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Left ventricular end-systolic elastance (Ees) is a major determinant of cardiac systolic
function and ventricular-arterial interaction. Previousmethods for the Ees estimation require
the use of the echocardiographic ejection fraction (EF). However, given that EF expresses
the stroke volume as a fraction of end-diastolic volume (EDV), accurate interpretation of EF
is attainable only with the additional measurement of EDV. Hence, there is still need for a
simple, reliable, noninvasive method to estimate Ees. This study proposes a novel artificial
intelligence—based approach to estimate Ees using the information embedded in clinically
relevant systolic time intervals, namely the pre-ejection period (PEP) and ejection time (ET).
We developed a training/testing scheme using virtual subjects (n � 4,645) from a previously
validated in-silico model. Extreme Gradient Boosting regressor was employed to model
Ees using as inputs arm cuff pressure, PEP, and ET. Results showed that Ees can be
predicted with high accuracy achieving a normalized RMSE equal to 9.15% (r � 0.92) for a
wide range of Ees values from 1.2 to 4.5 mmHg/ml. The proposed model was found to be
less sensitive to measurement errors (±10–30% of the actual value) in blood pressure,
presenting low test errors for the different levels of noise (RMSE did not exceed
0.32 mmHg/ml). In contrast, a high sensitivity was reported for measurements errors in
the systolic timing features. It was demonstrated that Ees can be reliably estimated from the
traditional arm-pressure and echocardiographic PEP and ET. This approach constitutes a
step towards the development of an easy and clinically applicable method for assessing left
ventricular systolic function.
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INTRODUCTION

The concept of end-systolic elastance (Ees), first introduced by Suga et al. (Suga and Sagawa, 1974),
has become widely accepted. The Ees, i.e., the slope of the end-systolic pressure-volume relationship
(ESPVR), constitutes a pivotal determinant of left ventricular (LV) systolic performance and is now
considered an established index of contractility (Suga et al., 1973; Suga and Sagawa, 1974; Sagawa
et al., 1977). Assessment of Ees is of high importance in physiological studies and clinical practice.
The effective matching between Ees and vascular load leads to optimal mechanical function. Age-
related arterial stiffening (Chen et al., 1998) and hypertension (Borlaug et al., 2009) are related to the
stiffening of the left ventricle, which is accompanied by an increased value of Ees. It has also been
shown that antihypertensive treatment reduces Ees and enhances arterial-ventricular coupling (Lam
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et al., 2013). Furthermore, the intercept of the ESPVR has been
linked with prognosis in chronic heart failure (Ky et al., 2013).
Derivation of Ees requires the measurement of multiple
invasive pressure-volume (P-V) loops under various loading
conditions which limits its use in the routine clinical setting. In
an attempt to address this limitation, research has been
directed towards the development of methods for deriving
Ees from easily obtained noninvasive single-beat
measurements (Shishido et al., 2000; Chen et al., 2001;
Pagoulatou et al., 2021).

In our previous work (Bikia et al., 2020), we demonstrated
that Ees could be accurately determined using brachial systolic
(brSBP) and diastolic blood pressure (brDBP), heart rate (HR),
and ejection fraction (EF). The importance of EF on obtaining
an accurate Ees estimation has been also indicated by other
published methods (Shishido et al., 2000; Chen et al., 2001).
Nevertheless, accurate interpretation of EF renders essential
the additional knowledge of physical determinants of
myocardial contraction, namely, the preload and afterload
(Krayenbühl et al., 1968; Konstam and Abboud, 2017). The
question that arises is whether Ees could be derived in a faster
and more optimized way while reducing the complexity of the
required measurements. Our primary hypothesis is that EF
information could be replaced by other cardiac functional
parameters, e.g., electrical or acoustic signals of cardiac
events, that are related to the LV contractility in a direct or
indirect manner.

Previous studies have highlighted the relevance of the
timing of cardiac events in assessing the contractile state of
the heart (Weissler et al., 1968; Weissler et al., 1981;
Boudoulas, 1990). Pre-ejection period (PEP), i.e., the period
between the onset of ventricular contraction and the aortic
valve opening, serves as a major index of excitation-
contraction coupling and may potentially be used to
evaluate contractility (Gillebert et al., 2004; Krohova et al.,
2017). Concurrently, LV ejection time (ET), delimited by the
opening and closing of the aortic valve, provides incremental
prognostic information on cardiac performance (Boudoulas,
1990; Biering-Sørensen et al., 2018).

The objective of this study was to propose a novel method for
the estimation of Ees using brSBP, brDBP, HR (via
sphygmomanometry), and contractility-related timing
parameters (via ECG and echocardiography), i.e., PEP and
ET. The analysis relied on the use of Machine Learning
regression analysis. To appraise our concept, we developed
and evaluated this method using synthetic data generated
from a previously validated in-silico model (Reymond et al.,
2009). An in-silico model constitutes a computer program that
allows for simulating human physiology, cardiovascular
mechanisms, and/or progression of disease. The utility of
such models in medicine has essentially facilitated the
visualization and prediction of physiological responses under
different cardiovascular conditions. In the present study, the in-
silico model provides additional hemodynamic insights, which
would be difficult to acquire in vivo, and is used for the
preliminary assessment and design of the proposed
methodology.

MATERIALS AND METHODS

Data Analysis
Study Population
The population used in the present in-silico study reflected a wide
range of hemodynamical properties and states. Different
hemodynamic cases (n � 4,645) were simulated by modifying
key cardiac and systemic parameters of a previously validated in-
silico model. The 1-D mathematical cardiovascular model, which
was adopted in the current study, has been well described in
(Reymond et al., 2009). The arterial tree model incorporates all
the major arteries of the systemic circulation, as well as a detailed
network representation of the cerebral circulation and the
coronary circulation. The governing equations of the model
are acquired by integrating the longitudinal momentum and
continuity of the Navier-Stokes equations over the arterial
cross-sectional area. By solving the governing equations with
proper boundary conditions, flow and pressure are obtained in all
arterial locations. The arterial segments of the model are
considered as long tapered tubes, and their compliance is
calculated by a nonlinear function of pressure and location as
described by Langewouters (Langewouters, 1982). Distal vessels
are terminated with three-element Windkessel models
(Westerhof et al., 2009) and intimal shear is modeled using
the Witzig-Womersley theory (Womersley, 1957). At the
proximal end, the arterial tree is coupled with a varying
elastance model of the left ventricle (Suga and Sagawa, 1974;
Sagawa et al., 1977). This time-varying elastance model (VEM)
describes the relationship between the LV pressure, PLV, and
volume, VLV, namely:

E(t) � PLV(t)
VLV(t) − Vd

, (1)

where Vd indicates the dead volume of the left ventricle. Further
details on the 1-Dmodel can be found in the original publications
(Reymond et al., 2009; Reymond et al., 2011).

Concerning data generation, Ees varied in the range of
1.00–4.50 mmHg/ml so that the dataset includes cases with
normal as well as dilated and hypertrophied hearts (Feldman
et al., 1996; Chen et al., 1998; Pak et al., 1998). The filling pressure
lied in the range of 7.00–23.00 mmHg according to (Feldman
et al., 1996; Chen et al., 1998; Pak et al., 1998). The dead volume
(Vd) and the time of maximal elastance (tes) were modified
according to (Starling et al., 1987; Reymond et al., 2009). HR
values were within the range of 60 and 100 bpm. Total peripheral
resistance and arterial compliance were altered to simulate a wide
variety of arterial tree configurations (Langewouters, 1982; Lu
and Mukkamala, 2006; Segers et al., 2008). In addition to the
modification of cardiac and systemic parameters, arterial
geometry was changed with respect to arterial length and
diameter for each segment to approximate different body types
(Wolak et al., 2008; Devereux et al., 2012). The variation of the
geometry was done in a uniform way for all arterial segments
based on the variation of the aortic diameter. No topological
variations (e.g., in the circle of Willis, number of branches from
aortic arch, etc.) were considered. Nonuniform aortic stiffening
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was considered for the elderly and hypertensive virtual subjects
following the approach described in Bikia et al. (Bikia et al., 2019).

Given that the literature data are only provided in terms of
mean and standard deviation or/and minimum and maximum
values, we chose to perform random Gaussian sampling for
varying the model’s parameters. We filtered the generated data
to ensure that they correspond to physiological human
conditions. Concretely, the physiological validity of each
subject was assessed by comparing the simulated brachial and
aortic systolic blood pressure (SBP), DBP, MAP, and pulse
pressure (PP) to the reference values reported in the previous
studies by McEniery (McEniery et al., 2005) (normotensive cases)
and Bordin Pelazza and Filho (Pelazza and Filho, 2017)
(hypertensive cases). A subject was discarded from the dataset
if any of the blood pressure values was not satisfying the
minimum and maximum thresholds indicated as mean ±
2.807SD (99.5% confidence intervals). Such an approach for
generating synthetic data has been applied by a previous
similar study (Charlton et al., 2019).

Features Extraction
The relevant features were extracted from the flow and pressure
waves produced by the in-silico model. Synthetic brSBP, brDBP,
brPP as well as HR data were calculated from the pressure wave at
the left brachial artery.

Normally, PEP and ET could be extracted from the
synchronous recordings of the aortic blood flow and the ECG
signal. Here, the values of PEP and ET were derived following
Shishido et al. (Shishido et al., 2000), as illustrated in Figure 1.
The reason that we employed this approach to calculate PEP and
ET was the absence of a model of cardiac electrical activity that
would indicate the starting position of Q-wave. PEP was
calculated as the duration of the isovolumic contraction. The
early isovolumic point (ted) was defined as the time point when
the time derivative of LV pressure is above 30% of dP/dtmax. The
end of the isovolumic contraction (tad) was calculated from the
first inflection point of the elastance curve at the upstroke area.
End-systole (tes) was measured as the time point when dP/dt
reaches 20% of dP/dtmin. PEP and ET were obtained as tad-ted and
tes-tad, respectively.

Regression Analysis
The dataset was organized in pairs of inputs and outputs in order
to be used for the training/testing process. The input features
included the “measured” brSBP, brDBP, HR, PEP, and ET, as well
as the ted, tad, and tes. The inclusion of the latter timing points was
done to improve the descriptive cardiovascular profile of each
subject and further enhance the regressor’s performance.

Furthermore, a predictive model was developed including
stroke volume (SV) and ejection fraction (EF) as additional
input features. Hence, three predictive models were developed
and evaluated based on the different inputs’ sets: i) one using
brSBP, brDBP, HR, PEP, ET, ted, tad, and tes (M1), ii) a second
one with only brSBP, brDBP, HR, PEP, and ET (M2), and
finally, iii) a third model including all features from model M1
as well as SV and EF (M3). We additionally investigated the
predictive capacity of our framework to estimate Vd.
Nevertheless, the estimation of Vd was not considered as
the main focus of the present study.

We used Extreme Gradient Boosting (XGB) (Chen and
Guestrin, 2016) for the regression analysis. The 70% of the
dataset (3,251 subjects) was used for the training of the XGB
model. The remaining 30% (1,394 subjects) was kept for the
testing. The regressor f (.) was described as YEes ≈ fEes(X; β),
where β represents the unknown model parameters, X, the
independent variables, and YEes, the dependent variable. The
unknown parameters of the model were optimized via an
inner cross validation loop, i.e., hyperparameter tuning.
Hyperparameter tuning was performed using GridSearch with
10-fold cross validation. The hyperparameters that were chosen
to be optimized are reported in Table 1 below. The
hyperparameters’ values that are not reported in Table 1 were
set to their default value. The selected hyperparameters’ values for
the six predictive models are also reported in Table 2.
Consequently, the prediction accuracy for each regression
model was evaluated on a subject level.

We assessed the importance of each input feature using two
concepts, i.e., the feature importance scores returned by the XGB
model, and the permutation feature importances. A major
difference between the two concepts is that the feature
importances from XGB are calculated based on the learning
process through the training data, while the permutation
feature importances are yielded from the estimations on a test set.

More specifically, the feature importance by XGB provides a
score that indicates how useful and valuable each feature was in
the construction of the boosted decision trees within the model.
The hierarchical structure of a decision tree leads us to the final
prediction by traversing through the nodes of the tree. Each node
consists of a feature which is further split into more nodes as the
tree develops vertically. The more times a feature is used to make
key decisions with decision trees, the higher its relative
importance. Formally, the feature importance score is

TABLE 1 | List of the hyperparameters which were chosen to be optimized and
their corresponding values.

Hyperparameter Values

learning_rate {0.005, 0.01, 0.05, 0.1, 0.15}
max_depth {3, 5, 10}
n_estimators {500, 750, 1,000, 1,250, 1,500, 1750}

TABLE 2 | List of the selected hyperparameters for all the predictive models.

Model Selected hyperparameters

learning_rate max_depth n_estimators

XGBEes M1 0.05 3 1,750
XGBEes M2 0.01 3 1,500
XGBEes M3 0.1 3 1,250
XGBVd M1 0.01 3 500
XGBVd M2 0.01 3 500
XGBVd M3 0.1 3 1,750
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calculated for a single decision tree by the amount that each
feature split point improves the performance measure, weighted
by the number of observations the node is responsible for. The
feature importance scores are then averaged across all of the trees
within the model. This importance is calculated explicitly for each
feature and allows features to be ranked and compared to
each other.

We additionally provide the permutation feature importances
which are helpful to interpret the changes inmodel’s performance
when the information of a feature is discarded. The concept of
permutation feature importances relies on measuring the
importance of a feature by calculating the increase in the
model’s prediction error after permuting the feature.
Permutation of a feature is achieved by shuffling the values of
the feature on the test set. A feature is considered as significant if
shuffling its values increases the (trained) model error,
demonstrating that the model relied on the feature for the
prediction. A feature is unimportant if shuffling its values does
not change the model error, showing that the model ignored the
feature for the prediction. The concept of permutation feature
importance was first introduced by Breiman (Breiman, 2001).
Essentially, permutation feature importances express the increase
in model error when the feature’s information is destroyed. For
calculating the permutation importances, we randomly shuffled
the values of each feature and we computed the RMSE after the
permutation. This was repeated 20 times and the mean and
standard deviation of the increase in RMSE were reported.

Moreover, the accuracy of a Machine Learning regressor is
largely dependent on the size of the initial training datasets. Thus,
the investigation of how large a training dataset needs to be in
order to build a reliable predictive model is imperative. To obtain
this information the learning curve was computed. Learning
curves allow for visualizing the effect of the number of data
instances on the performance. The learning curve was fitted using
the observed accuracy (in terms of RMSE) according to a given
training sample size. The training size was modified from 1 to
98% of the total number of subjects (50 samples of training size).

The learning curve is presented in Figure 2. We observed that as
the number of training data increases, the RMSE of testing
decreases and starts saturating while approaching the 4,000
data instances. Given that it is not clear whether a steady state
is utterly achieved (a state where no substantial improvement
occurs by increasing the number of training data), we decided to
include all the training dataset for performing the regression
analysis. Hence, the model with the selected hyperparameters was
fit to the entire training set (n � 3,251), and the performance
metrics reported in the Results’ section correspond to the testing
set (n � 1,394). The training/testing pipeline was implemented
using the Scikit-learn library (Pedregosa et al., 2011) in a Python
programming environment. The pandas and NumPy packages
were also used (Oliphant, 2006; McKinney, 2010).

Sensitivity to Noise
We assessed the sensitivity of our model to errors in the
measurement of PEP and ET. In addition, sensitivity analysis was
performed for errors in the blood pressure measurements
(i.e., amplitude of brachial pressure waveform). The data were
artificially corrupted using three levels of errors, i.e., ±10%, ±20%,
and ±30% with respect to their actual value. Errors in measurements
were simulatedwith a randomdistribution, i.e., for a noise level equal
to ±20%, the error of each measurement was randomly drawn from
the range of [-20, 20] %. The effect of erroneous inputs was evaluated
and themodel’s performance was reported for the six experiments [3
noise levels x 2 sets of inputs (systolic timing intervals and blood
pressure values)]. The experiments were performed using the
hyperparameters which were selected from the M1 model
(Table 2) which did not account for the noise.

Statistical Analysis
The statistical analysis was performed in Python (Python
Software Foundation, Python Language Reference, version
3.6.8, Available at http://www.python.org). All values are
presented as mean ± SD. The agreement, bias, and precision
between the model predictions and the real values were evaluated

FIGURE 1 | Representative elastance curve E(t) with the indicated ted
(early time point of isovolumic contraction), tad (ending time point of isovolumic
contraction), and tes (end-systolic time point).

FIGURE 2 | Learning curve visualizing the effect of the number of data
instances on the performance. RMSE: root mean squared error.
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by using the Pearson’s correlation coefficient (r), the mean
absolute error (MAE), the normalized root mean square error
(nRMSE), and the Bland-Altman analysis (Bland and Altman,
1986). The computed nRMSE was based on the difference
between the minimum and maximum values of the dependent
variable (y) and was computed as RMSE/(ymax – ymin). Linear
least-squares regression was performed for the estimated and
reference data. The slope and the intercept of the regression line
were reported. Two-sided p-value for a hypothesis test whose null
hypothesis is that the slope is zero, using Wald Test with
t-distribution of the test statistic, was calculated. A p-value
below 0.05 was considered as statistically significant.

RESULTS

Table 3 summarizes the cardiac and vascular characteristics of
the 4,645 subjects included in this study.

Comparison Between Estimated Elastance
and Real Elastance
Table 4 displays the statistical comparisons between the
noninvasive Ees estimates and the reference Ees. The Bland-
Altman plot shows that the estimated Ees had low bias. The
limits of agreement (LoA) between the estimated and reference

Ees (within which 95% of errors are expected to lie) were found to
be [−0.57, 0.60] mmHg/ml. The scatterplot and the Bland-
Altman plots of the estimated Ees against the real Ees are
presented in Figure 3. Finally, standard error of estimate
(SEE) was reported to be 0.15 mmHg/ml. The absolute
difference between the noninvasive Ees estimates and the real
Ees values was reported to be lower than 0.5 mmHg/ml in 91% of
the total cases for XGB. At large, the regressor performed
adequately towards the accurate prediction of Ees.

The results for the Vd estimation are also reported in Table 4.
For the XGBVd M1 and XGBVd M2 models, no agreement was
achieved between the predictions and the reference data (r < 0.1).
Inclusion of the SV and EF led to improved accuracy, achieving a
nRMSE equal to 9.12% and a correlation of 0.93. Figure 4
illustrates the scatterplot and the Bland-Altman plot for the
predicted and real Vd values only for the best-performing
model (XGBVd M3).

Table 5 presents the average permutation importances of the
input features, sorted in descending order for predicting Ees.
Following the concept of permutation, ted, tes, and PEP yielded the
highest increase in the prediction error on test data (increase in
RMSE was equal or more than 0.46 mmHg/ml). The XGB-based
feature importances are also given in Table 5. PEP had a critical
contribution (0.440) followed by tad and tes with 0.186 and 0.107,
respectively.

Sensitivity to Measurement Errors
When the systolic time intervals, i.e., PEP and ET, were randomly
overestimated or underestimated, the performance of the model
gradually deteriorated. Concretely, corruption of the data with
random noise gave a rise to the error between the predictions and
reference values. The performance of the model for the different
levels of noise is presented in Table 6. Standard deviation of the
RMSE values at the noise levels was ±0.11 mmHg/ml. At the level
of maximal noise (±30%), RMSE reached the value of
0.55 mmHg/ml, while the Pearson’s correlation coefficient
substantially decreased at 0.68. The estimated Ees values were
considerably influenced by noise corruption.

Errors in brachial blood pressure measurements impacted to a
lesser extent the estimation of Ees. With increasing the magnitude
of the introduced noise, we did not notice a pronounced variation
in the RMSE after the noise level of 20%, namely RMSEs varied by
±0.01 mmHg/ml. When the noise level was ±30%, RMSE found
to be equal to 0.32 (r � 0.91) for the XGB model. Overall, cardiac
elastance values were minimally affected.

DISCUSSION

In the present study, we found that end-systolic elastance could
be estimated noninvasively from arm cuff pressure and systolic
time intervals following a Machine Learning approach. We
developed and tested our method using synthetic data from a
previously validated in-silico model of cardiovascular dynamics.
The study population corresponded to an extensive range of
cardiac and arterial systemic conditions. The regression results
showed that cuff pressure in conjunction with systolic time

TABLE 3 | Summary of the cardiovascular characteristics of the virtual study
cohort (n � 4,645).

Variable mean ± SD
n = 4,645

End-systolic elastance [mmHg/ml] 3.06 ± 0.74
End-diastolic elastance [mmHg/ml] 0.13 ± 0.04
Filling pressure [mmHg] 15.32 ± 3.47
Heart rate [bpm] 79.61 ± 8.27
Dead volume [ml] 22.68 ± 14.07
Ejection fraction [%] 53.74 ± 9.33
tes [ms] 355.09 ± 26.24
tad [ms] 65.75 ± 18.46
ted [ms] 13.25 ± 1.02
Pre-ejection time [ms] 52.5 ± 18.19
Ejection time [ms] 289.35 ± 26.85
Stroke volume [ml] 78.7 ± 21.62
Aortic SBP [mmHg] 132.32 ± 24.67
Aortic DBP [mmHg] 100.73 ± 16.97
Aortic PP [mmHg] 31.59 ± 13.47
MAP [mmHg] 115.4 ± 19.92
Brachial SBP [mmHg] 141.41 ± 25.89
Brachial DBP [mmHg] 97.77 ± 16.59
Brachial PP [mmHg] 43.64 ± 16.61
PP amplification 1.41 ± 0.10
TPR [mmHg.s/ml] 1.13 ± 0.23
Total arterial compliance [ml/mmHg] 1.97 ± 0.69
Aortic diameter [mm] 28.57 ± 1.95
Height [cm] 175.00 ± 25.00

DBP, diastolic blood pressure; MAP, mean arterial pressure; PP, pulse pressure; SBP,
systolic blood pressure; SD, standard deviation; tad, ending time point of isovolumic
contraction; ted, early time point of isovolumic contraction; tes, end-systolic time point;
TPR, total peripheral resistance;
PP amplification � Brachial PP/Aortic PP.
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intervals (STIs) achieved a low test error and can capture the LV
Ees value with sufficient accuracy. The present work is in line with
previous efforts towards the noninvasive estimation of Ees using
easily obtained single-beat noninvasive measurements.

In our previous study (Bikia et al., 2020), we demonstrated
that the noninvasive estimation of Ees can be achieved when arm
cuff pressure, carotid-to-femoral pulse wave velocity (cfPWV),
and EF are used as inputs to a regressor. Conventionally, EF is
often used to assess LV systolic function and can be measured
using different cardiac imaging technics, including magnetic
resonance imaging (MRI), the Simpson’s method, speckle
tracking strains, etc. However, these imaging modalities are
tedious and require a highly trained technician. To facilitate the
assessment of cardiac performance, several studies have focused
on the use of STIs which can be conveniently obtained via Pulse
Doppler echocardiography (Weissler et al., 1968; Weissler et al.,
1981; Reant et al., 2010). Motivated by this concept, we chose to
reformulate the regression pipeline for the estimation of Ees and
replace EF with simple systolic timing parameters. A strong
argument reinforcing our methodology arrives from the fact
that interpretation of EF is limited when preload and afterload
are not known (Krayenbühl et al., 1968).

The XGB model achieved high accuracy in the estimated Ees
with r � 0.92. In 91% of the total cases, the average difference
between the noninvasive Ees and the reference Ees was reported
to be lower than 0.50 mmHg/ml. Given that, for a normal heart,
Ees lies within the ranges of [1.50–3.50] mmHg/ml, while for
dilated hearts and hypertrophied hearts is near 1.00 mmHg/ml
and 4.00 mmHg/ml, respectively (Chen et al., 1998; Chen et al.,
2001), such an error should allow for reasonably accurate
assessment of systolic function in normal and pathological
hearts.

Furthermore, based on the learning curve (Figure 2), the
training error was reported to be low, and, hence, the training
data are fitted well by the estimated model (low bias). The small
gap between the two curves indicated a low variance. The learning
curve well predicted a low RMSE close to 0.29 mmHg/ml for the
training data size equal to or larger than 4,000. Based on this
learning curve, we can deduce that our particular predictive
model needs a training dataset of 4,000 to reach an error of
0.29 mmHg/ml. These findings could be utilized as a starting
reference point for future studies that develop similar
estimators.

The individual time points, i.e., ted (early time point of
isovolumic contraction), tad (ending time point of isovolumic
contraction), and tes (end-systolic time point), were incorporated
in the input to enhance the performance of the model. In the
spirit of completeness, we further investigated the change in the
accuracy of the predictive model when the latter time points were
not considered as input features. In that case, the XGB model
predicted Ees achieving an RMSE equal to 0.50 mmHg/ml and a
correlation coefficient of 0.74. The feature importances were re-
ranked as follows: PEP: 0.555, brDBP: 0.154, brSBP: 0.103, HR:
0.101, and ET: 0.087. Given the deterioration in the accuracy, we
chose to keep the aforementioned time points (given that they are
available when PEP and ET are measured) in the input vector in
order to maximize our model’s performance.

In order to further evaluate the robustness of our models, we
quantified the effect that measurement errors might have on the
Ees estimates. Concretely, we performed the regression analysis
while introducing artificial noise to the STIs and the brachial
pressure recordings. An erroneous measurement of the STIs
appeared to have a greater impact on the Ees estimation
compared to an error in the brachial blood pressure features.
Overall, the sensitivity analysis on errors in the input features
demonstrated that estimated Ees values were considerably
affected by random errors in the systolic timing features
(namely, ted, tad, tes, PEP, and ET). In contrast, the overall
regression performance was altered only slightly when random
noise corrupted brSBP and brDBP without significantly
affecting the accuracy of the estimated Ees values. This can
be further explained if we consider the permutation feature
importances for our model; the timing intervals and, in
particular, ted and tes held the first places in the ranking
(RMSE would increase at least by 1.4 mmHg/ml after
permutating one of those two features).

Based on the permutation feature importances, the time
points ted and tes were the most significant contributors to
the precise estimation of Ees. If permutation of a feature
leads to a predictive model with insufficient prediction
capacity (high errors), then the information provided by this
feature is significant and the corresponding feature is considered
as important. The threshold for an error to indicate poor
prediction is dependent on the problem under consideration.
In the present study, the error threshold for a precise estimation
was set to be lower than 0.50 mmHg/ml, and, therefore, all the

TABLE 4 | Regression statistics between model-predicted and reference data.

Model Slope Intercept r p-value RMSE nRMSE (%) MAE

XGBEes M1 0.82 0.57 mmHg/ml 0.92 <0.0001 0.30 mmHg/ml 9.15 0.24 mmHg/ml
XGBEes M2 0.52 1.45 mmHg/ml 0.74 <0.0001 0.50 mmHg/ml 15.26 0.41 mmHg/ml
XGBEes M3 0.88 0.38 mmHg/ml 0.95 <0.0001 0.24 mmHg/ml 7.32 0.19 mmHg/ml
XGBVd M1 0.00 22.55 ml <0.1 0.79 14.14 ml 25.79 11.92 ml
XGBVd M2 0.00 22.58 ml <0.1 0.79 14.14 ml 25.79 11.91 ml
XGBVd M3 0.86 3.28 ml 0.93 <0.0001 5.00 ml 9.12 3.62 ml

MAE, mean absolute error; nRMSE, normalized RMSE; r, Pearson’s correlation coefficient; RMSE, root mean square error; SD, standard deviation; XGB, Extreme Gradient Boosting.
Two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero, using Wald Test with t-distribution of the test statistic.
M1 uses brachial systolic blood pressure (brSBP), brachial diastolic blood pressure (brDBP), heart rate (HR), pre-ejection period (PEP), ejection time (ET), early time point of isovolumic
contraction (ted), ending time point of isovolumic contraction (tad), and end-systolic time point (tes); M2 uses brSBP, brDBP, HR, PEP, and ET;M3 uses all features fromM1 aswell as stroke
volume and ejection fraction.
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features with permutation importances leading to errors higher
than the threshold were considered as largely important. The
discrepancies in the features’ ranking between the two
approaches for calculating the importance level can be
explained by the fact that the one is based on the training

process, while the other one relies on the predictions on the
testing dataset. Moreover, the feature importance method by
XGB favors features that have high cardinality. In our dataset, all
PEP values were unique for all the 4,645 data instances, and this
might encourage the algorithm to consider it as the most

FIGURE 3 | Comparison of the estimated Ees values with the reference Ees for the three predictive models M1, M2, and M3. Scatterplots between the values of Ees
derived from the models and the real Ees. Solid line represents equality. Bland-Altman plot for estimated Ees and real Ees for Extreme Gradient Boosting. Limits of
agreement (LoA), within which 95% of errors are expected to lie, are defined by the two horizontal dashed lines.
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important feature. It is recommended that interpretation of the
importances is done in a combinational manner, so that a more
complete overview is provided using different insights and aspects.
Yet, PEP had a critical contribution using both concepts. The high
correlation between PEP and LV function has been also
demonstrated by previous studies (Reant et al., 2010). Finally, the
important contribution of brDBP (4th higher increase in error) can
be explained by the fact that brDBP is strongly related to the mean
arterial blood pressure, which indicates the pressure against which
the heart pumps.

Clinical Application of the ProposedMethod
Systolic time intervals can be easily and precisely measured in the
clinical practice and may be used for detecting alterations in LV
systolic function (Boudoulas, 1990). The correlation between
these STIs measurements and conventional LV function
parameters has been emphasized in numerous previous studies
(Reant et al., 2010) paving the way to further explore the potential
in using more complicated nonlinear Machine Learning
approaches.

From a wider perspective, the incorporation of STIs values as
features to approximate Ees has been a promising research
direction. Several researchers have demonstrated the ability in
acquiring these STIs measurements from more simplified
modalities including electrocardiography (ECG),
phonocardiography (PCG), or seismocardiography (SCG)
(Dehkordi et al., 2019; Chung et al., 2020). Such methods
provided unobtrusive detection of cardiac time intervals and
offer the potential to be integrated into wearable devices.
Interestingly, PEP and ET could be very easily obtained using
ECG and a precise electronic stethoscope. More concretely, the
initiation of the PEP interval is placed at the initial point of the
Q-wave (point 1, Figure 5). In addition, an electronic stethoscope
able to capture the time intervals in the scale of milliseconds
would allow us to determine the moment of the aortic valve
closure (point 2, Figure 5). Now, if we set a new time interval
which is the sum of PEP and ET (Q-aoClos interval, Figure 5), we
can measure the exact duration of the latter using ECG and
stethoscope alone. The ECG signal could indicate the initiation of
Q-wave, while phonocardiography would allow us to detect the
closure of the aortic valve. To test this hypothesis, we performed
the regression analysis using as inputs only the arm cuff pressure,
the Q-aoClos interval, namely, the summation of PEP and ET, the
time point at the beginning of Q-wave (time 1), and the time
point at the closure of the aortic valve (point 2). Our results
indicated that Ees could be effectively estimated achieving an
nRMSE and Pearson’s correlation coefficient equal to 10.37% and
0.89, respectively, wheareas LoA were ±0.67 mmHg/ml and bias
was zero. In that case, the selected hyperparameters were
learning_rate � 0.05, max_depth � 3, n_estimators � 1,250.
This finding creates a rather promising proof-of-evidence
towards the noninvasive estimation of Ees reducing the
complexity and the cost of the technique for acquiring the
necessary measurements. The proposed methodological
concept could be easily integrated in a medical device such as
a smart stethoscope.

Prior Work on the Ees Estimation
Several methods have been proposed for the Ees estimation using
noninvasive single-beat measurements. First, Chen et al. (Chen
et al., 2001) proposed a simple equation for estimating Ees from

FIGURE 4 |Comparison of the estimated Vd values with the reference Vd
for the XGBVd M3 model. Scatterplots between the values of Vd derived from
the model and the real Vd. Solid line represents equality. Bland-Altman plot for
estimated Ees and real Ees for Extreme Gradient Boosting. Limits of
agreement (LoA), within which 95% of errors are expected to lie, are defined
by the two horizontal dashed lines.

TABLE 5 | Feature importances for the prediction of Ees.

Feature Permutation importance (mmHg/ml)
mean ± SD

Importance
score by XGB

ted 1.583 ± 0.019 0.099
tes 1.408 ± 0.020 0.107
PEP 0.458 ± 0.011 0.440
brDBP 0.109 ± 0.004 0.073
brSBP 0.086 ± 0.003 0.030
ET 0.056 ± 0.003 0.015
HR 0.024 ± 0.002 0.050
tad 0.005 ± 0.001 0.186

brDBP, brachial diastolic blood pressure; brSBP, brachial systolic blood pressure; ET,
ejection time; HR, heart rate; PEP, pre-ejection period; tad: ending time point of
isovolumic contraction: ted: early time point of isovolumic contraction; tes: end-systolic
time point; XGB: extreme gradient boosting.
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arm cuff pressure, SV, and EF. Their proposed method
incorporates an estimated normalized ventricular elastance at
arterial end-diastole which was derived from regression on
previously recorded studies. The authors achieved accurate
estimations with differences between estimated and real values
equal to 0.43 ± 0.50 mmHg/ml and a high correlation of 0.91.
Here, we decided, however, to simplify our method by replacing

the measurements of the stroke volume and ejection fraction with
the more accurately obtained pre-ejection period and ejection
time intervals. In addition, the calculation of EF as assessed by
echocardiography can be rather sensitive to errors and derived
approximately. Removal of EF from our calculation can reduce
the error imposed by such an approximation.

Moreover, Shishido et al. (Shishido et al., 2000) suggested the
estimation of Ees from pressure values, systolic time intervals, and
stroke volume. Their analysis relies on the approximation of the
time-varying elastance curve by two linear functions corresponding
to the isovolumic contraction phase and the ejection phase. The
slope ratio of these functions is calculated and used for estimating Ees
by the employment of a simple equation. Their model provided
reliable predictions of Ees in anesthetized dogs with r � 0.93 and
SEE � 2.10 mmHg/ml. In accordance with our findings, this
methodology evidences the utility of systolic time intervals on
the estimation of Ees. A limitation of their study pertains to the
fact that the authors developed their model using the same
population which was used for the model’s testing rather than
an independent group.

Recently, Pagoulatou et al. (Pagoulatou et al., 2021) proposed and
validated a novel method for noninvasively estimating Ees based on
sphygmomanometric pressure measurements and standard
echocardiographic examination, comprising the measurement of
aortic flow and ejection fraction. Their method is based on the
adjustment of the aforementioned model of the cardiovascular
system to patient-specific standards and subsequently allows for
the derivation of Ees and Vd via an inverse model-fitting approach.
Invasive validation of their technique on 19 patients yielded accurate
estimates of Ees [r� 0.89, nRMSE� 9%, bias� −0.13 mmHg/ml with
limits of agreement (−0.9, 0.6) mmHg/ml], while it was
demonstrated that the method is robust to measurement noise.

Limitations
This study has potential limitations that need to be acknowledged. The
major limitation of the present study is the use of synthetic data andnot
real in vivo recordings. Nevertheless, synthetic data can sufficiently
simulate the content of the real clinical measurements, while they allow
for controlling the distribution of rare but relevant conditions or events.
In addition, the in-silico model that was used for the data generation
has been thoroughly validated against in vivodata and provides realistic

TABLE 6 | Regression statistics between model-predicted Ees and reference Ees when artificial noise is considered.

Model Slope Intercept r p-value RMSE nRMSE (%) MAE

XGBEes M1 (noise-free) 0.82 0.57 mmHg/ml 0.92 <0.0001 0.30 mmHg/ml 9.15 0.24 mmHg/ml
XGBEes M1 (± 10% noise in STIs) 0.72 0.87 mmHg/ml 0.84 <0.0001 0.41 mmHg/ml 12.51 0.33 mmHg/ml
XGBEes M1 (± 20% noise in STIs) 0.59 1.26 mmHg/ml 0.74 <0.0001 0.50 mmHg/ml 15.26 0.40 mmHg/ml
XGBEes M1 (± 30% noise in STIs) 0.54 1.40 mmHg/ml 0.68 <0.0001 0.55 mmHg/ml 16.78 0.44 mmHg/ml
XGBEes M1 (± 10% noise in BP) 0.83 0.53 mmHg/ml 0.92 <0.0001 0.30 mmHg/ml 9.15 0.24 mmHg/ml
XGBEes M1 (± 20% noise in BP) 0.81 0.58 mmHg/ml 0.91 <0.0001 0.31 mmHg/ml 9.46 0.24 mmHg/ml
XGBEes M1 (± 30% noise in BP) 0.81 0.57 mmHg/ml 0.91 <0.0001 0.32 mmHg/ml 9.76 0.25 mmHg/ml

BP, blood pressure; Ees, end-systolic elastance; MAE, mean absolute error; nRMSE, normalized RMSE; r, Pearson’s correlation coefficient; RMSE, root mean square error; SD, standard
deviation; STI, systolic time intervals; XGB, Extreme Gradient Boosting.
Two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero, using Wald Test with t-distribution of the test statistic.
M1 uses brachial systolic blood pressure (brSBP), brachial diastolic blood pressure (brDBP), heart rate (HR), pre-ejection period (PEP), ejection time (ET), early time point of isovolumic
contraction (ted), ending time point of isovolumic contraction (tad), and end-systolic time point (tes); M2 uses brSBP, brDBP, HR, PEP, and ET;M3 uses all features fromM1 aswell as stroke
volume and ejection fraction.

FIGURE 5 | Representation of the aortic pressure waveform, the left
ventricular pressure, the ECG electrocardiogram including the timing
components of pre-ejection period (PEP), ejection time (ET), and the newly
introduced Q-aoClos interval. The Q-aoClos interval is the time period
from the initial trace of Q-wave (point 1) (asmeasured via ECG) until the closure
of the aortic valve (point 2) (as recorded via a phonographic device).
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representations of the physiological signals. Another limitation pertains
to the fact that PEP and ET used for the training/testing scheme were
extracted from the elastance curve, albeit this framework has been
designed to use only echocardiographic measures. This approach was
selected due to the lack of ECG information, given that cardiac
electrical events are not yet included in our in-silico model.
Sensitivity analysis was performed in order to examine the model’s
performance with respect to over- and underestimation of these two
features. Furthermore, our proposed method does not provide the
entire ESPVR, given that the inputs do not provide adequate
information to predict Vd. However, we observed that when the SV
and EF were included in the input vector, our method is able to
estimate Vd with an nRMSE � 9.12% and r � 0.93. Finally, the current
database was created using the mathematical model of a healthy
individual free of pathology. Hence, implementation of the method
is limited in cases of aortic valve stenosis, regurgitation, or other valve
pathologies, where the relationship between the peripheral pressure
and the STIs is modified. Further investigation towards this direction
will be performed in our future studies.

CONCLUSION

This study provided evidence that accurate estimates of Ees
could be yielded from pressure data and contractility-related

timing parameters using a data-driven approach. Based on our
findings, we conclude that data-driven approaches might be
valuable for estimating Ees. The STIs appeared to be a promising
source of information for assessing Ees and their usefulness
should be emphasized. At large, our results were found to be in
good agreement with the actual Ees values over an extensive
range of LV contractility values and loading conditions. The
proposed methodological concept could be easily transferred to
the bedside and potentially facilitate the clinical use of Ees for
monitoring the contractile state of the heart in the real-life
setting.
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