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Abstract—Continuous and multimodal stress detection has
been performed recently through wearable devices and machine
learning algorithms. However, a well-known and important
challenge of working on physiological signals recorded by con-
ventional monitoring devices is missing data due to sensors
insufficient contact and interference by other equipment. This
challenge becomes more problematic when the user/patient is
mentally or physically active or stressed because of more frequent
conscious or subconscious movements. In this paper, we propose
ReLearn, a robust machine learning framework for stress detec-
tion from biomarkers extracted from multimodal physiological
signals. ReLearn effectively copes with missing data and outliers
both at training and inference phases. ReLearn, composed of
machine learning models for feature selection, outlier detection,
data imputation, and classification, allows us to classify all
samples, including those with missing values at inference. In
particular, according to our experiments and stress database,
while by discarding all missing data, as a simplistic yet common
approach, no prediction can be made for 34% of the data at
inference, our approach can achieve accurate predictions, as high
as 78%, for missing samples. Also, our experiments show that
the proposed framework obtains a cross-validation accuracy of
86.8% even if more than 50% of samples within the features are
missing.

Index Terms—Machine Learning, physiological signals, impu-
tation, missing data, stress detection, outlier detection

I. INTRODUCTION

Stress, as a global issue of modern societies, increases the
risk of several health pathologies, such as, heart diseases,
depression, and sleep disorders [1]. Continuous and multi-
modal stress detection and recognition have been realized
through wearable devices and embedded machine-learning
algorithms, using stress biomarkers extracted from different
physiological signals, such as photoplethysmography (PPG),
respiration (RSP), electrodermal activity (EDA), electrocardio-
gram (ECG), and skin temperature [2]–[5].

A well-known challenge of working on physiological sig-
nals recorded by conventional monitoring devices [6] is the
presence of missing data due to sensors or electrodes insuf-
ficient contact and user’s motion, as well as interference by
other equipment [7]. This situation deteriorates if the user is
physically or mentally active or stressed as a consequence
of more frequent conscious or subconscious movements. In
general, handling missing data and outliers is of paramount
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importance when solving real-life classification and regression
problems through pattern recognition techniques [8]. On one
hand, classification and regression models should be fit offline
with a complete and flawless training dataset, i.e., without
missing values or outliers. On the other hand, these models,
when online, should be still able to provide accurate enough
predictions even in presence of missing data and outliers.
Therefore, it is vital to have a machine learning framework
sufficiently robust to the effect of incomplete data, especially
for biomedical applications where prediction accuracy directly
or indirectly affects human life quality.

To address such issues in general-purpose applications,
researchers have modified the traditional pattern recognition
techniques to consider outliers and missing data [9], [10].
However, these techniques lie in certain assumptions, exclud-
ing the nature of physiological signal recording and biomarker
extraction from wearable devices, where it is possible to
encounter a long missing segment of data [11].

Although several works [12], [13] in the biomedical ap-
plication domain have considered the impact of incomplete
data, they are very simplistic, providing inaccurate predictions.
Moreover, to the best of our knowledge, stress detection from
physiological signals in presence of missing data has not been
taken into account in the literature. Therefore, a comprehensive
framework that deals with missing data in stress biomarkers
throughout its whole pipeline needs to be addressed.

In this work, we propose ReLearn, a robust machine learn-
ing framework for stress detection from biomarkers extracted
from multiple physiological signals that effectively copes with
missing data both at training and inference phases. In partic-
ular, the training dataset composed of stress biomarkers with
missing values flows into a pipeline of feature selection, data
imputation, and outlier detection machine learning algorithms,
such that the classifier can be fed with a complete training
dataset. Then, at inference, unseen data including the missing
values are first passed through the trained models obtained
from the feature selection, data imputation, and outlier de-
tection algorithms. Finally, the imputed data are used by the
classifier to make predictions.

Our main contributions in this work are as follows:
• We propose a novel machine learning framework for

multimodal stress detection from physiological signals,
which is robust to missing data and outliers.

• According to our experiments and stress database, while
by discarding all missing data, as a simplistic yet common
approach, no prediction can be made for 34% of the data
at inference, our approach is able to achieve accurate
predictions, as high as 78%, for missing samples.



• Our experiments show that the proposed framework ob-
tains a cross-validation accuracy of 86.8% even if more
than 50% of samples within the features are missing.

II. RELATED WORK
Several works in the literature deal with outliers, noise, and

missing data in physiological signals. In this context, [13]
only considers parts of signals with valid values, discarding
all missing data (NAN values). Nonetheless, throwing away
part of the data makes it impossible to have any prediction
about the patient’s or user’s condition. Authors in [12] replace
missing values with the closest valid values of the correspond-
ing point. However, such an approach only suits situations
where missing data occur infrequently. Also, if more than a
few successive data points are missing, filling this gap with
the last valid value is insufficient and the outcome could be
misleading.

Besides such simplistic approaches, there are several more
complex methods addressing missing and noisy data for differ-
ent applications. In particular, [14] uses a reference channel to
substitute the missing data of physiological time series. Since
this method works directly on the raw biosignals, it is not
suitable for machine learning approaches, where rather than
the raw signal, the extracted features are used as the input data.
[15] reconstructs the missing leads of a 12-lead ECG signal
from a single-lead ECG signal by using the Random Forest
algorithm. Nevertheless, this work does not address how to
cope with missing data for other physiological signals, such
as PPG, RSP, etc. A Singular Value Decomposition (SVD)
analysis of outlier detection and imputation of missing data
is presented by [16] for DNA microarrays. Similar to [15],
the work of [16] is application-specific and cannot be used as
a general solution. Adaptive filtering is leveraged by [17] to
predict a 30-second segment of missing cardiovascular signals.
This approach, however, falls short if long enough segments
of signals without any missing data cannot be found before the
missing segment. A high dimensional Gaussian Mixture Model
(GMM) is built by [8] to address classification problems in
high-dimensional samples with missing values. Although this
approach shows promising results for surface electromyogra-
phy (sEMG) signals, it does not provide a holistic solution for
multimodal physiological signals. Similarly, authors in [18]
propose an adaptive incremental hybrid classifier to alleviate
the impact of outliers in myoelectric pattern recognition. A
more general-purpose framework is proposed by [19] where an
iterative algorithm is used for classifying data with a missing
feature. Although the proposed algorithm has been tested on
different datasets and applications, it neither considers nor
examines the effect of outliers on the classification task.

Our proposed machine learning framework, in contrast
to state-of-the-arts, provides a comprehensive solution that
can work on arbitrary physiological signals while addressing
missing data and outliers.

III. PROPOSED FRAMEWORK
In this work, we design a machine learning framework

for stress detection from multimodal physiological signals,

which can cope with missing values and outliers at both
training and inference time. Fig. 1 shows an overall view
of the proposed framework. First, multimodal physiological
signals are preprocessed to extract input features (i.e., stress
biomarkers) of machine learning algorithms and create the
training and testing datasets, both including several samples
with missing values. Second, we propose to prune the features,
i.e., to exclude those whose ratio of missing value over all
samples of the training data is above a particular predefined
threshold. So that we reject those features that are prone to
missing values, hence, the more affected by the noise and
artifacts. However, since important physiological information
could be loosed, the trade-off between looser/weaker pruning
and cross-validation accuracy is assessed, in detail, in Section
V-A.

Then, the training samples without missing values are used
to train the Data Handler, where machine learning models
for feature selection, outlier detection, and data imputation are
trained. Those models are used to clean and impute the training
data with missing values, resulting in training samples without
any missing values. Thereafter, the data handler is retrained
with the complete and enhanced data without missing values
to create our ultimate feature selector, data imputer, and outlier
detector. Afterward, the machine learning classifier is trained
with the training data without any missing values and outliers.
At inference time, our ultimate retrained data handler (feature
selector, outlier detector, and data imputer) is used to deal
with missing values and outliers of unseen testing data prior
to the classification. Finally, the trained classifier is employed
to provide real-time predictions.

Throughout this framework, we apply cross-validation (CV)
for training the feature selection algorithm, as well as the
classifier. For this purpose, we apply a group K-fold cross-
validation, with K=10, where for each iteration of the cross-
validation, a couple of the existing groups (in our case, sub-
jects), are kept for validation, while the training is performed
for the rest of the groups. This type of cross-validation is
desirable since it can avoid overfitting, particularly, when
the samples at inference most likely come from completely
different subjects. In the following subsections, we detail each
stage of the proposed framework.

A. Signal Preprocessing

The data-flow from the raw physiological signals to training
and testing datasets is shown in Fig. 3. The first step is the
signal preprocessing, wherefrom each physiological signal a
set of features that capture the subject’s physiological stress
response is extracted in segmentation widows of 60s.

First, the raw signals are filtered to remove noise and
artifacts. Second the filtered signals are delineated to obtain
the primary parameters as in [4], [20] and [3], which are shown
in Fig. 2. In this step, for each parameter, several data quality
policies are applied mainly based on physiological expected
values (e.g., heart rate from 30-180 bpm) and previous samples
trend (i.e, within mean, median, and standard deviation values
ranges of the last 3 to 5 samples). Besides, each delineation
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Fig. 1. Overall view of proposed framework for multimodal stress detection
in presence of missing data

algorithm also rejects noisy signal-segments based on the
signal shape.

Next, 94 physiological features in the time and frequency
domain are extracted from the parameters time series in
segmentation windows of 60s, as described in our previous
works [3], [21]. Here again, several policies are applied for
the missing data on the parameters time series when extracting
the features on each segmentation window to ensure the
representativity of the physiological response on the sample.
For instance, frequency features are only computed if we have
more than 98% of the data; heart cycle-based features (on
ECG and PPG signals) are valid if more than 10 heartbeats
are delineated in a segmentation window; similarly with the
respiration cycles, more than 5 cycles. In the case of the EDA
signal, its features return a missing value if less than 80% of
the data is available. These features are described as follows:

1) EDA: The EDA signal is divided into two main compo-
nents: Skin Conductance Level (SCL) and Skin Conductance
Response (SCR) as the driver phasic signal [22]. Then, the
gradient and mean of the SCL, as well as the SCR power are
obtained.

2) RSP: We compute respiration period (RSPPRD), dura-
tion of air inhaled (INStime), and exhaled (EXPtime), and
the ratio of inhalation to exhalation duration, from which
statistical features are extracted. In the frequency domain,
we compute the power and normalized band power of the
segmented signal in different frequency bands. Moreover, for
each window of analysis, we applied the method proposed in
[23] to compute the estimated respiratory frequency, the largest
peak power, the total power, and the normalized respiratory
peak power.

3) ECG: From ECG, the time intervals between two con-
secutive R peaks (RR) are obtained. From the RR interval,
several time and frequency domain features are extracted based
on the Heart Rate Variability (HRV) analysis [24]. Non-linear
features are also extracted from the Poincaré plot indicating
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Fig. 2. Biomarkers extracted from electrodermal activity (EDA), respiration
(RSP), electrocardiogram (ECG) and photoplethysmography (PPG) signals.

vagal and sympathetic function.
4) PPG: Several parameters are computed as represented

in Fig. 2: pulse period (PP), pulse wave rising time (PRT),
pulse wave decreasing time (PDT), pulse width until reflected
wave (PW), pulse amplitude (PA), and the slope of the pulse
(k) defined as the slope transit time between 1/4 and 3/4 of
the PA divided by their difference in amplitude. PP interval
features are equal to the aforementioned for RR intervals.

B. Feature Pruning

After feature extraction, we randomly select 70% of the
subjects for training, i.e., 66 and 29 subjects’ data, respectively,
for training and testing, while making sure no subject’s data
in the training dataset appears in the testing datasets, cf. Fig.
3. We split the data in a stratified fashion such that the same
proportion of class labels exists in both datasets.

Our prepossessing stage by applying the missing/noisy data
policies results in a dataset with reliable samples but also
missing ones. Therefore, we only consider those features
of training data that have values for at least more than a
predefined percentage of the samples on the training set on
the pruning step. The lower the threshold is, the fewer features
prone to missing values are included in the training set, hence
more reliable information but not necessarily the most relevant
one (i.e., most important features). Therefore, our framework
includes this percentage threshold as a hyperparameter that
needs to be studied and tuned according to the data at hand.

Finally, the training samples are further split into two
groups. The first group consists of samples without any
missing value, whereas in the second group, each sample has
at least one missing value. Hence, the size of the initial data
without any missing value changes with the pruning threshold
selection.
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C. Data Handler: Feature Selection, Imputation, and Inlier

Detection

Fig. 4 illustrates the building blocks of the proposed data
handler that aims at creating a dataset without any outliers
and missing values while including only significant features.
The training samples without missing values obtained from the
preprocessing stage are used in this stage of our framework
to build the baseline models for feature selection, data impu-
tation, and inlier detection to be, then, applied to the training
samples with missing values.

The first step is to exclude outliers in the training data.
We use Isolation Forest [25], an anomaly detection algorithm,
to find the outliers. After removing the outliers we use Re-
cursive Feature Elimination with Cross-Validation (RFECV)
to automatically find the most significant features. We utilize
the Random Forest algorithm as the baseline classifier of the
RFECV algorithm. After training RFECV, a feature selection
model is obtained which can be later used to eliminate
unnecessary features of the wider input feature sets. Using
the Isolation Forest prior to RFECV provides a more robust
model for feature selection since RFECV can work better on
clean data, without outliers.

After selecting the most relevant features, we use a mul-
tivariate iterative imputer [26], where missing values are
imputed by modeling each feature with missing values as a
function of other features in an iterated round-robin fashion
[27]. We employ the Bayesian Ridge algorithm [28], [29] as
the baseline regressor of the multivariate imputer. This step
provides us with an imputer model, which is later used to
impute the missing data. Since the training dataset in this step
does not have any missing values, this step achieves a reliable
imputer, even with a limited number of samples.

Having known the most relevant features, we propose to
retrain the Isolation Forest model obtained in the first step of
the data handler. The reason lies in the fact that we intend
to use our inlier detector model on a selection of the input
features. We propose to refit our inlier detection model after
applying the imputer, since in a real scenario it is first required
to impute the missing values, otherwise, the outlier detector
fails to find the true outliers.

Having obtained the models of feature selection, feature
imputation, and inlier detection, we pass the second part of
the training data containing missing values through these mod-
els, achieving training samples without unnecessary features,
outliers, and missing values (v2). This already-cleaned part of
training data can then be concatenated to the first part of the
training data (v1) to create the final training dataset (v3).

Although using the initial clean and complete training data,
v1, in the data handler provides us with the models of feature

selection, imputation, and inlier detection, these models have
been trained on a subset of the training dataset, i.e., those
samples initially without any missing values. If this part of the
training data is not sufficiently large, the overall framework is
prone to overfitting. Therefore, one solution is to retrain the
feature selector, multivariate imputer, and inlier detector with
the complete and larger training dataset (v3) obtained from
the initial data handler. As a consequence of retraining the
machine learning models within the data handler, new models
for feature selection, inlier detection, and data imputation are
attained, which can be later used at inference time. We refer
to these models as retrained data handler models.

D. Classifier

To find the best classifier, we perform a grid search with
cross-validation for several classical machine learning algo-
rithms, including Linear Discriminant Analysis, Support Vec-
tor Classifier, Random Forest, and eXtreme Gradient Boosting
(XGB) classifier similar to [30]. Although we only consider
five of the well-known machine learning classifiers, our ap-
proach is not limited to incorporating these classifiers and any
arbitrary machine learning algorithm can be employed within
our proposed framework. In the grid search, we consider the
most important hyperparameters of these algorithms. We found
XGB able to provide a statistically higher CV score than the
others. Therefore, we use XGB as the main classifier of the
proposed framework.

IV. EXPERIMENTAL SETUP
To assess our proposed technique, we build and test our

framework with experimental data from [31]. We first evaluate
our proposed data handler when using it to enhance the train-
ing set and, finally, compare our framework with commonly
used imputation techniques.

A. Stress Database: Experiment Protocol

95 participants (male, Agemean = 20.43, Agestd = 2.17)
are divided into two groups performing either a control or a
stress task in a virtual reality (VR) environment lasting 10
minutes each one [31]. The physiological signals are recorded
using the Biopac BioNomadix System. The stress experiment
is approved by the Cantonal Ethics Committee of Vaud,
Switzerland (2017-00449).

The stress task exposed participants to an uncontrollable
social-evaluative task and timed problem solving with nega-
tive feedback in a challenge in VR. Here, participants were
immersed in an empty room with tiled flooring, in which they
could move around while mental arithmetic questions appeared
briefly in the heads-up display (HUD). Incorrect responses
caused a tile on the floor to break and disappear, leaving
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an open hole where participants could fall into. Performance
was continuously compared to a faux average performance
from other participants (63% of correct responses; being also
shown in the HUD) and the difficulty (response time limit) was
titrated to keep performance below this average. The control
task consisted of equivalent conditions but without the stressful
elements of the stress task. Participants were still standing up
and allowed to walk while being immersed in a VR nature
setting.

B. Proposed Framework Evaluation

To evaluate the utility of our framework to enhance the
training data we compare the use of the data handler trained
only by data without missing values against the two-step
process of retraining our data handler on the complete training
data that includes both the initial clean and treated data with
the first data handler, see Fig. 1. In particular, we compare
how it behaves with respect to the different thresholds of the
feature pruning, hence how robust our data handler is when
the training data have more missing values.

Moreover, we compare our framework with traditional
techniques for handling missing data and outliers. The most
conventional techniques for replacing the missing values are
1) to fill the gaps with the mean value of valid samples
(i.e., those with neither missing values nor outliers) computed
from the training set and 2) to replace the missing value
with the value of the last valid sample. In the first data
imputation technique, the mean value of each feature obtained
from the training dataset is used to fill the missing values.
Finally, we also consider in our comparison the very basic yet
commonly used alternative to handle missing values, where all
the missing values are simply ignored [13], discarding entire
rows containing missing values. However, this comes at the
price of losing valuable data. In addition, the most common,
yet simplistic, approach to consider the outliers is removing
any values lying in a distance beyond 3 times of standard
deviation from the mean value. We also assess this technique.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. Feature Pruning Threshold Selection

One of the steps taken in our framework in the preprocessing
stage is to prune the features, i.e., to discard those features
that more than a particular percentage of their samples in the
training set are missing.

Fig. 5 shows how this threshold affects the mean and
standard deviation of CV accuracy. As shown in the figure,
the CV mean accuracy of all threshold values range from

Fig. 5. Impact of threshold for feature pruning cross validation results

83.0% to 86.8% (solid line with markers) with a standard
deviation from 6.4% to 11.2%, indicating the robustness of the
proposed framework. It is important to note that these results
are highly dependent on the dataset used since the affected
features with missing values vary with the sensor used and
activities performed.

Moreover, the choice of threshold value affects the number
of selected features and overhead of the framework. TABLE
I shows the number of features after feature pruning, training
samples without missing values after feature pruning used in
the initial data handler, number of features after the retrained
data handler used for training the classifier, and overhead of
the whole framework at inference. As shown by TABLE I,
the execution time proportionally increases with the number
of features. In fact, the greater the number of features selected,
the more complex would be the model of the imputer, inlier
detector, and the final classifier. The execution time has been
measured on a single core of a 32 AMD EPYC Processor with
a maximum frequency of 2GHz, 500 GB main memory, and
8MB Last Level Cache (LLC).

We argue that either of the thresholds evaluated in this work
can be considered as the chosen value for the pruning step,
depending on the user’s intent and the application targeted.
On one hand, if the main purpose is to attain a low-overhead
solution, a threshold value of 10% to 20% is a proper choice
as it can achieve an acceptable score of 85.15% with a
minimum runtime overhead of only 0.8 ms. On the other
hand, a threshold of 50% provides slightly higher accuracy,
i.e., 86.83% at the cost of larger runtime overhead (1.8ms).
The standard deviation of accuracy in cross-validation is,
nonetheless, quite large for smaller thresholds. In this work,
we assume 50% as the threshold of missing data in the feature
pruning step, as it provides the highest CV mean accuracy and
the lowest standard deviation.



TABLE I
IMPACT OF DIFFERENT THRESHOLDS FOR FEATURE PRUNING

Threshold (%) 10 20 30 40 50 60
#Features (After Feat. Prun.) 66 66 80 80 86 87
#Samples w/o missing values

(After Feat. Prun.) 2475 2475 1925 1925 1498 675

#Features (Final) 21 21 27 27 38 30
Overhead (ms) 0.8 0.8 1.5 1.5 1.8 1.6

B. Framework Analysis and Evaluation

As explained in Section III-C the models extracted from the
initial data handler models can also be used at inference time.
However, as aforementioned, the initial data handler is trained
on only a part of the training data. Therefore, the final feature
selector, data imputer, and outlier detector from the retrained
data handler using the whole clean dataset (v3, see Fig. 4) may
outperform the models provided by the initial data handler. We
test this hypothesis by deploying the proposed framework with
the initial and retrained data handlers at different threshold
values for feature pruning.

Fig. 6 shows the box plots of CV score achieved by models
of the initial data handler and retrained data handler for
different threshold values. With lower thresholds, the initial
data handler attains a higher mean CV score than retrained
data handler with a larger standard deviation. By increasing
the threshold, retrained data handler provides not only a higher
CV mean score, but also a lower standard deviation. As
a consequence, inferring from the models of the retrained
data handler brings about more robustness against missing
data. Also, if applied to unseen testing data, with a feature
pruning threshold of 50%, the classification mean accuracy
achieved through the retrained and initial data handlers are
78.8% (std = 25.4%) and 76.5% (std = 26.4), respectively.
Moreover, Fig. 7 depicts the number of features selected up
to each of the approaches and the overall runtime overhead
of the framework. According to this figure, the models of
retrained data handler consistently use fewer features and,
hence, come with lower complexity with different threshold
values. Therefore, inferring from the models of retrained data
handler results in reduced complexity while having statistically
more accurate predictions.

C. Comparison with Conventional Imputation Techniques

In this section, we evaluate our approach against traditional
techniques for coping with missing data and outliers. For
this comparison, we assume the following approaches: filling
the missing values with a mean value Mean value; the last
valueLast Value and ignoring all the missing values Drop NAN,
on the training dataset. Also, to have a fair comparison, we
apply RFECV for feature selection followed by performing a
grid search over the hyperparameters of the classifier (XGB)
with cross-validation. Finally, we remove any features that
more than 50% of their values in the training dataset are
missing.

TABLE II compares our approach and these techniques
with respect to the CV mean accuracy and standard deviation,
inference mean accuracy and standard deviation among sub-
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jects on the unseen test data, mean accuracy of predictions
on missing data at inference, and the number of selected
features. As shown by TABLE II, by ignoring all missing
data, the CV mean accuracy is close to that obtained by our
framework, yet 4% less. Besides, this technique results in a
rather large standard deviation (12.0%), thus, lower accuracy at
inference. More importantly, regarding our database, the Drop

NAN method fails to provide any prediction for 387 samples
out of 1131 samples. This is more than 34% of the data to be
predicted at inference. Even if we let only the features with
less than 30% of their values missing (instead of 50% used
in TABLE II), still no prediction can be made for 16% of
samples for unseen testing data. In this case, the CV mean
accuracy and inference accuracy increase to 84% and 77.4%,
yet lower than the one achieved by the proposed framework
for all threshold values discussed in Section V-A.

In contrast to the Drop NAN method, using Mean Value and
Last value techniques reduce overfitting through data imputa-
tion and, thus, increasing the training data, at the cost of lower
CV and inference accuracy. In addition, despite the fact that
predictions on missing data are made available by these two
techniques, neither of them can reach the same accuracy as that



TABLE II
COMPARISON TO CONVENTIONAL IMPUTATION TECHNIQUES

CV
(mean ± STD)

Inf. (All)
(mean ± STD)

Inf.
(Miss.) #Feat.

Drop NaN 81.6 ± 12.0% 74.4 ± 30.0% N/A 24
Mean value 53.9 ± 13.5% 50.2 ± 38.7% 51.1% 49
Last Value 54.1 ± 12.4% 49.7 ± 38.2% 50.5% 36
ReLearn 86.8 ± 6.4% 78.8 ± 25.4% 77.9% 38

provided by the proposed framework. The poor classification
accuracy obtained through these two methods is mainly due to
the large number of missing samples in the training and testing
datasets, which necessitates a more complicated solution rather
than these simple imputation techniques.

VI. CONCLUSION

In this paper, we have proposed ReLearn, a new robust ma-
chine learning framework for stress detection from biomarkers
extracted from multimodal physiological signals that effec-
tively addresses missing data and outliers both at training and
inference phases. Our framework enables efficiently increasing
and cleaning the training data. Thus, it provides a more
accurate and generalizable classification. Moreover, our frame-
work allows classifying all samples at inference, including
missing ones. In particular, according to our experiments in
a large stress database, while by discarding all missing data
as a simplistic yet common approach, no prediction can be
made for 34% of the data at inference, our approach is able
to achieve very accurate predictions, as high as 78%, for
missing samples. Moreover, we have shown that our approach
facilitates the use of features that are usually discarded due to
missing values, despite containing significant information of
the physiological stress response. Thus, our approach achieves
a cross-validation and inference accuracy of 86.8% and 78.8%,
respectively, even if up to 50% of samples within the features
are missing.
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