PM. However, one of the problems with this
approach may be the substrate overlap of the targeted enzymes. In the case
of DHHC enzymes, which add a palmitate chain, it has been shown that
multiple enzymes of this family may palmitoylate the same substrate , and
the specificity is not clearly defined nor understood [61, 125]. The family
of APTs, which carry out depalmitoylation, are not as well studied as the
DHHC family. However, if they also possess substrate overlap, a therapy
targeting a specific APT may target other proteins and have a very broad
range of side effects. Although the work here has shown how depalmitoy-
lation can clearly favour toxin endocytosis through increased turnover but
similar protein levels, more research in the APTs is needed to find a poten-
tial mitigation of anthrax toxicity.
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5 G M C A

This chapter is a manuscript in preparation.
In it, we will discuss the concept of Global Sensitivity Analysis (GSA)

(first introduced in Section 2.4) in the context of large-scale kinetic models
of metabolism. We will discuss some of the challenges associated with large-
scale metabolic models, and how GSA can be of use in refining these models
and guiding experimental efforts. We will also show some of the difficulties
that can be encountered when trying to use GSA with large-scale models
and how we have devised a workflow to address these issues.

5.1 abstract

Kinetic models of metabolism can elucidate dynamic behaviour and es-
sential cellular regulatory schemes, thus providing useful information for
metabolic engineering and fundamental biology. The construction of these
models is challenging due to the numerous parameters and partially known
kinetic mechanisms. Various computational frameworks surmount this by
sampling unknown parameters, which can create large uncertainties in
model properties. Although local sensitivity analysis may identify sources
of uncertainty in smaller models, a holistic approach is needed when deal-
ing with high dimensions and wide parameter ranges. One such approach
is Global Sensitivity Analysis (GSA). However, it is rarely applied to large-
scale models due to the extensive sampling needed.

We herein present a workflow for efficiently applying GSA to large-scale
kinetic models in order to identify predominant sources of uncertainty. A
published kinetic model of aerobically grown E.coli was used to demon-
strate how the proposed workflow can be used to analyze the sensitivity of
Metabolic Control Analysis (MCA) control coefficients to kinetic parameters.
The sensitivity of the control coefficients can be studied at different levels
of resolution depending on the study requirements.

When applying this workflow to an E. coli kinetic model, we were able to
identify the largest sources of uncertainty. These were then validated in sil-
ico, leading to a reduction in variance of 75%. This workflow can be applied
to any other kinetic model and could even benefit other fields, especially
when performing sensitivity analysis in high-dimensional spaces. We also
found that sources of uncertainty are spread out across the model, making
the identification of uncertainty sources harder as model size grows.
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5.2 author summary

Kinetic models of metabolism can provide highly useful information for the
fields of metabolic engineering and fundamental biology. However, only
partial information is currently available for creating large-scale kinetic
models. This can be surmounted by sampling the missing information, al-
though this leads to uncertainty in the behaviour of the resulting model.
We present a workflow that uses GSA in order target the largest sources of
uncertainty, providing a ranking of which parameters to measure in order
to achieve the highest reduction in uncertainty. We applied this framework
to a kinetic model of the bacterium E. coli, showing that it was possible to
achieve reductions in model uncertainty of 75% if certain parameters could
be accurately estimated. Due to the flexible nature of GSA and our work-
flow, it is in principle possible to apply to any kinetic model. We also show
that metabolism is a highly integrated system, where sources of uncertainty
from different parts of metabolism interact to contribute to uncertainty in
model behaviours.

5.3 introduction

New computational frameworks are enabling the construction of genome-
scale kinetic models that are consistent with stoichiometric, thermodynamic
and physiological constraints [36]. Despite the increasing availability of
experimental data concerning kinetic parameters [126–128] and methods
to estimate these [129], significant uncertainty in their nominal values re-
mains [130]. Adding to this uncertainty, the number of kinetic parameters
increases with the size of the models. To overcome the problem of assigning
unique kinetic parameter values, one solution is to sample the kinetic pa-
rameter space, generating multiple alternative models [38, 131–133]. How-
ever, this uncertainty in kinetic parameters can result in kinetic models with
contradicting properties and conclusions [134]. Gutenkunst et al. [135] sug-
gest that models in systems biology are ‘sloppy models’ and that usually
only few parameters affect model outputs, suggesting that identifying these
parameters is a worthwhile pursuit. Hence, classifying kinetic parameters
by their impact on uncertainty in model outputs is essential for improving
model predictions.

Different sensitivity analysis approaches can be used to trace a pertur-
bation in model inputs to its effect on model outputs [136–138]. Variance-
based GSA is one of the most established techniques for performing sensi-
tivity analysis on nonlinear systems [139]. GSA can be used to estimate first
order sensitivity indices (Si), which quantify the average reduction in vari-
ance of a model ouput when fixing an input parameter. GSA also makes it
possible to estimate total effect sensitivity indices (St), which describe how
the perturbation of an input parameter is amplified or attenuated by the
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values of one or several other input parameters. The word ‘Global’ refers to
the whole parameter space being considered, in contrast to local methods
which only focus on a single point. By using variance as an estimator for
uncertainty, these sources of uncertainty can be efficiently identified and
ranked. The model itself is treated as a black box, making GSA applica-
ble to many types of models. Kiparissides and Hatzimanikatis developed
a GSA-based procedure for analyzing genome-scale stoichiometric models
that have thermodynamic constraints [140]. However, to our knowledge GSA
has not been applied to genome-scale nonlinear kinetic models.

On a smaller scale, both local and global sensitivity analysis methods
have been applied to models up to the size of pathways and subsystems [139].
However, due to the high dimension and wide range of the parameter space
found in genome-scale kinetic models, a global approach that considers
the entire parameter space becomes neccesary. Performing GSA on genome-
scale kinetic models of metabolism is challenging and computationally ex-
pensive. We utilize the Optimization and Risk Analysis of Complex Living
Entities (ORACLE) framework to generate populations of kinetic models [38,
133]. ORACLE implicitly samples the kinetic parameter space by explicitly
sampling enzyme saturations, this allows a better understanding of the en-
zyme state, which is a physiological property. The kinetic parameters can
then be used to calculate Control Coefficient (CC)s using MCA [141–143]. For
the scope of this work, the inputs of MCA are thus enzyme saturation levels
and the outputs CCs. Hence, we developed a variance-based GSA approach
for assessing the sensitivity of CCs to enzyme saturations.

We perform GSA on an E.coli model that was reduced [144, 145] from
the iJO1366 genome-scale model [146]. The model consists of 271 enzy-
matic reactions, 247 lumped reactions and 160 metabolites, resulting in a
total of 3083 enzyme saturation levels to be sampled. In order to study the
total and first order effects of enzyme saturations on Flux Control Coeffi-
cient (FCC), Variance-based sensitivity indices were computed based on the
Sobol method [147]. Exhaustively calculating sensitivity indices for each en-
zyme saturation would require considerable computational efforts. Instead,
we first developed a workflow for identifying parts of the network that
contribute the most to the variance of model outputs using a coarse-grain
sampling approach. Once we have identified these parts of the network, we
can perform a fine-grain sampling of the input parameters to identify the
ones contributing the most to the variance of model outputs. The workflow
was used to rank input parameters based on their contribution to the vari-
ance of MCA outputs and can be applied to any large-scale nonlinear kinetic
model.
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5.4 results and discussion

We have developed a workflow combining variance-based global sensitiv-
ity analysis and metabolic control analysis, named Global Sensitivity of
Metabolic Control Analysis (GMCA). This workflow requires a kinetic model
for a given physiology and allows a flexible definition of study scope. The
study scope describes which parts of the metabolic network to study and at
which resolution. The resolution can be adjusted from groups of reactions,
to individual reactions or even individual enzyme kinetic parameters. The
first step involves sampling kinetic parameters in order to characterize the
solution space. After this, new populations of kinetic parameters are re-
sampled according to the study scope. These multiple populations are then
used to compute sensitivity indices, as shown in Section 5.6.2. Based on
these sensitivity indices, parameters can be ranked by their effect on the
variance of kinetic model outputs, ie. the Flux Control Coefficient (FCC)s
computed with MCA. In this way, the propagation of uncertainty from ki-
netic parameters to FCCs is mapped out. In silico validation can then be
performed by reducing the variance of the kinetic parameters with high
sensitivity indices and verifying that the variance in FCCs is also reduced.
These findings can be used to guide experimental efforts to measure en-
zyme kinetic parameters as well as metabolic engineering decisions.

5.4.1 Illustrative example

Using the illustrative model in Figure 70A we would like to study the flux
through reaction v4, this flux can be modeled using irreversible Michaelis-
Menten enzyme kinetics [148–150]:

v4 = Vmax,4
m4/Km,4

1+m4/Km,4
(45)

Where m4 is the concentration of the metabolite, and Km,4 the Michaelis-
Menten coefficient of m4 with respect to the enzyme catalyzing the reac-
tion v4. Using techniques such as FBA [151, 152] and TFA [153, 154] we can
estimate the values of both v4 and m4. However, this still leaves both Vmax,4
and Km,4 as unknowns. If one of them could be estimated, the previous
Michaelis-Menten equation could be used to calculate the remaining un-
known parameter. The ORACLE workflow [38, 133] solves this by implicitly
sampling Km,4. This is done by introducing the saturation term σ

σ =
m4/Km,4

1+m4/Km,4
(46)

Unlike the concentration or the Michaelis-Menten coefficient, the satura-
tion term is well bounded ∈ [0, 1]. We will therefore sample this saturation
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Figure 69: Global Sensitivity of Metabolic Control Analysis (GMCA) workflow for
characterizing sources of uncertainty in large-scale kinetic models. Dia-
gram providing details of the various steps required for the characteriza-
tion of parameters responsible for variance in kinetic models and their
outputs.
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Figure 70: Illustration of applying the GMCA workflow to a branched pathway
model. (A) Overview of the branched pathway used for illustrative pur-
poses. The parameters controling the reaction v4 will be further stud-
ied. (B) Distribution of 3 of the total 6 saturations (σ) present in the
model, the other 3 saturations were omitted for clarity. Beta distribu-
tions were chosen for illustration purposes. Their values are obtained
by sampling according to the ORACLE workflow. (C) Distribution of the
control coefficient: Cv4

Vmax,2
, the control of the flux of reaction v4 with

respect to Vmax of reaction v2. A normal distribution with mean 1.5
and standard deviation of 0.5 was chosen for illustration purposes. The
mean (f0) is shown in red. (D) Global Sensitivity Analysis (GSA), show-
ing the first order sensitivity index (Si) of Cv4

Vmax,2
with respect to the 6

saturations present in the model. (E) After having determined that σ2
had the highest Si, we assume to have determined its value exactly. (F)
Resulting distribution of Cv4

Vmax,2
once the value of σ2 is determined.
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term in order to obtain a population of possible saturations, as shown in
Figure 70B. Once we have obtained samples of the saturation term, we can
use them to determine the value of Km,4 :

m4

Km,4
=

σ

1+ σ
(47)

Where the value ofm4 can be determined using methods such as TFA. We
can finally use Equation 45 in order to calculate the remaining unknown
Vmax,4.

We then want to study the effect that the parameter Vmax,2 has on the flux
through v4. To do this, we will use the formalism of MCA [141–143]. Using
this framework, we can use the previous information we have obtained
with the ORACLE workflow to calculate control coefficients. These come in
two kinds, either a Concentration Control Coefficient (CCC), denoted by
Cxp, or a Flux Control Coefficient (FCC), denoted by Cvp. They describe the
fractional change in a metabolite concentration or reaction flux in response
to a fractional change in a kinetic parameter:

Cxp =
d ln xi
d lnp

(48)

Cνp =
d lnν
d lnp

(49)

(50)

Further discussion of both concentration and flux control coefficients can
be found in Section 5.6.1.

Since we have a distribution of possible saturations, the control coeffi-
cients have an associated distribution rather than fixed values, shown in
Figure 70C. We will perform Global Sensitivity Analysis (GSA) in order to
identify the saturations that are responsible for the variance of the control
coefficients. To do this we perform an initial sampling of the saturations,
and two further resamplings, where only a subset of the saturations are re-
sampled. This yields three matrices whose columns refer to each saturation
parameter, and whose rows refer to each sample. In this example, we would
like to study the contribution of σ2 to the uncertainty in Cv4Vmax,2

, hence the
following resamplings are performed:

ΣA =(σa,1 · · ·σa,6) (51)
ΣB2 =(σb,1,σa,2,σb,3 · · · ) (52)
ΣC2 =(σa,1,σc,2,σa,3 · · · ) (53)

(54)
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To construct the matrix ΣB2, the column σa,2 is taken from the matrix
ΣA and all other columns are resampled. To construct the matrix ΣC2, all
columns except σa,2 are taken from ΣA and only the column is σc,2 resam-
pled.

We then can then use these matrices of saturations to calculate the corre-
sponding vectors of flux control coefficients:

cA =f(ΣA) (55)
cB2 =f(ΣB2) (56)
cC2 =f(ΣC2) (57)

(58)

The sensitivity indices for a particular saturaton σj are calculated as fol-
lows:

f0 =

n∑
i

cA,i/n (59)

Si =
Vσj(Eσ∼j(c|σj))

V(c)
=
cAc

T
Bj
/n− f20

cAc
T
A/n− f20

(60)

St =1−
Vσ∼j(Eσj(c|σ∼j))

V(c)
= 1−

cAc
T
Cj
/n− f20

cAc
T
A/n− f20

(61)

In this example, the vectors cA, cB2, cC2 are sufficient to calculate the sen-
sitivity of Cv4Vmax,2

with respect to σ2. For every parameter other than σ2, the
resamplings need to be performed and the control coefficients calculated
again as shown.

The first order sensitivity index Si describes the average reduction in the
variance of the chosen control coefficient when fixing a specific saturation
parameter σj. In Figure 70D the first order sensitivity indices Si are shown
for all 6 saturation parameters in the model. Out of these, σ2 has the high-
est Si of 0.5. This means that fixing σ2 to any exact value will reduce the
variance in Cv4Vmax,2

by 50% on average. In Figure 70E, the fixing of σ2 is
shown, and the accompanying reduction in variance of Cv4Vmax,2

is shown in
Figure 70F.

In addition to this, the total effect sensitivity index St includes the in-
teraction effects with other saturation parameters in the model. For exam-
ple, the contribution of σ2 to the uncertainty in Cv4Vmax,2

, will depend on
the value of σ4. If σ4 is at maximum saturation, it won’t be possible to in-
crease the flux ν4, therefore any change in σ2 will have less effect on Cv4Vmax,2

than otherwise. In this case, this is a second order interaction, the effect of
one parameter depends on the value of another. However, the effect of one
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parameter may depend on the values of multiple other parameters, as in
multi-step biosynthesis pathways for example. The total effect sensitivity
index St includes not only second order but all higher order interactions.
Si should by definition always be lower or equal to St. Similar values for

Si and St indicate that interaction effects are negligible. Whereas a value of
St much greater than Si indicates that interaction effects strongly influence
the uncertainty in model output.

By calculating sensitivity indices, it is possible to efficiently propose tar-
get parameters for experimental studies that will best elucidate control of
fluxes and concentrations within the model. A high first order sensitivity
index will identify parameters that will, on average, cause the largest reduc-
tion in uncertainty when their value is precisely determined.

5.4.2 Kinetic model

We used a published [155] kinetic model, describing the physiology of aer-
obically grown E. coli for the purpose of this study. The kinetic model had
3083 parameters to be sampled. To characterize the kinetic parameter space,
we used the ORACLE workflow for constructing populations of kinetic mod-
els [36, 38, 133, 143, 156–158]. The same kinetic mechanisms and steady
states for the metabolite concentrations and fluxes were used for this ki-
netic model as the ones provided in the publication [155], which drew on
previous models and data from [146, 159].

5.4.3 Uncertainty in control of the pentose phosphate pathway

We decided to focus on control of the Pentose Phosphate Pathway (PPP),
containing 12 reactions for a total of 144 FCCs. In order to better quantify
the control within this subsytem, we wanted to determine which satura-
tions are responsible for the variance in the control coefficients. To do this,
we first grouped kinetic parameters together at three different levels of reso-
lution. The first level groups together all parameters belonging to a subsys-
tem, for example Glycolysis or PPP. The second level groups parameters that
belong to the same reaction; the number of parameters varying according
to the mechanism of each reaction Table 6. The third level looks at each ki-
netic parameter individually. In this way, we avoid needing to exhaustively
perform re-sampling for every kinetic parameter. Instead, we first identify
and rank the subsystems from which most of the uncertainty originates,
then we rank the reactions belonging to the top subsystem, and finally the
individual kinetic parameters from the top reactions. This workflow also
has the benefit of first providing an overview at the level of the subsystems,
while increased resolution can be achieved through further numerical simu-
lations. We performed GMCA according to this suggested workflow in order
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Reaction # of Km Km Parameters

EDA 3 KEDA,2ddg6p, KEDA,g3p, KEDA,pyr

EDD 2 KEDD,6pgc, KEDD,2ddg6p

FBA3 3 KFBA3,s17bp, KFBA3,dhap, KFBA3,e4p

G6PDH2r 4 KG6PDH2r,g6p, KG6PDH2r,nadp, KG6PDH2r,6pgl,

KG6PDH2r,nadph

GND 4 KGND,nadp, KGND,6pgc, KGND,nadph, KGND,ru5p-D

PFK_3 4 KPFK_3,atp, K PFK_3,s7p, K PFK_3,adp, K PFK_3,s17bp

PGL 2 KPGL,6pgl, KPGL,6pgc

RPE 2 KRPE,ru5p-D, KRPE,xu5p-D

RPI 2 KRPI,ru5p-D, KRPI,r5p

TALA 4 KTALA,g3p, KTALA,s7p, KTALA,e4p, KTALA,f6p

TKT1 4 KTKT1,r5p, KTKT1,xu5p-D, KTKT1,g3p, KTKT1,s7p

TKT2 4 KTKT2,e4p, KTKT2,xu5p-D, KTKT2,f6p, KTKT2,g3p

Table 6: Reactions in the Pentose Phosphate Pathway (PPP) and their correspond-
ing Km parameters. The Km parameters are grouped together when study-
ing the contribution of an entire reaction to the uncertainty of a control
coefficient.

to rank all kinetic parameters based on their contributions to uncertainty in
the FCCs of the PPP.

In order to efficiently sample the kinetic parameter space, we first use TFA
[153, 154] to sample the flux and metabolite concentration space in order
to obtain a representative sample. The representative metabolite concentra-
tions can then be used to calculate the reaction’s thermodynamic displace-
ment from equilibrium. We sample enzyme saturations due to their well-
bounded nature. These sampled enzyme saturations are then used together
with a representative flux and concentration profile in order to calculate the
values of the Michaelis constants (Km) [36]. Finally, the value of Vmax can
be calculated to fit with the representative fluxes (Figure 71). The reader is
referred to Section 5.6.1 for more details.

5.4.3.1 Computation of sensitivity indices

The bounds of the enzyme saturations for all reactions were initially left
unconstrained such that we sample them uniformly between 0 and 1, allow-
ing us to consider the full range of kinetic parameter values. We sampled a
population of 200’000 kinetic models and then computed the first order (Si)
and total effect (St) sensitivity indices of the chosen FCCs using the Sobol
method, as shown in Section 5.6.2. All these 200’000 models are biologically
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Figure 71: E.coli network diagram illustrating the reactions of the kinetic model.
Diagram does not include all the reactions of the model. (A) Overview
of the reaction network, color-coding indicates to which subsystem a
reaction belongs. Abbreviations are as follows: G/G - Glycolysis and
Gluconeogenesis, PPP - Pentose Phosphate Pathway, TCA - Tricarboxylic
Acid Cycle, Pyr - Pyruvate Metabolism, Glyox - Glyoxylate Metabolism.
The reactions indicated in blue correspond to the Pentose phosphate
pathway (PPP) subsystem, which was the focus of this study. A larger
version is available in the Appendix (Figure 75. (B) Focus on the PPP

subsystem. (C) Single reaction belonging to the PPP, the kinetic mecha-
nism of the reaction is shown, the two kinetic parameters to be sampled
using the ORACLE workflow are highlighted in blue and green.
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plausible and agree with the results from TFA, namely metabolite concentra-
tions and fluxes. This number was chosen so as to be high enough to give
a small enough error on the calculated sensitivity indices.

We started at the first level of resolution by grouping parameters together
by subsystem. Sobol sensitivity indices were computed for all FCCs in the
PPP. We chose the control coefficient CEDAGND for illustration purposes, which
describes the control of the EDA reaction flux by Vmax,GND (Figure 71). For
this control coefficient we found that Si was negligible for all 5 subsystems
except PPP (Figure 72), while St was high for all subsystems. This suggests
that the interactions between subsystems are significantly more important
than their 1st order contributions. In other words, fixing all saturations in
the PPP would cause only a small reduction, about 10%, in the variance of
CEDAGND. Hence, determining the kinetic parameters of the PPP alone would
only slightly reduce the uncertainty in the chosen FCC, due to uncertainty
in the other subsystems.

As the Si values were all close to zero (Figure 72), we hypothesized
that one or several important parameters outside of the study scope were
causing this effect. In order to limit the study scope to the 5 subsystems
(Glycolysis, PPP, Tricarboxylic acid cycle, Pyruvate metabolism and Glyoxy-
late metabolism), any other kinetic parameters were therefore constrained.
The previous results were used to compute mean values of these param-
eters and their sampling ranges were constrained to +/- 10% around this
mean. We then repeated the previous experiment. Interestingly, the only
Si which increased was that of the PPP subsystem (Figure 72), all others
remained negligible. Constraining parameters outside of the study scope
worked as expected, and the results also made physiological sense, as both
EDA and GND belong to the PPP subsystem. It also serves to highlight that
uncertainty in the kinetic parameters outside of the chosen subsystems can
greatly influence the results. This method of constraining parameters was
therefore used for the rest of the computations, so that noise coming from
parameters outside the study scope was reduced.

5.4.3.2 Increasing the resolution to individual parameters

After having devised a way to reduce noise originating from outside the
study scope we proceeded to pick another FCC within the PPP, and perform
GSA first at the resolution of subsystems, then reactions and finally individ-
ual kinetic parameters. We picked the FCC of EDA with respect to Vmax,EDD,
both within the PPP.

At the level of the subsystems, we had similar results as previously (Fig-
ure 73), with PPP having the highest first order sensitivity index (Si) of about
0.4. This means that determining the exact values of all kinetic parameters
within the PPP would lead to a reduction in the variance of the chosen FCC
of 40% on average. Again, this makes physiological sense, as we are exam-
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Figure 72: Sobol sensitivity indices for flux control coefficient with respect to sub-
system enzyme saturation levels. First order (dark green) and total ef-
fect (light green) Sobol sensitivity indices of control coefficient CEDA

GND,
corresponding to the sensitivity of the flux of reaction EDA with re-
spect to Vmax,GND. All enzyme saturations within a subsystem were
grouped when performing sensitivity analysis. The 200’000 samples
were split into three groups, from which the mean and standard de-
viation were calculated. The whiskers indicate the standard deviation
and the bars report the mean. (A) Saturations sampled over their entire
feasible range. (B) Saturations outside of the 5 studied subsystems, ie.
the study scope, are sampled between their mean +/- 10%.
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ining the control of a flux within the PPP by a kinetic parameter within the
same subsystem. It is also important to note that this gives a quantitative es-
timate of how much uncertainty originates from outside the PPP. However,
there isn’t another subsystem with a high Si, meaning that interactions be-
tween subsystems plays an important role if further reduction in the FCC
uncertainty is desired.

Increasing the resolution of the analysis to the reaction level can make
it possible to identify exactly which reactions should be measured within
the PPP to most efficiently reduce uncertainty in the model output. This
avoids the need of laboriously measuring all kinetic parameters within a
subsystem. Once we look at the reactions individually (Figure 73), we can
see that the only two reactions with a significant Si are EDA and EDD, the
same reactions involved in the FCC we are studying. However, the interac-
tions between reactions are much less important when restricting the study
scope to the PPP. The combined Si of EDA and EDD mean that the variance
in CEDAEDD could be reduced by 85% on average when determining the values
of Vmax,EDA and Vmax,EDD.

Further increasing the resolution to look at individual kinetic parameters
can show us whether it is the affinity of substrate or product that con-
tributes most to uncertainty. If we take the EDD reaction (Figure 73), we
can see that out of the two metabolites it is 2-Dehydro-3-deoxy-D-gluconate
6-phosphate (2ddg6p) that has a much higher Si. In the given physiology,
2ddg6p is a product of the EDD reaction. Although we are comparing the
uncertainty originating from the affinity of two metabolites to the EDD en-
zyme, and not EDA, the metabolite closer to the EDA reaction (2ddg6p) has
a three-fold higher Si. This means that the saturation of the EDD enzyme
by its product, and not its substrate, has a larger effect on how Vmax,EDD
will control the flux through the EDA reaction.

In this demonstration, we applied the GMCA workflow to the CEDAEDD con-
trol coefficient. We showed that the uncertainty in CEDAEDD is mostly depen-
dent on the upstream reaction EDD. Although this may seem expected, by
performing GMCA we quantified the sources of uncertainty in the system.
We showed that the uncertainty contribution of EDD is almost three times
more than that of EDA. Within the EDD reaction, the saturation of the EDD
enzyme by its product is also roughly three times important than the satu-
ration by its substrate. By applying a methodical approach such as GMCA,
we may quantify the different sources of uncertainty, and focus experimen-
tal efforts only on the parameters which will improve our understanding of
the metabolic system.

5.4.3.3 Application and validation

The results from the previous section suggested that precisely determining
the kinetic parameter values of EDA and EDD would reduce the variance
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Figure 73: Example of the proposed GMCA workflow, performing GSA at different
levels: first subsystems, then reactions and finally individual saturations.
First order (dark green) and total effect (light green) Sobol sensitivity
indices of control coefficient CEDA

EDD, corresponding to the effect of
Vmax,EDD on the flux of reaction EDA. (A) GSA was first performed by
grouping enzyme saturations into subsystems. (B) An illustration of the
first order sensitivity indices is superimposed on the network diagram,
darker shades indicate higher first order sensitivity indices. (C) GSA was
then performed by considering only reactions from the PPP and group-
ing enzyme saturations according to reaction. (D) First order sensitivity
indices are superimposed on an illustration of the PPP. Darker shades
indicate higher values. (E) Finally, the contribution of individual kinetic
parameters in the EDD reaction were analysed. (F) The EDD reaction is
shown, including substrates and its kinetic expression.
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Figure 74: Overview of GMCA in a metabolic engineering context and in silico val-
idation of results. An overview of how GMCA fits into a continuous im-
provement cycle. A study scope is first defined, selecting the control
coefficients and sources of uncertainty. These can correspond to a sub-
system, a reaction or any desired set of parameters. GMCA is then per-
formed, identifying which sources of uncertainty contribute the most to
the uncertainty in the control coefficients. Once identified, these sources
of uncertainty can be better estimated, for example by experimental ki-
netic measurements, literature mining or data mining. This ultimately
leads to better kinetic model predictive power, as the uncertainty in the
control coefficients has been reduced.

of CEDAEDD by around 85% (Figure 73). The specific Michaelis-Menten param-
eters for both of these reactions are shown in Table 6. The initial variance
of this FCC was 0.27. When we reduced the ranges of the sampled kinetic
parameters for EDA and EDD to 10% around their median saturation levels,
we reduced the variance of this FCC to 0.07 (Figure 74). This is a reduction
in variance of 74%, which is expected based on the Si EDD (Figure 73).
However, the reduction in variance of the FCC when reducing the range of
kinetic parameters in the EDA reaction was more than expected: 74% versus
the expected 25%. This may be due to the fact that Si describes an average
reduction in variance, based on fixing the kinetic parameter across multi-
ple points in its distribution. Whereas we fixed the parameter to a range of
10% around a single point, their median. We also attempted reducing the
range of the GND kinetic parameters, which had no effect on the variance
of the FCC, as predicted (Figure 74). This shows that the Sobol method can
effectively identify kinetic parameters that contribute the to uncertainty in
the model outputs, namely the FCCs.

The FCCs have distributions that are generally slow to converge and have
relatively heavy tails. Consequently, future efforts should focus on better es-
timating appropriate sample sizes and convergence, such as in [160], as well
as better sampling methods. Nevertheless, we obtained relatively small er-
rors in the Si coefficients, indicating their correctness (Figure 73,Figure 74).
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However, as expected [160], the St coefficients require more samples than
Si in order to converge and their error bars are usually larger than for Si.
Different metrics for quantifying the convergence of Sobol indices should
be considered [160, 161].

5.4.4 Future opportunities and limitations

A limitation of GSA is the computational cost, which becomes prohibitive
in high dimensions such as those of kinetic models of GEMs. In order to
produce the results shown here, approximately two months of computation
time was needed on a Dell Precision 7820 with an Intel Xeon Gold 6136 CPU
(48 cores, at 3.7GHz). Furthermore, the convergence of statistical moments
for the FCCs can take large numbers of samples. Consequently, it takes a sig-
nificant amount of samples and computational resources to reach conver-
gence of the Sobol indices. Sensitivity analysis and the convergence of un-
derlying sensitivity indices has been studied in pharmacokinetic [162] and
environmental [160] modeling leading to similar observations. In certain
cases, an environmental model with fifty parameters can require around
half a million samples for convergence of Sobol indices [160]. However,
with the increasing availability of computational power, variance-based sen-
sitivity analysis approaches are becoming more accessible for large-scale
kinetic models. Another area that may alleviated the computational cost is
the method of calculating of sensitivity indices. Although Sobol indices are
well-established and have their advantages, other non-parameteric sensitiv-
ity indices are a promising avenue, such as those based on the Kolmogorov-
Smirnov statistic [163]. Alternatively, Kiparissides and coworkers have sug-
gested that Derivative-based Global Sensitivity Measures (DGSM) [137] pro-
vide a more efficient method for performing sensitivity analysis. Although
these methods may provide advantages compared to GMCA, they have not
be compared in depth nor implemented in practice.

A further direction of investigation would be to study the populations of
kinetic parameters to understand how they result in the FCC distributions
and their convergence. It could be expected from previous research that
a subset of kinetic parameters explain this slow convergence [135] [164].
One approach could be to use machine learning algorithms inspired by the
iSHRUNK workflow [164], that is based on classification and regression
trees (CART), to study which kinetic parameters contribute to the slow con-
vergence of the FCC distributions. Ultimately, understanding what parame-
ters cause the slow converge of the FCC statistical moments could further
help characterize sources of uncertainty. It may be advisable in future stud-
ies to perform such analysis prior to carrying out variance-based sensitivity
analysis.
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5.5 conclusions

We hereby introduced a workflow that performs variance-based sensitivity
analysis on large-scale kinetic models of metabolism. To our knowledge,
this type of study has not been carried out on such high-dimensional ki-
netic models, as most previous studies were performed on systems with
several dozens of parameters. We demonstrated how we can complete a
sensitivity analysis focused on control coefficients of the 12 reactions in the
PPP with respect to the activities of their enzymes, with the goal of rank-
ing all 3083 Vmax parameters present in the E. coli model based on their
contribution to uncertainty in the FCCs.

Although GSA can be computationally expensive, we developed a work-
flow that involves progressively increasing the resolution of GSA from sub-
systems to enzyme saturations, delivering interpretable results while re-
ducing computation time. While doing this, we also highlighted how un-
certainty from other subsystems propagates to uncertainty in the control of
the PPP. Furthermore, we found that care should be taken when analyzing
outputs of kinetic models, in regard to convergence and error estimates. It
may be advisable to first perform an ab initio study of the kinetic model
and its control coefficients, prior to engaging into sensitivity analysis. We
suggest that machine learning approaches, such as iSHRUNK [164], could
open up new avenues for unraveling information about parameters that
contribute to uncertainty. As an alternative, we suggest exploring the suit-
ability of other GSA methods to kinetic models of metabolism [137, 163].

5.6 materials and methods

5.6.1 MCA, sampling saturations

In order to describe a micro-organism growing in batch culture, mass bal-
ances can be used to form a system of ordinary differential equations [151].
These assume a well-mixed system [165], where the time scales of metabolism
are much faster than those of the process conditions [151]:

dx

dt
= Nν(x,p) (62)

whereN is the stoichiometric matrix in which each row corresponds to a
metabolite, each column to a reaction and the entries are the stoichiometric
coefficients, ν is the vector of fluxes, x is the vector of metabolite concen-
trations, p is the vector of parameters describing both enzyme kinetics and
system conditions, such as temperature and pH.

Metabolic systems often include conserved moieties [166], such as the
NADH - NADH+ pair. These manifest in linear dependence between the
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relevant rows of the stoichiometric matrix N. In order to obtain a full-rank
matrix, denoted by NR, we can split the metabolites into independent, xi,
and dependent, xd, as shown in [141]. A set of parameters representing the
total concentration of these conserved moieties, pm, is also needed. These
moiety parameters relate the concentration of dependent and independent
metabolites.

dxi
dt

= NRν(xi, xd(xi,pm),p) (63)

In the framework of MCA [167], the concentration control coefficients (Cxp)
and the flux control coefficients (Cvp) are the fractional change of the metabo-
lite concentrations, x, and metabolite fluxes, v, respectively, in response to
a fractional change in system parameters p. From the log(linear) formal-
ism shown in [141, 168], if the system is linearized around the steady state,
these control coefficients can be expressed like so:

Cxp =
d ln xi
d lnp

= −(NRVE)
−1NVΠ (64)

Cνp =
d lnν
d lnp

= ECxp +Π (65)

(66)

where, NR is the reduced stoichiometric matrix, V is the diagonal matrix
containing the steady-state fluxes, E is the elasticity matrix with respect
to metabolites and Π is the matrix of elasticities with respect to kinetic
parameters.

To illustrate how to calculate these elasticity matrices E and Π, let us
consider a uni-uni reversible Michaelis-Menten enzymatic reaction S ↔ P,
its thermodynamic displacement, Γi [169–171], is defined as:

Γi =
1

Keq,i

P

S
(67)

where, Keq is the thermodynamic equilibrium constant of the reaction.
The rate expression for this reaction would hence be given by:

νi = νmax,i

(1− Γi)
S

KmS,i

1+ S
KmS,i

+ P
KmP,i

= νmax,i
(1− Γi)S̃i

1+ S̃i + P̃i
(68)

where, Γi is the thermodynamic displacement of the reaction i and νmax,i
is its maximum flux. KmS,i and KmP,i correspond to the Michaelis-Menten
constants of metabolites S and P, respectively. S̃i and P̃i are the metabolite
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concentrations S and P scaled by their corresponding Michaelis-Menten
constants.

The kinetic parameter space is characterized by uniformly sampling the
saturation terms of each reaction, in this case there are two such terms S̃i
and P̃i. The saturation, σ, is the fraction of a binding site that is occupied
by a substrate and is by definition well bounded ∈ [0, 1]. We define the
saturation of the enzyme of reaction i with respect to S as:

σ =

S
KmS,i

1+ S
KmS,i

=
S̃i

1+ S̃i
(69)

We can hence define the scaled concentrations in terms of the sampled
saturations as:

S̃i =
σ

1− σ
(70)

As illustrated in the literature [36, 172], the elasticities of the reaction
with respect to its metabolites directly depend on the scaled concentrations
and are given as:

Ei,S =
∂lnνi
∂lnS

=
1

1− Γi
−

S̃i

1+ S̃i + P̃i
(71)

Ei,P =
∂lnνi
∂lnP

= −
Γi

1− Γi
−

P̃i

1+ S̃i + P̃i
(72)

Sampling saturations facilitates the computation of scaled concentrations
that can directly be used to populate the elasticity matrix E required for
computing the control coefficients. Although only the case for a uni-uni re-
versible Michaelis-Menten reaction is shown here, the derivation of the an-
alytical expressions for metabolite elasticity Ei and parameter elasticity Πi
needs to be done for every kinetic mechanism type.

5.6.2 GSA, calculating sensitivity indices

First we construct matrix ΣA, consisting of n samples and k input parame-
ters. The input parameters in this case are the sampled saturations (σ). We
construct matrix ΣBj by taking column j of matrix ΣA and we resample all
saturations other than σj. Inversely, we construct ΣCj by taking all columns
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from ΣA except the column j, meaning that we only resample column j,
corresponding to the saturation σj.

ΣA =

σa1,1 · · · σa1,k... . . . ...
σan,1 · · · σan,k

 (73)

ΣBj =

σb1,1 · · · σa1,j · · · σb1,k... . . . ... . . . ...
σbn,1 · · · σan,j · · · σbn,k

 (74)

ΣCj =

σa1,1 · · · σc1,j · · · σa1,k... . . . ... . . . ...
σan,1 · · · σcn,j · · · σan,k

 (75)

Sometimes a stable model can not be obtained for a set of parameters
(row) from ΣA. We attempted up to 1000 trials for each sample of ΣA in
order to generate ΣBj and ΣCj. If, for one row of ΣA, 1000 samples didn’t
produce a stable row in ΣBj or ΣCj, then this row was skipped.

We evaluate the models to generate output vectors cA, cBj and cCj
, these

contain n values of a single control coefficient calculated with different
sampled saturations σ. The control coefficient corresponds to one entry
of Cxp or Cνp, calculated as shown in Section 5.6.1. Vector cA is of length n
but, vectors cBj and cCj

may be shorter than n if some realizations of ΣBj
or ΣCj were not stable.

Let c denote the model output we are interested in. In this case c is a
particular control coefficient being studied, ie. it is one entry of the Cxp
or Cνp matrices. Note that c is a random variable in the context of statistics,
whereas cA, cBj and cCj

are samples of this variable. Sensitivity indices are
calculated as follows for a model output c:

Si =
Vσj(Eσ∼j(c|σj))

V(c)
=
cAc

T
Bj
/n− f20

cAc
T
A/n− f20

(76)

St = 1−
Vσ∼j(Eσj(c|σ∼j))

V(c)
= 1−

cAc
T
Cj
/n− f20

cAc
T
A/n− f20

(77)

where, Si and St are the first order and total effects, respectively, f0 cor-
responds to the mean value of c. Si corresponds to the independent con-
tribution of a saturation to the variance of the control coefficient c. St is
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the total contributions of a saturation (including its interaction with other
saturations) to the variance of the model output c. Hence, by definition:

0 6 Si 6 St 6 1 (78)

When Si is equal to St, we can say that the saturation in question is
uniquely responsible for the variance of a control coefficient. This means
that the effect of a saturation on the control coefficient is independent of
the values of other saturations in the model. When Si < St, this means
that the effect of a saturation on the control coefficient will depend on the
value of one or several other saturations, these are called interactions. For
full derivations of the sensitivity indices the reader is referred to Sobol’s
publication [147].
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6 C O N C L U S I O N

Building mechanistic models that accurately capture the kinetics of biolog-
ical systems and reproduce experimental data isn’t a trivial task. There are
a multitude of approaches and problem formulations to choose from, all
of them potentially leading to the desired goal. The difficulty is only in-
creased by the indirect nature of biological experiments, and the resulting
uncertainty in model parameters. However, if the endeavour is successful,
one can reap a very high payoff in the form of a detailed mechanistic un-
derstanding of the system studied.

In this thesis we have shown the applicability of modelling to protein
regulation through palmitoylation. We have shown how to use modelling
to facilitate the understanding of varied and complex experimental data. We
also showed that it is possible to make predictions, how these are relevant to
biological understand, and validated some of these experimentally. As the
models built were successively larger, We have shown that this approach
works with increasing model size and complexity.

In Chapter 1 we introduced the mathematical background common to all
models treated in this thesis. We discussed Global Sensitivity Analysis (GSA)
and how it could be applied to the Calnexin model. We described the in-
ternal workings of GSA and how to interpret the resulting Sobol sensitivity
indices. We proceeded to apply GSA to the existing Calnexin model in order
to demonstrate how it can help better understand complex systems and the
relationship between multiple parameters and emergent model behaviour.
We showed how the process of model calibration can be facilitated with
GSA. In particular, how conflicting parameters can be identified in order
to escape local minima and successfully calibrate a model. Incidentally, we
also showed that the calibrated parameters of the Calnexin model can be re-
combined with each other without reducing the quality of calibration. This
demonstrates that the parameters actually describe a space within which
the model reproduces the experimental data.

In Chapter 2 we built a model of Cytoskeleton-linking Membrane Pro-
tein 63 (CLiMP63) using papers from the literature, expert knowledge and
experimental data. This model was successfully calibrated to accurately
reproduce radiolabelling and immunofluorescence microscopy data using
Covariance Matrix Adaptation Evolution Strategy (CMA-ES). We suggested
multiple different model structures that could potentially reproduce the
experimental data and attempted to calibrate each one. We found that a
higher-order oligomeric structure was necessary in order to faithfully repro-
duce experimental data. In the model, this was implemented in the form
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of a dimer. The existence of this oligomer was subsequently validated ex-
perimentally. We then described the biosynthesis and trafficking routes of
CLiMP63 and how these are modulated by palmitoylation.

In Chapter 3 we built a model of CMG2 and calibrated it using experimen-
tal data. We described how the zDHHC enzymes affect the biosynthetic
pathway of CMG2. In particular, how the silencing of both zDHHC3 and zD-
HHC7 cause an additive reduction in the biosynthesis of CMG2. We showed
that zDHHC7 has a higher contribution to CMG2 biosynthetic flux, and that
silencing either of these enzymes does not have an affect on CMG2 half-life
at the PM. We then simulated the effect of the Anthrax toxin through in-
creased depalmitoylation at the Plasma Membrane (PM). This was done by
overexpressing the corresponding APT in silico, leading to a large increase
in turnover, while the total levels of CMG2 are maintained roughly constant.
In other words, the presence of the anthrax toxin does not greatly reduce
the amount of CMG2 at the surface, but likely due to endocytosis of the
toxin-CMG2 complex, the turnover of CMG2 is greatly increased.

In Chapter 4 we proposed a Global Sensitivity Analysis (GSA) approach
that aims to refine the results of Metabolic Control Analysis (MCA) on large
scale metabolic models. We pointed out the pitfalls and computational cost
of such an analysis. Our approach uses parameter grouping to alleviate the
computational cost while still producing useful and interpretable results.
We used a model of the bacteria E. coli to study uncertainty in the Pentose
Phosphate Pathway (PPP) and showed how uncertainty quantification has
the potential to improve the predictions of MCA and kinetic models.

6.1 future outlook

6.1.1 Palmitoylation models

Although the approach we have taken to modelling palmitoylation has
worked through increasing model size and complexity, the increase in com-
putational cost has been noticeable. Developing an alternative to this ap-
proach would be beneficial to build models of higher complexity. There are
two aspects in particular to focus on. The first is software tooling. At a small
scale, writing some of the code by hand is not an issue. However, as models
get larger this is not only tedious, but highly error-prone. Existing tools in
the domain of rule-based modelling [96, 97] are already used, but should be
more tightly integrated in order to avoid manual curation steps. The second
aspect to focus on is the mathematical formulation. The current approach
uses a system of ODEs to represent the protein, from its synthesis, through
trafficking and palmitoylation, to its degradation. This is then integrated
in order to obtain dynamic responses. However, under certain conditions
it is possible to reduce this to a first order a system and therefore solve it
analytically instead of performing a costly numerical integration.
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As detailed in [53], the enzyme reactions are modelled according to tQSSA
kinetics:

ν =
VmaxS1

Km,1(1+ E/Km,1 +
∑
Si/Km,i)

(79)

The term
∑
Si/Km,i is also called the competition term, as it takes into

account all substrates that can bind to the catalyzing enzyme and their
affinity to this enzyme. In all three models of palmitoylation, these com-
peting species include proteins with different labelling states. Because we
have made the reasonable assumption that labelling does not affect the re-
action kinetics, the binding affinity of these different proteins is the same.
In other words, Km,i does not change when a protein is labelled. During the
pulse chase, labelled species gradually replace the non-labelled ones, and
vice-versa during the chase phase. This means that

∑
Si is constant, and

therefore the competition term is actually constant. We can therefore sim-
plify the reaction equation to the following 1st order reaction rate equation:

ν =
Vmax

Km,1Λ
S1

This opens up many new exciting possibilities. The first is the potential
computational speedup of not needing to numerically integrate the system
of ODEs. These first order equations may be solved analytically given the
starting conditions. The second is the possibility of describing the system
as a set of eigenvalues and eigenvectors. It may therefore be interesting to
extract the dominant eigenvalues from the experimental data first and cali-
brate the model with these rather than performing a numerical or analytical
integration.

In any case, the important observation is that the sum of labelled and
unlabelled species is constant during the various labelling experiments. Ex-
ploiting this will surely lead to many more interesting avenues. One of the
first problems to deal with will be determining the steady state. Previously,
both the steady state and dynamic response were determined by the kinetic
parameters. However, the dynamic responses measured in the experimen-
tal data do not provide any direct information on the steady state. There is
also a possibility of there being multiple states consistent with experimen-
tal data. Devising a good formulation to tackle this problem will be key to
taking these models further.

Some fields which may be of help with this challenges include Optimal
Design and Scientific Machine Learning. Optimal design could potentially
be used in order to design experiments that extract the maximum informa-
tion out of the system [173–176]. In this way, it is possible to stimulate the
system in such a way that a maximum number of parameters and charac-
teristics may be estimated. Scientific machine learning is a promising new
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6.1 future outlook

field that combines the ability of describing non-linear systems while still
retaining interpretability of the results [177, 178]. For parts of the palmi-
toylation which are non-linear as a function of system parameters, like the
steady-state, this could be a promising avenue to investigate.

6.1.2 Uncertainty in Metabolic models

High dimensional models are a challenge for GSA, as the extensive sampling
means the computational cost is high. Although the method of grouping
parameters together is one way alleviate this problem, investigating other
uncertainty quantification methods could reveal ones better suited to large
scale metabolic models. Polynomial chaos expansion [179–185], for exam-
ple, may be interesting to investigate.

Different sensitivity indices are another aspect that would be worth in-
vestigating. Approaches using the Kolmogorov-Smirnov test exist [186] and
do not rely on the assumption of normally distributed parameters as Sobol
indices do. Whether the choice of sensitivity index may ease the compu-
tational cost isn’t clear, but a comparison of methods available would be
useful to determine the most suitable.

Kinetic models of metabolism are still relatively young, and a lot remains
to be explored. The kinetic parameter space is large and not well under-
stood nor characterised. Classification approaches such as Support Vector
Machines or Classification Trees would be a good first step in trying to
discretise this space into several subspaces which characteristic behaviours.
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A P P E N D I X



A E N Z Y M E K I N E T I C S

In this chapter we will present some more detail related to the derivation
and validity of the various enzyme kinetics discussed in 2.1.3.

a.1 equilibrium approximation

As previously mentioned in 2.1.3, the equilibrium approximation is made
by assuming the enzyme and substrate form an immediate equilibrium. In
mathematical terms this means:

kb[E][S] = kub[ES] (80)

From the conservation law of the enzyme, the free enzyme is the total
enzyme minus the enzyme-substrate complex:

[E] = [E]T − [ES] (81)

We can use this conservation law to replace the free enzyme [E] in the
equilibrium approximation:

kb([E]T − [ES])[S] = kub[ES]

kb[E]T [S] − kb[ES][S] = kub[ES]

kub[ES] − kb[ES][S] = kb[E]T [S]

[ES](kub − kb[S]) = kb[E]T [S]

[ES] =
kb[E]T [S]

kub − kb[S]

[ES] =
kb[E]T [S]

kb(
kub
kb

− [S])

(82)

By introducting the dissociation constant Kd = kub
kb

, we can simplify the
equation to:

[ES] =
[E]T [S]

Kd − [S]
(83)

Given that the rate of change of [P] is kcat[ES], we can now write:

ν =
d[P]

dt
=
Vmax[S]

Kd − [S]
(84)
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A.2 quasi steady-state approximation

Where Vmax = kcat[E]T .
This is the same approximation and derivation originally made by Michaelis

and Menten in 1913. The core approximation rests on the enzyme and sub-
strate being in constant equilibrium during the reaction. This only works
if kcat � kub, that is the rate constant of product formation is significantly
less than that of enzyme-substrate dissociation. In other words, the sub-
strate and enzyme must reach equilibrium on a much faster time scale than
that of product formation.

a.2 quasi steady-state approximation

The Quasi Steady-State Approximation (QSSA) takes a slightly different ap-
proach than the equilibrium approximation, assuming that the concentra-
tion of the enzyme-substrate complex [ES] does not change on the time
scale of product formation. We can then take the differential equation for
ES and set it to zero to obtain the following:

d[ES]

dt
= kb[E][S] − kub[ES] − kcat[ES] = 0

kb[E][S] = kub[ES] − kcat[ES]
(85)

We can notice that this is the same as the equilibrium approximation,
but with the additional term kcat[ES]. We can therefore perform the same
derivation as before, but with the Michaelis constant KM = kub+kcat

kb
. This

leads to the equation:

ν =
d[P]

dt
=
Vmax[S]

KM − [S]
(86)

Compared to the equilibrium approximation, QSSA does not require the
enzyme and substrate to be in immediate equilibrium. The criteria for va-
lidity is that the enzyme concentration [E] be much less than the substrate
concentration [S] or the Michaelis constant KM.

Although both Calnexin and CLiMP63 are abundant proteins [23, 94], no
information concerning the relative abundance of their associated enzymes
could be found. Furthermore, the relative abundance may change across
cell lines or between cellular compartments. No information as to the copies
per cell of CMG2 could be found.

a.3 total quasi steady-state approximation

The full derivation of the Total Quasi Steady-State Approximation (tQSSA)
is relatively involved and beyond the scope of this thesis [54]. However, the
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A.3 total quasi steady-state approximation

starting assumptions can be given for perspective compared to the previous
two approximations.

The tQSSA starts by defining a total substrate and enzyme quantities:

ST = S+ ES

ET = E+ ES
(87)

Contrary to the QSSA, it is actually shown that a quasi steady-state of
the enzyme-substrate complex is reached. For more detail, the reader is
referred to the original work [54].

This approximation is valid when

K

2St
(

Et +Km + St√
(Et +Km + St)2 − 4EtSt

− 1)� 1 (88)

In general, this is valid for almost all in vivo conditions [53], both when
enzyme concentrations are high or low relative to the substrate concentra-
tion.
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B C L I M P 6 3 M O D E L

b.1 model structure

Below is a copy of the rule-based modelling file used to generate the ODEs
for the CLiMP63 model. All parameter units related to time are in hours.
Other parameters related to concentrations, volumes, surfaces etc are in
arbitrary units. This is because no experimental data is available in absolute
units.

1 begin model

begin parameters

S35switch 1 #35S Labelling

switch (0=off 1=on)

H3Switch 0 #3H labelling

switch (0=off 1=on)

6 ks 13

kfnp 30

kfp 30

kdim 10

kbdim 10

11 kcat6 7931

KM6 455

KM6U 455

KM6dim 455

kcatB6 18.5

16 KMb6 39.2

KMb6U 39.2

KMb6dim 39.2

kcat2 59.7

KM2PM 99.6

21 KM2CP 99.6

kcatB2 102.9

KMb2PM 163.7

KMb2CP 163.7

26 kdu0 1.19

kdu1 1.19

kdC0ER 4.04

kdC1ER .03

kdC0PM .007

31 kdC1PM .02
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B.1 model structure

kdDim2 1

kdDim1 1

kdDim0 1

36 vol_EC 47 # effective compartment volumes

vol_PM 4.3

vol_CP 23.9

vol_ER 1.5

vol_EX 4.0

41

knpER_CP 1

knpCP_ER 1

knpCP_PM 1

knpPM_CP 1

46 kpER_CP 1

kpCP_ER 1

kpCP_PM 1

kpPM_CP 1

51 kptoEX 1

kpfromEX 1

knptoEX 1

knpfromEX 1

56 kpat2CP 0

kpat2PM 0

kapt2PM 0

kapt2CP 0

61 kdumB 0

kdumUB 0

end parameters

66 begin compartments

EC 3 vol_EC #External environment

PM 2 vol_PM EC #Plasma membrane

CP 3 vol_CP PM #Cytoplasm

EX 2 vol_EX CP #Exosome

71 EN 2 vol_ER CP #Endoplasmic reticulum

end compartments

begin molecule types

76 DHHC6(DHHC)

DHHC2(DHHC)

Climp63(L~off~on,F~y~n,C100~U~P~PL)
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B.1 model structure

APTpm(B,S1~U~P)

APTer(B,S1~U~P)

81 Dim(L~0~1~2,C~0~1~2,CL~0~1~2)

DHHC6Dum()

Synthesis() # structureless molecule for species

synthesis

Degradation() # structureless molecule for species

degradation

end molecule types

86

begin species

@EN:DHHC6(DHHC) 0.1526

@PM:DHHC2(DHHC) 0.1522

91 @CP:DHHC2(DHHC) 0.1522

@EN:Climp63(L~off,F~n,C100~U) 0

@EN:Climp63(L~on,F~n,C100~U) 0

@PM:APTpm(B,S1~P) 0.1523

@CP:APTpm(B,S1~P) 0.1523

96 @EN:APTer(B,S1~P) 0.1523

@EN:Synthesis() 1

@EN:Degradation() 0

@PM:Degradation() 0

@EN:Dim(L~0,C~0,CL~0) 0

101 @EN:DHHC6Dum() 0

end species

begin observables

# Enzymes

106 Molecules DHHC6free DHHC6(DHHC)@EN

Molecules DHHC2PM DHHC2(DHHC)@PM

Molecules DHHC2CP DHHC2(DHHC)@CP

Molecules APTERfree APTer(B,S1~P)@EN

Molecules APTPM APTpm(B,S1~P)@PM

111 Molecules APTCP APTpm(B,S1~P)@CP

# Climp and dimer

Molecules ClimpU0ER Climp63(F~n,C100~U)@EN

Molecules ClimpU1ER Climp63(F~n,C100~P)@EN, Climp63(F~n,C100~PL

)@EN

Molecules ClimpC0ER Climp63(F~y,C100~U)@EN

116 Molecules ClimpC1ER Climp63(F~y,C100~P)@EN, Climp63(F~y,C100~PL

)@EN

Molecules Dim00 Dim(C~0,CL~0),Dim(C~0,CL~0)

Molecules Dim01 Dim(C~1,CL~0),Dim(C~1,CL~0), Dim(C~0,CL~1),Dim

(C~0,CL~1)

Molecules Dim11 Dim(C~2,CL~0),Dim(C~2,CL~0), Dim(C~0,CL~2),Dim

(C~0,CL~2), Dim(C~1,CL~1),Dim(C~1,CL~1)
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B.1 model structure

Molecules ClimpC0CP Climp63(F~y,C100~U)@CP

121 Molecules ClimpC1CP Climp63(F~y,C100~P)@CP, Climp63(F~y,C100~PL

)@CP

Molecules ClimpC0PM Climp63(F~y,C100~U)@PM

Molecules ClimpC1PM Climp63(F~y,C100~P)@PM, Climp63(F~y,C100~PL

)@PM

Molecules ClimpC0EX Climp63(F~y,C100~U)@EX

Molecules ClimpC1EX Climp63(F~y,C100~P)@EX, Climp63(F~y,C100~PL

)@EX

126 #35S labelled species

Molecules ClimpU035S Climp63(L~on,F~n)@EN

Molecules ClimpC1ER35s Climp63(L~on,F~y,C100~P)@EN, Climp63(L~

on,F~y,C100~PL)@EN

Molecules ClimpDim01_35S Dim(L~1,C~1,CL~0), Dim(L~1,C~0,CL~1),

Dim(L~2,C~1,CL~0),Dim(L~2,C~1,CL~0), Dim(L~2,C~0,CL~1),

Dim(L~2,C~0,CL~1)

Molecules ClimpDim11_35S Dim(L~1,C~2,CL~0), Dim(L~1,C~0,CL~2),

Dim(L~1,C~1,CL~1), Dim(L~2,C~2,CL~0),Dim(L~2,C~2,CL~0),

Dim(L~2,C~0,CL~2),Dim(L~2,C~0,CL~2), Dim(L~2,C~1,CL~1),Dim(

L~2,C~1,CL~1)

131 Molecules ClimpC1CP35S Climp63(L~on,F~y,C100~P)@CP, Climp63(L~

on,F~y,C100~PL)@CP

Molecules ClimpC1PM35s Climp63(L~on,F~y,C100~P)@PM, Climp63(L~

on,F~y,C100~PL)@PM

Molecules ClimpC1EX35s Climp63(L~on,F~y,C100~P)@EX, Climp63(L~

on,F~y,C100~PL)@EX

Molecules ClimpC0ER35s Climp63(L~on,F~y,C100~U)@EN

Molecules ClimpDim00_35S Dim(L~1,C~0,CL~0), Dim(L~2,C~0,CL~0),

Dim(L~2,C~0,CL~0)

136 Molecules ClimpC0CP35S Climp63(L~on,F~y,C100~U)@CP

Molecules ClimpC0PM35s Climp63(L~on,F~y,C100~U)@PM

Molecules ClimpC0EX35s Climp63(L~on,F~y,C100~U)@EX

# 3H labelled species

141 Molecules ClimpC1ER3h Climp63(F~y,C100~PL)@EN

Molecules Dim01_3H Dim(C~0,CL~1), Dim(C~1,CL~1)

Molecules Dim11_3H Dim(C~0,CL~2), Dim(C~0,CL~2)

Molecules ClimpC1CP3h Climp63(F~y,C100~PL)@CP

Molecules ClimpC1PM3h Climp63(F~y,C100~PL)@PM

146 Molecules ClimpC1EX3h Climp63(F~y,C100~PL)@EX

#Totals

Molecules Climp_35Slabelled Climp63(L~on), Dim(L~1), Dim(L~2),

Dim(L~2)

Molecules Climp_3Hlabelled Climp63(C100~PL), Dim(CL~1), Dim(CL

~2), Dim(CL~2) # Dimer counted twice, because two climp

proteins
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B.1 model structure

Molecules ClimpDim0 Dim(C~0,CL~0), Dim(C~1,CL~0), Dim(C~0,CL~1)

# All dimer that can be palmit, used for rxn rates

151 Molecules ClimpDim1 Dim(C~2,CL~0), Dim(C~1,CL~0), Dim(C~0,CL~1)

, Dim(C~1,CL~1), Dim(C~0,CL~2) # All dimer that can be

depalmit, used for rxn rates

Molecules ClimpER Climp63()@EN, Dim(), Dim()

Molecules ClimpERFolded Climp63(F~y)@EN, Dim(), Dim()

Molecules Dimtot Dim()

Molecules CLimpCP Climp63()@CP

156 Molecules ClimpPM Climp63()@PM

Molecules ClimpEX Climp63()@EX

Molecules Climptot Climp63(), Dim(), Dim()

Molecules ClimptotFolded Climp63(F~y), Dim(), Dim()

161 end observables

begin reaction rules

####SYNTHESIS AND FOLDING (climp63):

Synthesis() -> Synthesis()+Climp63(L~off,F~n,C100~U)@EN (1-S35switch)*
ks

166 Climp63(F~n,C100~U)@EN -> Climp63(F~y,C100~U)@EN kfnp

Climp63(F~n)@EN -> Climp63(F~y)@EN

kfp exclude_reactants(1,Climp63(C100~U))

####S35 LABELLING REACTIONS

Synthesis() -> Synthesis()+Climp63(L~on,F~n,C100~U)@EN S35switch*ks

171 ####Dimerisation

Climp63(L~off,F~y,C100~U)@EN + Climp63(L~off,F~y,C100~U)@EN <-> Dim(L

~0,C~0,CL~0)@EN kdim, kbdim

Climp63(L~off,F~y,C100~P)@EN + Climp63(L~off,F~y,C100~U)@EN <-> Dim(L

~0,C~1,CL~0)@EN kdim, kbdim

Climp63(L~off,F~y,C100~P)@EN + Climp63(L~off,F~y,C100~P)@EN <-> Dim(L

~0,C~2,CL~0)@EN kdim, kbdim

Climp63(L~off,F~y,C100~P)@EN + Climp63(L~off,F~y,C100~PL)@EN <-> Dim(L

~0,C~1,CL~1)@EN kdim, kbdim

176 Climp63(L~off,F~y,C100~PL)@EN + Climp63(L~off,F~y,C100~U)@EN <-> Dim(L

~0,C~0,CL~1)@EN kdim, kbdim

Climp63(L~off,F~y,C100~PL)@EN + Climp63(L~off,F~y,C100~PL)@EN <-> Dim(L

~0,C~0,CL~2)@EN kdim, kbdim

Climp63(L~on,F~y,C100~U)@EN + Climp63(L~off,F~y,C100~U)@EN <-> Dim(L~1,

C~0,CL~0)@EN kdim, kbdim

Climp63(L~on,F~y,C100~P)@EN + Climp63(L~off,F~y,C100~U)@EN <-> Dim(L~1,

C~1,CL~0)@EN kdim, kbdim

181 Climp63(L~on,F~y,C100~P)@EN + Climp63(L~off,F~y,C100~P)@EN <-> Dim(L~1,

C~2,CL~0)@EN kdim, kbdim
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B.1 model structure

Climp63(L~on,F~y,C100~P)@EN + Climp63(L~off,F~y,C100~PL)@EN <-> Dim(L

~1,C~1,CL~1)@EN kdim, kbdim

Climp63(L~on,F~y,C100~PL)@EN + Climp63(L~off,F~y,C100~U)@EN <-> Dim(L

~1,C~0,CL~1)@EN kdim, kbdim

Climp63(L~on,F~y,C100~PL)@EN + Climp63(L~off,F~y,C100~PL)@EN <-> Dim(L

~1,C~0,CL~2)@EN kdim, kbdim

186 Climp63(L~on,F~y,C100~U)@EN + Climp63(L~on,F~y,C100~U)@EN <-> Dim(L~2,C

~0,CL~0)@EN kdim, kbdim

Climp63(L~on,F~y,C100~P)@EN + Climp63(L~on,F~y,C100~U)@EN <-> Dim(L~2,C

~1,CL~0)@EN kdim, kbdim

Climp63(L~on,F~y,C100~P)@EN + Climp63(L~on,F~y,C100~P)@EN <-> Dim(L~2,C

~2,CL~0)@EN kdim, kbdim

Climp63(L~on,F~y,C100~P)@EN + Climp63(L~on,F~y,C100~PL)@EN <-> Dim(L~2,

C~1,CL~1)@EN kdim, kbdim

Climp63(L~on,F~y,C100~PL)@EN + Climp63(L~on,F~y,C100~U)@EN <-> Dim(L~2,

C~0,CL~1)@EN kdim, kbdim

191 Climp63(L~on,F~y,C100~PL)@EN + Climp63(L~on,F~y,C100~PL)@EN <-> Dim(L

~2,C~0,CL~2)@EN kdim, kbdim

####TRANSPORT REACTIONS:

Climp63(F~y,C100~U)@EN -> Climp63(F~y,C100~U)@CP

knpER_CP

Climp63(F~y,C100~U)@CP -> Climp63(F~y,C100~U)@EN

knpCP_ER

196 Climp63(F~y,C100~U)@CP -> Climp63(F~y,C100~U)@PM

knpCP_PM

Climp63(F~y,C100~U)@PM -> Climp63(F~y,C100~U)@CP

knpPM_CP

Climp63(F~y,C100)@EN -> Climp63(F~y,C100)@CP kpER_CP

exclude_reactants(1,Climp63(C100~U)@EN)

Climp63(F~y,C100)@CP -> Climp63(F~y,C100)@EN kpCP_ER

exclude_reactants(1,Climp63(C100~U)@CP)

Climp63(F~y,C100)@CP -> Climp63(F~y,C100)@PM kpCP_PM

exclude_reactants(1,Climp63(C100~U)@CP)

201 Climp63(F~y,C100)@PM -> Climp63(F~y,C100)@CP kpPM_CP

exclude_reactants(1,Climp63(C100~U)@PM)

Climp63(F~y,C100~U)@PM -> Climp63(F~y,C100~U)@EX knptoEX

Climp63(F~y,C100)@PM -> Climp63(F~y,C100)@EX kptoEX

exclude_reactants(1,Climp63(C100~U)@PM)

Climp63(F~y,C100~U)@EX -> Climp63(F~y,C100~U)@PM

knpfromEX

206 Climp63(F~y,C100)@EX -> Climp63(F~y,C100)@PM

kpfromEX exclude_reactants(1,Climp63(C100~U)@EX)
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B.1 model structure

DHHC2()@PM -> DHHC2()@CP

kpat2CP

DHHC2()@CP -> DHHC2()@PM

kpat2PM

APTpm()@PM -> APTpm()@CP

kapt2CP

211 APTpm()@CP -> APTpm()@PM

kapt2PM

####PALMITOYLATION:

Climp63(F~n,C100~U)@EN -> Climp63(F~n,C100~P)@EN (1-

H3Switch)*kcat6*DHHC6free/KM6U/(1+ClimpC0ER/KM6+ClimpU0ER/KM6U+

ClimpDim0/KM6dim+DHHC6free/KM6U)

Climp63(F~y,C100~U)@EN -> Climp63(F~y,C100~P)@EN (1-

H3Switch)*kcat6*DHHC6free/KM6/(1+ClimpC0ER/KM6+ClimpU0ER/KM6U+

ClimpDim0/KM6dim+DHHC6free/KM6)

216 Climp63(F~y,C100~U)@PM -> Climp63(F~y,C100~P)@PM (1-

H3Switch)*kcat2*DHHC2PM/(ClimpC0PM+DHHC2PM+KM2PM)

Climp63(F~y,C100~U)@CP -> Climp63(F~y,C100~P)@CP (1-

H3Switch)*kcat2*DHHC2CP/(ClimpC0CP+DHHC2CP+KM2CP)

Dim(C~0)@EN -> Dim(C~1)@EN

(1-H3Switch)*kcat6*DHHC6free/KM6dim/(1+

ClimpC0ER/KM6+ClimpU0ER/KM6U+ClimpDim0/KM6dim+DHHC6free/KM6dim)

exclude_reactants(1,Dim(CL~2)@EN)

Dim(C~1,CL~0)@EN -> Dim(C~2,CL~0)@EN

(1-H3Switch)*kcat6*DHHC6free/KM6dim/(1+ClimpC0ER/KM6+

ClimpU0ER/KM6U+ClimpDim0/KM6dim+DHHC6free/KM6dim)

221 ####H3 LABELLING REACTIONS

Climp63(F~n,C100~U)@EN -> Climp63(F~n,C100~PL)@EN

H3Switch*kcat6*DHHC6free/KM6U/(1+ClimpC0ER/KM6+ClimpU0ER/KM6U+

DHHC6free/KM6U)

Climp63(F~y,C100~U)@EN -> Climp63(F~y,C100~PL)@EN

H3Switch*kcat6*DHHC6free/KM6/(1+ClimpC0ER/KM6+ClimpU0ER/KM6U+

DHHC6free/KM6)

Climp63(F~y,C100~U)@PM -> Climp63(F~y,C100~PL)@PM

H3Switch*kcat2*DHHC2PM/(ClimpC0PM+DHHC2PM+KM2PM)

Climp63(F~y,C100~U)@CP -> Climp63(F~y,C100~PL)@CP

H3Switch*kcat2*DHHC2CP/(ClimpC0CP+DHHC2CP+KM2CP)

226 Dim(CL~0)@EN -> Dim(CL~1)@EN

H3Switch*kcat6*DHHC6free/KM6dim/(1+ClimpC0ER/KM6+

ClimpU0ER/KM6U+ClimpDim0/KM6dim+DHHC6free/KM6dim) exclude_reactants

(1,Dim(C~2)@EN)

Dim(C~0,CL~1)@EN -> Dim(C~0,CL~2)@EN

H3Switch*kcat6*DHHC6free/KM6dim/(1+ClimpC0ER/KM6+ClimpU0ER/

KM6U+ClimpDim0/KM6dim+DHHC6free/KM6dim)
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B.1 model structure

####DEPALMITOYLATION

Climp63(F~n,C100)@EN -> Climp63(F~n,C100~U)@EN kcatB6*
APTERfree/KMb6U/(1+ClimpC1ER/KMb6+ClimpU1ER/KMb6U+ClimpDim1/KMb6dim+

APTERfree/KMb6U) exclude_reactants(1,Climp63(C100~U)@EN)

231 Climp63(F~y,C100)@EN -> Climp63(F~y,C100~U)@EN kcatB6*
APTERfree/KMb6/(1+ClimpC1ER/KMb6+ClimpU1ER/KMb6U+ClimpDim1/KMb6dim+

APTERfree/KMb6) exclude_reactants(1,Climp63(C100~U)@EN

)

Climp63(F~y,C100)@PM -> Climp63(F~y,C100~U)@PM kcatB2*
APTPM/(ClimpC1PM+APTPM+KMb2PM) exclude_reactants(1,Climp63(C100~U)

@PM)

Climp63(F~y,C100)@CP -> Climp63(F~y,C100~U)@CP kcatB2*
APTCP/(ClimpC1CP+APTCP+KMb2CP) exclude_reactants(1,Climp63(C100~U)

@CP)

Dim(C~2)@EN -> Dim(C~1)@EN

kcatB6*APTERfree/KMb6dim/(1+ClimpC1ER/KMb6+

ClimpU1ER/KMb6U+ClimpDim1/KMb6dim+APTERfree/KMb6dim)

Dim(C~1)@EN -> Dim(C~0)@EN

kcatB6*APTERfree/KMb6dim/(1+ClimpC1ER/KMb6+

ClimpU1ER/KMb6U+ClimpDim1/KMb6dim+APTERfree/KMb6dim)

236 Dim(CL~2)@EN -> Dim(CL~1)@EN

kcatB6*APTERfree/KMb6dim/(1+ClimpC1ER/KMb6+ClimpU1ER

/KMb6U+ClimpDim1/KMb6dim+APTERfree/KMb6dim)

Dim(CL~1)@EN -> Dim(CL~0)@EN

kcatB6*APTERfree/KMb6dim/(1+ClimpC1ER/KMb6+ClimpU1ER

/KMb6U+ClimpDim1/KMb6dim+APTERfree/KMb6dim)

####DEGRADATION:

Climp63(F~n,C100~U)@EN -> Degradation()

kdu0

241 Climp63(F~y,C100~U)@EN -> Degradation()

kdC0ER

Climp63(F~y,C100~U)@PM -> Degradation()

kdC0PM

Climp63(F~n,C100)@EN -> Degradation()

kdu1 exclude_reactants(1,Climp63(C100~U)@EN)

Climp63(F~y,C100)@EN -> Degradation()

kdC1ER exclude_reactants(1,Climp63(C100~U)@EN)

Climp63(F~y,C100)@PM -> Degradation()

kdC1PM exclude_reactants(1,Climp63(C100~U)@PM)

246 Dim(C~2)@EN -> Degradation()

kdDim2

Dim(CL~2)@EN -> Degradation()

kdDim2

Dim(C~1,CL~1)@EN -> Degradation()

kdDim2
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Dim(C~1,CL~0)@EN -> Degradation()

kdDim1

Dim(C~0,CL~1)@EN -> Degradation()

kdDim1

251 Dim(C~0,CL~0)@EN -> Degradation()

kdDim0

###Dummy Protein

DHHC6(DHHC) <-> DHHC6Dum() kdumB, kdumUB

256

end reaction rules

end model

generate_network({})

261 writeMfile()

#writeMexfile()

visualize({type=>"ruleviz_operation"})

visualize({type=>"contactmap",suffix=>"optionalstring"})

visualize({type=>"regulatory",background=>1,suffix=>"a"})

266 #simulate({method=>"ode", t_end=>10000,n_steps=>10000})

b.2 parameter values

Parameter name Median Standard deviation

ks -2.0256008564790884 0.02795497206699842

kfnp -0.22792859062646453 0.022046607247206022

kfp -10.986950473902606 0.005399593434487685

kdim 3.7402185729924087 0.027681752352939425

kbdim -4.231842471417499 0.03216878424271212

kcat6 6.025103304137952 0.026434575608411136

KM6 -4.746716337116787 0.0034480714554681233

KM6U 10.198106634092047 0.019444066596300564

KM6dim 0.9785463193841266 0.029990459517971576

kcatB6 -0.05811585963684825 0.013158089700177327

KMb6 -4.32050376160686 0.031677857248313936

KMb6U 10.108344729836057 0.016436027551300504

KMb6dim 0.8928453249088466 0.036185825025475474

kcat2 5.382777118578877 0.02789322782189646

KM2PM -3.166805955034833 0.027053944411323923
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KM2CP 10.833456759015743 0.01877041110658976

kcatB2 -1.2087648630629442 0.03399117682271176

KMb2PM 1.630652902788448 0.03545889699580471

KMb2CP 10.653272022177566 0.034434099530748066

kdu0 -1.233330088867322 0.01894330159355836

kdu1 10.176669072016294 0.01851644078584501

kdC0ER -1.205196450359896 0.032804336812479594

kdC1ER -1.6191482766437688 0.011800917761386505

kdC0PM 4.732382205950643 0.027137996232918057

kdC1PM -1.7152663105956325 0.009440915906751658

kdDim2 -10.0 0.0

kdDim1 -10.0 0.0

kdDim0 -10.0 0.0

vol_EC -2.88108253149888 0.034807244528799616

vol_PM -1.3502992113047823 0.03134359475684689

vol_CP 0.771907515439177 0.03259859661418567

vol_ER 4.50675309468322 0.02729491746969013

vol_EX 1.6646941619765339 0.03454202510335197

knpER_CP 3.835998737967254 0.022373417708705975

knpCP_ER -1.1715411507942917 0.03374756408899087

knpCP_PM 2.3469793738019913 0.02823334979919353

knpPM_CP 1.5340031275777932 0.031693107472298365

kpER_CP -1.1432433478405555 0.0159001012748975

kpCP_ER -1.0363486797559813 0.031077187208813493

kpCP_PM 0.6644279120381184 0.035455470147886255

kpPM_CP -5.084879634217634 0.03292930021537078

kptoEX -10.031049524497575 0.007235770994327002

kpfromEX -10.993893136952806 0.0036536852038298565

knptoEX -10.68548595092734 0.025130723423288284

knpfromEX -10.85434070905005 0.02057406277453447

kpat2CP -10.649071645554168 0.028116339721010446

kpat2PM -10.121270199652798 0.015345187001212837

kapt2PM -10.92831118947554 0.01389949731321634

kapt2CP -10.21524882052428 0.02013574014720274

kdumB 0.8091328932319288 0.036037335425859116
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kdumUB 3.0450585395082506 0.03324393531742347

PAT6 -3.163809543072885 0.028221967916535362

PAT2 -0.9805305538459812 0.028499975665107667

PAT2 CP -10.346284174569686 0.028321940408701674

APT PM -2.1473667508428544 0.03130224384066048

APT CP -10.710104269479492 0.02504198650478478

APT ER 0.040325538638002104 0.03090132228661049

Si PAT6 3.959806373964418 0.027091604966799507

Si PAT2 2.391326207728498 0.031367135353299914

Ov PAT6 1.65 1.7808144545380086e-15

Table 7
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C C M G 2 M O D E L

c.1 model structure

Below is a copy of the rule-based modelling file used to generate the ODEs
for the CMG2 model. All parameter units related to time are in hours. Other
parameters related to concentrations, volumes, surfaces etc are in arbitrary
units. This is because no experimental data is available in absolute units.

begin model

begin parameters

4 S35switch 1 #35S Labelling

switch (0=off 1=on)

H3switch 0 #3H labelling

switch (0=off 1=on)

ks 13

kf 5

# Transport

9 k_go 1

k_pm_0 1

k_pm_1 1

k_pm_2 1

k_pm_3 1

14 k_to_end 1

k_from_end 1

# Palmitoylation

kcat7 1

19 KM7_0_1 1

KM7_0_2 1

KM7_0_3 1

KM7_1_2 1

KM7_1_3 1

24 KM7_2_1 1

KM7_2_3 1

KM7_3_1 1

KM7_3_2 1

KM7_12 1

29 KM7_13 1

KM7_23 1

kcat3 1

KM3_0_1 1
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C.1 model structure

KM3_0_2 1

34 KM3_0_3 1

KM3_1_2 1

KM3_1_3 1

KM3_2_1 1

KM3_2_3 1

39 KM3_3_1 1

KM3_3_2 1

KM3_12 1

KM3_13 1

KM3_23 1

44

# Depalmitoylation

kcat_APTer 1

KM_APTer_1 1

KM_APTer_2 1

49 KM_APTer_3 1

KM_APTer_12_1 1

KM_APTer_12_2 1

KM_APTer_13_1 1

KM_APTer_13_3 1

54 KM_APTer_23_2 1

KM_APTer_23_3 1

KM_APTer_123_1 1

KM_APTer_123_2 1

KM_APTer_123_3 1

59

kcat_APTgo 1

KM_APTgo_1 1

KM_APTgo_2 1

KM_APTgo_3 1

64 KM_APTgo_12_1 1

KM_APTgo_12_2 1

KM_APTgo_13_1 1

KM_APTgo_13_3 1

KM_APTgo_23_2 1

69 KM_APTgo_23_3 1

KM_APTgo_123_1 1

KM_APTgo_123_2 1

KM_APTgo_123_3 1

74 kcat_APTpm 1

KM_APTpm_1 1

KM_APTpm_2 1

KM_APTpm_3 1

KM_APTpm_12_1 1

79 KM_APTpm_12_2 1
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C.1 model structure

KM_APTpm_13_1 1

KM_APTpm_13_3 1

KM_APTpm_23_2 1

KM_APTpm_23_3 1

84 KM_APTpm_123_1 1

KM_APTpm_123_2 1

KM_APTpm_123_3 1

# Enzyme competition terms

89 # PAT7_compet 1

# PAT3_compet 1

# APTer_compet 1

# APTgo_compet 1

94 # Degradation

kd_nf_0_er 1

kd_nf_1_er 1

kd_nf_2_er 1

kd_nf_3_er 1

99 kd_nf_12_er 1

kd_nf_13_er 1

kd_nf_23_er 1

kd_nf_123_er 1

104 kd_f_0_er 1

kd_f_1_er 1

kd_f_2_er 1

kd_f_3_er 1

kd_f_12_er 1

109 kd_f_13_er 1

kd_f_23_er 1

kd_f_123_er 1

# kd_nf_0_go 1

114 # kd_nf_1_go 1

# kd_nf_2_go 1

# kd_nf_3_go 1

# kd_nf_12_go 1

# kd_nf_13_go 1

119 # kd_nf_23_go 1

# kd_nf_123_go 1

kd_f_0_go 1

kd_f_1_go 1

124 kd_f_2_go 1

kd_f_3_go 1

kd_f_12_go 1
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C.1 model structure

kd_f_13_go 1

kd_f_23_go 1

129 kd_f_123_go 1

# kd_nf_0_pm 1

# kd_nf_1_pm 1

# kd_nf_2_pm 1

134 # kd_nf_3_pm 1

# kd_nf_12_pm 1

# kd_nf_13_pm 1

# kd_nf_23_pm 1

# kd_nf_123_pm 1

139

kd_f_0_pm 1

kd_f_1_pm 1

kd_f_2_pm 1

kd_f_3_pm 1

144 kd_f_12_pm 1

kd_f_13_pm 1

kd_f_23_pm 1

kd_f_123_pm 1

# Compartment volumes and surfaces:

149 vol_EC 1

A_PM 0.1

vol_CP 0.7

A_END 0.01

A_ER 1

154 A_GO 0.5

# Parameters relating to experimental conditions, not used when

# integrating the system of ODEs, only when modifying

parameters and

# initial conditions as a function of experimental conditions (

mutations

# etc.)

159 #KR_degrade 1

#R3 1

#R7 1

#APTer 1

#APTgo 1

164 #APTpm 1

#SiR3 1

#SiR7 1

end parameters

169 begin compartments

EC 3 vol_EC # External environment

PM 2 A_PM EC # Plasma membrane
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CP 3 vol_CP PM # Cytoplasm

END 2 A_END CP # Endosome

174 EN 2 A_ER CP # Endoplasmic reticulum

GO 2 A_GO CP # Golgi apparatus

end compartments

begin molecule types

179 PAT7()

PAT3()

CMG2(L~off~on,F~y~n,C1~U~P~PL,C2~U~P~PL,C3~U~P~PL)

APTpm()

APTgo()

184 APTer()

Synthesis() # structureless molecule for species

synthesis

Degradation() # structureless molecule for species

degradation

end molecule types

189 begin species

@EN:PAT7() 0.1526

@GO:PAT3() 0.1522

@EN:APTer() 0.1523

@GO:APTgo() 0.1523

194 @PM:APTpm() 0.1523

@EN:CMG2(L~off,F~n,C1~U,C2~U,C3~U) 0

@EN:Synthesis() 1

end species

199 begin observables

# Enzymes

Molecules PAT7 PAT7()@EN

Molecules PAT3 PAT3()@GO

Molecules APTer APTer()@EN

204 Molecules APTgo APTgo()@GO

Molecules APTpm APTpm()@PM

# Palmit states

Species CMG2_0_er CMG2(C1~U,C2~U,C3~U)@EN

Species CMG2_1_er CMG2(C1~P,C2~U,C3~U)@EN, CMG2(

C1~PL,C2~U,C3~U)@EN

209 Species CMG2_2_er CMG2(C1~U,C2~P,C3~U)@EN, CMG2(

C1~U,C2~PL,C3~U)@EN

Species CMG2_3_er CMG2(C1~U,C2~U,C3~P)@EN, CMG2(

C1~U,C2~U,C3~PL)@EN

Species CMG2_12_er CMG2(C1~P,C2~P,C3~U)@EN, CMG2(

C1~P,C2~PL,C3~U)@EN, CMG2(C1~PL,C2~P,C3~U)@EN, CMG2(C1~PL,C2

~PL,C3~U)@EN
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Species CMG2_13_er CMG2(C1~P,C2~U,C3~P)@EN, CMG2(

C1~P,C2~U,C3~PL)@EN, CMG2(C1~PL,C2~U,C3~P)@EN, CMG2(C1~PL,C2

~U,C3~PL)@EN

Species CMG2_23_er CMG2(C1~U,C2~P,C3~P)@EN, CMG2(

C1~U,C2~P,C3~PL)@EN, CMG2(C1~U,C2~PL,C3~P)@EN, CMG2(C1~U,C2~

PL,C3~PL)@EN

214 Species CMG2_123_er CMG2(C1~P,C2~P,C3~P)@EN, CMG2(

C1~PL,C2~P,C3~P)@EN, CMG2(C1~P,C2~PL,C3~P)@EN, CMG2(C1~P,C2~

P,C3~PL)@EN, CMG2(C1~PL,C2~PL,C3~P)@EN, CMG2(C1~PL,C2~P,C3~

PL)@EN, CMG2(C1~P,C2~PL,C3~PL)@EN, CMG2(C1~PL,C2~PL,C3~PL)

@EN

Species CMG2_0_go CMG2(C1~U,C2~U,C3~U)@GO

Species CMG2_1_go CMG2(C1~P,C2~U,C3~U)@GO, CMG2(

C1~PL,C2~U,C3~U)@GO

Species CMG2_2_go CMG2(C1~U,C2~P,C3~U)@GO, CMG2(

C1~U,C2~PL,C3~U)@GO

219 Species CMG2_3_go CMG2(C1~U,C2~U,C3~P)@GO, CMG2(

C1~U,C2~U,C3~PL)@GO

Species CMG2_12_go CMG2(C1~P,C2~P,C3~U)@GO, CMG2(

C1~P,C2~PL,C3~U)@GO, CMG2(C1~PL,C2~P,C3~U)@GO, CMG2(C1~PL,C2

~PL,C3~U)@GO

Species CMG2_13_go CMG2(C1~P,C2~U,C3~P)@GO, CMG2(

C1~P,C2~U,C3~PL)@GO, CMG2(C1~PL,C2~U,C3~P)@GO, CMG2(C1~PL,C2

~U,C3~PL)@GO

Species CMG2_23_go CMG2(C1~U,C2~P,C3~P)@GO, CMG2(

C1~U,C2~P,C3~PL)@GO, CMG2(C1~U,C2~PL,C3~P)@GO, CMG2(C1~U,C2~

PL,C3~PL)@GO

Species CMG2_123_go CMG2(C1~P,C2~P,C3~P)@GO, CMG2(

C1~PL,C2~P,C3~P)@GO, CMG2(C1~P,C2~PL,C3~P)@GO, CMG2(C1~P,C2~

P,C3~PL)@GO, CMG2(C1~PL,C2~PL,C3~P)@GO, CMG2(C1~PL,C2~P,C3~

PL)@GO, CMG2(C1~P,C2~PL,C3~PL)@GO, CMG2(C1~PL,C2~PL,C3~PL)

@GO

224

Species CMG2_0_pm CMG2(C1~U,C2~U,C3~U)@PM

Species CMG2_1_pm CMG2(C1~P,C2~U,C3~U)@PM, CMG2(

C1~PL,C2~U,C3~U)@PM

Species CMG2_2_pm CMG2(C1~U,C2~P,C3~U)@PM, CMG2(

C1~U,C2~PL,C3~U)@PM

Species CMG2_3_pm CMG2(C1~U,C2~U,C3~P)@PM, CMG2(

C1~U,C2~U,C3~PL)@PM

229 Species CMG2_12_pm CMG2(C1~P,C2~P,C3~U)@PM, CMG2(

C1~P,C2~PL,C3~U)@PM, CMG2(C1~PL,C2~P,C3~U)@PM, CMG2(C1~PL,C2

~PL,C3~U)@PM

Species CMG2_13_pm CMG2(C1~P,C2~U,C3~P)@PM, CMG2(

C1~P,C2~U,C3~PL)@PM, CMG2(C1~PL,C2~U,C3~P)@PM, CMG2(C1~PL,C2

~U,C3~PL)@PM
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Species CMG2_23_pm CMG2(C1~U,C2~P,C3~P)@PM, CMG2(

C1~U,C2~P,C3~PL)@PM, CMG2(C1~U,C2~PL,C3~P)@PM, CMG2(C1~U,C2~

PL,C3~PL)@PM

Species CMG2_123_pm CMG2(C1~P,C2~P,C3~P)@PM, CMG2(

C1~PL,C2~P,C3~P)@PM, CMG2(C1~P,C2~PL,C3~P)@PM, CMG2(C1~P,C2~

P,C3~PL)@PM, CMG2(C1~PL,C2~PL,C3~P)@PM, CMG2(C1~PL,C2~P,C3~

PL)@PM, CMG2(C1~P,C2~PL,C3~PL)@PM, CMG2(C1~PL,C2~PL,C3~PL)

@PM

234 Species CMG2_0_end CMG2(C1~U,C2~U,C3~U)@END

Species CMG2_1_end CMG2(C1~P,C2~U,C3~U)@END, CMG2(

C1~PL,C2~U,C3~U)@END

Species CMG2_2_end CMG2(C1~U,C2~P,C3~U)@END, CMG2(

C1~U,C2~PL,C3~U)@END

Species CMG2_3_end CMG2(C1~U,C2~U,C3~P)@END, CMG2(

C1~U,C2~U,C3~PL)@END

Species CMG2_12_end CMG2(C1~P,C2~P,C3~U)@END, CMG2(

C1~P,C2~PL,C3~U)@END, CMG2(C1~PL,C2~P,C3~U)@END, CMG2(C1~PL,

C2~PL,C3~U)@END

239 Species CMG2_13_end CMG2(C1~P,C2~U,C3~P)@END, CMG2(

C1~P,C2~U,C3~PL)@END, CMG2(C1~PL,C2~U,C3~P)@END, CMG2(C1~PL,

C2~U,C3~PL)@END

Species CMG2_23_end CMG2(C1~U,C2~P,C3~P)@END, CMG2(

C1~U,C2~P,C3~PL)@END, CMG2(C1~U,C2~PL,C3~P)@END, CMG2(C1~U,

C2~PL,C3~PL)@END

Species CMG2_123_end CMG2(C1~P,C2~P,C3~P)@END, CMG2(

C1~PL,C2~P,C3~P)@END, CMG2(C1~P,C2~PL,C3~P)@END, CMG2(C1~P,

C2~P,C3~PL)@END, CMG2(C1~PL,C2~PL,C3~P)@END, CMG2(C1~PL,C2~P

,C3~PL)@END, CMG2(C1~P,C2~PL,C3~PL)@END, CMG2(C1~PL,C2~PL,C3

~PL)@END

# Total species

Molecules CMG2_er CMG2()@EN

244 Molecules CMG2_go CMG2()@GO

Molecules CMG2_pm CMG2()@PM

Molecules CMG2_end CMG2()@END

# Non-folded species

Molecules CMG2_nf_er CMG2(F~n)@EN

249 Molecules CMG2_nf_go CMG2(F~n)@GO

Molecules CMG2_nf_pm CMG2(F~n)@PM

Molecules CMG2_nf_end CMG2(F~n)@END

# 35S Labelled Species

Molecules CMG2_35S CMG2(L~on)

254 Molecules CMG2_er_35S CMG2(L~on)@EN

Molecules CMG2_go_35S CMG2(L~on)@GO

Molecules CMG2_pm_35S CMG2(L~on)@PM

Molecules CMG2_end_35S CMG2(L~on)@END

# 3H Labelled Species
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C.1 model structure

259 Species CMG2_1_3H CMG2(C1~PL,C2~U,C3~U)

Species CMG2_2_3H CMG2(C1~U,C2~PL,C3~U)

Species CMG2_3_3H CMG2(C1~U,C2~U,C3~PL)

Species CMG2_12_3H CMG2(C1~PL,C2~PL,C3~U), CMG2(C1

~PL,C2~PL,C3~U), CMG2(C1~PL,C2~P,C3~U), CMG2(C1~P,C2~PL,C3~U

)

Species CMG2_13_3H CMG2(C1~PL,C2~U,C3~PL), CMG2(C1

~PL,C2~U,C3~PL), CMG2(C1~PL,C2~U,C3~P), CMG2(C1~P,C2~U,C3~PL

)

264 Species CMG2_23_3H CMG2(C1~U,C2~PL,C3~PL), CMG2(C1

~U,C2~PL,C3~PL), CMG2(C1~U,C2~PL,C3~P), CMG2(C1~U,C2~P,C3~PL

)

Species CMG2_123_3H CMG2(C1~PL,C2~PL,C3~PL), CMG2(

C1~PL,C2~PL,C3~PL), CMG2(C1~PL,C2~PL,C3~PL)

# Used for plotting surface half-life

Molecules CMG2_pm_no35S CMG2(L~off)@PM

# Used for plotting transport fluxes

269 Molecules CMG2_er_folded CMG2(F~y)@EN

Species CMG2_go_1c CMG2(C1~P)@GO,CMG2(C1~PL)@GO

Species CMG2_go_2c CMG2(C2~P)@GO,CMG2(C2~PL)@GO

Species CMG2_go_3c CMG2(C3~P)@GO,CMG2(C3~PL)@GO

274 ## 35S labelled species

Species CMG2_0_er_35S CMG2(L~on,C1~U,C2~U,C3~U)@EN

Species CMG2_1_er_35S CMG2(L~on,C1~P,C2~U,C3~U)@EN,

CMG2(L~on,C1~PL,C2~U,C3~U)@EN

Species CMG2_2_er_35S CMG2(L~on,C1~U,C2~P,C3~U)@EN,

CMG2(L~on,C1~U,C2~PL,C3~U)@EN

Species CMG2_3_er_35S CMG2(L~on,C1~U,C2~U,C3~P)@EN,

CMG2(L~on,C1~U,C2~U,C3~PL)@EN

279 Species CMG2_12_er_35S CMG2(L~on,C1~P,C2~P,C3~U)@EN,

CMG2(L~on,C1~P,C2~PL,C3~U)@EN, CMG2(L~on,C1~PL,C2~P,C3~U)@EN

, CMG2(L~on,C1~PL,C2~PL,C3~U)@EN

Species CMG2_13_er_35S CMG2(L~on,C1~P,C2~U,C3~P)@EN,

CMG2(L~on,C1~P,C2~U,C3~PL)@EN, CMG2(L~on,C1~PL,C2~U,C3~P)@EN

, CMG2(L~on,C1~PL,C2~U,C3~PL)@EN

Species CMG2_23_er_35S CMG2(L~on,C1~U,C2~P,C3~P)@EN,

CMG2(L~on,C1~U,C2~P,C3~PL)@EN, CMG2(L~on,C1~U,C2~PL,C3~P)@EN

, CMG2(L~on,C1~U,C2~PL,C3~PL)@EN

Species CMG2_123_er_35S CMG2(L~on,C1~P,C2~P,C3~P)@EN,

CMG2(L~on,C1~PL,C2~P,C3~P)@EN, CMG2(L~on,C1~P,C2~PL,C3~P)@EN

, CMG2(L~on,C1~P,C2~P,C3~PL)@EN, CMG2(L~on,C1~PL,C2~PL,C3~P)

@EN, CMG2(L~on,C1~PL,C2~P,C3~PL)@EN, CMG2(L~on,C1~P,C2~PL,C3

~PL)@EN, CMG2(L~on,C1~PL,C2~PL,C3~PL)@EN

284 Species CMG2_0_go_35S CMG2(L~on,C1~U,C2~U,C3~U)@GO
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Species CMG2_1_go_35S CMG2(L~on,C1~P,C2~U,C3~U)@GO,

CMG2(L~on,C1~PL,C2~U,C3~U)@GO

Species CMG2_2_go_35S CMG2(L~on,C1~U,C2~P,C3~U)@GO,

CMG2(L~on,C1~U,C2~PL,C3~U)@GO

Species CMG2_3_go_35S CMG2(L~on,C1~U,C2~U,C3~P)@GO,

CMG2(L~on,C1~U,C2~U,C3~PL)@GO

Species CMG2_12_go_35S CMG2(L~on,C1~P,C2~P,C3~U)@GO,

CMG2(L~on,C1~P,C2~PL,C3~U)@GO, CMG2(L~on,C1~PL,C2~P,C3~U)@GO

, CMG2(L~on,C1~PL,C2~PL,C3~U)@GO

289 Species CMG2_13_go_35S CMG2(L~on,C1~P,C2~U,C3~P)@GO,

CMG2(L~on,C1~P,C2~U,C3~PL)@GO, CMG2(L~on,C1~PL,C2~U,C3~P)@GO

, CMG2(L~on,C1~PL,C2~U,C3~PL)@GO

Species CMG2_23_go_35S CMG2(L~on,C1~U,C2~P,C3~P)@GO,

CMG2(L~on,C1~U,C2~P,C3~PL)@GO, CMG2(L~on,C1~U,C2~PL,C3~P)@GO

, CMG2(L~on,C1~U,C2~PL,C3~PL)@GO

Species CMG2_123_go_35S CMG2(L~on,C1~P,C2~P,C3~P)@GO,

CMG2(L~on,C1~PL,C2~P,C3~P)@GO, CMG2(L~on,C1~P,C2~PL,C3~P)@GO

, CMG2(L~on,C1~P,C2~P,C3~PL)@GO, CMG2(L~on,C1~PL,C2~PL,C3~P)

@GO, CMG2(L~on,C1~PL,C2~P,C3~PL)@GO, CMG2(L~on,C1~P,C2~PL,C3

~PL)@GO, CMG2(L~on,C1~PL,C2~PL,C3~PL)@GO

Species CMG2_0_pm_35S CMG2(L~on,C1~U,C2~U,C3~U)@PM

294 Species CMG2_1_pm_35S CMG2(L~on,C1~P,C2~U,C3~U)@PM,

CMG2(L~on,C1~PL,C2~U,C3~U)@PM

Species CMG2_2_pm_35S CMG2(L~on,C1~U,C2~P,C3~U)@PM,

CMG2(L~on,C1~U,C2~PL,C3~U)@PM

Species CMG2_3_pm_35S CMG2(L~on,C1~U,C2~U,C3~P)@PM,

CMG2(L~on,C1~U,C2~U,C3~PL)@PM

Species CMG2_12_pm_35S CMG2(L~on,C1~P,C2~P,C3~U)@PM,

CMG2(L~on,C1~P,C2~PL,C3~U)@PM, CMG2(L~on,C1~PL,C2~P,C3~U)@PM

, CMG2(L~on,C1~PL,C2~PL,C3~U)@PM

Species CMG2_13_pm_35S CMG2(L~on,C1~P,C2~U,C3~P)@PM,

CMG2(L~on,C1~P,C2~U,C3~PL)@PM, CMG2(L~on,C1~PL,C2~U,C3~P)@PM

, CMG2(L~on,C1~PL,C2~U,C3~PL)@PM

299 Species CMG2_23_pm_35S CMG2(L~on,C1~U,C2~P,C3~P)@PM,

CMG2(L~on,C1~U,C2~P,C3~PL)@PM, CMG2(L~on,C1~U,C2~PL,C3~P)@PM

, CMG2(L~on,C1~U,C2~PL,C3~PL)@PM

Species CMG2_123_pm_35S CMG2(L~on,C1~P,C2~P,C3~P)@PM,

CMG2(L~on,C1~PL,C2~P,C3~P)@PM, CMG2(L~on,C1~P,C2~PL,C3~P)@PM

, CMG2(L~on,C1~P,C2~P,C3~PL)@PM, CMG2(L~on,C1~PL,C2~PL,C3~P)

@PM, CMG2(L~on,C1~PL,C2~P,C3~PL)@PM, CMG2(L~on,C1~P,C2~PL,C3

~PL)@PM, CMG2(L~on,C1~PL,C2~PL,C3~PL)@PM

Species CMG2_0_end_35S CMG2(L~on,C1~U,C2~U,C3~U)@END

Species CMG2_1_end_35S CMG2(L~on,C1~P,C2~U,C3~U)@END,

CMG2(L~on,C1~PL,C2~U,C3~U)@END
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304 Species CMG2_2_end_35S CMG2(L~on,C1~U,C2~P,C3~U)@END,

CMG2(L~on,C1~U,C2~PL,C3~U)@END

Species CMG2_3_end_35S CMG2(L~on,C1~U,C2~U,C3~P)@END,

CMG2(L~on,C1~U,C2~U,C3~PL)@END

Species CMG2_12_end_35S CMG2(L~on,C1~P,C2~P,C3~U)@END,

CMG2(L~on,C1~P,C2~PL,C3~U)@END, CMG2(L~on,C1~PL,C2~P,C3~U)

@END, CMG2(L~on,C1~PL,C2~PL,C3~U)@END

Species CMG2_13_end_35S CMG2(L~on,C1~P,C2~U,C3~P)@END,

CMG2(L~on,C1~P,C2~U,C3~PL)@END, CMG2(L~on,C1~PL,C2~U,C3~P)

@END, CMG2(L~on,C1~PL,C2~U,C3~PL)@END

Species CMG2_23_end_35S CMG2(L~on,C1~U,C2~P,C3~P)@END,

CMG2(L~on,C1~U,C2~P,C3~PL)@END, CMG2(L~on,C1~U,C2~PL,C3~P)

@END, CMG2(L~on,C1~U,C2~PL,C3~PL)@END

309 Species CMG2_123_end_35S CMG2(L~on,C1~P,C2~P,C3~

P)@END, CMG2(L~on,C1~PL,C2~P,C3~P)@END, CMG2(L~on,C1~P,C2~PL

,C3~P)@END, CMG2(L~on,C1~P,C2~P,C3~PL)@END, CMG2(L~on,C1~PL,

C2~PL,C3~P)@END, CMG2(L~on,C1~PL,C2~P,C3~PL)@END, CMG2(L~on,

C1~P,C2~PL,C3~PL)@END, CMG2(L~on,C1~PL,C2~PL,C3~PL)@END

# 3H labelled species

Species CMG2_1_er_3H CMG2(C1~PL,C2~U,C3~U)@EN

Species CMG2_2_er_3H CMG2(C1~U,C2~PL,C3~U)@EN

314 Species CMG2_3_er_3H CMG2(C1~U,C2~U,C3~PL)@EN

Species CMG2_12_er_3H CMG2(C1~PL,C2~PL,C3~U)@EN, CMG2

(C1~PL,C2~PL,C3~U)@EN, CMG2(C1~PL,C2~P,C3~U)@EN, CMG2(C1~P,

C2~PL,C3~U)@EN

Species CMG2_13_er_3H CMG2(C1~PL,C2~U,C3~PL)@EN, CMG2

(C1~PL,C2~U,C3~PL)@EN, CMG2(C1~PL,C2~U,C3~P)@EN, CMG2(C1~P,

C2~U,C3~PL)@EN

Species CMG2_23_er_3H CMG2(C1~U,C2~PL,C3~PL)@EN, CMG2

(C1~U,C2~PL,C3~PL)@EN, CMG2(C1~U,C2~PL,C3~P)@EN, CMG2(C1~U,

C2~P,C3~PL)@EN

Species CMG2_123_er_3H CMG2(C1~PL,C2~PL,C3~PL)@EN,

CMG2(C1~PL,C2~PL,C3~PL)@EN, CMG2(C1~PL,C2~PL,C3~PL)@EN

319

Species CMG2_1_go_3H CMG2(C1~PL,C2~U,C3~U)@GO

Species CMG2_2_go_3H CMG2(C1~U,C2~PL,C3~U)@GO

Species CMG2_3_go_3H CMG2(C1~U,C2~U,C3~PL)@GO

Species CMG2_12_go_3H CMG2(C1~PL,C2~PL,C3~U)@GO, CMG2

(C1~PL,C2~PL,C3~U)@GO, CMG2(C1~PL,C2~P,C3~U)@GO, CMG2(C1~P,

C2~PL,C3~U)@GO

324 Species CMG2_13_go_3H CMG2(C1~PL,C2~U,C3~PL)@GO, CMG2

(C1~PL,C2~U,C3~PL)@GO, CMG2(C1~PL,C2~U,C3~P)@GO, CMG2(C1~P,

C2~U,C3~PL)@GO

Species CMG2_23_go_3H CMG2(C1~U,C2~PL,C3~PL)@GO, CMG2

(C1~U,C2~PL,C3~PL)@GO, CMG2(C1~U,C2~PL,C3~P)@GO, CMG2(C1~U,

C2~P,C3~PL)@GO
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Species CMG2_123_go_3H CMG2(C1~PL,C2~PL,C3~PL)@GO,

CMG2(C1~PL,C2~PL,C3~PL)@GO, CMG2(C1~PL,C2~PL,C3~PL)@GO

Species CMG2_1_pm_3H CMG2(C1~PL,C2~U,C3~U)@PM

329 Species CMG2_2_pm_3H CMG2(C1~U,C2~PL,C3~U)@PM

Species CMG2_3_pm_3H CMG2(C1~U,C2~U,C3~PL)@PM

Species CMG2_12_pm_3H CMG2(C1~PL,C2~PL,C3~U)@PM, CMG2

(C1~PL,C2~PL,C3~U)@PM, CMG2(C1~PL,C2~P,C3~U)@PM, CMG2(C1~P,

C2~PL,C3~U)@PM

Species CMG2_13_pm_3H CMG2(C1~PL,C2~U,C3~PL)@PM, CMG2

(C1~PL,C2~U,C3~PL)@PM, CMG2(C1~PL,C2~U,C3~P)@PM, CMG2(C1~P,

C2~U,C3~PL)@PM

Species CMG2_23_pm_3H CMG2(C1~U,C2~PL,C3~PL)@PM, CMG2

(C1~U,C2~PL,C3~PL)@PM, CMG2(C1~U,C2~PL,C3~P)@PM, CMG2(C1~U,

C2~P,C3~PL)@PM

334 Species CMG2_123_pm_3H CMG2(C1~PL,C2~PL,C3~PL)@PM,

CMG2(C1~PL,C2~PL,C3~PL)@PM, CMG2(C1~PL,C2~PL,C3~PL)@PM

Species CMG2_1_end_3H CMG2(C1~PL,C2~U,C3~U)@END

Species CMG2_2_end_3H CMG2(C1~U,C2~PL,C3~U)@END

Species CMG2_3_end_3H CMG2(C1~U,C2~U,C3~PL)@END

339 Species CMG2_12_end_3H CMG2(C1~PL,C2~PL,C3~U)@END,

CMG2(C1~PL,C2~PL,C3~U)@END, CMG2(C1~PL,C2~P,C3~U)@END, CMG2(

C1~P,C2~PL,C3~U)@END

Species CMG2_13_end_3H CMG2(C1~PL,C2~U,C3~PL)@END,

CMG2(C1~PL,C2~U,C3~PL)@END, CMG2(C1~PL,C2~U,C3~P)@END, CMG2(

C1~P,C2~U,C3~PL)@END

Species CMG2_23_end_3H CMG2(C1~U,C2~PL,C3~PL)@END,

CMG2(C1~U,C2~PL,C3~PL)@END, CMG2(C1~U,C2~PL,C3~P)@END, CMG2(

C1~U,C2~P,C3~PL)@END

Species CMG2_123_end_3H CMG2(C1~PL,C2~PL,C3~PL)@END,

CMG2(C1~PL,C2~PL,C3~PL)@END, CMG2(C1~PL,C2~PL,C3~PL)@END

344 end observables

begin functions

PAT7_compet() = CMG2_0_er/KM7_0_1 + CMG2_0_er/KM7_0_2 +

CMG2_0_er/KM7_0_3 + CMG2_1_er/KM7_1_2 + CMG2_1_er/KM7_1_3 +

CMG2_2_er/KM7_2_1 + CMG2_2_er/KM7_2_3 +CMG2_3_er/KM7_3_1 +

CMG2_3_er/KM7_3_2 + CMG2_12_er/KM7_12 + CMG2_13_er/KM7_13 +

CMG2_23_er/KM7_23

PAT3_compet() = CMG2_0_go/KM3_0_1 + CMG2_0_go/KM3_0_2 +

CMG2_0_go/KM3_0_3 + CMG2_1_go/KM3_1_2 + CMG2_1_go/KM3_1_3 +

CMG2_2_go/KM3_2_1 + CMG2_2_go/KM3_2_3 + CMG2_3_go/KM3_3_1 +

CMG2_3_go/KM3_3_2 + CMG2_12_go/KM3_12 + CMG2_13_go/KM3_13 +

CMG2_23_go/KM3_23

154



C.1 model structure

349 APTer_compet() = CMG2_1_er/KM_APTer_1 + CMG2_2_er/KM_APTer_2 +

CMG2_3_er/KM_APTer_3 + CMG2_12_er/KM_APTer_12_1 + CMG2_12_er

/KM_APTer_12_2 + CMG2_13_er/KM_APTer_13_1 + CMG2_13_er/

KM_APTer_13_3 + CMG2_23_er/KM_APTer_23_2 + CMG2_23_er/

KM_APTer_23_3 + CMG2_123_er/KM_APTer_123_1 + CMG2_123_er/

KM_APTer_123_2 + CMG2_123_er/KM_APTer_123_3

APTgo_compet() = CMG2_1_go/KM_APTgo_1 + CMG2_2_go/KM_APTgo_2 +

CMG2_3_go/KM_APTgo_3 + CMG2_12_go/KM_APTgo_12_1 + CMG2_12_go

/KM_APTgo_12_2 + CMG2_13_go/KM_APTgo_13_1 + CMG2_13_go/

KM_APTgo_13_3 + CMG2_23_go/KM_APTgo_23_2 + CMG2_23_go/

KM_APTgo_23_3 + CMG2_123_go/KM_APTgo_123_1 + CMG2_123_go/

KM_APTgo_123_2 + CMG2_123_go/KM_APTgo_123_3

APTpm_compet() = CMG2_1_pm/KM_APTpm_1 + CMG2_2_pm/KM_APTpm_2 +

CMG2_3_pm/KM_APTpm_3 + CMG2_12_pm/KM_APTpm_12_1 + CMG2_12_pm

/KM_APTpm_12_2 + CMG2_13_pm/KM_APTpm_13_1 + CMG2_13_pm/

KM_APTpm_13_3 + CMG2_23_pm/KM_APTpm_23_2 + CMG2_23_pm/

KM_APTpm_23_3 + CMG2_123_pm/KM_APTpm_123_1 + CMG2_123_pm/

KM_APTpm_123_2 + CMG2_123_pm/KM_APTpm_123_3

end functions

354

begin reaction rules

# Synthesis and Folding

Synthesis() -> Synthesis()+CMG2(L~off,F~n,C1~U,C2~U,C3~U)@EN (1-

S35switch)*ks

CMG2(F~n)@EN -> CMG2(F~y)@EN kf

359

# S35 labelling

Synthesis() -> Synthesis()+CMG2(L~on,F~n,C1~U,C2~U,C3~U)@EN

S35switch*ks

# Transport

364 CMG2(F~y)@EN -> CMG2(F~y)@GO k_go

CMG2(C1~U,C2~U,C3~U)@GO -> CMG2(C1~U,C2~U,C3~U)@PM k_pm_0

CMG2(C1~P)@GO -> CMG2(C1~P)@PM k_pm_1

CMG2(C1~PL)@GO -> CMG2(C1~PL)@PM k_pm_1

369 CMG2(C2~P)@GO -> CMG2(C2~P)@PM k_pm_2

CMG2(C2~PL)@GO -> CMG2(C2~PL)@PM k_pm_2

CMG2(C3~P)@GO -> CMG2(C3~P)@PM k_pm_3

CMG2(C3~PL)@GO -> CMG2(C3~PL)@PM k_pm_3

374 CMG2()@PM <-> CMG2()@END k_to_end, k_from_end

# Palmitoylation ER

CMG2(C1~U,C2~U,C3~U)@EN -> CMG2(C1~P,C2~U,C3~U)@EN (1-

H3switch)*kcat7*PAT7/KM7_0_1/(1+PAT7_compet()+PAT7/KM7_0_1)
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CMG2(C1~U,C2~U,C3~U)@EN -> CMG2(C1~U,C2~P,C3~U)@EN (1-

H3switch)*kcat7*PAT7/KM7_0_2/(1+PAT7_compet()+PAT7/KM7_0_2)

379 CMG2(C1~U,C2~U,C3~U)@EN -> CMG2(C1~U,C2~U,C3~P)@EN (1-

H3switch)*kcat7*PAT7/KM7_0_3/(1+PAT7_compet()+PAT7/KM7_0_3)

CMG2(C2~U,C3~U)@EN -> CMG2(C2~P,C3~U)@EN (1-H3switch)*
kcat7*PAT7/KM7_1_2/(1+PAT7_compet()+PAT7/KM7_1_2) exclude_reactants

(1,CMG2(C1~U))

CMG2(C2~U,C3~U)@EN -> CMG2(C2~U,C3~P)@EN (1-H3switch)*
kcat7*PAT7/KM7_1_3/(1+PAT7_compet()+PAT7/KM7_1_3) exclude_reactants

(1,CMG2(C1~U))

384 CMG2(C1~U,C3~U)@EN -> CMG2(C1~P,C3~U)@EN (1-H3switch)*
kcat7*PAT7/KM7_2_1/(1+PAT7_compet()+PAT7/KM7_2_1) exclude_reactants

(1,CMG2(C2~U))

CMG2(C1~U,C3~U)@EN -> CMG2(C1~U,C3~P)@EN (1-H3switch)*
kcat7*PAT7/KM7_2_3/(1+PAT7_compet()+PAT7/KM7_2_3) exclude_reactants

(1,CMG2(C2~U))

CMG2(C1~U,C2~U)@EN -> CMG2(C1~P,C2~U)@EN (1-H3switch)*
kcat7*PAT7/KM7_3_1/(1+PAT7_compet()+PAT7/KM7_3_1) exclude_reactants

(1,CMG2(C3~U))

CMG2(C1~U,C2~U)@EN -> CMG2(C1~U,C2~P)@EN (1-H3switch)*
kcat7*PAT7/KM7_3_2/(1+PAT7_compet()+PAT7/KM7_3_2) exclude_reactants

(1,CMG2(C3~U))

389

CMG2(C3~U)@EN -> CMG2(C3~P)@EN (1-H3switch)*kcat7*PAT7/KM7_12

/(1+PAT7_compet()+PAT7/KM7_12) exclude_reactants(1,CMG2(C1~U),

CMG2(C2~U))

CMG2(C2~U)@EN -> CMG2(C2~P)@EN (1-H3switch)*kcat7*PAT7/KM7_13

/(1+PAT7_compet()+PAT7/KM7_13) exclude_reactants(1,CMG2(C1~U),

CMG2(C3~U))

CMG2(C1~U)@EN -> CMG2(C1~P)@EN (1-H3switch)*kcat7*PAT7/KM7_23

/(1+PAT7_compet()+PAT7/KM7_23) exclude_reactants(1,CMG2(C2~U),

CMG2(C3~U))

394 # Palm labelling ER

CMG2(C1~U,C2~U,C3~U)@EN -> CMG2(C1~PL,C2~U,C3~U)@EN

H3switch*kcat7*PAT7/KM7_0_1/(1+PAT7_compet()+PAT7/KM7_0_1)

CMG2(C1~U,C2~U,C3~U)@EN -> CMG2(C1~U,C2~PL,C3~U)@EN

H3switch*kcat7*PAT7/KM7_0_2/(1+PAT7_compet()+PAT7/KM7_0_2)

CMG2(C1~U,C2~U,C3~U)@EN -> CMG2(C1~U,C2~U,C3~PL)@EN

H3switch*kcat7*PAT7/KM7_0_3/(1+PAT7_compet()+PAT7/KM7_0_3)

399 CMG2(C2~U,C3~U)@EN -> CMG2(C2~PL,C3~U)@EN H3switch*kcat7*
PAT7/KM7_1_2/(1+PAT7_compet()+PAT7/KM7_1_2) exclude_reactants

(1,CMG2(C1~U))
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C.1 model structure

CMG2(C2~U,C3~U)@EN -> CMG2(C2~U,C3~PL)@EN H3switch*kcat7*
PAT7/KM7_1_3/(1+PAT7_compet()+PAT7/KM7_1_3) exclude_reactants

(1,CMG2(C1~U))

CMG2(C1~U,C3~U)@EN -> CMG2(C1~PL,C3~U)@EN H3switch*kcat7*
PAT7/KM7_2_1/(1+PAT7_compet()+PAT7/KM7_2_1) exclude_reactants

(1,CMG2(C2~U))

CMG2(C1~U,C3~U)@EN -> CMG2(C1~U,C3~PL)@EN H3switch*kcat7*
PAT7/KM7_2_3/(1+PAT7_compet()+PAT7/KM7_2_3) exclude_reactants

(1,CMG2(C2~U))

404

CMG2(C1~U,C2~U)@EN -> CMG2(C1~PL,C2~U)@EN H3switch*kcat7*
PAT7/KM7_3_1/(1+PAT7_compet()+PAT7/KM7_3_1) exclude_reactants

(1,CMG2(C3~U))

CMG2(C1~U,C2~U)@EN -> CMG2(C1~U,C2~PL)@EN H3switch*kcat7*
PAT7/KM7_3_2/(1+PAT7_compet()+PAT7/KM7_3_2) exclude_reactants

(1,CMG2(C3~U))

CMG2(C3~U)@EN -> CMG2(C3~PL)@EN H3switch*kcat7*PAT7/KM7_12/(1+

PAT7_compet()+PAT7/KM7_12) exclude_reactants(1,CMG2(C1~U),

CMG2(C2~U))

409 CMG2(C2~U)@EN -> CMG2(C2~PL)@EN H3switch*kcat7*PAT7/KM7_13/(1+

PAT7_compet()+PAT7/KM7_13) exclude_reactants(1,CMG2(C1~U),

CMG2(C3~U))

CMG2(C1~U)@EN -> CMG2(C1~PL)@EN H3switch*kcat7*PAT7/KM7_23/(1+

PAT7_compet()+PAT7/KM7_23) exclude_reactants(1,CMG2(C2~U),

CMG2(C3~U))

# Palmitoylation GO

CMG2(C1~U,C2~U,C3~U)@GO -> CMG2(C1~P,C2~U,C3~U)@GO (1-

H3switch)*kcat3*PAT3/KM3_0_1/(1+PAT3_compet()+PAT3/KM3_0_1)

414 CMG2(C1~U,C2~U,C3~U)@GO -> CMG2(C1~U,C2~P,C3~U)@GO (1-

H3switch)*kcat3*PAT3/KM3_0_2/(1+PAT3_compet()+PAT3/KM3_0_2)

CMG2(C1~U,C2~U,C3~U)@GO -> CMG2(C1~U,C2~U,C3~P)@GO (1-

H3switch)*kcat3*PAT3/KM3_0_3/(1+PAT3_compet()+PAT3/KM3_0_3)

CMG2(C2~U,C3~U)@GO -> CMG2(C2~P,C3~U)@GO (1-H3switch)*
kcat3*PAT3/KM3_1_2/(1+PAT3_compet()+PAT3/KM3_1_2) exclude_reactants

(1,CMG2(C1~U))

CMG2(C2~U,C3~U)@GO -> CMG2(C2~U,C3~P)@GO (1-H3switch)*
kcat3*PAT3/KM3_1_3/(1+PAT3_compet()+PAT3/KM3_1_3) exclude_reactants

(1,CMG2(C1~U))

419

CMG2(C1~U,C3~U)@GO -> CMG2(C1~P,C3~U)@GO (1-H3switch)*
kcat3*PAT3/KM3_2_1/(1+PAT3_compet()+PAT3/KM3_2_1) exclude_reactants

(1,CMG2(C2~U))

157



C.1 model structure

CMG2(C1~U,C3~U)@GO -> CMG2(C1~U,C3~P)@GO (1-H3switch)*
kcat3*PAT3/KM3_2_3/(1+PAT3_compet()+PAT3/KM3_2_3) exclude_reactants

(1,CMG2(C2~U))

CMG2(C1~U,C2~U)@GO -> CMG2(C1~P,C2~U)@GO (1-H3switch)*
kcat3*PAT3/KM3_3_1/(1+PAT3_compet()+PAT3/KM3_3_1) exclude_reactants

(1,CMG2(C3~U))

424 CMG2(C1~U,C2~U)@GO -> CMG2(C1~U,C2~P)@GO (1-H3switch)*
kcat3*PAT3/KM3_3_2/(1+PAT3_compet()+PAT3/KM3_3_2) exclude_reactants

(1,CMG2(C3~U))

CMG2(C3~U)@GO -> CMG2(C3~P)@GO (1-H3switch)*kcat3*PAT3/KM3_12

/(1+PAT3_compet()+PAT3/KM3_12) exclude_reactants(1,CMG2(C1~U),

CMG2(C2~U))

CMG2(C2~U)@GO -> CMG2(C2~P)@GO (1-H3switch)*kcat3*PAT3/KM3_13

/(1+PAT3_compet()+PAT3/KM3_13) exclude_reactants(1,CMG2(C1~U),

CMG2(C3~U))

CMG2(C1~U)@GO -> CMG2(C1~P)@GO (1-H3switch)*kcat3*PAT3/KM3_23

/(1+PAT3_compet()+PAT3/KM3_23) exclude_reactants(1,CMG2(C2~U),

CMG2(C3~U))

429

# Palm labelling GO

CMG2(C1~U,C2~U,C3~U)@GO -> CMG2(C1~PL,C2~U,C3~U)@GO

H3switch*kcat3*PAT3/KM3_0_1/(1+PAT3_compet()+PAT3/KM3_0_1)

CMG2(C1~U,C2~U,C3~U)@GO -> CMG2(C1~U,C2~PL,C3~U)@GO

H3switch*kcat3*PAT3/KM3_0_2/(1+PAT3_compet()+PAT3/KM3_0_2)

CMG2(C1~U,C2~U,C3~U)@GO -> CMG2(C1~U,C2~U,C3~PL)@GO

H3switch*kcat3*PAT3/KM3_0_3/(1+PAT3_compet()+PAT3/KM3_0_3)

434

CMG2(C2~U,C3~U)@GO -> CMG2(C2~PL,C3~U)@GO H3switch*kcat3*
PAT3/KM3_1_2/(1+PAT3_compet()+PAT3/KM3_1_2) exclude_reactants

(1,CMG2(C1~U))

CMG2(C2~U,C3~U)@GO -> CMG2(C2~U,C3~PL)@GO H3switch*kcat3*
PAT3/KM3_1_3/(1+PAT3_compet()+PAT3/KM3_1_3) exclude_reactants

(1,CMG2(C1~U))

CMG2(C1~U,C3~U)@GO -> CMG2(C1~PL,C3~U)@GO H3switch*kcat3*
PAT3/KM3_2_1/(1+PAT3_compet()+PAT3/KM3_2_1) exclude_reactants

(1,CMG2(C2~U))

439 CMG2(C1~U,C3~U)@GO -> CMG2(C1~U,C3~PL)@GO H3switch*kcat3*
PAT3/KM3_2_3/(1+PAT3_compet()+PAT3/KM3_2_3) exclude_reactants

(1,CMG2(C2~U))

CMG2(C1~U,C2~U)@GO -> CMG2(C1~PL,C2~U)@GO H3switch*kcat3*
PAT3/KM3_3_1/(1+PAT3_compet()+PAT3/KM3_3_1) exclude_reactants

(1,CMG2(C3~U))
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C.1 model structure

CMG2(C1~U,C2~U)@GO -> CMG2(C1~U,C2~PL)@GO H3switch*kcat3*
PAT3/KM3_3_2/(1+PAT3_compet()+PAT3/KM3_3_2) exclude_reactants

(1,CMG2(C3~U))

444 CMG2(C3~U)@GO -> CMG2(C3~PL)@GO H3switch*kcat3*PAT3/KM3_12/(1+

PAT3_compet()+PAT3/KM3_12) exclude_reactants(1,CMG2(C1~U),

CMG2(C2~U))

CMG2(C2~U)@GO -> CMG2(C2~PL)@GO H3switch*kcat3*PAT3/KM3_13/(1+

PAT3_compet()+PAT3/KM3_13) exclude_reactants(1,CMG2(C1~U),

CMG2(C3~U))

CMG2(C1~U)@GO -> CMG2(C1~PL)@GO H3switch*kcat3*PAT3/KM3_23/(1+

PAT3_compet()+PAT3/KM3_23) exclude_reactants(1,CMG2(C2~U),

CMG2(C3~U))

# Depalmitoylation ER

449 CMG2(C1~P,C2~U,C3~U)@EN -> CMG2(C1~U,C2~U,C3~U)@EN

kcat_APTer*APTer/KM_APTer_1/(1+APTer_compet()+APTer/KM_APTer_1)

exclude_reactants(1,CMG2(C1~U))

CMG2(C1~U,C2,C3~U)@EN -> CMG2(C1~U,C2~U,C3~U)@EN

kcat_APTer*APTer/KM_APTer_2/(1+APTer_compet()+APTer/KM_APTer_2)

exclude_reactants(1,CMG2(C2~U))

CMG2(C1~U,C2~U,C3)@EN -> CMG2(C1~U,C2~U,C3~U)@EN

kcat_APTer*APTer/KM_APTer_3/(1+APTer_compet()+APTer/KM_APTer_3)

exclude_reactants(1,CMG2(C3~U))

CMG2(C1,C3~U)@EN -> CMG2(C1~U,C3~U)@EN kcat_APTer*APTer/

KM_APTer_12_1/(1+APTer_compet()+APTer/KM_APTer_12_2)

exclude_reactants(1,CMG2(C1~U),CMG2(C2~U))

454 CMG2(C2,C3~U)@EN -> CMG2(C2~U,C3~U)@EN kcat_APTer*APTer/

KM_APTer_12_2/(1+APTer_compet()+APTer/KM_APTer_12_2)

exclude_reactants(1,CMG2(C1~U),CMG2(C2~U))

CMG2(C1,C2~U)@EN -> CMG2(C1~U,C2~U)@EN kcat_APTer*APTer/

KM_APTer_13_1/(1+APTer_compet()+APTer/KM_APTer_13_1)

exclude_reactants(1,CMG2(C1~U),CMG2(C3~U))

CMG2(C2~U,C3)@EN -> CMG2(C2~U,C3~U)@EN kcat_APTer*APTer/

KM_APTer_13_3/(1+APTer_compet()+APTer/KM_APTer_13_3)

exclude_reactants(1,CMG2(C1~U),CMG2(C3~U))

459 CMG2(C1~U,C2)@EN -> CMG2(C1~U,C2~U)@EN kcat_APTer*APTer/

KM_APTer_23_2/(1+APTer_compet()+APTer/KM_APTer_23_2)

exclude_reactants(1,CMG2(C2~U),CMG2(C3~U))

CMG2(C1~U,C3)@EN -> CMG2(C1~U,C3~U)@EN kcat_APTer*APTer/

KM_APTer_23_3/(1+APTer_compet()+APTer/KM_APTer_23_3)

exclude_reactants(1,CMG2(C2~U),CMG2(C3~U))
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C.1 model structure

CMG2(C1)@EN -> CMG2(C1~U)@EN kcat_APTer*APTer/KM_APTer_123_1

/(1+APTer_compet()+APTer/KM_APTer_123_1) exclude_reactants(1,CMG2(C1

~U),CMG2(C2~U),CMG2(C3~U))

CMG2(C2)@EN -> CMG2(C2~U)@EN kcat_APTer*APTer/KM_APTer_123_2

/(1+APTer_compet()+APTer/KM_APTer_123_2) exclude_reactants(1,CMG2(C1

~U),CMG2(C2~U),CMG2(C3~U))

464 CMG2(C3)@EN -> CMG2(C3~U)@EN kcat_APTer*APTer/KM_APTer_123_3

/(1+APTer_compet()+APTer/KM_APTer_123_3) exclude_reactants(1,CMG2(C1

~U),CMG2(C2~U),CMG2(C3~U))

# Depalmitoylation GO

CMG2(C1,C2~U,C3~U)@GO -> CMG2(C1~U,C2~U,C3~U)@GO

kcat_APTgo*APTgo/KM_APTgo_1/(1+APTgo_compet()+APTgo/KM_APTgo_1)

exclude_reactants(1,CMG2(C1~U))

CMG2(C1~U,C2,C3~U)@GO -> CMG2(C1~U,C2~U,C3~U)@GO

kcat_APTgo*APTgo/KM_APTgo_2/(1+APTgo_compet()+APTgo/KM_APTgo_2)

exclude_reactants(1,CMG2(C2~U))

469 CMG2(C1~U,C2~U,C3)@GO -> CMG2(C1~U,C2~U,C3~U)@GO

kcat_APTgo*APTgo/KM_APTgo_3/(1+APTgo_compet()+APTgo/KM_APTgo_3)

exclude_reactants(1,CMG2(C3~U))

CMG2(C1,C3~U)@GO -> CMG2(C1~U,C3~U)@GO kcat_APTgo*APTgo/

KM_APTgo_12_1/(1+APTgo_compet()+APTgo/KM_APTgo_12_2)

exclude_reactants(1,CMG2(C1~U),CMG2(C2~U))

CMG2(C2,C3~U)@GO -> CMG2(C2~U,C3~U)@GO kcat_APTgo*APTgo/

KM_APTgo_12_2/(1+APTgo_compet()+APTgo/KM_APTgo_12_2)

exclude_reactants(1,CMG2(C1~U),CMG2(C2~U))

474 CMG2(C1,C2~U)@GO -> CMG2(C1~U,C2~U)@GO kcat_APTgo*APTgo/

KM_APTgo_13_1/(1+APTgo_compet()+APTgo/KM_APTgo_13_1)

exclude_reactants(1,CMG2(C1~U),CMG2(C3~U))

CMG2(C2~U,C3)@GO -> CMG2(C2~U,C3~U)@GO kcat_APTgo*APTgo/

KM_APTgo_13_3/(1+APTgo_compet()+APTgo/KM_APTgo_13_3)

exclude_reactants(1,CMG2(C1~U),CMG2(C3~U))

CMG2(C1~U,C2)@GO -> CMG2(C1~U,C2~U)@GO kcat_APTgo*APTgo/

KM_APTgo_23_2/(1+APTgo_compet()+APTgo/KM_APTgo_23_2)

exclude_reactants(1,CMG2(C2~U),CMG2(C3~U))

CMG2(C1~U,C3)@GO -> CMG2(C1~U,C3~U)@GO kcat_APTgo*APTgo/

KM_APTgo_23_3/(1+APTgo_compet()+APTgo/KM_APTgo_23_3)

exclude_reactants(1,CMG2(C2~U),CMG2(C3~U))

479

CMG2(C1)@GO -> CMG2(C1~U)@GO kcat_APTgo*APTgo/KM_APTgo_123_1

/(1+APTgo_compet()+APTgo/KM_APTgo_123_1) exclude_reactants(1,CMG2(C1

~U),CMG2(C2~U),CMG2(C3~U))
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C.1 model structure

CMG2(C2)@GO -> CMG2(C2~U)@GO kcat_APTgo*APTgo/KM_APTgo_123_2

/(1+APTgo_compet()+APTgo/KM_APTgo_123_2) exclude_reactants(1,CMG2(C1

~U),CMG2(C2~U),CMG2(C3~U))

CMG2(C3)@GO -> CMG2(C3~U)@GO kcat_APTgo*APTgo/KM_APTgo_123_3

/(1+APTgo_compet()+APTgo/KM_APTgo_123_3) exclude_reactants(1,CMG2(C1

~U),CMG2(C2~U),CMG2(C3~U))

484 # Depalmitoylation PM

CMG2(C1,C2~U,C3~U)@PM -> CMG2(C1~U,C2~U,C3~U)@PM

kcat_APTpm*APTpm/KM_APTpm_1/(1+APTpm_compet()+APTpm/KM_APTpm_1)

exclude_reactants(1,CMG2(C1~U))

CMG2(C1~U,C2,C3~U)@PM -> CMG2(C1~U,C2~U,C3~U)@PM

kcat_APTpm*APTpm/KM_APTpm_2/(1+APTpm_compet()+APTpm/KM_APTpm_2)

exclude_reactants(1,CMG2(C2~U))

CMG2(C1~U,C2~U,C3)@PM -> CMG2(C1~U,C2~U,C3~U)@PM

kcat_APTpm*APTpm/KM_APTpm_3/(1+APTpm_compet()+APTpm/KM_APTpm_3)

exclude_reactants(1,CMG2(C3~U))

489 CMG2(C1,C3~U)@PM -> CMG2(C1~U,C3~U)@PM kcat_APTpm*APTpm/

KM_APTpm_12_1/(1+APTpm_compet()+APTpm/KM_APTpm_12_2)

exclude_reactants(1,CMG2(C1~U),CMG2(C2~U))

CMG2(C2,C3~U)@PM -> CMG2(C2~U,C3~U)@PM kcat_APTpm*APTpm/

KM_APTpm_12_2/(1+APTpm_compet()+APTpm/KM_APTpm_12_2)

exclude_reactants(1,CMG2(C1~U),CMG2(C2~U))

CMG2(C1,C2~U)@PM -> CMG2(C1~U,C2~U)@PM kcat_APTpm*APTpm/

KM_APTpm_13_1/(1+APTpm_compet()+APTpm/KM_APTpm_13_1)

exclude_reactants(1,CMG2(C1~U),CMG2(C3~U))

CMG2(C2~U,C3)@PM -> CMG2(C2~U,C3~U)@PM kcat_APTpm*APTpm/

KM_APTpm_13_3/(1+APTpm_compet()+APTpm/KM_APTpm_13_3)

exclude_reactants(1,CMG2(C1~U),CMG2(C3~U))

494

CMG2(C1~U,C2)@PM -> CMG2(C1~U,C2~U)@PM kcat_APTpm*APTpm/

KM_APTpm_23_2/(1+APTpm_compet()+APTpm/KM_APTpm_23_2)

exclude_reactants(1,CMG2(C2~U),CMG2(C3~U))

CMG2(C1~U,C3)@PM -> CMG2(C1~U,C3~U)@PM kcat_APTpm*APTpm/

KM_APTpm_23_3/(1+APTpm_compet()+APTpm/KM_APTpm_23_3)

exclude_reactants(1,CMG2(C2~U),CMG2(C3~U))

CMG2(C1)@PM -> CMG2(C1~U)@PM kcat_APTpm*APTpm/KM_APTpm_123_1

/(1+APTpm_compet()+APTpm/KM_APTpm_123_1) exclude_reactants(1,CMG2(C1

~U),CMG2(C2~U),CMG2(C3~U))

499 CMG2(C2)@PM -> CMG2(C2~U)@PM kcat_APTpm*APTpm/KM_APTpm_123_2

/(1+APTpm_compet()+APTpm/KM_APTpm_123_2) exclude_reactants(1,CMG2(C1

~U),CMG2(C2~U),CMG2(C3~U))
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C.1 model structure

CMG2(C3)@PM -> CMG2(C3~U)@PM kcat_APTpm*APTpm/KM_APTpm_123_3

/(1+APTpm_compet()+APTpm/KM_APTpm_123_3) exclude_reactants(1,CMG2(C1

~U),CMG2(C2~U),CMG2(C3~U))

# Degradation ER

CMG2(F~n,C1~U,C2~U,C3~U)@EN -> Degradation() kd_nf_0_er

504 CMG2(F~n,C2~U,C3~U)@EN -> Degradation() kd_nf_1_er

exclude_reactants(1,CMG2(C1~U))

CMG2(F~n,C1~U,C3~U)@EN -> Degradation() kd_nf_2_er

exclude_reactants(1,CMG2(C2~U))

CMG2(F~n,C1~U,C2~U)@EN -> Degradation() kd_nf_3_er

exclude_reactants(1,CMG2(C3~U))

CMG2(F~n,C3~U)@EN -> Degradation() kd_nf_12_er

exclude_reactants(1,CMG2(C1~U),CMG2(C2~U))

CMG2(F~n,C2~U)@EN -> Degradation() kd_nf_13_er

exclude_reactants(1,CMG2(C1~U),CMG2(C3~U))

509 CMG2(F~n,C1~U)@EN -> Degradation() kd_nf_23_er

exclude_reactants(1,CMG2(C2~U),CMG2(C3~U))

CMG2(F~n)@EN -> Degradation() kd_nf_123_er

exclude_reactants(1,CMG2(C1~U),CMG2(C2~U),CMG2(C3~U))

CMG2(F~y,C1~U,C2~U,C3~U)@EN -> Degradation() kd_f_0_er

CMG2(F~y,C2~U,C3~U)@EN -> Degradation() kd_f_1_er

exclude_reactants(1,CMG2(C1~U))

514 CMG2(F~y,C1~U,C3~U)@EN -> Degradation() kd_f_2_er

exclude_reactants(1,CMG2(C2~U))

CMG2(F~y,C1~U,C2~U)@EN -> Degradation() kd_f_3_er

exclude_reactants(1,CMG2(C3~U))

CMG2(F~y,C3~U)@EN -> Degradation() kd_f_12_er

exclude_reactants(1,CMG2(C1~U),CMG2(C2~U))

CMG2(F~y,C2~U)@EN -> Degradation() kd_f_13_er

exclude_reactants(1,CMG2(C1~U),CMG2(C3~U))

CMG2(F~y,C1~U)@EN -> Degradation() kd_f_23_er

exclude_reactants(1,CMG2(C2~U),CMG2(C3~U))

519 CMG2(F~y)@EN -> Degradation() kd_f_123_er

exclude_reactants(1,CMG2(C1~U),CMG2(C2~U),CMG2(C3~U))

# Degradation non-folded GO

# CMG2(F~n,C1~U,C2~U,C3~U)@GO -> Degradation() kd_nf_0_go

# CMG2(F~n,C2~U,C3~U)@GO -> Degradation()

kd_nf_1_go exclude_reactants(1,CMG2(C1~U))

524 # CMG2(F~n,C1~U,C3~U)@GO -> Degradation()

kd_nf_2_go exclude_reactants(1,CMG2(C2~U))

# CMG2(F~n,C1~U,C2~U)@GO -> Degradation()

kd_nf_3_go exclude_reactants(1,CMG2(C3~U))

# CMG2(F~n,C3~U)@GO -> Degradation()

kd_nf_12_go exclude_reactants(1,CMG2(C1~U),CMG2(C2~U))
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# CMG2(F~n,C2~U)@GO -> Degradation()

kd_nf_13_go exclude_reactants(1,CMG2(C1~U),CMG2(C3~U))

# CMG2(F~n,C1~U)@GO -> Degradation()

kd_nf_23_go exclude_reactants(1,CMG2(C2~U),CMG2(C3~U))

529 # CMG2(F~n)@GO -> Degradation()

kd_nf_123_go exclude_reactants(1,CMG2(C1~U),CMG2(C2~U),CMG2(C3~U)

)

# Degradation folded GO

CMG2(F~y,C1~U,C2~U,C3~U)@GO -> Degradation() kd_f_0_go

CMG2(F~y,C2~U,C3~U)@GO -> Degradation() kd_f_1_go

exclude_reactants(1,CMG2(C1~U))

534 CMG2(F~y,C1~U,C3~U)@GO -> Degradation() kd_f_2_go

exclude_reactants(1,CMG2(C2~U))

CMG2(F~y,C1~U,C2~U)@GO -> Degradation() kd_f_3_go

exclude_reactants(1,CMG2(C3~U))

CMG2(F~y,C3~U)@GO -> Degradation() kd_f_12_go

exclude_reactants(1,CMG2(C1~U),CMG2(C2~U))

CMG2(F~y,C2~U)@GO -> Degradation() kd_f_13_go

exclude_reactants(1,CMG2(C1~U),CMG2(C3~U))

CMG2(F~y,C1~U)@GO -> Degradation() kd_f_23_go

exclude_reactants(1,CMG2(C2~U),CMG2(C3~U))

539 CMG2(F~y)@GO -> Degradation() kd_f_123_go

exclude_reactants(1,CMG2(C1~U),CMG2(C2~U),CMG2(C3~U))

# Degradation non-folded PM

# CMG2(F~n,C1~U,C2~U,C3~U)@PM -> Degradation() kd_nf_0_pm

# CMG2(F~n,C2~U,C3~U)@PM -> Degradation()

kd_nf_1_pm exclude_reactants(1,CMG2(C1~U))

544 # CMG2(F~n,C1~U,C3~U)@PM -> Degradation()

kd_nf_2_pm exclude_reactants(1,CMG2(C2~U))

# CMG2(F~n,C1~U,C2~U)@PM -> Degradation()

kd_nf_3_pm exclude_reactants(1,CMG2(C3~U))

# CMG2(F~n,C3~U)@PM -> Degradation()

kd_nf_12_pm exclude_reactants(1,CMG2(C1~U),CMG2(C2~U))

# CMG2(F~n,C2~U)@PM -> Degradation()

kd_nf_13_pm exclude_reactants(1,CMG2(C1~U),CMG2(C3~U))

# CMG2(F~n,C1~U)@PM -> Degradation()

kd_nf_23_pm exclude_reactants(1,CMG2(C2~U),CMG2(C3~U))

549 # CMG2(F~n)@PM -> Degradation()

kd_nf_123_pm exclude_reactants(1,CMG2(C1~U),CMG2(C2~U),CMG2(C3~U)

)

# Degradation folded PM

CMG2(F~y,C1~U,C2~U,C3~U)@PM -> Degradation() kd_f_0_pm

CMG2(F~y,C2~U,C3~U)@PM -> Degradation() kd_f_1_pm

exclude_reactants(1,CMG2(C1~U))
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554 CMG2(F~y,C1~U,C3~U)@PM -> Degradation() kd_f_2_pm

exclude_reactants(1,CMG2(C2~U))

CMG2(F~y,C1~U,C2~U)@PM -> Degradation() kd_f_3_pm

exclude_reactants(1,CMG2(C3~U))

CMG2(F~y,C3~U)@PM -> Degradation() kd_f_12_pm

exclude_reactants(1,CMG2(C1~U),CMG2(C2~U))

CMG2(F~y,C2~U)@PM -> Degradation() kd_f_13_pm

exclude_reactants(1,CMG2(C1~U),CMG2(C3~U))

CMG2(F~y,C1~U)@PM -> Degradation() kd_f_23_pm

exclude_reactants(1,CMG2(C2~U),CMG2(C3~U))

559 CMG2(F~y)@PM -> Degradation() kd_f_123_pm

exclude_reactants(1,CMG2(C1~U),CMG2(C2~U),CMG2(C3~U))

end reaction rules

end model

564

generate_network({}) # generates the .net file

writeMfile() # writes a matlab file for integrating the model

c.2 parameter values

Parameter name Median Standard deviation

ks 2.9733111288608667 0.027920059530934106

kf 0.01219677456363916 0.05410346576365027

k_go -0.9845286384268077 0.035902197723798566

k_pm_0 -1.8401720097436984 0.0712426354517954

k_pm_1 -2.496218067175251 0.010789217689180683

k_pm_2 -0.6244036705101471 0.08572235338927409

k_pm_3 2.0311120462779315 0.08396284598984603

k_to_end -0.5039683499863828 0.07718899427716996

k_from_end 1.578881853960695 0.08338243724808646

kcat7 1.1835689552612112 0.045310815385565764

KM7_0_1 0.979038242514041 0.06574736508805601

KM7_0_2 1.6549370845040283 0.05043754854787798

KM7_0_3 4.928255928520546 0.038680693368581424

KM7_1_2 1.6795367544047624 0.04093694318496363

KM7_1_3 4.95109555723578 0.04595578180621939

KM7_2_1 -0.9910372628986612 0.022236957138047377

KM7_2_3 4.924156248558496 0.03856957003314889
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KM7_3_1 -0.5998224557257313 0.08420754967129002

KM7_3_2 -0.4838432829212574 0.08109218502980095

KM7_12 5.088138951206144 0.028797300031027043

KM7_13 0.8578577911892966 0.08163514547553484

KM7_23 1.6434276076569687 0.07583643556667664

kcat3 0.059675492426201654 0.05473846788428078

KM3_0_1 -0.2909939408417471 0.09577973257449182

KM3_0_2 1.971579731773251 0.03896424288631529

KM3_0_3 1.2231207560993997 0.08520450963128215

KM3_1_2 1.4889229697992832 0.025595673199029785

KM3_1_3 -1.9948712254342287 0.014473379512933192

KM3_2_1 0.5197578933772686 0.07926838894123675

KM3_2_3 1.0795682348804176 0.070267772566616

KM3_3_1 -1.4618125020322557 0.04571422125208792

KM3_3_2 -0.9478235890366769 0.05394610326763551

KM3_12 -0.014322784400398003 0.039109140516766026

KM3_13 -2.1213994552444113 0.05703541073831113

KM3_23 0.2562549070747192 0.08061510055504913

kcat_APTer -0.15443311447237013 0.07349003466832427

KM_APTer_1 0.022849349937027953 0.07871354645811782

KM_APTer_2 1.6411764773698336 0.07768876699413094

KM_APTer_3 1.530696357359226 0.07416120625785763

KM_APTer_12_1 1.1409861451406995 0.07704922847012824

KM_APTer_12_2 0.4159214512427365 0.08621636721479653

KM_APTer_13_1 1.578892126751533 0.07056733779715915

KM_APTer_13_3 0.8833545470043069 0.06945215814440582

KM_APTer_23_2 -0.42627588492270685 0.08316627182122546

KM_APTer_23_3 0.08387526382800457 0.08226934557669625

KM_APTer_123_1 -0.872907910038432 0.08134615058207811

KM_APTer_123_2 -0.9882131831011234 0.032044519761609165

KM_APTer_123_3 1.2260750125027722 0.08069210915283662

kcat_APTgo -0.39216410096079574 0.08982773557126507

KM_APTgo_1 1.3470463336160505 0.0751720752717969

KM_APTgo_2 0.8322470095880281 0.07841147634041586

KM_APTgo_3 -0.5693164579788665 0.07988241987356269
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KM_APTgo_12_1 0.5459684619422049 0.08458672302673154

KM_APTgo_12_2 0.20338435566468238 0.0887469164561708

KM_APTgo_13_1 0.9606313979053268 0.08019221032513213

KM_APTgo_13_3 1.3933851662001775 0.06209684964880542

KM_APTgo_23_2 -0.3741739718364717 0.07888458067622954

KM_APTgo_23_3 0.679988962024723 0.0795221561306065

KM_APTgo_123_1 -0.8716194559610755 0.08103058376802073

KM_APTgo_123_2 0.16104837404315597 0.08213380582036033

KM_APTgo_123_3 -0.3528007731719832 0.07809014301618852

kcat_APTpm -0.18267877082765166 0.08004184228380844

KM_APTpm_1 0.8281326641000324 0.0761671212446328

KM_APTpm_2 0.5697681608323305 0.08937927465672832

KM_APTpm_3 0.7507163782773072 0.08140592482946268

KM_APTpm_12_1 -0.3006215016026226 0.07679886932616606

KM_APTpm_12_2 -0.4129902886297705 0.08146368351233885

KM_APTpm_13_1 -0.4860691512118437 0.0813805946991758

KM_APTpm_13_3 0.8456940545566671 0.07626569860467823

KM_APTpm_23_2 0.18241576436952123 0.0801036200214821

KM_APTpm_23_3 -0.7623656706397413 0.07587312688705178

KM_APTpm_123_1 0.54930646845919 0.08269186431772926

KM_APTpm_123_2 0.539023242522679 0.0810690163619241

KM_APTpm_123_3 -0.39727637598311205 0.08254665868184155

kd_nf_0_er -1.483933704943151 0.03348899083134173

kd_nf_1_er -1.2998983868851788 0.0793749408317424

kd_nf_2_er -0.20341803867133487 0.06815327083405585

kd_nf_3_er -0.016577215127033605 0.07964451460802216

kd_nf_12_er -0.9313913589558943 0.05938002191443727

kd_nf_13_er 0.06422574616750096 0.07655903659197025

kd_nf_23_er 0.3877920613804088 0.08359967449307092

kd_nf_123_er -0.7736982701317936 0.08211123285983542

kd_f_0_er -0.450152670466341 0.04702374468638786

kd_f_1_er -0.5260780437580073 0.03062902296823796

kd_f_2_er -0.9936909760795654 0.016226162679596565

kd_f_3_er 1.010178554336585 0.08487997957638717

kd_f_12_er -1.495624521318158 0.01353626929819027

166



C.2 parameter values

kd_f_13_er 0.2264233863070702 0.0767251325591012

kd_f_23_er -0.6529658876516717 0.0839112447590523

kd_f_123_er -1.4731988735941042 0.0805627612228498

kd_f_0_go -1.79370525290136 0.06845191767805724

kd_f_1_go -1.9967094494450448 0.009630648179726855

kd_f_2_go -1.195497987621465 0.020238722309934006

kd_f_3_go -0.5997885542399919 0.07896680028135106

kd_f_12_go -2.4803403001249085 0.03095809481277764

kd_f_13_go -0.12633722134028966 0.07490841614133874

kd_f_23_go -1.4393120090797922 0.07825812103938558

kd_f_123_go -2.1468042924046076 0.04878883200680794

kd_f_0_pm 0.8234120797310378 0.07207908987482325

kd_f_1_pm 0.20894539654133015 0.08107756942956698

kd_f_2_pm -1.49453738992834 0.018528403356093032

kd_f_3_pm -0.6903334937914476 0.08104022296838799

kd_f_12_pm -1.2239512467427742 0.09607516493457836

kd_f_13_pm -1.9096760377681599 0.042218269622335935

kd_f_23_pm -1.0763511837344568 0.07988241149679419

kd_f_123_pm -0.5019957612802708 0.08448934117373644

vol_EC -0.47222293654592584 0.08191574444692849

A_PM 1.178175326926488 0.07330589606153823

vol_CP 1.8510456018377046 0.06818444188683662

A_END 1.3871490478786903 0.07961674784121472

A_ER 2.201331156333392 0.07225535448100556

A_GO 0.34153575731935015 0.0831578843883073

KR_degrade 0.17204939654573254 0.07418478846293268

R3 1.9964452850857066 0.010709633743874989

R7 1.9893501659481467 0.020243723617874996

APTer 0.9924386508642908 0.08208885077113352

APTgo 0.11630596924138516 0.07951508469691128

APTpm -0.8611932667683451 0.07508339572779274

SiR3 2.0525986526492033 0.09248154872736843

SiR7 0.3073462352557257 0.035614662051666905

Table 8
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e . coli network

Figure 75: E.coli network diagram illustrating the reactions of the kinetic model.
Diagram does not include all the reactions of the model. Overview of
the reaction network, color-coding indicates to which subsystem a reac-
tion belongs. Abbreviations are as follows: G/G - Glycolysis and Gluco-
neogenesis, PPP - Pentose Phosphate Pathway, TCA - Tricarboxylic Acid
Cycle, Pyr - Pyruvate Metabolism, Glyox - Glyoxylate Metabolism. The
reactions indicated in blue correspond to the Pentose phosphate path-
way (PPP) subsystem, which was the focus of this study.
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