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A B S T R A C T   

While Deep Learning (DL) is often considered the state-of-the art for Artificial Intel-ligence-based medical de-
cision support, it remains sparsely implemented in clinical practice and poorly trusted by clinicians due to 
insufficient interpretability of neural network models. We have approached this issue in the context of online 
detection of epileptic seizures by developing a DL model from EEG signals, and associating certain properties of 
the model behavior with the expert medical knowledge. This has conditioned the preparation of the input signals, 
the network architecture, and the post-processing of the output in line with the domain knowledge. Specifically, 
we focused the discussion on three main aspects: (1) how to aggregate the classification results on signal seg-
ments provided by the DL model into a larger time scale, at the seizure-level; (2) what are the relevant frequency 
patterns learned in the first convolutional layer of different models, and their relation with the delta, theta, 
alpha, beta and gamma frequency bands on which the visual interpretation of EEG is based; and (3) the iden-
tification of the signal waveforms with larger contribution towards the ictal class, according to the activation 
differences highlighted using the DeepLIFT method. Results show that the kernel size in the first layer determines 
the interpretability of the extracted features and the sensitivity of the trained models, even though the final 
performance is very similar after post-processing. Also, we found that amplitude is the main feature leading to an 
ictal prediction, suggesting that a larger patient population would be required to learn more complex frequency 
patterns. Still, our methodology was successfully able to generalize patient inter-variability for the majority of 
the studied population with a classification F1-score of 0.873 and detecting 90% of the seizures.   

1. Introduction 

Epilepsy is a neurological disease characterized by paroxysmal 
events, called seizures, arising from the abnormal activation of neuronal 
networks. This abnormal activation translates into changes in the 
pattern of electrical activity generated by the brain, which can be 
captured through electroencephalography (EEG). The disease affects 50 
million people worldwide, among which 70% could live seizure-free 
with appropriate diagnosis and treatment according to the World 
Health Organization [1]. Conversely, 30% of patients with epilepsy 
continue to suffer unpredictably recurring seizures. For these patients, 
there is a crucial need for the development of devices to detect seizure 

events [2]. EEG is the gold standard method to detect all seizure types in 
hospitals [3,4], but no reliable wearable EEG is yet available to transfer 
this approach for very long-term monitoring at home. Yet, innovative 
wearables are being developed and might allow such monitoring in the 
near future, stressing the need for EEG-based online seizure detection 
and interpretable models. 

With the bloom of Deep Learning (DL) in the biomedical field, 
several methods have been developed to detect and predict seizure 
events from EEG of epileptic patients primarily recorded during short in- 
hospital monitoring with standard scalp-EEG or intracerebral electrodes 
[4]. Though some methods reported excellent performances, most used 
offline analysis with significant pre-processing and transformation of the 
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EEG signal not compatible with the aim of online, long-term, ambula-
tory low-power operations. 

Overcoming the challenge of efficient characterization of seizure 
events on a large and heterogeneous population of patients is also a 
crucial step for the transfer to clinical applications. Indeed, current de-
vices suffer from generalization difficulties to unseen patients and they 
often need to be fine-tuned to each patient as a result of important pa-
tient inter-variability in epileptic disorders [4]. Training DL networks 
often requires dividing the input EEG into short segments, typically 
between 0.5 and 30 seconds [4]. Classification metrics of those indi-
vidual segments is a necessary step to characterize model performance, 
but if we aim to provide a model for seizure detection, one should also 
assess the performance on longer stretches of EEG signals carrying 
transitions between interictal and ictal phases. 

Given that the “black-box” nature of DL is a common obstacle to the 
transfer of applications in clinics [5], we aim to explore not just the 
features learned by a DL model but also the input data properties leading 
to a classification decision with the view to improve the validity of the 
method and potentially the understanding of the related pathology. 
Delineating the key characteristics of the input data for an efficient 
classification can then justify the conception of the model architecture 
and the choice of processing methods. 

This work is thus a step towards strengthening the relationship be-
tween the current knowledge of EEG signals in epileptic disorders and 
the development of transferable DL methods for characterization of 
seizure events. In the continuity of the work with the e-Glass as an EEG 
monitoring wearable device [6], our study focuses on electrodes placed 
over the temporal brain regions and explores performance of the model 
both at the segment and seizure levels, with an extensive discussion on 
how these two levels are related. As a result, we report a 
non-patient-specific online method using raw EEG to detect seizures, 
and investigate the features learned by the model, providing a visual 
feedback of the decisive patterns for seizure detection on the EEG signal. 

2. Related work 

A common follow-up practice for epilepsy requires that the patient 
documents each seizure in a paper or electronic diary to later provide an 
appropriate therapy [2,7]. Unfortunately, seizure events are often 
underreported, partly due to seizure-induced amnesia of seizure events 
[8]. This justifies the development of wireless recording devices coupled 
with an electronic diary to detect, record and eventually predict or 
forecast seizure events. Existing wearable devices often only detect a 
fraction of seizures, called generalized tonic-clonic seizures (GTCS), 
thanks to easy-to-observe GTCS-induced variation of various biosignals, 
including surface-electromyography (sEMG), electrodermal activity 
(EDA) and 3D-accelerometry [9,10,6]. However, these biosignals do not 
currently offer a reliable way to detect the majority of non-GTCS sei-
zures [11]. 

Recently, DL provided new opportunities to address the classification 
of EEG signals. Since it is a data-driven method, feature extraction is 
strongly simplified, at the cost of requiring much larger datasets. Some 
methods used Recurrent Neural Networks (RNN) to account for the 
temporal nature of EEG [12]. However, most methods have used Con-
volutional Neural Networks (CNN) [13–19]. Not only their architecture 
and mechanisms have been constantly improved due to their thorough 
utilization in the field of modern computer vision, but they often provide 
better results than simple RNN architectures for the classification of EEG 
time-series [20]. In 2015, de Aguiar et al. presented a weightless DL 
architecture to predict seizures online with an anticipation between 2 
and 30 seconds before the onset [17]. The method is patient-dependent 
and achieves accuracies between 0.725 and 0.99 on the EPILEPSIAE 
dataset [21]. The authors did not perform any signal processing aside 
from the encoding and the architecture of the network was carefully 
designed to prepare for online processing on an embedded device. More 
recently, Yuan et al. [15] developed an auto-encoder followed by a 

shallow multi-view CNN architecture that fosters intra- and 
inter-channel dependencies from spectrograms. The proposed frame-
work achieved a F1-score of 0.85 on the CHB-MIT dataset [22] for the 
classification of 3-second segments between the ictal and pre-ictal or 
interictal classes, in a patient-independent fashion. Despite a very good 
performance, the method lacks clinical applicability as it was not used to 
detect seizures on longer stretches of EEG recording. 

Detection of seizure events from continuous EEG is commonly done 
by processing the short segments of test EEG signals in a time linear 
fashion and reporting an aggregated performance (e.g. seizure sensi-
tivity). This helps to understand the behavior of the model during 
continuous monitoring and it is a necessary step for the development of 
monitoring devices. Most studies report performance on short segments 
but few additionally report sensitivity, precision and accuracy for 
complete seizures episodes. We refer to these two levels of performance 
as follows: “segment-level” depicts performance on the short segments 
of test EEG, while “seizure-level” refers to performance on the individual 
seizure events. In [13], the authors proposed a simple CNN architecture 
that predicts a seizure onset 5 to 35 minutes following the alarm if 8 out 
of 10 consecutive segments are classified as pre-ictal. On the CHB-MIT 
dataset, the patient-dependent method achieves a sensitivity of 81.2% 
with a false positive rate of 0.16 per hour. In [13,17], the authors aimed 
at predicting the seizure onset, while [15] focuses on detecting short 
ictal segments. Our work lies at the intersection between both ap-
proaches, where we aim to detect seizure onsets as early as possible (and 
possibly before) by training the network with interictal and ictal 
segments. 

Since features in a DL model are automatically extracted during 
training without human intervention, decisions are rarely interpretable 
for clinicians. Some studies still advance to explain network dynamics 
when processing EEG signals [23–25]. In [23], the authors visualized the 
important frequencies and spatial locations for each class in a motor 
imagery task using causal inference. Specifically, they reported how 
increasing or suppressing the spectral amplitude of a frequency 
component causes changes in output neuron activation. Hartmann and 
colleagues extended the approach to all convolutional layers of the 
network [24]. They discovered that spectral amplitude is an important 
feature for the imagery task in the last layers of the model while 
modulating spectral phase affects early layers. The authors also showed 
that every layer extracts different frequencies by observing the median 
of the input samples that yielded the strongest activation for each filter. 
For the same task, Sturm et al. used Layer-wise Relevance Propagation 
(LRP) to visualize the most important features on the input signal by 
propagating the relevance of each neuron to each class from the output 
back to the input [25]. Their results showed that imagining right hand 
movements was associated with relevant features in the left hemisphere 
and inversely for the left hand, as expected. In this work, we take 
inspiration from these visualization methods to bring explanations on 
network dynamics in the context of epilepsy detection. 

3. Materials and methods 

3.1. Dataset 

The dataset used in this study comes from the REPO2MSE cohort, 
whose characteristics were previously reported in [26]. It contains 
multi-channel scalp-EEG recordings from 568 patients with epilepsy, 
and annotations of seizure onsets from an experienced epileptologist.A 
total of 1212 distinct seizures, each in one record file, are available with 
each record being cut to contain a single seizure with a median of 3.0 
minutes of interictal recording before the annotated seizure onset. EEG 
recordings were either sampled at 256 Hz (89.6%), 512 Hz (10.2%) or 
1024 Hz (0.2%). The median number of files containing a seizure was of 
2 per patient, with a maximum of 9 and a minimum of 1. 
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3.2. Preparing the input 

Pre-processing steps were minimized for an online method. Raw EEG 
signals were down-sampled to 256 Hz and cut in overlapping segments 
of 5 seconds. Although a time-frequency representation of the signal is 
commonly employed [15,13], we believe that a careful design of the 
model architecture taking into account how experts visually interpret 
raw EEG signals in time and space may perform as well as more explicit 
representations. This study focuses on four EEG channels “F7-T7”, 
“F8-T8”, “T7-P7” and “T8-P8” to prepare future long-term recordings 
using wearable EEG systems like the e-Glass [6]. 

The segmentation scheme of each EEG signal is represented on Fig. 1. 
For each available seizure, we considered one minute of interictal 
recording and one minute of ictal recording. The duration between ictal 
and interictal classes was equal to balance the number of training 
samples. The interictal segment started two minutes and ended one 
minute prior to seizure onset. The immediate pre-ictal minute before 
seizure onset was not used for training to guarantee a clear separation 
between interictal and ictal segments, following the recommendations 
of the clinical experts. The ictal segment started at seizure onset. Some 
seizures might last less than one minute, leading the ictal segment to 
include some immediate post-ictal recording. Because this post-ictal 
segment is often difficult to distinguish from the ictal phase itself, and 
might also be informative for seizure detection, we did not attempt to 
separate true ictal from immediate post-ictal activities during the one 
minute of ictal recording. The interictal segments were considered as 
“negative class” segments, while the ictal segments were considered as 
“positive class” segments. Each segment is then subdivided in windows 
of 5 seconds with 50% overlap for data augmentation and centered with 
respect to the median of the window. This allows to balance training 

data with each file including 23 negative samples and 23 positive 
samples. The windowing strategy gives a resolution of 2.5 seconds when 
predicting seizures at the seizure-level. 

The method to split the data between training, validation and testing 
sets is illustrated in Fig. 2. 80% of the data are used for training and 
testing at the segment-level and 20% for testing at the seizure-level. 
They are referred to as training and testing sets A, respectively. We 
perform 5-fold cross-validation (CV) splitting on the patient list with 
10% of validation data at each fold on the training set to obtain metrics 
at the segment-level and fine-tune hyper-parameters used for detection 
of the seizure onset. They are referred to as training and testing sets B. 
10% of training set B is used as validation to monitor the training per-
formance of training set C and implements early-stopping. When 
training on set A without cross-validation, 10% of the samples are used 
for validation (not represented). 

3.3. Network architecture 

We developed a CNN, as this type of architecture has shown prom-
ising results in epilepsy detection and classification [13,14,17]. The 
CNN input are 2D gray-scale images with dimension 4 channels x 1280 
time samples (5 seconds x 256 Hz). The model architecture is illustrated 
in Fig. 3. It is composed of three blocks of convolutional layers followed 
by two fully connected (FC) layers with a single output for binary 
classification (i.e., ictal vs. interictal). Each block of convolutional layers 
consists of two units of a convolutional layer, followed by a Batch 
Normalization (BN) operation and Rectified Linear Unit (ReLU) activa-
tion. BN is used to re-center the data and to ensure a non-linear ReLU 
activation, as this has been proven to speed-up training and improve 
model performance [27]. A max pooling operation follows each block to 

Fig. 1. Segmentation of EEG signal. Signals are cut into four parts relative to the seizure onset label. The ictal portion extends up to one minute after seizure onset. 
The pre-ictal portion is considered as the minute before seizure onset and is preceded by one minute of interictal signal. An additional minute of interictal is added in 
for post-processing with a difference filter, as explained in Section 3.5. Ictal and interictal portions (blue) are used for training and computation of metrics(For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). Grey regions are only used for prediction but are 
not taken into account for the calculation of the evaluation metrics. 

Fig. 2. Database splitting. Data from 568 patients are used. 
20% are left out for testing at the seizure-level (test set A). 80% 
are used for both cross-validation training (B) to obtain metrics 
at the segment-level and again for training to obtain metrics at 
the seizure-level without cross-validation (A). 5-fold CV re-
quires 80% of training data (B) as the training set. Because we 
use early stopping, we further select 90% of the training set (C) 
as the final training set and leave 10% as validation metrics 
during training. All steps except the last ensure data indepen-
dence at the patient level. The number of 5-seconds segments 
used for training is not fixed at each fold as not all patients 
have the same amount of data. 57.6% of the full database is 
used for training at each cross-validation fold and 72% for final 
training.   
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reduce dimensionality and to improve temporal invariance of the input. 
Convolutional layers in the first block contains 32 3×k kernels, 64 3×31 
kernels in the second block, and 64 3×3 kernels in the last block with a 
stride of 1×1 in all blocks. To explore the features learned by the model 
in the first layer, we tested different values of k and compared models 
with kernel size of 3×5, 3×91, and 3×131. In what follows we refer to 
each one of these models according to the first layer kernel size. A kernel 
of length 131 along the time dimension can capture frequencies as low 
as 2 Hz, while a kernel of length 5 can only explicitly extract 
high-gamma frequencies in the first two layers. In the latter case, the 
following 3×31 block can also extract lower frequencies. The temporal 
sizes of the kernels were chosen arbitrarily and fine-tuned experimen-
tally, but they were kept distinct enough to extract different ranges of 
frequencies. 

A 30% dropout (DO) operation is used before each FC layer and 0.05 
weighted kernel and bias regularization are used to avoid overfitting. 
Models are trained for a maximum of 120 epochs with early-stopping if 
no improvement of the validation loss is made after 15 epochs. Sto-
chastic Gradient Descend (SGD) optimizer is used with a learning-rate of 
0.005. The training was performed on a computing server with 2 AMD 

EPYC 7551 32-Core Processors and 500 GB of RAM, equipped with an 
Nvidia Tesla T4 GPU. The models were implemented with Keras using 
the Tensorflow v1.4 backend. Training on set A takes 99 minutes for 50 
epochs, or a mean time of 118 seconds per epoch. 

3.4. Metrics 

We report accuracy, sensitivity, precision, and F1-score both at the 
segment and seizure-levels. Metrics at the segment-level are reported by 
concatenating results for each CV-fold while Area Under the receiver 
operating characteristic Curve (AUC) is averaged across CV folds 
(testing sets B), as advised in [28]. Results at the seizure-level are re-
ported after training on 80% of patients (training set A) and testing on 
the remaining 20% (testing set A). 

As there is no signal without seizures in the dataset, metrics at the 
seizure-level are computed according to the negative and positive parts 
of the signal. A seizure is correctly detected if the onset is detected in the 
ictal part of the signal and counted as a false positive if detected in the 
interictal part. 

3.5. Post-processing 

The performance of the seizure detection method needs to be 
assessed at the time scale of seizure events and not only on short indi-
vidual segments. Since the detection of seizure onset does not require 
that all sub-segments are classified correctly, we expect the performance 
at the seizure-level to be higher than at the segment-level. Two aggre-
gation methods are employed to detect seizure events from the pre-
dictions of successive segments. The first follows a Bayesian approach. 
The evidence for each class is computed by taking the product of 
continuous predictions over a sliding window of size W. A window is 
considered positive if the log-odds of the ictal evidence over the inter-
ictal evidence is superior to a threshold thb. 

The second method applies a difference filter to successive pre-
dictions to detect the transition between the pre-ictal and ictal segments. 
Previous output probability for a segment at time t = − M is subtracted 
from the output probability at time t = 0, where M is the length of the 
difference filter. A window was considered positive if it reached a 
threshold thd. To account for values of M up to 23 samples, we also 
considered the 1 minute of signal before the interictal part so that the 
false positive rate is not artificially reduced in the interictal part. 

The Bayesian method focuses on detecting segments of high ictal 
evidence, while the difference method addresses the detection of the 
transition between immediate pre-ictal and the seizure onset. The hyper- 
parameters of each method were optimized in a grid-search fashion on 
the concatenated CV folds of set B and were then used to generate 
metrics at the seizure-level on the test set A. To compare the differences 
of dynamics between models, we also computed their performance at 
the seizure-level for each aggregation method with a fixed set of hyper- 
parameters. 

3.6. Visualization 

We applied two visualization methods to understand the decision 
dynamics of the network on the EEG signal. First, we explored what are 
the inputs maximizing the first layer kernels using gradient ascent. In-
puts are initialized with random samples in the range [-10 μV;10 μV]. As 
the resulting signals were sinusoids, we computed their power spectrum 
with the Welch’s method and reported the main frequency components 
for each channel [29]. This method does not inform if a given frequency 
component contributes to the ictal or interictal class. Accordingly, 
maximized inputs are fed back to the network and probability at the 
output is kept. From this probability, we may then infer that a frequency 
component (or a combination of them) is associated to the ictal class if it 
has an output probability close to 1, and to the negative class otherwise. 
For the 3×5 model only, we additionally perform the same analysis but 

Fig. 3. Neural network architecture. The network architecture is composed 
of 3 convolutional blocks and two fully connected layers. Each block is followed 
by a pooling operation. We compare 3 versions of this network with different 
values of k in the first layer kernels. 
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maximizing filters of the last convolutional block instead of the first to 
see if a model can progressively build a representation of lower fre-
quencies after several pooling operations. 

Second, we visualized the learned features back on the EEG signal 
using SHAP values (SHapley Additive exPlanations) [30]. This method 
compares the output difference between a baseline EEG signal and a 
given input and propagates this difference back to the input signal, 
similarly as in [31]. A positive SHAP value indicates an input data point 
that led to a positive difference output and therefore a contribution to 
the positive class. 

The first method is based on the model weights at the first layer and 
constructs preferred activation patterns. The second method is 
activation-based and has potential for clinical applications. It requires a 
forward pass of an input sample to highlight ictal features on the signal. 

4. Experimental results 

In this section, we first discuss the detection performance of the three 
models both at the segment and seizure-levels. We then explore the re-
sults of the maximized inputs and of the DeepLIFT visualization method. 

4.1. Model performance at the segment level 

Table 1 shows the classification performance metrics at the segment- 
level for the 3×91, 3×131 and 3×5 models. We applied two different 
decision thresholds: 0.15 and 0.85 for high and low sensitivity respec-
tively. Fig. 4 displays the prediction polarisation at the output neuron. 
The 3×131 model yields the best F1-score of 0.76 at the low threshold 
and is the model with output probabilities that are the most shifted to-
wards the negative class. On the contrary, the 3×5 model has output 
probabilities shifted towards the ictal class and the best F1-score of 
0.577 at a high decision threshold. The 3×5 model keeps relatively high 
sensitivity at a high threshold because the distribution is more shifted 
towards the positive class than for the other models and the opposite is 
observed for the 3×131 model. The 3×91 model is the most balanced 
with F1-scores of 0.759 and 0.566 for decision thresholds of 0.15 and 
0.85, respectively. All models have an AUC of 0.87. 

4.2. Model performance at the seizure level 

4.2.1. Evidence aggregation 
Results of grid search selection for the hyperparameters W and thb in 

the Bayesian aggregation approach are displayed on Fig. 5 and the 
selected hyper-parameter values in Table 2. Optimum W* are 5, 7, 5 and 
th∗

b are 1.5, 2.5, 1.5 for models 3×5, 3×31 and 3×131, respectively. The 
optimal windows correspond to 12.5 to 15 seconds of signal and optimal 
log-odds ratio to an aggregated probability approximately between 0.8 
and 0.9, meaning that high evidence is required to predict a positive 

Table 1 
Metrics at the segment-level. Accuracy, sensitivity, precision, and F1-score are 
reported by concatenating CV outputs (test sets B). Network output is converted 
to binary classification according to two decision thresholds chosen arbitrarily to 
explore performance at low- and high-sensitivity. Overall, 3×5 model exhibits 
the highest sensitivity and 3×131 the best precision. Averaging AUC across folds 
shows that all three models perform equally.  

Model 3×91 3×131 3×5 

Threshold 0.150 0.850 0.150 0.850 0.150 0.850 
Accuracy 0.705 0.686 0.711 0.644 0.657 0.690 
Sensitivity 0.930 0.405 0.914 0.307 0.962 0.416 
Precision 0.481 0.966 0.508 0.981 0.353 0.964 
F1-score 0.759 0.563 0.760 0.463 0.737 0.573 
AUC 0.866 ± 0.02 0.867 ± 0.022 0.866 ± 0.026  

Fig. 4. Distribution of output probabilities. Output probabilities of each CNN are plotted as a histogram. 3×5 model has probabilities shifted to the right, 
suggesting a higher sensitivity. On the contrary 3×131 model has few outputs close to one indicating a potentially lower sensitivity. 

Fig. 5. Hyper-parameters space - Bayesian approach. a. 3×91, b. 3×131, c. 3×5. F1 scores are smoothly distributed in the hyper-parameter space of every model, 
showing a low risk of overfitting. The 3×5 model has optimal hyper-parameters shifted towards high log-odds as a consequence of a high sensitivity at the segment- 
level. The opposite is observed for the 3×131 model. 

Table 2 
Optimized hyper-parameters for the Bayesian approach.  

Parameters W* th∗
b  

3×5 5 1.5 
3×91 7 2.5 
3×131 5 1.5  
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output. 
Accuracy, sensitivity, precision, and F1-score are reported in Table 3. 

The 3×131 model has the highest sensitivity with 89.5% of the test 
seizures detected, while the 3×91 has the lowest one with a value of 
83.4%. The 3×5 model has the best F1-score of 0.853 and the highest 
precision, with less than 9.82% of false positives. 

4.2.2. Difference filter aggregation 
Optimal M* and th∗

b are reported in Table 4 and the F1-score grids in 
Fig. 6 for the difference filter aggregation method. Optimal difference 
windows are 17, 15, 21 and optimal detection thresholds are 0.45, 0.5, 
0.45 for the 3×5, 3×91 and 3×131 models, respectively. The optimal 
time scale to compute the difference of prediction between two samples 
is then between 37.5 and 52.5 seconds, and requires a prediction dif-
ference close to 50%. 

Table 5 shows the metrics at the seizure-level for the difference filter 
method. The 3×131 model performs best with an F1-score of 0.873 and 
90% of the seizures detected, while the 3×91 model has the lowest false 
positive rate in the interictal part with a precision of 0.891. This can be 
explained by a higher th∗

b and shorter M*. 

4.2.3. Model differences 
When comparing Tables 1, 3 and 5, we observe that performance at 

the seizure-level is higher than at the segment-level for both aggregation 
methods, as expected. At the segment-level, the F1-scores never excee-
ded 0.76, while it reaches 0.873 for the 3×131 model with the difference 
filter method. Performance differences between models at the segment- 
level are not conserved at the seizure-level. Indeed, the 3×131 model 
was yielding the highest precision and the 3×5 model the highest 
sensitivity, while it is the opposite at the seizure-level for the Bayesian 
approach. This effect is less pronounced for the difference filter.  

Results of model comparison with a fixed set of hyper-parameters are 
shown in Tables 7 and 6 . They reveal the previous dynamic observed at 

the segment-level where 3×5 model is yielding the highest sensitivity 
and 3×131 model the highest precision. Hyper-parameter optimization 
tends to make methods converge to a common behavior by compen-
sating differences at the seizure-level. 

4.2.4. Aggregation methods comparison 
Fig. 7 compares the outputs of both aggregation methods on 229 test 

signals, represented as rows. The left column shows the continuous 
probability outputs of the model and the middle and right columns 
represent the post-processed binary outputs for the Bayesian approach 
and the difference filter, respectively. The Bayesian approach often leads 
to higher sensitivity and longer stretches of ictal detection. False posi-
tives in the interictal part are reduced for the difference method, as this 
method can detect drifts in output probabilities stronger than th∗

b for 
signals with probabilities constantly above 0.5. This explains why some 
signals are considered as fully ictal in the Bayesian approach while not 

Table 3 
Metrics at the seizure-level - Bayesian approach.  

Model 3×91 3×131 3×5 

Sensitivity 0.834 0.895 0.886 
Precision 0.825 0.795 0.808 
Accuracy 0.83 0.845 0.847 
F1-score 0.83 0.852 0.853  

Table 4 
Hyper-parameters optimization - Difference filter.  

Parameters M* th∗
b  

3×5 17 0.45 
3×91 15 0.5 
3×131 21 0.45  

Fig. 6. Hyper-parameters space - Difference filter. a. 3×91, b. 3×131, c. 3×5. Hyper-parameters space is smooth reducing the risk of overfitting. 3×131 model 
space is shifted towards lower threshold values. All models seem to have an optimal size of filter beyond 23. This factor is limited by the short time of recording 
before seizure onset label. 

Table 5 
Metrics at the seizure-level - Difference filter.  

Model 3×91 3×131 3×5 

Sensitivity 0.817 0.904 0.908 
Precision 0.891 0.834 0.76 
Accuracy 0.854 0.869 0.834 
F1-score 0.848 0.873 0.846  

Table 6 
Metrics at the seizure-level with W = 7 - Bayesian approach 3×91 model 
performs the best for low threshold and 3×131 is the best classifier at a high 
threshold. This last result is rather surprising as the observations are opposed to 
the difference filter method. Antithetic dynamics of 3×131 and 3×5 models is 
still preserved.  

Model 3×91 3×131 3×5 

Threshold 0.5 3.0 0.5 3.0 0.5 3.0 
Sensitivity 0.904 0.817 0.895 0.865 0.974 0.93 
Precision 0.803 0.847 0.782 0.852 0.664 0.729 
Accuracy 0.854 0.832 0.838 0.858 0.819 0.83 
F1 score 0.861 0.829 0.847 0.859 0.843 0.845  

Table 7 
Metrics at the seizure-level with M = 19 - Difference filter. 3×131 model 
performs the best at a low threshold and 3×5 at a high threshold. This highlights 
again the opposite performance of both models.  

Model 3×91 3×131 3×5 

Threshold 0.4 0.6 0.4 0.6 0.4 0.6 
Sensitivity 0.904 0.729 0.908 0.764 0.93 0.795 
Precision 0.764 0.943 0.782 0.948 0.721 0.913 
Accuracy 0.834 0.836 0.845 0.856 0.825 0.854 
F1 score 0.845 0.817 0.854 0.841 0.842 0.845  
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being detected as such by the difference method. 
For each model, falsely classified segments mostly correspond to 

signals being classified either as fully ictal or fully interictal with no 
clear transition between immediate pre-itcal segments and seizure on-
sets. These signals are consistent for each model showing that part of the 
seizure signals could never be properly detected with any of the pro-
posed models. 

4.3. Network interpretability 

4.3.1. Maximized inputs 
Fig. 8 shows the result of the maximized input visualization using 

gradient ascent. The output of 9 out of the 32 available filters eliciting 
strongest activation are represented. Distinct sinusoidal patterns are 
observed for 3×91 and 3×131 models after the third maximized inputs. 
This suggests that first layer kernels extract specific frequency compo-
nents in the input EEG and supports the choice for large kernel sizes. 
High-frequency components are always present in top maximized inputs 
indicating that they are the most decisive features in the first layers. 
Synchronicity with a small phase shift between channels of maximized 
inputs can also be observed in most examples, suggesting that spatial 
correlation is an important feature learned by the model. 

Tables 8 and 9  display the main frequency components of maxi-
mized inputs along with their respective output probabilities when 
feeding them to the network. We did not report the main frequencies for 
the 3×5 model as the power spectrum was broad and no singular fre-
quencies could be identified. For 3×131 and 3×91 models, the majority 
of maximized inputs contain frequencies in the alpha, beta, and low- 
gamma bands. However, maximized inputs eliciting the strongest acti-
vation response contain high-gamma frequencies between 70 and 
100 Hz. Those filters also lead to strong activation of the ictal class. 
Results highlight that most maximized inputs contribute to the ictal 
class. However, frequency components around 8 Hz are associated with 
activation of the interictal class. 

To study the importance for the model to extract high-gamma fre-
quency bands in the maximized inputs, we raised the input range 
amplitude from 10 μV to 100 μV. Fig. 9 and Tables 10 and 11  show a 
much higher proportion of high frequency components in the maxi-
mized input in the 3×131 and 3×91 models. Hence, high frequency 
components seem responsible for extracting the high amplitude infor-
mation in the signal. Maximized inputs containing 8 Hz frequency 
components still elicit the lowest output probabilities although now 
being classified as ictal. A large amplitude is then a distinctive feature of 
the ictal class in all three models, and overrides other features that were 
previously indicators of the interictal class. 

Fig. 10 and Table 12 show the most important frequency components 
in the preferred inputs of the last convolutional block for the 3×5 model. 
Although a kernel of size 5 in the first layer can only extract frequencies 
as low as 51 Hz, the model builds a representation of the lower fre-
quency components in the last convolutional layers of the network. 
Pooling operations are most likely contributing to this effect. We should 
keep in mind that the 3×5 model has a 3×31 layer in the second block, 
and therefore it is able to explicitly extract frequencies as low as 9 Hz. 
However, Table 12 shows that it can still learn frequency features as low 
as 4 Hz. 

4.4. Inference visualization 

We highlight input features characteristic of the ictal class by over-
laying the matrix of SHAP values on the EEG signal, as shown on Fig. 11. 
As expected the ictal portion contains a higher proportion of positive 
SHAP values than the interictal part. On the example presented and 
consistently for every model, decisive features are generally spikes of 
high amplitudes in the EEG signal at a relatively consistent time fre-
quency. Fig. 11 also shows some correlation of the SHAP values between 
channels. 

Fig. 7. Comparison of post-processing methods. Network outputs (left column) are presented as heatmaps with values ranging from 0 to 1 for the negative and 
positive class respectively. The raw outputs are then transformed by the Bayesian approach (middle column) or the difference filter method (right column). The 
Bayesian approach closely resembles the network output, with high sensitivity but also a higher false positive rate. On the contrary, the difference filter is more 
focused on the seizure onset and has a lower false positive rate. 
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5. Discussion 

The methodology presented was elaborated to meet specific re-
quirements. First, we aimed for an online seizure characterization 
method for potential wearable device applications. Second, the method 
needed to handle the high patient inter-variability in terms of EEG sig-
nals and seizure expression. Finally, since clinical applications 

commonly require interpretable models, we progressed towards this 
goal and visualized some features learned by the model to compare them 
with traditional reading of raw EEG in the context of seizure detection. 

5.1. Evaluation of the methodology 

Short segments of raw EEG from temporal electrodes were directly 
fed to the network to classify ictal and interictal signals. The output 
probabilities were aggregated using Bayesian reasoning or a difference 

Fig. 8. Most significant maximized inputs 
for first layer kernels with low initial 
amplitude. Maximized inputs are sorted ac-
cording to their contribution to a custom loss 
function after the last gradient ascent step. 3×5 
model shows only high frequency detecting 
kernels on the first layer. Indeed, the kernel 
sizes can only detect 50Hz frequencies and 
above with a sampling frequency of 256Hz. 
3×131 and 3×91 model both have lower fre-
quency detecting filters. High frequencies 
detecting filters elicit the strongest response 
after the first layer in all models.   

Table 8 
Main frequency components of maximized inputs with low initial ampli-
tude - 3×91. The top three maximized inputs contain high frequency compo-
nents leading to strong activation of the ictal class. Only the 8Hz component is 
associated with activation of the interictal class.  

Filter idx F7-T7 F8-T8 T8-P8 T7-P7 pred. loss 

11 [97] [97] [97] [97] 0.999 0.496 
16 [97] [97] [97] [98] 0.999 0.425 
21 [97] [97] [97] [97] 0.999 0.418 
12 [14] [14] [14] [14] 0.999 0.337 
10 [72, 97] [72, 97] [72, 97] [72, 97] 0.997 0.332 
4 [14, 4] [14, 4] [14, 4] [14, 4] 0.994 0.300 
6 [5] [5] [6] [6] 0.994 0.280 
15 [72, 97] [72, 97] [72, 97] [72, 97] 0.673 0.264 
17 [97, 5] [97, 5] [97, 5] [5, 97] 0.999 0.264 
[...] [...] [...] [...] [...] [...] [...] 
3 [8] [8] [8] [8] 0.092 0.246  

Table 9 
Main frequency components of maximized inputs with low initial ampli-
tude - 3×131. The first three maximized inputs contain high frequency com-
ponents. As for 3×91 model, 8Hz components are associated with activation of 
the interictal class.  

Filter idx F7-T7 F8-T8 T8-P8 T7-P7 pred. loss 

18 [98, 72] [98, 72] [98, 72] [98, 72] 0.999 0.608 
26 [72, 98] [72, 98] [72, 98] [72] 0.981 0.593 
21 [98] [98, 15] [98] [99] 0.999 0.460 
2 [14, 5] [15, 5] [15, 5] [15, 5] 0.998 0.314 
13 [5] [5] [5] [5] 0.669 0.265 
0 [8] [8] [8] [8] 0.050 0.258 
1 [2] [2] [2] [2] 0.580 0.258 
30 [5] [5] [5] [5] 0.993 0.246 
31 [5] [5] [5] [5] 0.998 0.233  
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filter to detect seizure onsets. We trained three networks with different 
first layer kernels to study how the model processes EEG in the early 
layers. At the segment-level, all the models had an AUC score of 0.87, 
and the best F1-score was 0.76 for the 3×131 model with a low decision 
threshold. Performance at the segment-level is lower than the perfor-
mance reported in [15] which could be explained by a different 

segmentation strategy and a simpler model architecture in our study. 
Direct comparison is however not possible as this study constitutes the 
first DL work on the REPO2MSE dataset. The best F1-score at the 
seizure-level was 0.873 using the difference filter and the 3×131 model, 
because both the model and the method reduced the false positive rate 
while preserving high sensitivity. The sensitivity of our 

Fig. 9. Most significant maximized inputs for first layer kernels with high initial amplitude. Maximized inputs are now initialized with random samples with a 
magnitude up to 100μV. High amplitude initialization leads to amplification of high frequencies and stronger activation. 

Table 10 
Main frequency components of maximized inputs with high initial 
amplitude - 3×91. Most maximized inputs carry high-gamma frequency com-
ponents. All associated probabilities are close to 1 and components around 8Hz 
lead to the lowest prediction probability.  

Filter idx F7-T7 F8-T8 T8-P8 T7-P7 pred. loss 

22 [96] [96] [97] [97] 0.999 0.669 
11 [97] [97] [97] [97] 0.999 0.607 
16 [97] [96] [97] [97] 0.999 0.514 
21 [97] [97] [97] [97] 0.999 0.494 
10 [72, 97] [97, 73] [97, 72] [72, 97] 0.999 0.445 
15 [97] [97, 72] [96, 72] [72, 98] 0.999 0.423 
12 [14] [14] [14] [14] 0.999 0.401 
4 [15] [15, 4] [14, 4] [] 0.999 0.375 
6 [5] [4] [5] [6] 0.999 0.356 
[...] [...] [...] [...] [...] [...] [...] 
3 [8] [8] [8] [8] 0.904 0.325  

Table 11 
Main frequency components of maximized inputs with high initial 
amplitude - 3×131. All the maximized inputs looking noisier, this model does 
not have a stronger proportion of high-gamma frequency components. As for the 
3×91 model, most maximized inputs lead to strong activation of the ictal class. 
8Hz components are associated with the lowest output probability.  

Filter idx F7-T7 F8-T8 T8-P8 T7-P7 pred. loss 

18 [98] [98, 72] [98, 71] [98] 0.999 0.717 
26 [72] [72, 98] [71, 98] [71] 0.999 0.661 
21 [99, 16] [99, 15] [99, 15] [99, 16] 0.999 0.505 
2 [5] [4, 15] [4, 15] [] 0.999 0.396 
30 [5] [5] [5] [5] 0.999 0.332 
1 [2] [3] [3] [2] 0.994 0.317 
13 [4] [4] [5] [5] 0.999 0.316 
31 [6] [6] [5, 7] [5] 0.999 0.314 
0 [8] [8] [8] [8] 0.946 0.298  
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patient-independent method is in line with related studies [13]. 
The difference filter was employed to potentially detect an evolution 

of the brain activity before the seizure onset label. Fig. 7 shows that this 
method can detect seizure onsets mostly right after the true label. 

Therefore, early drifts from the interictal to the immediate pre-ictal parts 
of the signal can not be identified by the model in the current segmen-
tation paradigm. Classifying between ictal and interictal signals and 
using only 1 minute of interictal signal is most likely not suited to have a 
clear separation between the interictal and the immediate pre-ictal 
segments. 

Misdetected seizures are generally consistent across all the three 
models suggesting that none of them was able to identify seizure events 
not identifiable by others. Because of patient inter-variability, general 
solutions are usually preferred to minimize the loss function, and signal 
with uncommon seizure patterns are likely to be misclassified. 

5.2. Decision interpretability 

We employed two visualization methods to explore how the kernels 
of the first layer were contributing to the final decision and to highlight 
ictal features on the input EEG. The first used gradient ascent to generate 
the preferred input to the first layer kernels and analysing the frequency 
components of the generated signals. The second used propagation of 
activation difference between an input and a baseline EEG to visualize 
decisive features to the ictal class. Results showed that most frequencies 
extracted in the first layer are strongly associated with the ictal class, 
while fewer ones are associated with the interictal class. Frequencies 
around 8 Hz lead to interictal classification, matching the common as-
sociation of the alpha band with resting brain activity [32]. When 
increasing the amplitude of the input in the gradient ascent experiment, 
prediction of the network were strongly polarized toward the ictal class. 
Filters containing high-frequency components yield stronger activation 
in this case. Therefore, high amplitude is one main feature learned by 
the models and is possibly extracted with filters containing high-gamma 
frequencies. A previous study focusing on spectral bands for seizure 
classification showed that high-gamma frequencies were also important 
features to discriminate between pre-ictal and interictal segments [33]. 
Since high-gamma frequencies are key features for classification and can 
be detected with short convolutional windows, it can explain why the 
3×5 model performs equally good at the segment level as the other 
models. Yet, high amplitude in the input signal is not sufficient nor 
necessary as some low amplitude patterns are detected as ictal in the 
DeepLIFT visualization, while some high amplitude patterns are not 

Fig. 10. Maximized inputs for kernels of the last convolutional block - 
3×5 model. The three maximizing inputs eliciting the strongest activation after 
the last convolutional block of the 3×5 model are represented. This shows that 
the 3×5 model learned to make implicit representation of low frequency 
components of the EEG signal. 

Table 12 
Frequency components of top maximized inputs for last convolutional 
block of the 3×5 model. The preferred inputs have frequency components as 
low as 4Hz, showing that the model built a representation of low frequency 
components through pooling operations.  

Filter idx F7-T7 F8-T8 T8-P8 T7-P7 pred. loss 

22 5.0 5.0 4.0 5.0 0.999 4.174 
6 5.0 5.0 4.0 5.0 0.999 3.661 
27 5.0 5.0 5.0 5.0 0.983 3.294  

Fig. 11. Comparison of approach visualization across models and time. Both windows are taken from the same signal and fed to all three networks. Shap values 
are then computed and over-layed on the EEG signal after smoothing. Red bands correspond to cluster of positive SHAP values and indicate decisive ictal features. 
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detected as such. High-gamma frequencies may also be responsible for 
detecting different shapes of spikes in the EEG signals. It was expected 
that most features contributed to an ictal classification as they are easily 
identifiable to the naked-eye but learning resting EEG features was also 
useful as a counter-balancing information. Our analysis does not exclude 
that other components of the maximized inputs, such as waveform, 
phase and spatial combination can be key features of ictal classification. 

Generalized seizures are often characterized by synchronous brain 
activity which can be observed on EEG signals. In Fig. 8, some maxi-
mized inputs show a correlation in the shape of the signals between 
different channels. This phenomenon is also observed on the highlighted 
features of the DeepLIFT method as observed in Fig. 11. Since the first 
layer kernels span 3 channels at each pass on the input data, the iden-
tification of correlated patterns across channels is likely to occur, 
especially with large kernel sizes in the time dimension. However, it is 
arguable whether the correlation is explicitly learned as a feature or if 
the same features are detected in different channels. 

Both visualization methods indicate that the model focuses on 
amplitude differences, the spikes of high frequency, and the contrast 
with the alpha band activity and low amplitude phases, which all relate 
to the current expertise in seizure detection. Additionally, the optimal 
analysis window W* in the Bayesian aggregation method is between 
12.5 and 15 seconds, which also corresponds to the typical length of 
screen windows used by neurologists when reading EEG. Additionally, 
Hartmann and colleagues showed that every layer specializes in 
different frequency ranges. Our results show that indeed frequency 
components maximizing filters of the last convolutional block are 
different than of the first block in the 3×5 model. However, late layers of 
the model extract low frequency components while the opposite is 
shown in [24]. 

The visualization methods can also help to understand the perfor-
mance differences between the three models. Results showed an anti-
thetical behavior between the 3×131 and the 3×5 models in several 
steps of the methodology. First, at the segment-level, the 3×131 model 
showed a higher precision, while the 3×5 model showed a higher 
sensitivity for a similar F1-score. This was also highlighted by different 
output probability distributions, where the 3×5 model was more shifted 
towards the positive class than the 3×131 one. At the seizure-level, this 
behavior was counter-balanced by the optimized hyper-parameters, but 
would still be observed when fixing the hyperparameters in both ag-
gregation methods. Maximized inputs bring additional arguments to the 
difference between both models. The 3×131 model can detect fre-
quencies as low as 2 Hz in the first layer. Since frequencies in the alpha 
band are associated with interictal features, the 3×131 model can 
extract more information of the interictal class, increasing its precision. 
On the contrary, the 3×5 model only detects frequencies above 51 Hz at 
the first layer. The 3×5 model is then focusing primarily on ictal features 
in early layers. The higher sensitivity of 3×5 model is also verified when 
visualizing the decisive features in the input signals as SHAP values 
show sharper and more numerous bands contributing to the ictal class. 
Depending on the application needed, one can exploit the contrasting 
behavior of the two models to either reduce the false positive rate or to 
increase the sensitivity. 

6. Conclusions 

The goal of this study was to develop a DL-based methodology for 
online seizure event characterization able to handle inter-patient vari-
ability, and to explore some parameters of the model behavior from the 
interpretability point of view, including the problem of moving from a 
segment-level classification to a seizure-level classification. We 
demonstrated that the kernel size in the first layer is not significantly 
affecting the model performance, but a larger kernel size enables the 
study of the model behavior more thoroughly. We also provided insights 
on the features learned by the model by first observing the behavior of 
the first layer kernels and their maximized inputs and by highlighting 

the learned features back on the EEG input signal. Regarding the 
detection performance, our methodology was successfully able to 
generalize patient inter-variability for the majority of the population, 
and we found that the optimal time scale required for seizure-level 
classification is similar to that used by human experts when reading 
EEG signals. Moreover, the resulting model may be implemented in a 
wearable device with low energy requirements. Future developments 
should focus on the causality between important frequency components 
and the decision probability at the different internal states of the 
network and on handling classification of different sub-populations of 
seizures within a patient cohort to improve the generalization of the 
methodology. 
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