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Путник 
 
 

Идем слободно 
Нико ми није однео  

Да љубим тужну ноћ.  
Раширим руке, али не у зоре  

него у море и ноћ.  
 

Осмехом улазим, стигао ма куд,  
У тужне и болне јаве.  

Кад волим мени и греси свуд  
Небеса плету,  

Око радосно погнуте главе.  
 

Остављам болним осмехом сан,  
Да прође и оде и мре.  

Љубав је пут бескрајан  
На ком је дозвољено све.  

 
Не жалим ни тебе ни себе ја,  

И смешим се на даљине.  
Умор ми само у очима сја,  
И све што иштем од тебе  
То је часак два тишине,  

Тишине. 
 

Милош Црњански 

The passenger 
(translation by Milica Špadijer)  

 
I walk freely 

Nobody took away from me 
The freedom to kiss the sad eve.  

I spread my arms not towards sunrise 
But towards night and the sea.  

 
I enter with a smile wherever I may come 

Into realities painful and sad.  
The sins, too, when I love 

Weave the skies 
Around my joyfully bent head.  

 
I leave the dream with a painful smile 

To pass, go and die 
Love is an endless path 

on which everything is allowed.  
 

I don't feel sorry for either you or me 
And I smile towards the distance 
Only in my eye fatigue gleams 

And all I ask from you 
Is a quiet instance 

Instance.  
 
 

Miloš Crnjanski 
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Abstract 
 

Single-cell transcriptomics (scRNA-seq) started a technological revolution in biology by 

enabling through plethora of methods to assess a molecular state of the cell on systems level 

without strict necessity of the prior knowledge of the cell state. This wealth of data enabled us 

to answer fundamental problems of biology – how cells develop into plastic tissue, how they 

orchestrate developmental and homeostatic processes?  

 

This thesis will cover developing novel methods and assays to study, map and perturb cell 

fates using droplet microfluidics based scRNA-seq.  First part will cover our re-engineering 

Drop-seq setup, for broader adoption and more efficient sample handling. Developments 

presented will cover novel flexible workflow that significantly simplifies the sample handling 

while being efficient in single-cell material recovery.   

 

Building on previous advances, next part will cover a novel dropleting platform for deterministic 

mRNA capture bead and cell co-encapsulation (DisCo) and its application to study single 

intestinal organoid development. Here, a key advancement, so far unsolved in the field is 

ability to deterministically control the cell capture process. Although at lower throughput than 

other droplet microfluidics-based methods, this method allows to process low cell input 

samples with high capture efficiencies. As a proof-of-concept study, we have studied early 

development of single intestinal organoids. DisCo helped us in uncovering extensive organoid 

heterogeneity and to identify the three distinct and aberrant subtypes of intestinal organoids 

such as enterocysts, spheroids and gobloids.    

 

Finally, third part will cover development of novel gain of function barcoded transcription factor 

(TF) screening in conjugation with scRNA-seq (TF-seq). To understand role of TF in 

maintaining cell types, systematic manipulation of TFs combined by global gene expression 

profiling will aid in delineating their role in cell state progression and maintenance. We applied 

TF-seq on murine mesenchymal stem cell like C3H10T1/2 model and found multiple known 

factors that program cells to adipose (Cebpa, Pparg), osteogenic (Runx2, Dlx3), and myogenic 

lineages (Myod, Myog). Additionally, we discovered and confirmed two novel TFs (Rhox12, 

Mycn) involved in adipogenesis. By analyzing both TF activity and genome-wide changes 
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caused, this approach has power to uncover both strong and weak drivers of lineage 

commitment among TFs.  

 

Key words: Single-cell transcriptomics, droplet microfluidics, determinism, transcription factor, 

lentiviral vectors, mesenchymal stem cells, lineage commitment, differentiation  



6 
 

Résumé 
 

La transcriptomique unicellulaire (scRNA-seq) a déclenché une révolution technologique en 

biologie en permettant, grâce à une pléthore de méthodes, d'évaluer l'état moléculaire de la 

cellule au niveau des systèmes sans qu'il soit strictement nécessaire de connaître au 

préalable l'état de la cellule. Cette richesse de données nous a permis de répondre à des 

problèmes fondamentaux de la biologie - comment les cellules se développent en tissu 

plastique, comment elles orchestrent les processus de développement et d'homéostasie ?  

Cette thèse portera sur le développement de nouvelles méthodes et essais pour étudier, 

cartographier et perturber les destins cellulaires en utilisant des microfluidiques de 

gouttelettes basées sur le scRNA-seq.  La première partie portera sur la réingénierie de notre 

dispositif Drop-seq, en vue d'une adoption plus large et d'une manipulation plus efficace des 

échantillons. Les développements présentés porteront sur un nouveau flux de travail flexible 

qui simplifie considérablement la manipulation des échantillons tout en étant efficace dans la 

récupération de matériel unicellulaire.   

 

En s'appuyant sur les avancées précédentes, la prochaine partie portera sur une nouvelle 

plateforme de goutte-à-goutte pour la capture déterministe de l'ARNm par des billes et la 

coencapsulation cellulaire (DisCo) et son application à l'étude du développement 

d'organoïdes intestinaux uniques. Ici, une avancée clé, jusqu'ici non résolue dans le domaine, 

est la capacité à contrôler de manière déterministe le processus de capture cellulaire. Bien 

qu'à un débit inférieur à celui d'autres méthodes basées sur la microfluidique des gouttelettes, 

cette méthode permet de traiter des échantillons à faible apport cellulaire avec une efficacité 

de capture élevée. Comme étude de preuve de concept, nous avons étudié le développement 

précoce d'organoïdes intestinaux simples. DisCo nous a aidé à découvrir une grande 

hétérogénéité des organoïdes et à identifier les trois sous-types distincts et aberrants 

d'organoïdes intestinaux tels que les entérocystes, les sphéroïdes et les gobloïdes.   

  

Enfin, la troisième partie portera sur le développement d'un nouveau criblage de facteurs de 

transcription (TF) à code barres de gain de fonction en conjugaison avec le scRNA-seq (TF-

seq). Pour comprendre le rôle du FT dans le maintien des types de cellules, la manipulation 

systématique des FT combinés par le profilage global de l'expression des gènes aidera à 

délimiter leur rôle dans la progression et le maintien de l'état des cellules. Nous avons appliqué 

la TF-seq sur des cellules souches mésenchymateuses murines comme le modèle 

C3H10T1/2 et avons trouvé de multiples facteurs connus qui programment les cellules pour 

qu'elles deviennent adipeuses (Cebpa, Pparg), ostéogéniques (Runx2, Dlx3) et myogéniques 

(Myod, Myog). En outre, nous avons découvert et confirmé deux nouveaux FT (Rhox12, Mycn) 
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impliqués dans l'adipogenèse. En analysant à la fois l'activité des TF et les changements 

causés à l'ensemble du génome, cette approche permet de découvrir les facteurs forts et 

faibles de l'engagement des TF dans les lignées.  

 

Mots clés : Transcriptomique unicellulaire, microfluidique en gouttelettes, déterminisme, 

facteur de transcription, vecteurs lentiviraux, cellules souches mésenchymateuses, 

engagement dans la lignée, différenciation 
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Сажетак  
 

Транксирптомика на нивоу појединачних ћелија (scRNA-seq) је револуционизовала молекуларну 

биологију кроз развој метода које су омогућиле системску анализу ћелија отклањајући потребу 

за предзнањем ћелијског статуса или идентитета. Подаци добијени применом ових метода нам 

омогућавају да одговоримо на фудаментална питања биологије: како се ћелије развијају у 

ткиво, како регулишу процесе развоја и хомеостазе? 

 

Применом метода микрофлуидике и транскриптомике на нивоу појединачних ћелија, у овој 

докторској дисертацији ћу представити развој нових метода за изучавање, мапирање и 

манипулацију ћелија. Најпре ћу представити оптимизацију методе за узорковање ћелија 

базиране на микрофлудици (Drop-seq) са циљем побољшања њене ефикасности и ширег 

усвајања у научној заједници. Оптимизације методе покривају нови оптимизован протокол 

секвенцирања библиотика који поједноставља третирање узорака и ефикасно узорковање 

материјала за даљу анализу.  

 

Применом принципа претходног поглавља, наредно поглавље покрива развој нове платформе 

за детерминистичку енкапсулацију куглица обележених баркодовима и ћелија (DisCo) како би 

изучавали развој појединачних интестиналних органоида. Развојем ове методе, омогућено је 

ефикасно узорковање и припрема библиотека за секвенцирање ретких и малих популација 

ћелија. Популације ових ћелија су до сада биле недоступне за анализу услед неефикасности до 

сада развијених метода. Како бисмо доказали значај ове технологије, проучавали смо развој 

појединачних интестиналних органоида. Развој ове методе нам је омогућио да опишемо 

хетерогеност у развоју органоида. Такође, овом анализом уочили смо 3 аберантна типа 

органоида које карактерише доминација терминално диференцираних ћелијских типова 

присутних и у дигестивном систему (ентероцисти, сфероиди, гоблоиди). 

 

У трећем делу дисертације, представићу развој новог есеја  за системску анализу функције 

баркодираних транскрипционих фактора на нивоу појединачних ћелија. У циљу бољег 

разумевања улоге транскрипционих фактора у дефинисању идентитета ћелије, систематска 

манипулација њихове функције у комбинацији са глобалном анализом експресије гена има 

потенцијал да открије њихову улогу у прогресији и одржавању стабилног ћелијског типа. 

Применом поменуте методе на модел мишијих мезенхимских матичних ћелија описали смо 

неколико до сада познатих транксрипционих фактора укључених у адипогенезу (Cebpa, Pparg), 

остеогенезу (Runx2, Dlx3) и миогенезу (Myod, Myog). Поред тога, описали смо два нова 
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транксрипциона фактора који регулишу адипогенезу (Rhox12, Mycn). Анализом утицаја 

транксрипционих фактора на глобалну експресију гена омогућeно је даље октривање нових , 

како јаких тако и слабих, транскрипционих фактора одговорних за програм диференцијације у 

специфичне типове ћелија.   

 

Кључне речи: транксриптомика, микрофлуидика, детерминизам, транскрипциони фактори, 
лентивируси, мезенхимске матичне ћелије, диференцијација  
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Chapter 1: Introduction 

1.1 How does cell variation arise and what is its relevance? 

 

“A grand and almost untrodden field of inquiry will be opened, on the causes and laws of 

variation, on correlation of growth, on the effects of use and disuse, on the direct action of 

external conditions, and so forth. The study of domestic productions will rise immensely in 

value. A new variety raised by man will be a far more important and interesting subject for 

study than one more species added to the infinitude of already recorded species. Our 

classifications will come to be, as far as they can be so made, genealogies; and will then truly 

give what may be called the plan of creation” Charles Darwin, On the Origin of Species  

 

Central dogma of molecular biology provides a simple yet powerful basis how genetic 

information is encoded and sequentially transferred in biological systems1. DNA is transcribed 

into messenger RNA (mRNA) which serves as an intermediary for a protein synthesis.   

However, due to its simplistic nature, the central dogma fails to unveil the complexity of the 

information flow, its divergence. This explanation also fails to deliver how complex biological 

entities emerged throughout the evolution and how such a rich phenotypical and functional 

diversity is achieved through organismal development. Additional question remains, how does 

the organizational diversity of biological systems arise from the same information source and 

how is it regulated2.  

 

The extent of complexity behind this flow of information helped us to understand how first 

unicellular lifeforms emerged and how their genome regulation transformation and cellular 

interactions allowed for the emergence of multicellular organisms and specific cell types3. 

Cells are the building blocks of multicellular organisms. A unique aspect point of metazoan 

evolution is tissue specialization and cellular function. This applies to both parenchymal cells 

that determine the tissue function on the one side and accessory cells that support and 

regulate their function on the other4–6. For decades, cell types were defined by their 

morphology and by their function 7,8. With the advancement of microscopy methods, staining 

methods, and other techniques (i.e., flow cytometry), resolution and throughput of analysis 

increased, still leaving the possibility to probe a relatively low number of molecular and 

morphological features per single cell. An essential aspect of the cell type is its regulatory 
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independence from the other cells. Without a unique regulatory program that enables cell-

type-specific gene expression, it is hard to establish a cell-type identity.  The selection of these 

features can lead to the narrow definition of cell identity reduced to several parameters. 

Numerous projects tried to address this question, such as FANTOM project9, and ENCODE 

project10. Data generated by these projects allowed to analyze cells from a molecular 

perspective unveiling regulatory complexity behind cellular identity. With the rise of genome-

wide analysis, scientists were able to pave a way towards broader measurements allowing for 

less biased cellular characteristics assessment. However, most of the mentioned methods still 

suffer from bulk data collection bias leading to the inability to resolve cell-to-cell differences.  

 

1.2 The single-cell transcriptomics revolution 

 

Single-cell RNA-seq (scRNA-seq) represents the array of methods developed in the last 

decade that allows mapping and dissecting cellular diversity11,12. The revolution in single-cell 

genomics lays it is foundation in the everlasting interest of scientists to systematically 

understand gene expression and underlying mechanisms behind cellular composition and 

behavior. From a molecular biology method development standpoint, the major breakthroughs 

happened with first development discovery of reverse transcriptase 13 and reverse 

transcription combined with PCR 14allowing to measure activity of genes from cells. With 

development of PCR-based methods and second generation of sequencing scientists were 

able to increase and parallelize the gene coverage leading to development of various 

transcriptomic methods that enabled genome-wide assaying of the cellular and tissue 

activitiy15,16.  

 

Building on these principles, Tang and colleagues further developed and applied 

transcriptomics approaches to analyze the gene expression of single cells17. Followed by this, 

accuracy and sensitivity of the methods was on the rise in the last decade18. There are several 

notable waves of development that allowed for increase of experimental scale. First, 

integration of transcript barcoding 19 with precision of Fluorescence Activated Cell Sorting 

(FACS) technology allowed for the automated single-cell sorting directly into lysis buffers and 

integration standard molecular biology workflows (i.e. PCR, nucleic acid purification etc.) 20. 

With further automation of sorting methods and biochemical reaction miniaturization, various 

liquid handling platforms were integrated with already established scRNA-seq protocols21 . 
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Further increased sensitivity was achieved with development of microfluidics methods that 

enabled further miniaturization of RNA capture and reverse transcription 22–24. Droplet-based 

microfluidics is a set of techniques commonly used to perform experiments in the nanoliter 

scales. The main advantage of such approach is rapid compartmentalization of water-in-oil 

droplets that allows for reactions to happen fast, on a smaller scale with high resolution25–27. 

Hence, droplets give ability isolate particles of interest and perform the reactions in temporal 

and spatial resolution. Ultra-high throughput nature of these methods (reference for 

throughput) made them attractive to perform various screening assays in life sciences such 

as fluorescence sorting28, antibody screening29 and cell culturing26,30. After 2015, together with 

development of microsphere oligo synthesis coating, droplet microfluidics revolutionized 

single-cell transcriptomics field allowing rapid cell compartmentalization and barcoding in the 

individual droplets31–35.  

 

We were highly encouraged in our decision to implement a novel single-cell method, Drop-

seq 32 that exploits high throughput droplet microfluidics and unique bead barcoding to obtain 

single-cell expression profiles 32,36,37. Drop-seq was preferable platform since it suffers from 

much fewer cell doublets and is much more cost-effective to reach desired power for gene 

expression analysis because it allows the processing of thousands of single cells in one run 

with single-cell purity between 90 and 98% 32,38. For example, compared to other trap-based 

microfluidics platforms like Fluidigm C1, droplet microfluidics doesn’t suffer from cell selection 

bias, important for heterogeneous and tissue samples, thus doesn’t suffer high doublet 

rates32,39,40. Compared to other Fluorescence-Activated Cell Sorting (FACS) based methods, 

Drop-seq does not suffer from limitation to 96 or 384 well format sample processing and allows 

more efficient sample size scaling41,42. Once collected, thanks to unique bead barcoding, 

single cells in the Drop-seq experiment are processed in bulk, making each experiment less 

labor-intensive and free from necessity to utilize robotic liquid handling systems. Commercial 

release of the droplet-based technology by company 10X Genomics significantly improved the 

throughput and efficiency of single-cell capture43 in droplet microfluidics and paved a way 

through method standardization and ease-of-use towards broad adoption of this approach. 

A Drop-seq experiment begins with the encapsulation of cells and beads in nanoliter water-in-

oil droplets. The system relies on unique barcoding of the beads co-encapsulated with cells. 

The beads are coated with uniquely barcoded primers, each of which contains a cellular 

barcode (specific for every bead), a unique molecular identifier (UMI, specific for each primer) 
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and a polydT sequence used for polyadenylated mRNA capture. Before injection, beads are 

suspended in a lysis buffer that, upon cell encapsulation, induces immediate mRNA release. 

The system relies on stochastic co-encapsulation with 2-10% single-cell capture efficiency 
32,42,44. When cell/bead co-encapsulation occurs, the beads capture released mRNA. The 

newly formed bead/RNA complexes are called STAMPs (Single-cell Transcriptome Attached 

to Micro Particles). After formation, droplets containing STAMPs are pooled down together in 

a single tube. At this point, STAMPs are centrifuged and suspended in a reverse transcription 

(RT) mix used to convert captured RNA into stable complementary DNA (cDNA). After RT, 

STAMPs are treated with exonuclease I to remove unbound oligonucleotides on beads. 

Following this step, cDNA amplified directly from the beads, then the sample pool is prepared 

for paired-end sequencing32 .   

 

1.3 Advances and limitations in single-cell transcriptomics method development  

 

At this moment, single-cell RNA-sequencing (scRNA-seq) has become an indispensable tool 

in biomedical research by enabling the exploration of cell-to-cell differences in tissues at 

unprecedented resolution45–47. With single-cell approaches as an asset, one can fully 

characterize the functional diversity of the tissue, its maintenance, and remodeling caused by 

environmental perturbations. Data generated from the single-cell experiments provides an 

opportunity to understand transcriptional variation and cell-to-cell heterogeneity arising from 

the mutations, cell cycle, cell-to-cell communication, and various subpopulations present. 

Finally, cell type identity definition has evolved and can be defined through understanding four 

aspects – phenotype, function, lineage, and state48,49:  

Each one of these parameters can help us to pinpoint cellular identity in a less biased manner. 

Current experimental and computational advances in scRNA-seq have already revealed and 

confirmed numerous insights into various biological systems. Following the wave of 

standardization among the methods50,51, both on bench and computational side, and with 

increase interest increased interest among scientist to perform unbiased studies of thousands 

of single cells within a sample 41,52, novel consortia emerged with a common goal – to fully 

catalog all existing cells in relevant model organisms11,53–55.  
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Many single-cell transcriptomics methods required already wide-spread skills and standard 

equipment that led to their rapid adoption. On the one side, methods that rely on index sorting 

were developed around existing sorting equipment and built on extensive miniaturization 

(nanowells) and automation (robotic liquid handling systems). On the other side, as adoption 

of microfluidics techniques increased by various labs, novel microfluidic approaches laid 

ground for broad adoption and innovation in biology. However, certain limits in the current 

method development are still present: loss of information due to inefficient RNA to cDNA 

conversion (commonly called as dropouts) still significant, sensitivity in detection varies 

depending on the chemistry of choice, majority of methods suffer from bias to polyA capturing 

leaving some regulatory parts of transcriptome in dark 41,52.  For latter, several advances were 

recently made, however, such as methods  one still has to choose between “unbiased” but in 

fact polyA based transcriptome or methods focus on other RNA species within of the 

transcriptome56 .   

 

While available scRNA-seq technologies allow medium- to high-throughput routine 

experiments, efficient sample processing is still a challenge for all approaches. Multiplexing 

techniques were developed to permit parallelization of sample analysis for efficiency and cost-

effective reasons. Still, current multiplexing techniques (i.e., CITE-seq, MULTI-seq)57,58 require 

several magnitudes higher starting material to compensate for all the sample losses due to 

washing steps and do not address losses before multiplexing (i.e., tissue digestion before the 

labeling). As another alternative, plate-based assays have made enormous advances in ease-

of-use and are continuously evolving, however, they suffer from low cell capture efficiency. 

FACS 23as being the one that is convenient and well established for molecular biology labs 
59minimally 10,000 input cells . Furthermore, sophisticated automated liquid handling, also not 

available for most labs, would be required.  

 

1.4 Transcription factors and their role in developing and maintaining cellular identity 

 

One of the main gatekeepers and regulators of genome activity are transcription factors (TFs). 

Transcription factors serve as chain-links of the genome to other functional units of the cells 

through DNA binding and recruiting of RNA polymerase complex and other cofactors. Majority 

of the genome's functional DNA is likely regulatory and TFs play a central role in its recognition 

and utilization. TF activity controls processes that specify cell types, developmental patterning, 
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and specific pathways that govern tissue plasticity and homeostasis. TFs differ in their impact 

on transcription upon DNA binding. The binding of TFs to DNA determines the strength and 

time-window of gene regulation. Some TFs can directly recruit RNA polymerase while others 

recruit additional factors that promote specific transcription phases TFs can also be classified 

as either “activators” or “repressors”. Activators do… Repressors do… However, this 

classification can be easily blurred60 as some TFs recruit multiple cofactors that have opposing 

effects depending on the local sequence context, availability of cofactors and dosage61,62. 

Name an example Is there any other way of classifying them?  

 

Approximately 1500 TFs are encoded in the mammalian genome and are associated with 

various diseases and phenotypes63. How TFs find their targets and control gene expression 

patterns are essential for understanding both homeostatic physiological functions and 

pathologies. One of the first examples Myod shown to a critical TF for commitment and 

differentiation to muscle cells. Previous studies show that both Myog exert their function by 

regulating genes involved in the myogenic program through promoter-specific regulation and 

positive-feedback64.  

 

Across all TF families, many are tissue-specific, thus maintain specific physiological functions. 

Tissue specificity is enabled by temporal-spatial gene expression patterns driven by TFs. The 

nature of reprogramming reflects the functions of the TFs role in determining the cell fate. 

High-resolution data can explain associations between TFs, downstream genes regulated and 

ultimately cell identity. Decades of research have made significant progress in understanding 

the roles of TFs in various biological systems, yet we have recently started to understand the 

genome-wide causative relationships between TFs and cell states65,66. To further aid the 

identification of cell identity, it is important to analyze further the structure and function of TF 

regulatory networks67. First studies using chromatin immunoprecipitation and sequencing 

(ChIP-seq), yeast one hybrid68 enabled to identify TFs and their interaction partners. Methods 

like69, mechanically induced trapping of molecular interactions (MITOMI)70, and systematic 

evolution of ligands by exponential enrichment (SELEX) enabled us to further expand our 

knowledge on binding affinity, frequency, and binding mode of TFs. Additionally, Live-cell 

imaging methods allowed for closer tracking of TFs dynamics throughout the cell cycle and 

cell-fate decisions allowing for further dissection of TF activity in active cells71. Furthermore, 

gene perturbation experiments, both gain-of-function and loss-of-function, are increasingly 
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complemented with genome-wide analysis to study their importance in defining cellular 

phenotype, function and lineage progression of cells.   

 

1.5 How can we study cellular heterogeneity using perturbation methods? 

 

Understanding underlying molecular mechanisms during cell differentiation in a multitude 

states and types has been a long-standing interest in stem cell and developmental physiology. 

This knowledge has a propensity to unveil how to manipulate cell fates in vivo and to 

understand the origins of different pathologies during organismal development and aging. 

Stem cells are capable of self-renewal and to differentiate to specific cell types. Their ability to 

maintain and use these two parameters depends on several parameters: the niche, the 

epigenetic control, and the transcriptional control49,72. However, the emergence of the novel in 

vitro techniques allows for manipulating epigenetic landscape and transcriptomes, enabling 

efficient studies and trans-differentiation to novel cell states73.  

 

Revolution in scRNA-seq also allowed for the development of screens with single-cell readout, 

which delivers a way for dissecting complex outputs not easily reduced to single markers. This 

allows for initial dissection of complex signaling pathways and other biological mechanisms 

under perturbation conditions on an unprecedented resolution and understanding and 

continuity of cell states along the developmental trajectory progressing towards a terminally 

differentiated state74. Classical studies that involve the study role of genes that drive the 

reprogramming of cells have heavily relied on prior knowledge of their role. Cellular 

reprogramming via gene manipulation has widely impacted biological research from 

reprogramming adult parenchymal cells to the induction of pluripotent stem cells75.   

 

There are three most notable approaches to screening of perturbations in stem cells. First, 

methods like CellTagging and LARRY, enable combinatorial cell labeling in order to 

reconstruct lineage trees48,74. Second, CRISPR/Cas screens coupling with scRNA-seq have 

performed multi-locus gene perturbation, focusing on the TFs regulating immune response 76–

78. This approach is known as Perturb-seq and gives us the possibility to use the CRISPR/Cas 

system to target specific genes to assess the diversity of transcriptional changes and gene 

interactions across thousands of knockout cells. Similarly, Nguyen et al. have generated large 
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transcriptomic dataset compromising CRISPRi human induced pluripotent stem cell (hiPSC) 

line 79. This allowed them to identify cells' subpopulations based on their regulatory networks 

controlling the identity and pluripotency differentiation potential. CRISPR offers advantages 

such as scaling up, targeting, and the ability to mimic endogenous activation. However, 

overexpression of TFs offers a stable expression of the gene of interest, enables manipulation 

of specific isoforms and mutant forms, which cannot be easily probed by endogenous 

activation80,81.  

 

One of the Laboratory of Systems Biology and Genetics' longstanding interests is the adipose 

tissue and its homeostasis82,83. It is now well appreciated in the scientific community that 

adipose tissue is not an expendable part of our body but constitutes a highly dynamic, 

endocrine-type organ playing an indispensable role in several biological processes, including 

development, immunity, and energy homeostasis 84,85 . The adipose tissue can be classified 

into three subtypes based on their molecular and morphological characteristics.  The best 

known and the most abundant is the white adipose tissue (WAT). This tissue is characterized 

by large cells that store energy in the form of unilocular fat droplets. Moreover, it is now well 

established that both in mice and humans, WAT depots are moleculary, cellularly and 

physiologically distinct depending on their location in the body which may reflect the fact that 

these adipose depots stem from different fat precursors86,87. In contrast, the lesser-known 

brown adipose tissue (BAT), which has recently been shown to be present in both human 

infants and adults88, contains cells with multilocular fat droplets and serves to expend energy 

as heat. Finally, "beige" adipocytes 89 exhibit a brown fat cell-like phenotype. Beige adipocytes 

are thought to be ontogenetically and molecularly distinct from brown adipocytes given that 

they arise in WAT upon extensive exposure to cold, exercise or adrenergic stimuli90. They 

have distinct gene expression profiles, and they are thought to have a different developmental 

origin than genuine brown fat cells89,91.  

 

Adipocytes are derived from mesenchymal stem cells (MSCs) in a two-step process92, 

including the determinant differentiation step from MSC to pre-adipocyte and terminal 

differentiation step from pre-ad to mature adipocyte93.  To study terminal differentiation of 

adipocytes, Gubelmann et al. transduced individual 734 mouse TFs packaged as lentiviruses 

in 3T3-L1 cells in the previously established overexpression screen. Their screen showed 26 

TFs that significantly induce the white adipogenesis, out of which 23 were already known. 

However, using a plethora of other less well-characterized TFs can reveal many novel 
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regulators of these differentiation processes. Although the TFs that control the terminal 

differentiation are well studied, much less is known for the determinant differentiation. Lack of 

solid knowledge in this subdomain is due to the fact that pre-adipocyte transient state harbors 

neither specific markers nor show a significant phenotype. Our lab possesses a library 

containing most mouse TFs (~734) in lentiviral expression-ready vectors, which constitute an 

indispensable resource for further TF gain-of-function studies94.  
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2.1 Abstract 

 

Single-cell RNA-sequencing (scRNA-seq) has revolutionized biomedical research by enabling 

the in-depth analysis of cell-to-cell heterogeneity of tissues with unprecedented resolution. 

One of the catalyzing technologies is single cell droplet microfluidics, which has massively 

increased the overall cell throughput, routinely allowing the analysis of thousands of cells per 

experiment at a relatively low cost. Among several existing droplet-based approaches, the 

Drop-seq platform has emerged as one of the most widely used systems. Yet, this has 

surprisingly not incentivized major refinements of the method, thus restricting any lab 

implementation to the original Drop-seq setup, which is known to suffer from up to 80% bead 

loss during the process. In this study, we present a systematic re-engineering and optimization 

of Drop-seq: first, we re-designed the original dropleting device to be compatible with both air-

pressure systems and syringe pumps, thus increasing the overall flexibility of the platform. 

Second, we devised an accompanying chip for post-encapsulation bead processing, which 

simplifies and massively increases Drop-seq's cell processing efficiency. Taken together, the 

presented optimization efforts result in a more flexible and efficient Drop- seq version. 

 

2.2 Introduction 

 

The generation of high-dimensional gene expression data through single-cell RNA-

sequencing (scRNA-seq) is becoming indispensable to explore the diversity of heterogeneous 

cell populations with the necessary accuracy and resolution11. For several of the catalyzing 

methodologies, microfluidics has quickly become a key investigative technique for cell 

capture, isolation and processing. The first, widely successful, micro- fluidic implementation of 

scRNA-seq was introduced and commercialized by Fluidigm, with its C1 system, which 

employed hydrodynamic traps for single cell capture and microchambers for downstream 

library preparation. While this approach allowed for convenient sample processing, costs per 

cell remained high, the throughput limited and doublets – i.e. the unwanted capture of two 

cells instead of one – was unexpectedly frequent32. 

 

With the emergence and maturation of droplet microfluidics in recent years, researchers have 

addressed the need for high throughput, low-cost assays by reducing reaction volumes36. 

Droplet microfluidics now allows for experiments on massive scales both within and outside of 

the “-omics” do- main26,95. Focusing on single cell transcriptomics, the possibility to perform 

rapid compartmentalization has significantly increased the throughput and sensitivity of 

analyses at the single cell level. For instance, recent publications contained 100 605 “Tabula 

muris” cells96, 492 949 mouse nervous system cells97, 157 000 ageing fly brain cells55, and 
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10× genomics has publicly available datasets with 1.3 M cells in total43,98. While commercial 

systems such as the 10× genomics chromium exist, offering an indisputable ease of use and 

experimental robustness, customized lab setups are still a magnitude less expensive in terms 

of per-cell library preparation costs once established and routinely utilized.42 Furthermore, 

custom- built setups offer the highest degree of flexibility, allowing for freely scalable 

experimental size and completely open source processing chemistry. Hence, while 

commercial systems are most arguably dominating the conventional cell pro- filing market, it 

is likely that, especially for power-users and research and development, custom-built setups 

will continue to play an important role51,99–101 

 

The two most noteworthy custom-built dropleting systems for scRNA-seq are Drop-seq32 and 

inDrop.37 Conceptually, both systems are similar: a cell suspension is co-flown with a bead 

suspension, and encapsulated in nanoliter droplets. The beads harbor barcoded 

oligonucleotides for capturing polyadenylated RNA (polyA) and for adding a common 

molecular cell identifier to each mRNA transcript. In the bead suspension, detergent is added 

to lyse cells upon co-encapsulation and thus to liberate cellular polyA RNAs for subsequent 

capture. Beads for both systems, hydrogels for inDrops and microspheres for Drop-seq, are 

commercially available. Alternatively, inDrop beads can be produced in-house by split-and-

pool synthesis102, while the Drop-seq microspheres are more complex to manufacture since 

the process involves solid-phase oligonucleotide synthesis. Noteworthy, split-and-pool 

barcode synthesis has recently been demonstrated on solid-state microspheres103, potentially 

making this an alternative route for Drop-seq bead generation. Despite having lower detection 

sensitivity based on artificial RNA molecules52, and significantly lower cell capture efficiencies, 

Drop-seq still has found wide adoption in the scRNA-seq community74,104–106. This is because 

the utilization of solid-state (toyopearl) microspheres in Drop-seq, as compared to hydrogels 

in inDrops, makes Drop-seq relatively straightforward to implement. An additional technical 

advantage of using microspheres is that they can be directly coated by solid-phase synthesis, 

resulting in a high cell barcode diversity. Furthermore, the conceptually simple post-

encapsulation reverse-transcription (RT) process makes the protocol comparably easy to 

establish: the RNA-harboring spheres can be retrieved from the emulsion, mRNA reverse- 

transcribed in a reaction vessel, and unhybridized bead-bound oligos removed by 

exonuclease I (Exo I) treatment. 

 

However, despite its wide adoption, few improvements, especially for practical use of the 

system, have so far been described106–108.Thus, if a lab aims to establish Drop-seq today, 

there is no alternative besides replicating the previously published approach, regardless of the 

equipment available in the lab or experimental needs. This implicitly forces for example air 
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pressure-based microfluidics lab to purchase syringe pumps and a specialized magnetic 

stirring system. To this day, only Stephenson and colleagues100 have built a low-cost, 3D 

printed pressure-based Drop-seq setup with instructions on how to specifically adapt the chip 

and operating equipment. Moreover, some experimental procedures, such as the post-

encapsulation processing of the mRNA-bearing microspheres to form STAMPs (for Single-cell 

Transcriptomes Attached To MicroParticles), are still rudimentary: microspheres are handled 

in large vessels requiring a plethora of manual processing steps. While this not only introduces 

many error prone steps, up to 80% of all processed beads are lost during this process.32 To 

our knowledge, no improvements have been made to the original bead processing protocol 

since its release. 

 

To provide the community with a universally implementable system, we re-engineered the 

Drop-seq system and addressed one of its major limitations: bead loss. First, we show that 

our newly designed encapsulation chip runs robustly both on air- pressure and syringe pumps, 

thus providing greater experimental flexibility. Second, we show that the use of an air pressure 

source compared to syringe pumps allows for the integration of simple sample supply 

reservoirs, which alleviate the necessity of acquiring expensive micro stirrer setups. Third, we 

devised a novel capture and processing chip that allows for highly efficient retrieval of the 

mRNA capture beads. We demonstrate that this approach increases recovery efficiencies of 

micro- spheres, either from pre-broken emulsions, or directly from droplets. Using the same 

device, we show that the complete cDNA generation protocol can be executed on-chip, further 

streamlining the protocol. Finally, we confirmed that key scRNA-seq performance metrics are 

comparable to the original implementation of the protocol. Overall, our solution represents in 

our opinion a more versatile and robust approach compared to the original Drop-seq 

implementation. 
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2.3 Results  
 

 
Figure 2.1 - Overview of the revised Drop-seq workflow: the revised work-flow (dashed lines) is 
a flexible protocol that simplifies handling and in-creases the efficiency of the original protocol 
(solid lines). (A) By redesigning the original chip into the e-chip, it is now possible to use either syringe 
pumps or an air-pressure regulator for the cell-bead encapsulation process. (B) Utilizing a new bead 
capture and processing chip, the cp-chip, beads can now be either captured post droplet breakage, or 
directly captured from droplets for smaller bead quantities. (C) Following the bead capture, it is possible 
to either retrieve the beads into a tube for the STAMP generation process (reverse transcription and 
exonuclease treatment), or to perform STAMP generation on-chip to further improve the overall bead 
recovery efficiency. 
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The revised Drop-seq workflow comprises two microfluidic devices, an encapsulation device 

(e-chip) and a bead capture and processing chip (cp-chip). The e-chip facilitates the cell bead 

encapsulation process and is compatible with pressure and syringe pumps (Figure 2.1A), 

whereas the cp-chip is employed for efficient bead extraction, either directly from droplets for 

small samples, or from broken emulsions for larger samples (Figure 2.1B). While it is then 

possible to proceed to cDNA generation in tubes after bead capture on the cp-chip by eluting 

the microspheres, it is also possible to generate STAMPs on chip (Figure 2.1C). The latter has 

the advantage of both minimizing bead loss and handling errors as well as offering the 

potential for automating this otherwise error-prone and labor- intensive procedure. 

 

 
Figure 2.2 - The e-chip simplifies the experimental setup and renders it more flexible: (A) the e-
chip includes flow resistors, an optimized flow focusing point, and extended droplet mixing channels 
(top to bottom). (B) Emulsion formation by the original device and e-chip using syringe pumps and an 
air-pressure source. (C) Droplets filled with transparent liquid and food-coloring after droplet formation 
(pre-mixing), and after exiting the droplet mixing channel (post-mixing). (D) Two-slot sample holder for 
bead suspension, attachable to a standard lab vortex machine. (E) Overall setup utilizing air-pressure 
as driver. An air pressure controller (1) is connected to the oil and cell reservoirs (2), and to the bead 
vessel (3). All vessels are connected to the dropleting device (4) and the emulsion is captured in a tube 
(5). 
 
To make the workflow compatible with different pressure sources, a new encapsulation chip 

(e-chip) was designed to facilitate monodisperse emulsion formation with both air-pressure 

and syringe drivers (Figure 2.2A). Syringe pumps are fundamentally different from air-

pressure systems as they are controlling volumetric flow rates. In contrast, air pressure 

systems only control the pressure of a liquid containing vessel. As all of these systems feature 
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minimal operating pressures, the flow-resistance of the chip had to be adjusted to allow for 

appropriate flow rates. Thus, we first re-designed the original chip by adding microfluidic 

resistors to each channel, aiming to stabilize the flow rate in the operating range of the air 

pressure controller. These resistors were designed by considering the following criteria: a) 

The channel cross- section had to be sufficiently large to allow the easy passage of cells and 

beads and thus to avoid clogging. b) The resulting flow rate should not exceed the one used 

in the original Drop-seq (i.e. below 60 μL min−1). These criteria translated into 4.5 cm-long 

resistors with a squared cross-section with lengths of 60 μm. As the smaller channel width 

compared to the original device made the chip more sensitive to clogging, the second addition 

was large input filters to retain abnormally big microspheres and dust from entering the chip. 

Third, the dropleting T-junction was adapted into an angled conformation. We compared the 

performance of the newly developed e-chip to the original Drop-seq device by generating 

emulsions with both syringe pumps and pressure controllers (Figure 2.2B). While the original 

device clearly failed to produce monodisperse emulsions from a pressure controller, the e-

chip was able to produce stable emulsions with both drivers. Importantly and independent of 

the driver system, we also observed that the length of the chaotic advection mixers on the 

original chip was insufficient to completely mix droplet contents (Figure 2.2C). Since passive 

mixing in droplets by diffusion is slow and uncontrollable, we decided to increase the length of 

the mixers on the e-chip four-fold. Indeed, a qualitative inspection confirmed that the larger 

mixing channels enhanced the internal mixing of the microdroplets (Figure 2.2C). 

 

A positive side effect of using air pressure systems is the fact that conventional sample vessels 

can be utilized and interfaced with the chip, as opposed to syringes used in syringe pumps. 

This is especially significant for solutions containing microbeads, as they have to be agitated 

for the particles to remain in suspension. In the original Drop-seq implementation, this was 

achieved by an expensive magnetic stirrer setup (∼$2000), connected in proximity of the 

syringes. To overcome the need for a dedicated magnetic stirrer, we developed a vessel 

agitation system that is compatible with conventional laboratory equipment. Using additive 

manufacturing, we produced a Vortex adapter that can hold and agitate the cell and bead 

suspension vessels (Figure 2.2D). We extensively used the Vortex-based agitation system for 

cells and beads and did not observe any adverse effect on bead integrity (data not shown). 

Besides simplifying the overall system (Figure 2.2E), this has the additional advantage of 

reducing the initial set-up costs. 
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Figure 2.3 -The novel bead capture and processing cp-chip increases the bead recovery 
efficiency: (A) efficiency of the various bead processing steps for the original drop-seq protocol. Input 
amount is displayed relative to the encapsulation process. The efficiency of the de-emulsification step 
is normalized to the encapsulation step. The bead recovery efficiency for the STAMP generation 
process is shown relative to the de-emulsification process and normalized for ‘sampling loss’. Error bars 
represent the standard deviation calculated on the normalized values for each processing step. (B) 
Design of the novel bead capture and processing cp-chip. (C) Hydrodynamic simulation of one chip 
section of the chip shown in (B). d) The device from (B) is capable of capturing beads directly from 
droplets (left) or from a broken emulsion (middle). Captured beads are eluted by reversing flow direction 
(right). (E) Different strategies for bead recovery from droplets: original protocol (blue arrows), collection 
on-chip from broken emulsion (red arrows), and bead capture from droplets (green arrows). (F) Bead 
recovery efficiencies for the different procedures shown in (E). Values are normalized to encapsulation 
losses; the error is shown as standard deviation calculated on the normalized values. P-values were 
deter-mined using t-test. 
 
Following the cell encapsulation process, the original Drop- seq protocol involves a multistep 

procedure to recover the microspheres from the emulsion for subsequent STAMP generation. 

As these processing steps are conducted in vessels and equipment tailored to large volumes, 

they are naturally prone to bead loss. In the original protocol, this loss was quantified as 

ranging between 60–80%32. To identify critical steps during bead processing, we examined 

the bead recovery efficiency of the workflow by quantifying bead loss for each of the three 

main protocol steps, i.e.: encapsulation, de-emulsification, and STAMP generation (Figure 

2.3A, details in the Materials and Methods section). The average number of input beads for 

efficiency measurements were 2249 ± 250 beads. As expected, we found that every manual 

handling step introduces bead loss (Figure 2.3A). Nevertheless, we observed that the steps 

executed on a microfluidic chip (encapsulation) and in small vessels (STAMP generation) 

show a much better performance (∼10–20% loss) than the de-emulsification step performed 
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in large vessels (∼58% loss). Overall, we observed cumulative post-encapsulation bead 

losses of up to ∼64%, which is in accordance with the reported efficiency of the most recent 

protocol. 

 

To address the post-enapsulation inefficiencies that cause substantial bead loss, we designed 

a bead capture and processing chip (cp-chip) that simplifies the de-emulsification process 

(Figure 2.3B). Specifically, the cp-chip is comprised of pillar arrays that allow liquids to pass 

through while blocking particles above a certain size. Gaps between the pillar were 20 μm, 

substantially below the average size of the coated oligonucleotide beads (30 μm). The pillars 

were 50 μm wide, were arranged in eight linear sections of 4.1 mm each, and were combined 

in an octagonal shape to maximize the capture capacity of the device (Figure 2.3B). In 

principle, the cp-chip can hold more than 1000 beads in a single bead layer, and it can easily 

purify large Drop-seq samples of more than 10 000 beads in multi-sediment layers. To seed 

the array evenly across all sections, the channels towards the waste channel were arranged 

so that flow spreads across all pillars, con- firmed with a flow simulation (Figure 2.3C). Finally, 

large support structures were included to prevent collapse of the chip ceiling and to provide a 

guide for precise hole punching. 

 

Initially, we tested the cp-chip qualitatively to demonstrate that the device was indeed capable 

of extracting beads from complex solutions. Intuitively, direct on-chip bead capture from 

emulsions represents the most straightforward approach as it involves no prior processing 

steps. However, since droplets that contain contaminating unbound mRNA are in direct 

proximity of beads coated with mRNA-capturing probes, this approach can potentially lead to 

increased cross-contamination of sequencing libraries. It was therefore important to validate 

that the cp-chip can capture beads that stem either directly from droplets or from the broken 

emulsion (Figure 2.3D). Next, we further examined both workflows (i.e. beads from droplets 

vs. broken emulsions) (Figure 2.3E) to determine their performance in terms of bead recovery 

efficiency compared to the original Drop-seq approach. To this end, beads were encapsulated 

in emulsions and recovered using each of the three different procedures. We found that de-

emulsification using the cp-chip increased the recovery efficiency approximately two-fold 

compared to the original approach, a significant improvement (approximately 81% for bead 

capture from broken emulsions, and 93% for bead capture from droplets; Figure 2.3F). 
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Figure 2.4 - qPCR species-mixing quantifies cross-contamination for different de-emulsification 
approaches: (A) qPCR approach to quantify species cross-contamination for de-emulsification 
strategies. Two emulsions were generated: one emulsion with droplets containing free floating 
Drosophila RNA, and a second emulsion containing microspheres hybridized with human RNA. Both 
emulsions were mixed, and beads extracted from the emulsion. Next, the captured mRNA was 
converted into cDNA and qPCR was performed with species-specific primers. Amplification cycles of 
each reaction allows for the quantification of cross-contamination. (B) Threshold cycles for the qPCR 
primers utilized for human cDNA (GAPDH) and Drosophila cDNA (Rp49). (C) Cross-contamination 
quantification for different de-emulsification strategies. Background values correspond to the ratio 
between Drosophila and human cDNA. Relative values were calculated by normalizing to the values 
obtained with the original protocol (Drop-seq), the error is shown as standard deviation. P-values were 
determined on the normalized values with a t-test. 
 
As the two proposed on-chip de-emulsification processes present substantial changes to the 

original approach, we decided to determine their impact on the molecular integrity of the 

samples. In particular, since wash buffers that potentially contain environmental RNAs are 

flown over the bead sediment layer of the cp-chip, we focused on quantifying cross-

contamination of the new approach. To this end, species-mixing experiments are 

conventionally used. However, turnover times for high- throughput sequencing and data-
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analysis are still not time nor cost-effective, making species-mixing experiments impractical 

for protocol optimization. Hence, to conveniently measure the impact of bead capture using 

the cp-chip on the existing experimental setup, we developed an scRNA-seq species purity 

test based on quantitative PCR (Figure 2.4A). Specifically, we hybridized purified human 

mRNA derived from HEK 293T cells on oligonucleotide capture beads, and encapsulated them 

into microdroplets. In parallel, we generated a microemulsion carrying free-floating Drosophila 

melanogaster RNA in its aqueous phase. Next, both emulsions were mixed, simulating a 

‘worst-case scenario’ sample made of few droplets containing beads and a vast number of 

bead- less droplets containing contaminant mRNA. This way, the performance of different 

bead capture approaches can be easily quantified through STAMP formation followed by 

qPCR targeting human and Drosophila genes. The relative ratio between quantified human 

and Drosophila DNA thereby reflects the signal-to-noise ratio of the purification protocol. As 

target genes for quantification, we chose Rp49 and GAPDH, two abundant housekeeping 

genes of Drosophila and humans, respectively. By hybridizing equal amounts of Drosophila 

and human RNA to beads, we observed sufficient specificity (data not shown) and similar 

amplification characteristics for both target genes (Figure 2.4B). 

 

Applying this benchmarking approach to the previously developed purification procedures, we 

found that, in comparison to the original approach, bead capture from broken emulsions 

showed less cross-contamination when a large number of beads (up to 10 000 beads) was 

used (Figure 2.4C). As it is unlikely that the microfluidic chip itself reduced cross-

contamination, we assumed that one additional wash step prior to bead capture led to this 

result. To validate this hypothesis, we added an additional wash step to the original Drop-seq 

protocol, which yielded a similar decrease in back-ground as observed for the cp-chip-based 

bead purification (Supplementary Figure 2.1). In contrast, direct breakage of the emulsion on-

chip for bead recovery significantly increased species cross-contamination by approximately 

2.5-fold when a large number of beads was used (Figure 2.4C). These results suggest that 

direct emulsion breakage is to be avoided when handling a large number of beads, but could 

still be useful for small samples that are challenging to process. We hypothesized that as soon 

as beads are occupying the whole pillar array, beadless contaminating droplets are forced into 

contact with beads leading to cross-contamination. To validate this hypothesis, we performed 

the same experiments with lower bead numbers (up to 1000 beads). Interestingly, we found 

that the background from contaminating droplets was significantly reduced for small bead 

numbers compared to large bead numbers for direct emulsion breakage, indicating that this 

approach is indeed viable for small samples (Figure 2.4C). 
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Figure 2.5 - STAMP generation on-chip: (A) for on-chip STAMP generation, beads from a broken 
emulsion were captured on the cp-chip (arrows indicate flow direction), and reagents for reverse 
transcription and exonuclease treatment injected onto the chip. After all reactions and washes, beads 
were eluted by reversing flow. PCR amplification was performed in a tube. (B) cDNA profile obtained 
after STAMP generation in tubes and on-chip. Relative fluorescence units (RFUs) of each sample were 
normalized to the maximum value of the respective sample (1037 RFU for the on-chip sample and 122 
RFU for the tube sample) in the range of 2 bp–21 kb. (C) Transcript numbers per cell for mouse and 
human transcripts. Cells classified as belonging to one species (>90% species purity). Mouse cells are 
colored red, human cells blue. Purple points represent cells containing mixed transcripts (<90% species 
purity). (D) Average single cell purity for mouse and human cells. (E) Number of UMIs detected per 
read for HEK293T cells in the Macosko et al. 2015 100 STAMP and 1000 STAMP species mixing 
experiment, and for this study. (F) Number of genes detected per read for HEK293T cells in the 
Macosko et al. 2015 100 STAMP and 1000 STAMP species mixing experiment, and for this study. 
 
Although bead losses are not as pronounced for the STAMP generation process compared to 

de-emulsification (Figure 2.3A), the ten manual handling steps that are required are both error- 

prone and labor-intensive. To address this issue, we next aimed to explore the possibility of 

implementing the bead processing steps until the final PCR step on the cp-chip itself, 

minimizing bead loss and manual work for the whole protocol. Specifically, we aimed to mimic 

a routine experimental size of approximately 1000 STAMPs, captured from broken emulsions. 

To test this approach, we first encapsulated a mix of HEK 293T cells and murine brown 

preadipocytes at 100 cells per μL on the e- chip, broke the emulsion in vessels and purified 

the beads (∼10 000) on the cp-chip. Subsequently, we performed RT and ExoI treatment 

directly on-chip. Finally, the beads were eluted from the cp-chip, bead-bound cDNA was PCR-
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amplified in a reaction tube, and the cDNA profile analyzed (Figure 2.5A). As a control, an 

emulsion containing the same amounts of beads and cells was generated, beads captured, 

and STAMP generation performed in tubes according to the original Drop-seq protocol. During 

on-chip STAMP generation, beads were clustering loosely, yet no clumping was noted. We 

observed that on-chip STAMP generation yielded high-quality cDNA traces compared to 

cDNA from STAMPs generated in tubes (Figure 2.5B), indicating that it does not negatively 

impact polyA RNA integrity. The most striking difference between both traces was a strongly 

pronounced peak in STAMPs produced in tubes at approximately 25 bp, which most likely 

reflects residual primer. As subsequent bead purification will remove small fragments, this 

putative primer presence can be neglected. 

 

Our novel bead processing approach introduces a variety of changes in the overall workflow: 

new sample vessels, encapsulation chip, bead recovery strategy, and STAMP generation 

process. Potentially, this could impair the scRNA-seq data quality at multiple levels, including 

decreased single-cell accuracy (single-cell purity) and altered sensitivity. To address these 

concerns, we decided to sequence the previously pre- pared species-mixed library that was 

generated utilizing a) the e-chip, b) efficient bead recovery from a broken emulsion using the 

cp-chip, c) the on-chip STAMP generation protocol, and d) PCR amplification of eluted 

STAMPs in tubes. We approximated the number of STAMPs in this experiment to be around 

500. The resulting Barnyard plot showed a clear organism-specific transcriptome separation 

(Figure 2.5C). To benchmark the single-cell quality, we analyzed mean species purity, which 

we determined to be 96% for mouse cells and 95% for human cells (Figure 2.5D), well within 

range of the original protocol at 100 cells per μL32. 

 

Finally, we set out to determine whether the new workflow offered a similar data quality as the 

original published datasets32. Specifically, we processed the 100 STAMPs and 1000 STAMPs 

species mixing datasets from the original publication and merged them to account for inter-

experimental deviations. For downstream analysis, only HEK 293T cells were maintained 

since they represent the common cell line for both studies. As each dataset contains a different 

number of STAMPs and is sequenced to varying read depth, we com- pared the amount of 

UMIs detected to the number of sequencing reads obtained per cell (Figure 2.5E). 

Reassuringly, all datasets showed a comparable linear relationship between the number of 

UMIs detected per obtained sequencing read. This linearity suggests a similar transcript 

diversity across all samples, and thus a comparable sensitivity. Importantly, despite various 

experimental differences such as different bead- batches etc., we observed that the on-chip 

processed dataset clusters in-between the experimental data derived from the original data, 

suggesting comparable performance for both protocols. Additionally, we analyzed the gene 
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numbers in relation to the obtained sequencing reads (Figure 2.5F). Similar to the transcript 

counts, we observed that a comparable number of genes per read is detected in both datasets. 

Furthermore, gene numbers for all datasets were saturating at around 10 000 genes per cell, 

further confirming the comparable sensitivity among all approaches. Overall, these findings 

show that our developed microfluidic bead processing workflow achieves a similar 

experimental quality as the original protocol, but with the advantage of constituting a simpler, 

more flexible, and more efficient approach. 

 

2.4 Discussion 
 

In this study, we present the development of an optimized Drop-seq workflow that simplifies 

the experimental setup, enhances the overall bead recovery efficiency by more than two- fold 

and significantly simplifies the bead processing protocol. This workflow involves a newly 

developed encapsulation chip that is compatible with both syringe-pump or pressure-based 

driver setups. Utilizing an air pressure-based setup, the expensive magnetic stirrer was 

replaced by inexpensive laboratory equipment. Consistent with previous results, we found that 

the original bead processing strategy, especially during de-emulsification, is prone to large 

sample losses. Here, we were able to overcome this limitation by developing a dedicated bead 

capture and processing chip, which enables high-efficiency bead capture and STAMP 

generation. Using this cp-chip, we explored its potential application to varying experimental 

situations. In the first operation mode, developed for larger samples, the device was used to 

capture beads from broken emulsions for efficient bead capture and convenient STAMP 

generation. We found that bead capture from broken emulsions on the cp-chip decreased 

cross-contamination com- pared to the original Drop-seq protocol, which we attributed to the 

inclusion of an additional washing step in the new protocol rather than to a chip-related 

property. Beyond the cp-chip-based bead processing approaches, this protocol modification 

has the potential to increase single-cell purity in high cell-density samples using the original 

protocol. For the second operation mode, we explored the possibility of directly capturing 

beads from droplets on-chip, which we found to be the most efficient strategy for de-

emulsification. For this approach, we observed a cross-contamination increase of 2.5-fold 

when introducing a large number of beads. We hypothesized that full bead occupation of the 

cp-chip pillar array forced beads in contact with contaminating droplets. Indeed, we found that 

direct emulsion breakage on-chip using smaller bead numbers showed cross-contamination 

levels be- low the ones observed for the original Drop-seq protocol, thus representing a viable 

processing strategy for rare or low- input samples. Finally, we showed that STAMP generation 

can be efficiently performed on-chip, eliminating all manual handling steps post-bead capture. 

Complementary to this approach, we established an inexpensive and rapid qPCR method to 



36 
 

explore suitable ways to integrate the bead processing approach in an existing experimental 

workflow. Finally, we showed that our new workflow features a comparable single-cell purity 

and sensitivity to the original publication. 

 

Globally, our new workflow adds important features for routine experimentation, especially on 

medium to small samples. Furthermore, although small samples are still rarely used with  

Drop-seq, future developments of high cell capture efficiency protocols such as the one 

presented by Chung and colleagues108 will make efficient bead processing strictly necessary. 

Thus, we expect that our microfluidic-based bead processing will constitute an important 

experimental cornerstone of these next generation technologies. 

 

2.5 Material and methods 
 

2.5.1 Microfluidic chip design and flow simulations 
 

Chips were designed using Tanner L-Edit CAD software version v 2016.2 (Mentor). Flow 

simulations were carried out using COMSOL Multiphysics version 5.2. Segments were 

extruded to the same height as the actual device (80 μm), flow conditions were set to “creeping 

flow”, incompressible flow, water density with no-slip boundary conditions. The inlet and outlet 

were separated by a pressure gradient of 5 PSI. The chosen mesh type was free triangular 

with size option set to normal. The velocity profile of the slice running at half channel height 

was plotted. 

 

2.5.2 Soft-lithography and microfluidic device fabrication 
 

6-Inch chromium masks were exposed in a VPG200 laser writer (Heidelberg instruments) 

using a 20 mm laser writing head. Masks were developed using an HMR 900 mask processor 

(Hamatech). 60 μm (e-chip) or 80 μm (cp-chip) thick SU8 photoresist layers were deposited 

with an LSM-200 spin coater (Sawatec) and then exposed on a MJB4 single side mask aligner 

(SussMicroTec) and manually developed. The SU8 processing steps were done according to 

manufacturer's instructions for the 3050 series (Y311075 0500L 1GL, Microchem). Developed 

wafers were used as a mold for PDMS chips after passivation (10 : 1 ratio PDMS : curing 

agent). PDMS and curing agent were mixed, degassed, and poured on the mold. The PDMS 

mixture was cured for 1 hour at 80 °C. Next, inlet holes were punched, and the chip surface 

activated with oxygen plasma (45 s at ∼500 mTorr). The chips were bonded on surface 

activated glass slides and incubated at 80 °C for at least 2 hours. Before use, the chips (e-
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chip) were surface-treated with 2% Trichloro (1H,1H,2H,2H-perfluorooctyl) silane (448931-

10G, Sigma-Aldrich) dissolved in 3M HFE 7500 (297730-93-9) for 5 min. 

 

2.5.3 Procedures for microfluidic device handling 
 

The MFCS-EZ (2 × 345 mbar, 1 × 1045 mbar outlet version) air-pressure driver (Fluigent) was 

connected to the sample vessels (CG-4909-04, Chemglass) using silicone tubing (1175- 8705, 

Fisher Scientific) and blunt-end needles (23G). Vessels were connected to the microfluidic 

chip using Tygon tubing (06420-02, Cole-Parmer) as shown in Figure 2.2E. The vessels were 

loaded with cells, beads and EvaGreen droplet generation oil (186-4006, Bio-rad). To maintain 

constant bead mixing, the plastic adaptor for a vortex shaker (Figure 2.2D) was designed in 

Fusion 360 (Autodesk) and 3D printed in ABS using a M200 3D-printer (Zortrax). Pressure for 

the bead and cell vessels was set to 345 mbar and for oil phase pressure to 900 mbar. The 

tubing was directly connected to the microfluidic chip placed on an inverted microscope. The 

vessels were pressurized in the following order: 1. cell suspension, 2. bead suspension, and 

3. oil phase. After droplet formation stabilized and residual polydisperse emulsions exited the 

collection tubing, droplets were collected in a 50 mL tube. Droplet formation was monitored 

using a HotShot 1280CC (NAC) high-speed camera. 

 

2.5.4 On-chip droplet breakage and bead recovery strategy 
 

After droplet collection, droplet and oil phase were loaded into a 200 μL pipette tip (2239915, 

Bio-Rad) and directly injected into the cp-chip. Once beads were recovered on the pillars, 

washing was performed twice with 6× SSC buffer. To elute the beads from the chip, Tygon 

tubing was connected to the inlet, the end placed into a microcentrifuge tube, and 6× SSC 

injected into the outlet. 

 

2.5.5 Off-chip droplet breakage and bead recovery strategy 
  

After droplet collection, the oil phase was removed from the tube and 30 mL 6× SSC buffer 

was added to the emulsion in the 50 mL tube. Next, 0.5 mL 1H,1H,2H,2H-Perfluoro-1- octanol 

(370533-5G, Sigma-Aldrich) was added, and the tube was agitated by vigorous shaking. 

Following this, two washing steps were performed with 6× SSC at 1000×g by lowering the 

brake by 50% without disturbing the bead interphase. Subsequently, as much 6× SSC as 

possible was removed with- out disturbing the beads, leaving only 5 mL of oil–water phase. 

Both 6× SSC and perfluoro-1-octanol phases were transferred to the bead recovery chip, as 

described above. After bead capture, the beads were washed two times with 6× SSC to 
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remove any residual oil and perfluoro-1-octanol. Beads were recovered in a microcentrifuge 

tube by injection of 6× SSC buffer into the chip outlet (as described above). 

 

2.5.6 Original Drop-seq droplet breakage and bead recovery strategy 
 

Bead recovery from droplets was performed as described in the latest published online version 

of the protocol.25 For experimental results shown in Supplementary Figure 2.1, an additional 

washing step was included using 6× SSC prior to pelleting the sample in Falcon tubes followed 

by the transfer into Eppendorf tubes. 

 

2.5.7 Bead quantification 
 

To evaluate bead recovery strategies, bead numbers were quantified prior to the experiment, 

and after all processing steps. The bead starting amount was enumerated by scanning the 

whole sample on a V600 scanner (Epson). Specifically, all beads were pipetted into a 48 well 

plate lid, placed on the scanner. After a ∼3 min sedimentation period, the lid was scanned at 

4800 dpi resolution in transparency mode. Next, the beads were carefully retrieved from the 

plate lid and placed back into a microcentrifuge tube. An additional scan of the empty lid was 

used to quantify the remaining beads, which were subtracted from the starting amount. After 

completion of the experiment, quantification of the remaining beads was executed as above. 

The ‘sampling loss’ amounted on average to 3% of the processed beads, for each manual 

transfer of bead solutions between enumeration plate and experimental device. The obtained 

images were quantified using Fiji (ImageJ version 1.50g) by thresholding, watershed 

separation, and particle detection based on a size and circularity threshold. Systematic errors 

of the quantification (e.g. closely touching beads) were manually corrected in all images. 

 

2.5.8 Cell handling 
 

For species mixing experiments, HEK-293T (ATCC Cat. No. SD-3515) and murine brown 

preadipocyte (provided by Prof Christian Wolfrum's laboratory, ETH Zürich)109 cell lines were 

used. Cells were cultured up to 90% confluency in Glutamax DMEM (61965026, Thermo 

Fisher Scientific) supplemented with 10% FBS (10270-106, Thermo Fisher Scientific) and 

Pen- Strep (15140-122, Thermo Fisher Scientific). Following this, cells were dissociated using 

Trypsin-EDTA (59418C, Sigma-Aldrich), washed once with PBS (14040091, Thermo Fisher 

Scientific) and counted using Trypan-blue live-dead stain (T10282, Thermo Fisher Scientific) 

using a Countess (Invitrogen) cell counter. Cells were finally re-suspended in PBS 
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supplemented with 0.01% BSA and murine RNAse inhibitor (M0314S, NEB), and mixed in a 

1 : 1 ratio to an adjusted concentration of 100 cells per μL. 

 

2.5.8 qPCR assay for performance test of optimized purification strategies 
 

Total RNA from D. melanogaster tissue and HEK-293T (human) cell line was isolated using 

the Direct-zol RNA miniprep kit (R2056, Zymo Research). Beads were incubated with the 

extracted human RNA at 110 ng μL−1 for 10 min at room temperature with mixing. Unbound 

RNA was washed away and beads with bound RNA were encapsulated in droplets. Following 

this, droplets containing free-floating D. melanogaster RNA at 110 ng/μL concentration were 

collected. Both groups of droplets were mixed in a 1 : 1 ratio and after that, droplet breakage 

and bead recovery for reverse transcription were performed. Once STAMPS were generated, 

cDNA was amplified and purified from sub-sampled 800 beads following the original protocol. 

The purified cDNA was used for qPCR analysis of species cross-contamination. 0.75 ng of 

cDNA was amplified in PowerUp SYBR Green MM (Thermo Fisher Scientific) containing 200 

nM of either human specific GAPDH primer mix (forward: acccactcctccacctttgac, reverse: 

tgttgctgtagccaaattcgtt) or D. melanogaster specific Rp49 primer mix (forward: 

gacgcttcaagggacagtatctg, rev: aaacgcggttctgcatgag). Amplification was done in technical 

triplicates on a StepOnePlus RT-PCR System (Applied Biosystems). As a control, all three 

droplet breakage strategies were compared to beads bound to HEK-293T RNA only, D. 

melanogaster RNA only and combined HEK-293T - D. melanogaster (1 : 1 ratio) RNA to 

ensure primer specificity. Ct values were thresholded at 0.1 RFU and the relative ratio be- 

tween HEK-293T and contaminating D. melanogaster cDNA was used to assess the cross-

contamination/background of each purification protocol. 

  

2.5.9 Library preparation and sequencing 
 

Following droplet breakage and bead (SeqB lot 120817, ChemGenes) recovery, reverse 

transcription (RT), exonuclease I (ExoI) treatment and PCR were performed as described in 

the original protocol32. Libraries were purified using Ampure XP beads (0.6× ratio to remove 

small fragments), cDNA was quantified using a Qubit HS kit (Thermo Fisher Scientific) and 

integrity analyzed on a Fragment Analyzer (Agilent). Libraries were prepared using in-house 

produced Tn5 loaded with adapters, as described.27 Size selected and purified libraries were 

sequenced paired-end on a NextSeq 500 system (Illumina) in High-Output mode following 

recommendations from the original protocol (read 1 20 bp and read 2 50 bp). 
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2.5.10 STAMP generation on chip 
 

Beads were recovered from broken emulsions on-chip with- out any additional incubation 

times. Subsequently, RT, ExoI treatment and all washing steps were performed on-chip. To 

compensate for liquid evaporation from the PDMS device during RT and ExoI treatments, the 

reaction mix was injected every 15 min into the device allowing complete bead immersion. 

The microfluidic chip containing the beads was incubated at temperatures and durations as 

indicated in the original protocol32 using a flat thermoblock. After the last washing steps, beads 

were eluted in an Eppendorf tube for counting and PCR amplification. Library preparation was 

performed as described above. 

 

2.5.11 Data analysis 
 

The data analysis was performed using the Drop-seq tools package32 on the Vital-IT HPC 

platform. After trimming and sequence tagging, reads were aligned to the mixed human : 

mouse reference genome (hg38 and mm10) using STAR (version 2.5.3.a)110. Following the 

alignment, the gene annotation was added, bead synthesis errors were corrected and cell 

barcodes extracted. Subsequently, the BAM files containing the processed data were filtered, 

split into mouse and human annotated BAM files, and digital gene expression matrices were 

generated for each species. Preliminary data-analysis was done in ASAP111. Downstream 

data analysis was done using R (version 3.5.1), plots generated using the R package ggplot2 

(version 3.0.0). 
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2.5 Supplementary figures 
 

 
Supplementary Figure 2.1 - Impact of bead washing on background The figure shows the impact 
of adding one more washing step (introduced in the bead capture protocol when utilizing the cp-chip) 
compared to the original protocol. One emulsion comprised of droplets containing beads hybridized to 
human RNA, and droplets containing contaminating Drosophila RNA was generated. The emulsion was 
split, with one half being processed using the original Drop-seq protocol (One Wash), and the other half 
using the same protocol but adding one more washing step (Two Wash). 
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3.1 Abstract 
 

Single-cell RNA-sequencing (scRNA-seq) has transformed our ability to resolve cellular 

properties across systems. However, current scRNA-seq platforms are one-size-fits-all 

approaches that are tailored toward large cell inputs (> 1,000 cells), rendering them inefficient 

and costly when processing small, individual tissue samples. This important drawback tends 

to be resolved by loading bulk samples, but this yields confounded mosaic cell population 

read-outs. To overcome these technological limitations, we developed a deterministic, mRNA-

capture bead and cell co-encapsulation dropleting system, DisCo. We demonstrate that DisCo 

enables precise particle and cell positioning and droplet sorting control through combined 

machine-vision and multilayer microfluidics. In comparison to other microfluidics systems, the 

active flow control driving DisCo, enables continuous operation and processing of low-input 

samples (< 100 cells) at high capture efficiency (> 70%). To underscore the unique capabilities 

of our approach, we analyzed intestinal organoid development by “DisCo-ing” 31 individual 

organoids at varying developmental stages. This revealed extensive organoid heterogeneity, 

identifying distinct subtypes including a regenerative fetal-like Ly6a+ stem cell population 

which persists as symmetrical cysts even under differentiation conditions. Furthermore, we 

uncovered a so far uncharacterized “gobloid” subtype consisting predominantly of precursor 

and mature (Muc2+) goblet cells. These findings demonstrate the unique power of DisCo in 

providing high-resolution snapshots of cellular heterogeneity among small, individual tissues. 

 

3.2. Introduction 
 

Single-cell RNA sequencing (scRNA-seq)112 induced a paradigm shift in biomedical sciences, 

since it allows the dissection of cellular heterogeneity by high-dimensional data. Recent 

technological developments, particularly for cell capture and reaction compartmentalization 

32,37,103,113,114, have led to a substantial increase in experimental throughput, enabling massive 

mapping efforts such as the mouse and human cell-atlas studies96,114,115. These developments 
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were accompanied by biochemical advances, for instance for targeted transcript detection or 

library multiplexing116,117, which present a rich toolbox for large-scale scRNA-seq studies. 

However, since the majority of methods rely on stochastic cell capture, entailing large sample 

inputs, efficient processing of small samples (< 1,000 cells) remains challenging. The three 

main reasons for this are: 1) high fixed run costs, which lead to a large expense per cell at low 

inputs. For instance, a 10X Chromium run on 100 cells would cost $44 per sequenced cell. 2) 

Requirements of minimum cell inputs. For example, index-sorting FACS or 10X Chromium 

require minimum cellular inputs ranging between 10,000 and 500 cells, respectively59,118. 3) 

Reduced effectiveness at low inputs because of limited cell capture efficiencies or cell size-

selective biases39 when processing small heterogeneous samples. To illustrate these 

limitations, we summarized the performance of various scRNA-seq technologies on low input 

samples in Supplementary Table 3.9. Consequently, small samples, involving for instance 

zebrafish embryos119, organisms like C. elegans45, or intestinal organoids120–122, are still pooled 

to obtain cell numbers that are compatible with stochastic microfluidic and well-based 

technologies. Thus, it is rather paradoxical that limitations overcome by single cell methods 

are nevertheless reintroduced at the sample level: artificial averages across samples, resulting 

in an inability to resolve cell type distributions of individual systems or tissues. This particularly 

hampers research on emergent and self-organizing multicellular systems, such as organoids, 

that are heterogeneous and small at critical development stages. 

      

In this study, we develop a novel deterministic, mRNA-capture bead and cell co-encapsulation 

dropleting system (DisCo) for low input scRNA-seq. In contrast to established methods that 

rely on passive cell capture strategies, we utilize machine-vision to actively detect cells and 

coordinate their capture in droplets. This active flow control approach allows for continuous 

operation, enabling free per run scaling and serial processing of samples. We demonstrate 

that DisCo can efficiently process samples of 100 cells and below, making this platform well 

suited to handle small, individual tissues. Here, we exploit DisCo’s unique capabilities to 

explore the heterogeneous early development of single intestinal organoids at the single cell 
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level. Grown from single stem cells, organoids of vastly different morphologies and cell type 

compositions form under seemingly identical in vitro conditions120. These unpredictable 

developmental patterns represent one of the major limitations of this model system, preventing 

their widespread implementation e.g. in drug screens123. Thus, efforts to advance our 

understanding of the extent of organoid heterogeneity, how it arises, and how it can be 

controlled, for instance with synthetic growth matrices124,125, are of essence. In depth mapping 

of individual organoid heterogeneity by scRNA-seq has so far been prevented by the minute 

cell numbers contained in a single intestinal organoid at critical developmental stages, such 

as post symmetry breaking at the 16-32 cell stage120. In total, we “DisCo’d” 31 single organoids 

at four developmental time points post symmetry breaking, and identified striking differences 

in cell type composition between individual organoids. Among these subtypes, we detected 

“spheroids” that are composed of regenerative fetal-like stem cells marked by Stem Cell 

Antigen-1 (Sca1/Ly6a)126–129 and that persist under differentiation conditions. In addition, we 

uncovered a rare subtype that is predominantly comprised of precursor- and mature goblet 

cells, which we term “gobloids”.  
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3.3 Results 
 

  
Figure 3.1 - Overview and critical feature assessment of the deterministic co-encapsulation 
(DisCo) system: (A) Schematics of the DisCo microfluidic device. The device contains three inlet 
channels for cells, beads, and oil, and two outlets for waste and sample liquids. All inlets and outlets 
are augmented with Quake-style microvalves (green boxes): 1. cell valve, 2. bead valve, 3. dropleting 
valve, 4. oil valve, 5. waste valve, 6. sample valve. The device is continuously monitored by a high-
speed microscopy camera to detect and coordinate placement of particles at the Stop point. (B) 
Illustration of the particle co-encapsulation process on the DisCo device. Initially, two particles (here a 
bead and a cell) are stopped (Stop particles) in close proximity to the channel junctions by closing the 
channel valves (red: closed, green: open). Next, by pressurizing the dropleting valve (yellow), both 
particles are ejected into the junction point, and the droplet is sheared by opening the oil valve (Co-
encapsulate). Finally, the produced droplet is captured in the Sample channel (Capture). (C) The co-
encapsulation process of two beads and droplet generation as observed on chip. Dyed liquids were 
used to examine the liquid interface of the carrier liquids. Channel sections with white squares are 100 
μm wide. (D) The droplet capture process as observed on-chip. Valves are highlighted according to 
their actuation state (red: closed, green: open). While particles are stopped, excess buffers are 
discarded through the waste channel and the channel is flushed with oil prior to droplet capture. Upon 
co-encapsulation, the waste valve is closed, the sample valve opened, and the produced droplet 
captured in the Sample channel. (E) Images of DisCo droplet contents. Cells (blue circle) and beads 
(red circle) were co-encapsulated, and captured droplets imaged. Mean bead-size is approximately 30 
μm. (F) Droplet occupancy of DisCo-processed cells and beads for cell concentrations ranging from 2 
to 20 cells per µl (total encapsulations n = 1203). Error bars represent standard deviation. (G) Cell 
capture efficiency and cell capture speed for varying cell concentrations (total encapsulations n = 1203). 
Cells were co-encapsulated with beads at concentrations ranging from 2 - 20 cells per μl, and co-
encapsulation events quantified by analyzing recordings of the process. (H) DisCo scRNA-seq species 
separation experiment. HEK 293T and murine pre-adipocyte iBA cells were processed with the DisCo 
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workflow for scRNA-seq, barcodes merged, and species separation visualized as a Barnyard plot. (I) 
Comparison of detected UMIs per cell of conventional Drop-seq experiments. UMIs per cell from HEK 
293T data for conventional Drop-seq experiments ([1] - from Biočanin, Bues et al. 2019130 and [2] - from 
Macosko et al. 201532), compared to the barcode-merged HEK 293T DisCo data. Drop-seq datasets 
were down-sampled to comparable sequencing depth. Box elements are described in the Materials and 
Methods section. (J) Total cell processing efficiency of DisCo at low cell inputs. Input cells (HEK 293T) 
ranging from 74 to 170 were quantified with the Dispencell system. Subsequently, all cells were 
processed with DisCo, sequenced, and quality filtered (> 500 UMIs). The red line represents 100% 
efficiency, and samples were colored according to recovery efficiency after sequencing. 

 

To develop our Deterministic Co-encapsulation (DisCo) system, we engineered a three inlet 

(cells, beads, oil) multilayer dropleting device with two outlet ports (sample, waste) (Schematic 

Figure 3.1A, full design Supplementary Figure 3.1A). On this device, each inlet and outlet was 

augmented with a Quake-style microvalve131, to facilitate flow control during operation. In 

addition, one common valve spanning both the cell and bead channel, termed the dropleting 

valve, was integrated to allow for on-demand droplet generation. To operate the device, we 

developed a three-stage process (Figure 3.1B): 1. Stop two particles at the encapsulation site, 

2. Eject particles into one droplet, 3. Selectively extract the droplet in a sample channel 

(Microscopy images of the process are depicted in Figure 3.1C). To enable precise 

coordination of particles in microchannels, we developed a machine-vision-based approach 

utilizing subsequent image subtraction for blob detection (Supplementary Figure 3.1B), and 

on-chip valves for flow-control. Deterministic displacement patterns were induced by opening 

and closing the cell and bead valves (depicted in Supplementary Figure 3.1C), which moved 

particles according to discrete jumps into the target region of interest (ROI) with 95.9% of 

particles placed in an approximately ~200 μm wide region (Supplementary Figure 3.1D). Upon 

placement, the stopped particles were ejected by pressurizing the dropleting valve, displacing 

an equal volume of liquid from both channels. The ejected liquid phase was then sheared into 

a droplet by activating the oil stream. We found that precise pressurization of the dropleting 

valve allowed for accurate control of droplet volume (Supplementary Figure 3.1E). Post droplet 

formation, the outlet valves were actuated to separate the formed droplet from the excess 

waste liquids (Figure 3.1D). With all components operating in tight orchestration, we were able 

to generate monodisperse emulsions with high co-encapsulation purity (Figure 3.1E).  
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As a first benchmarking experiment, we set out to determine the encapsulation performance 

of DisCo for scRNA-seq-related applications, involving co-encapsulation of single cells with 

microspheres. Specifically, we aimed to reconfigure the Drop-seq32 approach as it only 

requires coordination of two channels, as compared to three channels for inDrop37. Since co-

encapsulation purity and cell capture efficiency are critical system parameters for droplet 

scRNA-seq systems, we quantified the system’s processing speed and encapsulation 

performance in a free-run configuration, i.e. without cell number limitations at varying cell 

densities. We found that on average, 91.4% of all droplets contain a cell and a bead, and 1.7% 

contain an independent cell doublet (Figure 3.1F). Overall, the system provided high cell 

capture efficiencies of 90% at around 200 cells per hour for a 2 cells/μL cell concentration 

(Figure 3.1G). At higher cell concentrations of 20 cells/μL, the processing speed could be 

increased to 350 cells per hour, yet with decreased capture efficiencies of approximately 75%. 

 
Next, we benchmarked the performance of DisCo for scRNA-seq. With drastically reduced 

bead amounts contained in the generated sample emulsion, we utilized a previously 

developed chip-based cDNA generation protocol130. Initially, as a library quality measure, we 

performed a species-mixing experiment of human HEK 293T and murine brown pre-adipocyte 

IBA cells. We observed clear species separation (Figure 3.1H), consistent with the limited 

number of previously detected doublets (Figure 3.1F), and increased read-utilization rate 

compared to conventional Drop-seq experiments (Supplementary Figure 3.1F). As previously 

reported132, we found that our data displayed a skewed barcode sequence editing distance 

distribution compared to a true random distribution (Supplementary Figure 3.1G). Since the 

uniquely low number of beads in DisCo samples (< 500) renders the random occurrence of 

barcode sequences with an editing distance < 3 rare, we developed a graph-based approach 

to identify and merge closely related barcodes (as described in Material and Methods). We 

found that this approach did not compromise the single cell purity (Supplementary Figure 

3.1H) and improved the detectable number of transcripts per cell as compared to published 

Drop-seq datasets on HEK 293T cells32,130 (Figure 3.1I). 
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Since DisCo actively controls fluid flow on the microfluidic device, we observed that the system 

requires negligible run-in time, and is capable of efficiently processing cells from the first cell 

on. Given this observation, and the high-capture efficiency of DisCo in free-run mode, we 

hypothesized that the system should provide reliable performance on small samples of 100 

cells and below. To determine the overall cell capture efficiency of DisCo, we precisely 

quantified the number of input cells using impedance measurements. Specifically, we utilized 

custom pipette tips augmented with a DISPENCELL gold-plated electrode, which allowed 

accurate counting of the number of input cells as validated by microscopy (Supplementary 

Figure 3.1I). Utilizing the DISPENCELL approach, we processed cell numbers between 50 - 

200 cells, of which on average 86.4% (SD ± 8.1%) were visible on the chip. Of all input cells, 

79.1% (SD ± 7.4%) were successfully co-encapsulated, which corresponds to a co-

encapsulation efficiency of 91.6% (SD ± 1.6%) of all visible cells, while 74.9% (SD ± 10.7%) 

of input cells were found as barcodes over 500 UMIs per cell (Figure 3.1J). 
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Figure 3.2 -  Utilizing DisCo to map intestinal organoid cell heterogeneity along development: 
(A) Overview of the experimental design for DisCo’ing individual organoids. Single LGR5+ intestinal 
stem cells were isolated via FACS and precultured for 3 days under stem cell maintenance conditions 
(ENR CV Day 0 to 3). On Day 3, CV was removed from the culture, and organoids differentiated under 
ENR conditions for up to 3 days. For each day during development (S0 - S3), individual organoids were 
isolated, dissociated, and processed on the DisCo platform. Representative bright-field imaging 
examples of individual organoids for each day are shown on top. Scale bar 50 μm. (B) UMAP 
embedding of all sequenced cells. All 945 processed cells from 31 organoids were clustered with k-
means clustering, after which clusters were annotated according to marker gene expression. (C) UMAP-
based visualization of the expression of specific markers that were used for cluster annotation. (D) 
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Temporal occurrence of cells. Cells are highlighted on the UMAP embedding according to sampling 
time point (S0 - S3). (E) Developmental trajectory based on the cluster annotation and the sampling 
time point derived by slingshot133. Cells were annotated in accordance with clustering in (B). (F) Heat 
map of differentially expressed genes along the waypoints of the trajectory. Waypoints are annotated 
in accordance with cell clustering as in (B). Cluster abbreviations: Stem cells (Stem), Regenerative stem 
cells (RS), Potential intermediate cells (PIC)134, Enterocytes cluster 1/2 (Entero1/2). 

 

 
As a real-world application, we used DisCo to explore the developmental heterogeneity of 

intestinal organoids135. These polarized epithelial tissues are generated by intestinal stem cells 

in 3D matrices through a stochastic self-organization process, and mimic key geometric, 

architectural and cellular hallmarks of the adult intestinal mucosa (e.g. a striking crypt-villus-

like axis)135. When grown from single stem cells, organoids of very different morphologies form 

under seemingly identical in vitro conditions (Figure 3.2A, overview image in Supplementary 

Figure 3.2A).  Pooled tissue scRNA-seq data has shed light on the in vivo-like cell type 

composition of these organoids120–122,136, but cannot resolve inter-organoid heterogeneity. 

Critical for organoid development is an early symmetry breaking event at Day 2 (16-32 cell 

stage) that is triggered by cell-to-cell variability and results in the generation of the first Paneth 

cell responsible for crypt formation120. Here, we were particularly interested in examining the 

emergence of heterogeneity between individual organoids subsequent to the symmetry 

breaking timepoints. To do so, we isolated single LGR5+ cells by FACS, and maintained them 

in a stem cell state using CHIR99021 and valproic acid (CV)137. On Day 3 of culture, CV was 

removed to induce differentiation. In total, we sampled 31 single intestinal organoids across 

four timepoints (Day 3 - 6) (Figure 3.2A). These organoids were selected based on differences 

in morphology and may thus not constitute an unbiased sample of the population. Since Day 

3 represents both differentiation Day 0 and the first sampling time point, we re-annotated the 

data accordingly (S0 – S3 replacing Day 3 – Day 6). During the co-encapsulation run, the 

number of encapsulated cells was noted and correlated to the number of barcodes retrieved, 

which was in approximate accordance (Supplementary Figure 3.2B). The even distribution of 

the number of reads mapping to ribosomal protein transcripts and the observed low expression 
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of heat shock protein-coding genes indicates that most cells were not affected by dissociation 

and on-chip processing (Supplementary Figure 3.2C).  

 
To retrieve a first overview of overall cellular heterogeneity, we jointly visualized all 945 cells 

passing the quality thresholds through Uniform Manifold Approximation and Projection 

(UMAP). We found that our data was consistent with previously published pooled organoid 

scRNA-seq read-outs121,136 since it revealed expected cell types including Fabp1-expressing 

enterocytes, Muc2-expressing goblet cells, Reg3b-positive Paneth cells, and Olfm4-

expressing stem cells (Figure 3.2B and 3.2C). In addition, a rare subset of cells, likely too few 

to form clusters, showed ChgA and ChgB expression, indicating the expected presence of 

enteroendocrine cells (Supplementary Figure 3.2D). Noteworthy, we found that batch effects 

are correctable since no batch-based clustering was observed after correction 

(Supplementary Figure 3.2E). We also did not detect any clustering driven by cell quality, e.g. 

detected transcripts or mitochondrial transcripts (Supplementary Figure 3.2C). These findings 

support the cell type-resolving power of our DisCo platform (Figure 3.2C, extensive heatmap 

in Supplementary Figure 3.2F). In addition to the expected cell types, we observed a distinct 

cluster marked by high expression of Stem cell antigen 1 (Sca1 or Ly6a). In depth analysis of 

marker genes showed high expression of Anxa1 and Clu in the same cluster (Supplementary 

Figure 3.2D), and increased YAP-1 target gene expression (Supplementary Figure 3.2G), 

suggesting that these cells are most likely regenerative fetal-like stem cells128,129,138. Since the 

two remaining clusters did not show a striking marker gene signature, we resolved their identity 

by imposing temporal information on the data. This revealed that these clusters likely 

represent stem- and previously termed potentially intermediate cells (PIC)134, given their 

occurrence at early developmental time points (Figure 3.2D). As expected, mature cell types 

were mostly present at later time points. To further leverage the temporal component in the 

DisCo data, we used slingshot trajectory analysis133 to infer lineage relationships between cell 

types and to identify genes that may be of particular significance for waypoints along 

differentiation (Figure 3.2E). Beyond the previously utilized marker genes for cell type 
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annotation, for example Reg3b and Reg3g for Paneth cells, additional established markers139 

were identified, such as Agr2 and Spink4, and Fcgbp for goblet cells (Figure 3.2F). Overall, 

this suggests that the meta-data produced with our DisCo platform aligns with and expands 

prior knowledge. 

 
Intriguingly, we observed maintained presence of the Ly6a+ stem-cell population at S0, S1, 

and S3. Since cells with similar expression signatures were previously described under 

alternate culture conditions as belonging to a distinct organoid subtype termed spheroids127, 

we next aimed to verify the presence of such spheroids among our sampled organoids and 

study their temporal behavior. To do so, we stratified our cells according to the individual 

organoids from which they were derived by mapping this information onto the reference 

scaffold (Figure 3.3A). Globally, this analysis revealed that the maturation seems to follow the 

expected pattern with early organoids (S0) mainly containing stem and Paneth cells, and older 

organoids (S1 – S3) differentiated cells like goblet cells and enterocytes. However, within 

single organoids, we found strong heterogeneity, revealing that Ly6a+ cells were indeed 

present in a distinct subset of organoids, predominantly comprised of these cells (S1a, S3e). 

Furthermore, images obtained prior to dissociation showed that Ly6a+ cell-containing 

organoids (S3e) exhibited a larger, cystic like structure (Supplementary Figure 3.3A). To 

confirm the presence of Ly6a+ organoids in our cultures, we utilized RNAscope (Figure 3.3B, 

controls Supplementary Figure 3.3B) to localize Ly6a, Muc2, and Fabp1 expression in 

organoid sections. These analyses revealed canonical budding organoids, containing few 

Muc2+ goblet cells and Fabp1+ enterocytes, and Ly6a-expressing cells in spherical organoids 

that did not contain differentiated cell types such as enterocytes or goblet cells. 
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Figure 3.3 - Cell type distribution and marker gene expression across individual intestinal 
organoids during development: (A) Projection of cell types onto 31 individual organoids. Cells per 
single organoid were colored according to their global clustering and highlighted on the UMAP 
embedding of all sequenced cells. Projections are grouped according to their sampling time. Manually 
classified organoids were annotated with the following symbols: “*” enterocysts, “§” spheroids, “@” 
gobloids. (B) in situ RNA detection of Ly6a, Fabp1, and Muc2 expression. A representative canonical 
and Ly6a-expressing organoid is displayed. Scale bar (displayed in F) 50 μm. (C) Surface LY6A and 
LGR5-GFP expression under ENR CV conditions. The dot plot depicts LGR5-GFP and LY6A 
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expression in organoid-derived single cell suspensions. The numbers indicate frequencies (%). (D) 
Culturing outcomes of LGR5+cells and LY6A+ cells. Single LGR5+ LY6A- and LGR5- LY6A+ cells were 
isolated by FACS and seeded in Matrigel. Cells were cultured as depicted in Figure 3.2a and imaged 
using bright-field microscopy at S3. Red arrows point to spheroid morphologies. Scale bar 100 μm. (E) 
Dotplot depicting the distribution of annotated cell types per organoid. Dot size depicts the percentage 
of cells associated to each cluster per organoid. (F) in situ RNA detection of Fabp1 and Muc2 
expression. Selected images resembling the enterocyst and gobloid subtypes. Scale bar 50 μm. 

 

 
The presence of Ly6a+ cells during the first day of sampling suggested that these cells 

constitute a second, Lgr5-independent stem cell population in the organoid culture. Using flow 

cytometry, we found that the majority of cells are either LGR5+ LY6A- (24.5 %) or LGR5- LY6A+ 

(3.3 %) with only a minority (0.4%) being double positive (Figure 3.3C). This finding, in 

combination with our trajectory analysis (Figure 3.2E and 3.2F), suggested that Ly6a+ cells 

are capable of differentiating into organoids. To test this, we sorted and differentiated LGR5- 

LY6A+ cells, revealing that both LGR5+ LY6A- and LGR5- LY6A+ cells give rise to organoids of 

similar morphological heterogeneity (Figure 3.3D). These results indicate that LGR5- LY6A+ 

cells have full stem cell potential, comparable to that of previously described fetal-like stem 

cells127. Furthermore, the fact that LGR5- LY6A+ cells did not display a propensity towards 

spheroid formation suggests that environmental conditions, e.g. matrix stiffness, rather than 

the initial cell state dictate the formation of spheroids. 

 
Beside the Ly6a+ cell-enriched organoids, our data suggested the presence of additional 

organoid subtypes in the per organoid mappings (Figure 3.3A). The two most striking 

additional subtypes were three organoids that contained mostly enterocytes (S2c, S3a, S3d), 

and two that consisted predominantly of immature and mature goblet cells (S1b and especially 

S2f). The identity of the observed subtypes was further substantiated when visualizing the cell 

type abundance per organoid (Figure 3.3E), and marker gene expression in individual 

organoids (Supplementary Figure 3.3C). Similar to the spheroids, both subtypes showed 

aberrant morphologies, tending to be small and round, as compared to canonical organoids 

bearing a crypt-villus axis (e.g. S3c, Supplementary Figure 3.3A). To detect more subtle 

molecular differences, we used psupertime140 to identify genes that are dynamically expressed 
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during the development of individual organoids. This analysis revealed additional genes that 

are expressed in subsets of organoids, such as Gastric inhibitory polypeptide (Gip), Zymogen 

granule protein 16 (Zg16), Vanin 1 (Vnn1), and Defensin alpha 24 (Defa24) (Supplementary 

Figure 3.3D).  

 
While organoids dominated by enterocytes were previously described as enterocysts120, 

organoids displaying goblet cell hyperplasia, here termed “gobloids”, were so far to our 

knowledge unknown. To validate the existence of the uncovered organoid subtypes, we 

utilized RNAscope to localize the expression of enterocyte (Fabp1) and goblet cell (Muc2) 

markers (Figure 3.3F, controls in Supplementary Figure 3.3B). In addition, and in agreement 

with our data and prior research, we detected organoids that exclusively contained Fabp1+ 

cells, most likely representing enterocysts. Most importantly, we were able to identify 

organoids that contained a high number of Muc2+ goblet cells, confirming the existence of 

“gobloids”. 

 
3.4 Discussion 
 

A key feature of our new DisCo approach is the ability to deterministically control the cell 

capture process. Despite lowering the throughput compared to stochastic droplet systems32,37, 

our approach provides the advantage of being able to process low cell input samples at high 

efficiency and at a strongly decreased per cell cost (Supplementary Table 3.9). Thus, we 

believe that the DisCo approach is filling an important gap in the scRNA-seq toolbox. 

Moreover, full control over the encapsulation process allows for continuous operation of our 

platform, which is offsetting to some extent the decreased throughput. Another critical feature 

of DisCo is the use of machine-vision to obtain full control of the entire co-encapsulation 

process including particle detection, particle positioning, particle droplet injection, and droplet 

volume. This enables the correct assembly of most droplets, virtually eradicating confounding 

factors that arise due to failed co-encapsulations141,142. In concept, DisCo is thus 

fundamentally different to passive particle pairing approaches such as traps108,143,144 and, 
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compared to these technologies, offers the advantage of requiring vastly simpler and reusable 

chips without suffering from cell/particle size and shape selection biases39,145. This renders the 

DisCo approach universally applicable to any particle co-encapsulation application146,147, i.e. 

cell-cell encapsulations, with the only limiting factor being particle visibility. Providing further 

development, we envision that machine learning-based deterministic cell handling will 

ultimately enable targeted cell selection, e.g. by fluorescence or morphology, transforming 

DisCo into an end-to-end cell processor for samples with low-to-medium input samples.  

 
To demonstrate DisCo’s capacity to process small tissues/systems that were so far difficult to 

access experimentally, we have analyzed the cell heterogeneity of chemosensory organs from 

Drosophila larvae46 and, as shown here, single intestinal organoids. It is thereby worth noting 

that, based on our handling of distinct tissues, we found that not DisCo itself, but rather cell 

dissociation has become the efficiency-limiting factor, a well-recognized challenge in the 

field148,149. Indeed, substantial cell loss was a regular occurrence, even with optimized 

dissociation and processing strategies (see Materials and Methods). 

 
scRNA-seq of individual organoids led us to uncover organoid subtypes of aberrant cell type 

distribution that were previously not resolved with pooled organoid scRNA-seq120,121,136. One 

subtype contained predominantly cells that were strikingly similar to previously described fetal-

like stem cells or revival stem cells that occur during intestinal regeneration128,129,138. This 

subtype, previously described under alternate culture conditions as spheroid-type 

organoids122,126,127, was identified here under standard organoid differentiation conditions, 

indicating that these organoids are capable of maintaining their unique state. We isolated 

LY6A-expressing cells and found that they readily give rise to canonical organoids, indicating 

that these cells are capable of providing a pool of multipotent stem-cells. Of particular interest 

was one organoid subtype that we termed “gobloid" given that it predominantly comprises 

immature and mature goblet cells. Since low Notch signaling is pivotal for the commitment of 

crypt base columnar (CBC) cells towards secreting progenitors, lack of Notch ligand-providing 

Paneth cells150, may drive gobloid development151. However, failure to produce Paneth cells 
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has previously been suggested as a mechanism underlying enterocyst development120, which 

in principle requires high Notch signaling. Hence, we believe that our findings establish an 

important foundation to support further research on the emergence of gobloids and 

enterocysts from the still elusive PIC cells, providing an exciting opportunity to delineate 

lineage commitment factors of CBC cell differentiation.  

 
In sum, we demonstrate that our DisCo analysis of individual organoids is a powerful approach 

to explore tissue heterogeneity and to yield new insights into how this heterogeneity arises. In 

comparison to established approaches such as automated microscopy120,122, DisCo is 

magnitudes lower in experimental scale. Nevertheless, scRNA-seq data acquired from 31 

organoids enabled us to recapitulate previous findings, benchmarking DisCo, and most 

importantly, to uncover novel subtypes, leveraging the key advantage of scRNA-seq, i.e. 

independence from a priori knowledge. Next to catalyzing research on other tissues or 

systems of interest, we believe that the technology and findings of this study will contribute to 

future research on intestinal organoid development and thus aid the engineering of more 

robust organoid systems. Furthermore, we expect this approach to be applicable to rare, small 

clinical samples to gain detailed insights into disease-related cellular heterogeneity and 

dynamics. 
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3.7 Materials and Methods 
 
3.7.1 System comparison metrics  
 

Performance metrics for (Supplementary Table 3.9) were calculated the following ways: 

 

• Minimum cell input estimates: The minimum cell input values were derived from the 

following sources: 10X Chromium43: Lowest cell input number from the 10X Chromium 

manual (CG000183 Rev C); inDrop37: Lowest numbers mentioned in the 1CellBio 

manual (Single Cell Encapsulation Protocol, Version 2.4); Drop-seq32: Lowest 

numbers utilized in Zhang et al. 20194. It is likely that lower cell numbers can be 

processed, yet Drop-seq has been suggested to be used “When the sample is 

abundant” by Zhang et al. 2019; FACS based methods152,153: Input limits as described 

by Hwang et al. 201859; Fluidigm C1145: Lowest cell input number from the Fluidigm C1 

specification sheet (Specification Sheet PN 101-3387 D1); Wafergen iCell8154: Lowest 

cell numbers were derived from the iCell manual (CELL8 Single-Cell ProtocolD07-

000025 Rev. C). According to the manual, 80 µL of 0.02 cells/nL suspension are 

prepared for dispensing; Seq-well101: The lowest cell number used for capture in 

Gierahn et al. 2017101. Disco: The lowest cell number processed in this study. 

 

• Efficiency estimates: Efficiency estimates were derived from varying sources and 

represent different efficiencies. The efficiencies for 10X Chromium, inDrop, and Drop-

seq were derived from Zhang et al. 201944 from quantified cellular inputs (> 1000 cells) 

and sequenced cells passing quality thresholds. Since these efficiencies stem from 

experiments that were performed with optimized cell inputs, we can assume lower 

efficiencies when processing low cell inputs (< 1000). The efficiency for the Fluidigm 

C1 system was derived from Xin et al. 201640 from a high input sample of primary cells. 

The efficiency represents a conversion efficiency from captured to sequenced cells 

passing quality thresholds, thus it does not include cell capture inefficiencies which are 
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substantial at low cell inputs (personal communication Dr. Bastien Mangeat, Gene 

Expression Core Facility EPFL). For the Wafergen iCell8 system, an efficiency 

estimate was derived from Wang et al. 201950 and represents the conversion efficiency 

from captured to sequenced cells passing quality thresholds, thus it does not include 

cell capture inefficiencies. The efficiency for Seq-well was derived from Gierahn et al. 

2017101 at 400 cells input and represents an inferred efficiency from quantified cell 

input to sequenced cells passing quality thresholds. Specifically, the library conversion 

efficiency, i.e. the percent of captured cells identified in the sequencing data passing 

quality thresholds, was calculated based on the species-mixing experiment involving 

10,000 input cells. The library conversion efficiency, in combination with capture 

efficiencies at 400 cells, was utilized to determine the efficiency at low cell numbers. 

Hence, this is inferred from quantified cellular inputs to sequenced cells passing quality 

thresholds. DisCo: The efficiencies were derived in this study and represent mean 

efficiencies for low cell inputs (50 - 200), from quantified cell input to sequenced cells 

passing quality thresholds. 

 

• Cost per cell estimates: Two cost estimate numbers are listed for 100 cells i) the cost 

for 100 cells not considering system efficiencies ($/cell, 100 output cells), and ii) the 

cost for 100 input cells considering the listed efficiencies ($/cell, 100 input cells). Run 

costs for Smart-seq2, Cel-seq2, inDrop, Drop-seq, and Seq-well were derived from 

Ding et al. 2020 (Supplementary Table 8)149. Run costs for 10X Chromium, Fluidigm 

C1 (96), and Wafergen iCell8 were derived from Wang et al. 2019 (Table 2)50. For the 

Wafergen iCell8 it was assumed that 8 samples (one per dispensing nozzle) can be 

processed on one chip in parallel, thus decreasing the costs by a factor of 8. The DisCo 

cost estimate includes reagents for library generation, i.e. the costs for beads, oil, 

reverse-transcription reaction, exonuclease treatments, PCR reaction, and library 

preparation (Nextera XT).  
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3.7.2 Physical setup 
 

Chips were mounted on an IX51 inverted microscope (Olympus). Each chip was monitored 

with an XiC (Ximea, MC031MG-SY-UB) camera, interfaced with a computer with the following 

specifications: Windows 10 Enterprise (Microsoft) operating system, Ryzen Threadripper 

1950X processor (AMD), 32 GB RAM memory. Solenoid valves were controlled via the NI 

USB-6501 controller (National Instruments). The output signals from the controller were 

amplified with a ULN2803 IC (Texas Instruments), and connected to solenoid valves (Festo, 

MHA1-M1H-3/2O-0,6-HC). An OB1 Mk3 pressure controller (Elveflow) was used for 

proportional pressure regulation. 

 

3.7.3 Machine-vision software 
 

The software for cell detection and coordination was implemented in C++. Camera images 

were obtained with the XiApi library (version 4.15). Images were processed in real-time using 

the OpenCV computer vision library (version 3.4). A schematic visualization of the particle 

detection algorithm is depicted in Supplementary Figure 3.1B. Briefly, a detection ROI was 

extracted by cropping after which a gaussian blur was applied to the resulting image. Two 

subsequent images were subtracted, and the resulting image converted to a binary image by 

intensity thresholding. The binary image was dilated to fill potential holes. Finally, contours 

were detected using the findContours function, and classified for area and circularity. Upon 

particle detection, the particles were properly positioned by valve oscillation and monitoring of 

the ROI at the target zone (Supplementary Figure 3.1C). Once two particles were positioned 

in their respective target zones, particles were co-ejected by pressurization of the dropleting 

valve, and the droplet was sheared by actuation of the oil valve.  

 

3.7.4 Microfluidic chip design and fabrication  
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The design of the microfluidic chip for deterministic co-encapsulation is presented in 

Supplementary Figure 3.1A. Chips were designed using Tanner L-Edit CAD software (Mentor, 

v 2016.2). 5-inch chromium masks were exposed in a VPG200 laser writer (Heidelberg 

instruments) for both the control and flow layer. Masks were developed using an HMR 900 

mask processor (Hamatech). For the control layer, a thick SU8 photoresist layer was 

deposited with an LSM-200 spin coater (Sawatec), exposed on a MJB4 single side mask 

aligner (SussMicroTec), and manually developed. The SU8 processing steps were carried out 

according to manufacturer’s instructions for the 3010 series (Microchem). For the flow layer, 

wafers were produced using AZ40 XT (Microchem) positive photoresist on the ACS200 

coating and developing system (Gen3, SUSS MicroTec). Developed master-wafers were 

reflowed for 45 - 75 seconds at 120oC on a hotplate until channels appeared round under an 

inspection microscope. The control layer master-wafers were used as molds for PDMS chips 

after passivation with 1 % silane dissolved in HFE. For the flow layer, master-wafers were 

used to generate replica molds for chip production. To this end, the primary replica mold was 

obtained by mixing PDMS:Curing-Agent at 10:1 using a centrifugal mixer (Thinky), degassing 

for 15 minutes, and curing for 60 minutes at 80°C. The PDMS-based primary replica mold was 

then sylanized and subsequently used to obtain secondary replica molds utilized for PDMS 

flow layer production. The PDMS flow layer was fabricated PDMS:Curing-Agent at 5:1, 

degassed and cured at 80oC for 30 minutes. The control layer was fabricated by spin coating 

PDMS:Curing-Agent at 20:1 on the flow layer waver at 650 rpm for 35 seconds with 15 

seconds ramp time followed by baking at 80oC for 30 minutes. Cured PDMS was then cut from 

the flow layer secondary replica mold and flow layer inlet holes were punched with a 0.5 mm 

diameter biopsy punch. The two PDMS layers were manually aligned and bonded at 80oC for 

at least 60 minutes. Assembled and cured PDMS chips were cut from the molds and control 

layer inlet holes were punched. Finally, chips were oxygen plasma activated (45 seconds at 

~500 mTorr O2) and bonded to a surface activated glass slide followed by incubation at 

80oC for at least 2 hours. Materials and reagents are listed in the Material and reagent list, 

point 1.  
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3.7.5 Microfluidic device handling 
 

Prior to use, the microfluidic chip was placed on an inverted microscope and control layer 

inlets were connected to solenoid valves with water primed tygon tubing. Control layer 

channels were primed with dH2O in tygon tubing for ~10 minutes by pressurizing the solenoid 

valves. If the chip was being used for the first time, cell, bead, and dropleting on-chip valves 

were equilibrated by oscillation of the corresponding solenoid valves for at least 10 minutes at 

2 actuations per second. After priming, the dropleting valve was connected to an OB1 

(Elveflow) pressure regulator for proportional actuation. The flow layer was connected the 

following way: oil, bead, cell inlets and sample outlet to Prot/Elec gel loading tips; waste outlet 

to tygon tubing terminating in a falcon tube. For inlet pressurization of the Prot/Elec gel loading 

tip connected inputs, the bead and cell inlets were connected to the OB1 pressure regulator. 

The oil inlet was continuously pressurized at 1.7 psi. Cell, bead, and oil Prot/Elec tips were 

filled with cell buffer, bead solution, and oil, respectively. Subsequently, the chip was primed 

in the following order:  1. cell channel, 2. bead channel, 3. oil channel. After priming, the bead 

and cell channels were washed for 5 - 10 minutes by running the solutions at low pressure. 

All priming and washing solutions were directed in the waste outlet. Finally, the sample outlet 

was primed with oil. Stuffer droplets, containing lysis buffer and RNase inhibitor, were 

generated on a Drop-seq chip14 and added on top of the oil-primed sample outlet tip without 

introducing air bubbles. Materials and reagents are listed in the Material and reagent list, point 

2.  

 

3.7.6 cDNA generation and library preparation 
 

After bead-cell in droplet co-encapsulation, the gel loading tip containing the sample droplets 

were transferred to a bead collection chip inlet130 (cp-chip). Droplets in the tip were flushed to 

a bead collection chip. Subsequent to bead capture, washing was performed as in the Drop-

seq protocol with SSC and reverse transcription buffer directly on the cp-chip. Reverse 
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transcription solution was added to the beads in the recovery chip, and the recovery chip was 

placed on a heating block to perform first strand cDNA synthesis (RT) for 90 minutes at 42oC. 

After the RT reaction, beads were washed on the recovery chip with TE-SDS once, with TE-

TW twice, and with Tris once. The beads were treated with Exonuclease I for 45 minutes at 

37oC to remove single-stranded oligonucleotides on the beads. After Exonuclease I treatment, 

beads were washed with TE-SDS once, with TE-TW twice (as after RT). Beads were then 

eluted from the recovery chip in dH2O. cDNA was amplified for 18 – 23 cycles using Kapa HiFi 

Hot start ready mix. cDNA was purified with CleanPCR magnetic beads (0.6X ratio) to remove 

small cDNA fragments and primers. The cDNA concentration was measured using Qubit, and 

cDNA quality was assessed using a Fragment Analyzer (Agilent). cDNA was tagmented with 

in-house Tn515 for 6 minutes at 55oC. Next, the reaction was stopped with SDS and the 

tagmented library was amplified for 15 cycles using Kapa HiFi kit.  Libraries were then purified 

using CleanPCR magnetic beads (0.6X ratio) and quantified using Qubit HS kit and Fragment 

analyzer (Agilent). Finally, size-selected and purified libraries were sequenced on a NextSeq 

500 system (Illumina) following recommendations from the original Drop-seq protocol (20 bp 

for read 1 and 50 bp for read2)16.  Material and reagents are listed in the Material and reagent 

list, points 3 - 10.  

 

3.7.7 Mammalian cell culture handling for species mixing experiment 
 

For benchmarking the DisCo platform, HEK 293T (ATCC Cat. No. SD-3515) and murine brown 

preadipocyte cells (iBA; provided by Prof. Christian Wolfrum's laboratory, ETH Zürich) were 

used. Cells were cultured to 90% confluency in Glutamax DMEM supplemented with FBS and 

penicillin-streptomycin. Prior to use, cells were washed with PBS, dissociated with Trypsin-

EDTA, washed with cell wash buffer and counted with Trypan blue live-dead stain using a 

Countess cell counter (Invitrogen). Cells were mixed in a 1:1 ratio, adjusted to 20 cells/µL, re-

suspended in cell loading buffer, and finally loaded on the DisCo chip. Material and reagents 

are listed in the Material and reagent list, point 11.  
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3.7.8 Droplet content and co-encapsulation performance quantification 
 

As for conventional DisCo runs, experiments were set up with Chemgen beads and varying 

concentrations of HEK 293T cells. Approximately 100 co-encapsulations were performed and 

recorded. The recorded video data was manually reviewed and droplet contents and passing 

cells and beads counted (Figure 3.1F).  

 

3.7.9 Benchmarking DisCo efficiency using the DISPENCELL platform 
 

To benchmark single-cell recovery efficiencies throughout the complete DisCo workflow, we 

quantified HEK 293T (ATCC Cat. No. SD-3515) cells utilizing the DISPENCELL pipetting robot 

(SEED Biosciences SA). Prior to use, HEK 293T cells were diluted to 20 cells/µL. Cells were 

loaded into the DISPENCELL tip and then dispensed directly into a Prot/Elec gel loading tip 

containing cell loading buffer. Cells were then processed with DisCo and libraries prepared as 

described above. 

 

3.7.10 Organoid cell culture and handling  
 

Isolation of the Lgr5-eGFP+ stem cells and initial culture was performed as previously 

described17. For the developmental time-course experiments, organoids were dissociated to 

single-cells, live Lgr5+-eGFP cells isolated using a FACS ARIA II (BD) and embedded in 

Matrigel. After Matrigel polymerization, cells were cultured in ENR CV medium supplemented 

with thiazovivin ROCK inhibitor.  

 

Growth factors (E, N, R, C, V) were replenished after 2 days of culture. At Day 3 of culture, a 

full medium change was performed to differentiation growth medium (ENR only). At Day 5, 

growth-factors (E, N, R) were replenished. Organoids were sampled at Day 3 (S0), prior to the 

medium change, at Day 4 (S1), at Day 5 (S2), and at Day 6 (S3).  
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Single organoids were collected by dissolving Matrigel with ice-cold Cell Recovery Solution 

for approximately 5 minutes, while carefully pipetting up and down with a 1000 µL pipette. 

Subsequently, single organoids were isolated by hand-picking after which they were 

transferred to a Nunc microwell culture plate with single organoid dissociation mix. Single 

organoids were dissociated by combining trituration using siliconized pipette tips every 5 

minutes and incubation at 37oC for 15 minutes. Following dissociation, cell suspensions were 

diluted in cell loading buffer in the loading tip connected to the DisCo chip. Materials and 

reagents are listed in the Material and reagent list, points 12 - 16.  

 

3.7.11 RNA Fluorescence in situ hybridization (RNAscope) on intestinal organoids  
 

For the RNAscope assay, organoids in matrigel were fixed in 4% PFA at 4°C overnight. The 

next day, organoids were washed with PBS and embedded in histogel.  Histogel blocks were 

subsequently infiltrated with paraffin using a standard histological procedure (VIP6, Sakura). 

RNAscope Multiplex Fluorescent V2 assay was performed according to the manufacturer's 

protocol on 4 μm paraffin sections, hybridized with the probes Mm-Ly6a-C2, Mm-Fabp1-C1, 

Mm-Muc2-C2, Mm-PpiB-C2 positive control, and Duplex negative control at 40°C for 2 hours 

and revealed with TSA Opal650 for C1 channel and TSA Opal570 for C2 channel. Tissues 

were counterstained with DAPI and mounted with Prolong Diamond Antifade Mountant. Slides 

were imaged on an Olympus VS120 whole slide scanner (Olympus). The resulting images 

were converted to the TIFF file format using the Fiji (version 1.52p) plugin BIOP VSI Reader 

(version 7). ROIs were extracted using a custom Python (version 2.7.15) script and the PIL 

library (version 6.2.2). Brightness of the extracted ROIs was adjusted in Fiji: Images of one 

target were loaded, stacked, brightness adjusted for the whole stack using the 

setMinAndMax() function. Finally, images were unstacked, merged with other channels, and 

exported as PNG files. Materials and reagents are listed in the Material and reagent list, points 

17 - 18. 
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3.7.12 Sequencing, analysis, barcode correction 
 

The data analysis was performed using the Drop-seq tools package (version 2.3.0, 

https://github.com/broadinstitute/Drop-seq/releases/tag/v2.3.0)3,16 on the EPFL SCITAS HPC 

platform. After trimming and sequence tagging, reads were aligned to the human (hg38), 

mouse (GRCm38), or mixed reference genomes155 (GSE63269), depending on the origin of 

the cellular input material, using STAR (version 2.7.0.e)110. Following alignment, BAM files 

were processed to obtain initial read-count matrices (RCM) per sample (Note: DGE summary 

files were used for experiments displayed in Figure 3.1H and Figure 3.1I). Cell barcodes were 

prefiltered at > 35 UMIs (for the species mixing experiment, the sum of 35 UMIs for both 

species was used as a prefiltering criterion). Graphs were built by identifying barcodes 

connected by Levenshtein distance 1. For each graph, the barcode containing the highest 

number of UMIs was identified as the central barcode. The graphs were pruned (barcodes 

removed) at a Levenshtein distance > 2 to the central barcode, the remaining barcodes in the 

graph were merged.  

 

For cell recovery efficiency experiments using the DISPENCELL platform (Figure 3.1I) and for 

Drop-seq comparison experiments (Figure 3.1J) barcodes encompassing at least 500 UMIs 

were compiled into the RCMs. Additionally, prior to Drop-seq comparison experiments, 

processed BAM files were down sampled to the same read depth using samtools 

(http://www.htslib.org/doc/samtools.html). Box plot elements depicting UMI counts per cell 

(Figure 3.1I) represent the following values: centerline, median; box limits, upper/lower 

quartiles; whiskers, 1.5x interquartile range; points, UMIs per cell.  

 

 

 

https://github.com/broadinstitute/Drop-seq/releases/tag/v2.3.0
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3.7.13 Time course organoid kinetic analysis 
 

RCMs were further processed via R (version 3.6.2) using Seurat (version 3.1.1) and uwot 

(version 0.1.3)156. Per individual organoid-RCM cells with > 800 features, < 7.5% mitochondrial 

reads were retained in the analysis. The time course kinetics of organoids were processed in 

three independent experiments, which were considered as three individual batches. The three 

independent experiments were merged using FindIntegrationAnchors(list( 

experimental_batches), anchor.features = 80, dims = 1:12, k.filter = 200, k.anchor = 8) and 

IntegrateData(). Data was scaled and PCAs computed using default settings. Uniform 

Manifold Approximation and Projection (UMAP) dimensional reduction via RunUMAP() and 

FindNeighbors() were performed using the first 12 PCA dimensions as input 

features.  FindClusters() was computed at resolution 0.75. Merged data was visualized using 

the Seurat intrinsic functions VlnPlot(), FeaturePlot(), DotPlot(), DimPlot(). Differentially 

expressed genes per cluster were identified using FindAllMarkers() using default parameters. 

The Seurat-Object is accessible via GSE148093. Cumulative Z-scores were calculated based 

on the scaled expression per cell across the defined gene signatures138,157. Pie-chart, bubble-

plot and bargraph visualizations were carried out with ggplot2. 

 

3.7.14 Slingshot analysis  
 

The trajectories were constructed using the Slingshot wrapper implemented in the dyno 

package (https://github.com/dynverse/dyno)157. The method was provided with the first 5 

dimensions of a multi-dimensional scaling as dimensionality reduction, the clustering as 

described earlier, and the stem cell cluster as starting cell population. All other parameters 

were left at default settings. Genes that change along the trajectory were ranked using the 

calculate_overall_feature_importance function from the dynfeature package (version 1.0, 

https://github.com/dynverse/dynfeature), and the top 50 differentially expressed genes were 

selected. The dynplot package (version 1.1, https://github.com/dynverse/dynplot) was used to 

plot the trajectory within a scatterplot and heatmap. 

https://github.com/dynverse/dyno
https://github.com/dynverse/dynfeature
https://github.com/dynverse/dynfeature
https://github.com/dynverse/dynplot
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3.7.15 Psupertime analysis 
 

Cell labels and sample-day labels were extracted from the merged and batch-corrected meta-

data of the Seurat object to run psupertime, a method of identifying genes relevant to biological 

processes using cell-level temporal labels to build a l1 regularised ordinal logistic regression 

model 140. Sample-day labels indicating the experimental temporal order were used to conduct 

a psupertime analysis on batch-corrected and normalized gene expression data of cells, with 

selected cell type labels.  The analysis was performed including all genes and encompassing 

a 10-fold cross-validation using default settings. Genes with coefficients (beta-values) greater 

than zero were considered relevant for the temporal expression dynamics. Expression of 

relevant genes was plotted per organoid per cell. 

 

3.7.16 Material and reagent list for all experiments 
 

Material information is listed in the following format: Material name (vendor, ordering number). 

Reagent information is listed in the following format: Reagent name (final concentration in the 

solution, vendor, order number). 

 
 

1. For microfluidic device fabrication SU8 3010 (Microchem) negative photoresist, 

AZ40XT (Microchem) positive photoresist, HFE-7500 (3M, Novec 297730-93-9), 

Trichloro(1H, 1H, 2H, 2H - perfluorooctyl) silane (1%, Aldrich, 448931), and biopsy 

punchers (Darwin microfluidics, KPUNCH05) were used. 

 

2. For microfluidic device handling Prot/Elec 200 µL gel loading tips (Biorad,

 #223-9915), dH2O (Invitrogen, 10977035), tygon tubing (Cole Palmer, GZ-

06420-02), beads (Chemgenes, lot 051917, Macosko-2011-10), droplet generation oil 

(Biorad, 186-4006), murine RNase inhibitor (100 U, NEB, M0314L) were used. Cell 
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wash buffer was prepared using PBS (1X, Gibco, 14190-094) and BSA (0.01%, Sigma, 

B8667). Cell loading buffer was prepared using PBS (1X, Gibco, 14190-094), Optiprep 

(6%, Sigma, D1556), and BSA (0.01%, Sigma, B8667). Lysis buffer was prepared from 

Optiprep (28%, Sigma, D1556), Sarkosyl (2.2%, Sigma, L7414), EDTA (20 mM, 

Sigma, 3690), Tris (100 mM, Sigma, T2944), DTT (50 mM, Applichem, A2948,0005). 

 

 

3. For sample washing prior to reverse transcription, SSC (6X, Sigma, S6639) and dH2O 

(Invitrogen 10977-035) were used.  

 

4. For reverse transcription (RT) reaction dH2O (Invitrogen, 10977-035), Ficoll PM-400 

(4%, Sigma, F5415), dNTPs (1mM, Thermo, R0193), murine RNase inhibitor (100U, 

NEB, M0314L), Maxima H- reverse transcriptase (500 U, Thermo Scientific, EP0753), 

Template Switching Oligo (AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG, 2.5 µM, 

IDT) were used in a total volume 50 µL per reaction. 

 

  

5. For exonuclease I reaction exonuclease I (100 U, NEB, M0293L) and exonuclease 

buffer were used in a total volume 50 µL per reaction. 

  

6. For cDNA amplification Kapa HiFi Hot start ready mix 2X (Roche, KK2602), dH2O 

(Invitrogen, 10977035), and SMART PCR primer 

(AAGCAGTGGTATCAACGCAGAGT, 0.8 µM, IDT) used in a total volume 50 µL per 

reaction. CleanPCR magnetic beads (0.6X ratio, GC biotech, CPCR-0050), Fragment 

Analyzer (Agilent, DNF-474-0500 kit), and Qubit HS sensitivity kit (Invitrogen, Q33231) 

were used for cDNA purification and quantification. 
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7. For library preparation in-house produced Tn5 was used158. To stop tagmentation, 

SDS was used (0.2%, Sigma, 71736). For library amplification Kapa HiFi kit with 

dNTPs (Roche, KK2102), P5 SMART PCR 

(AATGATACGGCGACCACCGAGATCTACACGCCTGTCCGCGGAAGCAGTGGTAT

CAA CGCAGAGT*A*C, 0.3 µM, IDT), custom Nextera oligos159 (0.3 µM, IDT) and 

dH2O (Invitrogen, 10977035) were used. Libraries were purified and quantified using 

CleanPCR magnetic beads (0.6X ratio, GC biotech, CPCR-0050), Fragment Analyzer 

(Agilent, DNF-474-0500 kit), and Qubit HS sensitivity kit (Invitrogen, Q33231). 

 

8. TE-TW wash buffer was prepared in dH2O (Invitrogen, 10977035) using Tris (10 mM, 

Sigma T2944), EDTA (1mM, Sigma, 3690), and Tween 20 (0.01%, Sigma, P9416). 

 

  

9. TE-SDS wash buffer was prepared in dH2O (Invitrogen, 10977035) using Tris (10 mM, 

Sigma, T2944), EDTA (1 mM, Sigma, 03690), and SDS (0.5%, Sigma, 71736). 

  

10. Tris wash buffer was prepared in dH2O (Invitrogen, 10977035) using Tris (10 mM, 

Sigma, T2944). 

 

 

11. For mammalian cell culture dissociation and counting Trypsin-EDTA (Gibco, 

25200056) and trypan blue were used (0.4%, Thermo Fisher Scientific, T10282). Cell 

culture medium was prepared using DMEM Glutamax (Gibco, 10565018), FBS (10%, 

Gibco, 10270106) and penicillin-streptomycin (100 U/mL, Gibco, 15140122). Cell wash 

and cell loading buffers were prepared as described above. 
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12. Intestinal organoids were cultured in Matrigel (Corning, 356230) with organoid base 

medium (described in point 13) supplemented with ENR (+ CV where indicated) and 

rock inhibitor (where indicated, Sigma, Y0503). 

 

 

13. Organoid base medium was prepared using DMEM/F12 (Gibco, 11320033), Hepes 

(100 mM, Gibco, 15630056), penicillin-streptomycin (100 U/mL, Gibco, 15140122), 

B27 supplement (1 µM, Gibco, 17504-044), N2 supplement (1 µM, Gibco, 17502001), 

and N-Acetyl-L-cysteine (1 µM, Sigma, A9165). 

 

14. ENR medium was prepared using base medium (as above), EGF (E, 50 ng/mL, 

LifeTechnologies, PMG8043), mNoggin (N, 100 ng/mL, produced in-house), R-

spondin (R, 1 µg/mL, produced in-house). 

 

  

15. ENR CV medium was prepared with addition of CHIR (C, 3 µM, CalBiochem, 

CHIR99021), and Valproic acid (V, 3 mM, Sigma P4543) to ENR medium. 

  

16. Single-organoid single-cell dissociation mix was prepared using PBS (Gibco, 14190-

094), B. licheniformis protease (10 mg/mL, Sigma P5380), EDTA (5 mM, Sigma 

03690), EGTA (5 mM, BioWorld, 40520008-1), DNase I (10 µg/mL, Roche 11 284 932 

001), and Accutase (0.68X, Sigma, A6964) in a total volume 20 µL per reaction. For 

single organoid dissociation Nunc MicroWell plates (Nunc, 438733) and siliconized 

p10 pipette tips (VWR, 53509-134) were used. 
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17. For intestinal organoid preparation for RNAscope, cold Cell Recovery Solution 

(Corning, 354253), Histogel (Thermo Scientific, HG-4000-012), Paraformaldehyde 

(4%, PFA, Electron Microscopy Sciences, 15714) were used.  

 

18. For the RNAscope assay, organoids were stained using RNAscope Multiplex 

Fluorescent V2 assay (ACD Bio-Techne, 323110), Ly6a probe (ACD Bio-Techne, 

427571-C2), Fabp1 probe (ACD Bio-Techne, 562831), Muc2 probe (ACD Bio-Techne, 

315451-C2), PpiB probe (ACD Bio-Techne, 313911-C2), Duplex negative control 

(ACD Bio-Techne, 320751), TSA Opal650 (Perkin Elmer, FP1496001KT), TSA 

Opal570 (Perkin Elmer, FP1488001KT), and Prolong Diamond Antifade Mountant 

(Thermo Fisher, P36965).     

   

3.7.17 Data availability 
 

The GEO accession number for scRNA-seq data reported in this paper is GSE148093.  

The raw data for Figure 3.1H and Supplementary Figure 3.1H is stored under the access code 

GSM4454017. Corresponding digital gene expression (dge) summary data is available as the 

following file format: human.dge_summary.merged.txt, mouse.dge_summary.merged.txt. The 

raw data for Figure 3.1I and Supplementary Figure 3.1F is available under the access code 

GSM4454017. The corresponding dge summary files is human.dge_summary.merged.txt. 

The raw data for Figure 3.1J is stored under the access code GSM4454012 - GSM4454016, 

and the corresponding read count matrices *_ RCM_HD*.tar.gz, e.g. 

GSM4454016_RCM_HD1.tar.gz. The raw data for Figure 3.2, Supplementary Figure 3.2, 

Figure 3.3A, Figure 3.3E, Supplementary Figures 3.3C and Figure 3.3D is stored under 

access code GSM4453981- GSM4454011. Corresponding and read count matrices available 

under *_S*_*_RCMs.txt.gz, e.g. GSM4453981_S0_a_RCMs.txt.gz. 
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3.8. Supplementary Figures 
 

 
 
Supplementary Figure 3.1 - Schematic of the DisCo workflow and performance metrics (A) 
Schematic of the DisCo device design (blue: flow layer, green control layer). 1: oil valve, 2. oil inlet, 3. 
cell inlet, 4. bead inlet, 5. cell valve, 6. dropleting valve, 7. bead valve, 8. sample valve, 9. waste valve, 
10. sample outlet, 11. waste outlet. (B) Real-time image processing for particle detection. Two 
consecutive images are despeckled by gaussian blurring, and subtracted. The resulting image is 
thresholded and holes are filled by dilatation. Finally, contours are detected and classified by size and 
circularity thresholding. (C) Particle positioning by valve oscillation. Approaching particles are detected 
in the detection zone. Once a particle is detected, the channel valve is oscillated to induce discrete 
movements of particles. Oscillation is terminated once correct placement of a particle is achieved. (D) 
Stopping accuracy in a defined window. Beads (n = 744) were positioned using valve oscillation, their 
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position was manually determined within the stopping area. Scale was approximated from channel 
width. (E) Volume-defined droplet on-demand generation by valve pressurization. Droplets (n = 68, ~8 
per condition) were produced by pressurizing the dropleting valve at different pressures. Size was 
determined by imaging the dropleting process. Volumes were calculated from the imaging data based 
on droplet length and channel geometry. Thus, they should be considered an approximation. Error bars 
represent standard deviation. The channel width of displayed images is 250 μm. (F) Cumulative reads 
per barcode (n = 500) for DisCo and two Drop-seq experiments3,14. (G) Hamming distances between 
all 12 nt barcodes of a Drop-seq experiment, and generated 12 nt random barcode sequences 
representing the probability density for each set of barcodes. (H) Species purity (bars) and doublet ratio 
(dots) for unmerged and merged barcodes. Error bars represent standard deviation. (I) Correlation of 
the number of manually counted cells by fluorescence microscopy and the number of cells quantified 
by the DISPENCELL platform.  
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Supplementary Figure 3.2 -  quality assessment of the scRNA-seq data generated using DisCo 
from intestinal organoids: (A) Representative brightfield image of a differentiated organoid culture 
from single LGR5+ cells. (B) Correlation of encapsulated cells on-chip with the number of cells detected 
after sequencing (Cells passing QC, filtered above 800 genes/cell). (C) UMAP embedding colored by 
number of detected UMIs per cell, number of detected genes per cell, percentage of mitochondrial 
reads, and percentage of reads mapping to genes coding for respectively ribosomal proteins (Rpl), and 
heat-shock proteins (Hsp).  (D) UMAP embedding colored by expression of selected marker genes (Clu, 
Anxa1, Spink4, ChgB, ChgA, Agr2, Clca1, and Fcgbp). (E) UMAP embedding for each of the three 
independent experimental batches colored by cluster annotation.  (F) Heatmap of top DE genes per 
annotated cluster. (G) YAP1 target gene activity on UMAP embedding. The expression of genes that 
are positively regulated by YAP121 was calculated as the cumulative Z-score and projected on the 
UMAP embedding of all sequenced cells. 
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Supplementary Figure 3.3 - Individual intestinal organoid diversity: (A) Selected organoids imaged 
in microwell plates before dissociation to single cells. Scale bar 50 μm. (B) RNAscope controls for 
organoids shown in Figure 3C. Positive control (PpiB), and negative control (Duplex negative). Scale 
bar 50 μm. (C) Violin plots showing marker gene expression (Fabp1, Muc2, Olfm4, Sox9, Reg3b, Ly6a) 
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per organoid. (D) Violin plot showing the expression of selected genes (Defa24, Gip, Vnn1, Zg16) 
identified via psupertime analysis per individual organoid. 
 
 
 
 

3.9 Supplementary Тable 
 

 (Left Subtable) Performance summary of established scRNA-seq platform technologies. 

Performance metrics were derived from literature. Noteworthy, as for lack of consensus 

experiments, metrics represent different values. (References and calculation of metrics are 

detailed in the Material and Methods section). (Right Subtable) Performance metrics 

calculated for the DisCo system are presented in this study. 

Approach Droplets (stochastic) FACS & plate 
based 

Traps Microwells  Droplets 
(deterministic) 

Technology 10X 
Chromium 

inDrop Drop-
seq 

Smart-
seq2 

Cel-
seq2 

Fluidigm 
C1 

iCell 8 Seq-
well 

DisCo (this 
study) 

Min input 500 1,000 50,000 10,000 10,000 200 1,600 400 < 50 

Efficiency 45%* 25%* 2.3%* - - 55%** 43%** 30%* 75%* 

$/cell (100 
output 
cells) 

$20 $2.1 $6 $10.6 $3.6 $29 (96 
cells) 

$5 $2.2 $1 

$/cell (100 
input cells) 

$44.4 $8.4 $260.9 - - $62.2 $11.6 $7.5 $1.3 

Additional 
remarks or 
limitations 

Multiplexing possible, yet 
requires multiple washing 
procedures57,160. Substantial 
efficiency losses expected. 

Fluorescent 
labeling 
necessary 

Size-
selective 
properties 
39,145, 

High initial 
acquisition 
cost 

  

Expensive to 
scale up 
(automation) 

        

Efficiency estimates: * including cell capture efficiency; ** excluding cell capture efficiency  
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4.1 Abstract 
 

Over recent years mesenchymal stem cells have gained traction as a promising model for 

basic and translation research due to their capacity to differentiate and transdifferentiate to 

cells of various lineages. The discovery of transcription factors that drive stem cell commitment 

towards different lineages was driven either by trial and error studies and more systematically 

by genetics screening. The latter are mostly in a “many for one” manner, testing many genes 

for one phenotypic or molecular readout. Here we have developed TF-seq by combining 

barcoded transcription factor-mediated cell programming and scRNA-seq method, a “many 

for many” strategy that allows to screen many genes for many molecular signatures that are 

defined by transcriptomic states. Applying TF-seq on mesenchymal stem cell-like C3H10T1/2 

cells, we found multiple known factors that program the stem cells to adipose (such as  Cebpa, 

Pparg), osteogenic (such as Runx2, Dlx3), and myogenic lineages (such as Myog, Myod). 

Northworthy, we discovered novel transcription factors, Mycn and Rhox12 for adipogenesis, 

Nkx3-1 and E2f6 for osteogenesis, Zfp687 and Tbx21 for chondrogenesis. Further 

experimental validation confirms the function of Mycn and Rhox12 genes in regulating 

adipogenesis, which together with previous results show the high efficiency and validity of the 

“many for many” strategy. Additionally, because TF-seq reads out the whole transcriptome, it 

allows for more causal studies on how the regulatory networks are affected by each TF 

overexpression. Finally, genome-wide changes driven by the transcription factors on the 

single-cell level render the possibility to study interactions between transcription factors and 

give deeper insights in cell-conversion efficiencies. We believe that data generated will serve 

as both experimental and data resource to the wider scientific community for multiplexed 

genetic assays. 
 

4.2 Introduction 

 

Multipotent mesenchymal stem cells (MSCs) are a promising resource for regenerative 

medicine, disease modeling and drug screening73,161. Under separate specific conditions, 

MSCs can differentiate into bone, fat, muscle, and cartilage cells162–164.  Moreover, MSCs have 

a propensity to differentiate into cells outside the conventional mesenchymal lineages. 

Terminal differentiation of MSCs is achieved through coordinated activity of transcription 

factors (TFs) and epigenetic modifications that drive gene activity specific to distinct cell 

fates164. Current state of knowledge points out that these cells preserve a high degree of 

plasticity enabling trans differentiation between certain lineages. Overall, this makes MSCs 

ideal candidates for studying self-renewal, lineage commitment, differentiation and 

transdifferentiation both in in vivo and in vitro models165–167. One of the outstanding interests 
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in both basic and translational stem cell research 168,169 is how to create cell type/state in a 

simple, controlled, and timely manner. This will allow further to dissect regulatory mechanisms 

governing the cell dynamics and transition through different states. 

   
Perturbation of genes of interest and primary transcription factors has been shown as one of 

the key approaches in programming cell states. For example, it is shown that Myog/Myod1 

overexpression alone can reprogram fibroblasts to myoblasts through direct regulation of 

genes involved in myogenic gene expression programs64,170. In addition, expression of Oct4, 

Sox2, Klf4 and Myc convert mouse embryonic fibroblasts to induced pluripotent stem cells75. 

The discovery of TFs that drive reprogramming has previously involved both prior knowledge 

of their role in development and trial and error experiments. A systematic screening method 

to assess the effects of TF overexpression would advance understanding on the contribution 

of individual TFs and enable rapid discovery of novel reprogramming factors and optimize 

already existing protocols. 

 
Emergence of single-cell transcriptomics methods enabled for high-throughput genome-wide 

and high content screening in parallel, profiling thousands of individual transcriptomic 

responses to perturbation11,12,171. There are two most notable approaches to screening of 

perturbations in stem cells. First, multi-locus gene perturbation using clustered regularly 

interspaced short palindromic repeats (CRISPR/Cas9) allows both activation172 and silencing 

of endogenous genes77,173,174. However, the efficiency of such methods remains limited as 

high concentration and multiple gRNA’s are needed to achieve the silencing of one gene 

rendering the approach inefficient in some cases. Second, open-reading frame (ORF) 

overexpression has shown a potential to transdifferentiate cells between lineages and 

differentiate stem cells towards the desired state. ORF expression can yield a strong, stable 

expression of genes of interest175. Moreover, having full control on the ORF sequence enables 

expression of specific isoforms and mutants, and allows us to tightly regulate the gene’s 

expression through inducible or context-specific promoters80. 

    
We developed TF-seq, a barcoded transcription factor ORF overexpression library, that we 

combine with scRNA-seq to perform gain-of-function screen in MSCs in a parallel fashion. 

Building on barcoding principles, we have developed a vector tagging method for reference 

lineages that helped us to delineate the MSC state lineage progression and differentiation 

towards adipo lineage. We generated a dataset where we probed for 435 TFs in ~52 000 cells 

and identified multiple candidate transcription factors in programming the cells into different 

cell types. Using building blocks from stem cell engineering and functional genomics, we aim 

to set up a framework for mechanistic understanding the role of TFs in designing cell states.   
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 4.3. Results 

 
 
 
Figure 4.1 - Overview of theTF-seq principle: (A) Schematics of the TF-seq workflow. Barcoded ORF 
bearing plasmids are packed into lentiviruses. Following this, lentiviruses are transduced to C3H10T1/2 
cells which are selected using puromycin. TF overexpression is selected is induced using doxycycline 
for 5 days, after which cells are dissociated and used for transcriptome analysis using 10X Chromium 
scRNA-seq platform. Once cDNA is prepared from single cells, part was used for single-cell library 
preparation and part was used for PCR enrichment of TF-ID and cellular barcode. Prepared libraries 
are then sequenced using Illumina platform. (B) Experimental design executed throughout the 
experiments. Next to overexpressed TF, reference dataset was created (D0 – D5) and D0 confluent 
cells that were cultured under the same conditions as overexpressed TFs 

 

We generated a library containing 435 murine 3’ barcoded TF based on readily available TF 

Open Reading Frame (ORF) expression library available 94. 11 bp random nucleotides (further 

called TF-ID) were added to the destination vector upstream of the 3’ UTR of the lentivirus 
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vector to make the TF-ID detectable by 3’ transcript capture method scRNA-seq. TF ORF was 

shuttled using Gateway cloning system to doxycycline inducible and puromycin selectable 

lentiviral vector. During cloning and barcoding procedure, expression vectors were thoroughly 

re-checked for uniqueness of TF-ID sequence and the right ORF. TF-ID of each vector was 

checked for similarity and those with similarity of less than 3bp were not included in the same 

experiment due to high likelihood of mixing. Lentiviruses were prepared individually avoiding 

recombination between different vectors during lentiviral packing as reported 176 (Figure 4.1A). 

 

To generate TF programmed cells, we transduced C3H10T1/2 cells with the barcoded vector 

in individual manner. Lentivirus vectors containing mCherry were included as controls. 

Additionally, in order to generate a reference dataset of adipogenesis, we differentiated 

C3H10T1/2 cells in a time course manner (day1- 5) in parallel, with each time point labeled 

with a unique TF-ID. Instead of TF ORF, vectors used for reference datasets had included the 

mCherry red fluorescence gene (Figure 4.1B).   

 

 

Figure 4.2 - TF-ID enrichment overview:  (A) Barplot showing of TF-ID enrichment efficiency across 
different experiments, data points are colored according to the respective experiment (B) Cumulative 
plot showing proportion of reads assigned to unique TF-ID. Black dots represent the main detected TF-
ID; red dots represent TF-IDs with hamming distance between 1 and 2 from main TF-ID; gray dots 
represent TF-IDs with hamming distance more than 3 from the main TF-ID (C) Heatmap showing 
similarity of gene-expression across several TFs repeatedly assayed across experiments. 

 
With this design, we screened all the 435 TFs across seven experiments with 50 and 90 TFs 

per experiment and captured between 2000 and 8500 cells per one 10X scRNA-seq run 

(Supplementary Figure 4.1A) totaling ~52 000 cells with average coverage of 60 cells per TF. 

We observed lower gene/cell and UMI/cell detection in the first two experiments with 10X 

Chromium Next GEM Single Cell 3′ V2 chemistry compared to the V3 chemistry used in the 

other experiments (Supplementary Figure 4.1B). From the sequencing results of the 

conventional libraries, we could only recover the TF-ID of around 30-50% cells per run. We 

thus devised an additional enrichment strategy that was used to amplify the single-cell barcode 
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and TF-ID generating additional libraries (termed as TF-ID enrichment library afterwards) 

sequenced along with the single-cell library (Figure 4.1A), which allowing on average 85% of 

all cells have been assigned with TF-ID (Figure 4.2A). Again, TF-ID assignments were 

somewhat lower in the first two experiments which is consistent with the previous observation 

of somewhat lower data quality in the first two experiments. We observed a strong correlation 

between the number of UMIs coming from vector expressions between scRNA-seq library and 

TF-ID enrichment library, supporting the accuracy of devised TF-ID enrichment approach. We 

expected to detect in only one TF-ID in one cell, as each cell only contains one TF. However, 

we found that around 40% of the cells contain more than one TF-ID (Figure 4.2B). There are 

several reasons that could lead to increased background: 1) the free-floating background 

RNA, 2) PCR or sequencing error, 3) cell doublets. We reasoned that the amount of false 

positive TF-IDs introduced by the first two types of artifacts are much less than the true-

positive TF-ID in a cell, which can be corrected by filtering out the minor TFs (a cutoff at 5% 

of all the number of reads from TF-ID) and calculating the hamming distance of the TF-IDs, 

respectively (Figure 4.2B). The cells that could not be corrected by this approach are likely to 

be of the third type of artifact, and thus be removed for further analysis. To check for 

reproducibility of each experiment, we have repeatedly included several TFs (mCherry under 

adipogenic differentiation conditions, Myod, Pax9, Fos) across different experiments and 

observed strong clustering and similarity by TF or conditions over the experimental batches 

based on the transcriptomic state, hence reinforcing the robustness of overall experimental 

setup (Figure 4.2C).   
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Figure 4.3 - Definition and characterization of functional cells in TF-seq framework (A) Functional 
cells of TFs driving myogenesis and adipogenesis. The top shows the distribution of correlation values 
in PCA space of all cells with the mean D0 cells. Functional cells are then defined as those that have a 
low correlation to all D0 cells. The bottom shows the location of the functional cells in the first two 
principal components. (B) Individual TFs that drive the main mesenchymal lineages. Shown are 
normalized enrichment values that were calculated using gene set enrichment analysis between marker 
genes of each lineage and the fold changes in gene expression induced by each TF. (C) Induction or 
repression of cell cycle of each TF. Shown are the % of cells that are assigned to the S phase (dark 
blue), G2M phase (light blue) or G1 phase (gray). 
 
We next investigated which TFs are able to program the cells to adipocytes. We generate an 

adipose score using the adipose specific genes identified from the adipogenesis reference 

samples. By looking at the adipose score and comparing to the reference confirmed activity 

of several already known TFs such as Cebpa177, Pparg178. Noteworthy we identified novel TF 

candidates potentially involved in adipogenesis such as Rhox12 and Mycn (Figure 4.3B). 
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While we are at the moment in the process of adding more references such as osteogenesis 

and myogenesis reference datasets, currently available single cell atlas datasets nevertheless 

provide another valuable resource as references. By projecting our data to adipocyte, 

chondrocytes, osteoblasts and myocytes mouse references from PangloaDB 179,(Figure 4.2B) 

we further identified previously described TFs such as Nkx3-1, Runx2 for chondrogenesis, 

Runx2 for osteogenesis, Myod and Myog for myogenesis. To our surprise we found that some 

TFs previously described to be specific for certain lineages were enriched for more than one 

lineage. Such examples have already been described Runx2 and Pparg , known as a master 

regulator for adipogenic differentiation94,180,181. Whether these different lineages share 

intermediate state during the early commitment needs to be further investigated.  

 

In addition to characterizing the TF’s function in programming different cell types, our TF-seq 

data is also a rich resource for other studies. This for example illustrated by the discovery of 

a set of TFs regulating cell cycle, including already known E2f2182 , Mycn183  and T184. It is 

possible to study the genetics interaction between different TFs, e.g. the strong correlation 

between some of the TFs within the same family showing the potential functional redundancy 

of these factors, such as Fos, Hox and Myc, Cdx, Gata, Hox and Pou (Supplementary Figure 

4.2C). .          

 

Some TFs-programmed cells show heterogeneity. One such example are Pparg programmed 

cells. We found that the level of vector expression (reflecting the TF expression) is a factor if 

not the main one causing the cellular heterogeneity. As a scRNA-based approach, TF-seq is 

able to exploit this heterogeneity to identify TFs which program cells in low efficiency and thus 

difficult to be identified in bulk based genetics screening. To identify TFs which show both 

strong and weak programming capacity (termed “functional TFs” afterwards), we compared 

the cells of each TF to those of control in single cell level. The outlier cells from a TF are 

defined as “functional cells” of that TF, which are further used, rather than all cells of that TF, 

to calculate the signature genes (DE genes) of this TF (see Materials and Methods). We then 

ranked the functionality of the TFs by those DE genes, including both strong and weak TFs .   
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Figure 4.4 - Confirmation of TF activity and relationship to vector expression (A) Representative 
microscopy images after 7 day overexpression of Cebpa, Mycn, Rhox12 Pparg, and mock vector. After 
overexpression, cells were stained with DAPI and Bodpy and the whole wells were scanned using 
Operetta high-content analysis system.  (B-C) Relationship between log vector expression and 
adipogenesis score (B) or myogenesis score (D-E) Relationship between functional cells and 
adipogenesis (D) and myogenesis score (E). (F) Relationship between functional cells and log vector 
expression. Top 90 functional TFs were selected based on having more than 200 differentially 
expressed genes. 

 
We set to confirm whether we can phenotypically reproduce molecular profiles by prolonged 

overexpression (7 instead of 5 days). We confirmed that in cells overexpressed Ceba. Mycn, 

Rhox12, Pparg have varying degrees of lipid production, yet higher to mock group where mCherry 
was transduced. This initially confirmed our screening findings. Notable difference that we 

observed is higher cell density and different lipid droplet morphology compared to Cebpa, Rhox12 

and Pparg. To certain degree this is consistent with observations in initial screening where Mycn 

was among the top proliferating transcription factors while having pro-adipogenic activity (Figure 

4.4A). As the vector level (reflecting the TF expression) can be quantified, TF-seq renders a 

kinetics analysis on the TF expression and the consequent molecular phenotypes. TFs that either 
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induced an adipocyte or myocyte-like state for example showed a higher average expression of 

respective adipocyte and myoblast markers that was to some extent correlated with the log vector 

expression (Figure 4.4B-C). However, the amount of vector that was necessary to move the cell 

into a different state varied strongly between TFs. TFs such as Myod and Myog already induce a 

myocyte-like state at low vector expression which can be also observed by rapid cell morphology 

changes during overexpression, while TFs such as Mycn and Rhox12 require a high vector 

expression for inducing adipocyte markers (Figure 4.4D-E). 
 

4.4 Discussion 

 

Here we developed barcoded lentiviral TF overexpression vectors used together with scRNA-

seq to perform parallel gain-of-function screen in MSCs. This method allows not only for the 

discovery of strong drivers but also weak transcription factors that might have a significant 

contribution to defining both transitory and stable cell states. We discover and provide initial 

confirmations for novel transcription factors in adipogenesis – Mycn and Rhox12. Using the 

external references, we also identify several factors for other lineages. In this chapter we 

focused mostly on adipogenic lineage as a proof of principle, however, our method has the 

potential to focus on other lineages in a parallel manner with an aim to understand commitment 

and progression of MSCs towards defined cell types. We are currently in a phase building 

additional scaffolds for osteogenic and muscle lineages, which we believe will provide more 

insights than the external references, as they avoid the systematic variations of data coming 

from different studies. This will enable us to better annotate the changes within the already 

established framework of C3H10T1/2 differentiation. 

     
One of the main drivers in our data variability was vector expression. We show that vector 

expression correlates with the level of transcriptomic response and strength of key lineage 

signatures. This goes in line with the initial results of the HumanTFome project where 

piggyBAC transposon vectors were chosen instead to achieve more efficient cellular 

programming80. However, such variability within vector expression gives us the ability to better 

estimate the dose of TF needed to successfully initiate the gene expression program required 

for successful lineage commitment and differentiation. Additionally, by leveraging on the 

vector expression needed to achieve the desired states in our cells, data presented here 

opens a new avenue to combinatorial overexpression of more than one transcription factor. 

Modeling such data will provide further insights in lineage commitment and further 

experimentally validate causal regulatory networks to achieve stable cell states. 
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4.5 Materials and Methods 

 

4.5.1 TF barcoding and cloning 

  
Barcoded inducible lentivirus plasmids containing transcription factor (TF) open reading 

frames (ORF) were created using the Gateway cloning system in two steps. In the first step, 

barcoded destination vectors were created. Barcoded lentiviral pTREP-vector was created by 

amplifying barcoded ccdB-containing barcoded fragment and vector-containing barcoded 

fragment. ccdB-containing fragment was amplified using pTREP-vector template (100 ng), 

Enrich_F3 primer (0.3 µM), pTREP-BC-RamR primer (0.3 µM), Kapa HiFi ready mix (1X, 

Roche, 07958935001) and dH2O following program: 1) 98oC for 3 min, 2) 98oC for 30 second, 

3) 63oC for 30 second, 4) 72oC for 5 min, repeat 2-4 for 15 cycles, 5) 72 oC for 5 min. Vector 

containing fragment was amplified using pTREP vector template (100 ng), pTREP-vec-R 

primer (0.3 µM), pTREP-BC-RamF primer (0.3 µM), Kapa HiFi ready mix (1X, Roche, 

07958935001) and dH2O following program 1) 98oC for 3 min, 2) 98oC for 30 second, 3) 63 oC 

for 30 second, 4) 72oC for 5 min, repeat 2-4 for 15 cycles, 5) 72 oC for 5 min.. Following this, 

both PCR fragments were run on 1% Agarose gel and purified using Zymo gel purification kit 

(Zymo, D4007). Once purified, pTREP vector fragments were assembled using Gibson 

assembly mix (NEB, E2611S) using ccdB-containing barcoded fragment (100 ng), pTREP 

vector-containing barcoded fragment, Gibson assembly mix (1X, NEB, E2611S) at 50oC for 

60 minutes. Reaction was then purified using DNA Clean and Concentrator purification kit 

(Zymo, D4014) and the final product was transformed using One Shot ccdB Survival 2 T1R 

resistant competent cells (Thermo Fisher, A10460) following manufacturer’s instructions. 

Successful colonies were then inoculated to LB containing ampicillin and chloramphenicol for 

miniprep (Zymo, D4015) and validation.  In the second step, transcription factor open reading 

frames were transferred from entry pDONR clones generated (paper reference) to pTREP 

vector using LR Clonase II enzyme mix (Thermo Fisher, 11791100) following manufacturer’s 

instructions. Stbl3 one shot competent cells (Invitrogen, C737303) were then transformed 

using LR Clonase II enzyme mix (Thermo Fisher, 11791100) and colonies were grown on 

ampicillin plates (100 ug/mL) overnight. Colonies were then picked and transferred to LB with 

ampicillin for miniprep. Following miniprep, plasmids were checked for TF-ID presence and 

correct TF ORF using Sanger sequencing (Microsynth) using EGFP-C-Rev standard primer 

to confirm TF-ID, TET-CMV-for standard primer to confirm TF. Prior to each scRNA-seq 

experiment, TF-IDs pooled together were checked for similarity and only TF-IDs with hamming 

distance dissimilarity greater than 2 bp were retained within each pool.     
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4.5.2 Cell culture 

  
Both HEK 293T (ATCC  Cat. No. SD-3515) and C3H10 T1/2 cells (ATCC  Cat. No. CCL-226) 

were cultured in DMEM (Gibco, 41966029) supplemented with FBS (10%, Gibco, 10270106) 

and 1X penicillin-streptomycin (1%, Life Technologies, 15140-122) in a 5% CO2 humidified 

atmosphere at 37 °C. Prior to use, cells were washed with PBS (Thermo Fisher, 14190169), 

dissociated with Trypsin-EDTA (0.25%, 25200056, Life Technologies), washed with cell wash 

buffer and counted with Trypan blue (Life Technologies, T10282) live-dead stain using a 

Countess cell counter (Invitrogen). 

  
4.5.3 Transfection and lentiviral packing 

  
Reverse transfection was performed using Lipofectamine 2000 (LP2000, Thermo Fisher, 

11668027) following manufacturers instruction. First, a mix of Opti-MEM (Thermo Fisher, 

31985070) and LP2000 reagent was prepared and thoroughly mixed. Next, mix of Opti-MEM, 

TF bearing lentiviral vector, (1.5 µg) and 3rd generation lentivirus packaging plasmids (pRSV-

Rev:pMDLg/pRRE:pCMV-VSV-G=1:1:1, 1.5 µg). Two mixes were mixed together and 

incubated for 30 minutes at the room temperature. During incubation, HEK 293T (ATCC  Cat. 

No. SD-3515) cells were washed with PBS (Thermo Fisher, 14190169), then dissociated using 

Trypsin-EDTA (0.25%, 25200056, Life Technologies). Cells were resuspended in DMEM 

(Gibco, 41966029) FBS (10%, Gibco, 10270106) and 1X penicillin-streptomycin (1%, Life 

Technologies, 15140-122) and seeded in individual wells at ~95% confluency. After the 

incubation, the mix was added to the medium containing freshly seeded cells. 12 hours post-

transfection, fresh medium was added to attached cells. 48 hours post transfection, medium 

was collected, and dead cells were removed, centrifuging at 300 x g. As a control, pBOB-GFP 

(kindly provided by Dr. Jiahuai Han in Xiamen University) plasmid with constitutive GFP 

expression was transfected as a control to evaluate success of transfection step.   

  
4.5.4 Transduction and overexpression 

 

Murine C3H10 T1/2 cells were seeded 12 hours prior to transduction at density 10-20%. Then, 

transfection lentivirus containing supernatant mixed in 1:1 ratio with fresh medium and 

polybrene (10 µg/mL, Sigma, TR-1003-G) was added. Cells in a plate were then centrifuged 

at 1300 x g for 30 minutes (37oC,). Cells were incubated with lentivirus for 24h and then in 

fresh medium. After 48h, cells were selected using puromycin (2 µg/mL, Thermo Fisher, 

A1113803) for 72 hours. After puromycin was removed, fresh medium was added to allow 

puromycin resistant cells to recover for 24 to 48h. Then, medium containing doxycycline was 



92 
 

added (2 µg/mL, Sigma, D9891-1G) to induce TF overexpression. Fresh medium with 

doxycycline was replenished every 48h. 

 

4.5.5 In vitro adipogenic differentiation 

  
For building adipose reference differentiation dataset, selected cells with unique TF-ID and 

mCherry ORF, were cultured in the DMEM (Gibco, 41966029) supplemented with FBS (10%, 

Gibco, 10270106) and 1X penicillin-streptomycin (1%, Life Technologies, 15140-122) , and 

BMP4 (100 mg/mL, RnD, 314-BP-010) for 3 days. Then the induction medium was added for 

2 days, which is the complete culture medium supplemented with the MDI cocktail (1 μM 

dexamethasone, D4902-25MG, 0.5mM 3-isobutyl-1-methylxanthine, I5879-5g, and 167 nM 

insulin, I9278-5ml, all from Sigma-Aldrich, Saint Louis, MO). Teh cells were then kept in 

complete medium with insulin (167 nM insulin, Sigma-Aldrich I9278-5ml) until collection.  

 

4.5.6 10X scRNA-seq experiment 

  
scRNA-seq experiments were performed using the Chromium Single Cell Gene Expression 

Solution (10X Genomics, v2 reaction kit for experiment 1-2 and v3 reaction kit for 3-7 

experiment), following the manufacturer's protocol. After 5 days of doxycycline induced 

overexpression, cells were trypsinized and recovered from plates. Following this, cells were 

washed and resuspended in PBS (Thermo Fisher, 14190169). Cell suspension (concentrated 

to 500 – 800 cells/µL) was added to Chromium Single Cell 3’ chip targeting 6000 - 8000 cells 

per experiment. cDNA and single-cell RNA-seq libraries were prepared using Chromium 

Single Cell 3’ v2 and v3 reagent kits. Libraries were sequenced on the NextSeq 500 (Illumina) 

instrument using the dual-index configuration following manufacturer’s recommendations to 

obtain mean depth 50 000 reads/cell. 

 

4.5.7 TF-ID enrichment 

  
10 ng of cDNA generated from each Chromium Single Cell 3' experiment was used to enrich 

TF-ID to recover overexpressed transcription factor identity. Enrichment was performed in two 

steps. In the first step, target TF-ID was amplified in PCR reaction using ~6 ng cDNA, 

BC_vec_target_10X_F1 vector specific forward primer (0.3 µM), Trueseq universal adaptor 

(0.3 µM), Kapa HiFi ready mix (1X, Roche, 07958935001) and dH2O following 98oC for 30s, 

10 cycles of 98oC for 10s, 63oC for 20s, 72oC for 30s, followed by 5 min elongation at 72oC. 

Enriched cDNA was then purified using Ampure beads (2.5:1 ratio, Labgene, CNGS-0050) 

and purified DNA was further amplified with Truseq_D7_adaptor (0.3 µM), 
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Truseq_Universal_Adapter (0.3 µM), Kapa HiFi ready mix (1X) following the program 98oC for 

30s, 4 cycles of 98oC for 10s, 63oC for 20s, 72oC for 30s, followed by 5 min elongation at 72oC 

to make the libraries compatible with 10X libraries. Following this, TF-ID enriched libraries 

were then purified twice using Ampure beads (0.6:1 ratio) and sequenced together with 10X 

libraries.   

 

4.5.8 Data preprocessing 

 

For each experiment, only the cell-barcodes detected both in the 10X and TF-ID library were 

used. The TF-IDs for each cell barcode were ranked based on the percentage of reads 

assigned in the TF-ID library. The TF-ID of a cell was defined as the one with the highest 

fraction of reads. The cells were then ordered based on the percentage of reads assigned to 

their main TF-ID, and knee point detection was performed to find the inflexion points of the 

curve using the function kneepointDetection() of the R package SamSPECTRAL185. The cells 

with a percentage lower than the knee point were filtered out.  

 

Prior to integrating the datasets from different experiments, each dataset was analysed 

individually to filter low quality cells. Outlier cells were filtered out using the median absolute 

deviation from the median total UMI numbers and gene numbers, implemented in the function 

isOutlier() of package SCRAN186, using a cutoff of 4 or 6 depending on the dataset. Cells with 

more than 10% of mitochondrial genes, 40% of rRNA genes and less than 75% of protein 

coding genes were filtered out.  

 

4.5.9 Assigning cells to TF-IDs 
 

We created the vector sequence as a .fasta file, leaving ‘N’ where the TF-ID barcodes were 

located. Then, we aligned the R2 .fastq files from 10X TF-ID enriched libraries to the vector 

sequence using STAR v2.7.3a110. Using custom scripts, we extracted the barcodes from the 

aligned reads at the ‘Ns’ locations, and matched them to our barcode libraries, allowing 1nt 

mismatch. Using the R1 .fastq file, we were then able to match the TF-IDs to the corresponding 

cell barcodes. This created a TF-IDs x cell barcodes count matrix, that we further deduplicated 

using UMIs from the R1 .fastq file. 
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4.5.10 Selection of functional cells based on PCA distance to D0 cells     

 

Functional cells were selected for each TF based on their distance to the mean of D0 and D0 

confluent groups in the PCA space. More precisely, the cells were first assigned to a cell cycle 

phase (G1, G2/M, S) using the function CellCycleScoring() of Seurat187. The threshold of the 

score to assign a cell to a certain phase was modified to 1 (instead of 0 by default), meaning 

that a cell was assigned to the phase between G2/M and S with the highest score only if it 

was greater than 0.1, the cell was otherwise assigned to G1. The rest of the selection of 

functional cells analysis was performed per phase. To limit batch effect, the selection was 

performed per datasets, however to have a sufficient number of D0 cells, D0 from datasets 

experimentally prepared and sequenced together were merged. A PCA was computed for a 

TF’s cells and the corresponding D0 cells. The PCA was computed on normalized and scaled 

data and on the 2000 highly variable features as implemented in Seurat187. The mean 

expression of D0 cells (per gene) was calculated on the first two principal compontents (PCs) 

and the other significant PCs, with a p value smaller than 0.05 as calculated by Jackstraw. 

Pearson correlation between each cell and the mean D0 was calculated using cor() function. 

TF’s cells with a correlation smaller than the correlation corresponding to the 2.5 percentile of 

the correlation distribution of D0’s cells with their own mean were considered as functional.  

 

4.5.11 Data integration  

 

The TFs selected for the integration were defined as enriched in a specific cluster of the 

analysis per batch. More specifically clustering was performed following the Seurat pipeline, 

and a resolution was chosen so that it represented the heterogeneity of the data. For each TF 

and each cluster with specific resolution significant enrichment was tested using Fisher’s exact 

test. By doing this, we filtered 90 TFs. All the cells of filtered TFs, cells defined as mature 

adipocytes, and D0 cells of each batch were selected for the further integration. A new Seurat 

object of the subset of selected cells per batch was created to log normalize the data and find 

the top 2000 highly variable features. The features used for the integration were the union of 

the top 2000 highly variable features of each of these Seurat objects, the genes corresponding 

to the 90 functional TFs, and the top 10 differentially expressed markers of the specific clusters 

where the TFs of interest was also included in the further analysis. The integration was finally 

performed using mnnCorrect() function from the R package batchelor188. The integrated 

normalized gene expression was then scaled in order to compute the PCA. UMAP and clusters 

were computed on the first 150 PCs using Seurat156.  TF enrichment in a specific cluster of 

the integration was calculated as described previously. The Heatmap of figure 4.2C and 

Supplementary figure 4.2C show the Pearson correlation of the selected cells in the first 150 
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PCs. The cells displayed are the subset of cells of the TFs of interest that were in the cluster 

representative of the TFs of interest as defined by Fisher’s exact test.  

 

4.5.12 Determining candidate transcription factors that drive adipogenesis and other lineages 

 

We used three different strategies to determine candidate TFs that drive a particular lineage. 

To define individual TFs that drive adipogenesis, we calculated a score for each TF’s 

functional cells based on the core set of adipogenesis genes as defined earlier (using Seurat’s 

ModuleScore function). This allowed us to rank TFs by which they promote or repress 

adipogenesis. 

 

To calculate differential expression during adipogenesis or TF overexpression, we used a 

generalized linear model with batch effect and % of non-zeros as covariates189,190. For 

adipogenesis, we compared the day zero confluent cells with the mature cell population. For 

TF overexpression, we compared both day zero confluent and non-confluent cells with the 

functional cells for a particular TF. 

 

To define combinations of TFs that may drive adipogenesis, we then constructed a regularized 

linear model that tries to predict the log fold-changes of the adipogenesis differential 

expression using a sparse combination of the log fold-changes of TFs. Specifically, we 

calculated for each combination of two to four TFs the most optimal set of regression 

coefficients using least-squares, and used these to calculate a mean-squared error value 

between the combination of TFs. 

 

To define individual TFs that may drive lineages beyond adipogenesis, we used PanglaoDB179 

to extract markers for the four main mesenchymal lineages: adipogenesis, myogenesis, 

osteogenesis and chondrogenesis. We then used gene-set enrichment analysis, as 

implemented in the R fgsea package191, to calculate p-values and normalized enrichment 

scores between the gene set and fold-changes of a particular TF. Candidate TFs were 

selected if they were significantly enriched or depleted in at least one gene set (false-discovery 

rate < 0.05). 

 

 

 



96 
 

4.5.13 Confirmation of candidate TF driven adipose differentiation 

  
To confirm candidates for adipogenesis, TFs of interest in three technical replicates were 

overexpressed for 7 days in C3H10 T1/2 cells in the flat bottom imaging plate (Corning Falcon, 

353219). Following this, cells were washed with PBS  (Thermo, 14190169) and fixed with 4% 

PFA (Electron Microscopy Sciences, 15714) in plate for 15 minutes at room temperature in 

dark. Cells were washed twice with PBS and then permeabilized with PBS and triton (0.3%, 

Applichem,  A4975.0100) followed by two more steps of washing with PBS. To stain the lipid 

droplets, cells were incubated in DAPI (1:5000, Sigma-Aldrich, D9542-1MG) and Bodipy 

(1:500, Life Technologies, D3922) for 30 minutes in the dark at room temperature. Cells were 

then washed twice with PBS and imaging was performed in PBS. Imaging was performed 

using Operetta high-content imaging system (Perkin Elmer). Stack of 10 images per whole 

well (96 well plate) was collected for each replicate for both blue and green channel using 

20x/0.8 objective. To estimate differences in adipose differentiation driven by overexpressed 

TFs, image pre-processing and quantification algorithm developed by EPFL BIOP imaging 

facility (available through EPFL BIOP ImageJ repository) was used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



97 
 

4.6 Supplementary figures 
 

 
 
Supplementary Figure 4.1 - Quality parameters of individual scRNA-seq experiments (A) Violin 

plot showing number of detected genes/cell across different experiments (B) Violin plot showing the 

distribution of detected UMIs/cell across different experiments (C) Number of cells retained per 

experiment after initial quality filtering and matching to respective TF-ID (D) Correlation of 

overexpression vector UMIs/cell detected from 10X Chromium scRNA-seq library and TF-ID 

enrichment. 
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Supplementary Figure - 4.2 cell pre-filtering and functional cells with significant TF 
overexpression (A) Number of functional vs non-functional cells for each TF across batches. (B) 



99 
 

Adipogenesis score of functional vs non-functional cells for each TF and the mature adipocyte 

population. (C) Correlation in PCA space between cells with TFs that were replicated across batches. 

(D) Dimensionality reduction of functional TFs, with functional cells highlighted. 
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Chapter 5: Discussion and outlook 
 

5.1 Method development in single-cell transcriptomics domain 
 

As the adoption of microfluidic methods for various biological applications broadens, hardware 

setup requirements will have to evolve towards setups that are able to efficiently process cells 

at high-throughput, yet, remain broadly adoptable with ease of use allowing for a 

standardization among use cases.   

 

With the development of e-chip and cp-chip for Drop-seq, we were able to modularize and 

extend the overall setup that can be utilized for various Drop-seq approaches, allowing for 

broader adoption in the community. With the novel cp-chip, we achieved highly efficient 

sample recovery at the pivotal methodological step, particularly when cell and bead numbers 

are scarce. Importantly, by introducing an additional microfluidic process in the Drop-seq 

workflow, the novel bead processing workflow simplified cDNA generation and without 

hampering the data quality as the original setup. 

   

With DisCo we developed a promising prototype platform, that, unlike Drop-seq, inDrops, and 

10X32,43,102,132 approaches, lowers the bar in terms of minimal sample requirements while 

remaining very efficient in sample utilization. Although, establishing DisCo in other labs around 

the world will require effort, the benefits of this initial investment may be outweighed by the 

profits similar as for other widely used microfluidic technologies such as Drop-seq if sole focus 

of the lab requires routine handling samples that are not easy to process using the other 

approaches such as FACS based scRNA-seq or 10X scRNA-seq solutions. Considering that 

non-commercial alternative technologies are similarly complex in operation and equipment 

cost, we are convinced that the DisCo approach will prove valuable for the processing of small 

and precious biological samples at the single-cell level. Importantly, DisCo thereby fills an 

important processing gap left by currently available methods59 for mid-small samples of 100 

to 500 cells with recoveries above 70%. In order to leverage this unique feature, set of high 

recovery and small sample numbers, we studied early-stage development heterogeneity in 

individual intestinal organoids. By dissecting single organoids at single-cell resolution, we 

unveiled four different subtypes of organoids at various stages of development. Compared to 

high-content screening methods that rely on specific marker genes to study development, we 

were able to uncover so far undescribed organoid type enriched with goblet cells, here 

thermed “gobloids” and confirmed existence of two more aberrant forms described 

elsewhere138,192 by using the single-cell transcriptomics approach agnostic to specific 

markers122,192.     
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As a standalone technology, DisCo is currently facing four challenges in the near future. 

Firstly, the throughput of DisCo is limited at maximally 300 cells/hour. As DisCo was initially 

developed to fill an open niche in the scRNA-seq toolbox43,101,103,153,193, we aimed to provide 

the means to efficiently process rare and low input samples using conventional dual-layer 

microfluidics. Importantly, such PDMS-based systems have excessive latency times, making 

placement of multiple particles per encapsulation process a time-expensive endeavor for 

bigger samples. Hence, we aim to reduce those latency times, by either removing the 

necessity for complete opening and closing of the valves or developing a system that would 

not rely on PDMS-based valves in the future, both of which have the potential to increase 

throughput. The second major major limitation to throughput resides in the coordination of two 

particles before co-encapsulation. At the point of technology creation, Drop-seq beads32 were 

adopted due to their ease of use and coordination on a microfluidic device and presumably 

acceptable production standards. However, removing the requirement to coordinate bead 

movement will decrease the time significantly. One approach would be to establish closed-

packed ordering194 of beads utilized in 10X and inDrops102. Alternatively, particle co-

encapsulation could be replaced with barcoded liquid biochemistry, avoiding the utilization of 

RNA capture beads. This leads us to the third challenge - data quality. Since the release of 

the original Drop-seq protocol, the field has moved foward and away from solid Drop-seq 

beads as RNA capture strategy52. One of the main reasons for this is the large variation in 

bead quality production and low RNA to cDNA conversion on the bead's surface resulting in 

high-dropout rates. The most widely used system to date relies on the replacement of solid 

RNA capture beads with dissolvable hydrogel beads102,195, prominently featured by 10X 

genomics, or alternatively liquid biochemistry based on the golden standards such as Smart-

seq23,193,196 or SCRB-seq197. Data quality would significantly improve by either utilizing 

dissolvable hydrogel beads or implementing an alternative barcoding system in the framework 

of liquid biochemistries already existing for plate based scRNA-seq approaches.  The fourth 

major challenge but also opportunity for further developments rests in the enhanced utilization 

of machine-vision previous and during the co-encapsulation process. By embedding the DisCo 

microfluidics platform in a substantially more sophisticated microscopy setup, the already 

integrated machine-vision could not only be used for profiling cells, but also could pave the 

way towards multi-parametric information linking cell phenotype and transcriptional state, 

hence connect two amongst most prominent approaches to high-throughput cellular profiling. 

Such development would allow for even further sub-sorting cells of interests (i.e., based on 

fluorescence signal) from heterogeneous samples to further characterize the population of 

interest on a full transcriptome level. One such example would be to study the difference 

between fully-differentiated cells and the cell populations that fail to reprogram during the TF 

induction within a target stem cell population.   
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5.2 Single-cell perturbation assays  
 

 

Furthermore, we established TF-seq, a barcoded transcription factor open-reading frame 

overexpression library combined with scRNA-seq to perform gain-of-function screening in 

murine MSC-like in vitro model. Unique vector barcoding of ORFs makes this method 

compatible with other scRNA-seq approaches and other genome-wide approaches like. 

scATAC-seq198.  Framework for cell-perturbation presented here can be easily applied to any 

other murine models (i.e. gastruloids, ESCs). We envision that this library will be further 

expanded, ultimately covering all known mouse protein TFs. This is to the current knowledge, 

the largest barcoded murine TF screen performed on the single-cell level and second largest 

after human TFome project80. Additionally, utilizing TF-seq approach we found multiple known 

factors involved in programming stem cells towards, adipose, osteogenic and myogenic 

lineages and discovered novel factors that might be potentially involved in mentioned 

processes.  

 

Whilst establishing TFseq we identified several opportunities to extend current progress. 

Firstly, tight control over the virus titer would allow for a more fine-grained grasp on TFs 

expression and thereby enable to understand how the level of expression yields novel cell 

state. As mentioned above, potential technological advances in scRNA-seq toolbox would 

allow to fully profile cellular phenotype together with transcriptomic program. This also opens 

an avenue to more accurate TF activity quantification through direct fluorescent labeling 

(specifically using panel of HA-tags to measure TF activity) of overexpressed TF prior to RNA 

sampling. 

  

Second, by fully harnessing the ability to express TF upon induction, one can also achieve 

more precise temporal control enabling to perform assays in conjugation with environmental 

stimulation of cells. There are numerous examples where tight temporal control of TF activity 

is detrimental to cell fate decisions192,199–201.  

 

Third, integration of available TF binding data with single-cell data presented in this thesis will 

further aid in understanding whether how much TF expression is needed to achieve the 

desired perturbation of gene-expression profile thus desired cell state. Furthermore, using the 

wealth of scRNA-seq data from single TF overexpression, this approach paves a way towards 

combinatorial gene perturbations. By looking at the individual target genes expression in the 

context of vector expression at the single-cell level, interaction partners66, binding sites across 
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the genome69,202, binding affinities, we will be able to generate further mechanistic insights that 

orchestrate gene-regulatory networks and drive cellular heterogeneity.      

 

5.3 Future perspectives 
 

Both the technological and biological developments presented in this thesis should aid broader 

adoption of single-cell technologies and assays. Yet, several open common challenges remain 

to be addressed in the future. For most tissue biopsies, but also the used organoids, a 

denominating challenge is to efficient is a high yield dissociation thus developing addressing 

this problem with further open single-cell transcriptomics to analysis of hard-to-process 

samples.  

  

Even if high yields of single cells from tissue precious samples will be attainable, a core 

argument of single cell suspensions remains, being that due to cell dissociation, tissue 

structure and interactions are lost. Several bioinformatics approaches tried to overcome this 

by predicting ligand interactions203,204. Another more permanent approach is the emergence 

of spatial transcriptomics over the past years. Approaches like Visium or Slide-seq 205allowed 

for profiling thousands of genes on a tissue slice by preserving original tissue structure and 

cellular interactions. However, current resolution of these methods is still in the ranges 

between 50 and 100 µm, meaning that these methods are still beyond the single-cell resolution 

whilist more targeted approaches like smFISH still remain attractive yet limited to in number 

of markers utilized206.  An additional argument against using current single-cell methods is that 

they provide a snapshot of cellular state at the moment of sampling. Independently developed, 

quantitative imaging can overcome these limitations by dynamically following transcript 

production and decay207. However, these analyses are usually limited to several genes of 

interest. I envision that future developments will further build on these principles – continuous 

assaying of genome-wide gene expression without killing or significantly disrupting the normal 

cell activity. In the end, with the further developments of multi-omics assays and assays to 

sample genome, proteome and transcriptome of the same cell, we will be able to integrate all 

systems fully approaches at the single-cell level.    

 

Finally, as broad adoption by the biology community increases, I believe that all techniques 

discussed here will further evolve to be fully integrated into standard biology research that 

yields a better understanding of multicellular interactions in the context of immune responses, 

development and adipogenesis. At the moment concerted efforts evolve around the 

completion of major atlasing projects11,55,113 (i.e. Fly Cell Atlas, Mouse Cell Atlas and Human 

Cell Atlas) and the inherent data integration and interpretation challenges encompassing 
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different transcriptome- and genome-wide approaches. Upon completion of fully 

characterizing cell types through their molecular state and lineages data from such projects 

will become the starting point for hypotheses development, yet it will not be sufficient alone. If 

to fully understanding the cellular functions in tissue and organismal-specific context, single-

cell transcriptomics will only progress in conjugation with established life sciences fields like 

(oncology, immunology, developmental biology), further adding single-cell omics approaches 

to the already available toolbox within the respective fields. Currently, common fishing 

expeditions and explorative research will become a stricter exclusivity of new technologies 

and methods emerging in the field, including approaches like single cell proteomics208. In 

contrast, hypothesis-driven research will have to harness the full power of the methods 

established at a faster pace to properly integrate into the existing biological frameworks.  

  



105 
 

 

References 
 

1. Crick, F. Central dogma of molecular biology. Nature (1970) doi:10.1038/227561a0. 

2. Hinman, V. & Cary, G. The evolution of gene regulation. Elife (2017) 
doi:10.7554/elife.27291. 

3. Arendt, D. et al. The origin and evolution of cell types TL  - 17. Nat. Rev. Genet. 17 , 
744–757 (2016). 

4. Tolar, J., Le Blanc, K., Keating, A. & Blazar, B. R. Concise review: Hitting the right 
spot with mesenchymal stromal cells. Stem Cells (2010) doi:10.1002/stem.459. 

5. Bluguermann, C. et al. Novel aspects of parenchymal-mesenchymal interactions: 
From cell types to molecules and beyond. Cell Biochem. Funct. (2013) 
doi:10.1002/cbf.2950. 

6. Man, K., Kutyavin, V. I. & Chawla, A. Tissue Immunometabolism: Development, 
Physiology, and Pathobiology TL  - 25. Cell Metab. 25 , 11–26 (2017). 

7. Sotelo, C. Viewing the brain through the master hand of Ramon y Cajal. Nat. Rev. 
Neurosci. (2003) doi:10.1038/nrn1010. 

8. Howard Gest. Homage to Robert Hooke (1635–1703): New Insights from the Recently 
Discovered Hooke Folio. Perspect. Biol. Med. (2009) doi:10.1353/pbm.0.0096. 

9. Kawai, J. et al. Functional annotation of a full-length mouse cDNA collection. Nature 
(2001) doi:10.1038/35055500. 

10. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. 
Nature (2012) doi:10.1038/nature11247. 

11. Regev, A. et al. The human cell atlas. Elife (2017) doi:10.7554/eLife.27041. 

12. Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential scaling of single-cell 
RNA-seq in the past decade. Nature Protocols vol. 13 599–604 (2018). 

13. Coffin, J. M. & Fan, H. The Discovery of Reverse Transcriptase. Annual Review of 
Virology (2016) doi:10.1146/annurev-virology-110615-035556. 

14. Bustin, S. A. Absolute quantification of mrna using real-time reverse transcription 
polymerase chain reaction assays. Journal of Molecular Endocrinology (2000) 
doi:10.1677/jme.0.0250169. 

15. Velculescu, V. E., Zhang, L., Vogelstein, B. & Kinzler, K. W. Serial analysis of gene 
expression. Science (80-. ). (1995) doi:10.1126/science.270.5235.484. 

16. Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: Ten years of 
next-generation sequencing technologies. Nature Reviews Genetics (2016) 
doi:10.1038/nrg.2016.49. 

17. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 
(2009) doi:10.1038/nmeth.1315. 

18. Kellogg, R. a, Gómez-Sjöberg, R., Leyrat, A. a & Tay, S. High-throughput microfluidic 
single-cell analysis pipeline for studies of signaling dynamics. Nat. Protoc. 9, 1713–26 
(2014). 



106 
 

19. Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. 
Methods 11, 163–6 (2014). 

20. Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-Seq: Single-Cell RNA-Seq by 
Multiplexed Linear Amplification. Cell Rep. 2, 666–673 (2012). 

21. Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free 
decomposition of tissues into cell types. Science (80-. ). (2014) 
doi:10.1126/science.1247651. 

22. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single 
cells TL  - 10. Nat. Methods 10 , (2013). 

23. Hagemann-Jensen, M. et al. Single-cell RNA counting at allele and isoform resolution 
using Smart-seq3. Nat. Biotechnol. (2020) doi:10.1038/s41587-020-0497-0. 

24. White, A. K. et al. High-throughput microfluidic single-cell RT-qPCR. TL  - 108. Proc. 
Natl. Acad. Sci. U. S. A. 108 , 13999–14004 (2011). 

25. Folch, A. Introduction to BioMEMS. Introduction to BioMEMS (2016). 
doi:10.1201/b12263. 

26. Guo, M. T., Rotem, A., Heyman, A. & Weitz, D. A. Lab on a Chip Droplet microfluidics 
for high-throughput biological assays {. i, 2146–2155 (2012). 

27. Haeberle, S. & Zengerle, R. Microfluidic platforms for lab-on-a-chip applications. Lab 
Chip 7, 1094–1110 (2007). 

28. Sesen, M. & Whyte, G. Image-Based Single Cell Sorting Automation in Droplet 
Microfluidics. Sci. Rep. (2020) doi:10.1038/s41598-020-65483-2. 

29. Debs, B. El, Utharala, R., Balyasnikova, I. V., Griffiths, A. D. & Merten, C. A. 
Functional single-cell hybridoma screening using droplet-based microfluidics. Proc. 
Natl. Acad. Sci. U. S. A. (2012) doi:10.1073/pnas.1204514109. 

30. Liu, H. et al. A Droplet Microfluidic System to Fabricate Hybrid Capsules Enabling 
Stem Cell Organoid Engineering. Adv. Sci. (2020) doi:10.1002/advs.201903739. 

31. Lagus, T. P. & Edd, J. F. High-throughput co-encapsulation of self-ordered cell trains: 
cell pair interactions in microdroplets. RSC Adv. 3, 20512 (2013). 

32. Macosko, E. Z. et al. Highly Parallel Genome-wide Expression Profiling of Individual 
Cells Using Nanoliter Droplets. Cell 161, 1202–1214 (2015). 

33. Klein, A. M. et al. Droplet Barcoding for Single Cell Transcriptomics Applied to 
Embryonic Stem Cells. 1–24. 

34. Teh, S.-Y., Lin, R., Hung, L.-H. & Lee, A. P. Droplet microfluidics. Lab Chip 8, 198–
220 (2008). 

35. Chong, Z. Z. et al. Active droplet generation in microfluidics. Lab Chip (2015) 
doi:10.1039/C5LC01012H. 

36. Klein, A. M. & Macosko, E. InDrops and Drop-seq technologies for single-cell 
sequencing TL  - 17. Lab Chip 17 , 2540–2541 (2017). 

37. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to 
embryonic stem cells. Cell (2015) doi:10.1016/j.cell.2015.04.044. 

38. Ziegenhain, C. et al. of Single-Cell RNA Sequencing Methods. 65,. 

39. DeLaughter, D. M. The Use of the Fluidigm C1 for RNA Expression Analyses of 



107 
 

Single Cells. Curr. Protoc. Mol. Biol. (2018) doi:10.1002/cpmb.55. 

40. Xin, Y. et al. Use of the Fluidigm C1 platform for RNA sequencing of single mouse 
pancreatic islet cells. Proc. Natl. Acad. Sci. U. S. A. (2016) 
doi:10.1073/pnas.1602306113. 

41. Kolodziejczyk, A. A., Kim, J., Svensson, V., Marioni, J. C. & Teichmann, S. A. The 
Technology and Biology of Single-Cell RNA Sequencing TL  - 58. Mol. Cell 58 VN-r, 
610–620 (2015). 

42. Ziegenhain, C. et al. Comparative analysis of single-cell RNA-sequencing methods. 
49,. 

43. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells 
TL  - 8. Nat. Commun. 8 , (2017). 

44. Systems, T. S. R. et al. Comparative Analysis of Droplet-Based Ultra-High- Article 
Comparative Analysis of Droplet-Based. Mol. Cell 1–13 (2019) 
doi:10.1016/j.molcel.2018.10.020. 

45. Packer, J. S. et al. A lineage-resolved molecular atlas of C. Elegans embryogenesis 
at single-cell resolution. Science (80-. ). (2019) doi:10.1126/science.aax1971. 

46. Maier, G. L. et al. Multimodal and multisensory coding in the Drosophila larval 
peripheral gustatory center. bioRxiv (2020) doi:10.1101/2020.05.21.109959. 

47. Couturier, C. P. et al. Single-cell RNA-seq reveals that glioblastoma recapitulates a 
normal neurodevelopmental hierarchy. Nat. Commun. (2020) doi:10.1038/s41467-
020-17186-5. 

48. Weinreb, C., Rodriguez-Fraticelli, A., Camargo, F. D. & Klein, A. M. Lineage tracing 
on transcriptional landscapes links state to fate during differentiation. Science (80-. ). 
367, (2020). 

49. Morris, S. A. The evolving concept of cell identity in the single cell era. (2019) 
doi:10.1242/dev.169748. 

50. Wang, Y. J. et al. Comparative analysis of commercially available single-cell RNA 
sequencing platforms for their performance in complex human tissues. bioRxiv 
541433 (2019) doi:10.1101/541433. 

51. Zhang, X. et al. Comparative Analysis of Droplet-Based Ultra-High-Throughput 
Single-Cell RNA-Seq Systems. Mol. Cell (2019) doi:10.1016/j.molcel.2018.10.020. 

52. Svensson, V. et al. Power analysis of single-cell RNA-sequencing experiments TL  - 
14. Nat. Methods 14, 381–387 (2017). 

53. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell 
transcriptomic data across different conditions, technologies, and species TL  - 36. 
Nat. Biotechnol. 36 , 411 (2018). 

54. Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula 
Muris. Nature (2018) doi:10.1038/s41586-018-0590-4. 

55. Davie, K. et al. A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain TL  - 
174. Cell 174, 982–805306368 (2018). 

56. Isakova, A., Fehlmann, T., Keller, A. & Quake, S. R. A mouse tissue atlas of small 
noncoding RNA. Proc. Natl. Acad. Sci. U. S. A. (2020) doi:10.1073/pnas.2002277117. 

57. McGinnis, C. S. et al. MULTI-seq: sample multiplexing for single-cell RNA sequencing 



108 
 

using lipid-tagged indices. Nat. Methods (2019) doi:10.1038/s41592-019-0433-8. 

58. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single 
cells TL  - 14. Nat. Methods 14, (2017). 

59. Hwang, B., Lee, J. & Bang, D. Single-cell RNA sequencing technologies and 
bioinformatics pipelines TL  - 50. Exp. Mol. Med. 50 , (2018). 

60. Wu, H. et al. Dual functions of Tet1 in transcriptional regulation in mouse embryonic 
stem cells. Nature (2011) doi:10.1038/nature09934. 

61. Wilkinson, A. C., Nakauchi, H. & Göttgens, B. Mammalian Transcription Factor 
Networks: Recent Advances in Interrogating Biological Complexity. Cell Systems vol. 
5 319–331 (2017). 

62. Peñalosa-Ruiz, G., Bright, A. R., Mulder, K. W. & Veenstra, G. J. C. The interplay of 
chromatin and transcription factors during cell fate transitions in development and 
reprogramming. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms vol. 
1862 194407 (2019). 

63. Vaquerizas, J. M., Kummerfeld, S. K., Teichmann, S. A. & Luscombe, N. M. A census 
of human transcription factors: Function, expression and evolution. Nature Reviews 
Genetics (2009) doi:10.1038/nrg2538. 

64. Tapscott, S. J. The circuitry of a master switch: Myod and the regulation of skeletal 
muscle gene transcription. Development (2005) doi:10.1242/dev.01874. 

65. Zhou, Q. et al. A mouse tissue transcription factor atlas. Nat. Commun. (2017) 
doi:10.1038/ncomms15089. 

66. Aibar, S. et al. SCENIC: Single-cell regulatory network inference and clustering. Nat. 
Methods (2017) doi:10.1038/nmeth.4463. 

67. Guo, C. & Morris, S. A. ScienceDirect Engineering cell identity : establishing new gene 
regulatory and chromatin landscapes. Curr. Opin. Genet. Dev. 46, 50–57 (2017). 

68. Hens, K. et al. Automated protein-DNA interaction screening of Drosophila regulatory 
elements TL  - 8. Nat. Methods 8 , 1065–1070 (2011). 

69. Isakova, A. et al. SMiLE-seq identifies binding motifs of single and dimeric 
transcription factors. Nat. Methods (2017) doi:10.1038/nmeth.4143. 

70. Rockel, S., Geertz, M. & Maerkl, S. J. MITOMI: A microfluidic platform for in vitro 
characterization of transcription factor-DNA interaction. Methods Mol. Biol. (2012) 
doi:10.1007/978-1-61779-292-2_6. 

71. Friman, E. T. et al. Dynamic regulation of chromatin accessibility by pluripotency 
transcription factors across the cell cycle. Elife (2019) doi:10.7554/eLife.50087. 

72. Scheres, B. Stem-cell niches: Nursery rhymes across kingdoms. Nature Reviews 
Molecular Cell Biology (2007) doi:10.1038/nrm2164. 

73. Pittenger, M. F. et al. Mesenchymal stem cell perspective: cell biology to clinical 
progress. npj Regenerative Medicine vol. 4 1–15 (2019). 

74. Biddy, B. A. et al. Single-cell mapping of lineage and identity in direct reprogramming 
TL  - 564. Nature 564 , 219–224 (2018). 

75. Takahashi, K. & Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse 
Embryonic and Adult Fibroblast Cultures by Defined Factors TL  - 126. Cell 126 , 
663–676 (2006). 



109 
 

76. Dixit, A. et al. Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell 
RNA Profiling of Pooled Genetic Screens TL  - 167. Cell 167 , 1853 (2016). 

77. Adamson, B. et al. A Multiplexed Single-Cell CRISPR Screening Platform Enables 
Systematic Dissection of the Unfolded Protein Response TL  - 167. Cell 167 , 1867 
(2016). 

78. Replogle, J. M. et al. Combinatorial single-cell CRISPR screens by direct guide RNA 
capture and targeted sequencing. doi:10.1038/s41587-020-0470-y. 

79. Nguyen, Q. H. et al. Single-cell RNA-seq of human induced pluripotent stem cells 
reveals cellular heterogeneity and cell state transitions between subpopulations. 
Genome Res. (2018) doi:10.1101/gr.223925.117. 

80. Ng, A. H. M. et al. A comprehensive library of human transcription factors for cell fate 
engineering. Nat. Biotechnol. (2020) doi:10.1038/s41587-020-0742-6. 

81. Duan, J. et al. Rational Reprogramming of Cellular States by Combinatorial 
Perturbation. Cell Rep. 27, 3486-3499.e6 (2019). 

82. Pradhan, R. N. et al. Dissecting the brown adipogenic regulatory network using 
integrative genomics TL  - 7. Sci. Rep. 7, 42130 (2017). 

83. Schwalie, P. C. et al. A stromal cell population that inhibits adipogenesis in 
mammalian fat depots. Nature (2018) doi:10.1038/s41586-018-0226-8. 

84. Sidossis, L. & Kajimura, S. Brown and beige fat in humans: Thermogenic adipocytes 
that control energy and glucose homeostasis. Journal of Clinical Investigation (2015) 
doi:10.1172/JCI78362. 

85. Bartelt, A. & Heeren, J. Adipose tissue browning and metabolic health. Nature 
Reviews Endocrinology (2014) doi:10.1038/nrendo.2013.204. 

86. Majka, S. M. et al. De novo generation of white adipocytes from the myeloid lineage 
via mesenchymal intermediates is age, adipose depot, and gender specific. Proc. 
Natl. Acad. Sci. U. S. A. (2010) doi:10.1073/pnas.1003512107. 

87. Macotela, Y. et al. Intrinsic differences in adipocyte precursor cells from different white 
fat depots. Diabetes (2012) doi:10.2337/db11-1753. 

88. Morin, X., Daneman, R., Zavortink, M. & Chia, W. A protein trap strategy to detect 
GFP-tagged proteins expressed from their endogenous loci in Drosophila TL  - 98. 
Proc. Natl. Acad. Sci. 98, 15050–15055 (2001). 

89. Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and 
human. Cell (2012) doi:10.1016/j.cell.2012.05.016. 

90. Pradhan, R. N. et al. Dissecting the brown adipogenic regulatory network using 
integrative genomics. Sci. Rep. (2017) doi:10.1038/srep42130. 

91. Long, J. Z. et al. A smooth muscle-like origin for beige adipocytes. Cell Metab. (2014) 
doi:10.1016/j.cmet.2014.03.025. 

92. Cristancho, A. G. & Lazar, M. A. Forming functional fat: A growing understanding of 
adipocyte differentiation. Nature Reviews Molecular Cell Biology (2011) 
doi:10.1038/nrm3198. 

93. Rosen, E. D. & MacDougald, O. A. Adipocyte differentiation from the inside out. 
Nature Reviews Molecular Cell Biology (2006) doi:10.1038/nrm2066. 

94. Gubelmann, C. et al. Identification of the transcription factor ZEB1 as a central 



110 
 

component of the adipogenic gene regulatory network TL  - 3. Elife 3, (2014). 

95. Brouzes, E. Single-Cell Analysis, Methods and Protocols TL  - 853. Methods Mol. 
Biol. 853, 105–139 (2012). 

96. Consortium, T. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula 
Muris. Nature (2018) doi:10.1038/s41586-018-0590-4. 

97. Zeisel, A. et al. Molecular Architecture of the Mouse Nervous System TL  - 174. Cell 
174 , 999 (2018). 

98. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. 
Nat. Commun. (2017) doi:10.1038/ncomms14049. 

99. Svensson, V. et al. Power Analysis of Single Cell RNA ‐ Sequencing Experiments 
Authors. (2016). 

100. Stephenson, W. et al. Single-cell RNA-seq of rheumatoid arthritis synovial tissue 
using low-cost microfluidic instrumentation TL  - 9. Nat. Commun. 9, 791 (2018). 

101. Gierahn, T. M. et al. Seq-Well: portable, low-cost RNA sequencing of single cells at 
high throughput TL  - 14. Nat. Methods 14, 395 (2017). 

102. Zilionis, R. et al. Single-cell barcoding and sequencing using droplet microfluidics. TL  
- 12. Nat. Protoc. 12, 44–73 (2017). 

103. Han, X. et al. Mapping the Mouse Cell Atlas by Microwell-Seq. Cell (2018) 
doi:10.1016/j.cell.2018.02.001. 

104. Farrell, J. A. et al. Single-cell reconstruction of developmental trajectories during 
zebrafish embryogenesis. TL  - 360. Science 360, (2018). 

105. Mayer, C. et al. Developmental diversification of cortical inhibitory interneurons TL  - 
555. Nature 555, 457 (2018). 

106. Habib, N. et al. Massively parallel single- nucleus RNA-seq with. 14, (2017). 

107. Moon, H.-S. et al. Inertial-ordering-assisted droplet microfluidics for high-throughput 
single-cell RNA-sequencing TL  - 18. Lab Chip 18, 775–784 (2018). 

108. Chung, M., Núñez, D., Cai, D. & Kurabayashi, K. Deterministic droplet-based co-
encapsulation and pairing of microparticles via active sorting and downstream 
merging TL  - 17. Lab Chip 17, 3664–3671 (2017). 

109. Klein, J., Fasshauer, M., Klein, H. H., Benito, M. & Kahn, C. R. Novel adipocyte lines 
from brown fat: a model system for the study of differentiation, energy metabolism, 
and insulin action. TL  - 24. Bioessays 24, 382–388 (2002). 

110. Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics (2013) 
doi:10.1093/bioinformatics/bts635. 

111. Gardeux, V., David, F. P. A., Shajkofci, A., Schwalie, P. C. & Deplancke, B. ASAP: a 
Web-based platform for the analysis and interactive visualization of single-cell RNA-
seq data. Bioinformatics (2017) doi:10.1093/bioinformatics/btx337. 

112. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell TL  - 6. Nat. 
Methods 6, (2009). 

113. Zhou, Y. & Yuan, G. Mapping the Mouse Cell Atlas by Microwell-Seq Resource 
Mapping the Mouse Cell Atlas by Microwell-Seq. Cell 172, 1091-1097.e17 (2018). 

114. Rosenberg et al. Single-cell profiling of the developing mouse brain and spinal cord 



111 
 

with split-pool barcoding. Science (80-. ). (2018). 

115. Han, X. et al. Construction of a human cell landscape at single-cell level. Nature 
(2020) doi:10.1038/s41586-020-2157-4. 

116. Saikia, M. et al. Simultaneous multiplexed amplicon sequencing and transcriptome 
profiling in single cells. Nat. Methods (2019) doi:10.1038/s41592-018-0259-9. 

117. Gehring, J., Hwee Park, J., Chen, S., Thomson, M. & Pachter, L. Highly multiplexed 
single-cell RNA-seq by DNA oligonucleotide tagging of cellular proteins. Nat. 
Biotechnol. (2020) doi:10.1038/s41587-019-0372-z. 

118. Guide, U. Chromium Single Cell 3ʹ Reagent Kits v3 with FB. 10X Genomics (2020). 

119. Wagner, D. E. et al. Single-cell mapping of gene expression landscapes and lineage 
in the zebrafish embryo. Science (80-. ). (2018) doi:10.1126/science.aar4362. 

120. Serra, D. et al. Self-organization and symmetry breaking in intestinal organoid 
development TL  - 569. Nature 569, 66–72 (2019). 

121. Grün, D. et al. Single-cell messenger RNA sequencing reveals rare intestinal cell 
types. Nature (2015) doi:10.1038/nature14966. 

122. Lukonin, I. et al. Phenotypic landscape of intestinal organoid regeneration. Nature 
(2020) doi:10.1038/s41586-020-2776-9. 

123. Rossi, G., Manfrin, A. & Lutolf, M. P. Progress and potential in organoid research. 
Nature Reviews Genetics (2018) doi:10.1038/s41576-018-0051-9. 

124. Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture TL  
- 539. Nature 539, 560 (2016). 

125. Brassard, J. A. & Lutolf, M. P. Engineering Stem Cell Self-organization to Build Better 
Organoids. Cell Stem Cell (2019) doi:10.1016/j.stem.2019.05.005. 

126. Mustata, R. C. et al. Article Identification of Lgr5 -Independent Spheroid-Generating 
Progenitors of the Mouse Fetal Intestinal Epithelium. 421–432 (2013) 
doi:10.1016/j.celrep.2013.09.005. 

127. Yui, S. et al. YAP/TAZ-Dependent Reprogramming of Colonic Epithelium Links ECM 
Remodeling to Tissue Regeneration. Cell Stem Cell (2018) 
doi:10.1016/j.stem.2017.11.001. 

128. Ayyaz, A. et al. Single-cell transcriptomes of the regenerating intestine reveal a revival 
stem cell. Nature (2019) doi:10.1038/s41586-019-1154-y. 

129. Roulis, M. et al. Paracrine orchestration of intestinal tumorigenesis by a mesenchymal 
niche. Nature (2020) doi:10.1038/s41586-020-2166-3. 

130. Biočanin, M., Bues, J., Dainese, R., Amstad, E. & Deplancke, B. Simplified Drop-seq 
workflow with minimized bead loss using a bead capture and processing microfluidic 
chip. Lab Chip 19, (2019). 

131. Unger, M. A. et al. Monolithic Microfabricated Valves and Pumps by Multilayer Soft 
Lithography. 113, (2014). 

132. Zhang, X. et al. Comparative Analysis of Droplet-Based Ultra-High-Throughput 
Single-Cell RNA-Seq Systems. Mol. Cell (2018) doi:10.1016/j.molcel.2018.10.020. 

133. Street, K. et al. Slingshot : cell lineage and pseudotime inference for single-cell 
transcriptomics. BMC Genomics 19, 1–16 (2018). 



112 
 

134. Battich, N. et al. Sequencing metabolically labeled transcripts in single cells reveals 
mRNA turnover strategies TL  - 367. Science (80-. ). 367, 1151–1156 (2020). 

135. Sato, T. et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a 
mesenchymal niche TL  - 459. Nature 459, 262 (2009). 

136. Haber, A. L. et al. Article A single-cell survey of the small intestinal epithelium. Nat. 
Publ. Gr. 551, 333–339 (2017). 

137. Yin, X. et al. Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and 
their progeny TL  - 11. Nat. Methods 11, (2013). 

138. Gregorieff, A., Liu, Y., Inanlou, M. R., Khomchuk, Y. & Wrana, J. L. Yap-dependent 
reprogramming of Lgr5+ stem cells drives intestinal regeneration and cancer TL  - 
526. Nature 526, 715 (2015). 

139. Birchenough, G. M. H., Johansson, M. E. V., Gustafsson, J. K., Bergström, J. H. & 
Hansson, G. C. New developments in goblet cell mucus secretion and function. 
Mucosal Immunology (2015) doi:10.1038/mi.2015.32. 

140. Macnair, W. & Claassen, M. psupertime: supervised pseudotime inference for single 
cell RNA-seq data with sequential labels. bioRxiv 622001 (2019) doi:10.1101/622001. 

141. Lareau, C. A., Ma, S., Duarte, F. M. & Buenrostro, J. D. Inference and effects of 
barcode multiplets in droplet-based single-cell assays TL  - 11. Nat. Commun. 11, 866 
(2020). 

142. Lun, A. T. L., Riesenfeld, S., Andrews, T. & Dao, T. P. Distinguishing cells from empty 
droplets in droplet-based single-cell RNA sequencing data Testing for deviations from 
the ambient profile. 1–14 (2018). 

143. Cheng, Y.-H. et al. Hydro-Seq enables contamination-free high-throughput single-cell 
RNA-sequencing for circulating tumor cells TL  - 10. Nat. Commun. 10, 2163 (2019). 

144. Zhang, M. et al. Highly parallel and efficient single cell mRNA sequencing with paired 
picoliter chambers. Nat. Commun. (2020) doi:10.1038/s41467-020-15765-0. 

145. Pollen, A. A. et al. Low-coverage single-cell mRNA sequencing reveals cellular 
heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. 
Biotechnol. (2014) doi:10.1038/nbt.2967. 

146. Dura, B. et al. Profiling lymphocyte interactions at the single-cell level by microfluidic 
cell pairing TL  - 6. Nat. Commun. 6, 5940 (2015). 

147. Gérard, A. et al. High-throughput single-cell activity-based screening and sequencing 
of antibodies using droplet microfluidics. Nat. Biotechnol. (2020) doi:10.1038/s41587-
020-0466-7. 

148. Haque, A., Engel, J., Teichmann, S. A. & Lönnberg, T. A practical guide to single-cell 
RNA-sequencing for biomedical research and clinical applications. Genome Medicine 
(2017) doi:10.1186/s13073-017-0467-4. 

149. Denisenko, E. et al. Systematic assessment of tissue dissociation and storage biases 
in single-cell and single-nucleus RNA-seq workflows. Genome Biol. (2020) 
doi:10.1186/s13059-020-02048-6. 

150. Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. 
Nature (2011) doi:10.1038/nature09637. 

151. Van Es, J. H. et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal 
crypts and adenomas into goblet cells. Nature (2005) doi:10.1038/nature03659. 



113 
 

152. Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 
9, 171–81 (2014). 

153. Hashimshony, T. et al. CEL-Seq2 : sensitive highly-multiplexed. Genome Biol. 1–7 
(2016) doi:10.1186/s13059-016-0938-8. 

154. Goldstein, L. D. et al. Massively parallel nanowell-based single-cell gene expression 
profiling. BMC Genomics (2017) doi:10.1186/s12864-017-3893-1. 

155. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual 
cells using nanoliter droplets. Cell (2015) doi:10.1016/j.cell.2015.05.002. 

156. Stuart, T. et al. Comprehensive Integration of Single-Cell Data Resource 
Comprehensive Integration of Single-Cell Data. Cell 177, (2019). 

157. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell 
trajectory inference methods. Nat. Biotechnol. (2019) doi:10.1038/s41587-019-0071-
9. 

158. Picelli, S. et al. Tn5 transposase and tagmentation procedures for massively scaled 
sequencing projects. Genome Res. 24, 2033–40 (2014). 

159. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. 
Transposition of native chromatin for fast and sensitive epigenomic profiling of open 
chromatin, DNA-binding proteins and nucleosome position. Nat. Methods (2013) 
doi:10.1038/nmeth.2688. 

160. Stoeckius, M. et al. Cell ‘hashing’ with barcoded antibodies enables multiplexing and 
doublet detection for single cell genomics. bioRxiv 237693 (2017) 
doi:10.1101/237693. 

161. Honda, Y. et al. Guiding the osteogenic fate of mouse and human mesenchymal stem 
cells through feedback system control. Sci. Rep. (2013) doi:10.1038/srep03420. 

162. Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. 
Science (80-. ). (1999) doi:10.1126/science.284.5411.143. 

163. Haynesworth, S. E., Goshima, J., Goldberg, V. M. & Caplan, A. I. Characterization of 
cells with osteogenic potential from human marrow. Bone (1992) doi:10.1016/8756-
3282(92)90364-3. 

164. Yianni, V. & Sharpe, P. T. Epigenetic mechanisms driving lineage commitment in 
mesenchymal stem cells. Bone (2020) doi:10.1016/j.bone.2020.115309. 

165. Tang, Q. Q., Otto, T. C. & Lane, M. D. Commitment of C3H10T1/2 pluripotent stem 
cells to the adipocyte lineage. Proc. Natl. Acad. Sci. U. S. A. 101, 9607–9611 (2004). 

166. Kolf, C. M., Cho, E. & Tuan, R. S. Mesenchymal stromal cells. Biology of adult 
mesenchymal stem cells: Regulation of niche, self-renewal and differentiation. 
Arthritis Research and Therapy (2007) doi:10.1186/ar2116. 

167. Rauch, A. et al. Osteogenesis depends on commissioning of a network of stem cell 
transcription factors that act as repressors of adipogenesis. Nat. Genet. (2019) 
doi:10.1038/s41588-019-0359-1. 

168. Dhaliwal, A., Pelka, S., Gray, D. S. & Moghe, P. V. Engineering Lineage Potency and 
Plasticity of Stem Cells using Epigenetic Molecules. Sci. Rep. (2018) 
doi:10.1038/s41598-018-34511-7. 

169. Fričová, D., Korchak, J. A. & Zubair, A. C. Challenges and translational considerations 
of mesenchymal stem/stromal cell therapy for Parkinson’s disease. npj Regenerative 



114 
 

Medicine (2020) doi:10.1038/s41536-020-00106-y. 

170. Rudnicki, M. A. et al. MyoD or Myf-5 is required for the formation of skeletal muscle. 
Cell (1993) doi:10.1016/0092-8674(93)90621-V. 

171. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. 
Nature 1–7 (2019) doi:10.1038/s41586-019-0969-x. 

172. Alda-Catalinas, C. et al. A Single-Cell Transcriptomics CRISPR-Activation Screen 
Identifies Epigenetic Regulators of the Zygotic Genome Activation Program. Cell Syst. 
(2020) doi:10.1016/j.cels.2020.06.004. 

173. Xie, S., Duan, J., Li, B., Zhou, P. & Hon, G. C. Multiplexed Engineering and Analysis 
of Combinatorial Enhancer Activity in Single Cells TL  - 66. Mol. Cell 66, 285–
29900000 (2017). 

174. Replogle, J. M. et al. Combinatorial single-cell CRISPR screens by direct guide RNA 
capture and targeted sequencing. Nat. Biotechnol. (2020) doi:10.1038/s41587-020-
0470-y. 

175. Parekh, U. et al. Mapping Cellular Reprogramming via Pooled Overexpression 
Screens with Paired Fitness and Single-Cell RNA-Sequencing Readout. Cell Syst. 
(2018) doi:10.1016/j.cels.2018.10.008. 

176. Xie, S., Cooley, A., Armendariz, D., Zhou, P. & Hon, G. C. Frequent sgRNA-barcode 
recombination in single-cell perturbation assays. PLoS One (2018) 
doi:10.1371/journal.pone.0198635. 

177. Rosen, E. D. et al. C/EBPα induces adipogenesis through PPARγ: A unified pathway. 
Genes Dev. 16, 22–26 (2002). 

178. Brun, R. P. et al. Differential activation of adipogenesis by multiple PPAR isoforms. 
Genes Dev. (1996) doi:10.1101/gad.10.8.974. 

179. Franzén, O., Gan, L. M. & Björkegren, J. L. M. PanglaoDB: A web server for 
exploration of mouse and human single-cell RNA sequencing data. Database (2019) 
doi:10.1093/database/baz046. 

180. Zhao, M. L. et al. Molecular Competition in G1 Controls When Cells Simultaneously 
Commit to Terminally Differentiate and Exit the Cell Cycle. (2020) 
doi:10.1016/j.celrep.2020.107769. 

181. Beekum, O. Van, Fleskens, V. & Kalkhoven, E. Posttranslational modifications of 
PPAR-γ: Fine-tuning the metabolic master regulator. Obesity (2009) 
doi:10.1038/oby.2008.473. 

182. Chen, L., Yu, J. H., Lu, Z. H. & Zhang, W. E2F2 induction in related to cell 
proliferation and poor prognosis in non-small cell lung carcinoma. Int. J. Clin. Exp. 
Pathol. (2015). 

183. Huang, R. et al. MYCN and MYC regulate tumor proliferation and tumorigenesis 
directly through BMI1 in human neuroblastomas. FASEB J. (2011) doi:10.1096/fj.11-
185033. 

184. Zhu, J., Kwan, K. M. & Mackem, S. Putative oncogene Brachyury (T) is essential to 
specify cell fate but dispensable for notochord progenitor proliferation and EMT. Proc. 
Natl. Acad. Sci. U. S. A. (2016) doi:10.1073/pnas.1601252113. 

185. Zare, H., Shooshtari, P., Gupta, A. & Brinkman, R. R. Data reduction for spectral 
clustering to analyze high throughput flow cytometry data. BMC Bioinformatics (2010) 
doi:10.1186/1471-2105-11-403. 



115 
 

186. Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level 
analysis of single-cell RNA-seq data with Bioconductor. F1000Research (2016) 
doi:10.12688/f1000research.9501.2. 

187. Stuart, T. et al. Comprehensive Integration of Single-Cell Data Resource 
Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902.e21 (2019). 

188. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell 
RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. 
Biotechnol. (2018) doi:10.1038/nbt.4091. 

189. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for 
differential expression analysis of digital gene expression data. Bioinformatics (2009) 
doi:10.1093/bioinformatics/btp616. 

190. Soneson, C. & Robinson, M. D. Bias, robustness and scalability in single-cell 
differential expression analysis. Nat. Methods (2018) doi:10.1038/nmeth.4612. 

191. Sergushichev, A. A. An algorithm for fast preranked gene set enrichment analysis 
using cumulative statistic calculation. bioRxiv (2016). 

192. Serra, D., Mayr, U., Boni, A., Lukonin, I. & Rempfler, M. Self-organization and 
symmetry breaking in intestinal organoid development. 1–27. 

193. Goetz, J. J. & Trimarchi, J. M. Transcriptome sequencing of single cells with Smart-
Seq. Nat. Biotechnol. 30, 763–765 (2012). 

194. Abate, A. R., Chen, C.-H., Agresti, J. J. & Weitz, D. A. Beating Poisson encapsulation 
statistics using close-packed ordering TL  - 9. Lab Chip 9, 2628–2631 (2009). 

195. Delley, C. L. & Abate, A. R. Modular barcode beads for microfluidic single cell 
genomics. bioRxiv (2020) doi:10.1101/2020.09.10.292326. 

196. Hagemann-Jensen, M. et al. Single-cell RNA counting at allele- and isoform-
resolution using Smart-seq3. bioRxiv 817924 (2019) doi:10.1101/817924. 

197. Bagnoli, J. W. et al. Sensitive and powerful single-cell RNA sequencing using 
mcSCRB-seq TL  - 9. Nat. Commun. 9, 2937 (2018). 

198. Lareau, C. A. et al. Droplet-based combinatorial indexing for massive-scale single-cell 
chromatin accessibility. Nat. Biotechnol. (2019) doi:10.1038/s41587-019-0147-6. 

199. Minn, K. T. et al. High-resolution transcriptional and morphogenetic profiling of cells 
from micropatterned human embryonic stem cell gastruloid cultures. bioRxiv (2020) 
doi:10.1101/2020.01.22.915777. 

200. Chen, Q. et al. A temporal requirement for Hippo signaling in mammary gland 
differentiation, growth, and tumorigenesis. Genes Dev. (2014) 
doi:10.1101/gad.233676.113. 

201. Johansson, K. A. et al. Temporal Control of Neurogenin3 Activity in Pancreas 
Progenitors Reveals Competence Windows for the Generation of Different Endocrine 
Cell Types. Dev. Cell (2007) doi:10.1016/j.devcel.2007.02.010. 

202. Ji, Z. et al. Genome-scale identification of transcription factors that mediate an 
inflammatory network during breast cellular transformation. Nat. Commun. (2018) 
doi:10.1038/s41467-018-04406-2. 

203. Ren, X. et al. Reconstruction of cell spatial organization from single-cell RNA 
sequencing data based on ligand-receptor mediated self-assembly. Cell Res. (2020) 
doi:10.1038/s41422-020-0353-2. 



116 
 

204. Cabello-Aguilar, S. et al. SingleCellSignalR: inference of intercellular networks from 
single-cell transcriptomics. Nucleic Acids Res. (2020) doi:10.1093/nar/gkaa183. 

205. Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution 
with Slide-seqV2. Nat. Biotechnol. (2020) doi:10.1038/s41587-020-0739-1. 

206. Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging 
individual mRNA molecules using multiple singly labeled probes. Nat. Methods (2008) 
doi:10.1038/nmeth.1253. 

207. Suter, D. M. et al. Mammalian genes are transcribed with widely different bursting 
kinetics. Science (80-. ). (2011) doi:10.1126/science.1198817. 

208. Brunner, A.-D. et al. Ultra-high sensitivity mass spectrometry quantifies single-cell 
proteome changes upon perturbation. bioRxiv (2020). 

 

  



117 
 

List of abbreviations 
 

BAT – Brown Adipose Tissue 

BMP4 – Bone Morphogenic Factor 4 

CBC Cells – Crypt Base Columnar Cells 

cDNA – Complementary DNA 
ChIP – Chromatin Immunoprecipitation 

CRISPR – Clustered Regularly Interspaced Short Palindromic Repeats 

DAPI – 4′,6-Diamidino-2-Phenylindole 

DISCO - Deterministic mRNA-Capture Bead And Cell Co-encapsulation 

DNA – Deoxyribonucleic Acid 

EDTA – Ethylenediaminetetraacetic Acid 
ENCODE – The Encyclopedia of DNA Elements 
ESC – Embryonic Stem Cells 

ExoI – Exonuclease I 

FACS - Fluorescence-Activated Cell Sorting 
FANTOM – Functional Annotation Of The Mouse/Mammalian Genome 

FBS – Fetal Bovine Serum 

GFP – Green fluorescent protein 

gRNA – Guide RNA 

HA-tag – Human Influenza Hemagglutinin 

HEK – Human Embryonic Kidney Cells 

hiPSC – Human-Induced Pluripotent Stem Cells 

LARRY – Lineage And RNA Recovery 

MITOMI – Mechanically Induced Trapping Of Molecular Interactions 
mRNA – Messenger RNA 

MSC – Mesenchymal Stem Cells 
Opti-MEM – Opti Reduced Serum Medium 

ORF – Open Reading Frame 

PBS – Phosphate-Buffered Saline 
PC – Principal Component 

PCA – Principal Component Analysis 
PCR – Polymerase Chain Reaction 
PDMS – Polydimethylsiloxane 

PFA – Paraformaldehyde 

polyA RNA – Polyadenylated RNA 



118 
 

PSI – Pounds Per Square Inch 

qPCR – Quantitave Polymerase Chain Reaction 
RNA – Ribonucleic Acid 

RNA-seq – Ribonucleic Acid Sequencing 

ROI – Region Of Interest 

rRNA – Ribosomal Ribonucleic Acid 

RT – Reverse Transcription  

scATAC-seq – Single-Cell Assay for Transposase-Accessible Chromatin  

SCRB-seq – Single-Cell Barcoding and Sequencing 

scRNA-seq – Single cell RNA sequencing 

SD – Standard Deviation 
SELEX – Systematic Evolution Of Ligands By Exponential Enrichment 

smFISH – Single Molecule Fluorescent In Situ Hybrdization 

SSC – Saline-Sodium Citrate 

STAMP – Single Transcriptome Attached to Micro Particle 
TE-SDS – Tris EDTA SDS 

TE-TW – Tris EDTA Tween 20 

TF – Transcription Factor 

tSNE – t-Distributed Stochastic Neighbor Embedding 

UMAP – Uniform Manifold Approximation and Projection 
WAT – White Adipose Tissue 

 

 

 

 

 



MARJAN BIOČANIN
Address: Avenue de Morges 74, 1004 Lausanne

Contact mail: marjan.biocanin@epfl.ch

RESPONSIBILITY:

Researcher and doctoral assistant responsible 
for development of novel single-cell 
transcriptomics methods and methods 
for stem cell engineering, data analysis, 
microfluidic chip fabrication.

RESPONSIBILITY:

Technical writer responsible for analysis 
and document preparation through case 
studies to meet the regulatory needs prior to 
marketing of drugs and medical devices.

RESPONSIBILITY:

Graphic and digital designer responsible for 
visual content of trimester issued journal 
discussing prison system and sanction laws in 
Switzerland. 

RESPONSIBILITY:

EPFL Excellence in Engineering ambassador 
for Serbia responsible for external 
communication with Faculty heads about 
school’s activities and recruitment.  

RESPONSIBILITY:

Communications and content creator 
responsible for communication, design, 
social media, and organization of events and 
projects for researchers and entrepreneurs.

EXPERIENCE

APR 2016 - 

Laboratory of 
Systems Biology 
and Genetics, 
EPFL, Lausanne, 
Switzerland

SEPT 2020 - OCT 2020

Drug and 
Device Product 
Development 
and Regulation in 
Europe and the U.S.,     
UCSD and EPFL

JULY 2019 - 

Infoprisons, 
Lausanne, 
Switzerland

AUG 2018 - JAN 2020 

E3 ambassador, 
EPFL, Lausanne, 
Switzerland

FEB 2017 - FEB 2019

BioScience 
Network Lausanne, 
Switzerland

EVENTS AND PROJECTS

Fame Lab, Suisse Romande finals (2018, 2019) - responsible within a 
team for design, communication and event logistics.

Open science in Practice summer school at EPFL (2017) - responsible 
within a team for communication with participants and presenters, 
marketing, and public outreach. 

Exposure: Science film hackathon (2017, 2018) - responsible within a 
team for communication and event booklet design.

HI, NICE TO MEET YOU

I’m a highly motivated and 
versatile life scientist with 
experience in molecular biology, 
high-throughput technologies, 
scientific communication, 
and graphic design looking for 
opportunities to solve biomedical 
challenges to help bringing more 
sustainable healthcare solutions 
worldwide.

PERSONALITY STRENGTHS

Organized

Communicative

Reliable

Detail-oriented

Analytical thinker

Team player

Proactive

EDUCATION

PhD in Biotechnology and 
Bioengineering, EPFL, IBI, SV, 
Lausanne, Switzerland (2016 - 2021)

MSc in Biology, University of Belgrade, 
Belgrade, Serbia (2014 - 2015)

BSc in Biology, University of Belgrade, 
Belgrade, Serbia (2010 - 2014)

TRAININGS

RESAL Module 1: Introductory Course 
in Laboratory Animal Science (RESAL 
1/903; 2016)

Swiss Institute of Bioinformatics: 
Machine Learning for Bioinformatics 
and Computational Biology (2016)

Swiss Institute of Bioinformatics: 
Single Cell Sequencing (2016)

Swiss Institute of Bioinformatics: 
High Performance Computing in Life 
Science (2015)



PERSONAL INTERESTS

Street photography

Trumpet playing

Graphic design

Krav maga

Award for the contribution to the 
international recognition of the 
Faculty of Biology, Faculty of Biology, 
University of Belgrade (2013)

1st place for research work in the field 
of Biophysics, XVI Annual Youth BIOS 
Olympiad (2011)

Student annual award from the City of 
Belgrade (2009 and 2010)

“Dositeja” award for achievements 
in science, granted by the Fund for 
Young Talents, Ministry of Youth and 
Sports of the Republic of Serbia (2010)

English - full professional proficiency

French - basic

German - basic

Serbian - mother tongue

SELECTED PUBLICATIONS (5+) 
Deterministic scRNA-seq of individual intestinal organoids reveals new 
subtypes and coexisting distinct stem cell pools, J. Bues, M. Biočanin, J. 
Pezoldt, R. Dainese, A. Chrisnandy, S. Rezakhani, W. Saelens, R. Gupta, J. 
Russeil, Y. Saeys, E. Amstad, M. Claassen, M. Lutolf, B. Deplancke, (2020), 
bioRxiv 

Multimodal and multisensory coding in the Drosophila larval peripheral 
gustatory center, L. Maier, M. Biočanin, J. Bues, F. Meyenhofer, C.Brunet, 
J. Y. Kwon, B. Deplancke, S. G. Sprecher (2020), bioRxiv

Simplified Drop-seq workflow with minimized bead loss using a bead 
capture and processing microfluidic chip, M. Biočanin, J. Bues, R. 
Dainese, E. Amstad, B. Deplancke (2019), Lab on a Chip

Cross-talk between emulsion drops: how are hydrophilic reagents 
transported across oil phases? G. Etienne, A. Vian, M. Biočanin, B. 
Deplancke, E. Amstad, (2018), Lab on a Chip 

Genotypic and Phenotypic Characterization of Stenotrophomonas 
maltophilia Strains from a Pediatric Tertiary Care Hospital in Serbia, H. 
Madi, J. Lukić, Z. Vasiljević, M. Biočanin, M. Kojić, B. Jovčić, J. Lozo (2016), 
PloS One

PATENTS
Device for high throughput single-cell studies, B. Deplancke, J.  Bues, R. 
Dainese, M. Biočanin, App number 16333297 (2019)

LANGUAGES

AWARDS

SELECTED PRESENTATIONS (5+)
Deterministic scRNA-seq of individual intestinal organoids reveals new 
subtypes and coexisting distinct stem cell pools, Single Cell Biology, 
Cambridge, United Kingdom (2020)

Dissecting adipose cell lineage development using single cell 
transcriptomics, Swiss Stem Cell Network Annual Meeting, Lausanne, 
Switzerland (2017)

TEACHING ACTIVITIES
EPFL, Life Sciences faculty, teaching assistant to bachelor students in 
Life Sciences engineering program (2016 - 2018) and supervision on 
individual internship programmes 

Petnica Science Center - Serbian Youth Science Center, teaching 
assistant in biology program for young talented high-school students 
(2011 - 2015) 

Axelios: PRINCE2® Foundation Certificate in Project Management 
(GR656179487MB; 2020)

Coursera: Drug Development Product Management Specialization 
(2020)

University of San Diego and EPFL: Drug and Device Product 
Development and Regulation in Europe and the U.S. (2020)

DataCamp: DataScientist with R Track (2019)

*click on the icon to see more

Scientific
Publications 

Creative
Portfolio

Professional
Achievements

DOB: 07. 06. 1991. 

Swiss work permit: B

Citizenship: Serbian

PERSONAL INFORMATION

Division of Genomic Technologies, 
Riken, Yokohama, Japan (2014)

Inserm U1001, Paris, France (2012)

Max Planck Institute for 
Developmental Biology, Tübingen, 
Germany (2011)

Institute for molecular biology and 
genetics, Belgrade, Serbia (2011)

INTERNSHIPS

CERTIFICATES

ONLINE PRESENCE

Specialist: ImageJ

Adobe cloud: Illustrator, Photoshop, 
After Effects, InDesign, XD, Premiere

Programming: R, bash (basic), Python 
(basic)

Management: Slack, Trello, Microsoft 
Office suite, Coggle, SLIMS

SOFTWARE

https://www.linkedin.com/in/marjanbiocanin/
https://www.behance.net/hatzygonal
https://scholar.google.ch/citations?user=mOmksfMAAAAJ&hl=en

	Thesis.draft
	Developing new tools to study and program cell fate at the single-cell level
	Путник
	Acknowledgments
	Abstract
	Résumé
	Сажетак
	Table of contents
	Table of figures
	Chapter 1: Introduction
	1.1 How does cell variation arise and what is its relevance?
	1.2 The single-cell transcriptomics revolution
	1.3 Advances and limitations in single-cell transcriptomics method development
	1.4 Transcription factors and their role in developing and maintaining cellular identity
	1.5 How can we study cellular heterogeneity using perturbation methods?

	Chapter 2: Simplified Drop-seq workflow with minimized bead loss using a bead capture and processing microfluidic chip
	2.1 Abstract
	2.2 Introduction
	2.3 Results
	2.4 Discussion
	2.5 Material and methods
	2.5.1 Microfluidic chip design and flow simulations
	2.5.2 Soft-lithography and microfluidic device fabrication
	2.5.3 Procedures for microfluidic device handling
	2.5.4 On-chip droplet breakage and bead recovery strategy
	2.5.5 Off-chip droplet breakage and bead recovery strategy
	2.5.6 Original Drop-seq droplet breakage and bead recovery strategy
	2.5.7 Bead quantification
	2.5.8 Cell handling
	2.5.8 qPCR assay for performance test of optimized purification strategies
	2.5.9 Library preparation and sequencing
	2.5.10 STAMP generation on chip
	2.5.11 Data analysis

	2.5 Supplementary figures
	Supplementary Figure 2.1 - Impact of bead washing on background The figure shows the impact of adding one more washing step (introduced in the bead capture protocol when utilizing the cp-chip) compared to the original protocol. One emulsion comprised ...


	Chapter 3: Deterministic scRNA-seq of individual intestinal organoids reveals new subtypes and coexisting distinct stem cell pools
	3.1 Abstract
	3.2. Introduction
	3.3 Results
	3.4 Discussion
	3.5 Acknowledgements
	3.7 Materials and Methods
	3.7.1 System comparison metrics
	3.7.2 Physical setup
	3.7.3 Machine-vision software
	3.7.4 Microfluidic chip design and fabrication
	3.7.5 Microfluidic device handling
	3.7.6 cDNA generation and library preparation
	3.7.7 Mammalian cell culture handling for species mixing experiment
	3.7.8 Droplet content and co-encapsulation performance quantification
	3.7.9 Benchmarking DisCo efficiency using the DISPENCELL platform
	3.7.10 Organoid cell culture and handling
	3.7.11 RNA Fluorescence in situ hybridization (RNAscope) on intestinal organoids
	3.7.12 Sequencing, analysis, barcode correction
	3.7.13 Time course organoid kinetic analysis
	3.7.14 Slingshot analysis
	3.7.15 Psupertime analysis
	3.7.16 Material and reagent list for all experiments
	3.7.17 Data availability

	3.8. Supplementary Figures
	3.9 Supplementary Тable

	Chapter 4: Single-cell RNA-seq guided transcription factor gain of function screen in mesenchymal stem cells
	4.1 Abstract
	4.2 Introduction
	4.3. Results
	4.4 Discussion
	4.5 Materials and Methods
	4.5.1 TF barcoding and cloning
	4.5.2 Cell culture
	4.5.3 Transfection and lentiviral packing
	4.5.4 Transduction and overexpression
	4.5.5 In vitro adipogenic differentiation
	4.5.6 10X scRNA-seq experiment
	4.5.7 TF-ID enrichment
	4.5.8 Data preprocessing
	4.5.10 Selection of functional cells based on PCA distance to D0 cells
	4.5.11 Data integration
	4.5.12 Determining candidate transcription factors that drive adipogenesis and other lineages
	4.5.13 Confirmation of candidate TF driven adipose differentiation

	4.6 Supplementary figures

	Chapter 5: Discussion and outlook
	5.1 Method development in single-cell transcriptomics domain
	5.2 Single-cell perturbation assays
	5.3 Future perspectives

	References
	List of abbreviations

	CV.MB



