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Abstract

Conformal field theory lies at the heart of two central topics in theoretical high energy
physics: the study of quantum gravity and the mapping of quantum field theories
through the renormalization group. In this thesis we explore a technique to study con-
formal field theories called Mellin amplitudes, which are essentially the Mellin transforms
of conformal correlation functions.

The thesis is divided into two parts. In the first part we study the fundamental properties
of Mellin amplitudes. We clarify the conditions for the existence of Mellin amplitudes
nonperturbatively. We formulate a conjecture for the analytic properties of Mellin
amplitudes and partially prove it. Finally, we discuss Polyakov conditions, which are
nonperturbative zeros of Mellin amplitudes.

In the second part of the thesis we consider applications of Mellin amplitudes. We apply
Mellin amplitudes to: the Wilson-Fisher model in 4− ε dimensions, three dimensional
conformal field theories with slightly broken higher spin symmetry, two dimensional
minimal models and loop diagrams in Anti-de-Sitter space. Our main result is the
derivation of nonperturbative sum rules that constrain effective field theories in Anti-
de-Sitter space.

Keywords: Conformal field theory, Holography, Quantum Gravity, Quantum field
theory
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Résumé

La théorie conforme des champs est au cœur de deux sujets centraux de la physique
théorique des hautes énergies : la gravité quantique et la représentation des théories
quantiques des champs à travers le groupe de renormalisation. Dans cette thèse, nous
explorons une technique d’étude des théories conformes des champs : les amplitudes de
Mellin, qui sont essentiellement les transformées de Mellin des fonctions de corrélation
conformes.

La thèse est divisée en deux parties. Dans la première partie, nous étudions les propriétés
fondamentales de ces amplitudes. Nous clarifions leurs conditions d’existence non
perturbatives. Nous formulons une conjecture sur leurs propriétés analytiques, que nous
prouvons partiellement. Finalement, nous discutons des conditions de Polyakov, qui
sont des zéros non perturbatifs des amplitudes de Mellin.

La deuxième partie de la thèse porte sur les applications des amplitudes de Mellin.
Nous appliquons la technique des amplitudes de Mellin : au modèle de Wilson-Fisher
dans 4 − ε dimensions, aux théories conformes des champs tridimensionelles avec
symétrie de spin plus large presque brisée, aux modèles minimaux bidimensionnels et
aux diagrammes de loops dans l’espace Anti-de Sitter. Notre résultat principal concerne
la déduction de nouvelles règles de sommes non perturbatives qui contraignent certaines
théories des champs effectives dans l’espace Anti-de Sitter.

Mots clés : Théorie des Champs Conformes, Holographie, Gravité Quantique, Théorie
Quantiques des Champs
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Introduction

Conformal field theory

A conformal field theory (CFT) is a quantum field theory with a special symmetry called
conformal symmetry, which means invariance through transformations that preserve
angles. CFT’s are interesting because generically they are strongly interacting, but con-
formal symmetry makes it possible to make progress on their study. Quantum field
theories that are strongly interacting are notoriously hard to study and the usual ap-
proach based on Feynman diagrams fails for them. Thanks to their conformal symmetry,
conformal field theories obey the so called bootstrap equations. The bootstrap equations
are extremely complicated, but they are completely explicit and well defined. Their
study by both numerical and analytical methods is one of the most important topics of
research in theoretical physics.

CFT’s can be applied to: study statistical systems at the critical point; study the fixed
point of renormalization group flows of quantum field theories; study quantum gravity
theories in Anti-de-Sitter space (AdS), through the holographic principle. The latter is
the applicant’s main motivation to study conformal field theories.

The research contained in this thesis is part of a vast and ambitious scientific program
called the conformal bootstrap. The goal of the conformal bootstrap is to find and
solve all CFT’s. In d = 2 dimensions this program was a great success, due to the
groundbreaking 1984 paper of Belavin, Polyakov and Zamolodchikov [1]. In this paper,
an infinite set of interacting conformal field theories called "minimal models" were
discovered and solved. This led to much progress in the study of two dimensional
conformal field theory. Nevertheless, even in d = 2 we are still very far from having a
complete classification of CFT’s.

The conformal bootstrap program in d > 2 dimensions was stagnant for many years,
due to the fact that conformal symmetry in d > 2 dimensions is finite dimensional,
whereas in d = 2 it is infinite dimensional. This situation was changed by the 2008
paper of Rattazzi, Rychkov, Tonni and Vichi [2]. They were able to derive bounds on the
operator spectrum of Z2 symmetric conformal field theories in 4 dimensions through a
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Introduction

novel numerical method they proposed. More important than the obtained result, this
paper showed that progress on the conformal bootstrap program in d > 2 dimensions
is possible. Ever since 2008 the conformal bootstrap is one of the most active topics
of research in theoretical physics. Investigations in the conformal bootstrap typically
consist in studies on how to obtain constraints on the operator spectrum of CFT’s by
careful treatment of the bootstrap equations. There are two main research directions,
depending on whether the bootstrap equations are studied numerically (numerical
bootstrap) or analytically (analytic bootstrap).

Mellin amplitudes

The topic of this thesis is an analytic bootstrap technique called Mellin amplitudes1. A
four point function of scalar primaries 〈φφφφ〉 in a CFT can be written as

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
1

x2∆
12 x2∆

34
+

1
x2∆

13 x2∆
24

+
1

x2∆
14 x2∆

23
+

f (u, v)
x2∆

13 x2∆
24

, (1)

xij ≡ |xi − xj| , u =
x2

12x2
34

x2
13x2

24
, v =

x2
14x2

23

x2
13x2

24
,

f (u, v) =
∫ +i∞

−i∞

dγ12

2πi

∫ +i∞

−i∞

dγ14

2πi
Γ2(γ12)Γ2(γ14)Γ2(∆− γ12 − γ14)M(γ12, γ14)u−γ12 v−γ14 ,

(2)

where ∆ is a number that characterizes the field φ called the conformal dimension.
M(γ12, γ14) is called the Mellin amplitude. The Mellin amplitude is essentially the Mellin
transform of the connected piece of the correlation function. The factor Γ2(γ12)Γ2(γ14)Γ2(∆−
γ12 − γ14) basically ensures that the Mellin amplitude is polynomially bounded, as we
demonstrate in this thesis. Crossing symmetry is the statement that

M(γ12, γ14) = M(γ14, γ12) = M(γ12, ∆− γ12 − γ14). (3)

In this thesis, we establish the main properties of Mellin amplitudes, namely:

� their existence for nonperturbative CFT’s and the subtractions necessary to have a
Mellin representation

� Mellin amplitudes are meromorphic functions

� Mellin amplitudes are polynomially bounded at infinity

1Mellin amplitudes will hopefully also be useful numerically.
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� Polyakov conditions. These are statements about zeros of the Mellin amplitude for
nonperturbative CFT’s

We prove some of these properties from CFT axioms. When we fail to give proofs, we
try to write our assumptions as clearly as possible.

Mellin amplitudes were introduced in physics in 2009 in a paper by Gerhard Mack [3].
He introduced the definition of a Mellin amplitude (2), with the Γ functions in the
prefactor. He also pointed out the above properties of Mellin amplitudes (except for
Polyakov conditions). Furthermore, he computed the residues of the Mellin amplitude,
which are essentially kinematic polynomials, nowadays named "Mack polynomials".

The first use of Mellin amplitudes was made in a 2010 paper by João Penedones [4].
He pointed out that tree level Witten diagrams have a very simple form in Mellin
space. Furthermore, he conjectured a formula connecting the Mellin amplitude of
diagrams in AdS with diagrams in flat space and checked it in some examples. After
this work many papers about the Mellin amplitudes of AdS diagrams appeared, see for
example [5, 6]. Recently, Mellin amplitudes were found to be very useful to calculate
correlation functions of supergravity theories in AdS, see for example [7].

Another important development was the "Mellin-Polyakov" bootstrap, pioneered in
the papers [8, 9]. The main idea proposed there was to write correlation functions as
sums of crossing symmetric Witten exchange diagrams. Afterwards, one imposes the
absence of double twist operators, and uses such constraints to calculate the CFT data.
These are the so called Polyakov conditions, which played a crucial role in subsequent
developments and are nowadays believed to hold nonperturbatively.

In practice, the computations in [8,9] were done using Mellin space. The Mellin-Polyakov
boostrap had great success perturbatively, namely in the ε-expansion, where new pre-
dictions were derived using this scheme. However, to our understanding, it is unclear
whether such a bootstrap scheme holds nonperturbatively2.

Nonperturbative sum rules

In this thesis we advocate the use of Mellin amplitudes nonperturbatively. We show that
existence and Regge boundedness of Mellin amplitudes, along with Polyakov conditions
and crossing symmetry, give rise to nonperturbative sum rules that constrain CFT data
nontrivially. Let us explain the logic behind such sum rules, using as an example a
functional α that we develop in the thesis in chapter 5. Consider a four point function of
scalar primaries 〈φφφφ〉 and consider the exchange of operators of twist τ and spin l,

2The idea of writing an explicitly crossing symmetric ansatz for the correlation function was recently
revisited in [10].
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where the twist is defined as the conformal dimension minus the spin. We then have the
equation

∑
τ,l

C2
τ,lα(τ, l) = 0, (4)

where C2
τ,l is an OPE coefficient and we sum over all operators exchanged in a given

channel. The functional α produces a number for each primary operator exchanged in
the four point function 〈φφφφ〉. Equation (4) is a sum rule that constrains the CFT data,
namely the dimension of the external operator φ, as well as the dimension, spin and
OPE coefficients of the exchanged operators.

It turns out to be very interesting to apply (4) to a CFT with large central charge with an
AdS dual. In that case the sum rule can be written as

∑
τ<τ0,l

C2
τ,lα(τ, l)︸ ︷︷ ︸

IR contribution. Evaluated using AdS EFT.

+ ∑
τ>τ0,l

C2
τ,lα(τ, l)︸ ︷︷ ︸

UV contribution.

= 0. (5)

Given an AdS effective field theory (EFT), we can evaluate the first term of (5) using
standard techniques. (5) serves to constrain the possible UV (ultraviolet) completion of
such an EFT.

Some α have the curious property that the UV contribution always comes with a positive
sign. Let us suppose that we evaluate the IR (infrared) contribution for some EFT and it
turns out to have a positive sign. In that case, equation (5) cannot possibly be satisfied
and so we exclude any UV completion of such an EFT. In other words, nonperturbative
facts about CFT’s, namely the existence of Mellin amplitudes and Regge boundedness,
might lead to the exclusion of UV completions of effective field theories.

We were not able to materialise such a dramatic proposition in any example. In other
words, we were not able to exclude any effective field theory. However, we can bound
interaction couplings. We view nonperturbative sum rules, along with the idea of using
them to constrain the UV completion of effective field theories in AdS, as the main result
of this thesis3.

Besides this we also apply Mellin amplitudes to perturbative CFT’s, like the Wilson-
Fischer model in d = 4− ε dimensions and three dimensional CFT’s with slightly-broken
higher spin symmetry, and derive new conformal data.

3Similar approaches were developped at about the same time in [11], [12], in coordinate space. The
work [13] unifies different approaches to dispersive CFT sum rules.
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Preliminaries

Some basic facts about CFT’s and Mellin amplitudes

Conformal field theories are quantum field theories invariant under the conformal
algebra4

[D, Pµ] = Pµ, [D, Kµ] = −Kµ, [Kµ, Pν] = 2δµνD− 2iMµν, (6)

[Mµν, Pα] = i(δµαPν − δναPµ), [Mµν, Kα] = i(δµαKν − δναKµ),

[Mαβ, Mµν] = i(δαµ Mβν + δβν Mαµ − δβµ Mαν − δαν Mβµ).

Pµ and Mµν generate translations and rotations, like in the usual Poincaré group. D
and Kµ generate dilatations and special conformal transformations. Dilatations are
transformations of the type xµ → λxµ, where λ > 0. Special conformal transformations
are compositions of an inversion, a translation and another inversion, where an inversion
is the transformation xµ → xµ

x2 .

The basic observables of conformal field theories are local operators. Local operators
O can be divided in two types: primaries and descendants. Primary operators are
annihilated by the special conformal transformations acting at the origin. Furthermore
they are eigenvalues of the dilatation operator. In summary, they obey

[Kµ,O(0)] = 0, [D,O(0)] = ∆O(0), [Mµν,OA(0)] = [Mµν]
B
AOB(0) (7)

The matrix [Mµν]BA is related to the irreducible representation of the rotation group under
which the conformal primaries transform. Descendants are derivatives of primaries.

The basic observables of conformal field theories are correlation functions of conformal
primaries. In this thesis we will be mostly concerned with scalar conformal primaries.
Conformal symmetry fixes the form of the one, two and three point functions of confor-
mal primaries.

The one point function always vanishes, except for the identity operator, in which case it

4We used Euclidean signature to write the conformal algebra.
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is equal to 1. Two point functions are completely fixed. Three point functions are fixed,
up to a finite a number of coefficients. For scalar primaries, we have

〈Op1Op2〉 =
δp1,p2

|x1 − x2|∆1+∆2
, (8)

〈O1O2O3〉 =
C123

|x1 − x2|∆1+∆2−∆3 |x1 − x3|∆1+∆3−∆2 |x2 − x3|∆2+∆3−∆1
. (9)

C123 is called an Operator Product Expansion (OPE) coefficient.

Four point functions of conformal primaries are constrained by conformal symmetry, but
they are not completely fixed by it. A four point function of scalar conformal primaries
takes the form

〈O1O2O3O4〉 = x−2∆1
13 x∆1−∆2−∆3+∆4

23 x−∆1−∆2+∆3−∆4
24 x∆1+∆2−∆3−∆4

34 f (u, v), (10)

xij ≡ |xi − xj|, u ≡ x2
12x2

34

x2
13x2

24
, v ≡ x2

14x2
23

x2
13x2

24
,

where f is a function of two variables that is not determined by conformal symmetry.

A basic property of conformal field theories is the Operator Product Expansion (OPE).
The idea is that the product of sufficiently close operators can be reproduced by a
differential operator acting on only one such operator. For example, for equal scalar
primaries

O(x)O(0) = ∑
Op

COOOp

|x|2∆−∆p
(1 +

1
2

xµ∂µ + ...)Op(0) (11)

COOOp is an OPE coefficient. In the previous expression we sum over all conformal
primaries and the ... are fully determined by conformal symmetry. The OPE coefficients
are equal to three point function coefficients due to the diagonal property (8) of two
point functions. The set of OPE coefficients and conformal dimensions determines all
conformal correlation functions in a CFT.

Associativity of the OPE places nontrivial constraints on correlation functions. For
example, at the level of a four point function, we can choose to take the OPE between
operators at positions 1 and 2 and also between the operators at positions 3 and 4.
Alternatively, we can take the OPE between operators at positions 1 and 3 and also
between the operators at positions 2 and 4. These two ways of expressing a four point
function must lead to the same result. This leads to the equation

∑
p

CO1O2Op CO3O4Op G(12)(34)
∆p,lp

(x1, ..., x4) = ∑
p

CO1O3Op CO2O4Op G(13)(24)
∆p,lp

(x1, ..., x4), (12)

which places non trivial constraints on the OPE coefficients and conformal dimensions

6
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of conformal primaries. G(12)(34)
∆p,lp

(x1, ..., x4) and G(13)(24)
∆p,lp

(x1, ..., x4) are called conformal
blocks, which are kinematical functions fully determined by conformal symmetry.

Mellin amplitudes are defined for n-point correlation functions of scalar conformal
primaries as5

〈O1(x1)...On(xn)〉 =
∫
[
dγij

2πi
]

n

∏
i=1

n

∏
j=i+1

|xi − xj|−2γij Γ(γij) M({γij})︸ ︷︷ ︸
Mellin amplitude

, ∑
j 6=i

γij = ∆i.

(13)

Nonperturbatively one might be forced to perform subtractions to the lhs of (13) in order
to have a Mellin representation. For sufficiently light scalar conformal primaries, the
correct definition at the level of the four point function is given by equations (1) and (2)6.

Mellin amplitudes have poles at locations predicted by the OPE, namely γij = ∆− τ
2 − n,

where n ∈ N0. We prove that for some regions of (γ12, γ14) ∈ C2 these are the only
singularities of the Mellin amplitude. This leads us to conjecture that such a fact extends
to all of C2, i.e. that all singularities of the Mellin amplitude correspond to physical
operators.

As explained in [16, 17], the twist spectrum of conformal field theories in d > 3 has
accumulation points in the following sense: given two primary operators of twists τ1

and τ2 in the spectrum, there is a sequence of operators labelled by their spin s such that
when s→ ∞ their twist approaches τ1 + τ2. This implies that the Mellin amplitude has
accumulation points of poles. Near such accumulation points, the Mellin amplitude
has a branch point like behaviour. Sometimes the Mellin amplitude vanishes at such
accumulation points. The precise conditions are equations (4.29), (4.30) and (4.31). These
are called the Polyakov conditions and they are very important for the development of
dispersive sum rules.

In this thesis we apply Mellin amplitudes to effective field theories in AdS, as well as
the Wilson-Fischer model in 4− ε dimensions. We also apply Mellin amplitudes to two
dimensional minimal models and three dimensional CFT’s with slightly broken higher
spin symmetry. We review both classes of such theories in what follows.

5Mellin amplitudes can also be defined for spinning correlation functions, see [15].
6The precise condition is that d−2

2 < ∆ < 3(d−2)
4 . If this condition is not met, one needs to perform more

subtractions, see equation (2.19).
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Minimal Models

The conformal group is larger in d = 2 than in d > 2. For d = 2, the number of conformal
generators is infinite. They can be divided in holomorphic conformal generators Ln and
antiholomorphic conformal generators L̄n. Each of the two classes of generators obeys a
Virasoro algebra:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0, (14)

[L̄n, L̄m] = (n−m)L̄n+m +
c

12
n(n2 − 1)δn+m,0,

[Ln, L̄m] = 0.

We note that {L−1, L0, L1, L̄−1, L̄0, L̄1} form a closed subalgebra, which does not depend
on the central charge. This is called the global conformal group. For d > 2, all the
conformal generators belong to the global conformal group.

The Hilbert space of two dimensional conformal field theories is made up of highest
weight representations of the Virasoro algebra. These are formed out of a primary state
|h〉 obeying

Ln|h〉 = 0, if n > 0, L0|h〉 = h|h〉. (15)

Descendant states have the schematic form L−n1 ...L−nm |h〉. The representations involved
in minimal models are special, since they involve descendant states that are singular
and thus decouple from the Hilbert space. This is similar to the situation concerning
conserved operators.

All Virasoro primaries in minimal models are scalars7 and a given minimal model only
contains a finite number of them.

Minimal models are labelled by two coprime integers (p, q). These determine the
operator content of the theory. The central charge is given by

cp,q = 1− 6
(p− q)2

pq
. (16)

We label a Virasoro primary φ(r,s) by the two integer numbers r and s, where 1 6 r 6 q− 1
and 1 6 s 6 p− 1. The conformal dimension of a Virasoro primary is given by

∆r,s =
(pr− qs)2 − (p− q)2

2pq
. (17)

7In this thesis we apply Mellin amplitudes to the so called A-series minimal models, which only contain
scalar Virasoro primaries. There are other minimal models that contain spinning Virasoro primaries.
Modular invariance is an important consistency condition that minimal models need to obey.
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There are (p−1)(q−1)
2 Virasoro primaries in the (p, q) minimal model due to an equivalence

between the primaries φ(r,s) and φ(q−r,p−s).

Many important statistical systems have a description in terms of minimal models, like
the 2d Ising model (M(4, 3)), or the tricritical Ising model (M(5, 4)). Not all minimal
models are unitary, in fact they are unitary only if p = q + 1. Minimal models have a
Coulomb gas formulation, which we explain and use in chapter 8.

CFT’s with slightly broken higher spin symmetry

A CFT with higher spin symmetry is one that has a conserved primary jµ1...µs of spin
s > 2. An important result proven by Maldacena and Zhiboedov in [18] is that in d > 2
such theories are free, i.e. they are either the theory of free bosons or of free fermions.
This result can be seen as an extension of the Coleman-Mandula theorem to CFT’s.
The Coleman-Mandula theorem states that the maximum spacetime symmetry of an
interacting QFT with an S-matrix is the super-Poincare group. This theorem does not
directly apply to CFT’s, since they do not have an S-Matrix.

Let us give a flavour of how this result is derived. We will set d = 3, so that it is easier
to phrase the results. Consider a CFT with a higher spin conserved current js. We can
define a charge Qs =

∫
dSµ jµµ2...µs , which can be used to constrain correlation functions:

〈[Qs, O1]O2O3〉+ 〈O1[Qs, O2]O3〉+ 〈O1O2[Qs, O3]〉 = 0. (18)

A priori, we do not know the algebra of the symmetries, i.e. we do not know [Qs, js′ ] =?.
So, we must constrain the correlation functions and the algebra at the same time. At the
level of correlation functions, conformal symmetry implies that three point functions of
conserved currents have to be linear combinations of known structures:

〈js1 js2 js3〉 = cb〈js1 js2 js3〉FreeBoson + c f 〈js1 js2 js3〉FreeFermion + codd〈js1 js2 js3〉odd. (19)

Two of the structures can be found in the theory of free bosons and in the theory of free
fermions. The odd structure is also fully known explicitly [19].

Furthermore, unitarity constrains [Qs, js′ ]. A conserved current in d = 3 has twist 1.
The twist is defined as the conformal dimension minus the spin. Thus, the charge
Qs has twist 0. We conclude that [Qs, js′ ] has twist 1. Let us introduce coordinates
ds2 = −dx+dx− + dy2 and let us study [Qs, js′ ] setting all indices in the minus directions.
We conclude that

[Qs, js′ ] = ∑
s′′

cs,s′,s′′(∂−)
s+s′−s′′−1 js′′ (20)

9
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Notice that derivatives along the minus directions do not change the twist. (19) and
(20) form a system of equations, from which it is possible to conclude that codd = 0 and
cb and c f cannot be both nonzero at the same time. This proves the result at the level
of three point functions. The result can be generalised to n-point correlation functions
using bilocal operators [18].

CFT’s with slightly broken higher spin symmetry are large N 3d CFT’s where higher
spin symmetry is broken by 1/N effects [20]. There are two types of theories of this
kind: the quasi-boson and the quasi-fermion. They depend on two parameters, Ñ and λ̃.
λ̃ plays the role of a t’Hooft like coupling. These theories have a Lagrangian description
in terms of N massless particles (bosons or fermions) coupled to a Chern-Simons field in
the fundamental representation of the gauge group (O(N) or U(N)).

The spectrum of these theories is composed of single trace operators of even spin
s = 2, 4, 6, etc. They are the quasi-conserved currents. In the quasi-fermion theory there
is a scalar single trace operator of dimension 2, whereas in the quasi-boson theory there
is a scalar single trace operator of dimension 1. The dimensions of all operators receive
corrections at order 1

Ñ . Three point functions of all single trace operators were computed
in [20].

10



Part IExistence and Basic Properties of
Mellin amplitudes

11





1 Existence of Mellin amplitudes

1.1 Introduction

In this chapter we argue that a four-point correlation function of light scalar operators in
a generic CFT admits a Mellin representation in the sense of (2). We start by reviewing
basic facts about the multi-dimensional Mellin transform and a natural space of functions
associated with it. These are functions analytic and polynomially bounded in a sectorial
domain (see below for the precise definition).

We then consider the Mellin transform of the four-point function of identical scalar
primary operators in a generic CFT. We show that the Mellin transform has a physical
interpretation of an integral over the principal Euclidean sheet, a connected space of
conformally non-equivalent configurations for which all x2

ij are space-like. Equipped
with this understanding, we use the OPE to identify the sectorial domain of analyticity
of the physical correlator. We then argue (not fully rigorously) that upon appropriate
subtractions the physical correlator also satisfies the required polynomial boundedness
and therefore admits the Mellin representation (2).

For simplicity, we consider the four-point function 〈OOOO〉 of equal scalar primary
operators. Conformal symmetry restricts it as follows

〈O(x1)O(x2)O(x3)O(x4)〉 =
F(u, v)(
x2

13x2
24

)∆ ,

u =
x2

12x2
34

x2
13x2

24
= zz̄ , v =

x2
14x2

23

x2
13x2

24
= (1− z)(1− z̄) , (1.1)

where ∆ is the scaling dimension of O and the arbitrary function of cross ratios F(u, v)
satisfies crossing relations

F(u, v) = F(v, u) = v−∆F
(

u
v

,
1
v

)
. (1.2)
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Existence of Mellin amplitudes

Unitarity implies that ∆ > d−2
2 .

1.2 Two-dimensional Mellin Transform

Here we review inversion theorems of the two-dimensional Mellin transform relevant
for the four-point function. The generalization to an arbitrary number of dimensions is
straightforward and the corresponding theorems and proofs can be found for example
in [21].

Consider a two-variable function g(u, v). Its Mellin transform is defined as

M[g](γ12, γ14) ≡
∫ ∞

0

dudv
uv

uγ12 vγ14 g(u, v). (1.3)

Similarly, consider a two-variable function M̂(γ12, γ14). We define the inverse Mellin
transform as

M−1[M̂](u, v) =
∫ c+i∞

c−i∞

dγ12dγ14

(2πi)2 u−γ12 v−γ14 M̂(γ12, γ14). (1.4)

There are two natural vector spaces of functions associated with these transforms: MU
Θ

and WΘ
U . Let us define them.

We say that a function g(u, v) belongs to the vector space of functions MU
Θ if two condi-

tions are satisfied. First, it is holomorphic in a sectorial domain (arg[u], arg[v]) ∈ Θ ⊂ R2

which we assume to be open and bounded, as well as to include the origin (0, 0) ∈ Θ.
Second, in the region of holomorphy g(u, v) obeys

|g(u, v)| 6 C(cu, cv)
1
|u|cu

1
|v|cv

, (arg[u], arg[v]) ∈ Θ, (cu, cv) ∈ U , (1.5)

for some open region U ∈ R2. A typical example will be au < cu < bu and av < cv < bv.

Similarly, we say that M̂(γ12, γ14) belongs to a vector space of functions WΘ
U if two

conditions are satisfied. First, M̂(γ12, γ14) is holomorphic in a tube U + iR2 for some
open region U ∈ R2. Second, in the holomorphic tube it decays exponentially fast in the
imaginary directions

|M̂(γ12, γ14)| 6 K(Re[γ12], Re[γ14])e−supΘ(arg[u]Im[γ12]+arg[v]Im[γ14]) (1.6)

(γ12, γ14) ∈ U + iR2.

Having introduced MU
Θ and WΘ

U , we then have the following theorems [21, 22]:

14
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Theorem I: Given F(u, v) ∈ MU
Θ , its Mellin transformM[F](γ12, γ14) exists and is in

WΘ
U . Moreover,M−1M[F](u, v) = F(u, v) for any (arg[u], arg[v]) ∈ Θ.

Theorem II: Given M̂(γ12, γ14) ∈WΘ
U , its inverse Mellin transformM−1[M̂](u, v) exists

and is in MU
Θ . Moreover,MM−1[M̂](γ12, γ14) = M̂(γ12, γ14) for any (γ12, γ14) ∈ U +

iR2.

Note that we are not saying that the function has to be in MU
Θ to admit a Mellin represen-

tation1, but we will see that MU
Θ and WΘ

U are indeed the relevant classes for the physical
CFT correlators.

Since the discussion might look a little too abstract let us consider a couple of one-
dimensional examples that illustrate the application of these theorems. The first example
is g(u) = e−u. This is an entire function which is polynomially bounded for −π

2 <

arg[u] < π
2 for cu > 0. According to the theorem I, the Mellin transform of g(u) exists

and decays as e−
π
2 |Im[γ12]|, where we used (1.6). Indeed, the Cahen-Mellin integral takes

the form

e−u =
∫ cu+i∞

cu−i∞

dγ12

2πi
Γ(γ12)u−γ12 , cu > 0, |arg[u]| < π

2
. (1.7)

It is a well-known fact that in the complex plane Γ(γ12) ∼ e−
π
2 |Im[γ12]| in agreement with

the theorem above.

The second example is g(u) = 1
(1+
√

u)α . Note that it is analytic for |arg[u]| < 2π and
satisfies (1.5) for 0 < cu < α

2 . Using theorem I, we conclude that the Mellin transform of
g(u) has to decay as e−2π|Im[γ12]|. The explicit formula takes the form

1
(1 +

√
u)α

=
∫ cu+i∞

cu−i∞

dγ12

2πi
2Γ(2γ12)Γ(α− 2γ12)

Γ(α)
u−γ12 , 0 < cu <

α

2
, |arg[u]| < 2π.

(1.8)
Again one can explicitly check that the Mellin amplitude decays with an expected
exponential rate dictated by the analyticity region of the original function.

We show below that the physical CFT correlators are indeed analytic in a certain sectorial
domain. However, they do not satisfy (1.5) and therefore the Mellin transform of the
full correlation function does not exist. We claim, however, that it does exist upon
doing simple subtractions.2 These subtractions are designed in such a way that they
do not spoil the analytic structure of the correlator and at the same time they make it
polynomially bounded in the sense described above. The result of this analysis is (2). We

1As an example consider uavbθ(0 < u < 1)θ(0 < v < 1) which is obviously not holomorphic but it has
a well-defined Mellin amplitude. We will use this loophole to define the intermediate objects that we call
the K-functions in section 2.1.

2This is true in a generic, interacting CFT. We will discuss some special cases like 2d minimal models
and higher d free theories separately.
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will see that performing the subtractions beyond the disconnected part is equivalent3 to
introducing a deformed Mellin contour C.

1.3 Principal Euclidean Sheet

Let us understand better the physical meaning of the integration region in (1.3). By
conformal transformations, we can put the four points on a 2d Lorentzian plane with
coordinates (tM, xM). Furthermore, by performing conformal transformations, we put
point 1 at (0, 0), point 3 at (0, 1) and point 4 at (0, ∞). The position of point 2 is not fixed
and we denote it by (tM

2 , xM
2 ).

We map the plane to the Lorentzian cylinder. On the cylinder, we use coordinates (t, φ),
which are related to coordinates on the plane by

tM =
sin t

cos t + cos φ
, xM =

sin φ

cos t + cos φ
. (1.9)

The metric on the cylinder is related to the metric on the plane by −(dtM)2 + (dxM)2 =
−dt2+dφ2

(cos t+cos φ)2 , so they are indeed conformal to one another. The cross ratios are given by

u = −(tM
2 )2 + (xM

2 )2 =
cos t2 − cos φ2

cos t2 + cos φ2
, (1.10)

v = −(tM
2 )2 + (xM

2 − 1)2 = 2
cos t2 − sin φ2

cos t2 + cos φ2
. (1.11)

Points 1, 3 and 4 are mapped respectively to (0, 0), (0, π
2 ) and (0, π) on the cylinder.

Note that cross ratios are invariant under t2 → −t2.

A simple observation is that the region 0 6 u, v 6 ∞ is the region of Minkowski space (or
of Lorentzian cylinder) of spacetime dimension d ≥ 3, for which the point x2 is space-like
separated from the three other points. Indeed, it is a well-known fact that for u, v > 0 and
four points in Euclidean space, cross ratios satisfy (1−√u)2 6 v 6 (1+

√
u)2, see figure

1.1. The rest of the quadrant u, v > 0 is covered by the fully spacelike configurations
on the 2d Lorentzian cylinder depicted in figure 1.2. This fact allows us to use the OPE
and analyze convergence of the integral in different regions. It will be natural for us to
split the integral into three regions, each of which containing the region between the
light cones emitted from points x1, x3 and x4 (see figure 1.2) and part of the Euclidean
domain. The regions are defined as follows

Region I : 0 6 u, v 6 1 ,

3Up to some very special situations that we analyze separately.
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(1, 0)

(0, 1)

u

v

Figure 1.1. We divide the region u, v > 0 into 4 regions coloured in blue, pink, red and grey. The
regions are separated by the curves v = (1−√u)2 and v = (1 +

√
u)2 or, equiavelntly, z = z̄. In

the grey region z and z̄ are the complex conjugate of each other. In the colored regions z and z̄
are real and independent variables. In the red region we have that z, z̄ ∈ (−∞, 0). In the blue
and pink regions we have that z, z̄ ∈ (0, 1) and z, z̄ ∈ (1, ∞) respectively.

ππ
2

0−π φ

t

Figure 1.2. Cylinder picture of points 1, 3 and 4. The point at (t = 0, φ = π) should be identified
with the point at (t = 0, φ = −π). The colored area signifies regions where point 2 is spacelike
separated from three other points and no light-cones has been crossed. Note that the colored
region is a double cover in the cross ratio space. Indeed changing t2 → −t2 does not change the
cross ratios (1.10).

I

II

III

u

v

0 1

1

Figure 1.3. Different regions in the (u, v) plane that we will find convenient to consider. Different
regions are mapped into each other by crossing.
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Region II : 1 6 u, 0 6 v 6 u ,

Region III : 1 6 v, 0 6 u 6 v . (1.12)

These three regions are mapped to each other via crossing transformations (1.2).

1.4 Analyticity in a Sectorial Domain

Let us study the analytic properties of F(u, v) in the (u, v) plane. Analyticity for real and
positive u, v > 0 is obvious from the discussion above. Indeed, for such cross ratios the
correlation function describes a generic configuration of space-like separated operators,
whereas non-analyticities of correlation functions can only occur when “something
happens” [23], say a pair of two points become light-like separated. A more rigorous
argument relies on the exponential convergence of the OPE in CFTs which makes
analyticity manifest [24].

To discuss Mellin amplitudes however we need to understand analytic properties
of correlation functions in a sectorial domain, namely we would like to allow for
arg[u], arg[v] 6= 0. In other words, consider the correlation function F(|u|eiarg[u], |v|eiarg[v])

with |u|, |v| ∈ (0, ∞).

arg(v)

arg(u)2π−2π 0

2π

−2π

Figure 1.4. Sectorial domain ΘCFT of analyticity of a generic CFT correlation function F(u, v).

Claim: Any physical correlator F(u, v) is analytic in the convex sectorial domain ΘCFT =

(arg[u], arg[v]) defined as the union of the following 3 regions

ΘCFT : |arg[u]|+ |arg[v]| < 2π,

0 < arg[u], arg[v] < 2π,

−2π < arg[u], arg[v] < 0,
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where arg[u] = arg[v] = 0 corresponds to the principal Euclidean sheet. ΘCFT is
depicted on 1.4.

Let us briefly outline the argument for our claim. We present all the details in appendix
F. As we analytically continue u→ |u|eiarg[u], v→ |v|eiarg[v] we are sure that we do not
encounter any singularity provided there is an OPE channel that converges. Indeed, we
can then use the Cauchy-Schwarz inequality to bound the continued correlator by its
value at arg[u] = arg[v] = 0 which then ensures analyticity. The rhombus of figure 1.4 is
precisely the union of the regions where at least one OPE channel converges, see figure
1.5.

arg(v)

arg(u)2π−2π 0

2π

−2π

Figure 1.5. We use red, blue and grey to colour the regions where the O(x1)×O(x2), O(x1)×
O(x4) and O(x1)×O(x3) OPE channels converge respectively.

We expect that generic correlation functions will have a non-analyticty at the boundary
of the ΘCFT for some values of |u|, |v|. One example of such a non-analyticity is the bulk
point singularity [23, 25].4 In special cases this singularity may be absent. An example is
free field theory.

1.5 Dangerous Limits

To analyze the convergence of the integrals above let us understand what are the relevant
regions when we integrate in 0 6 u, v 6 1. There are several different regions involved:

a) Euclidean OPE region, which corresponds to u→ 0 and v→ 1. The correlator in this

4Note that in terms of (u, v) the bulk point locus z = z̄ can lead to a non-analyticity of the correlator in
terms of (u, v) even in 2d CFTs. This does not contradict [23] which established analytic properties of the
correlator as a function of (z, z̄) which are fully analytic at z = z̄ and is related to the singular character of
the Jacobian when going from (z, z̄) to (u, v). See appendix F for more on that.
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limit behaves as
lim

u→0, 1−v√
u − fixed

F(u, v) ∼ u
∆min

2 −∆, (1.13)

where ∆min is the minimal scaling dimension of the operators that appear in the OPE of
O ×O. More generally, we can use the Euclidean OPE to bound the correlator in the
vicinity of u = 0 and v = 1, not necessarily along the directions (1.13).

b) Lorentzian OPE region, which corresponds to u → 0 and v fixed and finite. The
correlator in this limit behaves as

lim
u→0

F(u, v) ∼ u
τmin

2 −∆, (1.14)

where τmin is the minimal twist5 of the operator that appears in the OPE of O ×O.

In unitary theories, the identity is the lowest dimension operator exchanged in O ×O,
thus ∆min = τmin = 0.

c) Double light-cone limit, which corresponds to u, v→ 06. In general we do not know
what is the behavior of the correlator in this limit. For the moment, we just bound the
correlator in this limit.

As explained for example in [28], the correlator can be expanded as

F(u, v) = u−∆ ∑
h,h̄

ah,h̄zh z̄h̄, (1.15)

where h = ∆ex±J
2 , h̄ = ∆ex∓J

2 and we sum over all exchanged operators in the O ×O
OPE, both primaries and descendants. ∆ex is the conformal dimension of the exchanged
operator and J is its spin. The coefficients ah,h̄ are non-negative in a unitary theory.

Suppose now that we are in the Lorentzian region
√

u +
√

v < 17. In this region, z and
z̄ are independent and real positive variables. Using unitarity and the OPE expansion
(1.15) we conclude that

F(z1, z̄1)(z1z̄1)
∆ < F(z2, z̄1)(z2z̄1)

∆, (1.16)

provided that we pick z2 such that z1 < z2 < 1.

The previous inequality can also be stated in the following manner. Pick z1 and z̄1 as
independent real variables between 0 and 1. Define u1 and v1 in the usual manner. Then,

5We define the twist as τ = ∆− J, where J is the spin of the operator.
6This limit was discussed for example in [26, 27].
7This region is given by a Lorentzian correlator.
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1.6. Subtractions and Polynomial Boundedness

for any z2 such that z1 < z2 < 1,

F(u1, v1) < F(u2, (1− z̄1)(1− z2))
u∆

2

u∆
1

, (1.17)

where u2 = z̄1z2. Now let us take the double light-cone limit z1 → 0, z̄1 → 1. Since z2 is
fixed we can use the lightcone limit in the RHS to get

F(u, v) <
c0

u∆v∆ , 0 < u, v < c, (1.18)

where c < 1 and c0 are some constants. This bound is saturated in the 2d Ising model
(see (E.7)). So, we cannot improve it without making further assumptions.

1.6 Subtractions and Polynomial Boundedness

By combining the small u, v analysis of the previous section with crossing (1.2) we
can find the power-like bounds and asymptotics of the full correlator F(u, v) for any
0 < u, v < ∞. Plugging them in the definition of the Mellin transform (1.3) it is clear
that the integral diverges for any γ12 and γ14.

To improve the convergence of the Mellin transform we consider the subtracted correla-
tor

Fsub(u, v) ≡ F(u, v)− (1 + u−∆ + v−∆) (1.19)

− ∑
τgap6τ6τsub

Jmax

∑
J=0

[
τsub−τ

2

]
∑

m=0
C2

τ,J

(
u−∆+ τ

2 +mg(m)
τ,J (v) + v−∆+ τ

2 +mg(m)
τ,J (u) + v−

τ
2−mg(m)

τ,J (
u
v
)

)
,

where g(m)
τ,J (v) is defined as the m-th term in the small u expansion of a single conformal

block gτ,J(u, v)

F(u, v) = u−∆ ∑
τ,J−even

C2
τ,J gτ,J(u, v) , gτ,J(u, v) = u

τ
2

+∞

∑
m=0

umg(m)
τ,J (v). (1.20)

These functions satisfy the following useful identity v−
τ
2−mg(m)

τ,J (
1
v ) = (−1)J g(m)

τ,J (v), see
e.g. [29]. The subtraction (1.19) makes every OPE limit of the correlator less singular.
More precisely, we explicitly subtract the contribution of operators with twists τ 6
τsub < τ∗ in every channel. Here τ∗ is the smallest twist accumulation point that is
exchanged in the OPE of O ×O. On general grounds [16, 17] τ∗ 6 2∆. The choice of our
twist cut-off τsub < τ∗ guarantees that in (1.19) Jmax < ∞.

The subtracted correlator Fsub(u, v) still satisfies crossing (1.2) and it is still analytic in
the sectorial domain ΘCFT due to the analytic properties of the g(m)

τ,J functions. However,
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Existence of Mellin amplitudes

on top of that we claim that Fsub(u, v) is polynomially bounded as follows

|Fsub(u, v)| 6 C(γ12, γ14)
1
|u|γ12

1
|v|γ14

, (arg[u], arg[v]) ∈ ΘCFT, (Re[γ12], Re[γ14]) ∈ UCFT ,

(1.21)
where UCFT is given by

UCFT : ∆− τsub

2
> Re[γ12, γ13, γ14] > ∆− τ′sub

2
, (1.22)

where τ′sub is the next twist after τsub appearing in the OPE O × O and recall that

γ13 = ∆− γ12 − γ14. The condition Re[γ12] > ∆− τ′sub
2 follows trivially from the light-

cone limit Fsub(u, v) ∼ u−∆+τ′sub/2 when u → 0 with fixed v > 0. The condition γ12 +

γ14 = ∆− γ13 > τsub/2 follows from the behaviour of the last subtraction term in (1.19)
in double light-cone limit u ∼ v → 0. Finally, the remaining conditions in (1.22) are
obtained from these two by crossing symmetry. The domain UCFT is depicted in figure
1.6. One may also think of the domain UCFT as the region of analyticity surrounding the
crossing symmetric point γ12 = γ13 = γ14 = ∆

3 .

∆− 1
2 τ′sub

∆− 1
2 τsub

Re[γ12]

Re[γ14]

(0, 0)

(∆, ∆)

(∆
3 , ∆

3

)

Figure 1.6. Domain UCFT is shown in red with the crossing symmetric point γ12 = γ13 = γ14 =
∆
3 at the center. In this picture we assumed that the first twist accumulation point is τ∗ = 2∆
(marked with dashed lines). The Mellin-Mandelstam triangle Re(γ12, γ13, γ14) > 0 is depicted in
light blue. The blue lines correspond to Re(γ1j) = ∆− τsub/2 for j = 2, 3, 4. Similarly, the red
lines correspond to Re(γ1j) = ∆− τ′sub/2. The black lines correspond to Re(γ1j) = ∆− τ/2 for
other twists τ < τ∗ in the spectrum. The dotted lines corresponds to the identity operator with
τ = 0.

We conclude that Fsub(u, v) ∈ MUCFT
ΘCFT

and we can write its Mellin representation with the
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1.6. Subtractions and Polynomial Boundedness

straight contour

Fsub(u, v) =
∫ UCFT+i∞

UCFT−i∞

dγ12dγ14

(2πi)2 u−γ12 v−γ14 M̂(γ12, γ14). (1.23)

In section 2.1 we show that (1.23) implies (2), if we use a deformed contour C in (2).

A few comments are in order. First of all a necessary condition for the non-emptiness of
UCFT (1.22) is ∆

3 > ∆− τ∗
2 or equivalently

∆ <
3
4

τ∗ . (1.24)

In an interacting CFT we expect that τ∗ = 2τlightest, where τlightest is the scaling dimension
of the lightest operator present in the theory. It is in this precise sense that our construc-
tion concerns only the correlation functions of the light operators in the theory. In section
2.7, we will present a different argument that allows us to generalize this construction
beyond (1.24). Unfortunately, we do not establish (1.21) rigorously. Nevertheless we
believe that it is a true property of physical correlators (see appendix G). Proving (1.21)
rigorously is an important missing step in our analysis.

At this point we also introduce the notion of Mellin-Mandelstam triangle (see figure 1.6).
Consider a CFT where the lightest primary operator is a scalar with ∆lightest < d− 2.
In this case, if we consider the Mellin amplitude for the lightest scalar, the first twist
accumulation point that appears in the OPE is τ∗ = 2∆lightest. Therefore, in the region

Re[γ12, γ13, γ14] > 0 , (1.25)

there are no twist accumulation points. This is the analog of the Mandelstam triangle
in the context of flat space scattering amplitudes. The twist accumulation point at
γ12 = ∆− τ∗/2 = 0 is the analogue of the two-particle branch point (in the 12 channel)
of the flat space scattering amplitude.

According to theorem I M̂(γ12, γ14) decays exponentially fast in the complex plane

|M̂(γ12, γ14)| 6 K(Re[γ12], Re[γ14])e
−supΘCFT

(arg[u]Im[γ12]+arg[v]Im[γ14]), (γ12, γ14) ∈ UCFT + iR2.
(1.26)

Note that the Mellin amplitude M(γ12, γ14) is defined by

M̂(γ12, γ14) = [Γ(γ12)Γ(γ14)Γ(∆− γ12 − γ14)]
2 M(γ12, γ14). (1.27)

One can check that

[Γ(γ12)Γ(γ14)Γ(∆− γ12 − γ14)]
2 ∼ e−π(|Im[γ12]|+|Im[γ14]|+|Im[γ12+γ14]|)

= e−supΘCFT
(arg[u]Im[γ12]+arg[v]Im[γ14]), (1.28)
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Existence of Mellin amplitudes

and therefore M(γ12, γ14) is polynomially bounded. Moreover, as we will show below
its maximal power growth is controlled by the Regge limit.
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2 Analytic properties of Mellin ampli-
tudes

2.1 Introduction

In chapter 1 we analyzed the conditions for the existence of the Mellin amplitude of the
correlator and put forward the subtractions necessary to define it. Next we would like
to understand the analytic properties of the Mellin amplitude M(γ12, γ14). This is the
main purpose of this chapter.

To attack this problem we find it useful to develop a different approach to define
Mellin amplitudes, namely we split the integral over cross ratios in the definition of
the Mellin transform into 3 regions mapped into each other by crossing. The integral
of the correlator over a sub-region is manifestly convergent for certain values of γ12

and γ14. We then define the full Mellin amplitude by bringing the contributions from
different pieces together, see (2.8) below. As a result the subtractions we postulated in
the previous chapter arise very naturally. It is also clear that they can be absorbed into
the definition of the contour in (1), up to non-essential subtleties that we discuss below.

We then analyse the analytic properties of Mellin amplitudes and argue that the only
singularities of Mellin amplitudes are the ones that correspond to physical operators.
Concretely, we claim that the only singularities of nonperturbative Mellin amplitudes
are simple poles at

γij = ∆− τ

2
− n, n ∈N0 (2.1)

where τ is the twist of the exchanged conformal primary in the relevant channel. This is
discussed in more detail in appendix D.
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Analytic properties of Mellin amplitudes

2.2 Auxillary K-functions

We split the integral in (1.3) into three regions as shown in figure 1.3. We define

K(γ12, γ14) ≡ KI(γ12, γ14) ≡
∫ 1

0

dudv
uv

uγ12 vγ14 F(u, v) . (2.2)

Notice that KI(γ12, γ14) = KI(γ14, γ12) as the result of crossing (1.2). The lightcone
behavior (1.14) and the double lightcone bound (1.18) imply that the integral converges
for Re γ12 > ∆ and Re γ14 > ∆. Therefore, KI(γ12, γ14) is analytic in this region.

Similarly, we have

KII(γ12, γ14) ≡
∫ ∞

1

du
u

∫ u

0

dv
v

uγ12 vγ14 F(u, v) . (2.3)

Let us do a change of variables u → 1
u and v → v

u . The measure stays invariant and
using crossing F( 1

u , v
u ) = u∆F(u, v) we get

KII(γ12, γ14) = KI(γ13, γ14), γ13 = ∆− γ12 − γ14. (2.4)

Lastly, we get

KIII(γ12, γ14) ≡
∫ ∞

1

dv
v

∫ v

0

du
u

uγ12 vγ14 F(u, v) , (2.5)

KIII(γ12, γ14) = KI(γ12, γ13), γ13 = ∆− γ12 − γ14, (2.6)

where in the last line we again made use of crossing symmetry.

Importantly, splitting the analytic function F(u, v) into three non-analytic pieces 1 leads
to a dramatic effect on the convergence properties of the inverse Mellin transform.
Instead of converging in the sectorial domain the inverse Mellin transforms above
converge only for arg[u] = arg[v] = 0. Nevertheless we will find it useful to use the
K-functions to describe subtractions and analytic properties of the full Mellin amplitude.

We conclude that in any CFT and for arbitrary correlation functions of scalar primaries,
we have

F(u, v) =
∫

Re[γ12,γ14]>∆

dγ12dγ14

(2πi)2 K(γ12, γ14)u−γ12 v−γ14

+
∫

Re[γ13,γ14]>∆

dγ12dγ14

(2πi)2 K(γ13, γ14)u−γ12 v−γ14

+
∫

Re[γ13,γ12]>∆

dγ12dγ14

(2πi)2 K(γ13, γ12)u−γ12 v−γ14 . (2.7)

1 F(u, v) = F(u, v)Θ(1− u)Θ(1− v) + F(u, v)Θ(u− 1)Θ(u− v) + F(u, v)Θ(v− 1)Θ(v− u).
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2.3. Analytic Structure of the K-function

where we denoted K = KI and γ12 + γ13 + γ14 = ∆. The contours run parallel to the
imaginary axis of γ12 and γ14 with real parts obeying the inequalities shown under the
integral sign.

Next, we would like to bring the three integrals in (2.7) to the same contour. We discuss
this procedure below and it will naturally lead to the subtractions that appeared in (1.19).
For the moment we can rather formally define the Mellin amplitude2 as the sum of the
three terms analytically continued to the whole complex plane,

M̂(γ12, γ14) = K(γ12, γ14) + K(γ13, γ14) + K(γ12, γ13), γ13 = ∆− γ12 − γ14. (2.8)

2.3 Analytic Structure of the K-function

The function K(γ12, γ14) is analytic for Re[γ12] > ∆ and Re[γ14] > ∆. We would like to
analytically continue this function to the rest of C2. Different regions are shown in figure
2.1.

Re[γ12]

Re[γ14]

[a][b]

[c][d]

(∆, ∆)

Figure 2.1. We want to analytically continue K(γ12, γ14) into C2. We break C2 according to the
four regions in the figure. For example, region [a] corresponds to Re[γ12], Re[γ14] > ∆. In region
[a], K(γ12, γ14) is completely analytic and is defined by the integral (2.2). In the other regions, it
will be defined by analytic continuation.

In appendix B, we explain how such analytic continuation is obtained for single-variable
Mellin transforms. We shall see that we can use the same trick at fixed γ14 to extend the
domain in γ12. The main trick is to add and subtract the leading behavior at small u,

K(γ12, γ14) =
∫ 1

0

du
u

∫ 1

0

dv
v

uγ12 vγ14

(
(F(u, v)−∑

τ

u−∆+ τ
2 hτ(v)) + ∑

τ

u−∆+ τ
2 hτ(v)

)
,(2.9)

2There is an abuse of language here. What we mean is that (2.8) is equal to Γ2(γ12)Γ2(γ14)Γ2(∆− γ12 −
γ14)M(γ12, γ14), where M(γ12, γ14)is the Mellin amplitude.
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Analytic properties of Mellin amplitudes

associated to the exchange of operators of twist τ. With this subtraction, we improved
the convergence in γ12 of the first term, without affecting the convergence in γ14. The
second term just gives simples poles at

γ12 = ∆− τ

2
, Oτ ∈ O ×O . (2.10)

These are just the usual OPE poles (2.1) (notice that here we are not distinguishing
between primaries and descendants). As we review below, CFT’s have accumulation
points in the twist spectrum. For this reason one may need infinite subtractions in order
to analytically continue in γ12 by a finite amount. In appendix D, we explain in detail
how to use OPE convergence to overcome this difficulty. The conclusion is that we
can analytically continue K(γ12, γ14) into region [b] except for the OPE singularities at
γ12 = ∆− τ

2 . Similarly, we can analytically continue K(γ12, γ14) into region [c] except
for the OPE singularities at γ14 = ∆− τ

2 . However, we cannot use the same strategy to
analytically continue K(γ12, γ14) into region [d] because we do not have enough control
over the double lightcone limit u ∼ v → 0. In appendix (D), we give strong evidence
that K(γ12, γ14) can also be extended to region [d], except for the same OPE singularities.
Our arguments are based on Bochner’s theorem (see appendix C) for analytic functions
of two complex variables. See also appendix E.1 for explicit formulas for K(γ12, γ14) in
free theories and in the 2d Ising model.

The results of this section strongly support the conjecture that the Mellin amplitude
(2.8) has singularities only at the OPE poles (2.1). We call this property maximal Mellin
analyticity by analogy with the S-matrix. It would be interesting to understand the
precise relation between the two.

2.4 Twist spectrum

The analytic structure of Mellin amplitudes (and K-functions) is controlled by the CFT
twist spectrum. Let us review its basic properties in d = 2 and d ≥ 3.

It is convenient to organize the CFT spectrum in terms of twist τ = ∆− J and spin J.3

Unitarity implies that τ > d− 2 for J > 0, and τ > d−2
2 for J = 0. In other words, the

twist spectrum of a unitary CFT is bounded from below. As shown in [30] operators
organize themselves in the Regge trajectories τ(J), at least for J > 1. It is interesting to
ask what is the structure of the twist spectrum as J → ∞.

In d ≥ 3 the twist spectrum exhibits additivity at large spin. Given operators with
twists τ1 and τ2 (we can call them seed operators) there exists an infinite set of Regge

3We restrict our discussion to symmetric traceless operators.
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2.4. Twist spectrum

trajectories with the property [16, 17]

lim
J→∞

τ
(n)
1,2 (J) = τ1 + τ2 + 2n. (2.11)

The corrections to (2.11) at finite J are given by powers of 1
J . The existence of such Regge

trajectories implies that the twist spectrum of an interacting CFT exhibits an intricate
pattern of accumulation points. Indeed, as J approaches infinity (2.11) implies that there
is an infinite number of operators with twist |τ − τ1 − τ2| < ε, where ε is an arbitrary
positive constant. These are the so-called double-twist Regge trajectories.

A double-twist operator τ
(n)
1,2 (J0) can itself serve as a seed that can be paired with another

operator to produce triple-twist operators. In this case, (2.11) implies the existence of an
infinite set of accumulation points

lim
J→∞

τ
(m)

τ
(n)
1,2 (J0),τ3

(J) = τ
(n)
1,2 (J0) + τ3 + 2m. (2.12)

Therefore, already at the second step we obtain an infinite number of accumulation
points, for every J0, in the space of twists (2.12). Moreover, there are also accumulation
points of accumulation points at τ1 + τ2 + τ3 + 2m.

As we increase twist the number of available seed operators, as well as the number of
the multi-twist Regge trajectories, quickly grows and therefore at high enough twist we
expect the twist spectrum to become very thinly spaced. It is an open question if it really
becomes dense in a finite interval. One can get some intuition from the toy model

τ
(k+1)
toy (J1, . . . , Jk) = c−

k

∑
i=1

1
Ji

, Ji ∈N , (2.13)

for (k + 1)th-twist operators. We can think of τ
(k+1)
toy (J1, . . . , Jk) as being the twist of

∂J1 φ...∂Jk φφ. In this model, the twist spectrum contains many accumulation points but
it is not dense in any interval of R.4 This suggest that the same is true for the twist
spectrum of CFTs in d ≥ 3 dimensions. Clearly this question has important implications
for the analytic structure of Mellin amplitudes. Namely, if the twist spectrum becomes
continuous then we expect branch cuts in the Mellin amplitudes.

This issue has recently been made much more precise in the context of d = 2 generic
unitary (irrational, compact) CFTs. Using the Virasoro fusion kernel [31–33], it was
argued in [34, 35] that the twist spectrum becomes continuous for τ ≥ c−1

24 . More
precisely, for every τ > c−1

24 there are infinitely many Regge trajectories that end in
every interval δτ. Moreover, all these Regge trajectories appear in a single four-point
correlation function.

4The only limit points of the set of twists τ
(k+1)
toy is the set τ

(k)
toy (see math.stackexchange.com).

29

https://math.stackexchange.com/questions/142992/find-all-limit-points-of-m-left-frac1n-frac1m-frac1k-m-n-k


Analytic properties of Mellin amplitudes

There are situations where this complicated twist spectrum simplifies dramatically. As
we review below one example is planar CFTs5. In this case, the (single-trace) twist
spectrum of the planar correlators becomes simple. Accumulation points in the twist
spectrum are also absent in rational d = 2 CFTs. In fact, the twist spectrum in this case
is given by a finite set of non-trivial twists plus non-negative integers. It is precisely
in these contexts, when the twist spectrum simplifies, that Mellin amplitudes become
particularly useful.

2.5 Recovering the Straight Contour

We would like to bring the three integrals in (2.7) to the same straight contour. There
are infinitely many ways to do this depending on the choice of the final contour. In the
process of doing so we need to know the analytic structure of K(γ12, γ14) on C2. Above
we argued that K(γ12, γ14) is an analytic function, with simple poles at

γ12 = ∆− τi

2
− n1, γ14 = ∆− τj

2
− n2, (2.14)

for each primary operator of twist τi or τj being exchanged in O × O and for each
nonnegative integer n1 and n2.

At this point, we need to make a choice about the final contour for the Mellin representa-
tion. We consider two options: a straight contour and a deformed contour. We examine
the second possibility in section 2.7.

Let us reunite the three integrals in (2.7) into a single integral with a straight contour.
We will pick the straight contour at Re[γ12] = Re[γ14] =

∆
3 . This choice is very natural,

since it is completely symmetric in γ12, γ13 and γ14.

We need to deform the contours in the integrals (2.7). Let us see how this comes about.
Consider the first integral. When we deform its contour we pick up poles. This will tell
us the subtractions we need to make to the four point function, so as to have a Mellin
representation with a straight contour. See figure 2.2.

From figure 2.2, we conclude that∫
Re(γ12)>∆

dγ12

2πi

∫
Re(γ14)>∆

dγ14

2πi
K(γ12, γ14)u−γ12 v−γ14 (2.15)

=
∫

Re(γ12)=
∆
3

dγ12

2πi

∫
Re(γ14)=

∆
3

dγ14

2πi
K(γ12, γ14)u−γ12 v−γ14

5In planar gauge CFTs the twist of single-trace operators grows like log J therefore there are no accumu-
lation points (for finite ’t Hooft coupling). Double-trace operators do exhibit accumulation points, but they
do not give rise to poles of the Mellin amplitude M(γij) at the planar level.
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Re[γ12]

Re[γ14]

(∆, ∆)

(∆
3 , ∆

3 )

Figure 2.2. Picture of the contour manipulation that corresponds to formula (2.15). The contours
run parallel to the imaginary axis of γ12 and γ14 and therefore correspond to a point in this
figure. In red we display the change in the contour. We pick up poles along the way, which we
denote by black lines. At the end, we arrive at the point (Re(γ12), Re(γ14)) = (∆

3 , ∆
3 ).

+ ∑
τ< 4∆

3

∑
J

[− τ
2 +

2∆
3 ]

∑
n=0

u−∆+ τ
2 +n

∫
Re(γ14)>∆

dγ14

2πi
K̂τ,J(γ12 = ∆− τ

2
− n, γ14)v−γ14

+ ∑
τ< 4∆

3

∑
J

[− τ
2 +

2∆
3 ]

∑
m=0

v−∆+ τ
2 +m

∫
Re(γ12)=

∆
3

dγ12

2πi
K̂τ,J(γ12, γ14 = ∆− τ

2
−m)u−γ12 ,

where K̂τ,J(γ12 = ∆ − τ
2 − n, γ14) denotes the contribution from the operator Oτ,J to

the residue of K at γ12 = ∆− τ
2 − n. The symbol [y] denotes the biggest integer that is

smaller than y.

Let us compute the residues of K. The four point function can be expanded as F(u, v) =
∑τ,J C2

τ,J ∑+∞
m=0 u−∆+ τ

2 +mg(m)
τ,J (v), with the sum running over the primary operators Oτ,J

exchanged. Here g(m)
τ,J (v) is what multiplies u

τ
2 +m in the small u expansion of the

conformal block. For example, g(0)τ,J (v) is the collinear block

g(0)τ,J (v) = (1− v)J
2F1(

τ

2
+ J,

τ

2
+ J, τ + 2J, 1− v) . (2.16)

Therefore, we can write

K̂τ,J(γ12 = ∆− τ

2
−m, γ14) = C2

τ,J

∫ 1

0

dv
v

vγ14 g(m)
τ,J (v). (2.17)

This integral converges when Re(γ14) > 0. By inverting the Mellin transform, we can
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compute all the integrals in (2.15). We conclude that∫
Re(γ12)>∆

dγ12

2πi

∫
Re(γ14)>∆

dγ14

2πi
K(γ12, γ14)u−γ12 v−γ14 (2.18)

=
∫

Re(γ12)=
∆
3

dγ12

2πi

∫
Re(γ14)=

∆
3

dγ14

2πi
K(γ12, γ14)u−γ12 v−γ14

+ ∑
τ< 4∆

3

Jmax

∑
J=0

[− τ
2 +

2∆
3 ]

∑
m=0

C2
τ,J

[
u−∆+ τ

2 +mθ(1− v)g(m)
τ,J (v) + v−∆+ τ

2 +mθ(1− u)g(m)
τ,J (u)

]
,

where we assumed that we only subtracted a finite number of operators. In other words,
the spin is bounded, J ≤ Jmax. Situations where Jmax = ∞ should be analyzed on a case
by case basis. We will see such examples below when analyzing the free field theory
and minimal models.

A similar exercise can be done to deform the other K functions. We use the identity
u−

τ
2−mg(m)

τ,J (
1
u ) = g(m)

τ,J (u) (see [29]) valid for the exchange of operators of even spin. This
way we get rid of the θ functions. We conclude that

F(u, v) = 1 + u−∆ + v−∆ +
∫

Re(γ12)=
∆
3

dγ12

2πi

∫
Re(γ14)=

∆
3

dγ14

2πi
M̂(γ12, γ14)u−γ12 v−γ14

+ ∑
0<τ< 4∆

3

Jmax

∑
J=0

[− τ
2 +

2∆
3 ]

∑
m=0

C2
τ,J

[
u−∆+ τ

2 +mg(m)
τ,J (v) + v−∆+ τ

2 +mg(m)
τ,J (u) + v−

τ
2−mg(m)

τ,J

(u
v

)]
,

(2.19)

where the Mellin integral is to be done with a straight contour. We therefore recovered
(1.19) and (1.23).

When we deformed the integration contour as described in figure 2.2 we assumed that
moving the real part of the integration contour did not affect convergence of the integral
(2.15) at large imaginary values of the Mellin variables. In appendix D.3, we discuss the
asymptotic behavior of K-functions at large values of Mellin variables. The main point
is that K-functions decay as powers for large imaginary Mellin variables but their sum
M̂ decays exponentially.

2.6 Subtractions with Unbounded Spin

We do not have a general understanding of the case with an infinite number of subtrac-
tions with an unbounded spin. Here we simply present a couple of simple examples of
this type: minimal models and free field theory correlators.

In the 2d Ising model, we know explicitly the correlator 〈σσσσ〉, where ∆σ = 1
8 . It is
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2.6. Subtractions with Unbounded Spin

equal to F(u,v)

|x1−x3|
1
4 |x2−x4|

1
4

, where

F2dIsing(u, v) =

√√
u +
√

v + 1√
2 8
√

uv
. (2.20)

We also know a formula for the function K(γ12, γ14) for this correlator (see appendix
E.1.2). So, we can implement the procedure outlined in this section to obtain a Mellin
representation with straight contours. This is done in appendix (E.2). Note that in this
case we do not need to use conformal blocks, since we know the function K(γ12, γ14).

We conclude that if we define

F2dIsing
sub (u, v) ≡ F2dIsing(u, v)−

√
1 +
√

u +
√

1 +
√

v +
√√

u +
√

v√
2(uv)

1
8

(2.21)

+
u−

1
8 v−

1
8 + u−

1
8 v

1
8 + u

1
8 v−

1
8√

2
,

then

F2dIsing
sub (u, v) =

∫
0<Re(γ12)<

1
8

dγ12

2πi

∫
0<Re(γ14)<

1
8

dγ14

2πi
M̂(γ12, γ14)u−γ12 v−γ14 , (2.22)

where the Mellin integral is evaluated with a straight contour and M̂(γ12, γ14) is given
by

M̂(γ12, γ14) = −
√

2
π

Γ
(

2γ12 −
1
4

)
Γ
(

2γ14 −
1
4

)
Γ(−2γ12 − 2γ14) . (2.23)

Another example is the free scalar theory in which we consider the four-point func-
tion of O = 1√

2N
(~φ )2, where ~φ has N components. In appendix E.1.1, we show that

M̂(γ12, γ14) = 0. In this case, (2.18) takes the form∫
Re(γ12)>∆

dγ12

2πi

∫
Re(γ14)>∆

dγ14

2πi
K(γ12, γ14)u−γ12 v−γ14 (2.24)

=
∫

Re(γ12)=
∆
3

dγ12

2πi

∫
Re(γ14)=

∆
3

dγ14

2πi
K(γ12, γ14)u−γ12 v−γ14 + u−∆θ(1− v) + v−∆θ(1− u)

+
4
N

(
θ(1− v)(u−∆/2 + u−∆/2v−∆/2) + θ(1− u)u−∆/2 − θ(u− 1)u−∆/2v−∆/2

)
,

where ∆ = d− 2. Note the presence of the θ(u− 1) term in the last line which is absent
in (2.18). This is related to the fact that in this case we have Jmax = ∞. Therefore in this
case the whole correlator comes from subtraction terms.
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Analytic properties of Mellin amplitudes

2.7 Deformed Contour

Another option is to have a deformed contour. We will bring the three integrals in (2.7)
into a single integral with a deformed contour (we explain this in detail in appendix B,
for the single-variable case). The integration contours in (2.7) can be deformed as long
as we do not cross any OPE pole of the K-functions. In particular, if there is a deformed
contour C that passes to the right of all OPE poles at γ12 = ∆− τk

2 in the γ12 complex
plane and similarly for γ13 and γ14, then we can bring the 3 integrals to the same contour.
Such a contour exists unless three poles collide at

γ12 = ∆− τk

2
, γ13 = ∆− τj

2
, γ14 = ∆− τi

2
. (2.25)

When this happens, we say that the contour gets pinched. In order to deal with possible
pinches, we employ a regularization procedure, that is encapsulated in the formula

F(u, v) = lim
ε→0

∫
C

dγ12

2πi
dγ14

2πi
M̂ε(γ12, γ14)u−γ12 v−γ14 , (2.26)

M̂ε(γ12, γ14) ≡ K(γ12 + ε, γ14 + ε) + K(γ13 + ε, γ14 + ε) + K(γ12 + ε, γ13 + ε).

We introduce a regulator ε > 0 that allows us to separate poles that are pinched. Here
we are assuming that the twist spectrum is discrete.

The contour C can be described as follows. Firstly, we fix γ12 and integrate over γ14. The
integrand has poles at

γ14 = −ε + ∆− τi

2
, γ14 = −γ12 + ε +

τj

2
, (2.27)

where τi, τj are twists of exchanged operators (including descendants). The second set
of poles originates from OPE poles in γ13. The contour C splits the two set of poles to
the left and to the right in the γ14 complex plane as shown in figure 2.3. Notice that this
is always possible for generic values of γ12. For special values of γ12 poles from the left
set can collide with poles from the right set, pinching the integration contour and giving
rise to poles in γ12. Secondly, we consider the integral in γ12. In this case, the integrand
will have poles at

γ12 = −ε + ∆− τk

2
, γ12 = 2ε− ∆ +

τi + τj

2
, (2.28)

where the second set of poles arises from pinching the contour integral over γ14. Again,
the contour C splits the two sets of poles two the left and to the right in the γ12 complex
plane as shown in figure 2.3. Notice that this is always possible for arbitrarily small
ε and a discrete twist spectrum. So, with ε 6= 0, the integral in (2.26) is always well
defined. After evaluating the integral, we take the limit ε→ 0.
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2.7. Deformed Contour

γ14

−γ12 + ε +
τi
2

−γ12 + ε +
τi
2

−ε + ∆ − τi
2

−ε + ∆ − τi
2

γ12

2ε − ∆ +
τi+τj

2
2ε − ∆ +

τi+τj
2

−ε + ∆ − τk
2

−ε + ∆ − τk
2

Figure 2.3. Deformed integration contour C. Firstly, we integrate over γ14 as shown on the left
keeping γ12 fixed. Secondly, we integrate over γ12 as shown on the right. Pinching occurs if, as
ε→ 0, a pole marked with a black cross collides with a pole marked with a blue dot on the γ12
complex plane.

Unfortunately, equation (2.26) is not very useful, since it involves a regularization
procedure. Furthermore, it also involves the function K(γ12, γ14), which we expect to
be more complicated than the Mellin amplitude M̂(γ12, γ14). In what follows, we will
consider a generic CFT6 and evaluate the contribution from the pinches in (2.26). We
will then set ε = 0 and obtain a Mellin representation with a deformed contour, that
makes no reference to K(γ12, γ14).

The first step is to understand when there will be pinches in a generic CFT. From (2.28),
we conclude that the deformed contour will be pinched as ε→ 0, if the condition

τi + τj + τk = 4∆ (2.29)

is satisfied. There are 6 pinches that occur in generic CFTs (see figure 2.4). Firstly, we
have collisions between the identity pole (τ = 0) and accumulation points (τ = 2∆).
These correspond to (γ12, γ13, γ14) = (∆, 0, 0) and permutations. Secondly, there can
be collisions between the pole associated to the exchange of the external operator
(τ = ∆) and accumulation points. These correspond to (γ12, γ13, γ14) = (∆

2 , ∆
2 , 0) and

permutations.

Suppose the contour goes through the rightmost shaded triangle in figure 2.4. We
deform the γ12 contour to the left and we pick up the pole at γ12 = ∆− ε:∫

Re(γ12)>∆−ε

dγ12

2πi

∫ dγ14

2πi
M̂ε(γ12, γ14)u−γ12 v−γ14 (2.30)

6By a generic CFT, we have in mind an interacting and non-perturbative CFTd in d > 2, like the 3d Ising
model.
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γ12 = 0 γ12 = ∆
2

γ12 = ∆

γ14 = 0

γ14 = ∆
2

γ14 = ∆

γ13 = ∆

γ13 = ∆
2

γ13 = 0

Figure 2.4. Singularities in γ12, γ13 and γ14 are represented by red, pink and blue lines respec-
tively. We denote poles by continuous lines and accumulation points by dashed lines. It is
possible for three singularities to collide at the same point, thus causing a pinch. There are 6
pinches that occur in generic CFTs. These are marked with black dots. Firstly, we have collisions
between the identity pole and accumulation points at (γ12, γ13, γ14) = (∆, 0, 0) and permutations.
Secondly, there can be collisions between the pole associated to the exchange of the external
operator and accumulation points at (γ12, γ13, γ14) = (∆

2 , ∆
2 , 0) and permutations. On the right

we consider the case in which we introduce the ε regulator. This removes the pinches and the
contour can go through the gray triangles. To resolve the pinches we first move the contour out
the gray triangles as indicated by the arrows and then send ε→ 0.

= u−∆+ε
∫ dγ14

2πi
M̂ε(γ12 = ∆− ε, γ14)v−γ14

+
∫

Re(γ12)<∆−ε

dγ12

2πi

∫ dγ14

2πi
M̂(γ12, γ14)u−γ12 v−γ14 ,

where M̂ε(γ12 = ∆− ε, γ14) is the residue of the Mellin amplitude at γ12 = ∆− ε. In
the second integral, we can drop the regularization. To evaluate M̂ε(γ12 = ∆− ε, γ14),
consider the contribution of the identity to K(γ12, γ14),∫ 1

0

du
u

∫ 1

0

dv
v

uγ12 vγ14 u−∆ =
1

γ14(γ12 − ∆)
. (2.31)

Similarly, K(γ12, γ13) also has a pole at γ12 = ∆. We conclude that the regularised Mellin
amplitude M̂ε(γ12, γ14) has a pole at γ12 = ∆− ε with residue given by

M̂ε(γ12, γ14) ≈
3ε

(γ12 − ∆ + ε)(γ14 + ε)(−γ14 + 2ε)
, γ12 → ∆− ε . (2.32)

Notice that this residue goes to 0 in the limit ε→ 0. We expected this from the fact that
F(u, v) cannot actually diverge due to a pinch. Let us evaluate the finite contribution to
the four point function given by the pinch:

lim
ε→0

u−∆+ε
∫ +i∞

−i∞

dγ14

2πi
3ε

(γ14 + ε)(−γ14 + 2ε)
v−γ14 = u−∆. (2.33)

Notice that the integrand goes to 0 when ε goes to 0, but at the same time the contour
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2.7. Deformed Contour

gets pinched between a pole from the left with a pole from the right. For this reason, the
integration gives a finite result.

To summarize, we saw that the pinch at τi = 2∆, τj = 2∆ and τk = 0 gives a finite
contribution u−∆ to the four point function. After taking ε → 0, the pole at γ12 = ∆
disappears and the contour of the Mellin amplitude does not get pinched at all. By
crossing symmetry, a similar discussion holds for permutations of the previous pinch
condition. In the absence of other pinches, we conclude that

Fconn(u, v) ≡ F(u, v)− (1 + u−∆ + v−∆) (2.34)

=
∫ ∫

C ′
dγ12

2πi
dγ14

2πi
M̂(γ12, γ14)u−γ12 v−γ14 .

The Mellin integral computes the connected part of the four point function. The integral
is to be taken with a deformed contour C ′ that differs from C as indicated by the arrows
in figure 2.4.

Generically, 〈OOO〉 ∝ COOO 6= 0 and we also need to deal with the pinches at
(γ12, γ13, γ14) = (∆

2 , ∆
2 , 0) and permutations. In order to remove these pinches, we

consider the following function

F̃(u, v) ≡ F(u, v)− (1 + u−∆ + v−∆)− C2
OOO

[
u−

∆
2 g(0)∆,0(v) + v−

∆
2 g(0)∆,0(u) + v−

∆
2 g(0)∆,0

(u
v

)]
.

(2.35)

The corresponding K-function K̃(γ12, γ14) does not have poles at γ12 = ∆/2 or γ14 =

∆/2. This means that the contour C ′ can be shifted as indicated by the arrows in figure
2.4. Thus, we can write

F̃(u, v) =
∫ ∫

C ′
dγ12

2πi
dγ14

2πi
(

M̂(γ12, γ14) + δM̂(γ12, γ14)
)

u−γ12 v−γ14 (2.36)

where δM̂ is obtained from

δK(γ12, γ14) ≡−
∫ 1

0

du
u

∫ 1

0

dv
v

uγ12 vγ14
[
1 + u−∆ + v−∆

]
(2.37)

− C2
OOO

∫ 1

0

du
u

∫ 1

0

dv
v

uγ12 vγ14
[
u−

∆
2 g(0)∆,0(v) + v−

∆
2 g(0)∆,0(u) + v−

∆
2 g(0)∆,0

(u
v

)]
.

The first integral is elementary. The second integral converges when Re[γ12, γ14] >
∆
2 .

Using

g(0)∆,0(v) =
∫ c+i∞

c−i∞

ds
2πi

v−s Γ(s)2Γ(∆
2 − s)2Γ(∆)

Γ(∆
2 )

4
, (2.38)
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with 0 < c < ∆
2 , we obtain

δK(γ12, γ14) = −
1

γ12γ14
− 1

(γ12 − ∆)γ14
− 1

γ12(γ14 − ∆)
− C2

OOO

∫ c+i∞

c−i∞

ds
2πi

(2.39)

× Γ(s)2Γ(∆
2 − s)2Γ(∆)

Γ(∆
2 )

4

(
1

γ12 − ∆
2

1
γ14 − s

+
1

γ14 − ∆
2

1
γ12 − s

+
1

γ12 − s
1

γ14 + s− ∆
2

)
,

with Re[γ12, γ14] >
∆
2 . We can then explicitly compute 7

δM̂(γ12, γ14) = δK(γ12, γ14) + δK(γ12, γ13) + δK(γ13, γ14) = 0 . (2.40)

We conclude that the subtractions do not affect the Mellin amplitude but only the
integration contour. In particular, the subtractions in (2.35) did not remove the poles
at γ1i =

∆
2 (for i = 2, 3, 4) from the Mellin amplitude. This happens as follows. The

function K̃(γ12, γ14) = K(γ12, γ14) + δK(γ12, γ14) does not have poles at γ12 = ∆
2 nor

at γ14 = ∆
2 like the original K-function K(γ12, γ14). However, K̃(γ12, γ14) has a pole at

γ13 = ∆
2 that was not present in K(γ12, γ14). The same mechanism happens for the other

subtractions in (1.19). The exception being the exchange of the identity operator (or
disconnected piece) that does not give rise to any poles in the Mellin amplitude.

In the end, we can simply write

F̃(u, v) =
∫ ∫

C ′
dγ12

2πi
dγ14

2πi
M̂(γ12, γ14)u−γ12 v−γ14 . (2.41)

Therefore most of the subtractions that we encountered in the straight contour for-
mula (1.19) can be neatly absorbed into the deformation of the contour of integration.
Moreover, the argument in this subsection is valid even if the straight contour formula re-
quires an infinite number of subtractions with unbounded spin. In section 8.1, we show
examples of such deformed contours for correlators in 2d minimal models. If there are
special relations among the scaling dimensions of the theory such that τi + τj + τk = 4∆
for some trio of operators, then there are extra pinches in the limit ε→ 0 that must be
analysed. This is relevant for perturbative CFTs. In appendix E.3, we confirm that our
general discussion works in the critical φ3 theory in d = 6 + ε spacetime dimensions to
first order in ε.

7To see this write s = ∆
4 + i x in (2.39) and integrate over real x. Then decrease the real part of γ12 and

γ14 from bigger than ∆
2 to the neighbourhood of the crossing symmetric point γ12 = γ14 = ∆

3 . This can
be done without any pole of the integrand crossing the s-integration contour. Finally, sum the 3 δK’s and
observe that the total integrand is an odd function of x.
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3 Unitarity properties of Mellin am-
plitudes

3.1 Introduction

In this chapter we analyze constraints on the Mellin amplitude coming from unitarity
(or the OPE expansion) and boundedness of the correlator in the Regge limit [30, 36].
The OPE expansion dictates the form of the residues of the Mellin amplitude M(γ12, γ14)

which are given by the Mack polynomials [3]. Bounds on the Regge limit restrict the
rate of growth of the Mellin amplitude as one of its arguments becomes large.

3.2 OPE expansion

The OPE expansion states that we can write the correlation function as a sum of confor-
mal blocks with positive coefficients

F(u, v) = u−∆ ∑
τ,J−even

C2
τ,J gτ,J(u, v). (3.1)

As before it is convenient to write each conformal block as a sum in the powers of u [37]

gτ,J(u, v) = u
τ
2

+∞

∑
m=0

umg(m)
τ,J (v),

g(0)τ,J (v) = (−1)J(1− v)J
2F1(

τ

2
+ J,

τ

2
+ J, τ + 2J, 1− v). (3.2)

From the definition of the Mellin transform (1.3) it is clear that powers of u will lead to
the poles in γ12 dictated by the twists of the exchanged operators. In particular, a single
primary operator with twist τ introduces an infinite series of poles at

γ12, γ14, γ13 = ∆− τ

2
−m, m = 0, 1, 2, ... , (3.3)
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Unitarity properties of Mellin amplitudes

where m is precisely the same m that appears in (3.2). Our next task is to fix the residue
of the Mellin amplitude at a given OPE pole so that it reproduces the OPE expansion
(3.1).

To make contact with [29], where this question was investigated in great detail we
introduce Mellin-Mandelstam variables

t = 2∆− 2γ12,

s = 2(γ12 + γ14 − ∆) = −2γ13. (3.4)

In terms of these variables the residue of the pole takes the following form

M(s, t) '
C2

τ,JQτ,d
J,m(s)

t− (τ + 2m)
+ ... , m = 0, 1, 2, ... ,

Qτ,d
J,m(s) = −K(τ, J, m) Qτ,d

J,m(s), (3.5)

where Q∆,τ,d
J,m (s) are Mack polynomials in s of degree J. K(∆, J, m) is a non-negative

kinematical pre-factor1

K(τ, J, m) =
2Γ(τ + 2J)(τ + J − 1)J

2JΓ( τ+2J
2 )4

1

m!(τ + J − d
2 + 1)mΓ

(
∆− τ

2 −m
)2 . (3.6)

One feature worth mentioning is that K(τ, J, m) has double zeros at the position of double
twist operators τ = 2∆ + 2n. This will play an important role in the consideration of
dispersion relations in Mellin space below.

3.3 Properties of Mack Polynomials

Mack polynomials have many remarkable properties. Let us review some of them
(we are largely following [29]). Similarly to Legendre polynomials Mack polynomials
satisfy [29, 38]

Qτ,d
J,m(s) = (−1)JQτ,d

J,m(−s− τ − 2m) . (3.7)

For m = 0 they are related to continuous Hahn polynomials

Qτ,d
J,0 (s) =

2J ( τ
2

)2
J

(τ + J − 1)J
3F2(−J, J + τ − 1,− s

2
;

τ

2
,

τ

2
; 1). (3.8)

Higher m polynomials can be computed recursively, see formulas (J.4) and (J.5).

1Note a difference by a factor of 2J compared to [29] due to the normalization of conformal blocks that
we adopt in this thesis.
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In the large s limit Mack polynomials behave as follows

lim
s→∞

Q∆,τ,d
J,m (s) = sJ + O(sJ−1). (3.9)

This goes along well with the flat space scattering and s being the usual Mandelstam
variable. Indeed, given an exchange Witten diagram in AdS, its asymptotic behavior for
large Mellin s is controlled by the spin of the exchanged operator.

Another limit which is relevant to the flat space limit is s, τ, m� 1 with J fixed. In this
case we get

Qτ,d
J,m(s) ≈ m

J
2 (m + τ)

J
2 C( d−2

2 )
J

(
τ
2 + m + s√
m(m + τ)

)
+ ... . (3.10)

This asymptotic of Mack polynomials is relevant for recovering the flat space scattering
amplitudes.

Mack polynomials have interesting positivity properties. We observed that for even J
and for general s, τ, m Mack polynomials are non-negative for∣∣∣τ

2
+ m + s

∣∣∣ > √m(m + τ) , (3.11)

which again generalizes the familiar property of Gegenbauer polynomials that emerge
in the flat space limit (3.10). We would like this to hold for any m and any τ that satisfies
the unitarity bound. Indeed, we observed that

∂n
s Qτ,d

J,m(s)|s>0 > 0 , n > 0. (3.12)

This again parallels a famous property of Gegenbauer polynomials familiar from the
S-matrix bootstrap considerations [39]. We observed it by studying many particular
examples. It would be of course better to prove it rigorously. We will use this property
in our considerations of Mellin space dispersion relations below. It would be also
interesting to understand more refined positivity properties of the Mack polynomials in
the spirit of [40].

Another interesting limit is J � 1 with all other parameters being fixed2

Qτ,d
J,0 (s) =

22J+τ

√
πΓ2(∆− τ

2 )

(
Js+ 1

2

Γ2( s+τ
2 )

+ (−1)J J−s−τ+ 1
2

Γ2(− s
2 )

+ O(J−1)

)
. (3.13)

We will use this asymptotic below in our considerations of the double twist operators in
Mellin space. See appendix J for further notes on this.

2This limit is very different from the corresponding limit of Legendre polynomials that appear in the
description of the flat space physics. It is responsible for intrinsically AdS effects, see appendix B in [41].
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3.4 Boundedness at Infinity and the Regge limit

Let us understand the behaviour of Mellin amplitudes at infinity. The relevant limit
to consider is the Regge limit s → ∞, t - fixed. As explained in [29] this limit of the
Mellin amplitude controls the Regge limit of the correlation function. Thanks to the
OPE it is very easy to bound the Regge behaviour of the CFT correlation functions both
nonperturbatively [30] and in the planar limit [36]. This leads to bounds on the Mellin
amplitude M(s, t) that we review in this section.

To describe the Regge limit consider a Lorentzian time-ordered four-point function

F(t′, ρ) = 〈T [V(x1)V(x2)W(x3)W(x4)]〉, (3.14)

where we restrict points to a Lorentzian plane and choose the following light-cone
coordinates (x± ≡ t± x)

x±1 = ±1, x±2 = ∓1, x±3 = ∓eρ±t′ , x±4 = ±eρ±t′ . (3.15)

see figure 9.1.

x+x−

x1x2

x4

x3

Figure 3.1. Kinematics (3.15). The Regge limit corresponds to taking t′ → ∞. In this limit
x2

34 → 0.

In the Regge limit the cross ratios take the following values

u = σ2, v ' 1− 2σ cosh ρ, σ = 4e−t′ . (3.16)

As we increase t′, x2
14, x2

23 become time-like and σ→ 0. All other distances are space-like.
The ordering of operators implies that we analytically continue v→ ve2πi around v = 0.

42



3.4. Boundedness at Infinity and the Regge limit

Unitarity and the Euclidean OPE then imply that in any CFT [30]

lim
σ̃→0

F(σ̃, ρ)

Fdisc(σ̃, ρ)
6 1, (3.17)

where Fdisc = 〈T [V(x1)V(x2)]〉〈T [W(x3)W(x4)]〉.

In the context of the Regge limit in large N CFT, [36] considered f (t, ρ) ≡ F(σ̃,ρ)
Fdisc(σ̃,ρ) and

showed that the correlator obeys

|∂t f (t, ρ)|
1− f

6 1 + O(e−2(t−t0)) (3.18)

for t > t0 = O(1).

Let us see how this comes about from the conformal Regge theory [29]. Assuming that
the leading Regge behavior comes from a pole,3 we get the following behavior of the
correlator in the Regge limit

f (t, ρ) = 1− 2π
∫ ∞
−∞ dν α̂(ν)e[j(ν)−1]tΩiν(ρ) + ..., (3.19)

where α̂(ν) is related in a specific way to the product of the three-point couplings
cVVOJ cWWOJ with OJ being the operators of the leading Regge trajectory and j(ν) =

j(−ν). The integral over ν is then evaluated via a saddle point at ν = 0. The location of
the saddle at ν = 0 follows from convexity properties of the Regge trajectories.4

In the language of the Regge trajectory j(ν) the bounds (3.17) and (3.18) imply that

j f ull(0) 6 1 ,
jplanar(0) 6 2 , (3.20)

where j f ull(0) is the leading Regge trajectory in the finite N CFT, whereas jplanar(0) is
the Regge trajectory of the single trace operators in the planar theory. The bounds can
be also generalized for non-zero complex ν’s, see [42–44].

Let us now consider the Regge limit s → ∞ of the reduced Mellin amplitude M(s, t).
For simplicity we consider identical operators ∆V = ∆W = ∆. The relation between the
correlator in the Regge limit and the Mellin amplitude in the strip of holomorphy was
worked out in [29] with the following result

fsub(σ̃, ρ) =
∫

UCFT

dt
4i

σ̃tΓ
(

∆− t
2

)2 ∫ ∞
dxM(Re[s] + ix, t)

( x
2

)t−2
e−xσ̃ cosh ρ + ... ,(3.21)

3Having a more complicated singularity in the J-plane, say a cut, does not change a discussion since it
only affects the sub-exponential terms.

4Convexity of j f ull(ν) has been proven in [42]. Convexity of jplanar(ν) is simply assumed here.
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Unitarity properties of Mellin amplitudes

where the integration contour is the straight line along the imaginary axis with

UCFT : τsub < Re[t] < τ′sub ,

τsub − 2∆ < Re[s] < τ′sub − 2∆ ,

τ′sub − 2∆ < Re[s] + Re[t] < 2∆− τsub . (3.22)

We also suppressed terms that are subleading in the Regge limit.

Consider next the leading Regge pole contribution to the Mellin amplitude [29]

M(s, t) '
∫ ∞

−∞
dν β(ν)ων,j(ν)(t)

sj(ν) + (−s)j(ν)

sin (π j(ν))
+ ..., (3.23)

where β(ν) is related in a known way to α̂(ν) in (3.19). The function ων,J(t) is given by

ων,J(t) =
Γ( 2∆V+J+iν− d

2
2 )Γ( 2∆W+J+iν− d

2
2 )Γ( 2∆V+J−iν− d

2
2 )Γ( 2∆W+J−iν− d

2
2 )

8πΓ(iν)Γ(−iν)

× Γ(
d
2+iν−J−t

2 )Γ(
d
2−iν−J−t

2 )

Γ(∆V − t
2 )Γ(∆W − t

2 )
. (3.24)

As reviewed in the previous section as we vary t the Mellin amplitude should exhibit
poles at the positions of the physical operators. Let us review how they come about
in (3.23) for the operators on the leading Regge trajectory. This expression has poles
whenever j(ν) = 2Z. Recall that j(ν) = j(−ν) describes the leading Regge trajectory
∆(J) and is defined via

ν2 +

(
∆(j(ν))− d

2

)2

= 0. (3.25)

Therefore, say for j(ν) = 2 which corresponds to the stress tensor we have ∆(2) = d and
ν = ±i d

2 . Furthermore β(ν) has poles at the locations (3.25).

At the same time ων,j(ν)(t) has poles at t = 2Z>0 +
d
2 − j(ν)± iν. These poles collide

with the poles of β(ν) when t crosses τ + 2m, where τ is the twist of a physical operator
with spin j. In this way (3.23) generates the expected poles in t.

Let us next plug (3.23) into (3.21). We get

fsub(σ̃, ρ) = π
∫ ∞

−∞
dνβ(ν)

2j(ν)

sin π j(ν)
2

σ̃1−j(ν) (3.26)

∫
UCFT

dt
2πi

Γ
(

∆V −
t
2

)
Γ
(

∆W −
t
2

)
Γ(j(ν) + t− 1)
(2 cosh ρ)j(ν)+t−1

ων,J(t).
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3.5. Extrapolation

We next deform the t contour to Re[t] = 0. As explained above in doing so the ν-contour
develops pinches at the position of the physical operators. These are precisely the
operators with 0 < τ 6 τsub which cancel the subtractions that we made in defining
fsub.5 After deforming the contour to Re[t] = 0 and doing the t integral we arrive at
(3.19) as shown in [29]. We should again contrast the Regge behavior of the Mellin
amplitude which is controlled by the large s behavior and the subtractions that originate
from the poles in t.

After reviewing the relation to the coordinate space Regge limit, let us come back to
the expression in Mellin space (3.23). As usual we assume that in the Regge limit the
ν integral is dominated by the region ν = 0,6 and therefore we can use bounds on j(0)
(3.20) to bound the growth of the Mellin amplitude.

An important question is for which values of Re[t] this argument holds? Above we
made it for Re[t] = 0. As we increase Re[t] the integral over ν can develop a pinch as
we reviewed above and will not be dominated by ν = 0 anymore. The relevant pinch
corresponds to J = 2 operator on the leading twist Regge trajectory, which for identical
operators is the stress tensor, namely Re[t] = d− 2.

Taking into accounts bounds on j(0), in that way we get the following conditions on the
Mellin amplitude

lim
|Im[s]|→∞

|M f ull(s, t)| 6 c|s|, Re[t] < d− 2, (3.27)

lim
|Im[s]|→∞

|Mplanar(s, t)| 6 c|s|2, Re[t] < d− 2,

where in writing the planar bound we implicitly allowed for slower than a power
growing corrections. In terms of γij the bound corresponds to Re[γ12] > ∆− d−2

2 as we
send Im[γ14]→ ∞.

3.5 Extrapolation

The bounds in the previous section were derived only in the limit Im[s] → +∞, or
equivalently arg[s] = ±π

2 , however we would like to relax this condition and apply the
Regge bounds for any arg[s].7 As we change arg[s] away from ±π

2 in principle some
sort of Stokes phenomenon might occur. Here we assume that for physical correlators

5Strictly speaking this only refers to the operators on the leading Regge trajectory in the analyticity in
spin J > JRegge

0 region.
6This is not always true. For example, in the minimal models the trajectories are exactly linear and the

integral is dominated by the closest pole in the upper half-plane.
7For arg[s] = 0,±π we understand them in the tauberian [24, 45] or averaged sense. Indeed for these

values of the arguments the Mellin amplitude has poles, however if we average the Mellin amplitude over
s then we assume that the Regge bound still hold.

45



Unitarity properties of Mellin amplitudes

this does not happen and the Regge bound that we found along the imaginary axis
holds everywhere in the complex s-plane.8 At the same time as we observed above it is
important to keep Re[t] in the region of holomorphy.

In this way we arrive at the following Regge bounds for the Mellin amplitude

lim
|γ12|→∞

|M f ull(γ12, γ14)| 6 c|γ12|, Re[γ14] > ∆− d− 2
2

,

lim
|γ12|→∞

|Mplanar(γ12, γ14)| 6 c|γ12|2, Re[γ14] > ∆− d− 2
2

. (3.28)

Again we will assume that for arg[γ12] = 0,±π the Regge limit is still bounded in the
averaged sense that the corresponding dispersion relations will converge. Imposing that
the Regge bound holds at the crossing symmetric point leads to ∆

3 > ∆− d−2
2 , which

gives us the Regge lightness condition

∆ <
3
4
(d− 2) , (3.29)

for the four-point function of identical operators. If we were to consider heavier op-
erators we expect the Regge limit, for γ14 around the crossing symmetric point, to be
dominated by subtractions. For simplicity below we will restrict our bootstrap analysis
to the case ∆ < 3

4 (d− 2).

8This is consistent with all examples that we know, but of course it requires a proof.
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4 Polyakov Conditions

4.1 Introduction

At this point the reader might be perplexed by the following two facts. On one hand,
we have the crossing relation for the full correlator

F(u, v) = u−∆ ∑
τ,J−even

C2
τ,J gτ,J(u, v) = v−∆ ∑

τ,J−even
C2

τ,J gτ,J(v, u) = F(v, u), (4.1)

where the full correlator is reproduced by either the s-channel exchanges, or by the
t-channel exchanges. On the other hand, we have the formulas (1), (2), where only the
connected correlator is represented via a Mellin transform. Moreover, as we explained
in the previous chapter, the Mellin amplitude has poles at the position of all operators
(except the identity operator) designed in precisely such a way to reproduce the OPE
expansion (4.1). Therefore, we seem to be running into a paradox: closing the, say γ12,
integration contour in (1), (2) would produce the full correlator, instead of producing
the connected correlator only!

This confusion is related to the subtle nature of the twist accumulation points that we
are bound to cross when trying to run into the paradox above. As we will see in the end
everything is consistent, however the fact that the Mellin amplitude correctly reproduces
the full correlator does lead to some subtle and nontrivial conditions on nonperturbative
Mellin amplitudes, which we call Polyakov conditions [46]. Indeed, in spirit they are
the same familiar conditions from the Mellin-Polyakov bootstrap program [8, 9, 47].
However, we will see that the nonperturbative nature of the Mellin amplitude makes
them much more subtle.
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Polyakov Conditions

4.2 Reproducing the identity

Let us try to run into the paradox described above. We assume that the lowest twist τgap

after the identity obeys 4∆
3 < τgap < 2∆, so that the only subtractions in (1.19) are the

disconnected parts of the correlator. Consider then the straight contour formula

F(u, v) =
(

1 + u−∆ + v−∆
)
+
∫

Re(γ12)=Re(γ14)=
∆
3

dγ12

2πi
dγ14

2πi
M̂(γ12, γ14)u−γ12 v−γ14 ,

(4.2)

Now keep the γ14 contour fixed and deform the γ12 contour to the left picking up the
poles. Assuming that the resulting sum over residues converges and exchanging the
sum and the γ14 integration we get

F(u, v) =
(

1 + u−∆ + v−∆
)

(4.3)

+ ∑
τ

∞

∑
m=0

u−∆+ τ
2 +m

∫
Re(γ14)=

∆
3

dγ14

2πi
v−γ14Resγ12=∆− τ

2−m M̂(γ12, γ14),

where τ are the twists of the primary operators and the sum over m is a sum over
descendants. As we explained in the previous section the residue is given in terms of
OPE coefficients and Mack polynomials (3.5)

Resγ12=∆− τi
2 −m M̂(γ12, γ14) = −

1
2

C2
τi
Qτi ,d

Ji ,m
(γ14)Γ2(γ14)Γ2

(τi

2
+ m− γ14

)
Γ2
(

∆− τi

2
−m

)
.

(4.4)
A factor of − 1

2 in front comes from the fact that we take the residue in γ12, see (3.5).

Notice that the contour Re(γ14) =
∆
3 falls in between the series of poles produced by the

Gamma functions (since τgap
2 − Re(γ14) + m > ∆

3 > 0). Therefore the Mellin integral just
reproduces the collinear blocks as required by the OPE. Thus, we find

F(u, v) = ∑
τ,J

C2
τ,J gτ,J(u, v) +

(
1 + v−∆

)
+

∞

∑
n=0

un
∫

Re(γ14)=
∆
3

dγ14

2πi
v−γ14 Rn(γ14), (4.5)

where
Rn(γ14) ≡ Resγ12=−n M̂(γ12, γ14) . (4.6)

Given that the first sum already gives the full correlator, the other two terms must cancel.
This gives the Polyakov conditions(

1 + v−∆
)
+
∫

Re(γ14)=
∆
3

dγ14

2πi
v−γ14 R0(γ14) = 0 (4.7)

and Rn = 0 for n > 0. However, clearly (4.7) is impossible to satisfy. Indeed, 1 + v−∆

does not admit the usual Mellin representation as required by (4.7).
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4.2. Reproducing the identity

The resolution of this apparent paradox lies in the fact that our assumption about the
convergence of the sum over γ12 residues for Re[γ14] =

∆
3 does not hold. To see this we

note that the relevant divergence comes from the large J fixed τ operators which are
controlled by the light-cone bootstrap [16, 17]. To leading order we can therefore simply
use the mean field theory OPE data together with (3.13) to get 1

−1
2
(CGFF

τ=2∆,J)
2Qτ,d

J,0 (γ14)Γ2(γ14)Γ2
(τ

2
− γ14

)
Γ2
(

∆− τ

2

)
(4.8)

=
4

Γ2(∆)
1
J

(
J2(∆−γ14)Γ2(γ14) + J2γ14 Γ2(∆− γ14) + ...

)
, J → ∞ , τ → 2∆ ,

where we omitted the terms that are suppressed at large spin J. Note that the sum over J
of the first term in the brackets in the second line of (4.8) converges only for Re γ14 > ∆,
while the second for Re γ14 < 0. Therefore, if we try to evaluate the Mellin integral by
closing the γ12 contour we run into a divergent sum for any value of γ14.

The resolution is that we should first deform (4.8) into the region where the sum con-
verges. Indeed, let us first deform the contour in the first term (4.8) to Re γ14 > ∆ and
in the second term to Re γ14 < 0. This makes the sum over J convergent and thus we
can exchange the order of the sum and the integral. One way to do it is to split the
Mellin amplitude back into the K-functions such that two powers of J in (4.8) appear
in different K-functions. We then first deform the γ14 contour before closing the γ12

contour, essentially going back to (2.7). In doing so we encounter extra poles which
cancel the disconnected piece and in this way the double counting is avoided.

A simpler way to see it is to note the following. To ensure the convergence of the integral
we would like to deform the γ14 for each of the two terms in (4.8) to the region, where
the sum over J converges. Let us start with the second term. In this case we would like
to deform the Mellin integral to the region Re γ14 < 0. It is easy to see that in doing so
we encounter a pole. Indeed, ∑J−even

1
J J2γ14 ∼ − 1

4γ14
. The residue of this pole produces

−1. Similarly, in the first term when continuing to the region Re γ14 > ∆ we encounter
the pole at γ14 = ∆ with the residue being precisely −v−∆. We see that by deforming
the γ14 region so that the sum over the γ12 residues converges we precisely canceled the
disconnected piece.

Let us quickly check that the deformed integral indeed correctly reproduces the expected
light-cone singularity in the dual channel

δ f (u, v) =
∫

Re(γ14)<0

∞

∑
J>J0,J−even

4
Γ2(∆)

1
J

dγ14

2πi
J2γ14 Γ2(∆− γ14)v−γ14

+
∫

Re(γ14)>∆

∞

∑
J>J0,J−even

4
Γ2(∆)

1
J

dγ14

2πi
J2(∆−γ14)Γ2(γ14)v−γ14 + ...

1Since we are looking at poles accumulating at γ12 = 0 when J → ∞ we can use γ13 = ∆− γ14.
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Both integrals converge. They give

δ f (u, v) =
∞

∑
J>J0,J−even

8J−1+2∆

Γ2(∆)

(
v−∆K0(

J√
v
) + K0(2J

√
v)
)
+ ... . (4.9)

Since we are interested in the small v asymptotic we can turn the sum into an integral.
The fact that we sum over even J produces an extra factor of 1

2 and we get

δ f (u, v) = 4
∫ ∞

0
dJ

J−1+2∆

Γ2(∆)

(
v−∆K0(

2J√
v
) + K0(2J

√
v)
)
+ ...

= 1 + v−∆ + ... (4.10)

as expected.

Below we devise a toy model which demonstrates the issue discussed above in a simpler
and more controlled setting.

4.3 Toy Model

We can illustrate the general ideas discussed above in a specific example. Consider the
following function

f (u, v) = e−u
∞

∑
J=1

u−γ(J)e−Jv, (4.11)

where limJ→∞ γ(J) = 0. This mimicks the accumulation point in the u→ 0 OPE channel.
In the dual channel we have the following asymptotic

f (u, v) =
e−u

v
+ ... , v→ 0 . (4.12)

We can now compute the Mellin amplitude

M̂(γ12, γ14) ≡
∫ ∞

0

dudv
uv

uγ12 vγ14 f (u, v) = Γ(γ14)
∞

∑
J=1

J−γ14 Γ(γ12 − γ(J)), (4.13)

For Re[γ12] > γ(J), ∀J ∈ N and Re[γ14] > 1. As expected the Mellin amplitude has a
pole at γ14 = 1, namely M̂ ∼ Γ(γ12)

γ14−1 which is of course consistent with (4.12).

We can also easily write down the expression for the analytic continuation of the Mellin
amplitude to Re[γ14] > 0

M̂(γ12, γ14) = Γ(γ12)Γ(γ14)ζ(γ14) + Γ(γ14)
∞

∑
J=1

J−γ14 (Γ(γ12 − γ(J))− Γ(γ12)) , (4.14)
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4.3. Toy Model

where ζ(x) is the Riemann zeta function. Here we assumed that γ(J)→ 0 at large J not
slower than 1

J .

We can write the inverse Mellin representation

f (u, v) =
∫

Re[γ12]>γ(J)

dγ12

2πi

∫
Re[γ14]>1

dγ14

2πi
u−γ12 v−γ14 M̂(γ12, γ14) (4.15)

=
e−u

v
+
∫

Re[γ12]>γ(J)

dγ12

2πi

∫
0<Re[γ14]<1

dγ14

2πi
u−γ12 v−γ14 M̂(γ12, γ14),

where in the second line we deformed the contour to extract the leading singularity in
the dual channel (which is analogous to the disconnected piece of a CFT correlator).

Now let us try to evaluate the Mellin integral by closing the γ12-contour. As above we
can write the contribution of the physical operators as follows

Γ(γ14)
∞

∑
J=1

J−γ14 u−γ(J). (4.16)

If we are to blindly exchange the sum and the γ14 integral we would run into the double
counting paradox as in the section above. The resolution of course is that the sum (4.16)
converges only for Re[γ14] > 1. Therefore, we can only close the γ12 contour in the first
line of (4.15) and the double counting problem does not arise.

We can also use (4.14) to write for the residues as we deform the γ12 contour to Re[γ12] <

0

Γ(γ14)

(
ζ(γ14) +

∞

∑
J=1

J−γ14
(

u−γ(J) − 1
))

. (4.17)

Note that the expression above is formal in the sense that strictly speaking as we
deform the contour we separately get ∑∞

J=1 J−γ14 u−γ(J) and −∑∞
J=1 J−γ14 . However for

0 < Re[γ14] < 1 only the combined sum is well-defined.

Plugging (4.17) into (4.15) and expanding it up to O(u) we get

f (u, v) =
1
v
+

(
1

ev − 1
− 1

v

)
+

∞

∑
J=1

(
u−γ(J) − 1

)
e−vJ + ... (4.18)

=
∞

∑
J=1

u−γ(J)e−vJ + ..., (4.19)

where 1
ev−1 − 1

v is the Mellin transform of Γ(γ14)ζ(γ14). Thus, we see that again the
double counting problem does not arise.

We can now ask what is the behavior of the Mellin amplitude close to the accumulation
point. To this extent following the analogy to the light-cone bootstrap let us set γ(J) = α

Jβ ,
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0 < α < 1 and β > 0. For simplicity we can also consider an integral instead of the sum
to get

M̃ =
∫ ∞

1
dJ J−γ14

1
γ12 − α

Jβ

=
2F1(1, γ14−1

β , γ14+β+1
β , α

γ12
)

γ12(γ14 − 1)
, Re[γ14] > 1 . (4.20)

This has the following behavior close to the accumulation point (we can approach it
from the regular direction which is arg[γ12] 6= 0)

lim
|γ12|→0, arg[γ12] 6=0

M̃ =
π

βγ12

(
− α

γ12

) 1−γ14
β 1

sin π
β (γ14 − 1)

+ ..., Re[γ14] > 1, (4.21)

where we suppressed regular terms. Therefore the accumulation point behaves like a
branch point with the asymptotic controlled by the “large spin OPE data”. However,
for Re[γ14] > 1, it is not a branch point because there is no monodromy, i.e. we can do a
contour integral around it (going in between the poles for γ12 > 0) and the result is just
the convergent sum of the residues of the enclosed poles. Note also that in the region of
convergence, namely Re[γ14] > 1 we have

lim
|γ12|→0, arg[γ12] 6=0

γ12M̃ = 0, Re[γ14] > 1. (4.22)

which states that we do not have a double trace operator at γ12 = 0. Below we will see
that this is the relevant condition for the nonperturbative Mellin amplitudes.

This complicated behavior has to be contrasted with the perturbative behavior. Indeed,
if we think of α = 1

cT
∼ 1

N2 → 0 we get order by order a very simple expansion

M̃ =
1

γ12(γ14 − 1)
+

α

γ2
12(γ14 + β− 1)

+
α2

γ3
12(γ14 + 2β− 1)

+ ... , (4.23)

which is much simpler than the “non-perturbative” limit (4.21). Notice also that the
condition (4.22) is genuinely nonperturbative. If we try to plug the “large N” expansion
(4.23) in (4.22) we see that only the leading term produces a finite result 1

γ14−1 , whereas
the higher terms in α ∼ 1

N2 produce infinity.

4.4 Nonperturbative Polyakov Conditions

We are now ready to formulate the Polyakov conditions for nonperturbative amplitudes.
In light of the discussion above we consider the derivative of the correlator

−u∂uF(u, v) = ∆u−∆ +
∫
C

dγ12

2πi
dγ14

2πi
γ12M̂(γ12, γ14)u−γ12 v−γ14 . (4.24)
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4.5. More Polyakov conditions

Note that since −u∂u(1 + v−∆) = 0 if we are to close the γ12 contour we will not run
into the double counting problem described above. Correspondingly, close to the first
twist accumulation point γ12 = ∆ − τ[O,O]0,J

2 = −γ[O,O]0,J
2 ∼ 1

Jτgap which improves the
convergence of the sum over spins in (4.8).2 In particular, the sum over J of both terms
in (4.8) multiplied by 1

Jτgap converges for

τgap

2
> Re[γ14] > ∆− τgap

2
. (4.25)

Notice that our original assumption ∆ < 3
4 τgap guarantees that there are allowed values

of γ14 compatible with this condition.

To analyze the behavior of the Mellin amplitude close to the branch point we can use the
toy model from the previous section. As in the toy model example above, we conclude
that the presence of the double-twist trajectory makes γ12 = 0 look like a branch point,
see (4.21). Similarly, we conclude that

lim
|γ12|→0, arg[γ12] 6=0

γ12
(
γ12M̂(γ12, γ14)

)
= 0,

τgap

2
> Re[γ14] > ∆− τgap

2
. (4.26)

In other words, the higher spin tail produces a contribution which is softer than a pole.

Let us now translate this condition to a statement about the Mellin amplitude M(γ12, γ14)

itself. Recall that due to the pre-factor Γ2(γ12)Γ2(γ13)Γ2(γ14) that relates M̂ to M and
which has a double pole at γ12 = 0 we can rewrite the condition above as follows

M(γ12 = 0, γ14) = 0,
τgap

2
> Re[γ14] > ∆− τgap

2
, (4.27)

where we set γ12 = 0 by approaching the accumulation point from any direction with
arg[γ12] 6= 0. The condition (4.27) is the central result of this section. Note that the
non-perturbative Polyakov condition is very subtle. In particular, we cannot argue that
the Mellin amplitude has a double zero at γ12 = 0 and similarly we cannot simply go
to the accumulation points with twists 2∆ + 2n. Finally, the condition is a genuinely
nonperturbative (finite N) condition.

4.5 More Polyakov conditions

With the same methods as in the previous section, one can see that close to the accumu-
lation point γ12 = −p,

M(γ12, γ13) ∼ (γ12 + p)1+2 γ13−∆
τgap + (γ12 + p)1+2 γ14−∆

τgap + O(γ12 + p)2 . (4.28)

2By [O,O]n,J we as usual denote a family of the double-twist operators that approach twist 2∆ + 2n at
infinite spin.
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We conclude that the Polyakov conditions

M(γ12 = −p, γ13) = 0 and ∂γ12 M(γ12 = −p, γ13) = 0 (4.29)

can be imposed, respectively, in

∆− τgap

2
< Re γ13 < p +

τgap

2
, (4.30)

∆ < Re γ13 < p. (4.31)

These correspond to the red and green regions of figure 4.1.
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Figure 4.1. The Mellin-Mandelstam plane. The axis at 120◦ ensure that every point on the plane
satisfies γ12 + γ13 + γ14 = ∆. The accumulation points γ12 = −n for n = 0, 1, ... are shown in
blue. The region of convergence for sum rules with a function F with a simple/double pole at
one of these points is shown in red/green. Notice that the red region contains the green region.

Exact double twist operators We tacitly assumed that the s-channel OPE, or x2
12 → 0,

expansion of the correlator does not contain operators of twist τ = 2∆. This is the case
for the sum rules that we analyze in this thesis and in a generic CFT. More generally, we
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4.5. More Polyakov conditions

can have

M(γ12 = −p, γ13) = ap(γ13) and ∂γ12 M(γ12 = −p, γ13) = bp(γ13)

(4.32)

if the s-channel OPE contains the derivative of the conformal block ∂∆G2∆+2n+`,`(u, v)
with n 6 p, which contribute to the former, and conformal blocks G2∆+2n+`,`(u, v) also
with n 6 p, which contribute to the latter. This fact was recently discussed in detail
in [13].

Imagine we have an operator of twist τ = 2∆ + 2n with n > 0 and spin ` that appears in
the OPE. It is convenient to take τ slightly away from this value and then take the limit
τ → 2∆ + 2n. We can compute the behaviour of the factor M(γ12, γ13)Γ2(γ12) close to
the pole at γ12 = ∆− τ

2 − (p− n) where p > n. This gives

M(γ12, γ13)Γ2(γ12) ≈
− 1

2 C2
τ,`Qτ,d

`,p−n(−2γ13)

γ12 − (∆− τ
2 − (p− n))

Γ2
(

∆− τ

2
− (p− n)

)
−−−−−→
τ→2∆+2n

− 1
2 C2

2∆+2n,`Q̃2∆+2n,d
`,p−n (−2γ13)

γ12 + p
, (4.33)

where

Q̃2∆+2n,d
`,p (−2γ13) ≡ lim

τ→2∆+2n
Qτ,d

`,p(−2γ13)Γ2
(

∆− τ

2
− (p− n)

)
. (4.34)

This means that an exact double twist operator with τ = 2∆ + 2n gives rise to simple
poles in M̂(γ12, γ14) at γ12 = −p for all integer p ≥ n. From this fact together with
limγ12→−p Γ2(γ12)(γ12 + p)2 = 1

p!2 we conclude that the contribution of such an operator
to (4.32) is

ap(γ13) = 0, bp(γ13) = −
(p!)2

2
C2

2∆+2n,`Q̃2∆+2n,d
`,p−n (−2γ13) , p ≥ n . (4.35)
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5 Dispersion relations

5.1 Introduction

After establishing the basic properties of nonperturbative CFT Mellin amplitudes we
would like to consider some applications. The strategy we adopt relies on all the prop-
erties that we established in the previous chapters. We use analyticity and polynomial
boundedness of Mellin amplitudes to write down subtracted dispersion relations. We
then impose crossing to simplify them and we finally impose the nonperturbative
Polyakov condition (4.27). The result of all this is a set of linear functionals that act on
the OPE data and give zero.

These functionals have some interesting properties. They annihilate generalized free
field theory. They are non-negative for heavy operators and have double zeros at the
positions of the double twist operators [O,O]n,J . We find that in this way they are
particularly suitable for studies of large N holographic CFTs.

We check the overall consistency of our construction by applying the functionals to the
OPE data of the 3d Ising model. After this successful and nontrivial test we move on
and apply them to some simple holographic theories.

5.2 Subtractions and Polyakov condition

For simplicity in this section we consider a limited class of CFTs in d > 2 for which
the analysis is particularly simple. We assume that the theory admits a scalar primary
operator with dimension ∆ and the twist gap τgap such that ∆ < 3

4 τgap. As we argued
above in this case we can write down the Mellin representation for the connected
correlator with the straight contour

Fconn(u, v) =
∫
C

dγ12dγ14

(2πi)2 u−γ12 v−γ14 Γ(γ12)
2Γ(γ14)

2Γ(∆− γ12 − γ14)
2M(γ12, γ14)
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C : ∆− τgap

2
< Re(γ12), Re(γ14), Re(γ12) + Re(γ14) <

τgap

2
.

(5.1)

Furthermore, we shall assume that τgap = d− 2 corresponds to the stress tensor operator.

Let us consider dispersion relations for the Mellin amplitude M(γ12, γ13, γ14), where
γ12 + γ13 + γ14 = ∆, at fixed γ13. According to (3.28), the Mellin amplitude is bounded
by the linear growth |γ12| for fixed Re(γ13) > ∆− τgap/2. In particular, this includes a
neighbourhood of γ13 = ∆

3 . Therefore we can write the fixed γ13 subtracted dispersion
relation as follows

M(γ12, γ13, γ14)

(γ12 − ∆
3 )(γ13 − ∆

3 )(γ14 − ∆
3 )

=
∮

γ12

dγ

2πi
1

γ− γ12

M(γ, γ13, ∆− γ13 − γ)

(γ− ∆
3 )(γ13 − ∆

3 )(∆− γ13 − γ− ∆
3 )

= −M(∆
3 , γ13, 2∆

3 − γ13)

(γ13 − ∆
3 )

2

(
1

γ12 − ∆
3

+
1

γ14 − ∆
3

)

−1
2 ∑

τ,J,m

C2
τ,JQτ,d

J,m(γ13)

(∆− τ
2 −m− ∆

3 )(γ13 − ∆
3 )(∆− γ13 − (∆− τ

2 −m)− ∆
3 )

×
(

1
γ12 − ∆ + τ

2 + m
+

1
γ14 − ∆ + τ

2 + m

)
,

(5.2)

where the last expression was obtained by opening up the contour integral in the first
line and picking up all the poles in the γ complex plane. In the last expression, we used
the fact that M(γ12, γ13, γ14) = M(γ14, γ13, γ12). Crossing symmetry further implies that

M
(

∆
3

, γ13,
2∆
3
− γ13

)
= G

(
(γ13 −

∆
3
)

2
)

. (5.3)

We can solve for derivatives of G(x2) at x2 = 0 in terms of the OPE data. To do it we
evaluate the formula above as M(∆

3 − x, ∆
3 , ∆

3 + x) = G(x2), expand in x and solve for
derivatives of G. We should remark at this point that as usual doing subtractions in
dispersion relations is a matter of choice. We will comment on other choices below.

We next consider the nonperturbative Polyakov condition (4.27). More precisely, we
expand the condition M(0, γ13, ∆− γ13) = 0 around γ13 = ∆

3 . In this way, we get an
infinite set of equations the simplest of which takes the following form

∑
τ,J,m

C2
τ,Jατ,J,m = 0, α1̂ = α0,0,m = 0 (5.4)

ατ,J,m = − 16∆
3(τ − 2∆

3 + 2m)(τ − 4∆
3 + 2m)

(
(τ + 2m− ∆)Qτ,d

J,m(
∆
3 )

(τ − 2∆
3 + 2m)(τ − 4∆

3 + 2m)
− ∆

3

Qτ,d
J,m(

∆
3 )
′

τ + 2m− 2∆

)
,

where in the last line we explicitly wrote that the identity operator does not contribute
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5.2. Subtractions and Polyakov condition

to (5.4). In other words, we arrived at a particular set of linear functionals that act on the
OPE data. They have very interesting properties that we describe below.

First, note thatQτ,d
J,m have double zeros at the position of double twist operators [O,O]n,J .

This directly translates to the fact that ατ,J,m have double zeros for τ = 2∆ + 2n with
n > 1. For n = 0 and J 6= 0, α2∆,J,m has a single zero due to the extra pole in the second
term in (5.4) for m = 0. Therefore, generalized free fields automatically satisfy the sum
rule (5.4).

Second, we find that

ατ,J,m > 0, τ > 2∆ , J ∈ 2N , m ≥ 0 , (5.5)

where the only zeros of ατ,J,m for τ > 2∆ are the ones at the positions of the double
twist operators described above. We elaborate on evidence for this claim (that we do
not prove) below in section 5.2.1. Therefore we conclude that the functionals above are
extremal (in the sense of [48, 49]) for the following bootstrap problem: Find the maximal
value of τ0 for which there exist a unitary solution to the crossing equations with all twists
τ ≥ τ0 for all spins J (apart from the identity operator).

From the properties of the functionals described above it immediately follows that there
are no nontrivial solutions to crossing equations that satisfy τ0 > 2∆. For τ0 = 2∆ the
only solution to crossing with this property is GFF. Note that in CFTs presence of the
stress tensor in the spectrum and unitarity bound for scalar operators immediately imply
this, see e.g. [17]. However, the claim above applies as well for non-local CFTs, say AdS
QFTs, which do not have a stress tensor.

We have to emphasize that we have not proven (5.5). But we did exhaustive tests to the
best of our knowledge. These include m = 0 and any spin and arbitrary m for low spin.
It would be helpful to prove (5.5) rigorously to put our results on a more solid ground.

Third, let us comment on the convergence of the sum (5.4). Using the standard results of
the light-cone bootstrap we can explicitly check the convergence at large J. We can also
check the convergence of the sum at large ∆ and fixed J using the results of [45]. Note
that the contribution of the heavy operators to the sum rule (5.4) is suppressed like a
power of τ independent of ∆, see appendix H.

Finally, let us mention that in the derivation above we can also find functionals that do
not rely on the Polyakov conditions, solely from crossing symmetry. As an example we
get

∑
τ,J,m

C2
τ,J βτ,J,m = 0, (5.6)
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βτ,J,m = 6
Qτ,d

J,m(
∆
3 )
′

(τ − 4∆
3 + 2m)4

+
Qτ,d

J,m(
∆
3 )
′′

(τ − 4∆
3 + 2m)3

,

β1̂ = β0,0,m = 0 .

One can easily check, however, that this functional does not have the crucial positivity
property (5.5). For that reason below we use (5.4).

5.2.1 Positivity of ατ,J

Here we elaborate on our claim (5.5) above. We restrict our consideration only to the
relevant case of d > 3. Let us emphasize that we do not prove (5.5) but present evidence
for it to the best of our current knowledge. The reason being that computing high spin
Mack polynomials up to arbitrary spin J and checking positivity in the three-dimensional
parameter space of ∆, τ, m is a computationally difficult task. Therefore, we could only
analyze (5.5) explicitly for low spins 0 6 J 6 40, as well as for arbitrary spins in some
limits, namely the flat space limit and for collinear Mack polynomials m = 0.

Strictly speaking, what we care about is only the positivity properties of ατ,J = ∑∞
m=0 ατ,J,m

and not positivity of each descendant ατ,J,m separately. In practice however we found it
much easier to analyze ατ,J,m for fixed m. It would be very interesting to improve our
analysis in this regard.

We start by analyzing (5.5) for low spins, namely J = 0, ..., 26. The simplest way to
check positivity is to fix the external dimension to some particular value. Foreseeing our
holographic consideration below we can fix ∆ = 5

8 (d− 2). Then setting d = 3 + δd and
τ = 2∆ + δτ we checked that all ατ,J,m are polynomials in δd, δτ, m > 0 with positive
coefficients.1 Similarly, as is relevant for our case setting ∆ = cδ(d− 2) with 1

2 < cδ <
3
4

we checked that the same property holds for cδ = 0.51, 0.52, ..., 0.74, for spins J = 0, ..., 16.
Keeping ∆ general and writing ∆ = d−2

2 + δ we observed that for J = 0, 2, 4 the same
manifest positivity holds (this time polynomial also includes powers of δ). However,
starting from J = 6 the polynomial is not manifestly positive. Restricting to particular
low values of ∆ we have not observed any violations of positivity but the simple analytic
argument that we presented above does not hold in this case. One simple analytic check
in this more general case is to consider the m� 1 limit. We computed such a limit for
the cases J = 0, ..., 12 and found that the functional is positive for any δd, δτ > 0 and
∆ > d−2

2 .

Another test of (5.5) is the flat space limit. Indeed, we consider m, τ � 1 with τ
m fixed. In

this case we can use (3.10) to evaluate the functional. The result is that to leading order

in the large τ, m it is proportional to C( d−2
2 )

J

(
τ
2 +m√

m(m+τ)

)
> 0.

1In d = 4 and ∆ = 5
8 we checked positivity of the functional up to spin 40.
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Finally, we set m = 0 and used collinear Mack polynomials to perform the large J tests.
At large J, the leading contribution to the functional is given by

∆2 J
1
2− 2∆

3 log(J)22∆+δτ+2J+5
√

πδτ(2∆ + 3δτ)(4∆ + 3δτ)Γ(− δτ
2 )

2Γ( 2∆
3 + δτ

2 )
2

, (5.7)

where we set τ = 2∆ + δτ. If δτ > 0, the functional is positive.

5.3 3d Ising

One example of the situation above is given by the correlator 〈σσσσ〉 in the 3d Ising
model, which has scaling dimension ∆σ ≈ 0.518 and where the twist gap is controlled
by the stress tensor τgap = 1, so that as required we have ∆σ < 3

4 . We conclude that

C : ∆σ −
1
2
< Re(γ12), Re(γ14),

Re(γ12) + Re(γ14) <
1
2

. (5.8)

and that the connected part of 〈σσσσ〉 in the 3d Ising model admits the Mellin represen-
tation with a straight contour

F3d
Ising(u, v) = 1 + u−∆σ + v−∆σ

+
∫
C

dγ12dγ14

(2πi)2 u−γ12 v−γ14 Γ(γ12)
2Γ(γ14)

2Γ(∆σ − γ12 − γ14)
2M3d(γ12, γ14).

C : ∆σ −
1
2
< Re(γ12), Re(γ14), Re(γ12) + Re(γ14) <

1
2

. (5.9)

Next we analyze the sum rule (5.4). We can rewrite the sum rule (5.4) as follows

− ∑
τ<2∆σ ,J>0,m

C2
τ,Jατ,J = ∑

τ>2∆σ ,J>0,m
C2

τ,Jατ,J + ∑
τ,J=0

C2
τ,Jατ,J , (5.10)

ατ,J =
∞

∑
m=0

ατ,J,m ,

where m is a sum over descendants. We see that the leading twist Regge trajectory is
mapped to the rest of the spectrum.

Using the results from [50] we get the following numerical values for some terms in the
relation above

0.0924 = 0.028968Tµν + 0.012122J=4 + 0.02910766J630 + 0.0222J>30

= 0.084569ε + 0.0018
[σ,σ]06J630

1
+ 0.0016

[ε,ε]46J630
0

+ 0.0014
[ε,ε]J>32

0
+ ... (5.11)
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Figure 5.1. Functionals ατ,0,m as a function of the twist τ. They are non-negative with double
zeros at the position of double trace operators τn = 2∆σ + 2n. Different colors correspond to the
contribution of descendants labeled by m. The external dimension is set to its numerical value in
the 3d Ising model ∆σ ' 0.518.

2Δσ τ

1.02 1.04 1.06 1.08 1.10

-0.1

0.1

0.2

Figure 5.2. When acting on operators with spin the functionals ατ,J,m are negative for operators
with twist τ < 2∆σ and non-negative for τ > 2∆σ with double zeros at the position of double
trace operators τn = 2∆σ + 2n with n > 1. Here we plot the result for J = 2. Different colors
correspond to the contribution of descendants labeled by m. The external dimension is set to its
numerical value in the 3d Ising model ∆σ ' 0.518.
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0.0

0.5

1.0

1.5

Figure 5.3. Same as figure 5.2 but with an extended range of twists τ plotted.

where we indicated explicitly the contribution of which operators we took into account.
In the first line we computed the contribution of J > 30 currents using the light-cone
bootstrap formulae from [50]. Similarly, in the second line for the higher spin tail of
[ε, ε]0 we used the formulae from [51] and the contribution of descendants (terms with
m > 1 in (5.4)). All dropped operators in the second line of (5.11) contribute positively.
Note also that the contribution of the heavy operators is only suppressed by a power of
∆. We consider therefore a 5% difference between the LHS and the RHS for the included
operators to be reasonable. It would be great to check the sum rule above in the 3d Ising
model with a greater precision by including more operators in the RHS of (5.10).

Similarly, we checked that the β functionals (5.6) that do not receive contributions from
the scalar operators lead to reasonable numbers. We also observed that the β functional
sum rules are more sensitive to higher spin operators.

5.4 Bounds on holographic CFTs

Let us now apply (5.4) to holographic CFTs, namely a CFT with large central charge
cT � 1 [52, 53]. As the simplest example we can consider a free massive scalar in
AdS coupled to another field dual to a single trace operator Õst (for example, another
scalar field or graviton). We restrict our consideration to external scalars which satisfy
∆ < 3

4 τÕst
.

If we simply consider a free massive scalar in AdS the sum rule (5.4) is trivially satisfied.
Indeed, as we emphasized above α2∆+2n,J,m = 0. However, as we weakly couple our free
scalar field to another field it is not at all obvious that (5.4) is satisfied. As we emphasized
several times above the sum rule (5.4) is essentially nonperturbative in cT. For example,
in deriving it we used the nonperturbative Regge bound as well as Polyakov conditions.
Neither holds in perturbation theory in cT. This is in a stark contrast with [54] where
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perturbation theory in AdS was mapped to solutions to crossing perturbative in 1/cT.

Due to the nonperturbative nature of (5.4) we cannot simply expand it in 1
cT

. However,
we can isolate some parts of it which can be safely computed using the low-energy
physics from those sensitive to the details of the UV completion. To that extent we write
the sum rule as follows

C2
Õst

ατÕst
,JÕst

+ ∑
J>0

C2
[O,O]0,J

ατ[O,O]0,J
,J + restUV = 0 , (5.12)

where the details of the UV completion are in restUV which is non-negative due to (5.5).

We are, thus, left with computing the contribution due to the leading twist double
traces. Note that due to a single zero of the functional at τ = 2∆, to leading order in
C2
Õst
∼ 1

cT
we get the result ∼ (CGFF

[O,O]0,J
)2γ[O,O]0,J

∼ 1
cT

with J > 0, where γ[O,O]0,J
is the

anomalous dimension of double trace operators 2. The anomalous dimensions γ[O,O]0,J

are observables that can be reliably computed using the low-energy theory in AdS.

Let us first consider an example when the external scalar is coupled to another scalar,
namely JÕst

= 0. The contribution from the scalar exchange to the double trace operators
can be found for example in [55]. In this paper the relevant OPE data was computed for
all J using the Lorentzian inversion formula instead of computing the relevant Witten
diagrams. In this case we numerically observed that the contributions exactly cancel to
leading order in 1

cT

C2
Õst

α∆Õst
,0 + ∑

J>0
C2
[O,O]0,J

ατ[O,O]0,J
,J + O

(
1
c2

T

)
= 0 . (5.13)

We provide more details on this calculation in appendix I.

Next we consider a scalar minimally coupled to gravity. In this case we can use the
results of [53, 56] for the anomalous dimensions of double trace operators. One subtlety
in this case is that there is a contribution at J = 0, 2 which is non-analytic in spin. In this
case, (experimenting across d and d−2

2 < ∆ < 3
2

d−2
2 ) we find that

C2
Tµν

αd−2,2 + ∑
J>0

C2
[O,O]0,J

ατ[O,O]0,J
,J = −

a(d, ∆)
cT

+ O
(

1
c2

T

)
, a(d, ∆) > 0 . (5.14)

The results for d = 4 and d = 3 are presented on fig. 5.4 and fig. 5.5 correspondingly.
See appendix I for more details on this. Therefore, we conclude that the rest of the sum

2The notation C2
Õst
∼ 1

cT
is only precise if the exchanged single-trace operator is the stress tensor. In the

other cases, we think of 1/cT as the square of the small cubic coupling in AdS.
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1.02 1.03 1.04 1.05 1.06 1.07 1.08
Δ
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-3

-2

-1

α

Figure 5.4. We consider a scalar minimally coupled to gravity in AdS5 or CFT4. We imagine that
the gravitational coupling is weak, or, equivalently, cT � 1. The α-functional (5.4) can be applied
to 1 < ∆ < 1.5. We plot the sum given by (5.14). We find that the sum is always negative within
the region of applicability of the functional.

in (5.4) must give

restUV = ∑
J,τ>2∆

C2
τ,Jατ,J =

a(d, ∆)
cT

+ O
(

1
c2

T

)
. (5.15)

It would be very interesting to understand what operators produce this contribution.

Notice that the IR contribution is always negative. If it were positive in some window,
it would lead to the dramatic conclusion that a scalar weakly coupled to gravity is an
inconsistent theory in that window. In section (7.5) we explain why the sum rule gives 0
for scalar exchange, but returns a nonzero result for graviton exchange.
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0.54 0.56 0.58 0.60
Δ
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Figure 5.5. We consider a scalar minimally coupled to gravity in AdS4 or CFT3. We imagine that
the gravitational coupling is weak, or, equivalently, cT � 1. The α-functional (5.4) can be applied
to 1

2 < ∆ < 3
4 . We plot the sum given by (5.14). We find that the sum is always negative within

the region of applicability of the functional.
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6 ε expansion

6.1 Introduction

In this chapter we develop more systematically functionals derived using dispersion
relations in Mellin space and use them to study the four-point function of the funda-
mental scalar field φ in the Wilson-Fisher (WF) model in d = 4− ε dimensions [57]. We
reproduce and confirm previously known results up to order ε4, as well as derive new
results.

The ε-expansion of the Wilson-Fisher model has been studied using conformal bootstrap
techniques previously [58–61]. Most notably, in [8, 9, 47] a bootstrap scheme based on
the sum of Polyakov blocks in the three channels was proposed. This method was
used to obtain CFT data up to order ε3. It is unclear whether such a method holds
nonperturbatively, or if it can be used in the Wilson-Fisher model to extract predictions
to higher order in ε [13]. In [62] the ε-expansion was studied to order ε4 using the
Lorentzian inversion formula and large spin re-summation.

We use dispersive Mellin sum rules to derive the OPE data of low twist operators
perturbatively in the ε-expansion. We confirm the predictions of [8, 62]. Our procedure
is systematic and no assumptions of analyticity down to spin 0 were made. Furthermore,
we make some new predictions. These are

� The averaged OPE coefficients of twist 4 operators at order ε3, see table 6.2.

� The coefficient of φ2 in the φ× φ OPE at order ε4, see table 6.3.

It would be very interesting to develop these methods further. This can potentially
enable the computation of CFT data at order ε5 and higher. Doing this requires a better
handle on the various sums and integrals that involve Mack polynomials that we discuss
below. We leave this for future work.
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6.2 Family of Functionals

We explore dispersion relations of the type

ωF ≡
∮
C∞

dγ12

2πi
M(γ12, γ13)F(γ12, γ13) = 0 , (6.1)

where the contour C∞ encircles γ12 = ∞ and the rational function F decays at least as
fast as 1/γ3

12 at large γ12. Different choices of the function F and different values of γ13

lead to different sum rules after closing the integration contour using Cauchy’s theorem.

It is convenient to choose F to be a rational function with poles at special locations
where the Mellin amplitude vanishes (see chapter 4 on the Polyakov conditions). Such
choices lead to sum rules that only involve the CFT data (τ and Cτ,`) and not the Mellin
amplitude itself.

All such sum rules have double zeros at the position of double trace operators τ =

2∆ + 2n, n ∈ Z>0 above certain twist τ0 which depends on the choice of F in (6.1). Sum
rules with this property were called “dispersive” in [13].

Let us introduce a family of functionals that will be useful in the present chapter. They
are specified by a simple rational function F(γ12, γ13) that enters into the sum rule (6.1)
and takes the following form

Fp1,p2,p3(γ12, γ13) ≡
2

(γ12 + p1)(γ12 + p2)(∆− γ12 − γ13 + p3)
, pi ∈ Z>0 . (6.2)

For fixed γ13 and large γ12 we have Fp1,p2,p3 ∼ 1
γ3

12
and arcs at infinity indeed do not

contribute. We denote the corresponding functional ωp1,p2,p3 ≡ ωFp1,p2,p3
.

Using the Polyakov conditions (4.29) we get the following sum rule

ωp1,p2,p3 =
∞

∑
τ>0,`,m=0

C2
τ,`ω

τ,`,m
p1,p2,p3

= 0, (6.3)

where ωτ,`,m
p1,p2,p3 denotes the contribution of a given collinear family of descendants from

the primary operator with twist τ and spin ` into the sum rule,

ωτ,`,m
p1,p2,p3

≡
Qτ,d

`,m(−2γ13)

∏2
i=1(γ13 −m− pi − τ

2 )(∆−m + p3 − τ
2 )

(6.4)

−
Qτ,d

`,m(−2γ13)

∏2
i=1(∆−m + pi − τ

2 )(−γ13 + m + p3 +
τ
2 )

.

Let us discuss properties of these functionals. First of all, these functionals are not all
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independent. Obviously, ωp1,p2,p3 = ωp2,p1,p3 . Moreover, it is easy to check that

ωp1,p2,p2 = ωp1,p2,p1 . (6.5)

Next using figure 4.1 we can understand convergence properties of the functionals
ωp1,p2,p3 . The dangerous contribution comes from the large spin double twist operators.
To discuss this it is convenient to distinguish two cases p1 = p2 and, without loss of
generality, p1 > p2.

When p1 = p2 we use the subleading Polyakov condition in γ12 which converges in
the green region in figure 4.1, we also use the leading Polyakov condition in γ14 which
converges in the crossing transformation of the red region in figure 4.1. As a result we
conclude that

ωp,p,p3 converges when p > 1, p3 > 0, γ13 ∈ green region (6.6)

⇔ ∆ < Re γ13 < min
(

p, p3 +
τgap

2

)

When p1 > p2 we use the leading Polyakov condition both in γ12 and γ14 which
converges in the red region (and its crossing transformation) in figure 4.1 so no extra
constraints arise and we have

ωp1,p2,p3 converges when p1 > p2, γ13 ∈ red region, (6.7)

⇔ ∆− τgap

2
< Re γ13 < min(p2, p3) +

τgap

2
(6.8)

The defining property of ωp1,p2,p3 functional is sensitivity to the double twist operators
with twists τ = 2∆ + 2n, where n 6 pi. Indeed, the Mack polynomials Qτ,d

`,m(−2γ13)

have double zeros at τ = 2∆ + 2n, whereas the brackets in (6.4) have poles at τ =

2∆ + 2(pi − m) which enhances the contribution of the corresponding double twist
families. See figures 6.1 and 6.2.

In our analysis of the Wilson-Fisher model in d = 4− ε dimensions below we will only
study the properties of the leading, n = 0, and the first sub-leading, n = 1, double twist
family of operators. This naturally restrict our attention to the functionals with pi 6 1.
Together with linear dependence and convergence properties explained above it leaves
us with two functionals

ω1,0,0, ω1,1,1. (6.9)
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2 Δ 2 Δ +2 2 Δ+4 2 Δ+6
τ

ω1,1,1

Figure 6.1. A plot of the ωτ,`
1,1,1 ≡ ∑∞

m=0 ωτ,`,m
1,1,1 functional as a function of the twist τ of the

exchanged operator. We picked ∆ = 3
5 , γ13 = 3

4 , ` = 2 and d = 3. The plot is qualitatively the
same for other values. We sum in m from 0 to 50, since this is enough to have an accurate plot
of the functional. Notice that the functional does not vanish for twists τ = 2∆ and τ = 2∆ + 2.
However, it has double zeros for all τ = 2∆ + 2n, for n > 2.

2 Δ 2 Δ +2 2 Δ +4
τ

ω1,0,0

2 Δ
τ

ω1,0,0

Figure 6.2. On the left, a plot of the ω1,0,0 functional as a function of the twist τ of the exchanged
operator. We picked ∆ = 1.1, γ13 = 1

3 , ` = 2 and d = 4. The plot is qualitatively similar for other
values. We sum in m from 0 to 50, since this is enough to have an accurate plot of the functional.
Notice that the functional has single zeros for twists τ = 2∆ = 2.2 (though it is not very clear
from the left plot) and τ = 2∆ + 2 = 4.2. However, it has double zeros for all τ = 2∆ + 2n, where
n > 2. On the right, we zoom in to the region around τ = 2∆, so that we can observe the single
zero at τ = 2∆.

6.3 Check with Mean Field Theory

In mean field theory (MFT), there are only exact double twist operators in the OPE φ× φ,
where φ is the gaussian field. Therefore, the functionals ωp1,p2,p3 annihilate every term of
the sum in (6.3) because the functions Qτ,d

`,m(−2γ13) have double zeros at τ − 2∆ ∈ Z≥0.
This conclusion is not correct if we choose p1 = p2 ∈ Z≥0 because the double pole of F
at γ12 = p1 cancels the double zero.

For concreteness consider the functional ω1,1,p. Using the MFT OPE coefficients, we
obtain
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6.3. Check with Mean Field Theory

ω1,1,p = − 22+2∆
√

π Γ2(∆)(1 + ∆− γ13 + p)

∞

∑̀
=0

even

2`Γ
( 1

2 + ∆ + `
)

P`(γ13)

(d + 2`)(2− d + 4∆ + 2`)`! Γ(∆ + `+ 1)
,

(6.10)

where

P`(γ13) = (d + 2`)(`+ ∆)Qτ=2∆,d
`,1 (−2γ13) + (2− d + 2∆)(2∆ + 2`+ 1)Qτ=2∆+2,d

`,0 (−2γ13) .
(6.11)

Here we used the (non-calligraphic) Mack polynomials Qτ,d
`,m defined in appendix J.1.

Notice that only the double-twist operators with twist τ = 2∆ and τ = 2∆+ 2 contribute
to this sum rule. The polynomial P`(γ13) inherits the symmetry P`(γ13) = P`(1 + ∆−
γ13) from the Mack polynomials.

The large ` behaviour of the summand in (6.10) is given by

∼ `max(2∆−2γ13−1,2γ13−3) , (6.12)

which implies convergence of the sum over ` for ∆ < γ13 < 1. In figure 6.3, we plot the
partial sums

SJ(γ13) =
J

∑̀
=0

even

2`Γ
( 1

2 + ∆ + `
)

P`(γ13)

(d + 2`)(2− d + 4∆ + 2`)`! Γ(∆ + `+ 1)
, (6.13)

for several values of J. One can see that SJ(γ13) tends to zero when J → ∞ if ∆ < γ13 < 1
and it diverges otherwise. Moreover, one can also check the large J behaviour

log SJ(γ13) ≈ max (2∆− 2γ13, 2γ13 − 2) log J , (6.14)

in agreement with (6.12).

The knowledgeable reader may ask: how can we get a sum rule for MFT using Mellin
amplitudes? Indeed, the Mellin amplitude for MFT vanishes identically [63]. One way
to understand the success of the exercise above is as follows. Consider an interacting
theory with a continuous coupling λ, such that at λ = 0 we obtain MFT. The Mellin
amplitude is non-trivial and leads to the sum rules (6.3) for any λ > 0. Then, one obtains
the sum rule (6.10) for MFT in the limit λ→ 0.

Let us now consider the functional

ω0,0,p = − 21+2∆
√

π Γ2(∆)(∆− γ13 + p)

∞

∑̀
=0

even

2`Γ
( 1

2 + ∆ + `
)

`! Γ(∆ + `)
Qτ=2∆,d

`,0 (−2γ13) . (6.15)
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SJSJ

Figure 6.3. Partial sum SJ(γ13) defined in (6.13) for d = 3 and ∆ = 3
5 . On the left, one can see

that only for ∆ < γ13 < 1 the partial sum converges to zero as expected. On the right, we fix
γ13 = 4

5 and use a log-log plot to exhibit the large J behavior predicted by (6.14). The straight
orange line is a fit (to the points 20 ≤ J ≤ 60) with slope given by (6.14).

One can check that this sum vanishes for ∆ < Re γ13 < 0 in agreement with the general
formula (6.7). Notice that in unitary CFTs there is no convergence region for this sum
rule because ∆ < 0 is forbidden. Nevertheless, we shall use the functional

ω0,0,0

in the ε–expansion by applying it to the difference between the CFT data in the interact-
ing theory and in MFT. This trick will give rise to a finite region of convergence for the
sum rule ω0,0,0.

6.4 Setup for the ε-expansion

The Wilson-Fisher fixed point in d = 4− ε spacetime dimensions contains the lightest
scalar operator φ of dimension ∆φ and we consider the four-point 〈φφφφ〉 and the
associated CFT data which includes the following operators:

� The lightest scalar that appears in the OPE φ× φ. We denote this operator by φ2

with dimension ∆φ2 and OPE coefficient Cφ2 .

� The leading twist operators j` (also called twist-two) with twist τ` and the three-
point function Cj` . These are non-degenerate (there is a single operator for every
even spin ` > 2) and can be identified with the double twist operators with n = 0.

� Twist-four operators of even spin ` > 0. These are non-degenerate for ` = 0, 2 [64],
and degenerate for ` > 4. They also include the double twist family with n = 1.
We will study their OPE data on average.

� Higher twist operators. These have twist six and higher when ε = 0. We do not
say anything about these operators. They will not appear in the dispersive Mellin
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6.4. Setup for the ε-expansion

sum rules to the perturbative order that we analyze them.

From the bootstrap point of view this model can be defined as follows. We start with
〈φφφφ〉 being the mean field theory correlator in d = 4− ε dimensions. Next we assume
that the CFT data (scaling dimensions and OPE coefficients) depends on ε as a power
series.

We then study the crossing equations perturbatively in ε. Such perturbative solutions
to crossing were analyzed in [54] and they include infinitely many ambiguities due to
contact interactions in AdS. It is reasonable to conjecture that these are completely fixed
by requiring that at every order in ε the correlator satisfies the nonperturbative Regge
bound and that the stress energy tensor is conserved. In particular, this means that we
can use the dispersive Mellin sum rules order by order in ε.

Let us state our definitions. The known results for the OPE data in the Wilson-Fisher
fixed point in d = 4− ε and the relevant references can be found in appendix K.

We follow [62] and define the expansion parameter g to be the anomalous dimension of
φ2,

∆φ2 = 2∆φ + g, (6.16)

Then, the spacetime dimensionality d

d = 4 + a1g + a2g2 + a3g3 + a4g4 + . . . . (6.17)

Using this equation one can find g as a function of ε and vice versa. For the conformal
dimension of φ we write

∆φ =
d− 2

2
+ γ1(φ)g + γ2(φ)g2 + γ3(φ)g3 + γ4(φ)g4 + . . . . (6.18)

We will derive that γ1(φ) = 0. So, the correction to the dimension of φ starts at order g2.
Similarly, we write for the twist of the twist-two operators

τ` = 2∆φ + γ1(j`)g + γ2(j`)g2 + γ3(j`)g3 + γ4(j`)g4 + . . . , ` > 2. (6.19)

We will derive that γ1(j`) = 0. The twist of the stress energy tensor is protected
τ2 = d− 2. For the twist-four operators due to the degeneracy we only compute the
averaged values of the relevant OPE data

τ4,i(`)) = 2∆φ + 2 + γ1(τ4,i(`))g + . . . , (6.20)

where i denotes various degenerate operators at g = 0. We will only compute averaged
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moments of the twist-four anomalous dimensions as follows

〈γ(τ4(`))
n〉 ≡

∑i C2
τ4,i(`)

γn(τ4,i(`))

∑i C2
τ4,i(`)

, (6.21)

where the sum is over the degenerate operators. Note that ` = 0, 2 operators are not
degenerate.

Concerning OPE coefficients, we define them relative to the mean field theory. In MFT,
the square of the OPE coefficient of the operator of dimension 2∆φ + 2n + ` and spin ` is
equal to

C2
n,` =

(1 + (−1)`)
(

∆− d
2 + 1

)2

n
(∆)2

`+n

Γ(`+ 1)Γ(n + 1)
(

d
2 + `

)
n
(2∆− d + n + 1)n(2∆ + `+ 2n− 1)`

(
2∆− d

2 + `+ n
)
`

(6.22)

where ∆φ is the dimension of the fundamental field and d is the spacetime dimension,
both of which are nontrivial functions of g.

We parametrise the OPE coefficients of φ2, of the leading twist operators j` and the sum
of squares of OPE coefficients over degenerate twist 4 operators τ4(l) as

C2
φ2 = C2

0,0 × (1 + c1(φ
2)g + c2(φ

2)g2 + c3(φ
2)g3 + c4(φ

2)g4 + ...),

C2
j` = C2

0,` × (1 + c1(j`)g + c2(j`)g2 + c3(j`)g3 + c4(j`)g4 + ...), (6.23)

∑
i

C2
τ4,i(`)

= C2
1,` × (b2(`) + b3(`)g + ...) ∼ O(g2),

respectively, where we plug ∆φ and d as functions of g as above. In the last line we
emphasized that since in the free field theory C2

n>1,`|∆= d−2
2

= 0 the twist four operators,

or n = 1, first contribute at order g2. Higher twist operators, or n > 2, first contribute at
order g4.

The quantities ci(φ
2), ci(j`), and bi(`) are to be determined using the dispersive Mellin

functionals below.

6.5 Order g0

Let us discuss the action of the functionals ω1,0,0, ω1,1,1 and ω0,0,0 at order g0. When g = 0
the correlator 〈φφφφ〉 is the one of the free scalar field in 4 dimensions. The relevant
action of the functionals on mean field theory was discussed in section 6.3 to which
we refer the reader for the relevant formulas. In the following applications, we always
consider the difference between the action of the functionals on the Wilson-Fischer fixed
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point and their action on mean field theory.

6.6 Order g1

Let us discuss the action of ω1,0,0 and ω0,0,0. ω1,0,0 has single zeros for the leading and
subleading twist trajectories, whereas it has double zeros for the other twist trajectories.
For this reason, the contribution of the twist 2 and twist 4 operators comes proportional
to their anomalous dimensions, whereas the contribution of twist 6 or higher operators
comes proportional to their anomalous dimensions squared. For this reason, twist 6
operators do not contribute at this order. Furthermore, the OPE coefficients of twist 4
operators vanish at order g0. Thus, twist 4 operators do not contribute to ω1,0,0 to first
order in g.

So, only twist 2 operators contribute at first order in g. Their contribution is given by

ω1,0,0|g1 =
2

(−2 + γ13)
(Qτ=2,d=4

`=0,m=0(−2γ13)−Qτ=2,d=4
`=0,m=1(−2γ13)) (6.24)

+
∞

∑̀
=2

even

2`+2Γ(`+ 3
2 )

(−2 + γ13)
√

πΓ(`+ 1)2
(Qτ=2,d=4

`,m=0 (−2γ13)−Qτ=2,d=4
`,m=1 (−2γ13))γ1(j`)

The first line corresponds to the contribution of φ2 and the second line corresponds to
the contribution of the operators in the leading twist trajectory with even spin ` > 2.
It turns out that the contribution of φ2 vanishes identically since Qτ=2,d=4

`=0,m=0(−2γ13) =

Qτ=2,d=4
`=0,m=1(−2γ13) = 1.

We will want to apply the orthogonality relation (J.8) to (6.24). The decomposition

Qτ=2,d=4
`1,m=1 (s) = Qτ=2,d=4

`1,m=0 (s) +
`1−1

∑
`2=0

2−`1+`2+1Γ(`1)Γ(`1 + 1)Γ
(
`2 +

3
2

)
Γ
(
`1 +

1
2

)
Γ(`2 + 1)2

Qτ=2,d=4
`2,m=0 (s) (6.25)

will be important. Furthermore, let us define

ζ1 =
∞

∑̀
=2

even

`+ 1
2

`
γ1(j`). (6.26)

Then, by permuting the order of the sums, (6.24) can be rewritten as

(−2 + γ13)ω1,0,0|g1 = −
∞

∑
`=0

2`+3
√

π

Γ(`+ 3
2 )

Γ(`+ 1)2

(
ζ1 −

`

∑
`1=2
even

`1 +
1
2

`1
γ1(`1)

)
Qτ=2,d=4

`,m=0 (−2γ13) .

(6.27)

Since the Mack polynomials are orthogonal (see (J.8)), every term in the sum over ` in
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(6.27) must vanish. Then, the term with ` = 0 implies that ζ1 = 0. The term with ` = 2
implies γ1(j`=2) = 0. The term with ` = 4 implies γ1(j`=4) = 0 and so on. We therefore
conclude that

γ1(j`) = 0 (6.28)

Conservation of the stress tensor implies that 2∆φ + γ(j`=2) = d− 2. Expanding this to
first order in g and using γ1(j`=2) = 0, we obtain

γ1(φ) = 0 (6.29)

Let us consider now the action of ω0,0,0. This functional does not vanish for the leading
twist trajectory, but it has double zeros for all the subleading twist trajectories. For this
reason only the twist 2 operators contribute to first order in g. We have that

ω1,0,0|g1 = −
∞

∑̀
=2

even

2`+3Γ(`+ 3
2 )

(−1 + γ13)
√

πΓ(`+ 1)2
c1(j`)Q

τ=2,d=4
`,m=0 (−2γ13) (6.30)

− 4(1 + c1(φ
2))

(−1 + γ13)
Qτ=2,d=4

`=0,m=0(−2γ13).

The orthogonality relation (J.8) applied to (−1 + γ13)×(6.30) immediately implies that

c1(φ
2) = −1, c1(j`) = 0 (6.31)

6.7 Order g2

Let us consider the action of the ω1,0,0 functional. At order g2, only φ2 and operators
in the leading Regge trajectory j` contribute. The twist four and higher operators do
not contribute, since their OPE coefficients start at order g2 and the functional ω1,0,0

vanishes for the exchange of sub-leading twists.

The contribution of φ2 is equal to

∞

∑
m=0

C2
φ2 ω

∆
φ2 ,0,m

1,0,0

∣∣∣∣
g2
=
−2 + a1(−1 + γ13) + γ13

(−2 + γ13)(−1 + γ13)
. (6.32)

The contribution of the leading twist trajectory is equal to

∞

∑̀
=2

even

C2
j`ω

τ`,`,0
1,0,0 |g2 =

∞

∑̀
=2

even

2`+2Γ(`+ 3
2 )((`+ 1)Qτ=2,d=4

`,m=0 (−2γ13)−Qτ=2,d=4
`,m=1 (−2γ13))γ2(j`)

(−2 + γ13)(`+ 1)
√

πΓ(`+ 1)2
.

(6.33)
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Recall that γ2(j`) is the anomalous dimension of the leading twist operators.

In order to extract the anomalous dimensions γ2(j`) we will use the orthogonality
relation (J.8) among m = 0 Mack polynomials. We will also use equation (6.25) to
decompose m = 1 Mack polynomials into m = 0 Mack polynomials. From the
sum rule (6.32) + (6.33) = 0 we can obtain several equations by multiplying it by
(−2 + γ13)Γ2 (γ13) Γ2 (1− γ13) Qτ=2,d=4

`,m=0 (−2γ13), integrating over γ13 and using the or-
thogonality relation (J.8). For even ` we obtain

−
√

π21−``γ2(j`)Γ(`+ 1)2

(`+ 1)Γ
(
`+ 1

2

) +

√
π21−`Γ(`+ 1)2

(
ζ −∑`

`1=2

[
(2`1+1)γ2(j`1

)

`1(`1+1)

])
Γ
(
`+ 1

2

)
=
∫ −1+i∞

−1−i∞

ds
4πi

(
a1 +

4 + s
2 + s

)
Γ
(
− s

2

)2
Γ
( s

2
+ 1
)2

Qτ=2,d=4
`,m=0 (s) (6.34)

= −
√

π2−`−1Γ(`+ 1)2
(
(`+ 1)2ψ(1)

(
`
2 + 1

)
− (`+ 1)2ψ(1)

(
`+3

2

)
− 4
)

(`+ 1)2Γ
(
`+ 1

2

) + δ`,0(1 + a1),

where s = −2γ13, ψ(1)(x) is the order 1 polygamma function and we compute the
integral above in appendix M. We also introduced the quantity

ζ ≡
∞

∑̀
=2

even

(2`+ 1)
`(`+ 1)

γ2(j`). (6.35)

We treat ζ as an independent parameter from the anomalous dimensions, that we will
compute.

Furthermore, the orthogonality relation with respect to odd spin Mack polynomials is
also very useful. It is given by

−
√

π21−`Γ(`+ 1)2
(

ζ −∑`−1
`1=2

[
(2`1+1)γ2(j`1

)

`1(`1+1)

])
Γ
(
`+ 1

2

) (6.36)

= −
√

π2−`−1Γ(`+ 1)2
(
(`+ 1)2ψ(1)

(
`
2 + 1

)
− (`+ 1)2ψ(1)

(
`+3

2

)
− 4
)

(`+ 1)2Γ
(
`+ 1

2

) . (6.37)

We used the spin 1 equation to determine ζ = π2

12 − 1.

Knowing ζ, then equations (6.34) can be solved in the following manner. The spin 0 and
spin 2 equations determine a1 and γ2(2). The spin 4 equation determines γ2(4) and so
on. More generically,

a1 = −3, γ2(j`) = −
1

`(`+ 1)
(6.38)
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This agrees with known results.

Since we already know the anomalous dimensions of the leading twist operators, we
can fix the dimension of φ by demanding that the stress tensor has twist d− 2

2γ2(φ) + γ2(2) = 0 ⇒ γ2(φ) =
1
12

(6.39)

In order to compute the corrections to the OPE coefficients of the operators in the leading
twist trajectory, let us consider the action of ω0,0,0. At order g2 only φ2 and the leading
twist trajectory contribute. The contribution of φ2 is

∞

∑
m=0

C2
φ2 ω

∆
φ2 ,0,m

0,0,0 |g2 = 2
(

2a1

γ13 − 1
− 2c2(φ2)

γ13 − 1
+

4(γ13 − 2)γ13 + (γ13 − 1)2ψ(1)(2− γ13) + 5
2(γ13 − 1)3

)
,

(6.40)

The contribution of the leading twist trajectory is

∞

∑̀
=2

even

C2
j`ω

τ`,`,0
0,0,0 |g2 = −2

∞

∑̀
=2

even

2`+2Γ
(
`+ 3

2

)
√

π(γ13 − 1)Γ(`+ 1)2
(6.41)

×
(

Qτ=2,d=4
`,m=0 (−2γ13)

(
c2(j`)γ2(j`)

(
2S1(2`)− 3S1(`) +

1
2(`+ 1

2 )

))

+ γ2(j`)
d

dτ
Qτ=2,d=4

`,m=0 (−2γ13)

)
,

The above series converges for 0 < Re(γ13) <
1
2 . We determined c2(`) and c2(φ2) in the

following manner. The series (6.41) contains a part proportional to c2(`) and another
part proportional to γ2(`). We have already determined γ2(`) in the preceding section.
So, we can sum the part of the series (6.41) that is proportional to γ2(`). In practice, we
used, from spin 2 to 100, the exact expressions for Mack polynomials and, from spin 102
to infinity, we used the approximation (J.21), (J.22) to Mack polynomials to sum the tails.

After doing this summation we can apply the orthogonality relation (J.8). We evaluate
such integrals numerically. Proceeding in this manner we obtained

c2(φ
2) = −1 (6.42)
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We also obtained c2(j`) for low spins. It precisely matches the formula1

c2(j`) =
S1(2`)− S1(`) +

1
`+1

`(`+ 1)
(6.43)

derived in [8], where

Sn(`) =
`

∑
m=1

1
mn . (6.44)

Thus far we have deduced the conformal data of φ, φ2 and the leading twist trajectory to
order g2. Let us compute the OPE coefficients of the twist 4 operators at order g2, using
the ω1,1,1 functional. The contribution of φ2 is equal to

∞

∑
m=0

C2
φ2 ω

∆
φ2 ,0,m

1,1,1 |g2 = 2
(

a1

γ13 − 3
− 2c2(φ2)

γ13 − 3
(6.45)

+
2(γ13 − 5)γ13((γ13 − 5)γ13 + 13) + 85

2(γ13 − 3)3(γ13 − 2)2 +
ψ(1)(4− γ13)

2(γ13 − 3)

)
.

Of course we already know the values of a1 and c2(φ2), we are just exhibiting which
CFT data matters for the action of ω1,1,1.

The contribution of the leading twist trajectory is given by

∞

∑̀
=2

even

C2
j`ω

τ`,`,0
1,1,1 |g2 = −2

∞

∑̀
=2

even

2`+2Γ(`+ 3
2 )√

π(γ13 − 3)Γ(`+ 1)Γ(`+ 2)

(6.46)

×
(

Qτ=2,d=4
`,m=1 (−2γ13)

(
c2(j`) + γ2(j`)(2S1(2`)− 3S1(`) +

1
2(`+ 1

2 )
− 1

`+ 1
+ 1)

)
+γ2(j`)

d
dτ

Qτ=2,d=4
`,m=1 (−2γ13)

)

The contribution of the subleading twist trajectory is equal to

∞

∑̀
=0

even

∑
i

C2
τ4,i(`)

ω
τ4,i(`),`,0
1,1,1 |g2 =

∞

∑̀
=0

even

(
−

2γ2(φ)2`+3(b2(`)− 1)Γ
(
`+ 5

2

)
Qτ=4,d=4

`,m=0 (−2γ13)√
π(γ13 − 3)(`+ 1)(`+ 2)Γ(`+ 1)Γ(`+ 2)

)
g2.

(6.47)

1At low orders in g, our work consists in rederiving known formulas, so we do not keep track of error
bars when executing our numerical procedure. However, when making new predictions, we were careful
with errors and we do present our results with error bars.
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ε expansion

Our goal is to compute the averaged OPE coefficients of the twist 4 operators, which
we call b2(`). For this reason we will use the orthogonality relation with respect to
m = 0 twist 4 Mack polynomials. (6.46) is a complicated expression, however we can
in principle evaluate it, since we already know all of the conformal data that enters the
expression. This involves summing tails, like before. After doing such a summation and
using the orthogonality relation (numerically), we managed to obtain b2(`) at low spins.
Our results agree with the analytical expression

b2(`) = 1 +
6

(`+ 1)(`+ 2)
(6.48)

derived in [62].

6.8 Order g3

Let us compute the order g3 corrections to the OPE coefficients of the leading twist
trajectory. We assume the formulas for a2 and γ3(j`) [62], see appendix K.

We will use the ω0,0,0 functional. The numerical procedure to extract CFT data is the same
as before. The action of the ω0,0,0 functional allows us to calculate the OPE coefficients
c3(φ2) and c3(jl) at low spins. This precisely matches the analytic formulas [9]

c3(j`) =
3(S1(`)−S1(2`)+S2(2`))−2(S2

1(`)−S1(`)S1(2`)+S2(`))

`(`+ 1)
+

3(`+ 1
2 )(S1(2`)− `−1

`+1 )−(`+ 3
2 )S1(`)

`2(`+ 1)2

(6.49)

c3(φ
2) =

5
6
+

7ζ(3)
4

(6.50)

Let us turn our attention to the twist 4 operators. Let us apply the ω1,0,0 functional, in
order to obtain their first order correction to the anomalous dimensions. Since their OPE
coefficients start at order g2, this means we need to study the ω1,0,0 functional to order
g3.

There are three types of contributions: from φ2, from the leading twist operators and
from the subleading twist operators. The contribution of φ2 is equal to

∞

∑
m=0

C2
φ2 ω

∆
φ2 ,0,m

1,0,0 |g3 = − 3S1(−γ13)

2
(
γ2

13 − 3γ13 + 2
) + γE(6γ13 − 3)

γ2
13 − 3γ13 + 2

+
2γ13(6(γ13 − 3)γ13 + 19)− 19

2
(
γ2

13 − 3γ13 + 2
)2

where we used the Euler Gamma constant γE.
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6.8. Order g3

γ1(τ4(`)) Numerical Result Analytic Expression (6.53)
` = 0 3.000000± (2× 10−6) 3 = 3.000000
` = 2 1.33334± (4× 10−5) 4

3 = 1.33333
` = 4 0.6667± (2× 10−4) 2

3 = 0.6667
` = 6 0.3872± (6× 10−4) 12

31 = 0.3871
` = 8 0.250± (2× 10−3) 1

4 = 0.250
` = 10 0.175± (5× 10−3) 4

23 = 0.174
` = 12 0.13± (2× 10−2) 6

47 = 0.13

Table 6.1. Numerical results for the averaged anomalous dimensions of the twist-four operators
γ1(τ4(`)) at order g1, as well as the suggested analytic expression.

The contribution of the leading twist operators is equal to

∞

∑̀
=2

even

C2
j`ω

τ`,`,0
1,0,0 |g3 = ∑̀

=2
even

(
2`Γ(`+ 3

2 )√
π(γ13 − 2)2`2Γ(`+ 2)2

× (r1(`)Qτ=2,d=4
`,m=0 (−2γ13) (6.51)

+r2(`)Qτ=2,d=4
`,m=1 (−2γ13)) +

3 2`+3Γ
(
`+ 3

2

)
√

π(4− 2γ13)`Γ(`+ 2)2
(∂dQτ=2,d=4

`,m=1 (−2γ13)

−(1 + `)∂τQτ=2,d=4
`,m=0 (−2γ13) + ∂τQτ=2,d=4

`,m=1 (−2γ13))
)

,

where r1(`) and r2(`) are written in appendix L.1.

The contribution of the subleading twist operators is

∞

∑̀
=0

even

∑
i

C2
τ4,i(`)

ω
τ4,i(`),`,0
1,0,0 |g3 = − ∑̀

=0
even

2`+1(`(`+ 3) + 8)Γ
(
`+ 5

2

)
3
√

π(γ13 − 2)(`+ 1)Γ(`+ 3)2
γ1(τ4(`))Qτ=4,d=4

`,m=0 (−2γ13).

(6.52)

Expression (6.51) is cumbersome and for this reason we did not manage to com-
pute γ1(τ4(`)) analytically. We computed γ1(τ4(`)) through the following numerical
procedure: we can sum the series (6.51) and evaluate the orthogonality integral for
Qτ=4,d=4

`,m=0 (−2γ13) numerically. The obtained results can be found in table 6.1. The inte-
grals can be evaluated extremely efficiently and the reported errors are not due to the
evaluation of the integrals. The errors are due to using the approximation (J.21) for Mack
polynomials at large spins, so as to sum the series (6.51). The preceding table agrees
with the expression [65]

γ1(τ4(`)) ≡ 〈γ(τ4(`))〉|g1 =
24

(`+ 1)(`+ 2) + 6
(6.53)
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ε expansion

b3(`) Numerical Result
` = 0 −29.99998± (6× 10−5)
` = 2 −3.7541± (3× 10−4)
` = 4 −1.3029± (8× 10−4)
` = 6 −0.628± (1.5× 10−3)
` = 8 −0.358± (3× 10−3)
` = 10 −0.226± (5× 10−3)
` = 12 −0.152± (7× 10−3)
` = 14 −0.107± (5× 10−3)

Table 6.2. Numerical results for the averaged corrections to the three-point functions of the
twist four operators at order g3.

for the averaged anomalous dimensions of twist 4 operators.

Finally, let us consider corrections to the OPE coefficients of twist 4 operators. We
computed the function b3(`) for low spins numerically using the functional ω1,1,1. As
before to find b3(`) we use the orthogonality property of Mack polynomials (J.8). By
integrating ω1,1,1|g3 against (8− 2γ13)Γ2 (γ13) Γ2 (2− γ13) Qτ=4,d=4

`,m=0 (−2γ13) we get an
equation that expresses b3(`) in terms of the previously found OPE data. The results
that we found are presented in table 6.2. These predictions are new. We could not guess
an analytic formula for b3(`). It is clear from the numerical results that b3(0) = −30.

6.9 Order g4

Let us outline the computation of the OPE coefficients of the leading twist trajectory
and of φ2 at order g4. We assume the formulas for γ4(jl) and a3.2 We will use the ω0,0,0

functional. The computation is numerically more involved than at lower orders, since
there are more tails to sum, as we will see next.

Let us take into account the dependence on the quantum number m. The sum rule
can be written as ∑τ,` ∑m Cτ,` ωτ,`,m

0,0,0 = 0. For nonzero m, ωτ,`,m
0,0,0 has double zeros for

every double twist operator. For m = 0, ωτ,`,m
0,0,0 has double zeros at the subleading twist

trajectories, τ = 2∆ + 2, 2∆ + 4, ... and it is nonzero for the leading twist trajectory at
τ = 2∆.

The OPE coefficients of operators of twist 6 or of higher twist are at most of order g4.
Since ω0,0,0 vanishes for the subleading twists, their contribution comes proportional to
the anomalous dimensions squared, which are generically of order g1. We conclude that

2Expression (3.21) in [66] for γ4(j`) contains a typo. There should be −65/96 instead of −65/81. We are
very grateful to Apratim Kaviraj for letting us know about it and for his precious help in navigating the ε
expansion literature.
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6.9. Order g4

Three-point function Numerical Result Analytic Expression
c4(φ

2) −15.830116± (2× 10−6) ?
c4(2) 0.0814153± (3× 10−7) 6037

10368 −
5ζ(3)

12 = 0.08141533356
c4(4) 0.05753436± (5× 10−8) 1964452177

11854080000 −
9ζ(3)
100 = 0.05753437588

c4(6) 0.05416485± (5× 10−8) 30173094509693
298200051072000 −

23ζ(3)
588 = 0.05416483628

Table 6.3. Numerical and analytic results for the three-point functions of the twist two operators
and φ2 at order g4.

twist 6 operators or higher do not contribute at order g4. So, only twist 2 and twist 4
operators will contribute to the ω0,0,0 sum rule at order g4.

Concerning twist 4 operators, their contribution at a given spin l will come proportional
to ∑i C2

τ4,i(`)
γ2(τ4,i(`))|g4 , where the index i denotes the degeneracy of twist 4 operators

at spin i. We obtained the value of this quantity from [62] (combine equations 3.6 and
3.10 in [62])

∑
i

C2
τ4,i(`)

γ2(τ4,i(`))|g4 =

√
π2−2`−1(`(`+ 3) + 6)Γ(`+ 1)

(`+ 1)(`+ 2)2Γ(`+ 3
2 )

. (6.54)

For this calculation, we implement a numerical scheme that is a little different from the
previous cases. We consider the functional f4(s) = (2 + s)3(4 + s)2ω0,0,0(s). Afterwards,
we use the orthogonality relation (J.8) for each spin `, even and odd. This will give us
nontrivial equations that determine the CFT data. f4(s) has the advantage that it allows
to compute the m = 0 contributions of the operators in the leading and subleading twist
trajectories easily. Such operators contribute polynomially to the sum rule. So, we can
just decompose their contribution into Mack polynomials, without needing to do the
integrals (J.8) explicitly. We computed the OPE coefficients of twist 2 operators with low
spins and the results that we obtained are presented in table 6.3. The errors come from
not taking into account large spin tails. These are hard to compute because of difficulties
in evaluating Mack polynomials at large spins. c4(`) for ` > 2 were computed exactly
in [62]. Our numerical estimates agree with the exact values which can be computed
using the explicit formula presented in appendix K. The prediction for c4(φ

2) is new.

Based on the structure of the perturbative expansion in g we expect the analytic answer
for c4(φ

2) to contain π4, ζ(3), ζ(5) with some simple rational coefficients. For example
we can consider

1− 6π4

5
+

31ζ(3)
24

+ 95ζ(5) = −15.83011567...

Our precision is not good enough to exclude or confirm various possibilities of this type.
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ε expansion

Let us compare c4(φ
2) that we obtained with the values from the 3d Ising model [50, 67].

In that case the relevant three-point function is C2
σσε = 1.1063962(92). This should be

matched to the results of the ε-expansion at ε = 1

C2
φφφ2 = 2− 2ε

3
− 34

81
ε2 +

1863ζ(3)− 611
4374

ε3 (6.55)

+

(
− 6859

472392
+

323ζ(3)
729

− 80ζ(5)
81

+
π4

405
+

2
81

c4(φ
2)

)
ε4|ε=1

= 2.0000000− 0.6666667− 0.4197531 + 0.3722981− 0.656398

= 0.62948

where we used that c4(φ
2) = −15.830116. Notice that the order ε4 correction makes the

agreement with 3d Ising model worse. At order ε2 the deviation between C2
φφφ2 and C2

σσε

is −0.1927. At order ε3 it is 0.179518. At order ε4 it is −0.47688. This is a manifestation
of the asymptotic nature of the ε-expansion. 3

3 Padé approximations are often used in this context (see for example [68]). We checked that a rational
ansatz for C2

φφφ2 with a degree 3 polynomial of ε in the numerator and a degree 2 denominator, which is

completely fixed by the Taylor expansion (6.55) and the condition C2
φφφ2 =

1
4 for ε = 2, does not have poles

for 0 < ε < 2. This approximation gives C2
φφφ2 ≈ 1.15 for ε = 1. This result is relatively insensitive to the ε4

term.
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7 Holographic Applications

7.1 Introduction

It is interesting to consider a broader family of functionals than the ones that we dis-
cussed so far. In particular, we consider

ωp2,p3 =
2

(γ12 + p2)(γ14 + p3)
M(γ12, γ13) + (OPE data) = 0, (7.1)

where p2, p3 are positive integers. By "OPE data" we mean the dispersive representation
of 2

(γ12+p2)(γ14+p3)
M(γ12, γ13), which can be expressed in terms of the OPE data and Mack

polynomials. It is then convenient to define

ωp2,p3(γ12, γ13) ≡
(γ12 + p2)(γ14 + p3)

2
ωp2,p3 . (7.2)

To get a sum rule that involves only the OPE data and not the Mellin amplitude itself
we use crossing symmetry. More precisely, γ13 ↔ γ14 crossing symmetry of the Mellin
amplitude M(γ12, γ13) implies that

ωp2,p3(γ12, γ13)−ωp2,p3(γ12, γ14) = ∑
τ,`,m

C2
τ,`Λ

p2,p3
τ,`,m(γ13, γ14) = 0. (7.3)

Since M(γ12, γ13) cancels in (7.3), this sum rule involves only the OPE data. This family
of functionals depends on two integer parameters p2 and p3, and two continuous
parameters γ13 and γ14. The function Λp2,p3

τ,`,m(γ13, γ14) has zeros at the double twist
locations τ = 2∆ + 2n. It has single zeros when when m + n = p2 or m + n = p3, where
m > 0 and m ∈ Z, and otherwise the zeros are double zeros.

We will find it useful below to consider p2 = p3 = 0. In this case the functional has a
single zero at the leading double twist trajectory and double zero otherwise. An example
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Holographic Applications

of the functional of this type was considered in chapter 5, namely

∂x

[
ω0,0(

∆
3

,
∆
3
− x)−ω0,0(

∆
3

,
∆
3
+ x)

]
|x=0 = 0. (7.4)

This functional was found to possess interesting positivity properties, namely all opera-
tors with τ > 2∆ produce a nonnegative contribution.

We can similarly consider

ω̃p1,p2 =
2

(γ12 + p1)(γ12 + p2)
M(γ12, γ13) + OPE = 0. (7.5)

Again defining

ω̃p1,p2(γ12, γ13) ≡
(γ12 + p1)(γ12 + p2)

2
ω̃p1,p2, (7.6)

and using crossing symmetry of the Mellin amplitude we can get sum rules in terms of
the OPE data only

ω̃p1,p2(γ12, γ13)− ω̃p1,p2(γ12, γ14) = 0. (7.7)

A new feature here compared to (7.3) is that by setting p1 = p2 = p we are probing the
sub-leading Polyakov condition. In this case the functional has zeros at the position of
double twist operators τ = 2∆ + 2n except at n + m = p, where m > 0 and m ∈ Z. Next
we consider a few examples of applications of these functionals.

7.2 λφ4 in AdS at one loop

Let us consider a scalar field in AdS of dimension ∆ and introduce a quartic interaction

δSE =
λ

4!

∫
ddx
√

gφ4. (7.8)

At tree-level this interaction leads to anomalous dimension of spin zero double twist
operators [69]

γ
(1)
n,`=0 = λ

2−d−1π−d/2Γ
(

d
2 + n

)
Γ(∆ + n)Γ

(
∆− d

2 + n + 1
2

)
Γ
(

2∆− d
2 + n

)
Γ
(

d
2

)
Γ(n + 1)Γ

(
∆ + n + 1

2

)
Γ
(

∆− d
2 + n + 1

)
Γ(2∆− d + n + 1)

. (7.9)
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7.2. λφ4 in AdS at one loop

Figure 7.1. The functional Λτ,`,m given in (7.10), and its contribution to the sum rule (7.11). The
red dots signify double zeros of the functional, Λτ,`,m, and the blue dots signify single zeros
of the functional. At subleading order, the sum rule (7.11) receives two types of contributions.
A contribution at ` = 0 and n = 0, 1, 2, . . . coming from contact diagrams in AdS. And a
contribution from the leading tracjectory τ = 2∆ and ` = 2, 4, 6, . . . coming from the 1-loop
bubble diagrams in AdS.

We next consider the action of the functional (7.3) with p2 = p3 = 0 which gives 1

Λτ,`,m = 8
γ14(γ13 + γ14 − ∆)(τ + 2m− γ13 − ∆)Qτ,d

`,m(−2γ13)

(τ + 2m− 2γ13)(τ + 2m + 2γ14 − 2∆)(τ + 2m− 2∆)(τ + 2m− 2γ13 − 2γ14)

−8
γ13(γ13 + γ14 − ∆)(τ + 2m− γ14 − ∆)Qτ,d

`,m(−2γ14)

(τ + 2m− 2γ14)(τ + 2m + 2γ13 − 2∆)(τ + 2m− 2∆)(τ + 2m− 2γ13 − 2γ14)
.

(7.10)

Expanding to the leading order in λ, we find

∞

∑
m,n=0

1
2

C2
n,`=0(γ

(1)
n,`=0)

2∂2
τΛτ=2∆+2n,`=0,m +

∞

∑̀
=2

even

C2
n=0,`γ

(2)
0,` ∂τΛτ=2∆,`,m=0 = 0, (7.11)

where γ
(2)
0,` is the O(λ2) anomalous dimension of the leading double twist trajectory

operators. The situation is depicted on fig. 7.1.

We then plug the formula (7.10) into (7.11) and note that the sum rule factorizes. In
other words, it takes the form f (γ13) = f (γ14) for arbitrary γ13 and γ14. The solution to

1From now on, we do not write the superscripts p2 = p3 = 0 and the arguments γ13, γ14 of the function
Λτ,`,m to avoid cluttering.
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Holographic Applications

this of course is that f (γ13) = const. Next we project this result to the collinear Mack
polynomial of given spin ` > 2 and τ = 2∆ using (J.8). Note that the unknown constant
is projected out. In this way we get the following equation

γ
(2)
0,` = −1 + (−1)`

2

∞

∑
n=0

C2
n,`=0(γ

(1)
n,`=0)

2In,` , ` > 2, (7.12)

In,` =
∞

∑
m=0

24∆+`+2n−4Γ(m + n + 1)2Γ
(
∆ + n + 1

2

)
Γ
(

2∆− d
2 + 2n + 1

)
Γ(m + 1)Γ(∆ + n)3Γ

(
2∆− d

2 + m + 2n + 1
)

× Γ(∆)2Γ
(
∆ + `− 1

2

)
πΓ(∆ + `)Γ(2∆ + `− 1)

∫ +i∞

−i∞

ds
4πi

Q2∆,d
`,0 (s)

s
2 + m + n + ∆

Γ2
(
− s

2

)
Γ2
(

s + 2∆
2

)
.

It is possible to compute In,` precisely using the results of [55] as we explain in the next
section, see equations (7.18)-(7.19). More precisely we get that

In,` = −
1

C2
0,`

(δhP|pert + δhP|nonpert)

(∆ + n− τχ

2 )
2

|τχ=2∆+2n = − 1
2C2

χ

γ
τχ,exch
`

(∆ + n− τχ

2 )
2
|τχ=2∆+2n, (7.13)

where δhP|pert is given by (2.36) and δhP|nonpert by (2.37) in [55] upon substituting hi =
∆
2 ,

hO =
τχ

2 and h̄ = ∆ + J. By γ
τχ,exch
` we denote the anomalous dimension induced by

the tree level exchange of a scalar field χ in AdS, analyzed in the next section. The
constant Cχ is the coefficient of the three point function 〈φφχ〉 and it is proportional
to the corresponding bulk cubic coupling. Eqs (7.12) and (7.13) compute the 1-loop
anomalous dimension in λφ4 theory, in terms of an infinite sum of tree-level anomalous
dimensions in gφ2χ theory.2

We checked numerically that the formulas above agree with the conformal data from [70],
who computed the 1-loop diagrams in AdS4, see (5.16) there. They computed double
trace anomalous dimensions for the leading twist n = 0 trajectory and spin J, for two
values of external ∆ = 1, 2:

γ
(2)
0,` = −

[
4

2`+ 1
ψ(1)(`+ 1) +

2
`(`+ 1)

]
γ2, ` > 2, ∆ = 1,

γ
(2)
0,` = − 6

`(`+ 1)(`+ 2)(`+ 3)
γ2, ` > 2, ∆ = 2, (7.14)

where γ is the tree level anomalous dimension γ ≡ γ
(1)
n,J=0 = 1

8π2 , which turns out to be
independent of n for ∆ = 1, 2 and d = 3.

2This is reminiscent of the identity [G∆(X, Y)]2 = ∑∞
n=0 an(∆)G2∆+2n(X, Y) that expresses the square of

the AdS bulk-to-bulk scalar propagator G∆(X, Y) as a sum of propagators with double-trace dimensions [69].
This identity can be used to write the 1-loop diagrams of λφ4 theory in AdS in terms of tree level exchange
diagrams, which is what formulas (7.12) and (7.13) achieve.
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7.3. Tree-level scalar exchange in AdS

It should be possible to determine one-loop anomalous dimensions of higher twist
operators γ

(2)
k,` using the functional (7.3) with p2 + p3 > 0 but we do not pursue this here.

7.3 Tree-level scalar exchange in AdS

Consider the interaction gφ2χ in AdS, where φ is a scalar with scaling dimension ∆ and
χ is a scalar field with twist τχ. At tree level, the sum rule is:

C2
χ

∞

∑
m=0

Λτχ,0,m +
∞

∑̀
=2

even

C2
n=0,`γ

τχ,exch
` ∂τΛτ=2∆,`,m=0 = 0 (7.15)

where the functional Λτ,`,m is defined in (7.10). The first term above is the single
trace exchange of χ, the second term is the double trace contribution from the leading
trajectory n = 0, and γ

τχ,exch
` are the double-trace anomalous dimensions with n = 0,

arising from exchange of a bulk field χ. The second term above can be written explicitly
as:

∂τΛτ=2∆,`,m=0 = −2−1−`Γ(2∆ + 2`)Γ(2∆ + 2`− 1)
Γ(∆ + `)4Γ(2∆ + `− 1)

(
Q2∆,d

`,0 (−2γ13)−Q2∆,d
`,0 (−2γ14)

)
(7.16)

The equation above depends on γ13 only through Q2∆,d
`,0 (−2γ13). Thus, we can extract

γ
τχ,exch
` by integrating (7.15) against

∫ ds
4πi Γ

2(− s
2 )Γ

2( s+τ
2 )Q2∆,d

`,0 (s) with s = −2γ13, and
using orthogonality of the Mack polynomials. This gives:

γ
τχ,exch
` =

−C2
χ Γ2(∆)Γ(∆ + `− 1

2 )√
π22−`−2∆Γ(∆ + `)Γ(2∆ + `− 1)

(7.17)

×
∫ i∞

−i∞

ds
4πi

Γ2
(
− s

2

)
Γ2
(

s + 2∆
2

)
Q2∆,d

`,0 (s)
∞

∑
m=0

Λτχ,0,m

where ` > 2. This equation computes the n = 0 double trace anomalous dimension
arising from a tree level exchange of a scalar χ. Plugging Eq. (7.10) inside (7.17) gives:

γ
τχ,exch
` =

C2
χ2`+2∆−2Γ2(∆)Γ(∆ + `− 1

2 )

π
5
2 Γ(∆ + `)Γ(2∆ + `− 1)

Γ(τχ) sin2(π(∆− τχ

2 ))

Γ4(
τχ

2 )

∞

∑
m=0

Γ2(
2m−2∆+τχ+2

2 )

Γ(m + 1)(τχ − d
2 + 1)m

×(−1)
∫ i∞

−i∞

ds
4πi

Q2∆,d
`,0 Γ2

(
− s

2

)
Γ2
(

s + 2∆
2

)(
1

s + 2m + τχ
+

1
−s + 2m− 2∆ + τχ

)
(7.18)

In principle, this computation can be generalized to exchanges of operators with spin
J > 0. The main difference is that the associated tree-level Mellin amplitude grows like
γJ−1

12 in the Regge limit. This means that we need to take into account the contribution
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from the arcs at infinity in (6.1) or choose a function F decaying faster than 1/γJ+1
12 at

infinity.

Note that the RHS of (7.17) has double zeros at τχ = 2∆ + 2n, due to the factor
sin2(π(∆ − τχ

2 )). We now take the limit τχ → 2∆ + 2n of Eq. (7.18), and notice that
we get:

− 1
2C2

χ

γ
τχ,exch
`

(∆ + n− τχ

2 )
2

∣∣∣∣
τχ→2∆+2n

= In,` (7.19)

where In,` is given in (7.12). In other words, the coefficients of the double zeros are
proportional to In,`. We used this result in equation (7.13).

We could also study φ3 theory at 1-loop level. Notice that this involves Witten diagrams,
like the box diagram in AdS, that are not present in φ4 theory. Using methods similar to
the ones in section 7.2, one should be able to derive formulas for the one-loop anomalous
dimensions of the leading twist operators γ

(2)
0,` .

7.4 (∂φ)4 in AdS

Let us next consider a weakly coupled theory in AdS with the following low energy
action

SE =
∫

dd+1x
√

g
[

1
2
(∂µφ)2 + λ(∂µφ∂µφ)2 + ...

]
, (7.20)

where λ is a small parameter and ... stands for terms that are higher order in λ.

We can study this theory with the functional (7.4) which was also considered in [63]. It
takes the following form

∂x

[
ω0,0(

∆
3

,
∆
3
− x)−ω0,0(

∆
3

,
∆
3
+ x)

]
|x=0 = ∑

τ,`,m
C2

τ,`ατ,`,m = 0, (7.21)

ατ,`,m = − 16∆
3(τ − 2∆

3 + 2m)(τ − 4∆
3 + 2m)

(
(τ + 2m− ∆)Qτ,d

`,m(γ13 = ∆
3 )

(τ − 2∆
3 + 2m)(τ − 4∆

3 + 2m)
− ∆

3

∂γ13Qτ,d
`,m(γ13 = ∆

3 )

τ + 2m− 2∆

)
.

At tree level, the contact diagram contributes only to the OPE data of the double twist
operators with spin ` = 0 and ` = 2. Since the functional (7.21) has double zeros at the
position of double twist operators for ` = 0, the only contribution at order λ comes from
` = 2 and τ = 2∆ (i.e n = 0). Operators with n > 1 contribute at order O(λ2). The sum
rule at order O(λ) therefore takes the following form

2∆(∆ + 1)(2∆ + 1)Γ(2∆ + 4)
3Γ(∆ + 2)4 C2

n=0,`=2γ
(1)
n=0,`=2 + ∑

τ>2∆,`,m
C2

τ,`ατ,`,m
∣∣
λ1 = 0. (7.22)
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Non-negativity of the functional ατ>2∆,`,m then implies non-positivity of the anomalous
dimension

γ
(1)
n=0,`=2 6 0 (7.23)

This matches the previously derived causality constraint from [28, 71]. The argument
above only applies to d−2

2 < ∆ < 3(d−2)
4 , where our functional converges.

Let us now briefly discuss a possible mechanism how (7.22) can be satisfied. In order for
it to work, there must be a cancelation between the tree level result∼ γ

(1)
n=0,`=2 and heavy

operators τ > 2∆. We want to estimate the contribution of the heavy operators into
the sum rule. At large energies the theory becomes non-perturbative, we can estimate
this scale by looking at the anomalous dimensions γ

(1)
n,`=2 at large n and demanding that

γ
(1)
n,` ∼ 1. Using dimensional analysis we can immediately write3

γ
(1)
n,`=0,2 ∼ λ(energy)d+1 ∼ λnd+1. (7.24)

Therefore, the value of n above which non-perturbative effects become important is:

n∗ ∼ λ
−1

d+1 → τ∗ ∼ 2n∗ ∼ λ
−1

d+1 (7.25)

We can estimate the expected contribution to the sum rule at large τ and fixed ` as

∑
τ>2∆,m

C2
τ,`ατ,`,m|λ1 ∼

∫ ∞

τ∗

dτ

τd+2 ∼
∫ ∞

λ
−1

d+1

dτ

τd+2 ∼
1

τd+1

∣∣∣∣∞
λ
−1

d+1

∼ λ. (7.26)

This estimate is therefore consistent with the structure of the sum rule (7.22). In the
estimate above we assumed that the universal OPE asymptotic derived in [45] for fixed
spin OPE data does not change in the presence of sin2 π(τ−2∆)

2 .

7.5 UV Complete Holographic Theories

More generally, we can consider a theory with a weakly coupled gravity dual. As in the
previous section we can compute the tree-level Mellin amplitude and we will find that

lim
γ12→∞

Mtree(γ12, γ13) = γ2
12 fIR(γ13)(1 + O(γ−1

12 )) ∼ O
(

1
cT

)
, (7.27)

where cT is the central charge of the CFT and it is inversely proportional to the AdS
gravitational coupling. In the formula above fIR(γ13) receives contributions from the
exchanges by spin two particles, e.g. graviton exchange, as well as tree-level higher
derivative interactions (∂µφ∂µφ)2 considered in the previous section, as well as from

3The coupling constant has mass dimension [λ] = −d− 1, and γn,` is dimensionless.
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φ2φ;µνσφ;µνσ, see [54], which together contribute as fhd(γ13) = c1 + c2γ13. On the other
hand, spin zero and spin one particle exchanges will not contribute to (7.27).

Let us also present for completeness the result for the graviton exchange, see formula
(164) in [56],

fgrav(γ13) = C2
Tµν

(d− 1)dΓ(d + 2) 3F2

(
d
2 − ∆, d

2 − ∆, d
2 + γ13 − ∆− 1; d

2 + 1, d
2 + γ13 − ∆; 1

)
32Γ

(
d
2 + 1

)4
Γ
(
− d

2 + ∆ + 1
)2

(d− 2∆ + 2γ13 − 2)
.

(7.28)

If we now consider a function

F(γ12, γ13) =
1

γ3
12

(
1 + O(γ−1

12 )
)

(7.29)

in the functional (6.1) we will find∮
C∞

dγ12

2πi
Mtree(γ12, γ13)F(γ12, γ13) = fIR(γ13). (7.30)

On the other hand, by closing the contour on the singularities of Mtree and F(γ12, γ13)

we will get the type of sum rules that we analyzed in this thesis, namely

C2
Tµν

∞

∑
m=0

ωd,2,m
F +

nmax

∑
n=0

∑
`,m

C2
τ(n,`),` ω

τ(n,`),`,m
F = fIR(γ13), (7.31)

where the second term in the LHS of (7.31) represents the contribution of the double
trace operators. For simple choices of meromorphic F that we consider here only a finite
number of double trace families contribute at leading order in 1

cT
. This is signified by

nmax in the sum above.

Consider now a UV complete theory which at low energies is given by Mtree(γ12, γ13).
We can apply to this theory a functional ωF to get a sum rule

ωF = ∑
τ,`,m

C2
τ,`ω

τ,`,m
F = 0. (7.32)

Imagine we now want to analyze this sum rule to leading order in 1
cT

. The contribution
of Mtree to the sum rule (7.32) can be conveniently computed using (7.31). Of course, we
can alternatively sum over the relevant single and double trace operator OPE data that
contributes at order in 1

cT
in (7.32) however it is much simpler to use (7.31) instead. In
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this way we get that (7.32) becomes

fIR(γ13) + ∑′

τ,`,m
C2

τ,Jω
τ,J,m
F | 1

cT
= 0, (7.33)

where by ∑′ we denoted the contribution of all operators that are perturbatively
suppressed and are responsible for the fact that the sum rule is satisfied in the non-
perturbative theory. We can think of these operators as the UV completion of the theory.
For example, in the theory of a scalar minimally coupled to gravity fIR(γ13) = fgrav(γ13).
The argument above can be repeated for more general F(γ12, γ13) ∼ 1

γ2k+1
12

. This would

lead to similar sum rules which are sensitive to the 1
ck

T
terms in the large cT expansion.

An interesting situation is when each term in ∑′ is non-negative. We discussed some
examples of such functionals in the present thesis, see e.g. section 7.4. The sum rule
(7.33) then is an interesting prediction about the UV completion of a given theory. It
would be very interesting to understand a detailed mechanism how such sum rules
are satisfied in the UV completion of gravitational theories and if it imposes any new
nontrivial constraint on the consistent low energy effective theories.
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8 Minimal Models

8.1 Introduction

In this chapter, we compute Mellin amplitudes in minimal models.1 Minimal models
were discovered in [1] and formulas for correlation functions were found in [72] and [73].
These theories provide a context where we can explicitly compute Mellin amplitudes in
interacting non-perturbative CFT’s. We will see that in minimal models any correlator
of scalar Virasoro primaries has a well defined Mellin amplitude. We will also check in
several examples that Mellin amplitudes only have the singularities (2.1) dictated by the
OPE.

This chapter is structured as follows. In section 8.2, we briefly review the Coulomb
gas formalism of minimal models. The Coulomb gas technique is a way to determine
correlation functions that is very suitable for computing the associated Mellin ampli-
tudes. In section 8.3, we compute the Mellin amplitude of 〈Φ1,2OΦ1,2O〉, where Φ1,2 is
a second-order degenerate Virasoro primary and O is any Virasoro primary. This is a
simple example of a Mellin amplitude that serves as warmup for section 8.4, where we
compute the Mellin amplitude of any correlation function of scalar Virasoro primaries.
In section 8.5, we consider the Mellin amplitude associated to 〈Φ1,3OΦ1,3O〉 and check
that it is a meromorphic function with poles at the locations given by the OPE. This is
a non-trivial check that Mellin amplitudes only have the OPE poles, since the Mellin
amplitude of 〈Φ1,3OΦ1,3O〉 is given by 5 Mellin-Barnes integrals in our setup, so its
pole structure is not apparent. In section 8.6, we compute the bulk point limit of any
correlator of Virasoro primaries in minimal models. It agrees with the expectations
about the bulk point limit coming from [23].

Upon completion of our work, we learned about the paper [74], whose results overlap
with those of this section. To be precise, the idea of using Symanzik’s formula in

1By minimal models, we mean the 2d CFT’s with finite number of Virasoro primaries at c < 1 and with
diagonal partition function.
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conjunction with the Coulomb gas formalism is already present in that paper. It also
contains the computation of the Mellin amplitudes of 〈Φ1,2OΦ1,2O〉 and 〈Φ1,3OΦ1,3O〉
and an analysis of the respective pole structure (albeit with a different method). So, our
sections 8.3 and 8.5 mostly reproduce results already contained in [74]. By contrast, the
other results we present in this chapter are new, to the best of our knowledge.2

8.2 The Coulomb gas formalism of minimal models

In this section, we review the Coulomb gas formalism of minimal models, following [76].
Our goal is just to state the formulas we will need, in order to compute Mellin amplitudes.
For a detailed review of this technique, see [72, 73, 76, 77].

The Coulomb gas formalism provides a representation of minimal models in terms of
the theory of a deformed scalar field. The idea is to associate Virasoro primaries in
minimal models with vertex operators in the deformed scalar field theory and thus
compute correlation functions in minimal models using the correlation functions of
vertex operators in the scalar theory.

To begin with, let us remind ourselves of basic facts about the theory of a massless two
dimensional scalar field φ. The action is

S =
1

4π

∫
d2x∂φ∂̄φ (8.1)

where we used complex coordinates ∂ = ∂z and ∂̄ = ∂z̄. The two point function is given
by

〈φ(x)φ(x′)〉 = −2 log |x− x′|2 . (8.2)

Furthermore,

T(z) ≡ Tzz(z) = −
1
4

: ∂φ∂φ :, (8.3)

from which it follows that 〈T(z)T(z′)〉 = 1/2
(z−z′)4 . Thus, the theory has central charge

c = 1. For each real number α we can define a vertex operator Vα ≡: eiαφ(x) :. From the
OPE of Vα with T(z), we conclude that Vα is a scalar Virasoro primary, of dimension 2α2.
Correlation functions of vertex operators are given by

〈Vα1(x1)...Vαn(xn)〉 = ∏
i<j
|xi − xj|4αiαj , (8.4)

2In [75] Mellin amplitudes in minimal models are also studied, but from a different point of view. In
particular there it is proposed to define a Mellin amplitude as a transform of a chiral block, whereas we
define Mellin amplitudes as transforms of the full correlation function.
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if ∑n
i=1 αi = 0, otherwise the correlation function vanishes.

Now imagine adding to the theory a background charge−2α0, where α0 is a real number
that we can pick. More precisely, correlations functions in the deformed theory are
defined by

〈Vα1(x1)...Vαn(xn)〉−2α0 = lim
xn+1→∞

|xn+1|16α2
0〈Vα1(x1)...Vαn(xn)V−2α0(xn+1)〉 (8.5)

= ∏
i<j
|xi − xj|4αiαj ,

if ∑n
i=1 αi = 2α0, otherwise the correlation function vanishes. Vα is still a scalar Virasoro

primary, but now with conformal dimension

∆(α) = 2α2 − 4α0α. (8.6)

This means that the stress tensor also changed. In fact, the stress energy tensor is

T(z) = −1
4

: ∂φ∂φ : +iα0∂2φ. (8.7)

As explained in [76], this follows from changing the boundary conditions we impose on

φ in the derivation of Noether’s theorem. We now have that 〈T(z)T(z′)〉 = 1−24α2
0

2(z−z′)4 , so
the deformed theory has central charge

c = 1− 24α2
0. (8.8)

Formula (8.5) is still too simple to represent correlation functions in minimal models. So,
besides introducing a background charge, we still need to modify the free field theory
further. We notice that equation (8.6) allows for the existence of vertex operators of
dimension 2, which we denote by V+ and V−. The corresponding α’s obey

α+ + α− = 2α0 , α+α− = −1. (8.9)

We modify action (8.1) by introducing interacting terms

S =
1

4π

∫
d2x∂φ∂̄φ−

∫
d2x (V−(x) + V+(x)) . (8.10)

We will use theory (8.10) defined with a background charge −2α0 to represent minimal
models. In the theory (8.10), correlation functions of vertex operators are given by

〈Vα1(x1)...Vαn(xn)〉 =
1

l!k!

l

∏
j=1

∫
d2wj

k

∏
i=1

d2yi (8.11)
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×〈Vα1(x1)...Vαn(xn)V−(y1)...V−(yl)V+(w1)...V+(wk)〉−2α0 ,

if we can find non-negative integers l and k such that ∑n
i=1 αi = 2α0 − lα− − kα+. Oth-

erwise, the correlation function is equal to 0. In the second line of (8.11) we can use
(8.5).

Given a minimal model at central charge c, we associate to it a scalar field theory with
background charge according to (8.8) and to the Virasoro primaries in that theory, we
associate vertex operators according to (8.6), by matching the respective conformal
dimensions. Since equation (8.6) is quadratic in α, to the same Virasoro primary of
dimension ∆, we can associate two vertex operators Vα and V2α0−α. In minimal models,
both the central charge and the dimensions of operators are discretized. For the minimal
model M(p, q) (with p > q), we have

α2
+ =

q
p

. (8.12)

This fixes the central charge according to (8.8) and (8.9). Minimal models are composed
of Virasoro primaries Φm,n that are degenerate, in the sense that they have (null) de-
scendants that are themselves Virasoro primaries. The Virasoro primaries Φm,n have
conformal dimension given by (8.6), with

αm,n =
1−m

2
α− +

1− n
2

α+, (8.13)

where 1 6 m 6 p− 1 and 1 6 n 6 q− 1. Correlation functions of Virasoro primaries in
a minimal model can then be computed using the vertex operator representation

Φm,n(x) =
1

Nm,n
Vαm,n(x) = Nm,nV2α0−αm,n(x) , (8.14)

where Nm,n is a normalization constant given in equation (A.33) in appendix (A.4).
Notice that the representations in terms of Vαm,n and V2α0−αm,n are equivalent but in a
given correlation function one choice will typically lead to simpler computations. For
example, the two-point function is trivial to compute as follows

〈Φm,n(x)Φm,n(y)〉 = 〈Vαm,n(x)V2α0−αm,n(y)〉 =
1

|x− y|2∆(αm,n)
. (8.15)

On the other hand, the non-trivial computation (see [73])

〈Φm,n(x)Φm,n(y)〉 =
1

N2
m,n
〈Vαm,n(x)Vαm,n(y)〉 =

1
|x− y|2∆(αm,n)

, (8.16)

determines the normalization constant Nm,n.
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8.3 Example: the 〈Φ1,2OΦ1,2O〉 correlator

We consider the four point function 〈Φ1,2OΦ1,2O〉, where Φ1,2 is a second order degen-
erate Virasoro primary, O is an arbitrary Virasoro primary Φm,n and we consider such a
correlator for general central charge.3 The point of considering such a correlator is that
it has a simple Mellin amplitude. We will see that its pole structure is dictated by the
operator product expansion.

We associate each Virasoro primary to vertex operators in the following way:

Φ1,2 →
1

N1,2
Vα1,2 , O→ 1

Nm,n
Vα, Φ1,2 →

1
N1,2

Vα1,2 , O→ Nm,nV2α0−α, (8.17)

where α = αm,n. With these choices, we only need to insert one positive screening charge
to compute the correlator

〈Φ1,2OΦ1,2O〉 = 1
N2

1,2

4

∏
i<j
|xi − xj|4αiαj

∫
d2w

4

∏
k=1
|xi − w|4αiα+ . (8.18)

We would like to compute the Mellin amplitude of the correlator (8.18). In our work, the
following formula due to Symanzik (see [78]) will prove very useful:

1

π
d
2

∫
ddu

n

∏
i=1

Γ(yi)

|xi − u|2yi
= ∏

i<j

∫
[dγij]Γ(γij)|xi − xj|−2γij , (8.19)

where the Mellin integral is constrained to ∑j 6=i γij = yi and the formula is only valid
if ∑i yi = d4. Since 4(∑4

i=1 αi)α+ = 4α−α+ = −4, then we can apply (8.19) in (8.18).

3For the Yang-Lee and the Ising model, the Mellin amplitude of 〈Φ1,2Φ1,2Φ1,2Φ1,2〉 was computed
in [27].

4Formula (8.19) was derived in [78] under the additional assumptions 0 < Re(yi) <
d
2 . The condition

Re(yi) <
d
2 ensures that the integral (8.19) converges when u→ yi. The condition Re(yi) > 0 enables us to

use the formula

Γ(yi)

|xi − u|2yi
=
∫ ∞

0

dσi
σi

σ
yi
i e−σi |xi−u|2 (8.20)

which is used in deducing (8.19). If Re(yi) > 0, then the rhs of (8.20) converges. The assumptions
0 < Re(yi) <

d
2 ensure that on the rhs of (8.19) the contour of the Mellin variables γij can be straight and

parallel to the imaginary axis. In this chapter, we will use formula (8.19) in contexts where the assumptions
0 < Re(yi) <

d
2 are not met. In that case, we can think of the rhs of (8.19) as an analytic continuation in

yi of its lhs. Indeed, consider the integral on the rhs of (8.19) and suppose we start shifting continuously
the positions of the poles. At some point, it is no longer possible to use a straight contour and so the
contour should bend in order to account for this. Notice that even with a bent contour the integral the rhs
is perfectly well defined, since it has the same asymptotics when γij → i∞ as before.
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Further doing a change of variables, we get

〈Φ1,2(x1)O(x2)Φ1,2(x3)O(x4)〉 = C0 ∏
i<j

∫
[dγij]Γ(γij + 2αiαj)|xi − xj|−2γij . (8.21)

The Mellin constraints are ∑j 6=i γij = 2α2
i − 4αiα0 = ∆(αi), which indeed is the dimension

of the operator inserted at the position xi. We associate an αi to each operator according
to (8.17). C0 is a constant given by

C0 =
π

N2
1,2 ∏n

i=1 Γ(−2αiα+)
=

Γ
(
2− 2α2

+

)
Γ2
(
1− α2

+

)
Γ
(
2α2

+ − 1
)

Γ(−2αα+)Γ
(
2− 2α2

+ + 2αα+

) .

(8.22)

From (8.21) we can read off the Mellin amplitude

M̂(γ12, γ14) = C0Γ
(

γ13 −
2∆(α1,2)− ∆(α1,1)

2

)
Γ
(

γ13 −
2∆(α1,2)− ∆(α1,3)

2

)
(8.23)

Γ
(

γ12 −
∆(α1,2) + ∆(α)− ∆(α− 1

2 α+)

2

)
Γ
(

γ12 −
∆(α1,2) + ∆(α)− ∆(α + 1

2 α+)

2

)
Γ
(

γ14 −
∆(α1,2) + ∆(α)− ∆(α− 1

2 α+)

2

)
Γ
(

γ14 −
∆(α1,2) + ∆(α)− ∆(α + 1

2 α+)

2

)
,

where γ12 + γ13 + γ14 = ∆(α1,2). We conclude that the Mellin amplitude is a meromor-
phic function. The position of its simple poles is dictated by the OPE as in (2.1). To see
that, recall that the OPE of an arbitrary Virasoro primary Φm,n with Φ1,2 only contains 2
Virasoro primaries,

Φ1,2 ×Φm,n = Φm,n+1 + Φm,n−1 . (8.24)

Each Γ–function in (8.23) encodes the poles associated to each Virasoro primary ex-
changed in a given channel. In appendix A.2, we compare the Mellin representation of
this four-point function with its expansion in Virasoro conformal blocks. In particular,
we check that the overall normalization is correct by matching the contribution of the
identity block.

The correlator 〈φ2,1Oφ2,1O〉 can be similarly analysed. In the Coulomb gas formalism,
we now insert a negative screening charge instead of a positive one. An expression
analogous to (8.21) holds for the correlator, with

C0 =
Γ(2− 2

α2
+
)

Γ2(1− 1
α2
+
)Γ(−1 + 2

α2
+
)Γ(2− 2

α2
+
− 2 α

α+
)Γ( 2α

α+
)

. (8.25)
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The correlator 〈Φ1,2OΦ1,2O〉 obeys a BPZ differential equation, in virtue of the fact that
Φ1,2 is a degenerate operator. This implies that the Mellin amplitude (8.23) obeys a
recursion relation. We confirm this in appendix A.1.

Consider now the more general correlator 〈Φ1,2O2O3O4〉, where O2, O3 and O4 are
arbitrary Virasoro scalar primaries. Given expression (8.23), it is simple to guess a Mellin
amplitude for this correlator:

M̂(γ12, γ14) = C0× (8.26)

×
4

∏
j=2

Γ
(

γ1j −
∆(α1,2) + ∆(αj)− ∆(αj − 1

2 α+)

2

)
Γ
(

γ1j −
∆(α1,2) + ∆(αj)− ∆(αj +

1
2 α+)

2

)

where γ13 + γ12 + γ14 = ∆(α1,2) and α2, α3 and α4 can be computed from the conformal
dimensions of O2, O3 and O4. We confirm this guess in appendix (A.1), where we check
that the correlator 〈Φ1,2O2O3O4〉 defined with the Mellin amplitude (8.26) obeys the
appropriate BPZ differential equation. A formula for C0 can be found in appendix (A.3),
see formula (A.30).

8.4 Mellin amplitude of any correlation function

In this section, we write the Mellin amplitude of a general n point correlator in minimal
models. Our procedure to do so will be a generalisation of the computation in section
8.3. The key ingredients are the Coulomb gas formalism and Symanzik formula (8.19).

Consider then a general n point correlator 〈Φ1(x1)...Φn(xn)〉. To each operator Φi,
we associate a vertex operator: Φi → 1

Ni
Vαi . We will assume that all operators are

degenerate, i.e. each αi is of the form (8.13) as it is the case in minimal models. 5 In the
Coulomb gas formalism suppose we need to insert p1 positive screening charges and q1

negative screening charges to compute 〈Vα1(x1)...Vαn(xn)〉. Then, this correlator has a
Mellin representation, with Mellin amplitude given by

M̂(γij) = C0

∫ z−1

∏
r=1

[
n+r

∏
kr<lr

[
dξr

kr ,lr

]
Γ(ξr

kr ,lr)
n+r−1

∏
sr=1

1
Γ(−2αsr αn+r + ∑z−1

v=r ξv
sr ,n+r)

]
(8.27)

×
n

∏
i<j

Γ(γij −
z−1

∑
r=1

ξr
ij + 2αiαj),

where αn+1 = ... = αn+p1 = α+ and αn+p1+1 = ... = αn+p1+q1 = α− and z = p1 + q1 is

5Here, we have used the shorter notation Φi ≡ Φmi ,ni and Ni ≡ Nmi ,ni .
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the total number of screening charges.6 The measure is constrained by

n+r

∑
j=1
j 6=i

ξr
ij = −2αiαn+r+1 +

z−1

∑
s=r+1

ξs
i,n+r+1 , i = 1, 2, . . . , n + r, (8.28)

for r = 1, ..., z− 1. The constant C0 can be determined from the normalisations,

C0 =
πz

∏n
i=1 Ni ∏n+z−1

j=1 Γ(−2αjαn+z)
. (8.29)

Formula (8.27) can be deduced by iteratively applying (8.19). We show how to do this
for the case in which we insert two screening charges in appendix A.5. The complexity
of (8.27) grows very quickly with the total number z of screening charges.7 Nevertheless,
this explicit Mellin-Barnes representation is useful to derive several general properties
of the Mellin amplitude.

Formula (8.27) is correct in every CFT for which the Coulomb gas technique of computing
correlation functions applies. This is the case in diagonal minimal models (whether
they are unitary or not). There are other CFT’s that can be viewed as limits of minimal
models, like generalised minimal models and Liouville theory (see [79] and [80]).8 So,
perhaps formula (8.27) can be useful in that context. See also [81] and [82] for attempts
to generalise the Coulomb gas formalism to higher dimensions. Identities of Dotsenko-
Fateev integrals were used in [83] and [84] to derive properties of 3d supersymmetric
theories, so maybe our formulas can be useful in that context.

8.5 Analyticity of Mellin amplitudes

We conjecture that the Mellin amplitudes in 2D minimal models are meromorphic func-
tions with only poles at the locations predicted by the OPE as in (2.1). Meromorphicity
follows from the Mellin-Barnes representation (8.27). However, we were not able to
show in that the only singularities are the ones predicted by the OPE. In this section, we

6We assumed p > 1.
7Namely, it involves

z−1

∑
r=1

(n + r)(n + r− 3)
2

= (z− 1)
3n(n + z− 3) + z(z− 5)

6
(8.30)

integrals of an integrand with

z−1

∑
r=1

[
(n + r)(n + r− 1)

2
+ (n + r− 1)

]
+

n(n− 1)
2

=
z3 + 3nz(n + z)− 6n− 7z + 6

6
(8.31)

Γ-functions.
8We thank Sylvain Ribault for discussions on this.
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check this statement for a class of correlators in minimal models.

We consider the correlation function 〈Φ1,3OΦ1,3O〉, where O is an arbitrary Virasoro
primary. This correlation function can be computed in the Coulomb gas formalism by
the prescription

Φ1,3 →
1

N1,3
Vα1,3 , O→ 1

Nm,n
Vα, Φ1,3 →

1
N1,3

Vα1,3 , O→ Nm,nV2α0−α, (8.32)

with α = αm,n and inserting two positive screening charges.

Its Mellin amplitude can be obtained fom the general formulas (8.27) and (8.29). We can
write the Mellin amplitude in the form

M̂(γ12, γ14) = C0

∫
[dξ12]

∫
[dξ15]

∫
[dξ24]

∫
[dξ34]

∫
[dξ35]Γ(ξ12)Γ(ξ15)

(8.33)

Γ(−2αα+ + γ12 − ξ12)Γ(ξ24)Γ(ξ15 − ξ24 − ξ34 + 1)Γ
(
−2α2

+ + 2αα+ + γ12 − ξ34 + 2
)

Γ(ξ34)Γ(−2αα+ − ξ12 − ξ15 + ξ34 − 1)Γ(−2αα+ + γ14 − ξ15 + ξ24 + ξ34 − 1)

Γ
(
−2α2

+ + 2αα+ + γ14 + ξ12 + ξ24 − ξ35 + 1
)

Γ
(
2α2

+ − ξ15 + ξ24 − ξ35 − 1
)

Γ
(
ξ12 − ξ34 − ξ35 + 2αα+ − 2α2

+ + 1
)

Γ(ξ35)Γ(−ξ12 − ξ24 + ξ35 + 1)

Γ
(
−γ12 − γ14 + ξ15 − ξ24 + ξ35 + 4α2

+ − 1
)

Γ
(
2α2

+ + ξ15
)

Γ(−4αα+ − ξ12 − ξ15 + ξ34 − 1)

Γ(−γ12 − γ14 − ξ24)

Γ
(
2α2

+ + ξ35
)

Γ
(
−4α2

+ + 4αα+ + ξ12 − ξ34 − ξ35 + 3
) .

The above formula is a complicated integral that the reader should not read carefully.
Our point is just to consider an application of formula (8.27). In the rest of this section,
we will check that (8.33) only gives rise to singularities at the locations (2.1) predicted by
the OPE.

In the OPE of Φ13 and Φα, there are three Virasoro primaries exchanged:

Φ1,3 ×Φα = Φα+α+ + Φα + Φα−α+ . (8.34)

Each Virasoro family contains many global primaries, whose twists differ by even
integers. So, we expect the Mellin amplitude to have 9 sequences of poles: 3 sequences
of poles in γ12, another 3 in γ14 and another 3 in γ13.

Let us now outline how we obtained the singularity structure of (8.33). We used the
technique introduced in [85] to compute the singularities of Mellin-Barnes integrals. The
reader interested in understanding this technique can read appendix C of that paper. In
the next sentences, we briefly describe the method. Suppose we have a multiple Mellin-
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Mellin amplitudes in minimal models

Barnes integral and we ask what are its singularities. Given just one Mellin-Barnes
integral, it diverges whenever its contour gets pinched by two poles of the integrand.

When we have multiple integrals, we must take a more global perspective. Let us
illustrate this with an example taken from [85]. Consider the integral∫ dxdy

(2πi)2 Γ(a1 + x)Γ(a2 − x)Γ(b1 + x− y)Γ(b2 − x + y)Γ(c1 + y)Γ(c2 − y). (8.35)

We might expect expect to obtain its singularities in the following manner. Suppose we
first integrate in x and later in y. For a single Melin-Barnes integral, we know how to
predict its singularities. So, we might expect to determine the singularities of a multiple
Mellin Barnes integral by applying the one dimensional technique in succession. It turns
out that if we do that we end up with a lot of fake poles.

In this example, let us list the poles that we would obtain by iteratively applying the
one dimensional technique. We can integrate first in x and later in y, or vice versa. The
set of singularities thus obtained is:

Γ{1,2}(a1 + a2), Γ{3,4}(b1 + b2), Γ{5,6}(c1 + c2), Γ{1,4,6}(a1 + b2 + c2), Γ{2,3,5}(a2 + b1 + c1)

Γ{1,2,3,4}(a1 + a2 + b1 + b2), Γ{1,2,5,6}(a1 + a2 + c1 + c2), Γ{3,4,5,6}(b1 + b2 + c1 + c2),

Γ{1,2,3,4,5,6}(a1 + a2 + b1 + b2 + c1 + c2).
(8.36)

Here, the use of the Γ function is symbolic. We just mean that the integral is singular
whenever the argument of the Γ functions above is a nonpositive integer. We use a
subscript to denote the position of the poles that gave rise to the singularity in the
original integrand. For example, Γ{1,2}(a1 + a2) came from the collision of Γ(a1 + x) and
Γ(a2 − x).

Consider the Γ functions in (8.36). We will say that the poles coming from a certain Γ
function are composite whenever the corresponding subscript contains as a subset the
subscript of another Γ function in (8.36). The poles from Γ{1,2,3,4}, Γ{1,2,5,6}, Γ{3,4,5,6} and
Γ{1,2,3,4,5,6} are composite. The rest of the poles are non composite.

All composite poles are fake. This is a very important statement that allows to generate
a fast algorithm to determine the real poles in a multiple Mellin-Barnes integral. [85]
contains some general arguments in favour of this statement, although it is not clear to
the present authors that we can conclude from them that such a statement is rigorously
proved. Sill, to the best of our knowledge the algorithm of [85] works in every example.

With this technique, we predict the Mellin amplitude to have singularities whenever
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8.6. The bulk point limit

any of the following expressions is equal to 0:

{γ12 + 2αα+ − 2α2
+ + 2, γ13 − 4α2

+ + 2, γ14 + 2αα+ − 2α2
+ + 2,

γ12 − 2α2
+ + 1, γ13 − 2α2

+ + 1, γ14 − 2α2
+ + 1,

γ12 − 2αα+, γ13 + 2α2
+, γ14 − 2αα+}, (8.37)

with γ13 = −γ12 − γ14 + 4α2
+ − 2. This precisely matches the expectations from (8.34).

In particular, the first three poles correspond to the exchange of Φα+α+ , the next three to
the exchange of Φα and the final three poles to the exchange of Φα−α+ .

8.6 The bulk point limit

Correlation functions in Lorentzian signature can have divergences due to the existence
of a point that is null separated from the points where we insert the external operators
(see [23]).

Such singularities can arise from pertubation theory in the boundary or from Landau
diagrams in the bulk. In a fully nonperturbative CFT those singularities are expected to
be absent. This was proven in d = 2 in [23].

We will show that the divergence in the bulk point limit is controlled by the limit of
large Mellin variables of the Mellin amplitude. For simplicity we will consider the case
of a four point function of equal primaries of conformal dimension ∆.

We have already shown in chapter 1 that the Mellin amplitude is polynomially bounded
at infinity. Consider the limit where γ12 = βs, γ14 = (1− β)s, where β ∈ [0, 1] and we
take s very large. Suppose that in that limit the Mellin amplitude M(γ12 = βs, γ14 =

(1− β)s) ∼ sb. Suppose also that the four point function diverges in the bulk point limit
like 1

(z−z̄)2a when z→ z̄. In the next subsection we will demonstrate the formula

a = −3
2
+ 2∆ + b. (8.38)

Even if the correlation function is regular in the bulk point limit this still constrains the
power with which the Mellin amplitude can grow. We carry out this analysis for the
case of minimal models.
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8.6.1 Relating the behaviour of the Mellin amplitude for large Mellin vari-
ables and the bulk point limit

Let us start by briefly reminding the reader about the bulk point limit with an example
taken from [23]. Consider the following configuration of four point points in d > 39, see
figure (8.1):

x1 = (−t, 0, 1,~0), x2 = (t, 1, 0,~0), x3 = (−t, 0,−1,~0), x4 = (t,−1, 0,~0). (8.39)

Figure 8.1. Example of a boundary Landau diagram.

We employ the iε prescription t = t̃− iε, where t̃ ∈ [0, 1]. When t̃ = 0 this configuration
is Euclidean, but when t̃ = 1 the point (0, 0, 0,~0) is null separated from the external
points. This signals a divergence in the correlation function.

The cross ratios u and v are given by

u =
(−(2t)2 + 2)2

16
, v =

(−(2t)2 + 2)2

16
. (8.40)

When we vary t̃ from 0 to 1 the cross ratios u and v circle around the origin in the
complex plane.

Let us see how the Mellin representation of the correlation function changes as we vary
t̃ from 0 to 1. We write

〈OOOO〉 = f (u, v)
x2∆

13 x2∆
24

, (8.41)

where

f (u, v) =
∫ dγ12

2πi

∫ dγ14

2πi
M(γ12, γ14)Γ(γ12)

2Γ(γ14)
2Γ(∆− γ12 − γ14)

2u−γ12 v−γ14

(8.42)

9The above configuration is an example of a Landau diagram. In d = 2 there are no boundary Landau
diagrams. However, there are bulk diagrams. It was shown in [23] that in d = 2 for the full nonperturbative
theory there are no singularities except for the lightcone singularities.
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→
∫ dγ12

2πi

∫ dγ14

2πi
M(γ12, γ14)Γ(γ12)

2Γ(γ14)
2Γ(∆− γ12 − γ14)

2u−γ12 v−γ14 e−2πiγ12 e−2πiγ14 .

(8.43)

Notice that the factors e−2πiγ12 e−2πiγ14 grow exponentially in certain directions at infinity
and cancel the exponential decay of the Γ functions in the prefactor.

Let us suppose that 〈OOOO〉 diverges in the bulk point limit and let us see how this
comes about from (8.43). Such a divergence can only come from the region where both
γ12 and γ14 have a very big positive imaginary part. We basically follow section (3.1)
of [4].

Let us analyse the integral (8.43) in that region. Let us write γ12 = α12 + im1 and
γ14 = α14 + im2, where m1, m2 � 1. α12 and α14 depend on the contour that we pick and
we consider them arbitrary. Let us write furthermore m1 = βs, m2 = (1− β)s, where
β ∈ [0, 1] and s � 1. We can use Stirling’s formula to approximate the Γ functions in
(8.43). Furthermore we assume that the Mellin amplitude goes like g(β)sb for large s,
where g(β) is a function that we do not know and b is a power that will control the bulk
point limit divergence. In this regime, the integral (8.43) can be written as

∫ ∞

s0

ds
s

∫ 1

0
dβg(β)s−1+2∆+b(−8i)e−iπ∆π3u−α12−isβv−α14−is(1−β) (8.44)

(1− β)−1+2α14−2is(−1+β)β−1+2α12+2isβ,

where we take s0 very large.

The integrand goes like exp
(
− is(β log(u) + (1− β) log(v) − 2(1− β) log(1− β) −

2β log(β))
)

. The integral in β is dominated by the saddle point βs =
√

u√
u+
√

v . At the

saddle point the previous exponential becomes e2is log(
√

u+
√

v). The integral can only
diverge when

√
u +
√

v = 1. This happens precisely at the bulk point limit. Indeed,
we have that log(

√
u +
√

v) ≈ − (z−z̄)2

16(1−z̄)z̄ when z → z̄ and 0 6 z 6 1, 0 6 z̄ 6 1. So,
expression (8.45) becomes∫ ∞

s0

ds
s

g(βs)s−1+2∆+b 1√
−is

(−4
√

2i)e−iπ∆π
7
2 u−α12 v−α14 (8.45)

(1− β)−1+2α14 β−1+2α12 eis (z−z̄)2

8(1−z̄)z̄

Equation (8.45) enables us to relate the rate of divergence of the correlator with the
polynomial growth of the Mellin amplitude:

M(sγij) ∼ sb =⇒ f (u, v) ∼ 1
(z− z̄)−3+4∆+2b (8.46)
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Let us consider the case in which the correlation function does not diverge in the bulk
point limit. The previous analysis gives us the bound b < 3

2 − 2∆. Furthermore it
is reasonable to assume that also the derivatives with respect to z of the correlation
function should be analytic at the bulk point. Thus, let us assume that the correlation
function is regular in z− z̄. Then b can only take the values b = 3

2 − 2∆− n
2 where n

is a positive integer. Indeed if it were not to take such values this would generate a
divergence in some derivative of the correlation function. A similar but more general
analysis in general d was recently performed in [86] with similar conclusions (which are
identical in d = 2). It would be interesting to establish analyticity of the bulk point locus
in higher d rigorously. It would be also interesting to understand further implications of
the bulk point analyticity for the high energy limit of the flat space scattering amplitudes.

8.6.2 The bulk point limit in minimal models

In minimal models we expect no divergence in the bulk point limit. As we saw in
the last section this constrains the Mellin amplitude of a four point function of equal
scalar primaries to behave like M(γ12 = βs, γ14 = (1− β)s) ∼ s

3
2−2∆− n

2 where n is a
positive integer. In this subsection we will use our general formula (8.27) to confirm this
prediction.

The general formula (8.27) drastically simplifies in the limit of large Mellin variables
γij → i∞. Let us divide (8.27) by ∏i<j Γ(γij). We can use Stirling’s approximation to get

Γ(γij −∑z−1
r=1 ξr

ij + 2αiαj)

Γ(γij)
= γ

−∑z−1
r=1 ξr

ij+2αiαj

ij

[
1 + O(γ−1

ij )
]

. (8.47)

If we consider the case where all Mellin variables are proportional to some parameter
s that is much bigger than any number in our system, then the Mellin amplitude is
proportional to

s−∑z−1
r=1 ∑n

i<j ξr
ij+2 ∑n

i<j αiαj . (8.48)

The sum in the exponent of (8.48) simplifies drastically due to the measures (8.28) and in
fact does not depend on the integration variables ξij. We do this sum in appendix (A.6)
and obtain that the Mellin amplitude grows with

s1− 1
2 ∑i ∆i , (8.49)

for a general n point function of scalar Virasoro primaries in minimal models with
conformal dimensions ∆i. For the case of a four point function of equal scalar primaries
we find s1−2∆ in agreement with what we predicted in the preceding subsection.
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9 CFT’s with slightly broken higher
spin symmetry

9.1 Introduction and summary of results

The dualities between conformal field theories and higher spin gravity theories in AdS
are one of the most intriguing topics in the AdS/CFT correspondence. Potentially, these
dualities should allow for an improved understanding of the AdS/CFT correspondence,
since both sides of the duality are simple, at least when compared to the more standard
case of N = 4 SYM and type IIB superstring theory1. Of particular interest are CFT’s
with slightly broken higher spin symmetry, that were studied most notably in the
paper by Maldacena and Zhiboedov [20], where all three point functions of single trace
operators at the planar level were computed at finite t’Hooft coupling. In our thesis, we
compute some four point functions of spinning single trace operators at the planar level
at finite t’Hooft coupling. The formulas we obtain are very simple and our formalism,
which is based on pure CFT arguments in which Mellin space plays an important role,
potentially paves the way for the computation of all spinning four point functions.

CFT’s with slightly broken higher spin symmetry are large N CFT’s where higher spin
symmetry is broken by 1/N effects. There are two such theories, the quasi-boson theory
and the quasi-fermion theory, which are defined in 3 dimensions. We will focus on the
quasi-fermion theory. This theory depends on two parameters, Ñ and λ̃ (we follow the
notation of [20]). We will study the theory at the planar level, i. e. at leading order in Ñ.
In that case the theory interpolates between the free fermion theory at λ̃ = 0 and the
critical point of the O(N) model (critical boson) at λ̃ = ∞.

Being a large N theory, the spectrum of the quasi-fermion theory organises into single
and multitrace primary operators. Let us describe the single trace operators. There
is one single trace operator for each even spin s = 0, 2, .... The scalar primary, which
we will denote by j0̃, has dimension 2 + O( 1

Ñ ) [91]. The spin 2 primary j2 is exactly

1See [87] (which builds on the works [88–90]) for recent progress, where the path integral for critical
O(N) models was written in terms of higher spin gauge fields defined in the bulk of AdS.
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conserved. A higher spin primary js of spin s > 2 has dimension s + 1 and acquires
anomalous dimensions of O( 1

Ñ ) [92], [93].

This theory is believed to be solvable in the planar limit. In [20] three point functions
of single trace operators were computed at the planar level and for finite λ̃ through
the use of slightly broken higher spin Ward identities2. In [94] four point functions of
scalar operators were computed using the Lorentzian inversion formula and Schwinger-
Dyson equations. In [95] the four point function 〈j2 j0̃ j0̃ j0̃〉 was computed using the
pseudo-conservation equations3.

We obtain a formula for 〈js j0̃ j0̃ j0̃〉 for generic spin s > 4:

〈js j0̃ j0̃ j0̃〉 =
1

Ñ
√

1 + λ̃2
〈js j0̃ j0̃ j0̃〉 f f +

λ̃

Ñ
√

1 + λ̃2
〈js j0̃ j0̃ j0̃〉cb, (9.1)

where 〈js j0̃ j0̃ j0̃〉 f f is the correlator in the free fermion theory (which is fully known) and
〈js j0̃ j0̃ j0̃〉cb is the corresponding correlator in the critical boson theory. The critical boson
theory is the IR fixed point of the theory of Ñ free real scalar fields perturbed by (φiφi)

2.
We obtain that

〈js j0̃ j0̃ j0̃〉cb = |x1 − x3|−4s−2|x2 − x3|2s−1|x2 − x4|−2s−3|x3 − x4|2s−1 (9.2)

×
s

∑
k=0

∫ ∫ dγ12dγ14

(2πi)2 M(γ12, γ14; s, k)u−γ12 v−γ14V(1; 2, 3)s−kV(1; 3, 4)k,

where V(i; j, k) is a conformal structure (see (9.6)) and u and v are the usual conformal
cross ratios. M(γ12, γ14; s, k) is equal to

M(γ12, γ14; s, k) = Γ(−k + γ14 − 1)Γ
(
−k + γ14 +

1
2

)
Γ(s− γ12 − γ14) (9.3)

×Γ
(

s− γ12 − γ14 +
3
2

)
Γ(k− s + γ12 − 1)Γ

(
k− s + γ12 +

1
2

)
p(γ12, γ14; s, k),

where p(γ12, γ14; s, k) is a polynomial in γ12 and γ14. This polynomial is fully determined
by crossing, pseudo-conservation and Regge boundedness, see equations (9.11) and
(9.12), see (9.14) and see also (9.35), (9.36) and (9.37).

We explain in section 9.2 how formula (9.1) solves the crossing and pseudo-conservation
equations and correctly accounts for the exchange of single trace operators with the
OPE coefficients derived in [20]. In section 9.3 we show that formula (9.1) is the unique
solution to the pseudo-conservation and crossing equations which is consistent with the
bound on chaos. In particular we analyse AdS contact diagrams for 〈js j0̃ j0̃ j0̃〉 and we

2This calculation was reproduced using higher spin techniques in [19], where also the parity odd
structures were given.

3Correlators in ABJ theory were computed using slightly broken higher spin symmetry in [96].
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conclude that such diagrams violate the bound on chaos, provided s > 4. In appendix
N we study the bulk point limit of 〈js j0̃ j0̃ j0̃〉. In appendix O we calculate 〈js j0̃ j0̃ j0̃〉 in
position space for spins s = 2, ..., 14. This calculation agrees with the Mellin space result.
In appendix P we recompute 〈j2 j0̃ j0̃ j0̃〉 by solving the higher spin Ward identities.

9.2 The bootstrap of 〈js j0̃j0̃j0̃〉
We will compute 〈js j0̃ j0̃ j0̃〉. Let us start by examining the Ñ and λ̃ dependence. It is
expected that the quasi-fermion theory interpolates between a theory of Ñ free fermions
at λ̃ = 0 and the critical boson theory at λ̃ = ∞.

We will work in a normalization where 〈js js〉 ∼ 1, i.e. two point functions of single
trace operators do not depend on Ñ or λ̃. We use the ∼ sign to mean that we do not
keep track of numerical factors, but we do keep track of the Ñ and λ̃ dependence. Thus,
〈js j0̃ j0̃ j0̃〉 ∼ 1

Ñ . At this order, we can only have exchanges of single trace operators or
double trace operators [j0̃, j0̃] or [js, j0̃].

Let us consider exchanges of single trace operators. The relevant three point functions
are 〈js j0̃ js′〉 and 〈js′ j0̃ j0̃〉, with s′ > 2. Note that 〈j0̃ j0̃ j0̃〉 = 0 [20]. From [20] we see that
〈js j0̃ j0̃〉 ∼ 1√

Ñ
. There are two possible structures for 〈js j0̃ js′〉, the fermion and the odd

structure. We have that 〈js j0̃ js′〉 f ermion ∼ 1√
Ñ
√

1+λ̃2
and 〈js j0̃ js′〉odd ∼ λ̃√

Ñ
√

1+λ̃2
.

Based on this we propose the following ansatz

〈js j0̃ j0̃ j0̃〉 =
1

Ñ
√

1 + λ̃2
〈js j0̃ j0̃ j0̃〉 f f +

λ̃

Ñ
√

1 + λ̃2
〈js j0̃ j0̃ j0̃〉cb, (9.4)

where 〈js j0̃ j0̃ j0̃〉 f f is the four point function in the free fermion theory, whose form can be
read in [97]. To the best of our knowledge, 〈js j0̃ j0̃ j0̃〉cb has not yet been computed and it
will be the subject of this section to do precisely that. We attached the subscript cb since
it is expected that it corresponds to a four point function in the critical boson theory.

We can write parity even and parity odd structures for the correlator 〈js j0̃ j0̃ j0̃〉. The
parity odd structures are realised in the free fermion theory. This is because j0̃ is parity
odd in the free fermion theory. The parity even structures are realised in the quasi-boson
theory. Thus, we write

〈js j0̃ j0̃ j0̃〉cb =
s

∑
k=0

fk(xij)V(1; 2, 3)s−kV(1; 3, 4)k, (9.5)
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where V(i; j, k) is a conformal structure which is given in embedding space [98] by

V(i; j, k) =
(Zi · Pj)(Pi · Pk)− (Zi · Pk)(Pi · Pj)

Pj · Pk
. (9.6)

Pi and Zi are null vectors on R3,2. Zi encodes the spinning indices. fk(xij) is a function
of the distances between the points, with appropriate weights on each of the points. We
find it advantageous to consider the Mellin representation

fk(xij) =
∫
[
dγij

2πi
]M̂(γij; s, k)x

−2γij
ij , (9.7)

∑
j 6=1

γ1j = 2s + 1, ∑
j 6=i

γij = 2, i = 2, 3, 4.

(9.5) can be rewritten as

〈js j0̃ j0̃ j0̃〉cb = |x1 − x3|−4s−2|x2 − x3|2s−1|x2 − x4|−2s−3|x3 − x4|2s−1 (9.8)

×
s

∑
k=0

∫ ∫ dγ12dγ14

(2πi)2 M̂(γ12, γ14; s, k)u−γ12 v−γ14V(1; 2, 3)s−kV(1; 3, 4)k.

We will call M̂(γ12, γ14; s, k) the Mellin amplitude.

The location of the poles of the Mellin amplitude is related to the operator product
expansion of the external operators. Let us make this point explicitly. Consider two
external operators O1, O2 of dimensions ∆1, ∆2 and spins s1, s2 and suppose they
exchange an operator of dimension ∆ and spin s. Then the most singular term in the
lightcone OPE is

Oµ1...µs1
(x)Oν1...νs2

(0) ⊃ Oρ1...ρs(0)xρ1 ...xρs

(x2)
∆1+∆2+s1+s2

2 − τ
2

x{µ1...µs1}x{ν1...νs2}(1 + O(x2)), (9.9)

where τ = ∆ − s. From this logic we expect the Mellin amplitude to have poles at
γ12 = ∆1+∆2+s1+s2

2 − τ
2 − n, where n is a nonnegative integer.

For 〈js j0̃ j0̃ j0̃〉 all OPE channels are equal. To order 1
Ñ there can be exchanges of higher

spin currents and double traces [js, j0̃] and [j0̃, j0̃], which have twist 1, 3 and 4 respectively.
This motivates the following ansatz

M̂(γ12, γ14; s, k) = Γ(−k + γ14 − 1)Γ
(
−k + γ14 +

1
2

)
Γ(−s + γ13 − 1) (9.10)

×Γ
(
−s + γ13 +

1
2

)
Γ(k− s + γ12 − 1)Γ

(
k− s + γ12 +

1
2

)
p(γ12, γ14; s, k),

where γ13 = 2s+ 1− γ12− γ14. The Γ functions contain all the poles implied by the OPE.
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For this reason we assume that p(γ12, γ14; s, k) is a polynomial in the Mellin variables.

The bound on chaos [23] bounds the degree of the polynomial p(γ12, γ14; s, k). This
is worked out in section (9.3), see (9.35), (9.36) and (9.37) for the precise formulas.
Furthermore, 〈js j0̃ j0̃ j0̃〉 is constrained by invariance under interchange of points 2↔ 3
and 2↔ 4. This crossing symmetry implies the equations

p(γ12, γ14; s, k) =
s

∑
k2=k

(−1)k2

(
k2

k

)
p(2s + 1− k2 − γ12 − γ14, γ14 − k + k2; s, k2), (9.11)

p(γ12, γ14; s, k) = p(γ14, γ12; s, s− k). (9.12)

〈js j0̃ j0̃ j0̃〉 is constrained by pseudoconservation of js. We implement this condition in
embedding space. The differential operator for conservation is ∂

∂PA
1

DA, where

DA = (
d
2
− 1 + Z1 ·

∂

∂Z1
)

∂

∂ZA
1
− 1

2
(Z1)A

∂2

∂Z1 · ∂Z1
. (9.13)

Since ∂ · js is a primary operator of spin s− 1 and dimension s + 2, then 〈∂ · js j0̃ j0̃ j0̃〉 is a
conformal four point function of primary operators. 〈∂ · js j0̃ j0̃ j0̃〉 factorizes into products
of a two point function times a three point function. Such a four point function is made
up of powers of u and of v and so its Mellin amplitude vanishes.

Four point functions of scalars with vanishing Mellin amplitudes were analysed in [63],
see in particular section E.E.1. A similar analysis can be performed for the spinning
case, though we will not pursue it here. The important conclusion is that in Mellin
space pseudoconservation is the same as conservation. In other words, 〈∂ · js j0̃ j0̃ j0̃〉 has a
vanishing Mellin amplitude.

Pseudoconservation implies the equation

1

∑
i1=−1

1

∑
i2=−1

2

∑
i3=−1

ai1,i2,i3(γ12, γ14)p(γ12 + i1, γ14 + i2; s, k + i3) = 0. (9.14)

The coefficients are written in the appendix L.2, see formula (L.3).

The crossing equations (9.11), (9.12), the pseudoconservation equation (9.14) and Regge
boundedness (9.35), (9.36) and (9.37) determine p(γ12, γ14; s, k) up to a multiplicative
constant. This has to do with the fact that we have not picked a normalization for the
higher spin current js. It is simple to solve this set of equations in a computer algebra
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system for each spin s. We find that the solution always has the form

p(γ12, γ14; s, k) =
k

∑
k1=0

s−k

∑
k2=0

b(s, k; k1, k2)γ
k2
12γk1

14, k 6
s
2

(9.15)

p(γ12, γ14; s, k) = p(γ14, γ12; s, s− k), k >
s
2

. (9.16)

p(γ12, γ14; s, k) turns out to have degree s. Using a laptop we generated solutions up
to spin 40. Picking a normalization in which p(γ12, γ14; s, k = 0) ⊃ 1, we find as an
example that for s = 4 we have

p(γ12, γ14; s = 4, k = 0) = 1− 19γ12

20
+

119γ2
12

360
− γ3

12
20

+
γ4

12
360

,

(9.17)

p(γ12, γ14; s = 4, k = 1) = − 8
15

+
4γ12

9
− 11γ2

12
90

+
γ3

12
90

+

(
2
5
− 11γ12

30
+

γ2
12
9
− γ3

12
90

)
γ14,

p(γ12, γ14; s = 4, k = 2) =
1
5
− 4γ12

15
+

γ2
12

15
+

(
− 4

15
+

11γ12

36
− 13γ2

12
180

)
γ14

+(
1
15
− 13γ12

180
+

γ2
12

60
)γ2

14,

p(γ12, γ14; s = 4, k = 3) = − 8
15

+
4γ14

9
− 11γ2

14
90

+
γ3

14
90

+

(
2
5
− 11γ14

30
+

γ2
14
9
− γ3

14
90

)
γ12,

p(γ12, γ14; s = 4, k = 4) = 1− 19γ14

20
+

119γ2
14

360
− γ3

14
20

+
γ4

14
360

.

In appendix O we implement an algorithm to compute 〈js j0̃ j0̃ j0̃〉 in position space. We
managed to determine 〈js j0̃ j0̃ j0̃〉 in position space for spins 2, ..., 14 using this algorithm.
Taking the Mellin transform we get precisely the same as we get with the procedure in
Mellin space. The advantage of Mellin space is that it allows to write equations (9.11),
(9.12) and (9.14) that determine the solution for generic s.

Let us mention some checks on our solution. One such check is compatibility of the
pseudo-conservation equations with conformal symmetry. ∂ · js is a conformal primary
at leading order in 1

Ñ . ∂ · js can have contributions coming from [js1 , j0̃] and [js1 , js2 ]. Only
the former matter since we are interested in 〈js j0̃ j0̃ j0̃〉. More precisely,

∂ · js ⊃
s−2

∑
s1=2

s−s1−1

∑
m=0

cm∂m js1 ∂s−s1−1−m j0̃. (9.18)

The coefficients cm are fixed by conformal symmetry (see formula (O.7)). When we run
our algorithm in position space we do not need to input the values of cm, we prefer to
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keep them unknown. It turns out that our algorithm fixes cm in agreement with (O.7).
This is an important check on our results.

We also checked that the short distance limit of our expression for 〈js j0̃ j0̃ j0̃〉cb agrees
with the correct three point structures for the exchange of higher spin currents. Let us
take s = 4 for concreteness. The short distance limit u → 0 captures the exchange of
the higher spin currents in the s-channel. If afterwards we take v→ 1, we find that the
correlator behaves as

lim
v→1

lim
u→0
〈js j0̃ j0̃ j0̃〉cb ∼

∞

∑
J=2

1
u5

x7
34

x7
13x11

14x4
23
(1− v)JV(1; 2, 3)4 (9.19)

The ∼ sign means that we just keep track of the conformal structure that appears, but
we do not keep track of numerical coefficients. (9.19) is matched by the behaviour of
conformal blocks of higher spin currents in the same limit.

Formula (9.1) correctly accounts for the exchange of single trace operators in 〈js j0̃ j0̃ j0̃〉.
However, it is not obvious that it correctly accounts for the exchange of double trace
operators. Indeed, one can imagine adding to (9.1) AdS contact diagrams, which are
solutions to crossing that only involve the exchange of double trace operators. By taking
linear combinations of AdS contact diagrams one can furthermore obtain solutions
to the conservation equations. However, in the next section we consider such linear
combinations and show that they always violate the bound on chaos. For this reason, it
is not legal to add them to (9.1).

9.3 Bound on chaos for 〈js j0̃j0̃j0̃〉
The bound on chaos [36] constrains the Regge limit of 〈js j0̃ j0̃ j0̃〉. In this section we review
the bound on chaos and derive its consequences for 〈js j0̃ j0̃ j0̃〉. There are two possible
structures one can write for 〈js j0̃ j0̃ j0̃〉. One structure involves the ε tensor and the other
one does not. We examine the two cases separately in sections (9.3.2) and (9.3.4) and
derive bounds on the Regge growth of the Mellin amplitude for both of these cases.

Solutions to crossing that only involve the exchange of double twist operators are given
by AdS contact diagrams. This was proven in [54], for the special case of four point
functions of external scalars. We will assume that such a result holds for any n-point
function of spinning conformal primaries. We study AdS contact diagrams in sections
(9.3.3) and (9.3.4). Our main conclusion is that AdS contact diagrams for 〈js j0̃ j0̃ j0̃〉 are
incompatible with the bound on chaos, provided s > 4. For s = 2 we construct the
contact diagrams that are compatible with the bound on chaos, see formulas (9.56) and
(9.68). This completes the proof of formula (9.1).
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9.3.1 Review of the bound on chaos and Rindler positivity

Conformal field theories are constrained by the Regge behaviour of Lorentzian corre-
lators. For nonperturbative CFT’s, correlators in the Regge limit are bounded by the
Euclidean OPE in the first sheet. For large N CFT’s one needs to use the bound on chaos
to bound correlators in the Regge limit. In this subsection we review the bound on
chaos [36].

We will consider the following kinematics for a four point function, in which we set all
four points on the same plane (x± = t± x)

x±1 = ±1, x±2 = ∓1, x±3 = ∓eρ±t, x±4 = ±eρ±t, (9.20)

see figure 9.1.

x+x−

x1x2

x4

x3

Figure 9.1. The Regge limit corresponds to taking t→ ∞ in (9.20).

The bound on chaos applies for systems at finite temperature with a large number
of degrees of freedom. For the case of a large N conformal field theory, a correlation
function of single trace primaries 〈V(x1)V(x2)W(x3)W(x4)〉 obeys

〈V(x1)V(x2)W(x3)W(x4)〉 ≈ 〈V(x1)V(x2)〉〈W(x3)W(x4)〉(1 + α
eλLt

N
), (9.21)

where the Lyapunov exponent λL obeys the bound λL 6 2πT, where T is the temper-
ature of the system. The proportionality constant α does not depend on t. The bound
on chaos can be applied to large N CFT’s in Minkowski space, in which case we should
consider the temperature T = 1

2π of the Rindler horizon.

We cannot apply directly (9.21) to 〈js j0̃ j0̃ j0̃〉. However, we can use Rindler positivity [99]
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to bound 〈js j0̃ j0̃ j0̃〉 by 〈js js j0̃ j0̃〉 and 〈j0̃ j0̃ j0̃ j0̃〉 and use the bound on chaos to bound the
latter two quantities, as we will explain next.

The Rindler conjugate Ō of an operator O is defined as Ōµ,ν...(t, x,~y) = O†
µ,ν,...(−t,−x,~y),

where ~y refers to a transverse coordinate relative to the plane of figure 9.1. Furthermore
we have that O1O2 = Ō1Ō2. Rindler positivity and Cauchy-Schwarz inequalities imply
that

|〈ĀB〉|2 6 〈ĀA〉〈B̄B〉. (9.22)

where A and B are operators (that might be composite) defined on a single Rindler
wedge.

Let us define A = j0̃(x3)js(x2), B = j0̃(x2)j0̃(x3). Then, the time-ordered correlation
function in the configuration (9.20) is given by

〈T[js(x1)j0̃(x2)j0̃(x3)j0̃(x4)]〉 = 〈ĀB〉 (9.23)

6
√
〈j0̃(x4)js(x1)j0̃(x3)js(x2)〉 × 〈j0̃(x1)j0̃(x4)j0̃(x2)j0̃(x3)〉

The bound on chaos on the rhs of the previous expression implies a bound on 〈js j0̃ j0̃ j0̃〉.
In terms of σ = e−t:

lim
t→∞
〈T[js(x1)j0̃(x2)j0̃(x3)j0̃(x4)]〉 ∼

σλ1

N
+ O(

1
N2 ), (9.24)

where λ1 > −1.

9.3.2 Consequences for 〈js j0̃ j0̃ j0̃〉cb

Let us work out the consequences of the bound on chaos for the Mellin amplitudes of
〈js j0̃ j0̃ j0̃〉. In the critical boson theory,

〈js(x1)j0̃(x2)j0̃(x3)j0̃(x4)〉cb = |x1 − x3|−4s−2|x2 − x3|2s−1|x2 − x4|−2s−3|x3 − x4|2s−1

(9.25)

×
s

∑
k=0

∫ ∫ dγ12dγ14

(2πi)2 M̂(γ12, γ14; s, k)u−γ12 v−γ14V(1; 2, 3)s−kV(1; 3, 4)k.

where V(i; j, k) was defined in (9.6) and

M̂(γ12, γ14; s, k) = Γ(γ12)Γ(∆1 − γ12 − γ14)Γ(γ14)Γ(γ12 +
∆3 + ∆4 − ∆1 − ∆2

2
) (9.26)

Γ(
∆1 + ∆2 − ∆3 + ∆4

2
− γ12 − γ14)Γ(γ14 +

∆2 + ∆3 − ∆1 − ∆4

2
)M(γ12, γ14; s, k),
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∆1 = 2s + 1, ∆2 = 2, ∆3 = 2, ∆4 = 2.

We call M(γ12, γ14; s, k) a Mellin amplitude. The arguments of the Γ functions are just
the Mellin variables defined in (9.7).

In the limit t → ∞ of the kinematics (9.20), the conformal cross-ratio v acquires a
monodromy v→ ve2πi. Furthermore

u ≈ 16σ2 + O(σ3), v ≈ 1− 8σ cosh ρ + O(σ2), σ→ 0. (9.27)

The polynomial growth of the Mellin amplitude is related to the Regge limit, in a manner
that we explain next, following appendix C of [29]. Let us consider the limit

lim
σ→0

∫ ∫ dγ12dγ14

(2πi)2 M(γ12, γ14; s, k)Γ(γ12)Γ(∆1 − γ12 − γ14) (9.28)

Γ(γ14)e−2πiγ14 Γ(γ12 +
∆3 + ∆4 − ∆1 − ∆2

2
)Γ(γ14 +

∆2 + ∆3 − ∆1 − ∆4

2
)

Γ(−γ12 − γ14 +
∆1 + ∆2 − ∆3 + ∆4

2
)σ−2γ12(1− 8σ cosh ρ)−γ14 .

The factor e−2πiγ14 becomes very large in the regime γ14 → i∞. This is cancelled by the
exponential decay of the Γ functions. Let us suppose that the Mellin amplitude grows
polynomially as γ

α(s,k)
14 f (γ12), when γ14 is large and imaginary and γ12 is fixed. In this

regime we can rewrite (9.28) as

∼
∫ dγ12

2πi
Γ(γ12)Γ(γ12 +

∆3 + ∆4 − ∆1 − ∆2

2
)σ−2γ12 f (γ12) (9.29)∫ ∞

M1

dm1

2π
m−2−2γ12+∆1+∆2+α(s,k)

1 eim1(8σ cosh ρ+O(σ3)),

where M1 is an irrelevant large number. If we substitute m1 → m1
σ we get that the

integral (9.28) scales like σ1−∆1−∆2−α(s,k). In order to compare (9.25) with (9.24), we
should furthermore take into account the prefactor and the structures in (9.25), which
scale with σ. Our conclusion is that α(s, k) = 1− λ1 − k 6 2− k.

We can use the crossing symmetry equations

M̂(γ12, γ14; s, k) =
s

∑
k2=k

(−1)k2

(
k2

k

)
M̂(2s + 1− k2 − γ12 − γ14, γ14 − k + k2; s, k2),

(9.30)

M̂(γ12, γ14; s, k) = M̂(γ14, γ12; s, s− k).
(9.31)
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Figure 9.2. AdS contact diagram for 〈js j0̃ j0̃ j0̃〉.

to derive the following bounds on the polynomial growth of the Mellin amplitude

lim
β→∞

M(γ12, βγ14; s, k) ∼ βα1(s,k), α1(s, k) 6 2− k

lim
β→∞

M(βγ12, γ14; s, k) ∼ βα2(s,k), α2(s, k) 6 2− s + k

lim
β→∞

M(iβ + γ12,−iβ + γ14; s, k) ∼ βα3(s,k), α3(s, k) 6 2 + s.

(9.32)

(9.33)

(9.34)

We can apply these bounds to the ansatz (9.10). We conclude that

lim
β→∞

p(γ12, βγ14; s, k) ∼ βη1(s,k), η1(s, k) = 2 + 2k + α1(s, k) 6 4 + k

lim
β→∞

p(βγ12, γ14; s, k) ∼ βη2(s,k), η2(s, k) = 2 + 2s− 2k + α2(s, k) 6 4− k + s

lim
β→∞

p(iβ + γ12,−iβ + γ14; s, k) ∼ βη3(s,k), η3(s, k) 6 4 + s.

(9.35)

(9.36)

(9.37)

The solution that we found respects this bound.

9.3.3 The Regge limit of AdS contact diagrams for the parity even structure
in 〈js j0̃ j0̃ j0̃〉

We will study the Regge limit of a generic AdS contact diagram for 〈js j0̃ j0̃ j0̃〉 (see figure
(9.2)), using the methods of [56]. We use vectors Pi and Zi in embedding space to describe
the position and polarization vectors of an operator Oi defined on the boundary of AdS.
For tensor fields defined on the bulk of AdS, we use vectors Xi and Wi to denote the
position and the polarization. The following identities are obeyed:

Z2
i = P2

i = Zi · Pi = X2
i + 1 = W2

i = Xi ·Wi = 0. (9.38)
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We denote the bulk to boundary propagator of a dimension ∆ and spin J field by
Π∆,J(X, P; W, Z). Its formula is

Π∆,J(X, P; W, Z) = C∆,J
((−2P · X)(W · Z) + 2(W · P)(Z · X))J

(−2P · X)∆+J , (9.39)

where C∆,J is a proportionality constant (whose value will not be relevant for us).

An important class of contact diagrams contributing to the parity even structure in
〈js j0̃ j0̃ j0̃〉 is given by∫

AdS
dX Π∆1=s+1,s1=s(X, P1, K, Z1)(W · ∇)s2 Π∆2=2,s2=0(X, P2) (9.40)

(W · ∇)s3 Π∆3=2,s3=0(X, P3)Π∆4=2,s4=0(X, P4),

where s1 = s2 + s3. There are other contact diagrams one can write by contracting more
derivatives among the propagators, but such diagrams will diverge more in the Regge
limit, which is the issue we wish to discuss here. The covariant derivative is given by

∇A =
∂

∂XA + XA(X · ∂

∂X
) + WA(X · ∂

∂W
). (9.41)

The operator K is given by

KA =
d− 1

2
( ∂

∂WA + XA(X · ∂

∂W
)) + (W · ∂

∂W
)

∂

∂WA (9.42)

+XA(W ·
∂

∂W
)(X · ∂

∂W
)− 1

2
WA(

∂2

∂W · ∂W
+ (X · ∂

∂W
)(X · ∂

∂W
)),

where for our purposes d = 3.

The following identity

Π∆1,s1(X, P1, K, Z1)(W · ∇)s2 Π∆2,s2(X, P2)(W · ∇)s3 Π∆3,s3(X, P3) (9.43)

= C(∆1, ∆2, ∆3, s1, s2, s3)Ds2
12Ds3

13

(
Π∆1,0(X, P1)Π∆2+s2,0(X, P2)Π∆3+s3,0(X, P3)

)
.

is useful for us. Dij is an operator that only acts on the external points. It increases
the spin at position i by 1 and it decreases the conformal dimension at position j by 1.
C(∆1, ∆2, ∆3, s1, s2, s3) is a constant of proportionality, which will not be relevant for us.
The precise definition of Dij is

Dij = (Pj · Zi)Zi ·
∂

∂Zi
− (Pj · Zi)Pi ·

∂

∂Pi
+ (Pj · Pi)Zi ·

∂

∂Pi
. (9.44)

We confirmed the identity (9.43) for a few values of the external spins using Mathematica.
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9.3. Bound on chaos for 〈js j0̃ j0̃ j0̃〉

So, with the help of identity (9.43) we can perform the integration in (9.40) using only
scalar propagators and afterwards we act with the differential operators D12 and D13.
The AdS integral with only scalar propagators corresponds to a contact quartic scalar
diagram, whose Mellin amplitude is a constant. Afterwards we act with the differential
operators and obtain an expression in the form of (9.8).

Let us exemplify what we mean for the case of 〈j2 j0̃ j0̃ j0̃〉. Let us take s2 = 1 and s3 = 1
in (9.40). Up to a proportionality constant, the contact diagram is given by

D12D13

∫
AdS

dX Π∆1=3,s1=0(X, P1)Π∆2=3,s2=0(X, P2)Π∆3=3,s3=0(X, P3)Π∆4=2,s4=0(X, P4)

(9.45)

∼ D12D13
x34

x23x6
13x5

24

∫ ∫ dγ12dγ14

(2πi)2 Γ(γ12)Γ(3− γ12 − γ14)Γ(γ14)

Γ(γ12 −
1
2
)Γ(

5
2
− γ12 − γ14)Γ(γ14 +

1
2
)u−γ12 v−γ14 ,

where the ∼ symbol means that we neglected a numerical factor. We now act with the
differential operators D12 and D13 and reorganise the result into the form (9.25), (9.26)4.
For this contact diagram, we conclude that

M(γ12, γ14, s = 2, k = 0) =
(−4 + γ12)(3− 8γ14 + 4γ2

14)

(−4 + γ12 + γ14)
(9.46)

M(γ12, γ14, s = 2, k = 1) =
−2(−2 + γ12)(−3 + 2γ12)(−3 + 2γ14)

(−4 + γ12 + γ14)

M(γ12, γ14, s = 2, k = 2) =
γ12(3− 8γ12 + 4γ2

12)

(−4 + γ12 + γ14)

This contact diagram obeys the chaos bounds (9.32), (9.33) and (9.34). We found that
contact diagrams of the type (9.40) obey the bound on chaos for spin 2, but violate the
bound on chaos for spin s > 4.

Our goal is to investigate if there are extra solutions to crossing, conservation and Regge
boundedness for 〈js j0̃ j0̃ j0̃〉. AdS contact diagrams are solutions to the crossing equations,
however they are not necessarily conserved, nor Regge bounded. To see that contact
diagrams are not necessarily conserved, let us consider a generic contact diagram∫

AdS
dX Π∆=s+1,s(X, P1, W, Z1) J(X, Pi, K, Zi) (9.47)

where we denoted by J(X, Pi, W, Zi) the dependence on the other AdS fields. It turns
out that the action of the conservation operator (9.13) on Π∆=s+1,s gives a pure gauge

4The step where we gather different terms into the same contour may give rise to subtractions. These do
not change our main conclusion, which is that any finite linear combination of AdS contact diagrams for
〈js j0̃ j0̃ j0̃〉 with s > 4 does not obey the bound on chaos.
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expression

∂

∂P
· DZΠ∆=s+1,s(X, P, W, Z) (9.48)

= −2−2−ss2W · ∇X

(
(−P · X)−2s−1((−P · X)(W · Z) + (P ·W)(X · Z))s−1

)
(9.49)

≡W · ∇X F(X, P, W, Z). (9.50)

Thus,

∂

∂P1
· DZ1

∫
AdS

dXΠ∆=s+1,s(X, P1, W, Z1) J(X, Pi, W, Zi) (9.51)

= −
∫

AdS
dXF(X, P1, W, Z1)W · ∇X J(X, Pi, K, Zi)

This vanishes only if J(X, Pi, K, Zi) is conserved in the bulk of AdS, i.e. a contact diagram
involving a bulk to boundary propagator is conserved only when the bulk to boundary
propagator is coupled to a conserved current. Clearly, this is not the case for a generic
contact diagram (9.40).

So, we consider instead linear combinations of AdS contact diagrams. The most eco-
nomical way of doing this is to notice that the Mellin transform of any contact diagram,
or any linear combination of contact diagrams, can be written as

M̂(γ12, γ14; s, k) = Γ(−k + γ14)Γ
(
−k + γ14 +

1
2

)
Γ(−s + γ13) (9.52)

×Γ
(
−s + γ13 +

1
2

)
Γ(k− s + γ12)Γ

(
k− s + γ12 +

1
2

)
pdt(γ12, γ14; s, k).

where pdt(γ12, γ14; s, k) is a polynomial. Let us explain this important formula. If we
act with the differential operators on the scalar contact diagram, they will shift the
arguments of the Γ functions by integers. So, the Mellin transform of an AdS contact
diagram will involve 6 Γ functions times a polynomial. The arguments of the Γ functions
are related to the operators that appear in the OPE of the external operators. Thus, we
arrive at (9.52). Notice that pdt(γ12, γ14; s, k) will eventually have zeros.

The chaos bound for pdt(γ12, γ14; s, k) is

lim
β→∞

pdt(γ12, βγ14; s, k) ∼ βη1(s,k), η1(s, k) = 2 + 2k + α1(s, k) 6 2 + k (9.53)

lim
β→∞

pdt(βγ12, γ14; s, k) ∼ βη2(s,k), η2(s, k) = 2 + 2s− 2k + α2(s, k) 6 2− k + s (9.54)

lim
β→∞

pdt(iβ + γ12,−iβ + γ14; s, k) ∼ βη3(s,k), η3(s, k) 6 2 + s. (9.55)

We imposed crossing and conservation on (9.52). We find solutions that always violate
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9.3. Bound on chaos for 〈js j0̃ j0̃ j0̃〉

the chaos bound, for all spins s > 4. For s = 2 we find a solution that respects crossing,
conservation and Regge boundedness, which is given by

pdt(γ12, γ14; s = 2, k = 0) =
γ4

12γ14

9
+

γ4
12

24
+

γ3
12γ2

14
9
− 5γ3

12γ14

8
− 5γ3

12
12
− 7γ2

12γ2
14

24
(9.56)

+
35γ2

12γ14

36
+

35γ2
12

24
+

7γ12γ2
14

72
− 5γ12γ14

24
− 25γ12

12
+

γ2
14

12
− γ14

4
+ 1,

pdt(γ12, γ14; s = 2, k = 1) = −2γ3
12γ2

14
9

+
5γ3

12γ14

4
− 37γ3

12
36
− 2γ2

12γ3
14

9

+
13γ2

12γ2
14

4
− 331γ2

12γ14

36
+

37γ2
12

6
+

5γ12γ3
14

4
− 331γ12γ2

14
36

+
77γ12γ14

4
− 407γ12

36

−37γ3
14

36
+

37γ2
14

6
− 407γ14

36
+

37
6

,

p(γ12, γ14; s = 2, k = 2) =
γ2

12γ3
14

9
− 7γ2

12γ2
14

24
+

7γ2
12γ14

72
+

γ2
12

12
+

γ12γ4
14

9
− 5γ12γ3

14
8

+
35γ12γ2

14
36

− 5γ12γ14

24
− γ12

4
+

γ4
14

24
− 5γ3

14
12

+
35γ2

14
24
− 25γ14

12
+ 1.

9.3.4 The Regge limit of AdS contact diagrams for the parity odd structure
in 〈js j0̃ j0̃ j0̃〉

The parity odd structure is

〈js(x1)j0̃(x2)j0̃(x3)j0̃(x4)〉odd = |x1 − x3|−4s−2|x2 − x3|2s−2|x2 − x4|−2s−4|x3 − x4|2s−2

(9.57)

×
s−1

∑
k=0

∫ ∫ dγ12dγ14

(2πi)2 M̂odd(γ12, γ14; s, k)u−γ12 v−γ14 ε(Z1, P1, P2, P3, P4)V(1; 2, 3)s−1−kV(1; 3, 4)k.

We define the Mellin amplitude Modd(γ12, γ14; s, k) in the following manner

M̂odd(γ12, γ14; s, k) = Γ(γ12)Γ(∆1 − γ12 − γ14)Γ(γ14)Γ(γ12 +
∆3 + ∆4 − ∆1 − ∆2

2
)

(9.58)

Γ(
∆1 + ∆2 − ∆3 + ∆4

2
− γ12 − γ14)Γ(γ14 +

∆2 + ∆3 − ∆1 − ∆4

2
)Modd(γ12, γ14; s, k),

∆1 = 2s + 1, ∆2 = 3, ∆3 = 3, ∆4 = 3.
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The following equations encapsulate crossing symmetry:

M̂odd(γ12, γ14; s, k) =
s−1

∑
k2=k

(−1)k2

(
k2

k

)
M̂odd(2s + 1− k2 − γ12 − γ14, γ14 − k + k2; s, k2),

(9.59)

M̂odd(γ12, γ14; s, k) = M̂odd(γ14, γ12; s, s− 1− k).
(9.60)

Let us use the bound on chaos to derive a bound on the polynomial growth of the Mellin
amplitude. Let us define the exponent α(s; k) such that limβ→∞ M(γ12, βγ14; s, k) ∼
βα(s;k). In the Regge limit, the Mellin integral goes as σ−2s−3−α(s;k). The prefactor times
the structure goes as σ3+2s−k. So, (9.57) behaves as σ−k−α(s;k). By comparing with the
bound on chaos (9.24) and using (9.59), (9.60) we conclude that

lim
β→∞

Modd(γ12, βγ14; s, k) ∼ βα1(s,k), α1(s, k) 6 1− k (9.61)

lim
β→∞

Modd(βγ12, γ14; s, k) ∼ βα2(s,k), α2(s, k) 6 2− s + k (9.62)

lim
β→∞

Modd(iβ + γ12,−iβ + γ14; s, k) ∼ βα3(s,k), α3(s, k) 6 s. (9.63)

The Mellin amplitude of an AdS contact diagram of the type (9.57), or of a linear
combination of contact diagrams, is given by

M̂odd(γ12, γ14; s, k) = Γ(γ12 + 1 + k− s)Γ(γ12 +
1
2
+ k− s) (9.64)

Γ(γ14 − k)Γ(γ14 − k− 1
2
)Γ(γ13 + 1− s)Γ(γ13 +

1
2
− s)pdt(γ12, γ14; s, k),

where γ13 = 2s + 1− γ12 − γ14. The bound on chaos for pdt(γ12, γ14; s, k) is

lim
β→∞

pdt(γ12, βγ14; s, k) ∼ βλ1(s,k), λ1(s, k) 6 2 + k (9.65)

lim
β→∞

pdt(βγ12, γ14; s, k) ∼ βλ2(s,k), λ2(s, k) 6 1 + s− k (9.66)

lim
β→∞

pdt(iβ + γ12,−iβ + γ14; s, k) ∼ βλ3(s,k), λ3(s, k) 6 1 + s. (9.67)

pdt(γ12, γ14; s, k) can be found by imposing crossing and conservation. We found that
for s > 4 all solutions violate the bound on chaos.

However, for s = 2 there is one solution that respects the bound on chaos. This solution
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is

pdt(γ12, γ14; s = 2, k = 0) =
γ2

12
4

+
γ12γ14

2
− 5γ12

4
− γ14

2
+ 1, (9.68)

pdt(γ12, γ14; s = 2, k = 1) =
γ12γ14

2
− γ12

2
+

γ2
14
4
− 5γ14

4
+ 1. (9.69)

In the conclusion of the thesis we discuss open problems in CFT’s with slightly broken
higher spin symmetry.
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Main results of the PhD thesis

� Analyticity and polynomial boundedness of nonperturbative four point functions in CFT’s
imply the existence of Mellin amplitudes for light external operators.

See formulas (1.22), (1.23). Analyticity follows from the OPE. We did not manage to
prove polynomial boundedness for subtracted four point functions. This requires
a better handle on the double lightcone limit.

� Analyticity in a sectorial domain ΘCFT of the four-point function justifies the inclusion of
the Γ-functions in the definition of the Mellin amplitude (see definition (2)).

� Meromorphicity of Mellin amplitudes M(γ12, γ14) is proven in a subset of C2, see figure
D.1.

The positions of the poles are given by the twist spectrum of the theory (3.3). Due
to the presence of the twist accumulation points in every CFT, the nonperturbative
Mellin amplitude has an infinite number of pole accumulation points whose
position is known, see section 2.4. We conjecture that the only singularities of the
Mellin amplitude correspond to physical operators (3.3).

� Non-perturbative Mellin amplitude satisfy Polyakov conditions.

This is encapsulated by formulas (4.29), (4.30) and (4.31).

� Existence of Mellin amplitudes, Regge boundedness, crossing symmetry and Polyakov
conditions lead to dispersive CFT sum rules.

See formula (5.6), for which we performed some checks using the 3d Ising model.
This sum rule vanishes for the exchange of exact double twists τ = 2∆ + 2n for
n > 0. Heavy operators contribute to this sum rule with a definite sign. Sum
rules of this type constrain the UV completion of effective field theories in AdS.
Potentially, they might lead to the exclusion of a seemingly healthy effective field
theory, though we did not manage to prove a result of this kind in this thesis.

� Mellin dispersive sum rules were used to rederive most of the known CFT data of the
Wilson-Fischer model in d = 4− ε dimensions to order ε4 and were furthermore used to
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derive new results, namely the OPE coefficient C2
φφφ2 at order ε4, see table 6.3.

� Mellin dispersive sum rules were applied to derive CFT data from AdS Witten diagrams.

Our best result is formula (7.12) for the one loop anomalous dimensions in φ4

theory.

� The pseudoconservation equations, crossing symmetry and Regge boundedness allow the
determination of spinning four point functions in CFT’s with slightly broken higher spin
symmetry.

More precisely, we computed 〈js j0̃ j0̃ j0̃〉 in the quasi-fermionic theory for s > 4 at
finite t’Hooft like coupling.

Main open directions

We believe that the most important problems unlocked by our thesis are:

1. Prove a nontrivial swampland conjecture. A concrete goal is to show that the
only conformal field theory with N = 4 supersymmetry in d = 4 dimensions is
Super Yang Mills. In order to do that, we propose to set up the bootstrap equations
for correlators with N = 4 supersymmetry and apply to them our dispersive
functionals, like we did for the ε expansion. The papers [103], [104], [105] set up
the bootstrap equations and should be very useful in our analysis.

2. Study the 3d Ising model semi-numerically. What we have in mind is to follow
the paper [50], but to use dispersive sum rules, instead of the lightcone bootstrap.
In [50] a wealth of CFT data about low twist operators in the 3d Ising model was
uncovered using the lightcone bootstrap and the numerical bootstrap. It would
be interesting to use the dispersive sum rules to try to improve on that analysis.
Improving the numerical studies of the 3d Ising model is important, since it might
shed light on how to solve the theory analytically.

3. Merge the analytic functionals with the numerical bootstrap. The numeric con-
formal bootstrap is at present the best tool to study conformal field theories
nonperturbatively and it would be great to improve it using analytic methods. A
concrete target is to reproduce the results in the early conformal bootstrap papers,
namely [2], [106], using the dispersive sum rules.

Perturbative applications of dispersive sum rules

In this thesis we provide evidence of the usefulness of dispersive sum rules in the context
of perturbative conformal field theories. Similar problems are:
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1. Improve on our discussion on the ε expansion. The following two improvements
could be made. One improvement is to make the discussion completely analytic.
At the moment we need to resort to numerics in order to calculate the CFT data,
but this step is likely avoidable. Secondly, it would be very good to obtain CFT
data at order ε5, since very little is known at this order. A concrete target are the
anomalous dimensions and OPE coefficients of the operators in the leading Regge
trajectory at this order.

2. Study the critical O(N) model in d = 4− ε dimensions. The theory of N scalar
fields interacting quartically has a fixed point in d = 4− ε dimensions. This fixed
point has been studied to order ε4 in [65]. The dispersive sum rules should give
access to more perturbative CFT data, like what happened in [107].

3. Study the critical O(N) model in a large N expansion in 2 < d < 4. The idea
would be to improve on the work [108].

4. Loops in AdS. Deriving OPE data from AdS diagrams is an old problem in
AdS/CFT. A promising approach is the use of the analytic bootstrap, see the
papers [52, 53]. It is likely that the dispersive sum rules will be useful for this.

Open problems in CFT’s with slightly broken higher spin sym-
metry

The methods developed in chapter 9 potentially pave the way to compute all four point
functions in conformal field theories with slightly broken higher spin symmetry. We
believe that the next steps in this program are the following:

1. Compute 〈js j0 j0 j0〉 in the quasi-boson theory. The conformal structures involved are
the same as in this thesis, so the calculation should be very similar.

2. Demonstrate that AdS contact diagrams are not present in 〈j0̃ j0̃ j0̃ j0̃〉 and 〈j2 j0̃ j0̃ j0̃〉 in the
quasi-fermion theory using pure CFT arguments. The chaos bound allows for contact
diagrams in 〈j0̃ j0̃ j0̃ j0̃〉 and 〈j2 j0̃ j0̃ j0̃〉. Their absence for 〈j0̃ j0̃ j0̃ j0̃〉 was demonstrated
in [94] using Feynman diagrams. It should be possible to give a pure CFT demon-
stration of this fact. The idea is to write down the higher spin Ward identity that
connects 〈j0̃ j0̃ j0̃ j0̃〉 and 〈j2 j0̃ j0̃ j0̃〉, plug the AdS contact diagrams multiplied by
arbitrary functions of the t’Hooft coupling and obtain that the only way for the
Ward identity to be satisfied is if such functions vanish.

Let us mention some more ambitious problems:

1. Develop a code that computes all spinning four point functions. Such a code should:
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� generate the structures involved for a given four point function

� generate an ansatz for the Mellin transform, which should be a product of 6
Gamma functions (whose arguments are determined by the lightcone OPE,
which is known) times polynomials

� impose crossing, pseudo-conservation and Regge boundedness to fix all the
undetermined coefficients in the polynomials.

What differs from what we did here is that for generic spins we should not use
embedding space, since the conformal structures in embedding space are generi-
cally linearly dependent on each other. It is best to use conformal frame techniques
instead. Concretely, one would need the 3 dimensional version of [100] (see
also [101]).

2. Demonstrate that AdS contact diagrams are not present in four point functions in CFT’s
with slightly broken higher spin symmetry. As above, the hurdle should be in adapting
our formalism to use the 3d conformal frame.

Recently, a new formalism for correlators of conserved currents was proposed in [102].
The idea is to write the conformal structures in a helicity basis. It would be very
interesting to apply this idea to correlators in CFT’s with slightly broken higher spin
symmetry.

Ultimately, one would like to understand higher spin symmetry from the point of view
of the bulk of AdS. We hope that our CFT computations can be of some utility for this
ultimate goal.
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A 2D CFT calculations

A.1 Mellin amplitudes from BPZ differential equations

Let us consider the four point function 〈Φ1,2(z1, z̄1)O2(z2, z̄2)O3(z3, z̄3)O4(z4, z̄4)〉, where
O2, O3 and O4 are arbitrary scalar Virasoro primaries and Φ1,2 is a degenerate Virasoro
primary. 〈Φ1,2(z1, z̄1)O2(z2, z̄2)O3(z3, z̄3)O4(z4, z̄4)〉 is annihilated when acted upon by
the differential operator Lsing:

Lsing =
4

∑
i=2

1
z1 − zi

∂zi +
hi

(z1 − zi)2 −
3

2(2h1 + 1)
∂2

z1
, (A.1)

where we used the usual notation in 2d: ∆i = hi + h̄i, li = hi − h̄i and in (A.1) we assume
Φ1,2 to be at position 1.

The application of Lsing to Φ1,2 increases h and leaves h̄ fixed. Thus, it will be useful
for us to apply both Lsing and L̄sing to 〈Φ1,2(z1, z̄1)O2(z2, z̄2)O3(z3, z̄3)O4(z4, z̄4)〉, so as
to get a null scalar Virasoro primary, which we denote by ξ1,2. In equations,

L̄singLsing〈Φ1,2O2O3O4〉 = 〈ξ1,2O2O3O4〉 = 0. (A.2)

In (A.2), we use the Mellin representation:

〈Φ1,2O2O3O4〉 =
∫ (

∏
i<j

[dγij](X2
ij)
−γij

)
MΦ(1,2)

({γij}). (A.3)

We see that the differential operators only act on (X2
ij)
−γij , which can be factorized in

holomorphic and antiholomorphic parts. Afterwards, we use u and v variables and do a
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change of variables in order to get a recursion relation for the Mellin amplitude:

2

∑
p=0

2

∑
q=0

cp,q(γ12, γ14)MΦ1,2(γ12 + p, γ14 + q) = 0. (A.4)

Expressions for the coefficients cp,q are not very important, but let us register one such
expression for concreteness:

c1,1 =
1
9

(
(2 + 4h1)h2 + (−1 + 4h1 − 3γ12)γ12

)(
(2 + 4h1)h4 + (−1 + 4h1 − 3γ14)γ14

)
.

(A.5)

Equation (A.4) is solved by

MΦ(1,2)
(γ12, γ14) = C0Γ(−∆(α12) + ∆(α2)− ∆(α2 − 1

2 α+)

2
+ γ12)

Γ
(
− ∆(α12) + ∆(α2)− ∆(α2 +

1
2 α+)

2
+ γ12

)
Γ(−∆(α12) + ∆(α3)− ∆(α3 − 1

2 α+)

2
+ γ13)

Γ(−∆(α12) + ∆(α3)− ∆(α3 +
1
2 α+)

2
+ γ13)Γ(−

∆(α12) + ∆(α4)− ∆(α4 − 1
2 α+)

2
+ γ14)

Γ(−∆(α12) + ∆(α4)− ∆(α4 +
1
2 α+)

2
+ γ14),

(A.6)

where γ13 = ∆(α12)− γ12 − γ14 and ∆(α) is given by (8.6). C0 is not fixed by equation
(A.4). We compute it in A.3 (see formula (A.30)). Equation (A.6) is a simple generalisation
of (8.23). We just wrote a product of six Γ functions, with poles prescribed by the OPE
Φ1,2 ×Φαi = Φαi− 1

2 α+
+ Φαi+

1
2 α+

.

A.2 Comparison with conformal block expansion

We start by establishing some notation. Consider 4 scalar Virasoro primaries. We write
their four point function in the Mellin representation as

〈O1O2O3O4〉 = |x1 − x3|−2∆1 |x2 − x3|∆1−∆2−∆3+∆4 |x2 − x4|−∆1−∆2+∆3−∆4

|x3 − x4|∆1+∆2−∆3−∆4

∫
C1

dγ12

2πi

∫
C2

dγ14

2πi
M(γ12, γ14)u−γ12 v−γ14 , (A.7)

where M(γ12, γ14) is the Mellin amplitude. Let us consider the usual kinematics:

G21
34(z, z̄) = lim

z1→∞,z̄1→∞
z2h1

1 z̄2h1
1 〈O1(z1, z̄1),O2(1, 1),O3(z, z̄),O4(0, 0)〉, (A.8)
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where we use the 2d notation hi =
∆i
2 . So,

G21
34(z, z̄) = vh1−h2−h3+h4 uh1+h2−h3−h4

∫
C1

dγ12

2πi

∫
C2

dγ14

2πi
M(γ12, γ14)u−γ12 v−γ14 . (A.9)

We write the four point function as a sum over Virasoro blocks in the s-channel:

G21
34(z, z̄) = ∑

p
Cp

34Cp
12F 21

34 (p|z)F̄ 21
34 (p|z̄), (A.10)

where Cp
12 denotes the OPE coefficient for a Virasoro primary exchanged in O1 ×O2.

F 21
34 (p|z) is a kinematical function that can be expressed as a power series.

F 21
34 (p|z) = zhp−h3−h4

∞

∑
k=0
Fkzk, (A.11)

where hp is half the conformal dimension of the exchanged primary. An analogous
expansion exists for F̄ 21

34 (p|z̄). Expression for the first three coeficients are

F0 = 1, (A.12)

F1 =
(hp + h3 − h4)(hp + h2 − h1)

2hp
, (A.13)

F2 =
A
B
+

C
B

, (A.14)

where

A = (hp + h2 − h1)(hp + h2 − h1 + 1) (A.15)

×
(
(hp + h3 − h4)(hp + h3 − h4 + 1)(4hp +

c
2
)− 6hp(hp + 2h3 − h4)

)
,

B = 4hp(2hp + 1)(4hp +
c
2
)− 36h2

p, (A.16)

C = (hp + 2h2 − h1)

(
4hp(2hp + 1)(hp + 2h3 − h4) (A.17)

−6hp(hp + h3 − h4)(hp + h3 − h4 + 1)
)

.

Let us now specialise to the case 〈Φ1,2Φ1,2OO〉, where O is an arbitrary Virasoro primary.
Its Mellin amplitude is given by

M(γ12, γ14) = C0Γ(γ13 − αα+)Γ(γ13 + αα+ − α2
+ + 1)Γ(γ12 +

α2
+

2
) (A.18)

Γ(γ12 + 1− 3α2
+

2
)Γ(γ14 − αα+)Γ(γ14 + αα+ − α2

+ + 1),
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where γ13 =
3α2

+
2 − 1− γ12 − γ14. We obtained this expression from considering (8.23)

and doing γ12 ↔ γ13.

In order to match the Mellin representation with the conformal block expansion, we
need to expand the rhs of (A.9) for small z and z̄. In particular, we want to match with
the contribution of the identity

(zz̄)−h3−h4 ⊂ G21
34(z, z̄). (A.19)

For the case of 〈Φ1,2Φ1,2OO〉, the rhs of (A.9) is

u
3
2 α2

+−1−2α2+4α0α
∫

C1

dγ12

2πi

∫
C2

dγ14

2πi
C0Γ(γ13 − αα+)Γ(γ13 + αα+ − α2

+ + 1) (A.20)

Γ(γ12 +
α2
+

2
)Γ(γ12 + 1− 3α2

+

2
)Γ(γ14 − αα+)Γ(γ14 + αα+ − α2

+ + 1)u−γ12 v−γ14 ,

We want to reproduce the term (zz̄)−h3−h4 = u−2α2+4α0α. In order to do so, let us
consider the limit u → 0 and v → 1 in (A.20). We take the residue of the integrand at
γ12 = 3

2 α2
+ − 1 and set v = 1 to compute the remaining integral:

u−2α2+4α0αΓ(−1 + 2α2
+)C0

∫
[
dγ14

2πi
]Γ(γ14 − αα+)Γ(γ14 + αα+ − α2

+ + 1) (A.21)

Γ(−γ14 − αα+)Γ(−γ14 + αα+ − α2
+ + 1)

= u−2α2+4α0αC0Γ(−1 + 2α2
+)Γ(−2αα+)Γ2(1− α2

+)
Γ(2− 2α2

+ + 2αα+)

Γ(2− 2α2
+)

.

Equating this to u−2α2+4α0α fixes the value of C0 according to (8.22).

A.3 Normalisation of 〈Φ1,2O2O3O4〉
In A.1 we computed the Mellin amplitude of 〈Φ1,2O2O3O4〉, up to a constant C0 (see A.6).
In this appendix, we determine the value of C0, which is in formula (A.30). Conformal
Virasoro primaries are normalised so as to have a two point function "equal" to 1.

This problem was already analysed in [109]. In that paper, following a technique
explained in [110], an analytic continuation of three point functions for general central
charge from the ones in minimal models is proposed. Here, we just transcribe that result
into an expression for C0.

We direct the reader interested in understanding the details of this analytic continuation
to [109]. In what follows, we just define some conventions and then write formula (A.30)
for C0.
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A.3. Normalisation of 〈Φ1,2O2O3O4〉

In this appendix, we change notation, so as to match the one in [109]. Conformal
dimensions are given by

hα = α(α− q), (A.22)

where

q =
1
β
− β. (A.23)

Note that hα is invariant under α→ q− α. The central charge is related to β by

c = 1− 6q2. (A.24)

In the notation used in the rest of the thesis, β = −α+.

Our formula for C0 will depend on a Υ function. Its properties can be found in [109]. We
just briefly remind some basic facts. A representation for the Υ function is

log Υ(x) =
∫ ∞

0

dt
t
((Q

2
− x)2e−t − sinh2((Q

2 − x)t)

sinh( βt
2 ) sinh( t

2β )
). (A.25)

This representation is valid for 0 < Re(x) < Q. We note that Q = β + β−1. For values of
x outside this representation, we need to use the shift relations

Υ(x + β) = γ(βx)β1−2βxΥ(x), (A.26)

Υ(x +
1
β
) = γ(

x
β
)β

2 x
β−1Υ(x). (A.27)

Also note the identities

Υ(x) = Υ(Q− x), (A.28)

Υ(
Q
2
) = 1. (A.29)

Now, the formula for C0.

C0 =
4

∏
k=2

Υ̃( β
2 + ᾱ− 2αk)√

Υ(β + 2αk)Υ(− 1
β + 2β + 2αk)

Υ̃(− 1
β
+

3
2

β + ᾱ) (A.30)

γ
(

1
β2 − 1

)
γ
(

β2)√
γ
(

1
β2 − 2

)√
γ (2β2)Υ(β)

,

139



2D CFT calculations

where ᾱ = ∑4
k=2 αk and

γ(x) ≡ Γ(x)
Γ(1− x)

, (A.31)

Υ̃(x) =
Υ(x)

Γ(1− βx)
β
−βx+ 1

4β2 +
3
4 . (A.32)

(A.30) is symmetric in the transformation αi → q − αi, for each i = 2, 3, 4, where
q = 1

β − β.

A.4 Normalisations in the Coulomb gas formalism

Normalisations in the Coulomb gas formalism are computed in section 9 of [76]. The
result is

N2
m,n =

(α2
+ − 1)2πm+nγ(1− 1

α2
+
)mα4m−4n−2

+ γ(1− α2
+)

nγ( m
α2
+
− n)(−1)4m−4n−2+1(

π2α2
+

)
γ
(
m− α2

+n
) ,

(A.33)

where γ(x) ≡ Γ(x)
Γ(1−x) .

A simple check can be done on formula (A.33). Consider expression (A.30) for C0

in the correlator 〈Φ1,2Φα2 Φα3 Φα4〉. Consider now the case in which α2 + α3 + α4 =

2α0 − α12 − α+ and eliminate the variable α4. This corresponds to inserting one positive
screening charge in the Coulomb gas model. In that case, we can simplify the expression
for C0 using the Υ identities (A.26) and (A.28), in such a way that the expression for C0

depends only on Γ functions:

C0 =
1

Γ(−2α2α+)
√

γ( 1
α2
+
+ 2α2

α+
)
√

γ(−1− 2α2α+ + α2
+)

(A.34)

1

Γ(−2α3α+)
√

γ( 1
α2
+
+ 2α3

α+
)
√

γ(−1− 2α3α+ + α2
+)

1

Γ(2− α2
+ + 2α2α+ + 2α3α+)

√
γ(1− 1

α2
+
− 2α2

α+
− 2α3

α+
)
√

γ(1 + 2α+α2 + 2α+α3)

γ
(

1
α2
+
− 1
)

γ
(
α2
+

)√
γ
(

1
α2
+
− 2
)√

γ
(
2α2

+

)
Γ
(
1− α2

+

) .
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A.5. Two screening charges

For that same case, it follows from (8.29) that

C0 =
π

∏n
i=1 Γ(−2αiα+)N(αi)

. (A.35)

Let us now compare expressions (A.35) and (A.34). The value of the normalisation of
N(α1,2) is given in (A.33). We also use the shift symmetry N(2α0 − α+

2 − α2 − α3) =
1

N(α2+α3+
1
2 α+)

. We conclude that

N(α2)N(α3)

N(α2 + α3 +
1
2 α+)

=

√
γ(

1
α2
+

+
2α2

α+
)

√
γ(

1
α2
+

+
2α3

α+
)

√
γ(1− 1

α2
+

− 2α2

α+
− 2α3

α+
)(A.36)

√
γ(−1− 2α2α+ + α2

+)
√

γ(−1− 2α3α+ + α2
+)
√

γ(1 + 2α+α2 + 2α+α3)√
γ
(

1
α2
+
− 2
)√

γ
(
2α2

+

)
γ( 1

α2
+
− 1)γ(α2

+)
√

γ(−1 + 2α2
+)

√
π.

We can now put formula (A.33) into the left hand side of (A.36) and see if we obtain the
right hand side. We checked this for several cases and indeed it is so.

Formula (A.33) is correct when m and n are both positive. We also need to consider
normalisations for cases in which n and m are both negative. In that case, formula (A.33)
does not apply. However, when n and m are both negative we can still find the correct
normalisations. Since we normalise two point functions such that 〈OO〉 = 1, then it
follows that N(α−m,−n) =

1
N(αm,n)

.

A.5 Two screening charges

In this section, we consider a general n point correlator 〈Φα1 ...Φαn〉 for which we need to
insert two positive screening charges in the Coulomb gas formalism and compute its
Mellin amplitude.

As usual in the Coulomb gas formalism, we associate to each operator Φαi a vertex
operator: Vαi = Nαi Φαi , where Nαi is a normalisation that for degenerate operators is
equal to (A.33). Thus,

〈Φα1 ...Φαn〉 =
n

∏
i<j
|xi − xj|4αiαj

∫
d2xn+1

∫
d2xn+2 (A.37)

n

∏
i=1

|xi − xn+1|4αiα+ |xi − xn+2|4αiα+

Nαi

|xn+1 − xn+2|4α2
+
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We use formula (8.19) to transform the integral in xn+2 into a Mellin integral. Notice that
we can apply that formula since the integral in xn+2 is conformal. Indeed, 4 ∑n

i=1 αiα+ +

4α2
+ = 4(− 1

α+
− α+)α+ + 4α2

+ = −4. So, (A.37) is equal to

π
d
2

Γ(−2α2
+)

n

∏
i=1

1
Γ(−2αiα+)Nαi

∫
d2xn+1

n

∏
j=1
|xj − xn+1|4αjα+ (A.38)

n+1

∏
i1<j1

[
dξ1

i1,j1

]
Γ(ξ1

i1,j1)|xi1 − xj1 |
−2ξ1

i1,j1 ,

where we used the measure ∑j1 6=i1 ξ1
i1,j1 = −2αi1 α+.

The integral in xn+1 can also be done by use of (8.19), since 4 ∑n
i=1 αiα+ − 2 ∑n

i=1 ξ1
i,n+1 =

−4− 4α2
+ + 4α2

+ = −4. Further doing a shift of integration variables, we obtain

〈Φα1 ...Φαn〉 =
π

Γ(−2α2
+)

1
∏n

k=1 Γ(−2αkα+)N(αk)

n

∏
i<j

∫ [
dγij

] n+1

∏
i1<j1

∫ [
dξ1

i1,j1

]
(A.39)

Γ(ξ1
i1,j1)

1
∏n

k1=1 Γ(−2αk1 α+ + ξ1
k1,n+1)

Γ(γij + 2αiαj − ξ1
ij)|xi − xj|−2γij ,

(A.40)

where the measure is ∑j 6=i γij = ∆αi and ∑n+1
j1 6=i1

ξ1
i1 j1 = −2αi1 α+. Formula (A.39) is a

particular case of (8.27).

A.6 Sums in exponent of the Mellin amplitude

In this subsection we work out the sums in formula (8.48), using the measure (8.28).

The first term can be rewritten as

−
z−1

∑
r=1

n

∑
i=1

n

∑
j=i+1

ξr
ij = −

1
2

z−1

∑
r=1

n

∑
i=1

n

∑
j 6=i

ξr
ij. (A.41)

Notice that ξij with i > j does not exist as an integration variable, so when we write the
expression above we mean that ξij = ξ ji when i > j. It is useful to write things as (A.41)
in order to use the measure (8.28). Using the measure (8.28) we get that

n

∑
j 6=i

ξr
ij = −

n+r

∑
j=n+1

ξr
ij − 2αiαn+r+1 +

z−1

∑
s=r+1

ξs
i,n+r+1. (A.42)
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A.6. Sums in exponent of the Mellin amplitude

Let us plug (A.42) into (A.41). We have that

z−1

∑
r=1

n

∑
i=1

αiαn+r+1 = (2α0 − p1α+ − q1α−)((p1 − 1)α+ + q1α−) (A.43)

and furthermore

−1
2

z−1

∑
r=1

n

∑
i=1

(
−

n+r

∑
j=n+1

ξr
ij +

z−1

∑
s=r+1

ξs
i,n+r+1

)
=

1
2

z−1

∑
r=1

n

∑
i=1

ξr
i,n+1 (A.44)

=
1
2

z−1

∑
r=1

(
−

�
�
�
�

��n+r

∑
j=n+2

ξr
n+1,j − 2αn+1αn+r+1 +

��
���

���z−1

∑
s=r+1

ξs
n+1,n+r+1

)
= −α+((p1 − 1)α+ + q1α−), (A.45)

where we used αn+1 = α+. We conclude that (A.41) is equal to

−((p1 − 1)α+ + q1α−)(p1α+ + (q1 − 1)α−). (A.46)

Now let us work out the second sum in (8.48).

n

∑
i=1

n

∑
j 6=i

αiαj =
n

∑
i=1

(2α0αi − α2
i ) +

n

∑
i=1

αi(−p1α+ − q1α−)

= −1
2

n

∑
i=1

∆(αi)− (p1α+ + q1α−)((1− p1)α+ + (1− q1)α−). (A.47)

(A.46) + (A.47) is equal to

1− 1
2 ∑

i
∆(αi), (A.48)

like we wanted to show.
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B Single-variable Mellin transform

The standard definition of the Mellin transform ϕ(s) of a function f (z) is given by

ϕ(s) =
∫ ∞

0
dz f (z) zs−1 , f (z) =

∫ c+i∞

c−i∞

ds
2πi

ϕ(s) z−s . (B.1)

Notice that this definition of ϕ(s) only makes sense if the first integral converges for at
least some values of s. Assuming that f (z) does not have any (non-integrable) singularity
for z > 0, the convergence region is determined by the asymptotic behavior 1

z→ 0 : f (z) = A1z−a1 + A2z−a2 + . . . , a1 > a2 > . . . (B.2)

z→ ∞ : f (z) = B1z−b1 + B2z−b2 + . . . , b1 < b2 < . . . (B.3)

Clearly, the first integral converges in the strip a1 < Re s < b1. In this case, for the
contour of the second integral we can pick any c such that a1 < c < b1.

What if b1 < a1 and therefore the first integral in (B.1) never converges? We shall now
argue that even in this case the Mellin transform can still be defined by allowing a bent
contour in the second integral in (B.1). The idea is very simple. We just split the first
integral in two parts

ψ(s) =
∫ 1

0
dz f (z) zs−1 , ψ̃(s) =

∫ ∞

1
dz f (z) zs−1 . (B.4)

The asymptotics (B.2) imply that ψ(s) is defined and analytic for Re s > a1 and the
asymptotics (B.3) imply that ψ̃(s) is defined and analytic for Re s < b1. Therefore, we

1We focus on power-like asymptotic behavior because that is the most relevant in the case of Mellin
amplitudes. However, the discussion easily generalizes for more general asymptotics. For example,
exponential decay as z→ ∞ leads to convergence for Re s > a1 and logarithmic behavior like z−a(log z)n

does not change the convergence region but leads to higher order poles of ϕ(s).

145



Appendix B. Single-variable Mellin transform

can write

f (z) =
∫ c1+i∞

c1−i∞

ds
2πi

ψ(s) z−s +
∫ c2+i∞

c2−i∞

ds
2πi

ψ̃(s) z−s (B.5)

with c1 > a1 and c2 < b1. The next step is to deform the contours of these two integrals
to the same bent contour C without crossing any singularity of the respective integrands.
This is depicted in figure B.1. If this is possible then we can write

f (z) =
∫

C

ds
2πi

ϕ(s) z−s , ϕ(s) = ψ(s) + ψ̃(s) . (B.6)

C2 C1

C

Figure B.1. Singularities in the complex plane of s. Blue balls represent the poles of ψ(s), black
crosses represent the poles of ψ̃(s). Notice that we can gather the two straight contours C1 and
C2 into a bent contour C, that separates poles to the left from poles to the right.

Bending the contours requires analytic continuation of ψ and ψ̃ beyond the region of
convergence of the integrals (B.4). This is easily done by adding and subtracting the
asymptotic behaviour of f (z). For example,

ψ(s) =
∫ 1

0
dz zs−1 [ f (z)− A1z−a1 + A1z−a1

]
=
∫ 1

0
dz zs−1 [ f (z)− A1z−a1

]
+

A1

s− a1
(B.7)

where the last integral converges in the larger region Re s > a2. By adding and subtract-
ing more terms in the asymptotic expansion of f (z) we can further analytically continue
ψ and ψ̃. Furthermore, we conclude that the asymptotic behaviour (B.2) and (B.3) gives
rise to simple poles of the Mellin transform ϕ(s) at s = ai and s = bi as shown in figure
B.1. Thus, it is possible to bend the contours without crossing any singularity if and only
if none of the poles of ψ (at s = ai) coincides with a pole of ψ̃ (at s = bi). If there is a pole
coincidence (ai = bj for some i and j) one can introduce a small parameter ε and define

f (z) = lim
ε→0

∫
C

ds
2πi

ϕε(s) z−s , ϕε(s) = ψ(s + ε) + ψ̃(s− ε) . (B.8)
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Notice that the limit does not commute with the integral when the contour is pinched
by two poles that collide in the limit ε→ 0. In fact, in this case, we obtain

f (z) =
∫

C′

ds
2πi

ϕ(s) z−s + ∑
i

Aiz−ai (B.9)

where the sum runs over the set of colliding poles. The contour C′ passes to the left of
all poles of ψ̃ and to the right of all poles of ψ, except those that are common.

Consider the simple example f (z) = z−r. Then

ψ(s) =
1

s− r
, ψ̃(s) =

1
r− s

, ϕ(s) = 0 , ϕε(s) =
2ε

ε2 − (s− r)2 , (B.10)

and indeed

f (z) = lim
ε→0

∫ r+i∞

r−i∞

ds
2πi

2ε

ε2 − (s− r)2 z−s = z−r lim
ε→0

∫ ∞

−∞

dy
2π

2ε

ε2 + y2 z−iy (B.11)

= z−r
∫ ∞

−∞
dyδ(y) z−iy = z−r .
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C Bochner’s theorem

For completeness we reproduce the statement and proof of Bochner’s theorem from
the book [111]. Suppose Ω0 is a non-empty, connected, open set in Rn, with n > 1, not
necessarily convex. Let f be a holomorphic function of n complex variables, defined on
Ω0 + iRn. Suppose that f does not grow too much at infinity, i. e. that for x ∈ Ω0 there
is an N ∈N such that

| f (x + iy)| � e|y|
2N

, (C.1)

where |y|2 = y2
1 + ... + y2

n. Then, f can be holomorphically entended to Ω + iRn, where
Ω is the convex hull of Ω0.

The proof consists of an application of Cauchy’s residue theorem in 1 dimension. Let
x and ξ be two points in Ω0. Consider the complex plane parametrized by j(s) ≡
x + s(ξ − x) with s ∈ C. We can define a rectangle R with sides s = it and s = 1− it
for −t0 6 t 6 t0 and t0 is a positive number that we will eventually take to ∞. The
top and bottom of the rectangle are given by s = ±it0 + u with 0 < u < 1. Notice
that the rectangle R passes through x = j(0) and ξ = j(1). Now, we consider a point
j(ζ) = x + ζ(ξ − x) inside this rectangle. In other words, ζ is a complex number with
0 < Re ζ < 1. Then we can write

W (j(ζ)) f (j(ζ)) = lim
t0→∞

∫
R

ds
2πi

W (j(s)) f (j(s))
ζ − s

(C.2)

=
1

2π

∫ +∞

−∞
dt

W (j(it)) f (j(it))
ζ − it

+
1

2π

∫ +∞

−∞
dt

W (j(1− it)) f (j(1− it))
ζ − 1 + it

,

where W is an auxiliary analytic function that ensures that the top and the bottom of the
rectangle do not contribute in the limit of large t0. For example, we can take

W(x) = ex2Q
(C.3)
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Appendix C. Bochner’s theorem

for Q odd and Q > N. In fact, the condition (C.1) could be weakened by choosing
another W. The first line of (C.2) is valid if the rectangle is contained in Ω0 + iRn.
Remarkably, the second line of (C.2) is valid more generally. It is sufficient that both
x, ξ ∈ Ω0 because the limit t0 → ∞ removed the top and the bottom of the rectangle. In
this way we extended the domain of analyticity to the convex hull of Ω0.
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D Analytic continuation of K(γ12, γ14)

We would like to show that

K(γ12, γ14) ≡
∫ 1

0

du
u

∫ 1

0

dv
v

uγ12 vγ14 f (u, v) , (D.1)

can be defined for all γ12, γ14 in the complex plane, except at the OPE singularities:
γ12, γ14 = ∆− τ

2 −m, where τ is the twist of an exchanged primary and m is a nonnega-
tive integer. The integral above is well-defined for Re(γ12) > ∆ and Re(γ14) > ∆. Our
task is to analytically continue (D.1) beyond this region. Firstly, we will show that this
can be done for regions [b] and [c] of figure 2.1. Secondly, we will discuss the case of
region [d] where we do not have a rigorous proof. Finally, we discuss the asymptotic
behaviour of K-functions.

D.1 Regions [b] and [c]

It is convenient to use the following expansion of the four point function

f (u, v) = ∑
τ,l

aτ,lu−∆+ τ
2 (zl + z̄l) (D.2)

that holds almost everywhere in the integration region (u, v) ∈ [0, 1]× [0, 1]. We sum
over exchanged operators (both primaries and descendants) of twist τ and spin l (see
[28]) and the variables z, z̄ are defined by the usual relations u = zz̄ and v = (1− z)(1−
z̄). The only points in that square where the expansion does not work are at v = 0 and
u = 1. The coefficients aτ,l are positive. When it converges, the series (D.2) converges
absolutely in each point.

Equation (D.2) will be an essential ingredient in our argument for analyticity of K
functions and consequently of Mellin amplitudes. So, we can say that analyticity of
Mellin amplitudes follows from the fact that CFT correlation functions enjoy an operator
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product expansion, whose coefficients have a definite sign for unitary theories. We
expect this to be also true for non-identical operators though.

Let us suppose that Re(γ14) > ∆ and let us attempt to analytically continue in γ12. The
first step consists in dividing the integration region into two regions.

K(γ12, γ14) ≡
∫ 1

2

0

du
u

∫ 1

0

dv
v

uγ12 vγ14 f (u, v) (D.3)

+
∫ 1

1
2

du
u

∫ 1

0

dv
v

uγ12 vγ14 f (u, v).

The second integral is completely analytic in γ12. From now on, we will refer ourselves
only to the first integral. The usefulness of using these regions will be clear in a moment.

In order to analytically continue beyond the region Re(γ12) > ∆ we add and subtract
the twist contributions up to to some twist τmax:

∫ 1
2

0

du
u

∫ 1

0

dv
v

uγ12 vγ14 f (u, v) =
∫ 1

2

0

du
u

∫ 1

0

dv
v

uγ12 vγ14 fsub(u, v) (D.4)

+
∫ 1

2

0

du
u

∫ 1

0

dv
v

uγ12 vγ14 ∑
l

∑
τ<τmax

aτ,l u−∆+ τ
2 (zl + z̄l) ,

(D.5)

where

fsub(u, v) = f (u, v)−∑
l

∑
τ<τmax

aτ,l u−∆+ τ
2 (zl + z̄l) . (D.6)

Let us show that the first term in the rhs of (D.4) is analytic in Re(γ12) > ∆− τmax
2 and

Re(γ14) > ∆. In order to do this, we need to bound fsub(u, v) in the lightcone limits
u→ 0, v→ 0 and the double lightcone limit u, v→ 0.

Start by noticing that fsub(u, v) ∼ u−∆+ τmax
2 in the lightcone limit u → 0, due to the

subtractions that we made. In the lightcone limit v→ 0, the function fsub(u, v) cannot
be more singular than f (u, v). This is because in that limit f (u, v) is a sum of positive
terms (see (D.2)) and to get fsub(u, v) we just subtracted some of these terms. Thus, in
the limit v→ 0, fsub(u, v) cannot be more singular than v−∆.

Finally, we need to bound fsub(u, v) in the double lightcone limit. fsub(u, v) has the
following series expansion

fsub(u, v) = ∑
l

∑
τ>τmax

aτ,lu−∆+ τ
2 (zl + z̄l). (D.7)
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D.1. Regions [b] and [c]

We proceed like in section (1.5). Let us switch to z, z̄ coordinates. We find that

(z1z̄1)
∆− τmax

2 fsub(z1, z̄1) < (z2z̄1)
∆− τmax

2 fsub(z2, z̄1), (D.8)

if 0 < z1 < z2. Now let us suppose z1 ∼ 0. This corresponds to u → 0 on the lhs.
Furthermore, let us take the limit z̄→ 1. This correponds to the double lightcone on the
lhs and to the lightcone limit v→ 0 on the rhs. We conclude that

fsub(u, v) ∼ u−∆+ τmax
2 v−∆, (D.9)

where by ∼ above we mean that the lhs is not more singular than the rhs. Thus, the rhs
of (D.4) is analytic in Re(γ12) > ∆− τmax

2 and Re(γ14) > ∆.

Let us consider now the second term in (D.5). It is clear that this term is well-defined
for Re(γ12), Re(γ14) > ∆. We will show that we can commute the sum with the
integral. Afterwards, we will analytically continue into the region Re(γ12) > ∆− τmax

2 ,
Re(γ14) > ∆, except at the points where γ12 = ∆− τ

2 , for any twist τ exchanged. Those
are the OPE singularities.

We make use of the Fubini-Tonelli theorem, which says that commuting the sum with
the integral is allowed in case of absolute convergence

∫ 1
2

0

du
u

∫ 1

0

dv
v

uγ12 vγ14 ∑
l

∑
τ<τmax

aτ,l u−∆+ τ
2 |zl + z̄l | < ∞ . (D.10)

We divide the integral into two parts, the Lorentzian region v 6 (1−√u)2, and the
Euclidean region (1−√u)2 6 v 6 1 (see figure 1.1).

In the Lorentzian region, z and z̄ are real and positive. So, the modulus in (D.10) does
nothing. Thus, we can commute the sum with the integral over there. Consider now
the Euclidean region. In the Euclidean region, z and z̄ are the complex conjugate of
each other. Note that |zl + z̄l |(u,v) 6 (zl + z̄l)(u,(1−√u)2). This is because (u, v) and
(u, (1−√u)2) have the same value of |z|, but in the second case z and z̄ are positive real
numbers. In the Euclidean region

∫ 1
2

0

du
u

∫ 1

(1−√u)2

dv
v

uγ12 vγ14 ∑
τ,l

aτ,l u−∆+ τ
2 |zl + z̄l | 6

∫ 1
2

0

du
u

∫ 1

(1−√u)2

dv
v

uγ12 vγ14 f (u, (1−
√

u)2)

=
∫ 1

2

0

du
u

uγ12 f (u, (1−
√

u)2)
1

γ14
(1− (1−

√
u)2γ14). (D.11)

If Re(γ12) > ∆, then this integral is well defined. Note that it was important that the
integral in (D.11) did not go up to u = 1. This was why we made the separation (D.3).
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We conclude that∫ 1
2

0

du
u

∫ 1

0

dv
v

uγ12 vγ14 ∑
l

∑
τ<τmax

aτ,l u−∆+ τ
2 (zl + z̄l) (D.12)

= ∑
l

∑
τ<τmax

aτ,lκl(γ12 − ∆ +
τ

2
, γ14),

where

κl(γ12, γ14) =
∫ 1

2

0

du
u

∫ 1

0

dv
v

uγ12 vγ14(zl + z̄l). (D.13)

We conclude that when Re(γ12), Re(γ14) > ∆, then K(γ12, γ14) can be written as

K(γ12, γ14) =
∫ 1

1
2

du
u

∫ 1

0

dv
v

uγ12 vγ14 f (u, v) +
∫ 1

2

0

du
u

∫ 1

0

dv
v

uγ12 vγ14 fsub(u, v) (D.14)

+ ∑
l

∑
τ<τmax

aτ,l κl

(
γ12 − ∆ +

τ

2
, γ14

)
.

Let us consider analytic continuation of (D.14) in γ12, keeping Re(γ14) > ∆ fixed. The
first two terms in (D.14) are analytic for Re(γ12) > ∆− τmax

2 . We will now argue that the
analytic continuation of the last sum in (D.14) is analytic for all γ12 in the complex plane
as long as

Re(γ12) > ∆− τmax

2
,

∣∣∣γ12 − ∆ +
τ

2
+ m

∣∣∣ > ε , (D.15)

where ε > 0 is a small regulator to avoid the OPE poles, τ is the twist of any exchanged
operator and m is a non-negative integer. Firstly, we will discuss the analytic continua-
tion of each term κl

(
γ12 − ∆ + τ

2 , γ14
)
. Secondly, we will discuss the convergence of the

(infinite) sum in (D.14).

Notice that when l is a positive integer, then zl + z̄l is a polynomial of degree l in u and
v. In fact, one can write

κl(γ12, γ14) = 2−γ12
l

∑
m=0

rl,m(γ14)

γ12 + m
, (D.16)

where rl,m(γ14) is a rational function. This shows that the analytic continuation of each
term κl

(
γ12 − ∆ + τ

2 , γ14
)

generates only OPE singularities at γ12 = − τ
2 + ∆−m, where

τ is the twist of an exchanged primary operator and m is a nonnegative integer.

Now we would like to show that the sum over twists and spin in (D.14) converges for
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D.1. Regions [b] and [c]

any γ12 as long as (D.15) is satisfied. We start by writing an upper bound∣∣∣∣∣∑l
∑

τ<τmax

aτ,l κl

(
γ12 − ∆ +

τ

2
, γ14

)∣∣∣∣∣ ≤∑
l

∑
τ<τmax

aτ,l

∣∣∣κl

(
γ12 − ∆ +

τ

2
, γ14

)∣∣∣ (D.17)

≤∑
l

∑
τ<τmax

aτ,l max
Re x>(τ−τmax)/2

|x+m|>ε

|κl (x, γ14)|

≤∑
l

Al max
Re x>−τmax/2
|x+m|>ε

|κl (x, γ14)| (D.18)

where Al = ∑τ<τmax
aτ,l . It is clear from (D.16) that the maximum is finite for every

value of the spin l. Therefore, convergence of the sum follows from the large l behaviour
of the summand. To understand this it is convenient to make a small detour into the
Lorentzian region.

Consider the convergent sum (for Re(γ12), Re(γ14) > ∆)

W ≡∑
l

∑
τ<τmax

aτ,l κLor
l

(
γ12 − ∆ +

τ

2
, γ14

)
<
∫ 1

2

0

du
u

∫ (1−√u)2

0

dv
v

uγ12 vγ14 f (u, v) ,(D.19)

where

κLor
l (γ12, γ14) =

∫ 1
2

0

du
u

∫ (1−√u)2

0

dv
v

uγ12 vγ14(zl + z̄l). (D.20)

Since all terms are positive and u ≤ 1
2 in the integration region, we have a lower bound

W > ∑
l

Al κLor
l (γ12 − ∆ +

τmax

2
, γ14) . (D.21)

Convergence of this sum implies a bound on the asymptotic growth of Al at large spin.
Let us compute the large spin behavior of κLor

l . When l → ∞, we find

κLor
l (γ12, γ14) =

∫ 1
2

0

du
u

∫ (1−√u)2

0

dv
v

uγ12 vγ14(zl + z̄l)

=
∫ 1

0
dz
∫ min{1, 1

2z }

0
dz̄|z− z̄|(zγ12−1+l(1− z)γ14−1z̄γ12−1(1− z̄)γ14−1)

≈ 1
lγ14

Γ(γ14)B 1
2
(γ12, γ14 + 1) , (D.22)

where we used the incomplete β-function. Therefore,

∑
l

Al
1

lγ14
< ∞ , Re(γ14) > ∆ . (D.23)

It turns out that this is sufficient to prove convergence of (D.18) for Re(γ14) > ∆. The
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reason is that

κl (γ12, γ14) ≈ κLor
l (γ12, γ14) , l → ∞ , (D.24)

up to exponential corrections of order 2−l/2 coming from the Euclidean region. When
l → ∞, the integral in (D.13) is dominated by the region near v = 0, since z (or z̄
depending on our choice) achieves its maximum value 1 there.

In this way we established analyticity in region [b] up to OPE poles. The same analyticity
in region [c] follows from crossing symmetry K(γ12, γ14) = K(γ14, γ12).

D.2 Region [d]

Let us use the trick of Bochner’s theorem as reviewed in C. We introduce a complex
plane parametrized by s embedded in C2 as

~γ(s) = ~γ(0) + s(~γ(1)− ~γ(0)) , ~γ(0) = (γ
(0)
12 , γ

(0)
14 ) , ~γ(1) = (γ

(1)
12 , γ

(1)
14 ) (D.25)

First we choose γ
(1)
12 > γ

(0)
12 > ∆ and γ

(0)
14 > γ

(1)
14 > ∆ so that both ~γ(0) and ~γ(1) are in

region [a]. This allows us to write the following representation for the K-function,

KW (~γ(ζ)) =
∫ dt

2π

KW (~γ(it))
ζ − it

+
∫ dt

2π

KW (~γ(1− it))
ζ − 1 + it

(D.26)

where 0 < Reζ < 1 and KW denotes the product of the K-function by an holomorphic
function W that decays fast along the imaginary direction as explained in C.

Notice that the function K (~γ(s)) has poles at

s = s(12)
τ ≡ ∆− τ/2− γ

(0)
12

γ
(1)
12 − γ

(0)
12

, (D.27)

and

s = s(14)
τ ≡ ∆− τ/2− γ

(0)
14

γ
(1)
14 − γ

(0)
14

= 1 +
∆− τ/2− γ

(1)
14

γ
(1)
14 − γ

(0)
14

. (D.28)

For our choice of ~γ(0) and ~γ(1), the poles obey s(12)
τ < 0 and s(14)

τ > 1 as required by the
conditions of Bochner’s theorem.

Now let us move ~γ(0) into region [b] and ~γ(1) into region [c] as depicted in figure D.1.
In other words we decrease γ

(0)
12 and γ

(1)
14 below ∆. Under this deformation, there are

poles that cross the contours along s = it and s = 1− it for t ∈ R. This will change
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Re[γ12]

Re[γ14] [a][b]

[c][d]

(0, 0)

(∆, ∆)

(∆
3 , ∆

3

)

(
−∆

2 , ∆
)

(
∆,−∆

2

)

~γ(0)

~γ(1)

~γ(ζ)

Figure D.1. Construction that leads to equations (D.29) and (D.30). We represent the case
∆ = τlightest and therefore τ∗ = 2∆. We can establish analyticity in the shaded domain without
crossing the accumulation point of accumulation points of triple-twist operators (marked with
dashed lines).

equation (D.26) into

KW (~γ(ζ)) =
∫ dt

2π

KW (~γ(it))
ζ − it

+
∫ dt

2π

KW (~γ(1− it))
ζ − 1 + it

(D.29)

+ ∑
s(12)

τ >0

Res
s=s(12)

τ
KW (~γ(s))

ζ − s(12)
τ

+ ∑
s(14)

τ <1

Res
s=s(14)

τ
KW (~γ(s))

ζ − s(14)
τ

Notice that if we denote ~γ(ζ) = (γ12, γ14) then the last equation can be written as

KW (γ12, γ14) =
∫ dt

2π

KW (~γ(it))
ζ − it

+
∫ dt

2π

KW (~γ(1− it))
ζ − 1 + it

+ ∑
τ<2(∆−γ

(0)
12 )

Resγ12=∆−τ/2KW
(

γ12, γ14(s
(12)
τ )

)
γ12 − ∆ + τ/2

(D.30)

+ ∑
τ<2(∆−γ

(1)
14 )

Resγ14=∆−τ/2KW
(

γ12(s
(14)
τ ), γ14

)
γ14 − ∆ + τ/2

Equations (D.29) or (D.30) imply analyticity of the K-function at ~γ(ζ) = (γ12, γ14) as
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long as: i. we place ~γ(0) and ~γ(1) in an analytic domain inside region [b] and region [c],
respectively; ii. the sums converge. Condition i. is easy to satisfy if the twist spectrum
is not continuous. Although this is an open question for high twist in CFTd > 2, it is
clear that at least until the first accumulation point of accumulation points (triple-twist
operators) the spectrum is discrete. Condition ii. is more non-trivial. Let us consider
several cases of increasing difficulty:

� The sums converge because they contain finite number of terms. This is the case if
we do not cross any accumulation point, i.e. for ∆− τ∗/2 < γ

(0)
12 , γ

(1)
14 < ∆.

� We cross only one twist accumulation point τ∗. For example, take γ
(0)
12 < ∆− τ∗/2.

In this case, the infinite sum over twists accumulating at τ∗ only converges if the
intersection of γ12 = ∆− τ∗/2 with the straight line through ~γ(0) and ~γ(1) has
γ14 = γ14(s

(12)
τ∗ ) > ∆ because of (D.23). Fortunately, this last condition can be

relaxed by choosing a function W that vanishes like (γ12 − ∆ + τ∗/2)p at γ12 =

∆− τ∗/2 for some integer p > 0. This makes the residues in (D.30) smaller as we
approach the accumulation point and therefore extends the convergence of the
sum to γ14(s

(12)
τ∗ ) > ∆− p τgap.1

� We cross only a finite number of double-twist accumulation points τ∗ + 2n in both
region [b] and region [c]. This case can be treated similarly to the previous one. It is
enough to choose a function W that vanishes sufficiently fast at γ12 = ∆− τ∗/2− n
and γ14 = ∆− τ∗/2− n for a finite set of integers n. Notice that if ∆ = τlightest

then τ∗ = 2∆ and this allows us to prove analyticity in the corner of region [d]
with γ13 < ∆

2 (see figure D.1). This region contains the crossing symmetric point
γ12 = γ13 = γ14 = ∆

3 .

� We cross an infinite number of twist accumulation points. For example, we cross
the triple-twist accumulation point of accumulation points at γ12 = ∆− 1

2 τtriple.

Conservatively, the sums converge as long as the intersection γ14(s
(12)
3τ∗/2) > ∆. This

is not sufficient to extend the region of analyticity beyond the previous case.

D.3 Asymptotic behavior of K functions and of the Mellin am-
plitude

K functions decay polynomially at infinity. This can be seen starting from their definition:

K(γ12, γ14) =
∫ 1

0

du
u

∫ 1

0

dv
v

F(u, v)uγ12 vγ14 . (D.31)

When γ12, γ14 → i∞ this integral is dominated by u = v = 1 and so we obtain
K(γ12, γ14) ∼ 1

γ12γ14
. Subleading corrections to this behaviour can be computed by

1Here we used the large spin behaviour τ∗ − τ(l) ∼ l−τgap from the lightcone bootstrap.
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expanding the correlation function close to the crossing symmetric point u = v = 1.

By contrast, the Mellin amplitude

M(γ12, γ14) = K(γ12, γ14) + K(γ13, γ14) + K(γ12, γ13) (D.32)

decays exponentially at infinity. We proved this for the cases in which the theorem of
section (1.1) applies. This also happens in every example.

Since the Mellin amplitude can be written as a sum of functions that decay polynomially,
it is not obvious how come it can decay exponentially from the point of view of K
functions. Let us see that crossing symmetry implies that it does not decay polynomially.
We check this in some simple examples but not in full generality in the sense that we
will see next. Indeed consider expression (D.31) and expand

F(u, v) =
N

∑
n,m=0

an,m(1− u)n(1− v)m (D.33)

where N is some positive integer. Crossing relates different an,m to each other. If we plug
the function K(γ12, γ14) thus obtained into (D.32), we seem to obtain that M(γ12, γ14)

decays polynomially. However notice that the coefficients an,m are not all arbitrary and
they are constrained by crossing symmetry2. For this reason many cancellations occur
and one obtains that M(γ12, γ14) ∼ 1

γN
12γN

14
. We checked this up to N = 10 and we believe

that it holds for arbitrary N.

2A similar idea was pursued in [112].
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E Examples

E.1 Examples of K-functions

E.1.1 Free fields

Consider a free scalar field φ of conformal dimension ∆. Then, for 〈φφφφ〉 we have

F(u, v) = 1 + u−∆ + v−∆, (E.1)

K(γ12, γ14) =
1

γ12γ14
+

1
γ12(γ14 − ∆)

+
1

(γ12 − ∆)γ14
. (E.2)

The corresponding Mellin amplitude is 0.

For the case O = 1√
2N ∑N

i=1 φiφi in free scalar theory, we have

F(u, v) = 1 + u−∆ + v−∆ +
4
N
(u−

∆
2 + v−

∆
2 + u−

∆
2 v−

∆
2 ), (E.3)

K(γ12, γ14) =
1

γ12γ14
+

1
γ12(γ14 − ∆)

+
1

(γ12 − ∆)γ14
(E.4)

+
4
N

(
1

(γ12 − ∆
2 )(γ14 − ∆

2 )
+

1
γ12(γ14 − ∆

2 )
+

1
(γ12 − ∆

2 )γ14

)
. (E.5)

The corresponding Mellin amplitude is 0.

E.1.2 The correlator 〈σσσσ〉 in 2D Ising

In the 2d Ising model,

〈σσσσ〉 = 1

x
1
4
13x

1
4
24

F(u, v) =
1

x
1
4
13x

1
4
24

∫ dγ12

2πi

∫ dγ14

2πi
M̂(γ12, γ14)u−γ12 v−γ14 , (E.6)
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with

F(u, v) =

√√
u +
√

v + 1√
2 8
√

uv
, (E.7)

M̂(γ12, γ14) = −
√

2
π

Γ
(

2γ12 −
1
4

)
Γ
(

2γ14 −
1
4

)
Γ(−2γ12 − 2γ14). (E.8)

We will compute K(γ12, γ14) in two ways. The first way is the following. Consider

Q(γ12, γ14) =
∫ 1

0

dv
v

∫ v

0

du
u

uγ12 vγ14 F(u, v). (E.9)

Then, F(u, v) = F(v, u) implies

K(γ12, γ14) = Q(γ12, γ14) + Q(γ14, γ12). (E.10)

Our goal is to compute Q(γ12, γ14) by expanding F(u, v) in a power series expansion
around u = 0.

For a generic CFT, we would proceed in the following manner. We write 1

F(u, v) = ∑
k

C2
OOOk

u
τk
2 −∆

∞

∑
m=0

umgm(v), (E.11)

where ∆ is the conformal dimension of the external scalar, τk is the twist of an exchanged
primary, C2

OOOk
is an OPE coefficient and finally gm(v) is a collinear block. Suppose

we put equation (E.11) into (E.9). Notice that the integral (E.9) does not involve v = 0,
which is where the expansion (E.11) should fail. We find

K(γ12, γ14) = ∑
k

C2
OOOk

∞

∑
m=0

( 1
γ12 +

τk
2 − ∆ + m

(E.12)

+
1

γ14 +
τk
2 − ∆ + m

) f τk
m (γ13),

where

f τk
m (x) =

∫ 1

0

dy
y

y−x+ τk
2 +mgm(y) (E.13)

is a kinematical function. In practice, it was difficult to compute it for general m. We

1Presumably, expansion (E.11) converges on the square (u, v) ∈ [0, 1]× [0, 1], except for v = 0. But we
could not prove it.
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register the result for m = 0:

g0(v) = (v− 1)J
2F1

(
1
2
(2J + τ),

1
2
(2J + τ); 2J + τ; 1− v

)
, (E.14)

f τk
0 (γ13) = (−1)J22J+τ−1Γ(J + 1)Γ

(
J +

τ

2

)
Γ
(

J +
τ

2
+

1
2

)
Γ
(τ

2
− γ13

)
(E.15)

3F2

(
J + 1, J +

τ

2
, J +

τ

2
; J +

τ

2
− γ13 + 1, 2J + τ; 1

) 1√
πΓ(2J + τ)Γ

(
J − γ13 +

τ
2 + 1

) .

In the case of the 2d Ising model, F(u, v) is simple enough to admit a power series
expansion in u. From (E.7), we find

F(u, v) =
∞

∑
n=0

(−1)n+1Γ(n− 1
2 )
(√

v + 1
) 1

2−n un/2

2
√

2πΓ(n + 1)(uv)
1
8

(E.16)

where the expansion converges in |√u| < |1 +√v|.

We can now do the integrals to find a series expression for Q(γ12, γ14) and K(γ12, γ14).
We find

K(γ12, γ14) =
∞

∑
n=0

(
1

2γ12 + n− 1
4

+
1

2γ14 + n− 1
4

)
(E.17)

2
5
2−n(−1)n+1Γ(− 1

2 + n) 2F1
(
1, 5

4 − 2γ13; n− 2γ13 +
3
4 ;−1

)
√

2π
(
−2γ13 + n− 1

4

)
Γ(1 + n)

,

where γ13 = 1
8 − γ12 − γ14. This series converges exponentially fast2. We checked for

several values of γ12 and γ14 that using (E.17), then K(γ12, γ14) + K(γ12, 1
8 − γ12− γ14) +

K( 1
8 − γ12 − γ14, γ14) numerically matches (E.8).

Let us outline another way to compute K(γ12, γ14). We first do the u integral. Then, we
attempt to do the v integral. It is more complicated, since the integrand is also more
complicated. So, we series expand the integrand around v = 0. We spare the reader the
details. We find

K(γ12, γ14) =
∞

∑
n=0

gn fn(γ12) fn(γ14), (E.18)

2Note that (E.17) has no poles in γ13, but Q would have poles in γ13. Each term term of the series (E.17)
does have poles in γ13, but the residues of successive terms cancel.
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where

gn = − Γ
(
n− 1

2

)
22n− 3

2
√

πΓ(n + 1)
, (E.19)

fn(γ12) = 2F̃1

(
1, n− 1

2
; 2γ12 + n +

3
4

;
1
2

)
Γ
(

2γ12 + n− 1
4

)
(E.20)

≡ 2F1

(
1, n− 1

2
; 2γ12 + n +

3
4

;
1
2

)
4

8γ12 + 4n− 1
.

This expansion also converges exponentially fast and with it we can obtain the correct
value of M̂(γ12, γ14).

E.2 Mellin representation with a straight contour for 〈σσσσ〉 in
the 2d Ising model

We provide a Mellin amplitude with a straight contour for 〈σσσσ〉 in the 2d Ising model.
The four point function is given by 1

x
1
4
13x

1
4
24

F(u, v), with F(u, v) given by (E.7). For this

correlator, we have explicit expressions for the function K(γ12, γ14), see (E.17) and (E.18).

According to the discussion in section (2.1), we have that

F(u, v) =
∫

Re(γ12)=
1
8+0+

dγ12

2πi

∫
Re(γ14)=

1
8+0+

dγ14

2πi
K(γ12, γ14)u−γ12 v−γ14 (E.21)

+
∫

Re(γ12)=
1
8+0+

dγ12

2πi

∫
Re(γ13)=

1
8+0+

[dγ13]K(γ12, γ13)u−γ12 v−γ14

+
∫

Re(γ13)=
1
8+0+

[dγ13]
∫

Re(γ14)=
1
8+0+

dγ14

2πi
K(γ13, γ14)u−γ12 v−γ14 .

Each of these three integrals should be done with a straight contour. Consider the
first integral. We can deform its contour until we reach the crossing symmetric point
Re(γ12) =

1
24 , Re(γ14) =

1
24 . In the process, we pick up some poles, which will give us

the appropriate subtractions to perform to the correlator. We do the same procedure for
all three integrals on the rhs of (E.21). At the end, we reunite the three integrals into
a single integral with a straight contour at the crossing symmetric point Re(γ12) =

1
24 ,

Re(γ14) =
1
24 .

Let us work out this procedure for the first integral on the rhs of (E.21).∫
Re(γ12)=

1
8+0+

dγ12

2πi

∫
Re(γ14)=

1
8+0+

dγ14

2πi
K(γ12, γ14)u−γ12 v−γ14 (E.22)

=
∫

Re(γ12)=
1
24

dγ12

2πi

∫
Re(γ14)=

1
24

dγ14

2πi
K(γ12, γ14)u−γ12 v−γ14
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+u−
1
8

∫
Re(γ14)=

1
8+0+

dγ14

2πi
K̂(γ12 =

1
8

, γ14)v−γ14

+v−
1
8

∫
Re(γ12)=

1
24

dγ12

2πi
K̂(γ12, γ14 =

1
8
)u−γ12 ,

where we used hats to denote the residues.

Let us now evaluate the integrals.

u−
1
8

∫
Re(γ14)=

1
6

dγ14

2πi
K̂(γ12 =

1
8

, γ14)v−γ14

= u−
1
8

∫
Re(γ14)=

1
6

dγ14

2πi
2F1(1,− 1

2 , 2γ14 +
3
4 , 1

2 )

γ14 − 1
8

v−γ14 = θ(1− v)

√
1 +
√

v√
2u

1
8 v

1
8

and

v−
1
8

∫
Re(γ12)=

1
24

dγ12

2πi
K̂(γ12, γ14 =

1
8
)u−γ12 (E.23)

= θ(1− u)

√
1 +
√

u√
2u

1
8 v

1
8
− 1√

2
1

u
1
8 v

1
8

.

We proceed similarly concerning the other two integrals in (E.21). We conclude that if
we define

Fsub(u, v) = F(u, v)−
√

1 +
√

u +
√

1 +
√

v +
√√

u +
√

v√
2(uv)

1
8

+
u−

1
8 v−

1
8 + u−

1
8 v

1
8 + u

1
8 v−

1
8√

2
,

then

Fsub(u, v) =
∫

Re(γ12)=
1
24

dγ12

2πi

∫
Re(γ14)=

1
24

dγ14

2πi
M(γ12, γ14)u−γ12 v−γ14 , (E.24)

where the Mellin integral is evaluated with a straight contour at Re(γ12) = Re(γ14) =
1

24
and M(γ12, γ14) is given by (E.8). We checked equation (E.24) for several values of u
and v by performing the Mellin integral numerically. Fsub(u, v) is crossing symmetric
and is softer than F(u, v) in the lightcone limit as well as in the double lightcone limit.

E.3 φ3 in 6 + ε dimensions

In this section we check some statements in section 2.1 for the example of φ3 theory in
6 + ε dimensions at the critical point.

Consider the contribution to 〈φφφφ〉 given by the three diagrams in figure E.1.
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Figure E.1. The connected piece of 〈φφφφ〉 at tree level. To first order in ε, the scalar φ has
dimension ∆ = 2 + 5

9 ε.

The main results of section 2.1 are equations (2.19) and (2.41). Our goal in this section is
to show that such equations are correct for the four point function in figure E.1.

φ3 in 6 + ε dimensions was studied in [113] using the skeleton expansion. It was found
in [113] that the first diagram in figure E.1 is equal to

C2
φφφ

Γ(∆)Γ( d−∆
2 )2

π
d
2 Γ(∆

2 )
2Γ( d−2∆

2 )

1
x3∆−d

12 x∆
34

∫ ddx5

xd−∆
12 xd−∆

25 x∆
35x∆

45

(E.25)

= C2
φφφ

Γ(∆)
Γ( d−2∆

2 )Γ(∆
2 )

4

1
x2∆

12 x2∆
34

u
d−∆

2 D̄ d−∆
2 , d−∆

2 , ∆
2 , ∆

2
(u, v),

where Cφφφ is an OPE coefficient.

We can obtain a Mellin representation for (E.25) using Symanzik’s trick (8.19). Expression
(E.25) is equal to

C2
φφφ

Γ(∆)
Γ(∆

2 )
4Γ( d−2∆

2 )

1
x2∆

13 x2∆
24

∫
Re(γ12)=

2
3 ∆

dγ12

2πi

∫
Re(γ14)=

1
6 ∆

dγ14

2πi
Mdiag(γ12, γ14)u−γ12 v−γ14 ,

(E.26)

where

Mdiag(γ12, γ14) = Γ(γ12 −
∆
2
)Γ(

d
2
− 3

2
∆ + γ12)Γ(γ13)

2Γ(γ14)
2. (E.27)

If we set ε = 0, then

Mdiag(γ12, γ14) = Γ(γ12 − 1)Γ(γ12)Γ2(γ13)Γ(γ14)
2. (E.28)

So, in expression (E.26) the contour is straight and can be placed anywhere in the shaded
triangle in figure E.2.

In order to make contact with formula (2.19) we would like to displace the contour in
(E.26) to (Re(γ12) =

∆
3 , Re(γ14) =

∆
3 ). In order to do this we need to pick up the pole at

γ12 = ∆
2 . Expression (E.26) is equal to

C2
φφφ

Γ(∆)
Γ(∆

2 )
4Γ( d−2∆

2 )

1
x2∆

13 x2∆
24

∫
Re(γ12)=

∆
3

dγ12

2πi

∫
Re(γ14)=

∆
3

dγ14

2πi
Mdiag(γ12, γ14)u−γ12 v−γ14
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γ12 = 0 γ12 = ∆
2

γ14 = 0

γ13 = 0

C

Figure E.2. According to expression (E.28), the contour must be placed to the right of Re(γ12) = 1,
above Re(γ14) = 0 and to the bottom of Re(γ13) = 0. We are thus led to the shaded triangle in
this figure.

+ C2
φφφ

u−
∆
2

x2∆
13 x2∆

24
2F1(

∆
2

,
∆
2

; ∆, 1− v). (E.29)

We see that the subtraction is precisely the collinear block, like we expected.

The full expression for the connected piece of 〈φφφφ〉 at tree level is

〈φφφφ〉 = C2
φφφ

Γ(∆)
Γ(∆

2 )
4Γ( d−2∆

2 )

1
x2∆

13 x2∆
24

( ∫ ∫
C1

dγ12dγ14

(2πi)2 Mdiag(γ12, γ14)u−γ12 v−γ14 (E.30)

+
∫ ∫

C2

dγ12dγ14

(2πi)2 Mdiag(γ13, γ14)u−γ12 v−γ14

+
∫ ∫

C3

dγ12dγ14

(2πi)2 Mdiag(γ14, γ13)u−γ12 v−γ14

)
.

Each of the 3 Mellin integrals has a different integration contour as in figure E.3..

In order to gather all three integrals in (E.30) into a single integral there are two equiva-
lent ways of proceeding. One way is to introduce an ε regularization in order to write a
deformed contour, pick up some poles and then set ε = 0. Another way is to use (E.29)
(and its equivalent for the other) diagrams. Our final formula is

〈φφφφ〉 −
C2

φφφ

x2∆
13 x2∆

24

(
u−

∆
2 2F1(

∆
2

,
∆
2

; ∆, 1− v) (E.31)

+v−
∆
2 2F1(

∆
2

,
∆
2

; ∆, 1− u) + v−
∆
2 2F1(

∆
2

,
∆
2

; ∆, 1− u
v
)

)
=

C2
φφφΓ(∆)

Γ(∆
2 )

4Γ( d−2∆
2 )

1
x2∆

13 x2∆
24

∫
Re(γ12)=

∆
3

dγ12

2πi

∫
Re(γ14)=

∆
3

dγ14

2πi
M(γ12, γ14)u−γ12 v−γ14 , (E.32)
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γ12 = 0 γ12 = ∆
2

γ14 = 0

γ14 = ∆
2

γ13 = ∆
2

γ13 = 0

C2 C1

C3

Figure E.3. The shaded triangles represent the regions where we can put the integration contours
for each of the integrals in (E.26). If we want to gather all three contours into a single deformed
contour, then we run into the problem of having pinches. For example, consider the point in the
picture where Re(γ14) = 0 and Re(γ14) =

∆
2 . In order to have a deformed contour, the contour

must pass to the right of Re(γ12) = ∆
2 , above Re(γ14) = 0 and below Re(γ13) = ∆

2 . This is
impossible without introducing some regularization of the integrals.

for the connected piece of 〈φφφφ〉 at tree level, where

M(γ12, γ14) = Γ2(γ12)Γ2(γ13)Γ2(γ14) (E.33)

×
(

Γ(−∆
2 + γ12)Γ( d

2 − 3∆
2 + γ12)

Γ2(γ12)
+ (γ12 ↔ γ13) + (γ12 ↔ γ14)

)
Formula (E.31) agrees with the equations (2.19) and (2.41) in the main text.
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F Analyticity in a Sectorial Domain
ΘCFT

In this appendix we establish the claim made in the main text about the region of analyt-
icity of the correlator. The idea is to use the convergent OPE to bound the analytically
continued correlator and its derivatives. We start by stating some preliminaries. After-
wards we give a proof that the correlation function is analytic inside the rhombus, see
figure 1.4. Finally, we comment on the case of 〈σσσσ〉 in the 2d Ising model to illustrate
our claims.

F.1 Preliminaries

It is convenient to introduce the standard (z, z̄) coordinates for the cross ratios

u = zz̄,

v = (1− z)(1− z̄) . (F.1)

Let us briefly discuss the relationship between the two coordinates. We first consider
the principal Euclidean sheet which corresponds to u, v > 0. It is convenient to split this
in two regions, see figure 1.1.

In the gray region (z, z̄) coordinates are complex conjugate

Grey region : z̄ = z∗, Im[z] 6= 0. (F.2)

In addition to this, in the colored regions we have for z, z̄ ∈ R

Red region : z, z̄ 6 0,

Blue region : 0 6 z, z̄ 6 1,

Pink region : 1 6 z, z̄ < ∞. (F.3)
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In going from (z, z̄) to (u, v) there is a square root ambiguity and we have to choose a
branch of the continuation

z = 1
4

(√
(1 +

√
u)2 − v +

√
(1−√u)2 − v

)2
,

z̄ = 1
4

(√
(1 +

√
u)2 − v−

√
(1−√u)2 − v

)2
. (F.4)

The branch point is located at z = z̄.

It is also useful to recall (ρ, ρ̄) variables [24]

ρ(z) =
z

(1 +
√

1− z)2
, (F.5)

which map the [1, ∞) cut z-plane into a unit disc. Using the ρ variable we can expand
the correlator as follows [24, 28]

F(z, z̄) = ∑
h,h̄

bh,h̄ρ(z)hρ̄(z̄)h̄, bh,h̄ > 0. (F.6)

This expansion converges for |ρ|, |ρ̄| < 1 and makes the analytic structure in the z-plane
manifest. The correlator has branch points at z, z̄ = 0 which correspond to crossing
the light-cone. Moreover, analytic continuation around the origin simply introduces
phases in the expansion (F.6). Similarly, we can use unitarity to bound the analytically
continued correlator by its value on the principal Euclidean sheet

OPE bound : |F(eiαz, eiβ z̄)| 6 F(z∗, z̄∗), (F.7)

where |ρ
(
eiαz
)
| ≡ ρ(z∗) and |ρ̄

(
eiβ z̄
)
| ≡ ρ(z̄∗). Analogous statements apply for analytic

continuation around z = 1 (if we use the same argument in the crossed channel). We,
however, do not have a corresponding argument in d > 2 for analytic continuation
simultaneously around z = 0 and z = 1. In d = 2 the analytic structure of the correlation
function is the same on every sheet as was shown in [23], thanks to the convergence
properties of the so-called q-expansion. In d > 2 we expect to have extra singularities, a
full classification of which is not known. One simple example discussed in [23, 25] is
the z = z̄ singularity, where continuation on the second sheet in one of the variables is
implicitly assumed. The z = z̄ singularity corresponds to a very simple Landau graph
where external points lie on a light-cone emanating from a point, two in the past and
two in the future. It is also a singularity of an individual conformal block in d > 2,
see [23] for more details.
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F.2 Analyticity from OPE

For arg(u) = arg(v) = 0 the s-channel OPE converges for all u > 0 and v > 0, except for
the region in which v 6 (1−√u)2 and u > 1, this is the pink region on figure 1.1. Let us
consider u, v > 0 inside the region where the s-channel OPE converges and consider the
analytic continuation u→ |u|eiα, v→ |v|eiβ, where we are interested in 0 < |u|, |v| < ∞.
We ask for which values of α and β does the s-channel OPE still converges.

The s-channel OPE will cease to converge whenever we have either z or z̄ bigger or
equal to 1 and real. Without loss of generality, suppose that z̄ > 1 and real. Then we
have the following relation

|v|eiβ = (1− z̄)(1− |u|e
iα

z̄
). (F.8)

Taking the real and imaginary part of this equation, we find

(|u|, |v|) = (− z̄
sin(β)

sin(α− β)
, (1− z̄)

sin(α)
sin(α− β)

). (F.9)

We should read equation (F.9) in the following manner. Given (α, β) it tells us for which
values of |u| and of |v| does the s-channel OPE cease to converge. As explained above,
|u| and |v| must be positive. So, if equation (F.9) implies that |u| and |v| are negative,
then the s-channel OPE converges for such values of α and β (as long as to get to such
values the s-channel OPE converged along the way of the analytic continuation). We
thus obtain the following conditions for convergence of the s-channel OPE

( sin(α) sin(β)) < 0∨
(

sin(α− β) > 0∧ sin(α) > 0∧ sin(β) > 0
)

(F.10)

∨
(

sin(α− β) < 0∧ sin(α) < 0∧ sin(β) < 0
)

,

see figure F.1. At α = β + nπ, with n ∈ N, condition (F.8) does not hold, unless at
possible special points where α = mπ, where m ∈N.

Our argument shows that the s-channel OPE converges in the grey region of figure
(F.1) for all 0 < |u|, |v| < ∞. Indeed, in this region both |ρ|, |ρ̄| < 1 and since the OPE
converges exponentially fast [24], both F(u, v) and any of its ∂u, ∂v derivatives are finite.
This establishes analyticity of F(u, v) inside the grey region. The situation is slightly
different on a boundary of the grey region. Consider for example arg(u) = arg(v) = 0.
As explained above in this case the s-channel OPE converges only for |v| 6 (1−

√
|u|)2

and |u| > 1.

Next we combine the argument above with crossing. Applying crossing symmetry to
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2ππ0−π−2π

−2π

−π

π

2π

arg(v)

arg(u)

Figure F.1. Conditions (F.10) are verified in the pink and grey region. They are not verified
in the white region. The s-channel OPE does not converge at special points that connect the
grey and the pink region at (−π, π), (−π,−π), (π,−π), (π, π). This reflects the fact that when
continuing from the grey to the pink region we necessarily cross the [1, ∞] cut in the z or z̄ plane.
Therefore, the s-channel OPE cannot be used in the pink region.

the grey region of figure (F.1) we find the correlation function is analytic in the whole
sectorial domain given by the rhombus of figure 1.4. The rhombus in figure 1.4 is the
minimal crossing symmetric region that contains the grey regions in figure F.1.

One comment is in order regarding the special point arg(u) = arg(v) = 0 which is the
common boundary point of analyticity of all three OPE channels. In this case as we
mentioned above each of the channels converges only in some subspace of the sectorial
domain 0 < |u|, |v| < ∞. However, the union of them covers it fully and thus we have
established the desired analyticity in ΘCFT.

F.3 2d Ising

For 〈σσσσ〉 in the 2d Ising model we have that F(u, v) =
√√

u+
√

v+1√
2 8√uv

. Suppose that we

start analytically continuing u→ |u|eiα, v→ |v|eiβ. We reach the boundary of the region
of analyticity when 1 + |u|1/2ei α

2 + |v|1/2ei β
2 = 0. Given α and β the boundary of the

region of analyticity is achieved when we start at u, v > 0 such that

(
√

u,
√

v) = (
sin( β

2 )

sin( α−β
2 )

,− sin( α
2 )

sin( α−β
2 )

). (F.11)

We are only interested in the situations where the RHS is positive. It is not possible for
the RHS to be positive inside the rhombus of figure 1.4. So we conclude that 〈σσσσ〉 is
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analytic inside the rhombus.

Let us also comment on the branch point above in relation to the results of [23]. It was
argued in [23] that 2d CFT correlators has only branch point singularities at z, z̄ = 0, 1, ∞
on every sheet. The branch point above on the other hand is at z = z̄. By switching
to the (z, z̄) one can indeed check that the correlator is fully analytic at this point. The
branch point originates from going between the (z, z̄) and (u, v) variables, see (F.4), in
full agreement with the results of [23].
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G Polynomial Boundedness in a Sec-
torial Domain ΘCFT

In this section we present some arguments in favor of the bound on the double light-cone
limit that we used in the main text. Recall that the double light-cone limit is defined
as u, v → 0 with u

v fixed (or some more general path of approaching the origin in the
(u, v) plane). This limit is not controlled by the OPE and therefore an extra analysis is
required.1

G.1 Subtractions and a Bound on the Double Light-Cone Limit

Here we use the asymptotic light-cone expansion on the second sheet to derive a better
bound on the double light-cone limit of the double discontinuity of the correlator.

Consider the full correlation function

F(u, v) = u−∆ ∑
h,h̄

ah,h̄zh z̄h̄. (G.1)

We will be interested in the double discontinuity of the connected correlator

dDiscu[F](u, v) ≡ F(u, v)− 1
2

(
F(ue2πi, v) + F(ue−2πi, v)

)
. (G.2)

Recall that the connected correlator is equal to Fconn(u, v) = F(u, v)− (1 + u−∆ + v−∆).
Therefore we get

dDiscu[Fconn](z, z̄) = 2u−∆ ∑
h,h̄>

τgap
2

sin2 π(h− ∆)ah,h̄zh z̄h̄, (G.3)

where we used that dDiscu[1 + v−∆] = 0 and wrote explicitly that sum goes only over

1See [26] for discussion of this limit in the planar gauge theories and [27] for the corresponding limit in
the vector model.
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operators above the vacuum. Using unitarity we then get

dDiscu[Fconn](z1, z̄1)

(z1z̄1)
τgap

2 −∆
6

dDiscu[Fconn](z2, z̄1)

(z2z̄1)
τgap

2 −∆
, 0 < z1 < z2 < 1 . (G.4)

We know take the limit z̄1 → 1 and use in the RHS asymptotic light-cone expansion
on the second sheet. As reviewed in detail in [114] for a general four-point correlator
it is an assumption. For the case of identical scalars at hand, however, it was argued
for in [28]. We can then take double discontinuity block by block. Since a double
discontinuity of each individual block is zero the leading effect will come from the first
twist accumulation point at some

τgap 6 τ∗ 6 2∆. (G.5)

Using this fact we can write

dDiscu[Fconn](z1, z̄1)

(z1z̄1)
τgap

2 −∆
6 c

[(1− z2)(1− z̄1)]
τ∗
2 −∆

(z2z̄1)
τgap

2 −∆
. (G.6)

In terms of (u, v) the bound becomes

dDiscu[Fconn](u, v) 6
c

u∆− τgap
2 v∆− τ∗

2

, 0 < u, v < c0. (G.7)

Of course, by applying crossing we can write an analogous bound for dDiscv[Fconn](u, v) 6
c

v∆− τgap
2 u∆− τ∗

2
.

Note that if we try to remove dDisc the argument above fails. Indeed, in this case we
cannot write (G.4) because taking the connected part is equivalent to introducing terms
with negative coefficients in the sum (G.1). These are due to double twist operators
present in the OPE decomposition of the disconnected piece. Without non-negativity
of the expansion (G.3) we cannot write (G.4). Instead we can use similar arguments to
derive the bound for the full correlator

F(u, v) 6
c

(uv)∆ . (G.8)

Given the bound on dDiscu[Fconn] we would like to derive a bound on Fconn itself. A
natural guess which is consistent with (G.7)

|Fconn(u, v)| 6 c

(uv)∆− τgap
2

, 0 < u, v < c0. (G.9)
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G.1. Subtractions and a Bound on the Double Light-Cone Limit

Two examples where this bound is saturated are minimal models in d = 2 and free field
theories in d > 2. In both of these cases τgap = τ∗.

This, however, does not immediately follow from (G.7). As a way to violate (G.9),
while having (G.7) being satisfied, we can imagine that the spectrum contains special
operators with twist 2∆ + 2m which will contribute to F(u, v) but will not contribute to
the double discontinuity. We will see a nontrivial example of such a function below. In
an interacting CFT we, however, do not expect such a problem to occur and therefore
we believe that (G.9) is a correct bound.

To avoid this problem and to generalize the argument above we consider subtractions.
Assuming the number of low lying twist operators is finite we can improve the argument
by considering additional subtractions. Indeed, let us consider

Fsub(u, v) = F(u, v)− (1 + u−∆ + v−∆) (G.10)

− ∑
τgap6τ6τsub

Jmax

∑
J=0

[
τsub−τ

2

]
∑

m=0
C2

τ,J

(
u−∆+ τ

2 +mg(m)
τ,J (v) + v−∆+ τ

2 +mg(m)
τ,J (u) + v−

τ
2−mg(m)

τ,J (
u
v
)

)
,

where the role of the first subtraction term in the brackets is to make the sum (G.3) to
start from ∑

h,h̄>
τ′sub

2

. Going through the same argument (and the same assumptions) we

conclude that

|dDiscuFsub(u, v)| , |dDiscvFsub(u, v)| 6 c

(uv)∆− τ′sub
2

, 0 < u, v < c0. (G.11)

Note that since the number of subtractions is finite, we have necessarily τsub < τ∗ < 2∆.
In writing (G.11) we used the fact that the second and the third subtraction terms in the
brackets in (G.10) trivially have double discontinuity which satisfies (G.11).

An interesting example of the function with zero double discontinuity in the s and
t-channel but singular in the double light-cone limit is provided by the u-channel sub-
tractions above. Consider for example v−

τ
2 g(0)τ,J (

u
v ) which corresponds to a collinear con-

formal block exchanged in the u-channel. It is easy to check that dDicsu

(
v−

τ
2 g(0)τ,J (

u
v )

)
=

dDicsv

(
v−

τ
2 g(0)τ,J (

u
v )

)
= 0, whereas its double light-cone limit is given by

lim
u,v→0, u

v − fixed
v−

τ
2 g(0)τ,J (

u
v
) ∼ v−

τ
2 . (G.12)

This is to be contrasted with a much more regular behavior of the same function in the
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Appendix G. Polynomial Boundedness in a Sectorial Domain ΘCFT

light-cone limit

lim
u→0,v − fixed

v−
τ
2 g(0)τ,J (

u
v
) ∼ log u,

lim
v→0,u − fixed

v−
τ
2 g(0)τ,J (

u
v
) ∼ log v. (G.13)

In the argument above we expect that in an interacting CFT only subtraction terms
provide examples of such functions. Therefore we conclude that (G.11) implies

|Fsub(u, v)| 6 c
uγ12 vγ14

, 0 < u, v < c0, (G.14)

where γ12, γ14 > ∆− τ′sub
2 and γ12 + γ14 > τsub due to subtractions (G.12). In a sense we

would like to say that by improving the light-cone limits in the u- and v- channels we
have also improved the corresponding double light-cone limit in the s- and t-channels
but we make it worse due to the subtractions in the u-channel.

To summarize, at the moment we were not able to rigorously prove (G.14) and leave it
as an assumption hoping to improve on that in the future.

G.2 Dangerous Limits in the Sectorial Domain

In the subsections above we considered different small 0 < u, v < c0 limits with u
and v being real. For the purpose of deriving the Mellin amplitude we would like
however to generalize this argument for analytically continued u and v. As usual we
would like to use the OPE to bound the correlator. However due to subtractions we do
not have the OPE expansion representation of the correlator with positive coefficients.
Therefore we cannot simply bound the analytically continued correlator by its value
on the principal sheet using the Cauchy-Schwarz argument. Nevertheless we believe
that our polynomial bounds on the double light-cone limit still apply in the region of
analyticity of the correlator. In some sense this is a generalization of the idea that we can
use the light-cone OPE on the second sheet as an asymptotic expansion.

To sum up, we would like now to say that with the region of analyticity Fsub(u, v) satisfies
the same bound as above

|Fsub(u, v)| 6 C(γ12, γ14)
1
|u|γ12

1
|v|γ14

, (u, v) ∈ ΘCFT, (γ12, γ14) ∈ UCFT , (G.15)
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H Heavy Tails in Dispersion Relations

In the main text we discussed several functionals. Here we would like to comment on
the convergence of the corresponding OPE sums at large ∆. The relevant formulae for
the asymptotic of the OPE coefficients can be found in [45].

For example, let us fix J = 0. In this case we have

ατ,0 =
∞

∑
m=0

1
m!

2Γ(τ)
Γ( τ

2 )
4Γ(∆−m− τ

2 )
2(τ − d

2 + 1)m

τ − ∆ + 2m
(τ − 4∆

3 + 2m)2(τ − 2∆
3 + 2m)2

. (H.1)

We are interested in the asymptotic of this sum when τ → ∞.

At large τ the density of primaries multiplied by their three-point couplings asymptotes
to [45] (strictly speaking this asymptotic is only true on average)

lim
τ→∞

ρ
primary
J C2

J ∼ 4−ττ4∆− 3d
2 . (H.2)

Combining this with ατ,0 we find that

lim
τ→∞

ρ
primary
0 C2

0ατ,0 ∼
1

τd+2 , (H.3)

and therefore the sum over the heavy scalar tail converges. Note that the power does
not depend on the dimension of the external operator. Repeating the exercise for J = 2
we get the same power law behavior. We expect that the same holds for any finite J.
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I Holographic Calculations

In this appendix we spell out the terms that enter into (5.13) and (5.14). The functionals
ατ,J,m were written explicitly in (5.4), up to the expressions for the Mack polynomials. In
the cases of interest,

Qτ,d
J=0,m(γ13) = −

2Γ(τ)

Γ(m + 1)Γ
(

τ
2

)4
(
− d

2 + τ + 1
)

m
Γ
(
−m + ∆− τ

2

)2
, (I.1)

Qτ,d
J=2,m(γ13) = −

(
4γ2

13 − 2γ13(2m + τ) (I.2)

+
m2 (d2(τ + 1)− d

(
τ2 + 5τ + 4

)
+ (τ + 2)2)

d(τ + 1)(d− τ − 3)
+

τ2(τ + 2)
4(τ + 1)

)
× (τ + 1)(τ + 2)Γ(τ + 4)

2Γ(m + 1)Γ
(

τ+4
2

)4
(
− d

2 + τ + 3
)

m
Γ
(
−m + ∆− τ

2

)2
.

Regarding the leading Regge trajectory, we can use

ατ[O,O]0,J
,J =

dατ=2∆,J

dτ
γ[O,O]0,J

+ O(1/c2
T). (I.3)

Furthermore, only the m = 0 term contributes to dατ=2∆,J
dτ . For m = 0 a general expression

for Mack polynomials is given by (3.8). In this manner one obtains

dατ=2∆,J

dτ
= −Γ(2(J + ∆))3F({0,1,0},{0,0},0)

2 (−J, ∆
3 , 2∆ + J − 1; ∆, ∆; 1)

Γ(∆)2Γ(J + ∆)2 , (I.4)

where the superscript in the hypergeometric function means a derivative with respect to
the appropriate entry.

As to the anomalous dimensions, for the exchange of a scalar we used expressions (2.35),
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Appendix I. Holographic Calculations

(2.36) and (2.37) in [55].1 For the stress tensor exchange in d = 4, [53]

γ[O,O]0,J
= −C2

OOT
60(∆− 1)2

(J + 1)(2∆ + J − 2)
, J > 2, (I.5)

γ[O,O]0,J=2
= −C2

OOT
10
(
−4∆4 + 9∆2 + 7∆− 12

)
∆(2∆ + 1)(2∆ + 3)

, (I.6)

where C2
OOT is the OPE coefficient between the two external scalars and the stress

tensor.2 In general d we use the results of [56]3

γ[O,O]0,J
= −

∫ +i∞+c1

−i∞+c1

dt
4πi

M(s = 0, t)Γ(
t
2
)2Γ(
−t
2

+ ∆)2 (I.7)

×3F2(−J, J + 2∆− 1,
t
2

; ∆, ∆; 1), 0 < c1 < 2∆.

To get the complete result the graviton exchange diagrams in the three channels should
be added. These can be easily obtained by applying crossing to the result (164− 166)
in [56]. Two of the exchange diagrams produce results that are identical and analytic in
spin. The third one only contributes to the anomalous dimension γ[O,O]0,J

for J = 0, 2.

For a generic exchange of a single trace operator of twist τ and spin J, our sum rule is
valid for d−2

2 < ∆ < 3τ
4 . It is interesting to study the behaviour of the sum rule when we

take ∆ → 3τ
4 . There are two terms that diverge like 1

(∆− 3τ
4 )2 . One term comes from the

direct exchange of the single trace operator. The other comes from the tail of the leading
Regge trajectory. The sum of the two terms is equal to

1
(∆− 3

4 τ)2

9Γ(2J + τ)

2Γ
(

τ
4

)2 Γ
(

τ
2

)2 Γ
(

J + τ
2

)2

[
3F2

(
−J,

τ

4
, J + τ − 1;

τ

2
,

τ

2
; 1
)
− 1
]

(I.8)

When J = 0, (I.8) vanishes. This agrees with the fact that a scalar exchange in AdS does
not contribute to the sum rule. When J > 0 we numerically find that (I.8) is negative.
Furthermore we checked this analytically for spins J = 2, 4, ... 50 and any positive τ.
Note that this implies that when ∆ → 3τ

4 there is a UV contribution to the sum rule
which is divergent and positive. It would be very interesting to understand the origin of
this.

1See also [115, 116] for a similar discussion for a generic exchange of a spin J primary.
2This OPE coefficient is fixed by Ward identities, but actually it is not necessary to know it explicitly

in order to determine the sign of the functional, since it enters both in the direct exchange and in the
anomalous dimensions of the double twist operators.

3Formula (I.7) differs from (172) in [56] by a factor of 1
2 . This comes from the fact that we consider the

exchange of identical scalar operators.
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J Notes on Mack Polynomials

J.1 Basic definitions

We denote the residue of the Mellin amplitude M(γ12, γ13) as

M(γ12, γ13) ≈ −
1
2

C2
τ,`Qτ,d

`,m(−2γ13)

γ12 − (∆− τ
2 −m)

. (J.1)

The calligraphic Qτ,d
`,m(s) is related to the usual Mack polynomial Qτ,d

`,m(s) as follows

Qτ,d
`,m(s) = −K(τ, `, m)Qτ,d

`,m(s), (J.2)

where the proportionality factor is given by

K(τ, `, m) ≡ 2(`+ τ − 1)`Γ(2`+ τ)

2`Γ
( 1

2 (2`+ τ)
)4

Γ(m + 1)Γ
(
−m + ∆− τ

2

)2
(
− d

2 + `+ τ + 1
)

m

. (J.3)

Note the minus sign in (J.2).

For the Mack polynomial Qτ,d
`,m(s) we use the following representation [117]

Qτ,d
`,m(s) = 4`(−1)`

`

∑
n1=0

`−n1

∑
m1=0

(−m)m1

(
m +

s
2
+

τ

2

)
n1

µ(`, m1, n1, τ, d), (J.4)

where

µ(`, m, n, τ, d) ≡ (2`+ τ − 1)n−` (J.5)

×
2−`Γ(`+ 1)(−1)m+n

(
d
2 + `− 1

)
−m

(
`−m + τ

2

)
m

(
n + τ

2

)
`−n

(
m + n + τ

2

)
`−m−n

Γ(m + 1)Γ(n + 1)Γ(`−m− n + 1)
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×4F3

(
−m,−d

2
+

τ

2
+ 1,−d

2
+

τ

2
+ 1, `+ n + τ − 1; `−m +

τ

2
, n +

τ

2
,−d + τ + 2; 1

)
.

J.2 Mack Polynomial Projections

We will also find it very useful to consider functionals that are obtained by integrating
ωp1,p2,p3(γ13) against Mack polynomials. To agree with the standard conventions for
Mack polynomials we switch to the s variable

s ≡ −2γ13. (J.6)

We then consider the following projection

ω
(τ,`)
p1,p2,p3 ≡

∫ +i∞

−i∞

ds
2πi

ωp1,p2,p3(s)Q
τ,d
`,0 (s)Γ

2
(
− s

2

)
Γ2
(

s + τ

2

)
. (J.7)

where the reduced Mack polynomials Qτ,d
`,m(s) were defined above. Note that Qτ,d

`,0 (s)
is d-independent. The collinear Mack polynomials Qτ,d

`,0 (s) satisfy the orthogonality
relation

∫ +i∞

−i∞

ds
4πi

Qτ,d
`,0 (s)Q

τ,d
`′,0(s)Γ

2
(
− s

2

)
Γ2
(

s + τ

2

)
=

δ`,`′(−1)`4`Γ(`+ 1)Γ
(
`+ τ

2

)4

(2`+ τ − 1)(`+ τ − 1)2
`Γ(`+ τ − 1)

.

(J.8)

Another useful identity is the following

∫ +i∞

−i∞

ds
4πi

Qτ,d
`,0 (s)∂τQτ,d

`′,0(s)Γ
2
(
− s

2

)
Γ2
(

s + τ

2

)

=

 0 `′ 6 ` ,
(−1)`24−`−`′−2τπ
(`′−`)(`′+`+τ−1)

Γ(`+ τ
2 )Γ(`

′+ τ
2 )Γ(`+τ−1)Γ(`′+1)

Γ(`+ τ−1
2 )Γ(`′+ τ−1

2 )
`′ > ` .

(J.9)

J.3 Proof of Positivity of m = 0 Mack polynomials

The m = 0 Mack polynomials are given by the formula

Qτ,d
`,0 =

2`((τ/2)`)2

(τ + `− 1)`
3F2(−`, `+ τ − 1,− s

2
;

τ

2
,

τ

2
; 1) (J.10)

Mack polynomials are related to continuous Hahn polynomials, which obey useful
recursion relations to study their positivity properties. A continuous Hahn polynomial
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is defined by1

pn(x; a, b, c, d) = in (a + c)n(b + d)n

Γ(n + 1) 3F2(−n, n + a + b + c + d− 1, a + ix; a + c, a + d; 1)

(J.11)

Continuous Hahn polynomials obey a recursion relation. Let us define

pn(x) = pn(x; a, b, c, d)
Γ(n + 1)

(n + a + b + c + d− 1)n
, (J.12)

An = − (n + a + b + c + d− 1)(n + a + c)(n + a + d)
(2n + a + b + c + d− 1)(2n + a + b + c + d)

, (J.13)

Cn =
n(n + b + c− 1)(n + b + d− 1)

(2n + a + b + c + d− 2)(2n + a + b + c + d− 1)
. (J.14)

Then,

xpn(x) = pn+1(x) + i(An + Cn + a)pn(x)− An−1Cn pn−1(x). (J.15)

We have that

p`(0) = 2−`i`Qτ,d
`,0 , (J.16)

provided we pick

a = − s
2

, b = − s
2

, c =
s + τ

2
, d =

s + τ

2
. (J.17)

Let us define Q̃(`) = 2−`Qτ,d
`,0 (s). Then,

− `(−2 + `+ τ)(−2 + 2`+ τ)2

16(−3 + 2`+ τ)(−1 + 2`+ τ)
Q̃(`− 1)− 2s + τ

4
Q̃(`) + Q̃(`+ 1) = 0. (J.18)

Let us use this recursion relation to demonstrate that m = 0 Mack polynomials are
positive, i.e. Q̃(`) > 0, provided s > − τ

2 . For spins ` = 0, 1, 2:

Q̃(0) = 1, Q̃(1) =
2s + τ

4
, Q̃(2) =

1
16

(
4s2 + 4sτ +

τ2(τ + 2)
τ + 1

)
(J.19)

By mathematical induction the recursion relation implies the positivity at all positive
integer `. Furthermore the recursion relation

−1
2

Q̃(`)− `(−2 + `+ τ)(−2 + 2`+ τ)2

16(−3 + 2`+ τ)(−1 + 2`+ τ)
∂sQ̃(`− 1)− 2s + τ

4
∂sQ̃(`) + ∂sQ̃(`+ 1) = 0

1We took formulas for continuous Hahn polynomials from the book [118], see the pages 200 and 201.
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together with

∂sQ̃(0) = 0, ∂sQ̃(1) =
1
2

∂sQ̃(2) =
1
4
(2s + τ) (J.20)

implies that ∂sQ̃(`) is positive for s > − τ
2 . We believe that this argument can be

generalized to establish positivity of higher derivatives of Mack polynomials, but we
have not tried to do that.

J.4 Limits of Mack polynomials

Let us study Mack polynomials when the spin ` is much bigger than all the other
quantum numbers. The following expansion

Qτ,d
`,m(s) ≈

√
π`s+ 1

2 2−`−m−τ+2Γ
(
`+ τ

2

)2 Γ(`+ τ − 1)pm(s)Γ
(
− d

2 + `+ m + τ + 1
)

Γ
(
`+ τ

2 − 1
2

)
Γ
(
`+ τ

2 + 1
2

)
Γ
(
− d

2 + `+ τ + 1
)

Γ
( 1

2 (2m + s + τ)
)2

(J.21)

+

√
π(−1)`2−`−m−τ+2Γ

(
`+ τ

2

)2 Γ(`+ τ − 1)`−2m−s−τ+ 1
2 pm(−2m− s− τ)Γ

(
− d

2 + `+ m + τ + 1
)

Γ
(
− s

2

)2 Γ
(
`+ τ

2 − 1
2

)
Γ
(
`+ τ

2 + 1
2

)
Γ
(
− d

2 + `+ τ + 1
)

+O
(

1
`

)
, `� 1 .

can be derived [41] from the recursion relation in m, see (J.24). pm(s) is an m-th degree
polynomial in s and it obeys pm(s) = sm +O( 1

s ). We found that

p0(s) = 1 , p1(s) =
d− 2

2
+ s +

τ

2
. (J.22)

J.4.1 Some facts about Mack polynomials

Mack polynomials obey the following symmetry property

Qτ,d
`,m(s) = (−1)`Qτ,d

`,m(−s− τ − 2m) . (J.23)

For this reason, at s = − τ
2 − m odd spin Mack polynomials vanish and even spin

Mack polynomials have a vanishing derivative. Mack polynomials obey the following
recursion relation in m for fixed τ and ` [29]

Q(s, m)
(
−4dm− 4`2 − 4`(τ − 1) + 4m2 − 4ms + 4mτ − 2s2 − 2sτ − τ2) (J.24)

+ 2mQ(s, m− 1)(d− 2(`+ m + τ)) + 2mQ(s + 2, m− 1)(d− 2(`+ m + τ))
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+ s2Q(s− 2, m) + (2m + s + τ)2Q(s + 2, m) = 0.

We also found it useful to express m > 0 Mack polynomials in terms of m = 0 Mack
polynomials. In d = 4 the relevant formulas are

Qτ,d=4
`,m=1(s) = (s +

τ

2
+ 1)Q2+τ,d=4

`−1,m=0(s) (J.25)

and
Qτ,d=4

`,m=2(s) = a1Q4+τ,d=4
`−4,m=0(s) + a2Q4+τ,d=4

`−3,m=0(s) (J.26)

where a1 and a2 are given by

(`− 3)(`+ τ − 1)(2`+ τ − 4)2 (4s2(τ − 1) + 4s
(
τ2 + 3τ − 4

)
+ τ3 + 6τ2 + 8τ − 16

)
16(τ − 1)(2`+ τ − 5)(2`+ τ − 3)

,

(J.27)

8s3(τ − 1) + 12s2 (τ2 + 3τ − 4
)
+ s

(
6τ3 + 40τ2 + 48τ − 96

)
+ τ4 + 10τ3 + 32τ2 + 16τ − 64

8(τ − 1)
,

(J.28)

respectively. We believe similar recursion relations can be generated at any finite m and
in any d.
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K OPE data in the 4− ε expansion

For our purposes, it is important to know what has been computed before. The di-
mensions of φ and φ2 are known to the order ε5 [119]. The dimensions of the leading
twist trajectory (which starts at spin 2) are known to order ε4 [66]. As to the subleading
twist trajectory, twist 4 operators are degenerate for a given spin. This degeneracy was
analysed in [64, 120] to order ε2, where anomalous dimensions and OPE coefficients are
given for operators with low spins. However, no formulas for arbitrary spin are given.

The OPE coefficient of φ2 with two operators φ is known to order ε3 [8]. We compute
the order ε4 correction (see table 6.3). The OPE coefficients of the leading twist trajectory
are known to the order ε4 [62]. A formula for the averaged OPE coefficients of twist 4
operators is known to the order ε [62].

Using our notation from section 6.4, let us register the value of known quantities in the ε

expansion. The spacetime dimensionality d defined in (6.17) takes the form

d = 4− 3g +
8
3

g2 +

(
−12ζ(3)− 23

12

)
g3 (K.1)

+

(
75ζ(3)

2
+ 120ζ(5)− 77

48
− 3π4

10

)
g4 + a5g5 + . . . ,

where for completeness we also note here a5 that was computed in [119] even though
we did not use it in our thesis

a5 = −159ζ(3)
2

− 72ζ(3)2 − 504ζ(5)− 1323ζ(7) +
4175
576

+
289π4

240
+

10π6

21
. (K.2)

Similarly for the dimensionality of the scalar defined in (6.18) takes the following form

∆φ −
d− 2

2
=

1
12

g2 +
5
48

g3 − 7
192

g4 +

(
7ζ(3)

16
+

1
2304

)
g5 + . . . . (K.3)
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Appendix K. OPE data in the 4− ε expansion

For the twist-two operators the OPE data was defined in (6.19). The anomalous dimen-
sions that are known but were not explicitly written in the main text take the following
form

γ2(j`) = −
1

`(`+ 1)
, γ3(j`) = −

2S1(`)

`(`+ 1)
+

3
(
2`2 − 1

)
2`2(`+ 1)2 ,

γ4(j`) = −
3S2(`) + 2S2

1(`)

`(`+ 1)
+

`
(
`3 + 2`2 − 3`− 4

)
4`3(`+ 1)3

(
S2(

`− 1
2

)− S2(
`

2
) +

π2

3

)
(K.4)

+
(53`2 + 17`− 18)S1(`)

6`2(`+ 1)2

+
1

12`3(`+ 1)3 (− 58`4 + 26`3 + 81`2 − 15`− 33) .

For the three-point functions of the twist-two operators that were defined in (6.23) we
have

c2(j`) =
S1(2`)− S1(`) +

1
`+1

`(`+ 1)
,

c3(j`) =
3(`+ 1

2 )(S1(2`)− `−1
`+1 )−(`+ 3

2 )S1(`)

`2(`+ 1)2 +
3(S1(`)−S1(2`)+S2(2`))−2(S2

1(`)−S1(`)S1(2`)+S2(`))

`(`+ 1)
,

c4(j`) =
2`
(
29`3 − 9(`+ 1)2 (`2 + `+ 4

)
ζ(3)− 48`2 − 38`+ 24

)
+ 33

12`3(`+ 1)4

− 2S3
1(`)

`2 + `
+

S2
1(2`)

2`2(`+ 1)2 + S2
1(`)(

2S1(2`)
`2 + `

+
`(53`+ 29)− 15

6`2(`+ 1)2 )

+
(`(`(`+ 2)− 7)− 4)S2(

`
2 ))

2`3(`+ 1)3 +
(`(`(`(89`+ 130)− 10) + 45) + 48)S2(`)

12`3(`+ 1)3

+ S1(2`)

(
`
(
`
(
58`2 − 26`− 81

)
+ 27

)
+ 33

12`3(`+ 1)3 +

(
`2 + `− 4

)
S2(

`
2 )

2`2(`+ 1)2 +
2
(
`2 + `+ 2

)
S2(`)

`2(`+ 1)2

)

+
(30− `(71`+ 17))S2(2`)

6`2(`+ 1)2 +

(
`2 + `− 4

)
S3(

`
2 )

4`2(`+ 1)2 +
(4− 7`(`+ 1))S3(`)

`2(`+ 1)2 +
9S3(2`)
`2 + `

+ S1(`)(
`(`(83− 2`(29`+ 40)) + 9)− 33

12`3(`+ 1)3 +
(12− `(53`+ 17))S1(2`)

6`2(`+ 1)2 −
(
`2 + `− 4

)
S2(

`
2 )

2`2(`+ 1)2

+
(−6`(`+ 1)− 4)S2(`)

`2(`+ 1)2 +
6S2(2`)
`2 + `

).
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L Auxiliary formulas

L.1 Miscellaneous formulas for the ε-expansion

Here we present a few bulky formulas to which we refer from the main part of the thesis.

r1(`) = 12γE(γ13 − 2)`(`+ 1)− 14(γ13 − 2)`(`+ 1)S1(`) (L.1)

+ 6(γ13 − 2)`(`+ 1)S1(`+
1
2
)

+ 2
(
6γ13`

2 + (γ13 − 2)(`+ 1)` log(64)− 3γ13 − 9`2 + 3`+ 6
)

,

r2(`) = 14(γ13 − 2)`S1(`)− 6(γ13 − 2)`S1(`+
1
2
)− 12γE(γ13 − 2)` (L.2)

− 2
(
6γ13`

2 − 3γ13`+ (γ13 − 2)(`+ 1)` log(64)− 3γ13 − 9`2 + 9`+ 6
)

`+ 1
.

L.2 Miscellaneous formulas for higher spin

In this appendix we write some formulas we used in the text. The nonzero coefficients
in equation (9.14) are

a1,−1,−1 = −(γ14 − 1)
(
2γ2

14 − γ14(4k + 5) + 2k2 + 5k + 2
) (

k2 − 2ks− k + s2 + s
)

,

(L.3)

a0,0,0 = −1
2
(
2γ2

14 − γ14(4k + 5) + 2k2 + 5k + 2
)

×(−2γ12(k + s) + γ14(2k− 2s + 1) + s(2s + 1))(k− s),

a1,−1,0 = −1
2
(2γ2

12 + γ12(4k− 4s− 1) + 2k2 − k(4s + 1) + 2s2 + s− 1)(γ14 − 1)
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×
(
2k2 − 4ks + k + s(2s− 1)

)
, a0,−1,0 =

1
2
(γ14 − 1)

(
2k2 − 4ks + k + s(2s− 1)

)
×(2γ2

12 + γ12(4γ14 − 4s− 3) + 2γ2
14 − γ14(4s + 3) + s(2s + 3)),

a−1,0,1 = −1
2
(γ12 − 1)

(
2k2 + 3k + 1

)
×(2γ2

12 + γ12(4γ14 − 4s− 3) + 2γ2
14 − γ14(4s + 3) + s(2s + 3))

a−1,1,1 =
1
2
(γ12 − 1)

(
2k2 + 3k + 1

) (
2γ2

14 − γ14(4k + 5) + 2k2 + 5k + 2
)

,

a0,0,1 =
1
2
(k + 1)

(
2γ2

12 + γ12(4k− 4s− 1) + 2k2 − k(4s + 1) + 2s2 + s− 1
)

×(2γ12k + γ12 − 2γ14(k− 2s + 1)− s(2s + 1)), a−1,1,2 = (γ12 − 1)
(
k2 + 3k + 2

)
×(2γ2

12 + γ12(4k− 4s− 1) + 2k2 − k(4s + 1) + 2s2 + s− 1).
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M Computing (6.34)

Consider the integral (6.34). The part proportional to a1 can be computed using (J.8),
since the spin 0 Mack polynomial is equal to 1. Let us deduce an analytic expression for
the nontrivial part of the integral (6.34), which is the part not proportional to a1. The
idea will be to consider (6.34) for noninteger ` and use the Mellin representation for the
Mack polynomial.

Qτ=2,d=4
`,m=0 (s) has the following Mellin representation

Qτ=2,d=4
`,m=0 (s) =

2`Γ(1 + `)

(1 + `)`Γ(−`)Γ(− s
2 )

∫ ds1

2πi
Γ(s1)Γ(−`− s1)Γ(1 + `− s1)Γ(− s

2 − s1)(−1)−s1

Γ(1− s1)2 .

(M.1)

In the formula above ` is taken to be non-integer. The contour is bent, in such a way as
to pass to the right of the poles of Γ(s1) and to the left of poles of Γ(−`− s1)Γ(1 + `−
s1)Γ(− s

2 − s1).

We plug this expression in (6.34), exchange the order of integration and evaluate the s
integral. This gives

∫ ds
4πi

Γ(− s
2
)Γ(− s

2
− s1)Γ(

s
2
+ 1)2 4 + s

2 + s
=

π

Γ(s1) sin(πs1)

(
π2

sin(πs1)2 −
1

s1 − 1
− ψ(1)(s1)

)
.

(M.2)

We obtained this formula by deforming the contour to the right, picking up the poles
from Γ(− s

2 )Γ(− s
2 − s1) and evaluating the infinite sum over residues. The contour of

the integral above is supposed to be bent, separating left from right poles.

Thus, the nontrivial part of (6.34) is equal to

2`Γ(1 + `)

πΓ(−`)(1 + `)`

∫ ds1

2πi
Γ(−`− s1)Γ(1 + `− s1)Γ(s1)

2 (M.3)
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× sin(πs1)(−1)−s1

(
π2

sin(πs1)2 −
1

s1 − 1
− ψ(1)(s1)

)
.

We evaluate the s1 integral by picking the poles at s1 = 0,−1,−2, .... We thus transform
the s1 integral into an infinite series. Let us take the limit where ` becomes an integer
again. The infinite series must diverge, in order to cancel the 1/Γ(−`). For each integer
`, only ` terms out of the infinte sum contribute to the divergence. In fact the terms come
from just Γ(−`− s1). Thus we conclude that the nontrivial part of (6.34) is equal to

2`Γ(1 + `)2

(1 + `)`

`

∑
n=0

(−1)nΓ(1 + `+ n)
Γ(1 + `− n)

(
1 + n

Γ(2 + n)2 +
ψ(1)(1 + n)
Γ(1 + n)2

)
. (M.4)

We checked that (M.4) is equal to

−
√

π2−`−1Γ(`+ 1)2
(
(`+ 1)2ψ(1)

(
`
2 + 1

)
− (`+ 1)2ψ(1)

(
`+3

2

)
− 4
)

(`+ 1)2Γ
(
`+ 1

2

) + δ`,0. (M.5)

that we quoted in the main text.
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N Bulk Point Limit in 〈jsj0̃j0̃j0̃〉

N.1 Introduction

Correlation functions of conformal field theories in Lorentzian signature may diverge
even when none of the distances between the points vanish. At the moment a full
classification of the singularity structure of correlation functions in conformal field
theories does not exist.

One such singularity is the so called “bulk point singularity". In terms of cross ratios,
we can obtain such a singularity in the following manner. In Lorentzian signature z and
z̄ are independent real numbers. The four point function has branch points. When z and
z̄ go around the branch points the four point function may develop a divergence when
z = z̄. More specifically, suppose z goes around the branch point at 1, z̄ goes around ∞
and now take z → z̄. We generically expect the four point function to diverge in this
limit. A detailed examination of the bulk point limit for a four point function of equal
scalars was carried out in [23].

In the bulk point limit a d dimensional conformal block where the external operators are
scalars diverges as 1

(z−z̄)d−3 [23]. For this reason it is expected that a generic nonperturba-
tive four point function of scalars diverges as

〈OOOO〉 ∼ 1
(z− z̄)d−3 . (N.1)

However, when the CFT has a local bulk dual, then we expect the divergence to be more
severe. For example, a contact quartic diagram in AdS diverges as

〈OOOO〉 ∼ 1
(z− z̄)4∆−3 . (N.2)
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Appendix N. Bulk Point Limit in 〈js j0̃ j0̃ j0̃〉

The plan for this section is the following. In N.1.1 we calculate the bulk point singularity
of an AdS contact diagram for a scalar four point function of unequal primaries. The
result is a trivial generalisation of (N.2), however to our knowledge its derivation had
not appeared before in the literature. We need such a result in order to calculate the bulk
point singularity of an AdS contact diagram for 〈js j0̃ j0̃ j0̃〉, which we do in section N.1.2.
Finally, in section N.1.3 we calculate the expected bulk point divergence of 〈js j0̃ j0̃ j0̃〉
in CFT’s with slightly broken higher spin symmetry. We assume that 〈js j0̃ j0̃ j0̃〉 does
not diverge more than conformal blocks in the bulk point limit. We conclude that AdS
contact diagrams diverge more severely in the bulk point limit than what is expected
for 〈js j0̃ j0̃ j0̃〉 for s > 2 in CFT’s with slightly broken higher spin symmetry. Thus, bulk
point softness implies that we cannot add AdS contact diagrams to the solution to the
pseudo-conservation equations that we found in section (9.2).

Let us add a caveat. Our result for 〈js j0̃ j0̃ j0̃〉 does not rely on assuming bulk point softness
and is independent of it. Nevertheless, we choose to keep this appendix, because it was
useful for us to think in terms of the bulk point limit in the early stages of our work, and
maybe this can be of use to someone else.

N.1.1 Bulk point singularity of an AdS contact diagram for a scalar four
point function of unequal primaries

A quartic contact diagram has a Mellin amplitude equal to 1. We will use this to compute
the bulk point divergence, proceeding similarly to section 7.5.1 in [63]. Upon analytic
continuation, the diagram is given by

〈O1O2O3O4〉
p

=
∫ ∫ dγ12dγ14

(2πi)2 Γ(γ12)Γ(γ13)Γ(γ14) (N.3)

×Γ(γ12 + a34)Γ(γ13 + a24)Γ(γ14 + a23)u−γ12 v−γ14

→
∫ ∫ dγ12dγ14

(2πi)2 Γ(γ12)Γ(γ13)Γ(γ14)

×Γ(γ12 + a34)Γ(γ13 + a24)Γ(γ14 + a23)u−γ12 v−γ14 e−2πi(γ12+γ14),

p = |x1 − x3|−2∆1 |x2 − x3|−2a23 |x2 − x4|−2a24−2∆1 |x3 − x4|−2a34

where aij = 2(∆i +∆j)−∑k ∆k and γ13 = ∆1−γ12−γ14. The integral diverges when γ12

and γ14 have a very big and positive imaginary part. We can use Stirling’s approximation
for the Γ functions. Indeed suppose we take γ12 = isβ and γ14 = is(1− β). Then for
very large s we have

〈O1O2O3O4〉 ≈ p
∫ ∞

s0

ds
s

∫ 1

0
dβs

∑i ∆i
2 −1 f (β) (N.4)

× exp
(

is(− 2(β− 1) log(1− β) + 2β log(β)− β log(u) + (β− 1) log(v))
)

,
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N.1. Introduction

where f (β) is a function of β that will not play any role. The integral has a saddle point
for β→ βs =

√
u√

u+
√

v . In that case the exponential dependence of the integrand becomes

e
is
(
(
√

u+
√

v)2
√

u
√

v (β−βs)2−2 log(
√

u+
√

v)
)

. The integral in β is Gaussian and can be readily eval-
uated. Furthermore, the phase is stationary when

√
u +
√

v = 1. In that case we have
log(
√

u +
√

v) ∼ (z− z̄)2. So, we conclude that

〈O1O2O3O4〉 ∼
∫ ∞

s0

ds
s

s
∑i ∆i

2 − 3
2 eis(z−z̄)2 ∼ 1

(z− z̄)∑i ∆i−3 . (N.5)

N.1.2 Bulk point singularity of AdS contact diagrams for 〈js j0̃ j0̃ j0̃〉

Identity (9.43) allows us to obtain spinning contact AdS diagrams from scalar contact
AdS diagrams. So, with the help of identity (9.43) we can perform the integration in
(9.40) using only scalar propagators and afterwards we act with the differential operators
D12 and D13. The scalar propagators cause a divergence like 1

(z−z̄)∑i ∆i−3+s , see formula
(N.5). After acting with the differential operators, we find that the bulk point divergence
of the integral (9.40) is 1

(z−z̄)∑i ∆i−3+3s =
1

(z−z̄)4s+4 .

N.1.3 Bulk point singularity of 〈js j0̃ j0̃ j0̃〉 in CFT’s with slightly broken higher
spin symmetry

Conformal field theories with slightly broken higher spin symmetry have an infinite
number of light single trace operators. For this reason, they are not expected to be dual
to a local theory in AdS. Thus, their bulk point singularity should not be enhanced with
respect to that of an individual conformal block.

We want to calculate the bulk point divergence of 〈js j0̃ j0̃ j0̃〉. For our discussion, it is
useful to introduce the operator

d11 = (P1 · P2)Z1 ·
∂

∂P2
− (Z1 · P2)P1 ·

∂

∂P2
− (Z1 · Z2)P1 ·

∂

∂Z2
+ (P1 · Z2)Z1 ·

∂

∂Z2
,

(N.6)

where we used embedding space coordinates [98]. This operator acts on conformal
blocks where the operator exchanged is symmetric and traceless. It increases the spin
of the operator in position 1 by 1 and it decreases its conformal dimension by 1 also. It
turns out that ds

11(z− z̄)a ∼ (z− z̄)a−2s, i.e. the action of ds
11 increases the divergence by

a power of 2s. For this reason, we expect the divergence of 〈js j0̃ j0̃ j0̃〉 to be

〈js j0̃ j0̃ j0̃〉 ∼
1

(z− z̄)2s (N.7)
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since the scalar conformal block diverges logarithmically. We could have picked other
differential operators than d11 to create spin from the scalar conformal block. Since such
operators only contain first derivatives of Pi (and not higher derivatives), they lead to
the same divergence (N.7).
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O Algorithm for computing 〈jsj0̃j0̃j0̃〉
in position space

We will implement an algorithm in position space to calculate 〈js j0̃ j0̃ j0̃〉cb. The results
match with the Mellin space calculation.

〈js j0̃ j0̃ j0̃〉cb is constrained by conformal symmetry, crossing, consistency with OPE and
the pseudo-conservation equation that js obeys. Conformal symmetry implies that

〈js j0̃ j0̃ j0̃〉cb = p
s

∑
j=0

f j(u, v)w(1; 2, 3)jw(1; 3, 4)s−j, (O.1)

where

p ≡ (x2
23x2

24x2
34)

s
3− 5

6

(x2
12x2

13x2
14)

2s
3 +

1
3

, u ≡ x2
12x2

34

x2
13x2

24
, v ≡ x2

14x2
23

x2
13x2

24
, (O.2)

w(i; j, k) ≡ (xij)µ
x2

ik
x2

jk
− (xik)µ

x2
ij

x2
jk

and we use the notation (xij)µ = (xi)µ − (xj)µ, xij = |xi − xj|. The indices are symmetric
and traceless. f j(u, v) is a function of the cross ratios not determined by conformal
symmetry.

We write the following ansatz.

f j(u, v) =
ua(j)vb(j)

(1 +
√

u +
√

v)s

N(j)

∑
nj=0

M(j)

∑
mj=0

cnj,mj u
nj
2 v

mj
2 , (O.3)

where cnj,mj are parameters that will be fixed by crossing and the pseudo-conservation
equation. The values of a(j), b(j), M(j) and N(j) will follow from consistency with the
operator product expansion.

Let us motivate the preceding ansatz. The spinning four point functions are related to
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Appendix O. Algorithm for computing 〈js j0̃ j0̃ j0̃〉 in position space

the scalar four point functions by slightly broken higher spin Ward identities. The scalar
four point function is a linear combination of powers of u and of v. So, it is natural that
f j(u, v) is made up of powers of u and of v.

We will see below that the contribution to the operator product expansion of a certain
operator goes as∼ u

τ
2 , where τ is the twist, which is defined as the conformal dimension

minus the spin. Since all operator dimensions are integers, it is natural that the ansatz
involves semi-integer powers of u and of v. The denominator 1

(1+
√

u+
√

v)s diverges in

the bulk point limit as 1
(z−z̄)2s , which agrees with the discussion in N.1.3.

We can fix a(j), b(j), N(j), M(j) by consistency with the lightcone operator product
expansion. Let us explain the general idea. Consider two primary operators Oµ1...µl1

(x),
Oν1...νl2

(0) of conformal dimensions ∆1 and ∆2 and spins l1 and l2 and suppose they
exchange a primary operator Oρ1...ρl of dimension ∆ and spin l. The most singular
term due to Oρ1...ρl that can appear in the lightcone operator product expansion is
Oρ1...ρl xρ1 ...xρl x{µ1

...xµl1
}x{ν1

...xνl2
}

|x|∆1+∆2+l1+l2+l−∆ ∼ (x2)−
∆1+∆2+l1+l2

2 + τ
2 , where the µ and ν indices are traceless

symmetric and τ = ∆− l.

For 〈js j0̃ j0̃ j0̃〉 the primary operators exchanged can have twist 1 (higher spin currents),
3 + 2n (double traces [js, j0̃]) and 4 + 2n (double traces [j0̃, j0̃]), where n is a nonnegative
integer. There is no primary operator of twist 2 being exchanged. This is an important
condition that we impose in our algorithm.

More explicitly

js(x)j0̃(0) ∼ (x2)−s−1 js′ + (x2)−s[js, j0̃] + (x2)−s+ 1
2 [j0̃, j0̃], (O.4)

j0̃(x)j0̃(0) ∼ (x2)−
3
2 js′ + (x2)−

1
2 [js, j0̃] + (x2)0[j0̃, j0̃], (O.5)

where we wrote the most singular powers of the distance that can appear in the lightcone
operator product expansion. Our ansatz (O.3) needs to be compatible with (O.4), (O.5).
This fixes a(j), b(j), N(j), M(j).

The final ingredient is compatibility with pseudo-conservation. ∂ · js can have contribu-
tions coming from [js1 , j0̃] and [js1 , js2 ]. Only the former matter since we are interested in
〈js j0̃ j0̃ j0̃〉. More precisely,

∂ · js ⊃
s−2

∑
s1=2

s−s1−1

∑
m=0

cm∂m js1 ∂s−s1−1−m j0̃. (O.6)

Since the right-hand side must be a conformal primary, this implies [93]

cm =
−(m− s + s1)(m− s + s1 − 1)

m(m + 2s1)
cm−1. (O.7)
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Thus 〈∂ · js j0̃ j0̃ j0̃〉 is a linear combination of terms of type ∂n1〈j0̃ j0̃〉∂n2〈js1 j0̃ j0̃〉.

Crossing and compatibility with pseudo-conservation fix all coefficients in (O.3) up to a
number. This number is related to the normalizaton of js. In fact we did not even need to
input formula (O.7), we kept the coefficients cm as unknowns and our algorithm correctly
returns (O.7). This serves as a check on our results. We checked that the algorithm fixes
the solution for s = 2, ..., 14. Afterwards the computation becomes heavy for our laptop.
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P Mixed Fourier Transform

We will solve the higher spin Ward identities to compute 〈j2 j0̃ j0̃ j0̃〉. This is a rederivation
of the main result of [95]. Our method involves the use of a mixed Fourier transform,
see [102] and [121].

We use the metric ds2 = −dx−dx+ + dy2. We will take all indices lowered and in the
minus component. We will study the action of the charge

Q =
√

Ñα4

∫
x+=const.

dx−dyj−−−− (P.1)

on the four point function 〈j0̃ j0̃ j0̃ j0̃〉. We make use of equations [20], [94]

∂ · j4 = α
λ̃√

Ñ
√

1 + λ̃2
(: ∂− j0̃ j2 : −2

5
: j0̃∂− j2 :), (P.2)

[Q, j0̃] = ∂3
− j0̃ +

β√
1 + λ̃2

(∂−∂− j−y − ∂−∂y j−−). (P.3)

α, α4 and β are numerical coefficients that can be obtained from solving Ward identities
at the level of three point functions1. We will not need their precise value in what
follows.

The scalar four point function obeys the slightly broken spin 4 Ward identity

〈[Q, j0̃]j0̃ j0̃ j0̃〉+ ... =
√

Ñα4

∫
d3x〈∂ · j4(x)j0̃ j0̃ j0̃ j0̃〉, (P.4)

where by ... we mean the permutations (12), (13), (14). Note that

〈j0̃ j0̃ j0̃ j0̃〉 = 〈j0̃ j0̃ j0̃ j0̃〉disc +
1
N
〈j0̃ j0̃ j0̃ j0̃〉 f f , (P.5)

1We normalised the charge such that the coefficient multiplying ∂3
− j0̃ in (P.3) is 1.
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Appendix P. Mixed Fourier Transform

where 〈j0̃ j0̃ j0̃ j0̃〉 f f denotes the connected piece in the free fermion theory and 〈j0̃ j0̃ j0̃ j0̃〉disc

denotes the disconnected piece. The disconnected piece obeys

〈∂3 j0̃ j0̃ j0̃ j0̃〉disc + ... = 0, (P.6)

where we summed over all permutations. For this reason the disconnected piece drops
out of (P.4). Using our ansatz (9.4) we conclude that

〈[Q, j0̃]j0̃ j0̃ j0̃〉+ ... =
1
Ñ
〈∂3 j0̃ j0̃ j0̃ j0̃〉 f f +

β

Ñ(1 + λ̃2)
(〈(∂−∂− j−y − ∂−∂y j−−)j0̃ j0̃ j0̃〉 f f

(P.7)

+λ̃〈(∂−∂− j−y − ∂−∂y j−−)j0̃ j0̃ j0̃〉cb) + ...

From the Ward identities in the free fermion theory this becomes

〈[Q, j0̃]j0̃ j0̃ j0̃〉+ ... = − λ̃2β

Ñ(1 + λ̃2)
〈(∂−∂− j−y − ∂−∂y j−−)j0̃ j0̃ j0̃〉 f f (P.8)

+
λ̃β

Ñ(1 + λ̃2)
〈(∂−∂− j−y − ∂−∂y j−−)j0̃ j0̃ j0̃〉cb + ...

Using (P.2) in the right-hand side of (P.4) we get

√
Ñα4

∫
d3x〈∂ · j4(x)j0̃ j0̃ j0̃ j0̃〉 = αα4

λ̃√
1 + λ̃2

∫
d3x(〈∂− j0̃(x)j0̃〉〈j2(x)j0̃ j0̃ j0̃〉 (P.9)

−2
5
〈j0̃(x)j0̃〉〈∂− j2(x)j0̃ j0̃ j0̃〉+ ...)

We use the decomposition (9.4) to obtain that (P.9) is equal to

αα4
λ̃

Ñ(1 + λ̃2)

∫
d3x(〈∂− j0̃(x)j0̃〉〈j2(x)j0̃ j0̃ j0̃〉 f f −

2
5
〈j0̃(x)j0̃〉〈∂− j2(x)j0̃ j0̃ j0̃〉 f f + ...)

(P.10)

+αα4
λ̃2

Ñ(1 + λ̃2)

∫
d3x(〈∂− j0̃(x)j0̃〉〈j2(x)j0̃ j0̃ j0̃〉cb −

2
5
〈j0̃(x)j0̃〉〈∂− j2(x)j0̃ j0̃ j0̃〉cb + ...)

Let us equate (P.8) and (P.10). We see that the dependence on Ñ and λ̃ matches on both
sides provided

β〈(∂−∂− j−y − ∂−∂y j−−)j0̃ j0̃ j0̃〉 f f + ... (P.11)

= −αα4

∫
d3x(〈∂− j0̃ j0̃〉〈j2 j0̃ j0̃ j0̃〉cb −

2
5
〈j0̃ j0̃〉〈∂j2 j0̃ j0̃ j0̃〉cb + ...),
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β〈(∂−∂− j−y − ∂−∂y j−−)j0̃ j0̃ j0̃〉cb + ... (P.12)

= αα4

∫
d3x(〈∂− j0̃ j0̃〉〈j2 j0̃ j0̃ j0̃〉 f f −

2
5
〈j0̃ j0̃〉〈∂j2 j0̃ j0̃ j0̃〉 f f + ...).

We solved (P.11) and (P.12) using a mixed Fourier transform. We define the mixed
Fourier transform of a four point function 〈O1(x1)O2(x2)O3(x3)O4(x4)〉 as

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 →
∫ d3x2d3x3

(2πi)2 〈O1(0)O2(x2)O3(x3)O4(∞)〉ei(p2·x2+p3·x3).

(P.13)

The advantage of the mixed Fourier transform with respect to a usual Fourier transform
is that by placing an operator at the origin and another one at ∞ we take advantage of
conformal symmetry.

In mixed Fourier space we can get rid of the integrals in equations (P.11) and (P.12). For
example, it is simple to see that the mixed Fourier transform of

∫
d3x〈j0̃(x)j0̃〉〈j2(x)j0̃ j0̃ j0̃〉

is equal to∫
d3x〈j0̃(x)j0̃(x1)〉〈j2(x)j0̃(x2)j0̃(x3)j0̃(x4)〉 →

( ∫
d3x〈j0̃(x)j0̃(0)〉ei(p2+p3)·x

)
(P.14)

×
∫ ∫

d3x2d3x3ei(p2·x2+p3·x3)〈j2(0)j0̃(x2)j0̃(x3)j0̃(∞)〉

which is just a product of mixed Fourier transforms.

It turns out that 〈j2 j0̃ j0̃ j0̃〉 f f is very simple in mixed Fourier space. Let us define up =
p2

2
p2

1
, vp =

p2
3

p2
1
, where p1 = −p2 − p3 . Then,

〈Tµν(0)j0̃(p2)j0̃(p3)j0̃(∞)〉 f f =
f (up, vp)

p4
1

(
(p2)(µεν)αβ(p2)

α(p3)
β

)
(P.15)

+
f (vp, up)

p4
1

(
(p3)(µεν)αβ(p3)

α(p2)
β

)
,

where f (up, vp) =
32
3 π2(− 1

up
+ 1

vp
− 1

upvp
). Plugging this into (P.11) and (P.12) we obtain

〈Tµν(0)j0̃(p2)j0̃(p3)j0̃(∞)〉cb =
1
|p1|3

(
(p2)(µ(p3)ν) −

p2 · p3

3
ηµν

)
f1(up, vp)

(P.16)

+
1
|p1|3

(
(p2)µ(p2)ν −

p2
2

3
ηµν

)
f2(up, vp) +

1
|p1|3

(
(p3)µ(p3)ν −

p2
3

3
ηµν

)
f2(vp, up),
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Appendix P. Mixed Fourier Transform

where

f1(up, vp) =
1
2

(
up

vp
+

vp

up

)
+

(
1

up
+

1
vp

)
− 3

2upvp
, (P.17)

f2(up, vp) =
up

4vp
+

vp

4up
+

1
4upvp

+
3

2up
− 1

2vp
.

Finally, we can transform back to position space to get

〈Tµν j0̃ j0̃ j0̃〉cb = p×
(

g1(u, v)(V(1, 2, 3)µV(1, 2, 3)ν −
V(1, 2, 3)2

3
ηµν) (P.18)

+g2(u, v)(V(1, 2, 3)(µV(1, 3, 4)ν) −
V(1, 2, 3) ·V(1, 3, 4)

3
ηµν)

+g3(u, v)(V(1, 3, 4)µV(1, 3, 4)ν −
V(1, 3, 4)2

3
ηµν)

)
,

where p = 1

(x12x13x14)
10
3 (x23x24x34)

1
3

, V(i; j, k) =
x2

ij(xik)µ−x2
ik(xij)µ

x2
jk

and

g1(u, v) =
u2/3v2/3

4π3 − v2/3

4π3u4/3 +
v5/3

2π3u4/3 −
v8/3

4π3u4/3 +
v2/3

2π3 3
√

u
+

v5/3

2π3 3
√

u
, (P.19)

g2(u, v) =
u2/3v2/3

2π3 +
u2/3

2π3 3
√

v
+

u5/3

4π3 3
√

v
+

v2/3

2π3 3
√

u
+

v5/3

4π3 3
√

u
− 3

4π3 3
√

u 3
√

v
,

g3(u, v) =
u2/3v2/3

4π3 − u2/3

4π3v4/3 +
u5/3

2π3v4/3 −
u8/3

4π3v4/3 +
u2/3

2π3 3
√

v
+

u5/3

2π3 3
√

v
.

The result agrees with [95]. For correlators of type 〈js j0̃ j0̃ j0̃〉with s > 4, the mixed Fourier
transform is not so simple, so in practice it was not useful.
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