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a b s t r a c t 

The paper describes a coupling of the geometric Volume-of-Fluid (VOF) method with a sharp-interface 

phase-change model for Cartesian and axisymmetric grids. Both the interfacial position and the tem- 

perature field are resolved with subgrid accuracy. Species transport with implicit diffusion is considered 

in the gas phase. The numerical implementation of the method developed here is described in detail, 

as well as its coupling with the incompressible Navier-Stokes solver PSI-BOIL, which features a hybrid, 

finite-volume/finite-difference approach based on a fixed, rectangular grid. Several verification cases have 

been undertaken to ensure correct implementation of the method in the code and to evaluate its per- 

formance. These include simulations of the Stefan problem, sucking problem and bubble growth in su- 

perheated liquid. In all cases, very good agreement with the analytical solution has been reached and 

grid convergence has been demonstrated. Simulations of evaporating and condensing rising bubbles, for 

which high-quality measured data are available, are also presented to serve as validation tests. Reason- 

able agreement of simulation results with experimental data has been recorded and applicability of the 

method to problems without inherent symmetry and featuring turbulence is shown. This work represents 

the first successful application of a geometric VOF method coupled with a sharp-interface phase-change 

model and species transport to non-trivial problems. The achieved performance of our algorithm in the 

verification and validation exercise represents an important step in the development of multiphase codes 

capable of accurately resolving complex three-dimensional multiphase flows. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Multiphase flow involving heat and mass transfer ranks among 

he most important industrial phenomena with fields of applica- 

ion including power generation, combustion engines and cooling 

nd refrigeration systems, among others. Characteristics of boiling, 

vaporation and condensation significantly affect the design and 

erformance of countless technological systems. This underlies the 

eed for proper quantitative analysis of these processes and devel- 

pment of universal predictive tools, applicable in the whole range 

f multiphase flow configurations. 

Computational Fluid Dynamics (CFD) have proven to be very 

uccessful for single-phase problems and their industrial use is 

ow well-established. Conversely, the development of multiphase 
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FD methods is still ongoing and their application is mostly limited 

o simple configurations [1] . Nevertheless, multiphase CFD simula- 

ions can bring insight into the dynamics of systems, for which a 

echanistic description is not readily available. Furthermore, the 

xtensive number of control variables in multiphase flows compli- 

ates the development of comprehensive experimental databases; 

hanks to the ability to freely manipulate simulation parameters, 

 validated CFD code can be used to complement the experimen- 

al data. Multiphase CFD codes can be especially useful for study- 

ng the basic physical phenomena governing the dynamics of prob- 

ems involving phase change. This is the field of Direct Numerical 

imulation (DNS), which attempts to resolve the equations of fluid 

ontinuum mechanics as they are, without the need for turbulence 

odelling and empirical interfacial closure laws. 

A crucial element of multiphase CFD codes is the ability to 

apture the distribution of individual phases. For the purposes 

f DNS, the phasic interface must be accurately resolved using a 

igh-fidelity Interface Tracking Method (ITM). A prominent exam- 

le of an ITM is the Volume-of-Fluid (VOF) method [2] , in which 
under the CC BY-NC-ND license 
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1 https://github.com/PSI- NES- LSM- CFD/PSI- Boil . 
Glossary 

ε NCG volume fraction [] 

λ thermal conductivity [W/mK] 

μ dynamic viscosity [Pa s] 

ρ mass density [kg/m 

3 ] 

σ surface tension [N/m] 

φ liquid volume fraction [] 

ϕ γ interfacial area density [ m 

2 / m 

3 ] 

C p , c p isobaric volumetric [ J/m 

3 
K ] and specific [J/kg K] heat 

capacity 

D diffusion coefficient [ m 

2 / s ] 

L specific latent heat of phase transition [J/kg] 

M molar mass [kg/mol] 

p pressure [Pa] or [atm] 

R m 

specific gas constant [J/kg K] 

s m 

volumetric mass source [ kg/m 

3 
s ] 

T temperature [K] 

u velocity [m/s] 

Re Reynolds number, Re = (uρd) /μ
CF L Courant number, CF L = (u 	t) / 	x 

CFD computational fluid dynamics 

DNS direct numerical simulation 

ITM interface tracking method 

NCG non-condensable gas 

VOF volume-of-fluid 

he phases are represented in terms of a cell-wise phasic volume- 

raction function. In the original algebraic VOF approach the inter- 

acial region had a finite thickness, determined by the underlying 

egree of grid refinement and covering several computational cells. 

n contrast, VOF with geometric advection techniques [3,4] can 

apture the interface in a sharp manner with subgrid accuracy us- 

ng a geometrical reconstruction of the interface within the com- 

utational cells. Another major advantage of the VOF method is 

he possibility to formulate the algorithm in an inherently mass- 

onservative way without the need to resort to complex mass con- 

ervation enforcement schemes required by other popular ITMs, 

uch as the Level Set method [5] . In the recent years, significant 

mprovement has been achieved in the development of techniques 

or capturing interfacial characteristics using VOF, especially the 

urface tension force [6] . 

In the presence of phase change, the ITM must be comple- 

ented by a mass-transfer model of comparable fidelity. To match 

he accuracy and sharpness of the geometric VOF method for DNS 

urposes, a subgrid-accurate phase-change model must be consid- 

red. Several requirements can be formulated for such a general- 

urpose sharp-interface model: 

1. Mass transfer should be implemented exactly at the phasic in- 

terface and conservation of mass must be exactly satisfied. 

2. Position of the interface should be considered with subgrid ac- 

curacy. 

3. No assumptions on the condition of the individual phases 

should be made (e.g. superheated, saturated). 

4. It should be physics-based and free of empiricism. 

5. It should not be restricted to problems involving species trans- 

port. 

6. It should be applicable to 3D problems with complex interfacial 

topology. 

A careful review of the single-species phase-change models, de- 

ailed e.g. by Kharangate and Mudawar [1] , reveals that essentially 

he only available approach with the potential to fulfil the above 

equirements is to relate the phase-change rate to the interfacial 
2 
nergy balance. With this method, the gradients of temperature 

ust be calculated within the individual phases while taking into 

ccount the interfacial temperature, avoiding the imprecise mix- 

ure formulation. A challenging aspect of a subgrid-accurate model 

s the ability to consistently account for the interfacial position 

oth during the solution of the energy transport equation and in 

ass transfer calculations. For example, a naive one-fluid formu- 

ation of the energy transport equation without corrective tech- 

iques results in the loss of information about temperature in cells 

eaturing the interface and a subsequent loss of accuracy. 

Geometric VOF with sharp-interface phase change has received 

ome attention in the past. Pioneering work was conducted by the 

roup of Welch [7–9] , which focused on 2D simulations of film 

oiling; in these works, the irregular stencil for temperature gradi- 

nts was used only during mass transfer rate calculations. Haelssig 

t al. [10] simulated two-dimensional counter-current flow with 

hase change using the approximate mixture formulation for treat- 

ent of near-interface cells. Ling et al. [11] and Sun et al. [12] sim-

lated 2D boiling, while considering one of the phases to be sat- 

rated and approximating the temperature gradients in the inter- 

acial cell by values at faces, sacrificing accuracy in the process. 

n the latter work, 2D axisymmetric bubble condensation was also 

resented. A 3D simulation of bubble-growth in a quiescent liquid 

as carried out by Akhtar and Kleis [13,14] using the mixture for- 

ulation, but the computed bubble shape was deformed and the 

rowth rate was non-monotonic. A two-dimensional axisymmet- 

ic simulation of the same benchmark was successfully performed 

y Perez-Raya and Kandlikar [15] with only minor distortions of 

he temperature boundary layer observed. Aside of using mixture 

hermal diffusivities in interfacial cells, their method was able to 

apture the interface in a fully sharp manner. Perez-Raya and Kan- 

likar have successfully used their method for 2D axisymmetric 

imulations of nucleate boiling [16] . 

Recently, the importance of computing the phasic velocity 

eeded for volume fraction advection in the presence of phase 

hange in a divergence-free manner has been brought forward. To 

his end, an extrapolation method has been proposed by Malan 

t al. [17,18] and implemented in a solver combining the geomet- 

ic VOF method with a sharp-interface phase-change model; ad- 

ection of enthalpy was implemented using the mixture formula- 

ion. The two-fluid irregular-stencil discretisation of enthalpy dif- 

usion of Sato and Niceno [19] , originally developed for a smeared- 

nterface ITM, was adopted. In the work of Malan et al. [17,18] , the

D simulation of bubble-growth in a quiescent liquid was success- 

ully carried out. The authors have demonstrated convergence of 

heir simulation to the analytical solution with first-order accuracy 

nd the shapes of both the bubble and the temperature boundary 

ayer have been shown to be preserved, at least in the direction 

ormal to one of the coordinate axes. To the best of our knowl- 

dge, the work of Malan et al. constitutes the first verification of 

 three-dimensional geometric VOF method with a sharp-interface 

hase-change model; more complex problems have not yet been 

ttempted in this framework. Note that Scapin et al. [20] have also 

resented a method for velocity extrapolation; nevertheless, inte- 

ration only within an algebraic VOF solver was demonstrated in 

heir work. 

Our group is actively developing PSI-BOIL, 1 an in-house CFD 

olver with DNS capabilities. It has been verified and validated for 

 multitude of problems involving multiphase flows and interfa- 

ial mass transfer [19,21,22] . Although it includes a sharp-interface 

hase-change model, the phases have been represented using a 

meared volume fraction (colour function) [23] . This approach 

arries with it several disadvantages, most prominently poor 

https://github.com/PSI-NES-LSM-CFD/PSI-Boil
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2 Piecewise linear interface calculating [4] . 
stimation of interfacial curvature, unphysical redistribution of 

ass during interfacial sharpening, and failure to capture the in- 

erface properly near fluid domain boundaries. Furthermore, spe- 

ial techniques for its coupling to species transport equation are 

equired [22] . 

In order to overcome these issues, we have decided to imple- 

ent the geometric VOF method into PSI-BOIL. We have already 

ntroduced the VOF method with geometric advection of Wey- 

outh and Yue [24] and extended it from Cartesian to axisym- 

etric geometries [ 61 ]. In this paper, a coupling of this method 

or both grid configurations with the sharp-interface phase-change 

odel of Sato and Niceno [19] and a modified version of the ve- 

ocity extrapolation method of Malan et al. [17,18] are presented. 

urthermore, species transport with implicit diffusion is consid- 

red using an algorithm adapted from our previous work [22] . Cou- 

ling of the geometric VOF method to species transport has been 

resented before in the open literature, most prominently in the 

ork by Schlottke and Weigand [25] and subsequent works related 

o the DNS code FS3D [26] . Nevertheless, with their approach, 

he mass transfer rate is calculated from the concentration gradi- 

nt, rendering their method incapable of simulating single-species 

roblems. The species transport in FS3D is treated explicitly and 

pecial flux limiter functions are introduced to avoid concentration 

rrors near the interface [27] . 

Our preliminary results for single-species simulations, includ- 

ng verification using 1D problems, have already been presented in 

ures and Sato [28] . In this paper, the numerical approach is de- 

ailed and the results of one-dimensional verification benchmarks 

re repeated for completeness. Then, more advanced verification 

nd validation exercise results are shown, both for 2D axisymmet- 

ic and 3D Cartesian grids. First-order accuracy of the method is 

emonstrated. Rising evaporating and condensing bubbles are sim- 

lated with reasonable agreement with experimental data; in the 

atter benchmark, non-condensable gases are included and the ap- 

licability of the method to problems without inherent symmetry 

nd featuring turbulence is shown. 

To the best of our knowledge, a multiphase geometric-VOF- 

ased CFD solver demonstrating subgrid accuracy and consistently 

pplicable to non-adiabatic problems with and without species 

ransport has not yet been rigorously validated against non-trivial 

xperimental benchmarks. As such, this work represents an impor- 

ant step in the development of multiphase codes capable of accu- 

ately resolving complex three-dimensional flows. 

The outline of this paper is as follows: in Section 2 , the numer-

cal method is described; in Section 3 , verification against analyti- 

al solutions and validation against experimental measurement are 

resented; finally, the conclusions are drawn in Section 4 . 

. Numerical method 

PSI-BOIL is a multiphase incompressible flow solver written in 

++ and using Message Passing Interface (MPI) for parallelisation. 

he coupling of the geometric VOF method based on the algorithm 

escribed by Weymouth and Yue [24] with a phase-change model 

s presented in Section 2.1 . In Section 2.2 , the solution method 

or momentum conservation equations is summarised; finally in 

ections 2.3 and 2.4 , the details of the implementation of the en- 

rgy conservation and species transport equations are described, 

espectively. 

.1. Interface tracking using a VOF algorithm accounting for phase 

hange 

In the VOF approach, the phases are represented in terms of 

 cell-wise phasic volume-fraction function, φ []. For a computa- 

ional cell of volume V c [ m 

3 ], the volume fraction of Phase 1 (taken
3 
ere to be the liquid phase), φ1 , is defined as: 

1 = 

V 1 

V c 
, (1) 

here V 1 is the volume of the cell occupied by Phase 1. If only 

wo phases are present (i.e. liquid and gas), φ2 = 1 − φ1 ; therefore, 

e drop the subscript 1 for brevity and refer to φ as the liquid 

olume fraction . The governing equation for φ for incompressible 

ow without phase change takes the form: 

∂φ

∂t 
+ ∇ · (φ�

 u ) = 0 , (2) 

here � u is velocity [m/s]. A simple PLIC-VOF 2 algorithm to solve 

his equation in the time-discretised form, where superscripts in- 

icate the time step and 	t is the time step length: 

φn +1 − φn 

	t 
= −∇ · (φn �

 u ) , (3) 

oupled with momentum transport can be summarised in proce- 

ural steps as follows: 

Step 1. Reconstruct the interfacial geometry, calculating normal 

vectors and line/plane constants. 

Step 2. Advect the volume fraction field using directional split- 

ting [29] . 

Step 3. Calculate curvature and surface tension force. 

Step 4. Solve the momentum conservation equations to obtain 

a new velocity field. 

Step 5. Solve transport equations for other scalar fields (temper- 

ature, concentration, . . . ). 

Step 6. Advance the time step and go back to Step 1. 

Several methods are available for normal vector calculations in 

tep 1; we use the ELVIRA algorithm of Pilliod and Puckett [30] for 

wo-dimensional calculations and the Mixed Young-CC method of 

ulisa et al. [31] for three-dimensional calculations. Interface re- 

onstruction is performed using closed-form formulae without in- 

ell iterations. The height function method with a 3 × 7 stencil for 

D and a 3 × 3 × 7 stencil for 3D problems utilising the local topol- 

gy adaptation approach of Lopez [32] is used for curvature calcu- 

ations. 

In case of problems involving phase change, Eq. (2) becomes: 

∂φ

∂t 
+ ∇ · (φ�

 u l ) = − s m 

ρl 

, (4) 

here s m 

is the volumetric source due to mass transfer between 

hases [ kg/m 

3 s ] [21] : 

 m 

= j m 

ϕ γ , (5) 

ith j m 

being the mass flux to the interface [ kg/m 

2 s ] and ϕ γ

 m 

2 / m 

3 ] the interfacial area density. The method to calculate j m 

s given in Section 2.3 . 

Furthermore, � u l in Eq. (4) is the liquid velocity. Note that the 

elocity field 

�
 u cannot be used here in the same way as in Eq. (2) ,

ecause it is not divergence-free due to phase change. The volume 

raction of the liquid φ must be advected by the liquid velocity � u l . 

or a single time step, Eq. (4) can be split as follows ( φ� represents

n intermediate value): 

φ� − φn 

	t 
= − s m 

ρl 

; (6) 

φn +1 − φ� 

	t 
= −∇ · (φ� �

 u l ) . (7) 

 modified form of the above algorithm can be then proposed as: 
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Fig. 1. Schematic representation of the velocity extrapolation domain; blue cells: 

liquid phase, white cells: gas phase, yellow shading: solution domain of the ex- 

trapolation Poisson problem, dashed line: phasic interface, orange line: free-flow 

boundary, blue line: wall boundary. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

2

fi

, 

w

t

a

t

c

ρ

T

C

i

∇
B

t

r

t

d

d

v

f

t

Step 1. Calculate interfacial area density ϕ γ needed for Eq. (5) . 

Step 2. Calculate mass transfer s m 

between phases using Eq. (5) . 

Step 3. Calculate the intermediate volume fraction field using 

Eq. (6) . 

Step 4. Reconstruct the interfacial geometry, calculating normal 

vectors and line/plane constants. 

Step 5. Calculate the liquid and gas velocity fields, � u l and 

�
 u g . 

Step 6. Advect the intermediate volume fraction field using di- 

rectional splitting: Eq. (7) . 

Step 7. Calculate curvature and surface tension force. 

Step 8. Solve the momentum conservation equations to obtain 

a new velocity field. 

Step 9. Solve transport equations for other scalar fields (temper- 

ature, concentration, . . . ). 

Step 10. Advance the time step and go back to Step 1 

Step 1 and Step 5 are detailed below. 

.1.1. Interfacial area density calculation 

To estimate the interfacial area density, several methods are 

vailable in the VOF framework [33] ; however, in terms of accuracy 

nd robustness, the Marching Cubes algorithm [34] is the superior 

pproach, even when the φ = 0 . 5 isosurface does not correspond 

o the phasic interface exactly, as discussed in Appendix A . 

.1.2. Liquid velocity calculation 

In PSI-BOIL, single-field formulation is used to represent the 

omentum equations. Using this approach, only the single-fluid 

elocity � u can be calculated. A method to obtain the liquid velocity 

equired for the correct solution of Eq. (7) was presented by Malan 

17, pp. 64–66] . Using this method, values of � u l in the interfacial 

ells and in the vapour phase are obtained using divergence-free 

xtrapolation from the liquid phase, � u l = 

�
 u + 

�
 u + , where � u + is cho- 

en such that: 

 · �
 u 

+ = −∇ · �
 u . (8) 

q. (8) can be satisfied by solving a Poisson problem for corrective 

ressure p + in direct analogy to the projection method of Chorin 

35] . The resulting liquid velocity is evidently divergence-free. We 

ave adopted this approach with the following minor changes: 

1. We define the solution domain as illustrated in Fig. 1 . The wall 

boundary is shifted by one layer further away from the inter- 

face in comparison with the original approach of Malan (cf. 

Fig. 1 and Fig. 11.2 of [17, p. 66] ). This way, velocities at faces

of cells containing the interface are always recalculated to avoid 

reliance on ITM-based information on face cutting (which is not 

sufficiently robust). 

2. The density in the system matrix (Eq. 11.20 of [17, p. 66] ) is

taken to be the constant liquid density ρl . This accelerates the 

solution algorithm. The resulting Poisson problem has the form: 

∇ ·
(

	t 

ρl 

∇p + 
)

= −∇ · �
 u . (9) 

Jacobi iterations [36] are used for solving Eq. (9) . A flagging al- 

orithm is used to label the interfacial and interface-adjacent cells: 

ells with a non-zero value of interfacial area density are marked 

s the former. The latter can be identified by having at least one 

eighbour cell whose centre lies in the other phase, i.e. satisfying 

he condition: 

φcell − 0 . 5)(φneighbour − 0 . 5) ≤ 0 . (10) 

ote that the same approach is used to obtain the divergence-free 

xtrapolation of the gas velocity, � u g , the only difference being the 

irection of the extrapolation. 
4 
.2. Momentum conservation 

The momentum conservation is represented using the single- 

eld Navier–Stokes equations [19] : 

∂(ρ�
 u ) 

∂t 
+ ∇ · (ρ�

 u � �
 u ) = −∇p + ∇ ·

[ 
μ

(∇ 

�
 u + (∇ 

�
 u ) � 

)] 
+ ρ�

 g + 

�
 f σ

(11) 

here p [Pa] is the pressure, � g [ m/s 2 ] the gravitational accelera- 

ion, �
 f σ [ N/m 

3 
] the surface tension force density and ρ [ kg/m 

3 
] 

nd μ [Pa s] the mixture density and dynamic viscosity, respec- 

ively. Assuming two phases, liquid and gas, the mixture density is 

alculated from its single-phase counterparts according to: 

= φρl + (1 − φ) ρg . (12) 

he mixture viscosity is calculated using the harmonic mixing rule: 

1 

μ
= φ

1 

μl 

+ (1 − φ) 
1 

μg 
. (13) 

The pressure p is obtained using the projection method of 

horin [35] , which is used to satisfy the diabatic incompressibil- 

ty condition: 

 · �
 u = s m 

(
1 

ρv 
− 1 

ρl 

)
. (14) 

rackbill’s Continuum Surface Force model [37] is used to estimate 

he surface tension force density, � f σ . 

The finite-volume formulation in the staggered-variable ar- 

angement [38] is employed for the solution of the equa- 

ions. For spatial discretisation, a second-order-accurate, central- 

ifference scheme and a second-order flux-limiting, total-variation- 

iminishing (TVD) scheme [39] are used for the diffusion and ad- 

ection terms, respectively. For time discretisation, backward and 

orward Euler methods are used for the diffusion and advection 

erms, respectively. 
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Fig. 2. Schematic representation of the discretisation of the energy conservation 

equation; cells with a white-centre: liquid phase ( Eq. (15) ), cells with a purple cen- 

tre: gas phase ( Eq. (16) ), blue line: phasic interface. The coloured cells are referred 

in the text. Only a two-dimensional domain is shown for simplicity. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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.3. Energy conservation 

Energy conservation is solved using the two-fluid approach 

19] : 

 p,l 

(
∂T 

∂t 
+ ∇ · (T � u l ) − T ∇ · �

 u l 

)
= ∇ · (λl ∇T ) ; (15) 

 p,g 

(
∂T 

∂t 
+ ∇ · (T � u g ) − T ∇ · �

 u g 

)
= ∇ · (λg ∇T ) , (16) 

ith T being the temperature [K], C p the volumetric heat capacity 

 J/m 

3 K ] and λ [W/mK] the thermal conductivity. A sharp-interface, 

nite-difference method is used for the spatial discretisation. Since 

he centre of each cell can be identified as either liquid or gas, 

qs. (15) and (16) can be solved simultaneously, taking into ac- 

ount the coupling through interfacial temperature T γ , which can 

e either constant or variable (e.g. due to the presence of non- 

ondensable gases [22] ). The resulting decomposition of the com- 

utational domain is shown schematically in Fig. 2 . 

.3.1. Diffusion term discretisation 

The diffusion terms in Eqs. (15) and (16) are treated implicitly 

nd the interfacial position is resolved with subgrid accuracy based 

n the PLIC-VOF reconstruction. As a result, the non-uniform spac- 

ng must be taken into account; we employ a three-point, central- 

ifference scheme. Using the cyan-coloured cell A in Fig. 2 as an 

xample, the x -component of the diffusion term in Cartesian ge- 

metry is calculated as (thermal conductivity assumed constant): 

l 

∂ 2 T 

∂x 2 
≈ λl 

[ 
c w 

T w 

+ c e T e − (c w 

+ c e ) T c 

] 
, (17) 

here T w 

is the temperature in the “west” direction, i.e. the inter- 

acial temperature T γ , T e the temperature in the “east” direction 

nd T c the temperature in the given cell. The coefficients c w 

and c e 
re deduced using a Taylor expansion as: 

 w 

= 

2 

	x w 

(	x w 

+ 	x e ) 
; (18) 

 e = 

2 

	x e (	x w 

+ 	x e ) 
, (19) 
5 
ith 	x w 

and 	x e indicated in Fig. 2 . In an axisymmetric geome- 

ry, a symmetric representation is used for the radial component: 

l 

1 

r 

d 

dr 

(
r 

dT 

dr 

)
= λl 

1 

2 

[ 
d 2 T 

dr 2 
+ 

1 

r 

d 2 (rT ) 

dr 2 

] 

≈ λl 

[ 
c w 

T w 

+ c e T e − (c w 

+ c e ) T c 

] 
, (20) 

here: 

 w 

= 

1 

	x w 

(	x w 

+ 	x e ) 
+ 

1 

x c 

x w 

	x w 

(	x w 

+ 	x e ) 

= 

(
2 − 	x w 

x c 

)
1 

	x w 

(	x w 

+ 	x e ) 
; (21) 

 e = 

1 

	x e (	x w 

+ 	x e ) 
+ 

1 

x c 

x e 

	x e (	x w 

+ 	x e ) 

= 

(
2 + 

	x e 

x c 

)
1 

	x e (	x w 

+ 	x e ) 
. (22) 

ere, x c is the distance of the centre of the given cell from the axis

f symmetry. 

Note that for cells away from the interface, this discretisation 

cheme is second-order-accurate. At the interface, however, the 

symmetry of the stencil results in first-order accuracy. 

.3.2. Advection term discretisation 

The advection terms are treated explicitly. To evaluate the di- 

ergence of the “temperature flux” for phase i, �
 f i = T � u i , its val- 

es at the cell boundaries are calculated with a second-order TVD 

cheme. The ghost values of phasic velocities � u l and 

�
 u g needed for 

he discretisation in cells in the vicinity of the interface are ob- 

ained using the divergence-free extrapolation algorithm described 

bove. The ghost temperature values are calculated by means of a 

inear extrapolation with the temperature of the interface T γ and 

ts position taken into account. 

.3.3. Phase-change model 

The energy transport equation is coupled to the interface- 

racking method by the phase-change model, since the mass flux 

o the interface j m 

in Eq. (5) is calculated as [21] : 

j m 

= 

j q,l + j q,g 

L 
= 

1 

L 

(
λl ∇ T 

∣∣∣
l,γ

· �
 n − λg ∇ T 

∣∣∣
g,γ

· �
 n 

)
, (23) 

here L is the specific latent heat of phase transition [J/kg], j q,l 

nd j q,g the heat fluxes [ W/m 

2 
] from the liquid and the gas sides

o the interface, respectively, and 

�
 n the normal vector to the inter- 

ace pointing towards the liquid. Furthermore, ∇T 
∣∣

l,γ
and ∇T 

∣∣
g,γ

re the temperature gradients at the liquid and gas sides of the in- 

erface [K/m], respectively. They are calculated using fourth-order- 

ccurate upwind differences for non-uniform grids evaluated at the 

nterface. The gradient components G i which cannot be computed 

irectly (such as both components of the liquid temperature gra- 

ient for the red-coloured cell B in Fig. 2 ) are obtained through 

xtrapolation using the iterative solution of the Hamilton–Jacobi 

quation [40] : 

∂G i 

∂τ
+ 

�
 n · ∇G i = 0 , (24) 

here τ [m] is a pseudo-time variable (used only to advance to 

he steady-state solution). The values of G i in cells away from the 

nterface necessary to evaluate ∇G i in Eq. (24) (such as the green- 

oloured cell C in Fig. 2 ) are calculated using fourth-order-accurate 

entral differences. 
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.4. Species transport in the gas phase 

Transport of non-condensable species (NCG) in the gas is solved 

n the centre-of-volume reference frame [22] : 

∂[(1 − φ) ε] 

∂t 
+ ∇ · [(1 − φ) ε � u v ] = ∇ · [(1 − φ) D ∇ε] , (25)

here ε is the NCG volume fraction in the gas phase [-], � u v the 

olume-averaged gas velocity and D the binary diffusion coefficient 

f the gas mixture [ m 

2 /s ]. The volume-averaged velocity is gener- 

lly not equal to the mass-averaged one due to the unequal den- 

ities of the gas mixture components [22] ; in this work, density of 

he gas phase is considered to be constant for simplicity. Then the 

elocities are equal and the volume fraction ε is equivalent to the 

ass fraction. 

Eq. (25) is solved using the finite-volume formulation. Note that 

n Bureš and Sato [22] , interface tracking was achieved by means 

f a smeared colour function [23] and a special solution frame- 

ork for Eq. (25) had to be developed. In the current work, the 

olume fraction is used for interface tracking and the solution do- 

ain of Eq. (25) is determined by the condition φ < φcrit , where 

he limiting factor φcrit is chosen to avoid numerical errors in cells 

here φ ≈ 1 . We have selected φcrit = 0 . 999 based on our previ-

us experience – a sensitivity study for this parameter is shown in 

ection 3.4 . 

.4.1. Diffusion term discretisation 

The diffusion term is treated implicitly and a second-order- 

ccurate, central-difference scheme is used for the spatial discreti- 

ation. The phasic interface is assumed to be impenetrable by the 

CG. To calculate the cell-face area available for diffusion (i.e. the 

on-wetted fraction of the cell face represented by the product 

1 − φ)	S), the Marching Squares 3 algorithm is used due to the 

obustness of this approach (as discussed in Appendix A ). 

.4.2. Advection term discretisation 

The advection term is treated explicitly. The volumetric flux at 

he cell boundaries j ε = (1 − φ) ε � u is calculated as [22] : 

j ε = ε b ( � u − j φ ) , (26) 

here j φ is the liquid flux obtained from the VOF advection 

cheme. A second-order TVD scheme is employed to evaluate the 

oundary value of NCG volume fraction ε b ; the ghost values of ε
eeded for the discretisation in the cells at the interface are cal- 

ulated using an extrapolation in the normal direction across the 

hasic interface in the same manner as in Bureš and Sato [22] , i.e. 

y solving Eq. (24) with G i substituted by ε. Within this frame- 

ork, the algorithm remains non-conservative with respect to the 

pecies concentration; the degree of non-conservation is discussed 

or one of the validation cases in Section 3.4 . 

.4.3. Interfacial temperature 

The dependence of the interfacial temperature T γ on the NCG 

olume fraction ε γ is modelled using the approximated Clausius- 

lapeyron relation [41] : 

 

CC 
γ = T 0 / 

(
1 − R m 

T 0 
L 

ln (1 − ε γ ) 
)
. (27) 

ere, R m 

[J/kg K] is the specific gas constant of the condensing 

pecies (liquid vapour) and T 0 the saturation temperature at given 

ystem pressure. Note that the accuracy of Eq. (27) depends on cor- 

ect estimation of the latent heat L, since this quantity is gener- 

lly dependent on interfacial temperature. If material-specific con- 
3 Two-dimensional variant of the Marching Cubes algorithm [34] . 

6 
tants are available, the Antoine-equation-based model for interfa- 

ial temperature [42] is also implemented: 

 

An 
γ = 273 . 15 + B/ 

(
B 

C + (T 0 − 273 . 15) 
− log 10 (1 − ε γ ) 

)
− C, (28) 

here B and C are Antoine equation coefficients. Under-relaxation 

f interfacial temperature is implemented as described in Bureš

nd Sato [22] and the under-relaxation factor is taken as 0.01. 

. Verification and validation 

For verification of the method, the results of one-dimensional 

erification benchmarks from [28] are repeated for completeness; 

hen, bubble growth in superheated quiescent liquid is simulated. 

or validation, problems of bubble growth in superheated liquid 

nd condensation in subcooled liquid under the effects of grav- 

ty are considered. The latter benchmark involves non-condensable 

ases and thus it is also used for evaluating the degree of species 

on-conservation. 

To evaluate mass conservation of the interface tracking method, 

volution of the total volume of the confined gas phase V g has been 

racked. It is given as: 

 g (t) = 

∫ 



[1 − φ(t)] dV 

′ = V 
 −
∫ 



φ(t) dV 

′ = V 
 − V l (t) . (29)

ere, 
 represents the whole simulation domain and V 
 is its to- 

al volume, which is a constant value; V l is the time-dependent 

olume of the liquid phase. The total gas volume V g has then been 

xpressed using the volumetric phase-change rate ˙ V g [ m 

3 /s ] as: 

˜ 
 g (t) = V g (0) + 

∫ t 

0 

˙ V g (t ′ ) dt ′ . (30) 

quivalence of the two above expressions, V g (t) = 

˜ V g (t) , corre- 

ponds to the mass conservation condition for the interface track- 

ng method. In all cases considered here, this has been achieved 

ithin numerical accuracy, that is, V g (t) − ˜ V g (t) = O(ε) , where 

 
 − [ V l (t) + V g (t)] = O(ε) . 

.1. One-dimensional problems 

For verification purposes, we first consider the standard 1D 

vaporation problems in Cartesian configuration: the Stefan prob- 

em [7,43] and the sucking problem [7] . Fig. 3 shows the configura- 

ion common to both of these problems: a vapour film covering a 

all with a temperature T wall expands as a result of phase change 

ccurring at the phasic interface, while the liquid bulk is pushed 

ut through the outlet as a result of this expansion with the tem- 

erature at the outlet being T out . The interfacial velocity u γ is equal 

o: 

 γ = 

j m 

ρv 
, (31) 
Fig. 3. Schematic representation of the one-dimensional phase-change problems. 
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Table 1 

Physical properties of water at atmospheric pressure and saturation. 

Density ρ [ kg/m 

3 
] Heat capacity c p [J/kg K] Thermal conductivity λ [W/mK] Dyn. viscosity μ [Pa s] 

Liquid 958.4 4216 0.679 2 . 80 × 10 −4 

Vapour 0.597 2030 0.025 1 . 26 × 10 −5 

Latent heat L [J/kg]: 2 . 258 × 10 6 , Surface tension σ [N/m]: 0.059, Saturation temperature T sat [K]: 373.15. 
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nd the liquid is uniformly advected with the Stefan velocity 

 ste fan : 

 ste fan = j m 

(
1 

ρv 
− 1 

ρl 

)
. (32) 

he analytical solution for the interfacial position as a function 

 γ (t) is given as [7,43] : 

 γ (t) = 2 βg 

√ 

αv t , (33) 

here αv = λv / (ρv c p, v ) is the vapour thermal diffusivity [ m 

2 /s ], 

 p, v being the vapour specific heat capacity [J/kg K], and βg [] 

 configuration-dependent growth constant. We consider a model 

roblem representing a water system at atmospheric pressure, see 

able 1 for physical properties. 

In both problems, the heat is supplied from one side of the in- 

erface: in the Stefan problem, the wall at the origin is superheated 

 T wall > T sat ) and heat diffuses to the phasic interface through the 

apour film. Since the film is stagnant, the temperature profile is 

lmost linear. In the sucking problem, the liquid bulk is super- 

eated ( T out > T sat ). As a result, the sucking problem represents a

ombined advection-diffusion problem and a boundary layer forms 

n the vicinity of the phasic interface. Characteristics of both simu- 

ated problems are shown in Table 2 . Here, t 0 corresponds to time 

hosen such that the position calculated using Eq. (33) corresponds 

o the initial film thickness x γ , 0 . Furthermore, l x is the extent of 

he considered simulation domain. Uniform grid discretisation with 

rid spacing 	x has been adopted. The number of computational 

ells for the coarsest grid considered is N 1 with the corresponding 

rid spacing being 	x 1 . A variable time step 	t is used with the 

imit imposed by the Courant number CFL : 

F L = 

u ste fan 	t 

	x 
< CF L max , (34) 

nd the CFL max employed is listed in Table 2 . The temperature pro- 

les are initialised using the analytical solution [7,43] . 

Fig. 4 shows the calculated interfacial positions as functions of 

ime for both problems. The grid level is defined in terms of the 

umber of cells per domain extent l x and normalised by the value 

or coarsest grid N 1 (see Table 2 ). To evaluate the accuracy order of

he computational method, we use the relative error of the calcu- 

ated growth constant, βg, calc . The relative error E of a parameter A 

s calculated as: 

 = 

A calculated 

A theoretical 

− 1 . (35) 

owever, since the temperature field stretches during the simula- 

ion as the vapour film expands, the error of βg, calc evolves through 

ime. For this reason, we consider the L 1 -mean value of the error 
Table 2 

Characteristics of the considered 1D evaporation problems. For the

	T = T out − T sat . 

	T [K] βg [-] t 0 [ms] x γ , 0 [mm] 

Stefan 10 0.0669 30 0.105 

Sucking 5 0.7677 100 2.21 

7 
¯
 1 , defined as: 

Ē 1 = 

1 

t max − t 0 

∑ 

i 

| E i | 	t i = 

1 

t max − t 0 

∑ 

i 

∣∣∣ βg,i 

βg,theor 

− 1 

∣∣∣
t i = 

1 

t max − t 0 

∑ 

i 

∣∣∣ x i 
x theor (t i ) 

− 1 

∣∣∣	t i , (36) 

nstead. In Eq. (36) , the sum is performed over all time steps, 

t max − t 0 ) is the total simulation time, x i the position of the in-

erface at time step i and x theor (t i ) the position evaluated using the 

nalytical solution. The third equality in Eq. (36) results from intro- 

ucing the presumed evolution of the interfacial position, Eq. (33) . 

or both problems, multiple levels of grid refinement have been 

alculated and Fig. 5 shows the L 1 -mean relative errors of the cal- 

ulated growth constants βg ( Eq. (36) ). Power law fits have been 

pplied to the data in the asymptotic region and a method order of 

1 has been recovered for both problems. This is expected, since—

s described in Section 2.3 —the diffusion term of the energy trans- 

ort equation is discretised with first-order accuracy near the in- 

erface and first-order extrapolation of temperature is used in the 

dvection term. Improvements of the near-interface discretisation 

cheme will be attempted in future work. 

.2. Bubble growth in quiescent superheated liquid 

Growth of a vapour bubble under zero gravity conditions in a 

niformly superheated liquid is a standard verification benchmark 

or CFD codes (see e.g. [18,19,44] ). An analytical solution to this 

roblem was given by Scriven as [45] : 

 (t) = 2 βg 

√ 

αl t , (37) 

here R is the bubble radius, αl is the liquid thermal diffusivity 

nd βg [-] is a configuration-dependent growth constant. We con- 

ider a model problem representing a water system at atmospheric 

ressure, see Table 1 for physical properties. With the choice of 

iquid superheat 	T = T out − T sat = 1 . 25 K, the growth constant βg 

or this configuration is equal to 4.063. Bubble initial radius R 0 is 

aken as 50 μm. 

Both a two-dimensional axisymmetric and a three-dimensional 

artesian grid are considered. Using symmetry boundary condi- 

ions, only 1/2 and 1/8 of the bubble are simulated in these two 

ases, respectively. Domain side length S is taken as 187.5 μm in 

ll directions. In the axisymmetric case, the bubble shape is ini- 

ialised analytically; in the Cartesian case, stratified sampling is 

sed to estimate the initial volume fraction field. The analytical so- 

ution [45] is used to initialise the temperature field. Fig. 6 shows 

 schematic representation of the domain used. The y -direction for 

he three-dimensional Cartesian case is not shown. At the out- 

et, the Dirichlet boundary condition for temperature is applied, 

 = T out . 
 Stefan problem, 	T = T wall − T sat . For the sucking problem, 

l x [mm] N 1 [-] 	x 1 [μm] CFL max [-] 

1 50 20 0.1 

10 400 25 0.1 
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Fig. 4. Interfacial positions as functions of time for considered 1D evaporation problems and selected grid resolutions. The grid level is defined in terms of the number of 

cells per domain extent l x and normalised by the value for the coarsest grid N 1 (see Table 2 ). 

Fig. 5. L 1 -mean relative errors of the growth constant βg ( Eq. (36) ) for the 1D evap- 

oration problems as functions of inverse grid level (number of cells per domain ex- 

tent l x and normalised by the value for the coarsest grid N 1 , see Table 2 ). Solid lines 

correspond to power law fits of data points in the asymptotic region. 
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Fig. 6. Schematic representation of the domain used for the bubble growth in qui- 

escent superheated liquid problem. 
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Uniform grid discretisation has been adopted. A variable time 

tep 	t is used, with the limit imposed by the Courant number 

aken as: 

F L = 

u max 	t 

	x 
< 0 . 1 , (38) 

here 	x is grid spacing and u max is the maximum velocity in 

he domain. A second upper limit is given by the capillary-wave 

ondition [6,37] : 

t < 0 . 10 

√ 

(ρv + ρl )	x 3 

σ
. (39) 

he absolute minimum of these two criteria is the time step actu- 

lly used in the simulation. 

Fig. 7 shows the calculated bubble radii as functions of time 

or both axisymmetric and Cartesian cases and selected grid lev- 

ls. The grid level is defined in terms of the number of cells per

omain width S and normalised by 24 (value for coarsest grid). 

vidently, very well converging behaviour has been achieved with 

oth grids. Fig. 8 shows the L 1 -mean relative error ( Eq. (36) evalu-

ted for bubble radius) of the calculated growth constant βg with 

espect to the theoretical value. Power law fits have been applied 

o the data in the asymptotic region; the Cartesian results have 
8 
emonstrated a convergence order of ∼1.5, for the axisymmetric 

esults, it is slightly higher. The smaller order of the Cartesian 

ethod could be attributed to the worse convergence character- 

stics of some aspects of the overall algorithm, e.g. normal vector 

nd curvature calculations. Note that, for all grid levels, the time 

tep in the simulation was limited solely by the capillary-wave 

ondition, Eq. (39) . As a result, the CFL number observed during 

he simulations scaled with the square root of the grid spacing, 

ince: 

F L ∝ 

	t 

	x 
∝ 

	x 1 . 5 

	x 
= 

√ 

	x . (40) 

his means the reduction of error with grid refinement must be 

artially attributed to the reduction of the time step. We assume a 

odel for the error E of the form: 

 ∝ 	x αCF L β ∝ 	x α+ β/ 2 , (41) 

here α is the order of the method in space and β in time. Since 

rst-order discretisation in time is used, β = 1 , and we verify the 

rst-order spatial accuracy already demonstrated in the previous 

ection. 

To illustrate the overall behaviour of the simulation, Fig. 9 

hows instantaneous distributions of volume fraction, pressure, 

olumetric mass source, and temperature for one of the axisym- 

etric calculations. It can be observed that near-perfect levels of 

harpness and symmetry have been achieved in the simulation. 
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Fig. 7. Radius as a function of time for the bubble growth in quiescent superheated liquid problem. The grid level is defined in terms of the number of cells per domain 

width S and normalised by 24 (value for coarsest grid). 

Fig. 8. L 1 -mean relative error ( Eq. (36) ) of the growth constant βg for the bubble 

growth in quiescent superheated liquid problem as a function of inverse grid level 

(defined in terms of the number of cells per domain width S and normalised by 

24). Solid lines correspond to power law fits. 
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Fig. 9. Instantaneous distributions of volume fraction, pressure, volumetric mass source 

Results are shown for grid level 8 (corresponding to 192 cells per domain width S) wit

theoretical pressure jump due to surface tension equal to 983 Pa, pressure is zero at the 

9 
urthermore, Fig. 10 shows instantaneous distributions of volume 

raction and temperature for one of the Cartesian calculations. In 

lanes both normal to the coordinate axes and inclined with re- 

pect to the coordinate axes, near-perfect level of symmetry has 

een achieved. 

.3. Bubble growth in superheated liquid under gravity 

The natural extension of the bubble growth benchmark is 

he inclusion of the gravity force. As a result, the bubble is no 

onger stationary, but rather rises through the liquid bulk due 

o buoyancy. The flow generated by the bubble motion increases 

eat transfer to the interface; subsequently, bubble growth rate is 

igher than the one predicted by the Scriven solution. Thus, both 

ass transfer at the interface and the overall bubble motion must 

e predicted accurately to obtain correct results. For validation, we 

ave chosen the experimental data for ethanol of Florschuetz et al. 

46] . Physical properties of an ethanol system at atmospheric pres- 

ure are listed in Table 3 . The choice of ethanol rather than water 

s convenient from the numerical point of view: since thermal dif- 

usivity of liquid ethanol at saturation is ∼ 2 . 5 smaller than the one 

f liquid water, the temperature boundary layer around the ris- 

ng bubble can be resolved with a lower number of computational 
and temperature for the bubble growth in quiescent superheated liquid problem. 

h axisymmetric configuration. Instantaneous radius is 120 μm, corresponding to a 

outlet. 
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Fig. 10. Instantaneous distributions of volume fraction and temperature for the bubble growth in quiescent superheated liquid problem. Results are shown for grid level 8 

(corresponding to 192 cells per domain width S) with Cartesian configuration. Left: cut in the θ = 0 ◦ ( x-z ) plane. Right: cut in the θ = 45 ◦ plane, the abscissa corresponds to 

the r = 

√ 

x 2 + y 2 direction and ordinate to the z-direction. 

Table 3 

Physical properties of ethanol at atmospheric pressure. 

Density ρ

[ kg/m 

3 
] 

Heat capacity 

c p [J/kg K] 

Thermal 

conductivity λ

[W/mK] 

Dyn. viscosity 

μ [Pa s] 

Liquid 757.0 3000 0.154 4 . 29 × 10 −4 

Vapour 1.435 1830 0.020 1 . 04 × 10 −5 

Latent heat L [J/kg]: 9 . 630 × 10 5 , Surface tension σ [N/m]: 0.018, Saturation tem- 

perature T sat [K]: 351.45. 
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Fig. 11. Schematic representation of the domain used for the bubble growth under 

gravity benchmark. 
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w

a

	

ells. For ethanol, experimental results for liquid superheat values 

.8–4.9 K have been reported in Florschuetz et al. [46] . In our cal-

ulations, we have chosen 	T = T out − T sat = 3 . 1 K. Note that for

uch configuration, the Scriven growth constant ( Eq. (37) ) is equal 

o 5.399. Bubble initial diameter D 0 is taken as 420 μm; for this 

ize, buoyancy effects are still negligible [46] and the zero-gravity 

nalytical solution can be used to initialise the temperature distri- 

ution in the simulation. Gravitational acceleration g is set equal 

o 9.81 m/s 2 and acting in the negative z-direction. 

Both a two-dimensional axisymmetric and a three-dimensional 

artesian grid are considered. Using symmetry boundary condi- 

ions for the three-dimensional grid, only 1/4 of the domain is sim- 

lated in this case. The height of the domain in the z-direction L z 
s taken as 20 mm and the lateral width L x (and L y in the Carte-

ian case) as 4 mm. To reduce computational requirements of the 

imulation, lateral dimensions are discretised uniformly only in the 

entre of the column with stretched grid used for the rest. The 

ubble is initially positioned 1 mm above the column bottom. In 

he axisymmetric case, its shape is initialised analytically; in the 

artesian case, stratified sampling is used to estimate the initial 

olume fraction field. The zero-gravity analytical solution is used 

o initialise the temperature field. Fig. 11 shows a schematic repre- 

entation of the domain after initialisation. The y -direction for the 

hree-dimensional Cartesian case is not shown. Both at the outlet 

nd at the no-slip walls, the Dirichlet boundary condition for tem- 

erature is applied, T = T out . 

For the axisymmetric configuration, four levels of grid refine- 

ent are simulated. For the Cartesian configuration, only the 

oarsest level is considered due to the prohibitive cost of such a 

imulation at higher grid levels. Table 4 summarises domain char- 
10 
cteristics of the simulated cases. A variable time step 	t is used, 

ith the limit imposed by the Courant number taken as CF L < 0 . 18 

nd second upper limit given by: 

t < 0 . 42 

√ 

(ρv + ρl )	x 3 

σ
. (42) 



L. Bureš and Y. Sato International Journal of Heat and Mass Transfer 173 (2021) 121233 

Fig. 12. Radius as a function of time for the bubble growth under gravity benchmark, compared with measurements [46] and theoretical predictions [45] . Results with both 

axisymmetric and Cartesian grids are shown. Grid level is defined in terms of the number of cells per domain width L x and normalised by 21. Values on the ordinate are 

normalised by 2 βg 
√ 

αl . 

Table 4 

Domain characteristics of the bubble growth under gravity benchmark. Grid level is 

defined in terms of the number of cells per domain width L x and normalised by 21. 

Grid level Minimum grid spacing Total number of cells 

Axisymmetric 2 15.6 μm 215,040 

3 10.4 μm 483,840 

4 7.8 μm 860,160 

5 6.25 μm 1,344,000 

Cartesian 2 15.6 μm 36,126,720 
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Fig. 13. Bubble Reynolds number as a function of time for the bubble growth under 

gravity benchmark. Results with both axisymmetric and Cartesian grids are shown. 

Grid level is defined in terms of the number of cells per domain width L x and nor- 

malised by 21. 
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he absolute minimum of these two criteria is the time step actu- 

lly used in the simulation. 

Fig. 12 shows the calculated bubble radii as functions of time 

or all considered cases. Same expression as in Florschuetz et al. 

46] is adopted to calculate the bubble radius R bub : 

 bub = 

D x + D y + 2 D z 

8 

, (43) 

here D x , D y , and D z are bubble extents in the x -, y -, and

-directions, respectively. For axisymmetric simulations, D y = D x . 

o maintain consistency with the data representation used in 

lorschuetz et al. [46] , normalisation by 2 βg 
√ 

αl is used for R bub 

cf. Eq. (37) ). It can be observed that good agreement with ex- 

erimental data has been achieved. From the figure, it can be 

bserved that axisymmetric simulation results—the coarsest sim- 

lation notwithstanding—vary only slightly with grid refinement; 

his is also evidenced by the plot of bubble Reynolds num- 

er Re bub , calculated as ( U z being the bubble velocity in the 

-direction): 

e bub = 

ρl d bub U z 

μl 

= 

2 ρl R bub U z 

μl 

, (44) 

hown in Fig. 13 . 

To illustrate the overall behaviour of the simulation, Fig. 14 

hows instantaneous distributions of volume fraction, pressure, 

olumetric mass source, and temperature for one of the axisym- 

etric calculations. It can be observed that a near-perfect level 

f sharpness has been achieved in the simulation. The highest 

olumetric mass source is located on the bubble top, off-centre. 

ere the temperature boundary layer spans only 2–3 computa- 

ional cells. 
11 
.4. Bubble condensation with NCG in subcooled liquid under gravity 

Direct-contact condensation of bubbles in subcooled liquid 

ools has been studied extensively in the past; nevertheless, only 

 limited number of works take into account the presence of non- 

ondensable gases [47] . Our previous work focused on the demon- 

tration of the capability of our numerical method to simulate this 

henomenon [22] . In this paper, we validate our approach against 

n experimental data set. Note that in Bureš and Sato [22] smeared 

olume fraction (colour function) was used for phase represen- 

ation, while the sharp volume fraction (VOF) is used in this 

aper. 

In this type of experiment, a bubble is generated by injection 

f gas to a liquid pool through a nozzle. It detaches and starts to 

ise due to buoyancy. As a result of liquid subcooling, condensation 

ccurs and the bubble shrinks continuously until an equilibrium 

olume V ∞ 

is achieved. Its value is dictated by the initial amount 

f NCG in the gas mixture and liquid subcooling 	T = T 0 − T out 

s: 

 ∞ 

= V init 

ε init 

ε ∞ 

(	T ) 
, (45) 
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Fig. 14. Instantaneous distributions of volume fraction, pressure, volumetric mass source and temperature for the bubble growth under gravity benchmark. Results are shown 

for grid level 4 (corresponding to 84 cells per domain width L x ) with axisymmetric configuration. Radius calculated from Eq. (43) is 1.23 mm, corresponding to a theoretical 

pressure jump due to surface tension equal to 28.7 Pa, pressure is zero at the outlet. 

Table 5 

Selected experimental conditions [48] and simulation settings used for validation. The latter have been chosen by averaging the two exper- 

imental cases. 

System pres. 

p 0 [atm] 

Liquid subcool. 

	T [K] 

Initial bubble 

radius R 0 [mm] 

Initial air vol. 

fraction ε init [%] 

Equilibrium air vol. 

fraction ε ∞ [%] 

Exp. CFF2121 1 5.4 1.3 0.2051 16.84 

Exp. CFF2221 1 5.4 1.5 0.1914 16.84 

Simulation 1 5.4 1.4 0.1983 16.84 
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ith T 0 being the reference saturation temperature at given system 

ressure, V init the initial detached bubble volume, ε init the initial 

CG volume fraction, and ε ∞ 

the equilibrium NCG volume fraction. 

ts value is determined from the condition T γ (ε ∞ 

) = T out . 

.4.1. Simulation setup 

As reference data, we have chosen the experiments of Kalman 

48] involving condensation of refrigerant R-113 4 bubbles with 

on-zero air content in a subcooled liquid refrigerant pool. This ex- 

eriment has been compared to CFD results before, e.g. by Jia et al. 

50] . Data sets of radius and height as functions of time for single

ubbles are provided in Kalman [48] for several liquid subcooling 

alues. In our calculations, we have chosen those for 	T = 5 . 4 K,

able 5 summarises the experimental conditions and values chosen 

or our simulation. 

Physical properties of a R-113 system at atmospheric pressure 

re listed in Table 6 . Majority of the values have been obtained 

rom the NIST catalogue [49] . The latent heat value has been 

aken from [52] . The R-113/dry-air binary diffusion coefficient has 

een estimated using the FSG correlation [53,54] (presented here 

n SI units, except for diffusion volumes ς assumed in cm 

3 by 
4 1,1,2-Trichloro-1,2,2-trifluoroethane [49] . 

e

a

12 
onvention): 

 F SG = 10 

−7 · 101325 

p 0 
· T 1 . 75 

0 (
ς 

1 / 3 
v + ς 

1 / 3 
n 

)2 
·
√ 

10 

−3 

M v 
+ 

10 

−3 

M n 
. (46) 

he atmospheric pressure and the corresponding saturation tem- 

erature of R-113 are used as the reference pressure p 0 and tem- 

erature T 0 in Eq. (46) . The molar masses M v and M n are equal

o 187 . 4 × 10 −3 kg/mol and 29 . 0 × 10 −3 kg/mol, respectively. The 

iffusion volumes ς v and ς n have been taken in accordance with 

53,54] as 138.9 cm 

3 and 19.7 cm 

3 , respectively. For the depen- 

ence of the interfacial temperature T γ on the NCG volume fraction 

 γ , we use the Antoine relation ( Eq. (28) ). The Antoine coefficients 

or R-113 have been taken from [51] and are presented in Table 7 .

ote that, for simplicity, we have assumed the material properties 

f NCG, i.e. density, viscosity, heat capacity and thermal conduc- 

ivity, to be constant and equal to the R-113 vapour properties. As 

he air mass fraction remains � 2 . 5% throughout the experiment, 

e consider this simplification to be justified. Furthermore, since 

as properties have negligible impact on the dynamics of bubble 

ise [55] and heat transfer occurs almost solely in the liquid, the 

ain characteristics of the problem are well-captured. 

During the bubble rise in this configuration, Reynolds numbers 

xceeding 10 0 0 are observed. At those values, rectilinear motion 

nd symmetric bubble oscillations are no longer guaranteed, as 



L. Bureš and Y. Sato International Journal of Heat and Mass Transfer 173 (2021) 121233 

Table 6 

Physical properties of R-113 at atmospheric pressure. 

Density ρ [ kg/m 

3 
] 

Heat capacity c p 
[J/kg K] 

Thermal conductivity 

λ [W/mK] Dyn. viscosity μ [Pa s] 

Liquid 1508 940.4 6 . 367 × 10 −2 4 . 904 × 10 −5 

Vapour 7.424 691.4 9 . 506 × 10 −3 1 . 028 × 10 −5 

Gas mixture diffusion coefficient D [ m 

2 / s ]: 7 . 904 × 10 −6 , Latent heat L [J/kg]: 1 . 467 × 10 5 , Surface tension σ [N/m]: 0.01470, 

Reference saturation temperature T 0 [K]: 320.735. 

Table 7 

Antoine-equation coefficients for R-113 [51] . 

A B C 
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onfirmed by the photographs presented in Kalman [48] . Bubbles 

n axisymmetric simulations exhibited strong non-physical oscilla- 

ions often resulting in their splitting. Thus, reduced-size axisym- 

etric simulations were used only for evaluation of grid conver- 

ence during the initial, symmetric stage of the simulation and 

nly results of full three-dimensional Cartesian simulations have 

een considered for detailed analysis. The height of the domain 

n the z-direction L z is taken as 80 mm for the full simulations 

nd 13.3 mm for the reduced-size ones. The lateral widths in 

he 3D Cartesian computations L x and L y are taken as 20 mm; 

or the axisymmetric simulations, the equivalent radial half-width 

 r = 10 mm is used. To reduce computational requirements, lat- 

ral dimensions are discretised uniformly only in the centre of the 

olumn with stretched grid used for the rest. Gravitational accel- 

ration g is set equal to 9.81 m/s 2 and acting in the negative z- 

irection. 

In the experiment, the bubbles were generated by detachment 

rom a vertical nozzle. We have successfully simulated such a setup 
Fig. 15. Schematic representation of the domain used for the bubble con

13 
n Bureš and Sato [22] . In this work we want to precisely control 

he bubble initial radius and NCG content for quantitative compar- 

son purposes. Thus, we omit the bubble-growth and detachment 

hases and instead initialise a stagnant spherical bubble 5 mm 

2.5 mm for the axisymmetric simulations) above the bottom of 

he simulation domain using stratified sampling to estimate the 

nitial volume fraction field. Temperature in the liquid is initialised 

s T out . Initial value of the NCG volume fraction in the bubble 

s uniformly set equal to ε init and its temperature is prescribed 

s T init = T γ (ε init ) = 320 . 676 K according to the Antoine relation.

ig. 15 shows a schematic representation of the full Cartesian do- 

ain after initialisation. The y -direction is not shown. Both at the 

utlet and at the no-slip walls, the Dirichlet boundary condition 

or temperature is applied, T = T out , which is 5.4 K lower than the

eference saturation temperature T 0 . 

Multiple levels of grid refinement are simulated. Table 8 sum- 

arises domain characteristics of the simulated cases. A variable 

ime step 	t is used, with the limit imposed by the Courant num- 

er taken as CF L < 0 . 1 and second upper limit given by: 

t < 0 . 28 

√ 

(ρg + ρl )	x 3 

σ
. (47) 

he absolute minimum of these two criteria is the time step actu- 

lly used in the simulation. 
densation with NCG in subcooled liquid under gravity benchmark. 
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Fig. 16. Radius as a function of time for the bubble condensation with NCG in subcooled liquid under gravity benchmark, compared with measurements [48] ; initial stage 

of the simulation is shown. Grid level is defined in terms of the number of cells per domain width L x and normalised by 64 (value for the coarsest grid). Values on the 

ordinate are normalised by the initial bubble radius R 0 (see Table 5 ). 

Table 8 

Domain characteristics of the bubble condensation with NCG in subcooled liquid 

under gravity benchmark. Grid level is defined in number of cells per domain width 

L x and normalised by 64 (value for the coarsest grid). 

Grid 

level 

Min. grid 

spacing 

Number of cells 

(axisym.) 

Number of cells 

(Cart.) 

1 208.3 μm 3072 1,622,016 

2 104.1 μm 12,288 12,976,128 

3 69.44 μm – 43,794,432 

4 52.08 μm 49,152 100,663,296 

8 26.04 μm 196,608 –

16 13.02 μm 786,432 –
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.4.2. Grid convergence study 

Figs. 16 and 17 present the calculated volume-equivalent bubble 

adii and axial positions as functions of time, respectively, for all 

ven levels of grid refinement during the initial, symmetric portion 

f the simulation. The axisymmetric simulations were terminated 

n the occurrence of unphysical bubble break-up. It can be seen 

hat axisymmetric and Cartesian results are highly similar and a 
ig. 17. Bubble axial position as a function of time for the bubble condensation with NCG

nitial stage of the simulation is shown. Grid level is defined in terms of the number of c

14 
onverging behaviour has been achieved, even though rather high 

evel of grid refinement (8+) is required to reach grid convergence. 

ue to the prohibitive cost of such grid refinement, these simula- 

ions could not have not been conducted in the full Cartesian ge- 

metry and the rest of the analysis presented here has been per- 

ormed using the four calculated Cartesian results. In spite of the 

ack of full grid convergence, we believe that they bring useful in- 

ight into the dynamics of the problem. 

.4.3. Quantitative comparison with the experiment 

Fig. 18 shows the calculated volume-equivalent bubble radii as 

unctions of time for all considered levels of grid refinement in the 

ull Cartesian representation. For grid level 1, the bubble becomes 

oo small due to condensation with respect to the grid spacing 

 ∼5 grid cells per bubble volume-equivalent diameter at t � 0 . 35 s)

the resulting under-resolution mars the rest of the simulation. 

ig. 19 presents the calculated bubble axial positions as functions 

f time; the bubble rise velocity is evidently overestimated with 

espect to the experiment. Since the phase-change rate increases 

ith the bubble Reynolds number (i.e. with its velocity), this could 
 in subcooled liquid under gravity benchmark, compared with measurements [48] ; 

ells per domain width L x and normalised by 64 (value for the coarsest grid). 
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Fig. 18. Radius as a function of time for the bubble condensation with NCG in subcooled liquid under gravity benchmark, compared with measurements [48] . Grid level is 

defined in terms of the number of cells per domain width L x and normalised by 64 (value for the coarsest grid). Values on the ordinate are normalised by the initial bubble 

radius R 0 (see Table 5 ). 

Fig. 19. Bubble axial position as a function of time for the bubble condensation 

with NCG in subcooled liquid under gravity benchmark, compared with measure- 

ments [48] . Grid level is defined in terms of the number of cells per domain width 

L x and normalised by 64 (value for the coarsest grid). 
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xplain the overestimation of the condensation rate by the simu- 

ation, observable in Figs. 16 and 18 . The discrepancy between the 

xperimental and computed rise velocities is clearly visible during 

he adiabatic stage of the problem after the equilibrium concentra- 

ion is achieved. Although the overestimation of the rise velocity 

ould be caused by the VOF advection scheme, the adiabatic sim- 

lations we have performed during our previous work have been 

ble to capture the rise velocity correctly. Thus, the lower experi- 

ental bubble rise velocity could be instead attributed to the pres- 

nce of surfactants in the liquid – in Kalman [48] as well as in 

he previous work with the same experimental apparatus [56] , the 

resence of impurities in the liquid and the resulting immobilisa- 

ion of the bubble surface during the condensation of immiscible 

uids were assumed. 

Fig. 20 shows additional computed results of this benchmark. 

n the plot of temporal evolution of the bubble Reynolds number 

 Fig. 20 (a), calculated using Eq. (44) ), the initial oscillations and 

heir subsequent decay can be observed. At higher grid resolutions, 
15 
he terminal Reynolds number is achieved after the condensation 

rocess diminishes. 

The NCG volume fraction ( Fig. 20 (b)) follows a sigmoidal curve. 

his could be explained as follows: at the beginning of the sim- 

lation, the value of ε bub is low and the NCG have a negligible 

mpact on the phase-change rate. Due to the rising motion, the 

uperheated liquid surrounding the bubble is being constantly re- 

lenished, resulting in the volumetric flux ˙ V ′′ [ 3 /m m 

2 s ] being ap- 

roximately constant. And since: 

 πR 

2 ˙ V 

′′ = 

˙ V = 4 πR 

2 dR 

dt 
, (48) 

he radius decreases linearly during this phase. This can be con- 

rmed by observing the plot in Fig. 18 . And since ε bub ∝ R −3 , the

ubble NCG volume fraction initially follows a cubic relationship. 

s the bubble diminishes in size, the effect of NCG on the inter- 

acial temperature increases and the phase-change rate decreases, 

ltimately reducing to zero. Note that by assuming a constant heat 

ransfer coefficient in the liquid and linearising the Antoine rela- 

ion, the approximate differential equation for the full bubble ra- 

ius evolution could be obtained as: 

dR 

dt 
= −K(T init − T out ) 

ε ∞ 

− ε(R ) 

ε ∞ 

− ε init 

≈ −K	T 

(
1 − ε init R 

3 
0 

ε ∞ 

R 

3 

)
, (49) 

here K is related to the liquid heat transfer coefficient h [ W/m 

2 
K ] 

s: 

 = 

h 

Lρv 
. (50) 

 numerical solution of Eq. (49) can be used to fit the simulated 

volution of the bubble radius, as shown in Fig. 21 . The deduced 

alues of the liquid heat transfer coefficients for all grid levels are 

resented in Table 9 . They can be compared with the commonly- 

sed correlations for h : 

• The Ranz-Marshall correlation, originally developed for droplet 

evaporation [57] : 

h RM 

= 

λl 

d 

(
2 + 0 . 6 Re 0 . 5 P r 0 . 33 

l 

)
, (51) 

where d is the bubble diameter, Re the bubble Reynolds num- 

ber and P r l the liquid Prandtl number: 

P r l = 

μl c p,l 

λ
. (52) 
l 
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Fig. 20. Selected results of the bubble condensation with NCG in subcooled liquid under gravity benchmark. Grid level is defined in terms of the number of cells per domain 

width L x and normalised by 64 (value for the coarsest grid). 

Fig. 21. Radius as a function of time for the bubble condensation with NCG in sub- 

cooled liquid under gravity benchmark, dashed lines represent the fitted numerical 

solutions of Eq. (49) . Grid level is defined in terms of the number of cells per do- 

main width L x and normalised by 64 (value for the coarsest grid). Values on the 

ordinate are normalised by the initial bubble radius R 0 (see Table 5 ). 

Table 9 

Values of the liquid heat transfer coefficients h de- 

duced using reduced-order modelling for the bub- 

ble condensation with NCG in subcooled liquid un- 

der gravity benchmark. Grid level is defined in 

number of cells per domain width L x and nor- 

malised by 64 (value for the coarsest grid). 

Grid level h [ W/ m 

2 K ] 

1 493 

2 929 

3 1268 

4 1548 
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For R-113, P r l is equal to 7.24. 
• The Chen and Mayinger post-detachment correlation for bubble 

condensation [58] : 

h CM 

= 

λl 

d init 

· 0 . 185 Re 0 . 7 init P r 
0 . 5 
l , (53) 

where d init is the bubble detachment diameter and Re init the 

bubble detachment Reynolds number (i.e. d init must be used as 

the length scale in Eq. (44) ). For our calculations, we consider 
the initial bubble diameter as d init . b

16 
To calculate the parameters needed for the expressions above ( d

nd Re in Eq. (51) and Re init in Eq. (53) ), averaging during the non-

quilibrium phase of the bubble condensation process has been 

sed. The resulting mean value of the bubble Reynolds number is 

830 for grid levels 2, 3 and 4, i.e. slightly outside of the reported 

ange of applicability of the Ranz-Marshall correlation ( Re < 800 ) 

59] . The Chen and Mayinger correlation is valid for Re init < 10 4 ; in

ur simulations Re init is about 1300. The resulting predictions from 

he correlations are essentially equal for grid levels 2, 3 and 4: 

 RM 

≈ 1400 W/m 

2 
K , (54) 

 CM 

≈ 1700 W/m 

2 
K . (55) 

lthough the values calculated using the reduced-order fitting 

 Table 9 ) approach the result of the Chen and Mayinger correla- 

ion, the axisymmetric results in the previous section indicate that, 

ltimately, the heat transfer coefficients deduced directly from our 

imulations will exceed those from the experimental correlation. 

 direct analysis of the data which formed the basis of the Chen 

nd Mayinger correlation reveals that, for values of Re init ≈ 10 0 0 

where, by coincidence, essentially all measured R-113 data is lo- 

ated), scatter of up to 100% has been reported. This suggests that 

ur data is, overall, consistent with this experimental correlation. 

.4.4. Qualitative observations 

To illustrate the overall behaviour of the simulation, Fig. 22 

hows a detail of instantaneous distributions of temperature, NCG 

olume fraction, and pressure for one of the 3D Cartesian calcu- 

ations at t = 0 . 1 s. At this point, the simulation still has a high

evel of axial symmetry, although a minor asymmetry can already 

e observed. The bubble oscillations can be clearly discerned from 

he temperature field and effects of vortex shedding can be iden- 

ified in the temperature and pressure fields. The features of the 

olume-fraction distribution within the bubble, i.e. low concentra- 

ion of NCG in the centre and on the top of the bubble and high

oncentration on its sides, are very similar to the ones observed in 

ur previous work [22] . Fig. 23 shows the evolution of the simu- 

ated bubble motion from t = 0 . 00 s to t = 0 . 34 s by plotting the

= 0 . 5 isosurface. One snapshot per 	t = 0 . 02 s is shown from

 = 0 . 04 s. The experimentally-observed overall dynamics as de- 

cribed by Kalman [48] , i.e. strong initial deformation and oscil- 

ations and gradual transition to an oblate shape, are indeed ob- 

erved in our simulation. 

As the liquid in the bulk is stagnant overall, the effect of the 

ubble motion is localised and the introduced disturbances of the 
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Fig. 22. Instantaneous distribution of temperature (main figure), NCG volume frac- 

tion (right inset), and pressure (left inset) for the bubble condensation with NCG 

in subcooled liquid under gravity benchmark at t = 0 . 1 s. Pressure is zero at the 

outlet. Results are shown for grid level 4 (corresponding to 256 cells per domain 

width L x ). 

Fig. 23. Evolution of the rising bubble from t = 0 . 00 s to t = 0 . 34 s for the bubble 

condensation with NCG in subcooled liquid under gravity benchmark. 
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Fig. 24. Contours of disturbed temperature field at t = 0 . 26 s for the bubble con- 

densation with NCG in subcooled liquid under gravity benchmark. In the figure 

on the right, it is overlaid by the evolution of the simulated bubble motion from 

t = 0 . 00 s to t = 0 . 26 s. 

Fig. 25. Transverse ( x and y ) extents of the bubble as a function of time for the 

condensation with NCG in subcooled liquid under gravity benchmark. Results for 

the finest grid level are shown. 
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emperature field diminish slowly with respect to the time scales 

f the bubble rise; thus, they can be used to further examine the 

ubble motion. In Fig. 24 , contours of disturbed temperature field 

t t = 0 . 26 s are shown. The equilibration of the bubble interfa-

ial temperature with the liquid bulk temperature and the corre- 

ponding onset of adiabatic bubble rise are clearly visible between 

he two highest bubble contour snapshots. Furthermore, we can 

oughly distinguish four stages of the bubble motion: 

A. Initial stage ( t � 0 . 10 s): rectilinear motion with oscillations. 

B. Transition stage (0.10 s � t � 0 . 13 s). 

C. Zigzag motion stage (0.13 s � t � 0 . 20 s). 

D. Terminal stage: rectilinear motion and gradual deceleration to 

terminal velocity (0.20 s � t). 

These stages are further illustrated by the plot of the transverse 

xtents of the bubble in Fig. 25 . The complexity of the bubble mo-
17 
ion stems from the interplay of force balance, deformable bubble 

hape and non-constant volume of the bubble. It is rather interest- 

ng that the terminal rise velocity is achieved by deceleration due 

o the condensation reducing the bubble diameter. Particularly re- 

arkable is the fact that we have managed to capture the zigzag 

otion stage, which is known to occur due to an instability re- 

ulting from an intimate coupling of bubble path and geometry 

60] , although only one turn is visible in the present simulation re- 

ults due to the very fast condensation. While the transition from 

he linear motion to the zigzag motion has been often observed 
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Fig. 26. Species conservation error as a function of time ( Eq. (56) ) for the bubble condensation with NCG in subcooled liquid under gravity benchmark. Grid level is defined 

in terms of the number of cells per domain width L x and normalised by 64 (value for the coarsest grid). 
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xperimentally and numerically [60] , the reverse transition is quite 

nusual – it requires the shrinkage of the bubble to occur, which 

n turn increases its sphericity. As bubble deformation is a prereq- 

isite of the occurrence of the zigzag and/or helical motion [60] , 

he linear motion is restored when the bubble becomes sufficiently 

pherical. 

In Fig. 24 , the structure of the vortices induced by the rising 

ubble is visualized by the temperature contour. For instance, in 

he region D where the bubble straightly raises, we can observe 

he double-threaded wake behind the bubble. In the region C, the 

ake and the vortices generated by the zigzag motion can be seen, 

he vortices featuring a kind of hairpin shape. 

.4.5. Evaluation of species conservation 

As noted in Section 2 , the species transport equation is non- 

onservative due to the extrapolation of ε across the interface and 

ue to the limiting of the solution domain by the choice of a factor 

crit . In this work, results with φcrit = 0 . 999 have been presented 

o far, a value chosen based on the experience gained from our 

reliminary simulations. Fig. 26 (a) shows the evolution of the rel- 

tive species conservation error, RCE , calculated as: 

CE = 

	V NCG 

V NCG,init 

= 

∑ N 
i ε i (1 − φi )	V i − ε init V init 

ε init V init 

, (56) 

here N is the total number of grid cells. For an exactly species- 

onservative algorithm, RCE should be identically zero. It can 

e observed that at grid levels 3 and 4, the error of species- 

onservation is comparable at around 0 . 6% – at the end of the 

imulation, this corresponds to an absolute error of ∼ 0 . 006 · 17% ≈
 . 1% . 

To evaluate the effect of φcrit on simulation results and its re- 

ation to the species conservation error, we have tested five ad- 

itional values of φcrit for grid level 2 in the Cartesian configura- 

ion: 0.985, 0.995, 0.998, 0.999, and 0.9995. Negligible impact on 

he tracked simulation parameters (bubble radius, Reynolds num- 

er, etc.) has been observed; this points at the overall robustness 

f the solution algorithm. Nevertheless, φcrit strongly impacts the 

pecies conservation as can be observed from Fig. 26 (b). It can be 

iscerned that, starting from t ≈ 0 . 22 s, the NCG volume remains 

ssentially constant – this corresponds to the situation when the 

ubble does not deform and rises rectilinearly. Before that, two op- 

osing effects play a role in the NCG non-conservation: 

• Bubble deformation : as the bubble deforms, the extrapolation of 

ε across the interface gains on importance. Since constant ex- 

trapolation is used, when the ε gradient points towards the in- 
18 
terface (see Fig. 22 ), NCG mass is lost due to this effect. The 

lower the φcrit , the more significant this phenomenon is. 
• Generation of flotsam : due to the errors in the VOF advection, 

liquid cells with φ � 1 (flotsam) are generated during the bub- 

ble rise. If the φcrit is set too high, the solution domain of the 

NCG transport equation will contain erroneous cells, which can 

affect the NCG conservation. 

As can be seen from Fig. 26 (b), for low φcrit values, the initial 

ubble oscillation phase results in a significant loss of NCG mass 

ue to extrapolation. After the oscillations diminish, the flotsam er- 

ors start to dominate with their effect gaining on importance with 

ncreasing φcrit . Due to these two sources of error having opposite 

rends, the optimal choice of φcrit depends on the given problem. 

n the other hand, we can conclude that the non-conservation er- 

or is only weakly sensitive to φcrit for values close to the baseline 

0.995–0.999), which confirms it as a good initial choice. 

While the results of this validation exercise are encouraging, 

he lack of species conservation and the accuracy limited by grid 

pacing points at the need of further development of the species 

ransport solver. Achieving inherent species conservation and sub- 

rid accuracy akin to the rest of the computational method will be 

ttempted in future work. Additionally, further development effort 

e.g. higher-order discretisation, adaptive grid refinement) is neces- 

ary to successfully demonstrate grid convergence in the Cartesian 

eometry. 

. Conclusions 

In this work, a numerical method for the direct numerical sim- 

lation of phase change using a sharp-interface algorithm coupled 

o the diabatic geometric VOF method has been described. Trans- 

ort of NCG in the gas phase as well as their effect on the inter-

acial heat and mass transfer processes are accounted for using a 

hase-change model consistently applicable to single-species and 

ulti-species problems. Particular emphasis has been placed on 

he estimation of the interfacial area density needed for the cal- 

ulation of the mass-transfer rate; the Marching Cubes algorithm 

as been found to be the best-performing method. 

A number of benchmark simulations have been performed to 

est the numerical algorithm. Aside of standard 1D evaporation 

roblems, bubble growth in superheated quiescent liquid has been 

imulated using 2D axisymmetric and 3D Cartesian representa- 

ions. Near-perfect levels of sharpness and symmetry have been 

chieved and first-order accuracy has been demonstrated. To val- 

date the algorithm described in this paper, rising evaporating and 
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Fig. A27. Relative error of total interfacial area for a 2D circle as as a function of 

the reciprocal of grid resolution. Base-2 logarithmic abscissa is used. 
ondensing bubbles have been simulated with reasonable agree- 

ent with experimental data, discrepancies being attributed to the 

resence of impurities in the experiment. In the latter benchmark, 

pplicability of the method to problems without inherent symme- 

ry and featuring turbulence and NCG transport has been shown. 

urthermore, the heat transfer coefficient has been evaluated us- 

ng a reduced-order model and found to be consistent with the 

xperimental correlations and the observed transitions of the bub- 

le rise motion from rectilinear to zigzag and back to rectilinear 

ave been described. Finally, the degree of species-conservation er- 

or has been discussed and its impact has been found to be minor. 

To the best of our knowledge, this work represents the first 

uccessful application of a diabatic geometric VOF method cou- 

led with a sharp-interface phase-change model and species trans- 

ort to non-trivial problems and the performance of our algorithm 

n the verification and validation exercise represents an important 

tep in the development of codes capable of accurately resolving 

omplex three-dimensional multiphase flows. 

In future work, the algorithm will be thoroughly validated for 

all-bounded multiphase flows including conjugate heat transfer, 

uch as nucleate boiling. Furthermore, we will continue develop- 

ng our simulation method with the main aim to (i) improve the 

verall accuracy of the method and (ii) achieve of inherent species 

onservation and subgrid accuracy of the species transport solver. 
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ppendix A. Interfacial area density calculation 

In the context of VOF methods, the ||∇φ|| function or its scaled 

ariants are commonly used to estimate the interfacial area den- 

ity [33] . These methods, based on simple calculations of gradients, 

ould be termed algebraic methods . Conversely, the interfacial area 

f a PLIC surface in a computational cell can be calculated as a by-

roduct of the geometric reconstruction algorithm. Such a method 

ould be thus termed geometric and an example of its implemen- 

ation can be found e.g. in Soh et al. [33] . 

For interface-tracking methods (ITM), where the phasic inter- 

ace is associated with a certain isosurface, such as the zero level 

or the Level Set ITM [5] , interface reconstruction bears similarity 

o the rendering process in computer graphics and the Marching 

ubes (MC) algorithm [34] can be used. While the VOF-based pha- 

ic interface cannot be strictly identified with the φ = 0 . 5 isosur- 

ace, only a minor difference is expected between these two, which 

hould be weighed against the robustness and sharpness of the MC 

lgorithm. 

We consider the volume fraction φ to be defined at cell cen- 

res of a Cartesian grid. For assessment of interfacial area density 

alculations, we consider three algebraic methods, for which ϕ γ is 
19 
iven as [33] : 

 γ ,A = ||∇φ||; (A.1) 

 γ ,B = 2 φ||∇φ||; (A.2) 

 γ ,C = 6 φ(1 − φ) ||∇φ|| . (A.3) 

he two scaled approaches, ϕ γ ,B and ϕ γ ,C , have been developed 

o reduce the smearing of the interface. The disadvantage of ap- 

roach B lies in its lack of symmetry, while approach C is known 

o strongly underestimate the interfacial area [33] . For the gradi- 

nt calculation, we use the node-averaged values of φ; the ex- 

ct choice of the discretisation of ∇φ does not significantly af- 

ect the results. For further comparison, we consider the geometric 

pproach based on identifying the intersections of the PLIC-plane 

ith the cell edges, similar to the one described in Soh et al. [33] .

n order to avoid spurious interfaces created due to errors in vol- 

me fraction advection, we consider only cells in the vicinity of the 

nterface. These cells can be identified by using Eq. (10) . Finally, 

e also consider the interfacial area density calculated using the 

arching Cubes algorithm based on node-averaged values of φ for 

omparison. 

As a first test case, we analytically initialise a 2D circle centred 

n a periodic domain. We take its diameter as D = 1 . 01 N	x, where

x is the grid spacing and N is a grid level quantifying the degree 

f grid refinement (approximately the number of cells per circle di- 

meter). Uniformly discretised square is used as the computational 

rid. Fig. A.27 shows the calculated relative error ( Eq. (35) ) of to-

al interfacial area as a function of 16 /N. The results for algebraic 

pproach C are not shown as the underestimation of ϕ γ ,C is about 

0% for all levels of grid refinement. It can be seen that the other 

lgebraic methods feature an asymptotic bias of about 0.2%, while 

he asymptotic bias of the MC method is ∼0.01%. The MC method 

s clearly best-performing overall. 

In terms of identifying interfacial cells, the algebraic approach 

, the geometric approach and the MC method all exhibited zero 

rror. Note that this is not guaranteed for the Marching Cubes al- 

orithm; in other configurations it can over/underestimate the to- 

al number of interfacial cells due to the misalignment of the VOF 

nterface with the φ = 0 . 5 isosurface. The algebraic approach A dis- 

ributes the interfacial area over a band of cells near the inter- 

ace, resulting in an overestimation of the total number of inter- 

acial cells by a factor of 3 at all levels of grid refinement. For 

he algebraic approach B, the overestimation factor asymptotically 

pproaches 2. 

https://doi.org/10.13039/501100001711
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Fig. A28. Relative error of total interfacial area for a 3D sphere as as a function of 

the reciprocal of grid resolution. Base-2 logarithmic abscissa is used. 
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Fig. A29. Relative error of total interfacial area for a 2D circle advected in the di- 

agonal direction as a function of normalised time. Grid resolution measured in the 
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As a second test case, we extend this problem to three dimen- 

ions. Since it is impossible to initialise the volume fraction distri- 

ution corresponding to a sphere on a Cartesian grid analytically, 

e use stratified sampling with m = 20 3 = 80 0 0 evaluations per 

ell to initialise the sphere, i.e. a cell near the interface is divided 

nto 20 × 20 × 20 subcells and we evaluate if their centres are lo- 

ated inside or outside of the sphere. Fig. A.28 shows that the re- 

ults for algebraic approaches and the MC method are very sim- 

lar to the two-dimensional case (results for algebraic approach C

re again omitted). Conversely, the results of the geometric method 

eteriorate significantly; we can observe that it features a non-zero 

ias ( ∼ −0 . 2% ), which is a result of the non-exact initialisation of

he sphere. By increasing the number of stratified sampling points 

, the magnitude of the bias decreases. Since the other methods 

re essentially insensitive to the value of m, this shows the lack 

f robustness of the geometric method. The MC method is again 

learly best-performing. 

For this problem, the Marching Cubes algorithm misestimates 

he total number of interfacial cells by up to several percent, de- 

ending on the grid resolution and the number of points m . Results 

or other approaches remain similar to the two-dimensional case. 

Based on these two test cases and the requirements laid out in 

ection 1 , it is evident that for sharp-interface VOF method with 

hase change, only the geometric approach and MC method are 

ossible candidates for interfacial area estimation with the supe- 

ior performance of the MC method stemming from its overall ro- 

ustness. In spite of the error of area computed by the algebraic 

pproaches A and B being minor, they are not considered due to 

he smearing of the interfacial area density. To complement the 

resented static analysis, Fig. A.29 shows the evolution of the rel- 

tive error of total interfacial area for a 2D circle with N = 128

dvected in the diagonal direction. The circle is advected over a 

istance equal to 2 
√ 

2 D with CF L = 0 . 05 . Both for the geometric

pproach and the MC method the interfacial area slowly increases 

ver time due to the deformation of the circle caused by errors 

n the advection scheme, even though the total volume of both 

hases is kept exactly constant in time. While both approaches 

tarted with an error of total area ≈ 0 , the spurious increase for 

he geometric approach is faster and significantly more erratic. This 

onfirms the superiority of the MC method even when the VOF in- 

erface does not perfectly align with the φ = 0 . 5 isosurface. Similar 

onclusions can be reached when the advection of a 3D sphere is 

ested. 
20 
eferences 

[1] C.R. Kharangate, I. Mudawar, Review of computational studies on boiling and 
condensation, Int. J. Heat Mass Transf. 108 (2017) 1164–1196, doi: 10.1016/j. 

ijheatmasstransfer.2016.12.065 . 
[2] C. Hirt, B. Nichols, Volume of fluid (VOF) method for the dynamics of 

free boundaries, J. Comput. Phys. 39 (1) (1981) 201–225, doi: 10.1016/ 
0021- 9991(81)90145- 5 . 

[3] W.F. Noh , P. Woodward , Slic (simple line interface calculation), in: A.I. van 

de Vooren, P.J. Zandbergen (Eds.), Proceedings of the Fifth International Con- 
ference on Numerical Methods in Fluid Dynamics, June 28–July 2, 1976, 

Twente University, Enschede, Springer Berlin Heidelberg, Berlin, Heidelberg, 
1976, pp. 330–340 . 

[4] D. Youngs , Time-dependent multi-material flow with large fluid distortion, in: 
K. Morton, M. Baines (Eds.), Numerical Methods for Fluid Dynamics, Academic 

Press, 1982, pp. 273–285 . 

[5] M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions 
to incompressible two-phase flow, J. Comput. Phys. 114 (1) (1994) 146–159, 

doi: 10.1006/jcph.1994.1155 . 
[6] S. Popinet, Numerical models of surface tension, Annu. Rev. Fluid Mech. 50 (1) 

(2018) 49–75, doi: 10.1146/annurev- fluid- 122316-045034 . 
[7] S.W.J. Welch, J. Wilson, A volume of fluid based method for fluid flows with 

phase change, J. Comput. Phys. 160 (2) (20 0 0) 662–682, doi: 10.10 06/jcph.20 0 0.

6481 . 
[8] S.W.J. Welch, T. Rachidi, Numerical computation of film boiling including con- 

jugate heat transfer, Numer. Heat Transf. Part B 42 (1) (2002) 35–53, doi: 10.
1080/10407790190053824 . 

[9] D.K. Agarwal, S.W.J. Welch, G. Biswas, F. Durst, Planar simulation of bubble 
growth in film boiling in near-critical water using a variant of the VOF method, 

J. Heat Transf. 126 (3) (2004) 329–338, doi: 10.1115/1.1737779 . 

[10] J.B. Haelssig, A.Y. Tremblay, J. Thibault, S.G. Etemad, Direct numerical sim- 
ulation of interphase heat and mass transfer in multicomponent vapour–

liquid flows, Int. J. Heat Mass Transf. 53 (19) (2010) 3947–3960, doi: 10.1016/j. 
ijheatmasstransfer.2010.05.013 . 

[11] K. Ling, Z.-Y. Li, W.-Q. Tao, A direct numerical simulation for nucleate boiling 
by the VOSET method, Numer. Heat Transf. Part A 65 (10) (2014) 949–971, 

doi: 10.1080/10407782.2013.850971 . 

[12] D. Sun, J. Xu, Q. Chen, Modeling of the evaporation and condensation phase- 
change problems with fluent, Numer. Heat Transf. Part B 66 (4) (2014) 326–

342, doi: 10.1080/10407790.2014.915681 . 
[13] M.W. Akhtar, S.J. Kleis, A volume of fluid phase change model on adaptive oc- 

tree grids, J. ASTM Int. 8 (3) (2011) 1–21, doi: 10.1520/JAI103348 . 
[14] M.W. Akhtar, S.J. Kleis, Boiling flow simulations on adaptive octree grids, 

Int. J. Multiph. Flow 53 (2013) 88–99, doi: 10.1016/j.ijmultiphaseflow.2013. 

01.008 . 
[15] I. Perez-Raya, S.G. Kandlikar, Discretization and implementation of a sharp in- 

terface model for interfacial heat and mass transfer during bubble growth, Int. 
J. Heat Mass Transf. 116 (2018) 30–49, doi: 10.1016/j.ijheatmasstransfer.2017.08. 

106 . 
[16] I. Perez-Raya, S.G. Kandlikar, Numerical models to simulate heat and mass 

transfer at sharp interfaces in nucleate boiling, Numer. Heat Transf. Part A 74 
(10) (2018) 1583–1610, doi: 10.1080/10407782.2018.1543918 . 

[17] L. Malan , Direct Numerical Simulation of Free-surface and Interfacial Flow Us- 

ing the VOF Method : Cavitating Bubble Clouds and Phase Change, Université
Pierre et Marie Curie - Paris VI, 2017 Thesis . 

[18] L. Malan, A. Malan, S. Zaleski, P. Rousseau, A geometric VOF method for in- 
terface resolved phase change and conservative thermal energy advection, J. 

Comput. Phys. 426 (2021) 109920, doi: 10.1016/j.jcp.2020.109920 . 

https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.065
https://doi.org/10.1016/0021-9991(81)90145-5
http://refhub.elsevier.com/S0017-9310(21)00336-7/sbref0003
http://refhub.elsevier.com/S0017-9310(21)00336-7/sbref0003
http://refhub.elsevier.com/S0017-9310(21)00336-7/sbref0003
http://refhub.elsevier.com/S0017-9310(21)00336-7/sbref0004
http://refhub.elsevier.com/S0017-9310(21)00336-7/sbref0004
https://doi.org/10.1006/jcph.1994.1155
https://doi.org/10.1146/annurev-fluid-122316-045034
https://doi.org/10.1006/jcph.2000.6481
https://doi.org/10.1080/10407790190053824
https://doi.org/10.1115/1.1737779
https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.013
https://doi.org/10.1080/10407782.2013.850971
https://doi.org/10.1080/10407790.2014.915681
https://doi.org/10.1520/JAI103348
https://doi.org/10.1016/j.ijmultiphaseflow.2013.penalty -@M 01.008
https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.106
https://doi.org/10.1080/10407782.2018.1543918
http://refhub.elsevier.com/S0017-9310(21)00336-7/sbref0017
http://refhub.elsevier.com/S0017-9310(21)00336-7/sbref0017
https://doi.org/10.1016/j.jcp.2020.109920


L. Bureš and Y. Sato International Journal of Heat and Mass Transfer 173 (2021) 121233 

[

[

[  

[

[

[

[

[

[  

[

[  

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[19] Y. Sato, B. Niceno, A sharp-interface phase change model for a mass- 
conservative interface tracking method, J. Comput. Phys. 249 (2013) 127–161, 

doi: 10.1016/j.jcp.2013.04.035 . 
20] N. Scapin, P. Costa, L. Brandt, A volume-of-fluid method for interface-resolved 

simulations of phase-changing two-fluid flows, J. Comput. Phys. 407 (2020) 
109251, doi: 10.1016/j.jcp.2020.109251 . 

[21] Y. Sato, B. Ni ̌ceno, Nucleate pool boiling simulations using the interface track- 
ing method: Boiling regime from discrete bubble to vapor mushroom region, 

Int. J. Heat Mass Transf. 105 (2017) 505–524, doi: 10.1016/j.ijheatmasstransfer. 

2016.10.018 . 
22] L. Bureš, Y. Sato, Direct numerical simulation of phase change in the presence 

of non-condensable gases, Int. J. Heat Mass Transf. 151 (2020) 119400, doi: 10. 
1016/j.ijheatmasstransfer.2020.119400 . 

23] Y. Sato, B. Ni ̌ceno, A new contact line treatment for a conservative level set
method, J. Comput. Phys. 231 (10) (2012) 3887–3895, doi: 10.1016/j.jcp.2012.01. 

034 . 

24] G. Weymouth, D.K.-P. Yue, Conservative volume-of-fluid method for free- 
surface simulations on cartesian-grids, J. Comput. Phys. 229 (8) (2010) 2853–

2865, doi: 10.1016/j.jcp.2009.12.018 . 
25] J. Schlottke, B. Weigand, Direct numerical simulation of evaporating droplets, 

J. Comput. Phys. 227 (10) (2008) 5215–5237, doi: 10.1016/j.jcp.2008.01.042 . 
26] K. Eisenschmidt, M. Ertl, H. Gomaa, C. Kieffer-Roth, C. Meister, P. Rauschen- 

berger, M. Reitzle, K. Schlottke, B. Weigand, Direct numerical simulations for 

multiphase flows: An overview of the multiphase code FS3D, Appl. Math. Com- 
put. 272 (2016) 508–517, doi: 10.1016/j.amc.2015.05.095 . 

27] D. Bothe, S. Fleckenstein, A volume-of-fluid-based method for mass transfer 
processes at fluid particles, Chem. Eng. Sci. 101 (2013) 283–302, doi: 10.1016/j. 

ces.2013.05.029 . 
28] L. Bures, Y. Sato, Sharp-interface phase-change model with the VOFmethod, 

in: Proceedings of the 5th Thermal and Fluids Engineering Conference (TFEC 

2020), 2020, pp. 63–66, doi: 10.1615/TFEC2020.cmd.031939 . 
29] S. Bna, A. Cervone, V. Le Chenadec, S. Manservisi, R. Scardovelli, Review of split

and unsplit geometric advection algorithms, AIP Conf. Proc. 1558 (1) (2013) 
875–878, doi: 10.1063/1.4825636 . 

30] J.E. Pilliod, E.G. Puckett, Second-order accurate volume-of-fluid algorithms for 
tracking material interfaces, J. Comput. Phys. 199 (2) (2004) 465–502, doi: 10. 

1016/j.jcp.2003.12.023 . 

[31] E. Aulisa, S. Manservisi, R. Scardovelli, S. Zaleski, Interface reconstruction with 
least-squares fit and split advection in three-dimensional cartesian geometry, 

J. Comput. Phys. 225 (2) (2007) 2301–2319, doi: 10.1016/j.jcp.2007.03.015 . 
32] J. López, C. Zanzi, P. Gómez, R. Zamora, F. Faura, J. Hernández, An improved

height function technique for computing interface curvature from volume 
fractions, Comput. Methods Appl. Mech. Eng. 198 (33) (2009) 2555–2564, 

doi: 10.1016/j.cma.20 09.03.0 07 . 

33] G.Y. Soh, G.H. Yeoh, V. Timchenko, An algorithm to calculate interfacial area 
for multiphase mass transfer through the volume-of-fluid method, Int. J. Heat 

Mass Transf. 100 (2016) 573–581, doi: 10.1016/j.ijheatmasstransfer.2016.05.006 . 
34] W.E. Lorensen, H.E. Cline, Marching cubes: a high resolution 3D surface con- 

struction algorithm, in: Proceedings of the 14th Annual Conference on Com- 
puter Graphics and Interactive Techniques, SIGGRAPH ’87 (Anaheim, CA), 249, 

1987, pp. 163–169, doi: 10.1145/37401.37422 . 
35] A.J. Chorin, Numerical solution of the Navier–Stokes equations, Math. Comput. 

22 (1968) 745–762, doi: 10.1090/S0025- 5718- 1968- 0242392- 2 . 

36] Y. Saad , Iterative Methods for Sparse Linear Systems, SIAM, 2003 . 
37] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling sur- 

face tension, J. Comput. Phys. 100 (1992) 335–354, doi: 10.1016/0021-9991(92) 
90240-Y . 

38] F.H. Harlow, J.E. Welch, Numerical calculation of time-dependent viscous in- 
compressible flow of fluid with free surface, Phys. Fluids 8 (12) (1965) 2182–

2189, doi: 10.1063/1.1761178 . 

39] P.L. Roe, Characteristic-based schemes for the euler equations, Annu. Rev. Fluid 
Mech. 18 (1) (1986) 337–365, doi: 10.1146/annurev.fl.18.010186.0 020 05 . 

40] S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer 
New York, New York, NY, 2003, doi: 10.1007/0- 387- 22746- 6 _ 8 . 
21 
[41] D. Koutsoyiannis, Clausius–Clapeyron equation and saturation vapour pressure: 
simple theory reconciled with practice, Eur. J. Phys. 22 (2012) 295–305, doi: 10. 

1088/0143-0807/33/2/295 . 
42] G.W. Thomson, The Antoine equation for vapor-pressure data, Chem. Rev. 38 

(1) (1946) 1–39 PMID: 21016992, doi: 10.1021/cr60119a001 . 
43] G. Son, V.K. Dhir, Numerical simulation of film boiling near critical pressures 

with a level set method, J. Heat Transf. 120 (1) (1998) 183–192, doi: 10.1115/1. 
2830042 . 

44] C. Kunkelmann, P. Stephan, CFD simulation of boiling flows using the volume- 

of-fluid method within openfoam, Numer. Heat Transf. Part A 56 (8) (2009) 
631–646, doi: 10.1080/10407780903423908 . 

45] L. Scriven, On the dynamics of phase growth, Chem. Eng. Sci. 10 (1) (1959) 
1–13, doi: 10.1016/0 0 09-2509(59)80 019-1 . 

46] L. Florschuetz, C. Henry, A. Khan, Growth rates of free vapor bubbles 
in liquids at uniform superheats under normal and zero gravity condi- 

tions, Int. J. Heat Mass Transf. 12 (11) (1969) 1465–1489, doi: 10.1016/0017- 

9310(69)90028-3 . 
[47] X. Qu, M. Tian, G. Zhang, X. Leng, Experimental and numerical investigations 

on the air-steam mixture bubble condensation characteristics in stagnant cool 
water, Nucl. Eng. Des. 285 (2015) 188–196, doi: 10.1016/j.nucengdes.2014.12. 

031 . 
48] H. Kalman, Condensation of bubbles in miscible liquids, Int. J. Heat Mass 

Transf. 46 (18) (2003) 3451–3463, doi: 10.1016/S0017-9310(03)00128-5 . 

49] E.W. Lemmon, M.O. McLinden, D.G. Friend, Thermophysical properties of fluid 
systems, in: P.J. Linstrom, W.G. Mallard (Eds.), NIST Chemistry WebBook, NIST 

Standard Reference Database Number 69, National Institute of Standards and 
Technology, 2018, doi: 10.18434/T4D303 . [Accessed 31.7.2020] 

50] H. Jia, X. Xiao, Y. Kang, Investigation of bubble behavior with phase change 
under the effect of noncondensable gas, Chem. Eng. Sci. 207 (2019) 631–643, 

doi: 10.1016/j.ces.2019.07.003 . 

[51] E. Sanjari, M. Honarmand, H. Badihi, A. Ghaheri, An accurate generalized model 
for predict vapor pressure of refrigerants, Int. J. Refrig. 36 (4) (2013) 1327–

1332, doi: 10.1016/j.ijrefrig.2013.01.007 . 
52] P. Lu, X. Zheng, P. Yang, L. Fang, H. Huang, Numerical investigation into the 

vapor-liquid flow in the mixer of a liquid metal magneto-hydro-dynamic sys- 
tem, RSC Adv. 7 (57) (2017) 35765–35770, doi: 10.1039/c7ra06135h . 

53] E.N. Fuller, P.D. Schettler, J.C. Giddings, A new method for prediction of bi- 

nary gas-phase coefficients, Ind. Eng. Chem. 58 (5) (1966) 18–27, doi: 10.1021/ 
ie50677a007 . 

54] E.N. Fuller, K. Ensley, J.C. Giddings, Diffusion of halogenated hydrocarbons in 
helium. the effect of structure on collision cross sections, J. Phys. Chem. 73 

(11) (1969) 3679–3685, doi: 10.1021/j100845a020 . 
55] D. Legendre, R. Zenit, J.R. Velez-Cordero, On the deformation of gas bubbles in 

liquids, Phys. Fluids 24 (4) (2012) 043303, doi: 10.1063/1.4705527 . 

56] Y. Lerner, H. Kalman, R. Letan, Condensation of an accelerating-decelerating 
bubble: experimental and phenomenological analysis, J. Heat Transf. 109 (2) 

(1987) 509–517, doi: 10.1115/1.3248112 . 
57] W.E. Ranz , W.R. Marshall , Evaporation from drops, Chem. Eng. Prog. 48 (3) 

(1952) 141–146 . 
58] Y. Chen, F. Mayinger, Measurement of heat transfer at the phase interface of 

condensing bubbles, Int. J. Multiph. Flow 18 (6) (1992) 877–890, doi: 10.1016/ 
0301- 9322(92)90065- O . 

59] S. Al Issa, P. Weisensee, R. Macián-Juan, Experimental investigation of steam 

bubble condensation in vertical large diameter geometry under atmospheric 
pressure and different flow conditions, Int. J. Heat Mass Transf. 70 (2014) 918–

929, doi: 10.1016/j.ijheatmasstransfer.2013.11.049 . 
60] J.C. Cano-Lozano, C. Martínez-Bazán, J. Magnaudet, J. Tchoufag, Paths and 

wakes of deformable nearly spheroidal rising bubbles close to the transition to 
path instability, Phys. Rev. Fluids 1 (2016) 053604, doi: 10.1103/PhysRevFluids. 

1.053604 . 

61] Lubomír Bureš, Yohei Sato, Andreas Pautz, Piecewise linear interface-capturing 
volume-of-fluid method in axisymmetric cylindrical coordinates, Journal 

of Computational Physics (2021) 110291 In press, doi: 10.1016/j.jcp.2021. 
110291 . 

https://doi.org/10.1016/j.jcp.2013.04.035
https://doi.org/10.1016/j.jcp.2020.109251
https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.018
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119400
https://doi.org/10.1016/j.jcp.2012.01.034
https://doi.org/10.1016/j.jcp.2009.12.018
https://doi.org/10.1016/j.jcp.2008.01.042
https://doi.org/10.1016/j.amc.2015.05.095
https://doi.org/10.1016/j.ces.2013.05.029
https://doi.org/10.1615/TFEC2020.cmd.031939
https://doi.org/10.1063/1.4825636
https://doi.org/10.1016/j.jcp.2003.12.023
https://doi.org/10.1016/j.jcp.2007.03.015
https://doi.org/10.1016/j.cma.2009.03.007
https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.006
https://doi.org/10.1145/37401.37422
https://doi.org/10.1090/S0025-5718-1968-0242392-2
http://refhub.elsevier.com/S0017-9310(21)00336-7/sbref0036
http://refhub.elsevier.com/S0017-9310(21)00336-7/sbref0036
https://doi.org/10.1016/0021-9991(92)90240-Y
https://doi.org/10.1063/1.1761178
https://doi.org/10.1146/annurev.fl.18.010186.002005
https://doi.org/10.1007/0-387-22746-6_8
https://doi.org/10.1088/0143-0807/33/2/295
https://doi.org/10.1021/cr60119a001
https://doi.org/10.1115/1.2830042
https://doi.org/10.1080/10407780903423908
https://doi.org/10.1016/0009-2509(59)80019-1
https://doi.org/10.1016/0017-penalty -@M 9310(69)90028-3
https://doi.org/10.1016/j.nucengdes.2014.12.031
https://doi.org/10.1016/S0017-9310(03)00128-5
https://doi.org/10.18434/T4D303
https://doi.org/10.1016/j.ces.2019.07.003
https://doi.org/10.1016/j.ijrefrig.2013.01.007
https://doi.org/10.1039/c7ra06135h
https://doi.org/10.1021/ie50677a007
https://doi.org/10.1021/j100845a020
https://doi.org/10.1063/1.4705527
https://doi.org/10.1115/1.3248112
http://refhub.elsevier.com/S0017-9310(21)00336-7/sbref0057
http://refhub.elsevier.com/S0017-9310(21)00336-7/sbref0057
http://refhub.elsevier.com/S0017-9310(21)00336-7/sbref0057
https://doi.org/10.1016/0301-9322(92)90065-O
https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.049
https://doi.org/10.1103/PhysRevFluids.1.053604
https://doi.org/10.1016/j.jcp.2021.penalty -@M 110291

	Direct numerical simulation of evaporation and condensation with the geometric VOF method and a sharp-interface phase-change model
	1 Introduction
	2 Numerical method
	2.1 Interface tracking using a VOF algorithm accounting for phase change
	2.1.1 Interfacial area density calculation
	2.1.2 Liquid velocity calculation

	2.2 Momentum conservation
	2.3 Energy conservation
	2.3.1 Diffusion term discretisation
	2.3.2 Advection term discretisation
	2.3.3 Phase-change model

	2.4 Species transport in the gas phase
	2.4.1 Diffusion term discretisation
	2.4.2 Advection term discretisation
	2.4.3 Interfacial temperature


	3 Verification and validation
	3.1 One-dimensional problems
	3.2 Bubble growth in quiescent superheated liquid
	3.3 Bubble growth in superheated liquid under gravity
	3.4 Bubble condensation with NCG in subcooled liquid under gravity
	3.4.1 Simulation setup
	3.4.2 Grid convergence study
	3.4.3 Quantitative comparison with the experiment
	3.4.4 Qualitative observations
	3.4.5 Evaluation of species conservation


	4 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A Interfacial area density calculation
	References


