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Abstract
After decades of research on non-invasive glucose monitoring, invasive devices based on finger blood sampling are still the
predominant reference for diabetic patients for accurately measuring blood glucose levels. Meanwhile, research continues
improving point-of-care technology toward the development of painless and more accurate devices. Raman spectroscopy is
well-known as a potentially valuable and painless approach for measuring glucose levels. However, previous Raman studies deal
with glucose concentrations that are still order of magnitudes away with respect to human tissues’ physiological concentrations,
or they propose enhancement methodologies either invasive or much complex to assure sufficient sensitivity in the physiological
range. Instead, this study proposes an alternative non-enhanced Raman spectroscopy approach sensitive to glucose concentra-
tions from 1 to 5 mmol/l, which correspond to the lowest physiopathological glucose level in human blood. Our findings suggest
a very selective detection of glucose with respect to other typical metabolites, usually interfering with Raman spectroscopy’s
glucose detection. We validate the proposed univariate sensing methodology on glucose solutions mixed with lactate and urea,
the two most commonmolecules found in human serum with concentrations similar to glucose and similar features in the Raman
spectra. Our findings clearly illustrate that reliable detection of glucose by Raman spectroscopy is feasible by exploiting the
shifted peak at 1125 ± 10 cm–1 within physiopathological ranges.

Keywords Glucometer . Lactate sensing . Raman spectroscopy . Urea sensing . Non-invasive . Point-of-care

1 Introduction

At the beginning of the third decade of the twenty-first centu-
ry, diabetes mellitus is a serious public health burden that
seems to remain an exhaustive threat to human health in the
years to come [1]. Diabetes is a chronic disorder that either
impairs the pancreas to produce insulin or infects cells’ insulin
receptors to become desensitize or less sensitive to insulin and
alleviates cells’ capability to absorb glucose [2]. Therefore,
diabetic patients suffer from the malfunction of glucose ho-
meostasis, and to survive, they must prevent severe secondary
complications. Consequently, careful “diabetes management”
via frequent monitoring of blood glucose keeps the glucose

level under control through adequate insulin injection [3]. In
fact, for nearly 150 to 200 million diabetics worldwide, con-
trolling their glucose level is associated with daily exogenous
insulin administration [4]. Moreover, glucose monitoring on
multiple daily occasions is recommended, particularly in
insulin-dependent therapies, since incorrect administration of
insulin can be life-threatening [5]. Even if self-monitoring of
blood glucose is less frequent for patients in non-insulin ther-
apies [6], it is unavoidable to tailor their treatments to individ-
uals, especially critical during pregnancy [7]. Although bind-
ing of glucose to proteins in the bloodstream presents vital
elements in long-term glycemic markers, such as glycated
hemoglobin (HbA1c) [8, 9], blood withdrawal–based (e.g.,
finger-prick) glucose level measurement through electro-
chemical reaction mechanisms remains the “gold standard”
for both diagnosis and therapeutic decision-making [10].

However, despite the many benefits of finger-prick de-
vices, several further implications are associated with the issue
of finger sticking [11]. For instance, finger pricking is closely
related to diabetes burnout (i.e., state of detachment from di-
abetic care) [12], which is directly related to diabetes-induced
morbidity and mortality [13–15]. As a result, almost two
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decades ago, minimally invasive glucose monitoring devices,
cumulatively known as continuous glucose monitoring de-
vices, such as Dexcom (CA, USA), appeared on the glucose
biosensor market. However, current continuous glucose mon-
itoring devices have some drawbacks compared to finger-
prick devices. They are challenging to use, may impose some
degree of pain on the device’s insertion, and need occasional
finger pricking for calibration purposes [16]. More important-
ly, these products are costly, suffer an inherent response delay
in “true” glucose level detection and lack accuracy for lower
glucose concentration range, and are likely to miss hypogly-
cemia (i.e., a severe low blood glucose level requiring imme-
diate treatment) [16]. These factors prohibit the substitution of
standard finger-prick devices with state-of-the-art continuous
glucose monitoring products. Therefore, the full potential of
continuous painless monitoring is yet to be realized due to
limitations in the principle of current technology’s sensing
mechanism [17]. New sensing approaches for non-invasive
glucometers and numerous innovative designs have been in-
vestigated in the past, with varying degrees of success, for
instance, GlucoWatch (Cygnus Inc., Idaho, USA) or the
Pendra (Pendragon Medical Ltd., Bradford, UK) [18].
However, most of these approaches are susceptible to temper-
ature changes and skin heterogeneity variations or produce
irritations [18]. They generally come with bulky setups or
have foreseen longtime measures and complicated calibra-
tions [19]. Consequently, the unsatisfied need for better sens-
ing of blood glucose levels has led to emerging techniques that
capitalize on other painless optical sensing mechanisms.

Approaches based on Raman scattering offer novel solu-
tions for label-free monitoring techniques [20], including glu-
cose detection [21]. Raman spectroscopy is a class of analyt-
ical spectroscopic techniques based on the inelastic energy
exchange with respect to the rotational and vibrational modes
of the analyses’ molecular structure. Typically, the Raman
spectroscopy offers a unique chemical “fingerprint” signature
of the measurand to be specified [20]. Despite the lower quan-
tum efficiency of inelastic light scattering, Raman effect–
based glucometers offer more robustness concerning absorp-
tion spectroscopy, thanks to the water’s inadequate scattering
response but high absorbance signature. Nevertheless, to in-
crease its quantum efficacy and lower the acquisition time and
required source power, methods such as surface enhancement
and coherent Raman scattering have been suggested [20].
Although studies based on surface enhancement demonstrated
promising results even for in vivo monitoring of blood glu-
cose in almost physiological ranges [22], they need implants
with surgical placement [23], thus are not adequate for non-
invasive monitoring. On the other hand, coherent Raman scat-
tering methods were rarely studied for glucose monitoring (for
instance, see [24]) and might be interesting to investigate in
the light of newly emerged technologies, especially on the
side of low noise detectors [25].

Although the first (spontaneous) Raman scattering acquisi-
tion of glucose solutions coupled with multivariate data anal-
ysis methods dates back to the 1980s and 1990s [21, 26], these
studies either fail in demonstrating a strong relationship be-
tween concentration difference and Raman intensity or are
often focused on higher glucose concentrations starting from
5 mmol/l, so skipping lower glucose levels that are typically
observed in hypoglycemia [27, 28]. This paper proposes a
very selective approach based on exploiting a single Raman
shift peak of 1125 ± 10 cm–1 for non-enhanced Raman spec-
troscopy by sensing the lowest possible glucose levels typi-
cally seen in hypoglycemia. We validate the proposed sensing
methodology on water-based glucose solutions with mixtures
of lactate and urea, the two most common molecules found in
human serum with similarities in their concentration, size, and
molecule weight that usually interfere with Raman scattering–
based glucose detection. Our experimental results fill the lit-
erature gap by reporting glucose concentrationmeasurements’
sensitivity to demonstrate excellent performance in sensing
physiopathological glucose levels, especially targeting low
concentrations.

2 Methodology

2.1 Sample Preparation

The d-(+)-glucose, sodium l-lactate, and urea powders were
purchased from Sigma-Aldrich (MilliporeSigma, MO, USA).
The human physiopathological glucose level could vary from
1 to 30mmol/l. Thus, a total of 13 samples of aqueous glucose
solutions were prepared with a concentration of 1–5 mmol/l,
5–10mmol/l, and 10–60 with intervals of 1 mmol/l, 2 mmol/l,
and 20 mmol/l, respectively, and a single solution with 100
mmol/l. Additionally, lactate and urea aqueous solutions in
the range of 1–200 mmol/l and a total of 36 solutions of
lactate, urea, and glucose mixtures were prepared. The powder
was carefully measured with a highly precise scale in each
sample and then wholly dissolved in deionized water. Then,
the solutions were stored overnight before measurement.
During the measurement session, each sample was first stirred
to ensure that the analyte was homogeneously dissolved, and a
micropipette (Gilson International, France) was used to trans-
fer a 20-μl droplet of each solution into the well of a concave
microscope slide (Electron Microscopy Sciences, PA, USA).

2.2 Data Acquisition and Analysis

The Raman scattering spectrum of each sample solution was
obtained with a backscattered confocal micro-Raman micro-
scope (LabRAMHR, HORIBA, Japan) in a spectral region of
300 cm–1 to 2000 cm–1. Raman spectroscopy was employed
with a 532-nm green laser source set to 200 mW of power
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through the built-in neutral density filters. The filtered beam
was focused using a ×50 objective lens, and the confocal hole
size was adjusted to 400 μm. Calibration of the spectrometer
was carried out before the measurement sessions using the
characteristic peak of silicon at 520 cm–1. The acquisition time
for each scan was 120 s or 360 s. Three consecutive spectra
were obtained using different droplets to compute the mea-
surement error. The room was dark, and a temperature of 24
°C was maintained throughout the experiments.

All data processing was performed with a data analysis tool
(Origin, OriginLab Corporation, MA, USA). For each spec-
trum, the 950 cm–1 to 1200 cm–1 range was analyzed. First,
the baseline spectrum was subtracted using the asymmetric
least-square fit. Then, the Savitzky-Golay filter with polyno-
mial order of three and a window length of thirteen was ap-
plied to smooth the signal and minimize the variation before
peak intensity analysis and integration [29]. The absolute area
under the Raman shift peaks of 861 ± 10 cm–1 for lactate,
1005 ± 15 cm–1 for urea, and 1125 ± 10 cm–1 for glucose
was chosen to construct the calibration curve for each analyte.
Additionally, in the more extended 360-s acquisition time
measurements, narrowband random cosmic rays peaks that
inevitably appear in the spectra were removed on the spot
[20].

3 Results and Discussion

3.1 Sensitivity Investigation

Figure 1a illustrates the raw Raman spectra of aqueous glu-
cose solutions in various concentrations between 100 mmol/l
and 1 mmol/l and water. It has been suggested that the inten-
sity of inelastic scattering is directly proportional to the con-
centration of the solution [30]. This is observed at multiple
peaks of the glucose spectra, typically around 437 cm–1, 518
cm–1, 1060 cm–1, 1125 cm–1, 1365 cm–1, and 1461 cm–1

Raman shifts. However, the spectra area around 950 cm–1 to
1200 cm–1 seems extra sensitive to variations in lower

concentrations. Thus, this range, the signature region, is opti-
mum for glucose concentration measurements, which was
exploited before to predict the glucose level [31]. The rela-
tionship between the amplitude of 1060 cm–1 and 1125 cm–1

Raman peaks with the glucose concentration change is illus-
trated in Fig. 1a zoom-in. The Raman shift peaks at 1060 cm–1

and 1125 cm–1 have been widely associated with the CO
stretching and COH bonds’ bending mode, respectively [21,
32]. Spectra after data processing (i.e., background removal
and smoothing) in the signature region is presented in Fig. 1b.

Furthermore, Fig. 2a shows that the characteristic peak of
1125 cm–1 is sensitive enough to accurately sense the low
glucose concentration values, while the region at lower
wavenumbers around 1060 cm–1 is highly disrupted below 5
mmol/l. This observation is consistent with the glucose level
studies of mice in the 5–15 mmol/l range [33]. In contrast,
previous studies expressed the desire to use the entire
(fingerprint) spectrum or larger areas of blood’s Raman spec-
trum for glucose level prediction and, hence, inevitably pro-
posed multivariate statistical data analysis techniques to im-
prove the sensitivity [34–37].

This study thereby challenges the prior findings. We spec-
ulate that as the entire spectrum of glucose is not sensitive
enough to predict lower ranges even in an aqueous solution,
it is hardly possible to improve the measurement’s sensitivity
for in vivo studies. Therefore, applying univariate analysis
was preferred by merely calculating the area under the curve
at 1125 ± 10 cm–1. Subsequently, the calibration curve was
computed, and a linear relationship was obtained and shown
in Fig. 2b. The linear fit with an R2 value of 0.96 and ~ 946
counts/mM sensitivity was recorded.

More sensitive Raman spectra can be acquired by increas-
ing either (or both) the source laser power and the acquisition
time [38]. Thus, another set of experiments was conducted
with an acquisition time of 360 s. The output spectra after data
processing are illustrated in Fig. 3a. Figure 3b presents the
calibration curve with an R2 value of 0.97 and ~ 4072
counts/mM sensitivity. A quick visual comparison of spectra
below 5 mmol/l of Fig. 2a with Fig. 3a and the absolute value

(a) (b)

60 cm-1

60 cm-1

Fig.1 a Raw Raman scattering
spectra of glucose powder
dissolved in aqueous solutions in
the range of 100 mmol/l to phys-
iological ranges and the lowest
physiopathological glucose
levels; zoom-in the spectra in the
signature region 950–1200 cm–1.
b Processed Raman scattering
spectra of aqueous glucose solu-
tions in the signature region. The
peaks indicate the glucose level
increase as a function of
concentration
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of the calibration curves’ slope in Fig. 2b and Fig. 3b show
that sensitivity is improved almost 4 times. Still, the area
around 1125 cm–1 is a reliable choice for glucose concentra-
tion prediction in low levels reaching even to sub 1 mmol/l
ranges (data not shown here) in contrast with the area around
1060 cm–1 the spectra disrupted below 3 mmol/l.

3.2 Selectivity Investigation

Raman spectroscopy’s selectivity is undoubtedly a challenge
for accurate determination of the glucose level in native fluid
form in the human body with interferences from other back-
ground molecules. The well-known method to circumvolve
the interferences in the prior art is feeding each of the inter-
ference molecule’s Raman spectrum (or at least the more in-
tense ones) to multivariate data analysis algorithms to distin-
guish and remove their effects [39]. An immediate drawback
of this method is the high dependency on calibration proce-
dures. These procedures should be repeated multiple times
during continuous monitoring sessions due to eachmolecule’s
variation upon different activities or generally due to differ-
ences in person-to-person physiologies [34]. However, if the
area around the characteristic peak of glucose is used to pre-
dict its level, as proposed in this study, no potential intensive
signature from other molecules would be present, and then the
univariate analysis will offer inherent advantages. Thus, we

further study the interference from other molecules to this
peak. This investigation is also critical to ensure glucose de-
tection’s feasibility at low concentrations by the proposed
method. For instance, urea’s in vivo detection thought its
Raman characteristic peak would be highly challenging since
there is a clear intensive peak due to phenylalanine in that
region. Phenylalanine is an amino acid found in hemoglobin
with a well-known Raman spectrum [40].

Although previous studies of whole blood Raman spec-
trum suggested no other intensive effect of other molecules
to characteristic glucose peak as similar to urea with phenyl-
alanine case [41], a detailed study of other potentially inter-
fering molecules with varying concentrations is still neces-
sary. Here, lactate and urea, the two most similar molecules
in concentration and size to glucose in human blood, were
studied. Figure 4a and b illustrates the fingerprint region of
the processed Raman spectra of aqueous lactate and urea so-
lutions, respectively, with concentration varying from 0 to 200
mmol/l. Studying the sensitivity of various peaks on low con-
centration (Fig. 4 zoom-ins) shows that the Raman shift peak
of 861 ± 10 cm–1 could be acquired to predict lactate concen-
tration, and similarly, the very Raman-sensitive characteristic
peak of 1005 ± 15 cm–1 could be used to predict urea concen-
tration. These observations are persistent with previous find-
ings [42]. Both lactate and urea show small peak(s) at their
high concentration values in the signature region of glucose,

(a) (b)

y = (946 ± 65)x + (5324 ± 348)
R2 = 0.96756

Fig. 2 a Processed Raman
scattering spectra of aqueous
glucose solutions in low
concentrations in the range of 10
mmol/l to water with an acquisi-
tion time of 120 s; the character-
istic peak under analysis is
highlighted. b The calibration
curve for glucose concentration
prediction is computed by
the area under the curve at 1125 ±
10 cm–1; three consecutive mea-
surements return the error bars

(a)

y = (4072 ± 298)x + (7855 ± 903)
R2 = 0.97901

(b)

Fig. 3 a Processed Raman
scattering spectra of aqueous
glucose solutions with a longer
acquisition time of 360 s. b The
calibration curve of glucose
concentration versus area under
the curve of 1125 ± 10 cm–1. The
sensitivity improved four times
than the measurement with
acquisition time of 120 s
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but their effect seems to minimize toward lower concentra-
tions. For a comprehensive study, mixture solutions were pre-
pared in various ranges to investigate the interference from
lactate and urea variations on glucose. Figure 5 illustrates
one of the prepared mixtures, where the superposition of lac-
tate, urea, and glucose spectrum (dotted lines) creates the final
mixture spectrum (solid line) [38]. Note that the intensity of
the individual molecule solution Raman characteristic peaks is
almost three times their mixture solution, which is expected
since each analytes’ concentration ratio in the mixture is 1:3.

Figure 6a and b illustrates the calibration curves acquired
when the lactate and urea concentrations were varied in the range
of 2–40 mmol/l, respectively, when other molecules’ concentra-
tion was kept constant. A minimum of 2 mmol/l concentrations
was selected instead of 1 mmol/l due to lactate’s low sensitivity

below 2mmol/l. Two sets of mixture solutions were prepared for
each experiment. In the first set, the concentration of glucose was
8 mmol/l, and in the second, it was 4 mmol/l. The calibration
curves evidently show that the respective Raman intensity in-
creases with the slope of ~ 1075 counts/mM when the lactate
concentration is changing. However, there is almost no change in
the glucose curves’ slopes. A similar interpretation holds for urea;
the Raman intensity increases with the concentration change,
with the slope of ~ 3920 counts/mM, but the glucose curve is
flat and even slightly negative. Therefore, these findings suggest
no potential interference from lactate and urea to glucose when
measured with the proposed method. The slight decrease in glu-
cose intensity in Fig. 6b is considered the upper limit of glucose
detection. That limitationwas not observedwith lactate change in
Fig. 6a because urea’s characteristic peak is more intensive than
the lactate’s characteristic peak. Additionally, the similar differ-
ence between glucose concentration predictions of two sets in
two experiments independently certifiesmeasurements’ accuracy
during the experiment’s multiple days.

4 Conclusion

This study demonstrates a very selective detection of physio-
pathological glucose levels by spontaneous Raman spectros-
copy in the lowest possible physiological glucose levels, as
usually found in hypoglycemic patients’ blood. Compared to
previous studies, a more straightforward univariate quantita-
tive data analysis approach targeting a very narrow band of the
glucose Raman spectrum is used instead of multivariate anal-
ysis, focusing on the entire spectrum [26, 27, 43]. This study
also investigated the proposed approach’s high-selectivity by
showing that the area under the 1125 cm–1 Raman shift band
is the ideal choice for predicting low glucose concentrations.
Our study also confirmed that, instead, the bands around 437
cm–1, 1050 cm–1, and 1365 cm–1 are highly affected by other
interfering metabolites, even with intensifying the scattering
effect by a factor of three. Moreover, this study showed that
the univariate analysis brings inherent advantages over

861 cm-1

1005 cm-1

(a) (b)

Fig. 4 a Processed Raman
scattering spectra of aqueous
lactate and b urea solutions.
Zoom-in shows the spectra in the
concentration range of 0–10
mmol/l. The characteristic peaks
of 861 ± 10 cm–1 for lactate and
1005 ± 15 cm–1 for urea are
highlighted. The intensity differ-
ence between the characteristic
peaks of lactate and urea is about
2 times, with urea being more
intensive

Fig. 5 Processed Raman scattering spectrum of lactate, urea, and glucose
mixture aqueous solution (solid line) with a concentration of 10 mmol/l
from each molecule prepared in 30-mL solution and individual aqueous
spectra of molecules in dotted lines with contraction of 30 mmol/l pre-
pared in 10-mL solutions. Raman spectrum of the mixture consists of the
superposition of the individual spectrum of each aqueous solution. The
characteristic Raman peaks of molecules are highlighted
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multivariate analysis, given that the background molecules’
effects in the blood’s entire fingerprint region are not inten-
sively present in the proposed band. Finally, this study pre-
sented lactate and urea sensing in their low concentration
ranges using their characteristic Raman shift peaks of 861 ±
10 cm–1 and 1005 ± 15 cm–1, respectively. Our research pro-
vided the first essential steps of more comprehensive research
by showing the feasibility of very selective glucose detection
for low concentration levels. The present manuscript tackles
the demonstration of the relevance of the univariate analysis
for glucose sensing in the whole physiopathological range
indeed. The next step toward a portable system will address
two further main problems: first, the interference due to other
blood components and, second, the ways to reduce the amount
of optical power required to achieve an excellent signal-to-
noise ratio. The future work is then planned to address those
two further main issues to pave the way for future portable
glucose sensing devices based on Raman scattering.
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