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Abstract

In this thesis, the electromagnetic wave propagation is studied in
nonstationary—medium scenarios. The electromagnetic fields under material
time—modulation are shown to conserve their momentum but not their energy.
The mathematical foundations and analysis to treat wave propagation in
time—Floquet media are given additionally to the related parametric
amplification phenomena, which are mapped to the stability analysis of the
corresponding hypergeometric equations. Assuming a time—variation of
permittivity, permeability and conductivity the appropriate time—domain
solutions are derived, based on an observation of the fields in the past. The
formulation of a time—transitioning state matrix connects the unusual energy
transitions of electromagnetic fields in time—varying media with the
exceptional point theory, a theory strongly connected with parity—time
symmetry. Consequently, the state—matrix approach of this thesis allows the
analysis of the electromagnetic waves in terms of parity and time—reversal
symmetries and signify parity—time symmetric wave—states without the
presence of a spatially symmetric distribution of gain and loss, or any
inhomogeneities and material periodicity. The parametric amplification
phenomena of time—Floquet media and more precisely those that generate a
Mathieu equation at the first momentum gap are theoretically studied and
numerically compared with simulations using FDTD and connected with the
parity—time scattering conventional characteristics. In the last part of this
thesis, studies regarding resonant acoustic and electromagnetic systems are
exhibited. The theoretical foundation to treat both acoustic and
electromagnetic resonant phenomena is given based on the coupled mode
theory and the appropriate Hilbert space. Two examples of interest are shown
leveraging the time—dynamics of a temporal resonant system. The first

example is related to the design of an artificial resonant acoustic lattice with



the appropriate time—modulation leading to an effective zero index of
refraction. The second example is related to resonant systems with temporal
coupling and the possibility to induce nonreciprocal gain by leveraging the
frequency conversion occurring in parametric systems. This thesis enriches the
literature and the theoretical bases for dynamical wave systems and provides
an 1insight on the broad -capabilities of time—varying systems in
electromagnetics, optics and acoustics. It may be used as a guidance to realize
wave devices that amplify and actively filter wave signals for many future
applications in lasing, sensing, signal amplifying, energy transferring and

Imaging.

Keywords: electromagnetic propagation, time-varying systems, parametric

amplification, exceptional points, parity-time symmetry, resonant devices.



Résume

Dans cette these, la propagation des ondes électromagnétiques est étudiée
dans des scénarios de milieu non stationnaire. On montre que les champs
électromagnétiques soumis a une modulation temporelle matérielle conservent
leur impulsion mais pas leur énergie. Les fondements mathématiques pour
traiter la propagation des ondes dans les milieux de Floquet temporels sont
donnés, et les phénomeéenes d'amplification paramétrique associés sont
analysés a la lumiere des régimes de stabilité des équations
hypergéométriques correspondantes. En supposant une variation temporelle
de la permittivité, de la perméabilité et de la conductivité, les solutions
appropriées en domaine temporel sont obtenues sur la base d'une observation
des champs dans le passé. La formulation d'une matrice d'état de la transition
temporelle décrit les transitions d'énergie inhabituelles que subissent les
champs électromagnétiques dans des milieux variant dans le temps. Elle est
étudiée avec la théorie des points exceptionnels, une théorie fortement liée a
la symétrie parité-temps. Par conséquent, 1'approche matrice d'état de cette
these permet la description des ondes électromagnétiques en terme de
symétries de parité et d'inversion temporelle, et signifie que des états d'onde
symétriques parité-temps peuvent étre obtenus sans la présence d'une
distribution spatialement symétrique du gain et de la perte, ou méme
d’inhomogénéités ou périodicité des matériaux. Les phénomenes
d'amplification paramétrique des milieux temps-Floquet et plus précisément
ceux qui génerent une équation de Mathieu sont théoriquement étudiés et
comparés numériquement a des simulations utilisant FDTD et reliés aux
caractéristiques conventionnelles de diffusion parité-temps. Dans la derniere
partie de cette these, des études sur les systéemes acoustiques et
électromagnétiques résonants sont présentées. La base théorique pour traiter

les phénomeénes de résonance acoustiques et électromagnétiques est donnée



sur la base de la théorie des modes couplés et de 1'espace de Hilbert approprié.
Deux exemples intéressants sont présentés, tirant parti de la dynamique
temporelle d'un systeme résonnant temporel. Le premier exemple est 1ié a la
conception d'un réseau acoustique résonnant artificiel avec la modulation de
temps appropriée, conduisant a un indice de réfraction effectif nul. Le
deuxiéme exemple concerne les systéemes résonants avec couplage temporel et
la possibilité d'induire un gain non réciproque en tirant parti de la conversion
de fréquence se produisant dans les systéemes paramétriques. Cette these
enrichit la littérature et les bases théoriques des systemes d'ondes dynamiques
et démontre de vastes possibilités pour manipuler les ondes avec des systemes
artificiels variant dans le temps en électromagnétique, optique et acoustique.
Ce travail peut étre utilisée comme guide pour réaliser des dispositifs
amplifiant les ondes et filtrant activement les signaux ondulatoires pour de
nombreux applications pour les amplificateurs, le transfert d'énergie et

I'imagerie.

mots clés: propagation électromagnétique, systemes variant dans le temps,
amplification paramétrique, points exceptionnels, systéeme a symétrie parité-

temps, dispositifs résonants.
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Chapter 1:

Introduction

Electromagnetic wave propagation in inhomogeneous media has been studied
extensively and has been implemented in a plethora of applications from the
optical to the microwave frequency regimes. The excited waves scatter at
inhomogeneous obstacles, resulting in the creation of reflected and
transmitted ones. The influence of complex geometries and materials has been
utilized over the years to radiate, focus, guide, filter and confine waves. If the
inhomogeneity is lossless the overall energy is conserved, the frequency w
remains invariant, whereas the wavenumber (momentum of the wave) k is

altered [1,2].

In recent years, there has been an emergent scientific interest to investigate
propagation in complex media. In particular, devices with material loss and
gain can exhibit propagating modes under specific symmetry conditions (the

paraxial equation of diffraction has to commute with the parity—time (P7)
operator) [3—5]. Such symmetries are met in non—Hermitian optical devices,
where material gain and loss are symmetrically distributed, e(r)=¢"(—r) and

may be of use in lasers and sensors, since they exhibit amplification and

unidirectional characteristics [6-9].

A seemingly different subject of interest in wave physics is the study of
electromagnetic fields under nonstationary conditions [10-15]. In such case,
the material parameters such as the permittivity and the permeability are

considered time—dependent, an effective consequence of a strong pump by an



external agent. Contradictory to the stationary inhomogeneous case, waves
under a homogeneous nonstationary medium do not conserve their energy, the
frequency w is variant and the wavenumber (momentum of the wave) k is

conserved [16].

One may ask the question whether wave propagation under nonstationary
media can be connected with P7 — symmetry and whether a distribution of
gain and loss could be substituted by the parametric amplification phenomena
in such momentum invariant systems. Answering this question is the main
topic of this thesis and is analyzed in chapters 2, 3. The fourth chapter reports
the author’s independent and concurrent studies related to the modelling of

resonant systems under non—stationary conditions.

In more detail, the second chapter contains of a variety of general cases of
time—dependent wave media and the appropriate mathematical modelling for

general non—dispersive time—aperiodic and periodic cases [17,18].

In the third chapter, the non—trivial connection between P7 — symmetry and
electromagnetic waves under time—varying media is shown, providing a new
physical insight to such wave problems, connecting the energy transitions with
the exceptional point theory and substituting material gain and loss with an

out—of—phase modulation and parametric amplification [17,19].

The fourth chapter, which is a stand—alone study, includes the author’s
concurrent research on periodically driven time—variant resonant systems.
The mathematical formalism and foundations of resonant systems are
described, while using the temporal coupled—mode theory, the Floquet—Bloch
ansatz and the stroboscopic analysis for the band structure studies [20]. In
conclusion of the fourth chapter, two examples of resonant systems are
proposed. The first explores the possibility to induce effective zero—index of
refraction to a resonant time-varying acoustic lattice, while the second to

induce frequency conversion and parametric amplification [21,22].



Chapter 2:

Electromagnetic waves under time—varying media

In this chapter, the formulation and the mathematical modelling of waves
under time—varying media is provided. As an introduction to this chapter, a
comparison between Fresnel's [2] and Morgenthaler’s reflection and
transmission coefficients [16] is considered. The Poynting and the momentum
conservation theorems as well as the potentials based on the Lorentz gauge
and the electric Hertz vector are revised taking into account the particularities
of time—variant media [17]. The integral solutions from current sources are
shown [23] and the generic free—source solutions including a time—variation
of the conductivity are derived [17]. In particular, wave propagation under
time—periodic media is taken into account and its wave solutions according to
the Floquet—Bloch ansatz are mapped with the analysis of the hypergeometric
Hill’s equation [18,24]. This chapter, aside from introducing a review of past

literature is also based on the author’s published work [17,18].

2.1 The laws of reflection and transmission

The laws of reflection and transmission are considered fundamental in
electromagnetic theory. They are the physical foundation for the design of
microwave and optical devices, from transmission lines to optical gratings. For
this reason, we start by reformulating them in context of temporal material
changes, giving an interesting twist to the usual spatial boundary problem. We

consider two representative cases: the widely known spatial boundary and a



temporal one and provide the wave—phenomena equivalences between the
spatial and the temporal material discontinuities and their reflection and
transmission coefficients. Starting with Maxwell’'s equations, the
electromagnetic equations regarding the electric field E, the magnetic field H,

the electric displacement D and the magnetic induction B, are:

VxE=-0B, VxH=0D+J,

(1)
V-D=p, V-B=0.

The constitutive relations are: D =cE, B= uH, where ¢ 1s the permittivity
and , 1s the permeability. Let us assume a source—free region, where charges
and currents are absent (p=0, J=0) and the space is separated by two
semi—planes with different ¢, as shown in Fig. 1, along the z—direction. A

direct observation of the electromagnetic field equations is that the
perpendicular field components of D, B and the components of E, H alongside
the boundary are continuous despite the spatial discontinuity. Assuming a

plane wave incident field E, that can have either an electric field (TE mode)
or a magnetic field (TM mode) at the y direction or a linear combination of
both and an angle of incidence to the boundary equal with 0, (as shown in Fig.

1) is excited with a frequency w. Then the Fresnel’s coefficients are [2]:

/&COSQ —\/Ecose
(2)
/&cose -I-\/ICOSQ
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where sinf, =,/2tsin6,, the angle of reflection is the same with 0, the

momentum at the direction along the boundary and the total energy are
conserved (|r|2 +|T|2 =1). The total momentum is variant. The perpendicular

to the interface direction has to change. This is due to the fact that the norm
of the wavevector is fixed by the medium’s parameters and the frequency
excitation, as dictated by the satisfied wave equation. This is a consequence of
the corresponding allowed wave solutions at the two regions. The existence of
this mismatch is due to the discontinuity of the wave momentum at the
perpendicular to the interface direction, (for the presented example in Fig. 1
the z—direction). A spatial boundary breaks thus the spatial translation

symmetry of the propagating photon.
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Figure 1: Diagram of the reflection and transmission of an incident wave incident

with an angle on an interface.

Let us now substitute the spatial boundary with a temporal one. This means
that we substitute z with ¢. If we assume again a plane wave the spatial
dependence can be truncated to one spatial coordinate (y) as shown in Fig. 2.

The values of the incident angle in the ty plane are forced by the wave

equations before and after the temporal jump and the relation:
tana, = %tan a,. The angles of transmission and reflection are the same

(since they satisfy the same wave equation). The plane wave under the
temporal jump exhibits an adiabatic wavelength conversion (a term used
in [25]), because it changes its frequency according to the plane—wave
free—space dispersion relation, while £ remains unchanged (the role of the

source 1s to enforce the wavenumber k). At the boundary we require the

temporal continuity of the electric displacement and magnetic induction fields



as directly observed by Maxwell’s equations and can thus easily derive the

Morgenthaler’s coefficients as in [16]:

reor=s o B, ®)

(7)

There is no need to analyze the problem in terms of TE or TM modes since it
1s one—dimensional (the spatial dependence of the plane wave can be truncated
in only one direction). The temporal reflection cannot travel in the left

semi—plane, since causality forbids the reflected wave to travel into the past.
Energy is not conserved: |r|2 + |T|2 =1, because the time reflection and

transmission are required to keep constant the total number of photons (see
also next subsection about the Poynting theorem). Analogously with the
spatial boundaries, a temporal jump of the wave—medium breaks the temporal
translation symmetry of the photons. In the special case of a preservation of

the wave impedance 7 = \/uu/c the plane wave does not exhibit reflection (the

temporal boundary is matched) but still its frequency is altered.



Figure 2: Diagram of the temporal reflection and transmission process. The

propagation of the reflected wave is only allowed in the right semi—plane.

2.2 Poynting and momentum conservation theorems

The conservation of energy takes the form [26]:

oW
—+V-S=-p,
ot + p (8)

where W is the total stored energy, S the Poynting vector and p is the power
supplied by an external agent. In the case of a time—varying medium
(including a time—varying conductivity), taking into account Maxwell’s

equation we derive [17]:



_ O gp  HO e
W=—-IE +=-H], )
S=ExH, (10)
1du@®) e 1 de(t) pp
p:E~(J+o(t)E)+§%\H\ +§%\E\ . (11)

It is evident that W and S remain the same as in any regular electromagnetic

problem. The difference is on the external power factor p, where extra terms

exist, depending on the time derivatives of the permittivity and permeability.

The redefined p is a quantitative indication that time—varying media have

different energy—transfer characteristics and can allow for amplification of the

transmitted signals.

The momentum conservation theorem takes the form [26]:

oG
—+V-T=-f, 12
Y (12)

where G is the momentum density vector, T is the Maxwell stress tensor and
f = pE+[J+0o@)E]xB is the Lorentz force. It is straightforward to observe

that even if the medium is time—dependent, the momentum conservation

theorem remains the same, namely [17]:

G=c(t)u(t)ExH, (13)

T= c(t)EE + j(t)HH — %[5(1,‘) B + wo[BF L (14)



The electromagnetic field momentum is invariant under homogeneous
time—variations of the medium (as expected since the wavenumber 1is
conserved) whereas its energy as shown from the redefined Poynting theorem
changes (which is an indication also of the frequency shift, since from a

quantum—mechanics point of view energy is directly related with frequency).

2.3 Potentials, Lorentz gauge and Hertz vector

The electric and magnetic fields can be represented by the scalar V and the

vector A potentials [17]:

Ez—vv—%—‘:‘, B=VxA. (15)

The two corresponding equations for the potentials are:

V- [e()VV]+ V- [5(15) %} —_p,

6
0(e(t)A) (16)

ot

O0A

VXV XA+ pu(t) + u(t)o(?) [vv n E] — u(®)d.

d(e@)VV)
T pu(t)

The potentials are not unique; hence we can choose a suitable gauge to

decouple the equations. The Lorentz gauge for these equations is:

V-A+ u(t)

W 1 u(t)o )V = 0. (17)

10



Under this gauge, the decoupled equation becomes:

0
VZA — u(t)—
u()at

e(t%]—u(t)a(t)%:—u(t).l 19)

The equation (18) has three unknowns, we introduce thus the electric Hertz

vector, IT: A=—u@)0 Il and V=V II/e(t).
, o( . ol o . om),
v H—a(t)a[u(t)a]— f a(t)a[u(t)a]dt— f Jdt, (19)

where the electric and magnetic fields are: H=-Vx0Il and
E=—-VV-1I/e(t) + 0,(ju(t)0 II) . Provided the time—dependent profiles of £(t),
w(t), o(t) and the space—time dependent source J(x,t), a solution for IT can

be found leading to the complete knowledge of the electromagnetic fields
throughout the time—varying medium. In the next subsection, we derive these
corresponding equations and the solution for the special case of a lossless

time—varying matched wave medium.

2.4 Integral form of field solutions under a current excitation and

matched time—variations

11



In this subsection, we assume the case of a matched time—variation (wave
impedance » is constant) with no losses: €(t) =¢,a(t), wt)=p,a) and

o(t) = 0. We introduce the stretched time—transformation [23,27]:

= [ Wy 20)

where {, 1s the moment when the current is switched on, then:
0* 1
V(r,7) — £yl ?H(F,T) = fa(T/)J(I',T/)dT/, (21)
T
0

which is the D’Alembert’s equation and has the solution:

[ e, e

471"1' — r"

Mi(r,r)=— [

r'eR?

d’r’, (22)

where the retarded time is: 7, =7 —,/¢ 14, ‘r—r' ‘ The electric field is thus

easily derived:

12



. ! .
E(I‘,T) — f (3(@ _ ]I)S r a(T )J(I’ 5T )dT/d3r/
r'eR? 47T|I' — I'/| 0 60(1(7’)
(BQ-I) |, a(r)I',7,) d°r’ 23)
Jose Al — r’|2 € a(7)
P
s dr|r—1'| g, a(T) '

where Q =00, with 0= (I'—I'/)/‘I'—I'/‘. The last term represents the far

field radiation. If a(7)dJ(r,7) is constant in the 7—domain then there is no far
field, which means that the material variations can be engineered to
compensate for the radiation of the currents and the radiation would decay
very rapidly away from the source. In the case of a DC excitation:
0_[a(T)d(r)] =dJ(r)0_a(r) = 0, the system exhibits far field radiation even if the
source current is steady. In this case, the far field radiation is a product of the

static source interacting with the time—varying medium.

The differences between the solution of E(r,7), as shown in (23) and the
well-known integral solutions of an electric field in vacuum E(r,t) are in the

presence of the time weighting (the difference between ¢ and 7) and in the
modulation of the source current density (a(7)J(x,7)). The propagation of the
electromagnetic waves in a time—varying constant—impedance medium can be
viewed as a similar one in vacuum, where the causal time delay is measured
in the stretched 7 time axis. The physical measurement however is performed
in ¢. Thus, an inverse mapping of ¢(7) is required and can be directly applied
to bring back the field solution of (23) to the ¢t — domain. Such inverse mapping
1s straightforward if the integral of (20) is analytic.

13



For the general equations regarding the electromagnetic problem of
propagation under nonstationary and inhomogeneous and the appropriate

decoupling conditions consult Appendix A.

2.5 Electromagnetic modes in the absence of sources

As 1s directly observed from Maxwell’s equations E and H can be
discontinuous as the medium varies in time. The fields that remain continuous
in time are: D and B. For this reason, it is more convenient to solve for these

fields. The corresponding second order differential equations are:

9] D) U)ot
VD(r.t) — &(t) lu(t) > e(t)atl Do t)} 24)
V’B(r.t) — M(t)%le(t) aB;:’t) 1o (t) L2 8B(r D _o. (25)

Equations (24) and (25) are separablel. We can thus use the separation of
variables method and assume solutions for U=D or B of the form:
U(r,t) = R(x)T'(t) [17]. The real solutions of R(r) and 7°(¢) represent a
summation of standing waves, whereas the complex solutions of R(r) and 7'(¢)

represent a summation of propagating waves. If the complex solutions are

found the actual solutions in ¢ —domain are: Re[U(r,t)] = Re[R(x)T'(¢)].

"Notice that eq. (25) is the same with eq. (18) of the vector potential under the Lorentz
gauge. As we later see the equation of the form (25) or (18) is the main equation that is
required for the solution of all the fields.

14



The second order ordinary differential equation of R(r) can be easily found to

be the Helmholtz equation (for both the electric displacement and the magnetic

induction):

V*R(r) + F*R(r) =0, (26)

where k is the wavenumber, which remains constant despite any material
temporal change as indicated by the separability of the differential equations

(24), (25).

The differential equation of 7T'(k,t) is:

dT'(k,t)

iﬂ@ﬂ+p@_?;_+Q%@T%ﬁ:Q 27)

dt’

where for the electric displacement, D: P(t):a(t)+d1nu(t) and
e(t) dt

1 d|p@)o(t) k? , . .

Q(k,t) = — + . While for the magnetic induction, B:
p@) dt| e(t) e(t)pu(?)

dIne(t) k?
P() = o) d Qkt)=—.
O=Zp T a mdeky=—ors

If T,(k,t) is the solution for the magnetic induction then the solution for the

electric displacement, T,(k,?) is:

Td(k,t) — efo(od%(ofTb(k’oefg(cl)d%(c’)dg (28)

15



For a given wavenumber k&, the solutions for the electric displacement and

magnetic induction have identical spatial dependence (R(r)), while the

relation (28) connects the time solutions of the magnetic induction with the
time solutions of the electric displacement. The electromagnetic problem is

thus reduced to the solution of eq. (25).

The complex (propagating base) R(r) for a given k has the form:

T 27

R(r) = f f F(p,0)e™*dpds, (29)

where F i1s a vector dependent on the spherical coordinates 60, , and
k = ksinfcos px, + ksinfsin X, + kcosbx, is the wavevector. The solution of
(29) is for the space r = (x,,x,,%,) far away from the sources (similar with the

plane wave solution in stationary media). Additionally, it is assumed that a
substantial period of time has passed without any material conductivity (loss)

and therefore the field solutions have filled the region.

On the other hand, the solution of the time—function is strongly dependent on
the type of the time—variation of the medium (as indicated in eq. (27)). It is
though obvious that the second order differential equation result in two

independent solutions: T;(k,t) and T,(k,t).

The general solution, if 7} ,(k,t) and F(yp,0) are known, is:

U(r,t) = f[Fl (K)T, (k,t) + F,(K)T,(k,t)]e™"d’k, (30)

16



where F,(k)=C,,(k)F(»,0) and C, C, represent the coefficients of the

electromagnetic modes which propagate at the positive and negative direction,
respectively. For slowly and continuously varying parameters the
Liouville—Green approximation [28] can be directly applied to approximate

the time—function solutions:

/— Ll —ik [ —E— ik | e
T(k t)N H(t zf E) lcle fm -|-C2e+ fm]’ (31)

a({)d¢ 1o
rh e T [ I
ax’ ()

Qrd ik [ = +ik di‘
(9] Cle f«/m +Cze fm%c, (82)

The effective velocity can be defined directly by the Liouville—Green

J dc/\/ O

approximation as: c/(t) , for (<t¢. The presence of the

o(t)d
conductivity results in the attenuation of the fields by a e RN factor.
If the time—variation of the medium is known and we can also measure the
electric and magnetic fields at an observation time ¢,, we can find the complete

solution of (30) for ¢ >, .

First, we can find the T} ,(k,t) from eq. (27), since the time—dependent profiles
of e(t), u(t), o(t) are known. Then we have to define U(r,t,) and 0,U(x,t,) by

the measurements of E(r,t,) and H(r,?,). The time—domain observation of

the fields is in the real domain. In order to apply them as temporal boundary
conditions for the complex (propagating) U we need to convert them in the

complex space. This is feasible by the direct application of the Hilbert
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transform, which leads to the analytic form of the signals. More precisely if

w(r) = E(r,t,) or H(r,t,), then its Hilbert transform is [29]:

3

wr) =[]

=1

o)+~ ew) (39)

where 6(x;) 1s the Kronecker delta function with respect to the Cartesian
coordinate x; and *xx* is the 3 —fold convolution. Depending on which field
U we choose to do our analysis with, we can derive for the magnetic induction:
E(I',to) = ,u(tO)I:I(I',tO) and 8t1~3(1‘,to) =-Vx E(I’,to) , and for the electric
displacement: D(r,t,) = (t,)E(r,t,) and 0,D(r,t,) =V xH(r,t,)—o(t,)E(r,z,).

While the Wronski determinant A(¢) is for the magnetic induction:

£) - ‘a(<)d<5
A, ) = A, (t) i((;)) o (34)
and for the electric displacement:
_[Te(Odg
A0 = A, (1) M) SO, (35)

p(t)

The determination of the vectors F, (k) , F,(k) and hence the k—context of the

wave resulting in the complete solution of the wave problem can be directly
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derived by the application of the inverse Fourier integral to U(r,f,) and

0,U(x,1,):
de(k’tO)fU(r,to)e_ik‘rd3r—Tz(k,to)f8U(r’t°)e‘ik‘rd3r
_ dt ot
F (k)= 3 ,  (36)
8m°A(t,)
dTl(k’tO)fU(r,to)e“"‘"dsr—Tl(k,to)f8U(r’t°)e“"‘"d?’r
F, (k) = ——9 it (37)

81 A(t,)

2.6 Temporal material discontinuities: Scattering matrix

formulation

Waves experience reflections under temporal material discontinuities. Let us
assume that at ¢t =+ the temporal functions of =(¢), u(¢) and o(t) or their
derivatives exhibit a discontinuity. It is clear (see eq. (27)) that this
discontinuity is carried to d*T(k,t)/dt*, leaving T(k,t) and dT(k,t)/dt
continuous, if either the permeability or permittivity of the dynamic medium
remains continuous. More precisely, if the permeability is continuous the
electric displacement field and its time derivative are continuous, whereas if
the permittivity is continuous the magnetic induction field and its time
derivative are continuous. Under such assumptions we can formulate the

temporal scattering matrix.

If the solution for ¢ < 7 1s:

T (k,t) = C:T=(kyt) + CST5 (Rot), (38)
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and for ¢ > 7 1s:

T (k,t) = C7T” (k,t) + C; Ty (kt), (39)

then the continuity relations at ¢t = ~ give us the temporal scattering matrix:

iJ-o o)

C; "Gy
ST () = R T (k7). ST, () = 2 T (k) (40)
DT (k) = 2T () AT () = 2 T (R ) c

T () = Ty ()| [502 — OOy [T () = T ()| 2542 — B0 1k, )| [C]
T (k) = R T (k) ’ ST, (k) = 2T (k)

S, and S,, are the parameters which correspond to the temporal

transmission, whereas S, and S|, are the parameters for the temporal

reflection.

If we assume the simple case where a wave propagates at a medium with ¢,
f;, o, (which are constant) and at {=0 the medium changes its
electromagnetic—material properties to ¢,, u,, 0, (which are also considered
constant). The ordinary differential equation that satisfies 7T'(k,t) for both D
and B is the same (for constant values of ¢, 1, 0). The time—domain solution

of the resulting differential equations under nonstationary conditions (for

either the D or the B field according to the continuity conditions) is of the

1 [4ek® —0o° -2
form: {(r,t)=¢,cosk-r— o 2ER 9 B lle 2 where we can assume that
e\ g

the wavevector has the direction of any of the Cartesian unit vectors. This

mode along with the identical one propagating in the opposite direction can be
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used as an expansion basis to form the general solution. Additionally, losses
effect the field in time since the fields have filled the whole space as assumed
in the analysis (contradictory to the stationary—medium plane—wave

equivalent). The analytic signal of the complex field U is:

ikr_| 2 +L 4‘1kz”12/’1[t
U Upe o ’ t<0 “
— A o) o i J@ J‘ (41)
U,S, e SR +U,S,.e ozl .t>0

From the continuity relations we get the scattering matrix (from eq. (40)):

l VELH T 4/Eky +i(02€1 —0,5) Hy l Ve — VM, +i(02€1 —015,) He
g 2 NS 2e,k & "2 VEHy Ze,k &2 (42)
= .
l VEH — Sk _i(02€1 —0,5) Hy l Vakh + Gk, _i(UZEl —015) He
2| e 25k \e| 2 ety 2k Ve

This scattering matrix has interesting properties. We observe that:
S, +8,, =1, S, +85,, =1, det(S;) = /4= and the inverse S, corresponds to

the scattering by the time—reversed material-parameter transition.

Additionally, if the wave impedance, 7 and U/8 remain constant S,; and S,

extinguish, i.e. the wave does not reflect. The scattering matrix formalism can
be equally used for standing waves without necessarily reformulating the

complex solutions of R(r) and 7'(¢), since standing waves are a superposition

of propagating solutions of opposite direction. Note that in an application,
there can be some temporal dispersive effects which may generate high
frequencies due to the abrupt change of the material parameters. However,
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these generated amplitudes are expected small and exponentially decaying
with time due to the momentum conservation. The analysis of time—varying

media with the combination of dispersive effects is given in Appendix B.

2.7 Electromagnetic modes of time—Floquet media

In this subsection, we present the steady—state solutions of the
electromagnetic field in a time—Floquet (time—periodic) medium in the

absence of losses [24].

The wave equation for the electric field is:

V2E(r,t) - l (t)W}:O. (43)

The medium has plane—wave solutions (as shown in the previous section),
namely: E(r,t) = E(t)e™™, with k =kk and k is the wavenumber. Eq. (43)

becomes:

(44)

The permittivity and the permeability are considered periodic with circular

modulation frequency: w = 27/T, where T is the period. Hence the functions

of u(t) and e(¢) can be expanded in series:
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et) = ngeip”’"t, (45)
p

p@® = e, (46)
!

where p,lcZ. The solution for the electric field is found using the

Bloch—Floquet ansatz:

E(t) — ZEnefi(wan)t, (47)

where w 1is the excitation frequency and n € Z . Substituting eqs. (45)—(47) to

(44) the system of equations satisfies:

Sty @ =, )W = pw,) — k6,6, | E, (@) =0, (48)

p.n

where 6, 1s the Kronecker delta function. Eq. (48) is a set of an infinite number

of linear equations for an infinite number of eigenmodes of E (w), n € Z . The
propagating relations (dispersion relations) of k(w) or w(k) are the values

which vanish the determinant coefficients of £ (w).

It is directly observed that: k(w+nw, )= Fk(w), which means that the band

structure is periodic in the circular frequency (with the period being w, ).
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In the case of a weak modulation, (¢) and () reduce to their average values:
£ and p, so that: ¢, =8¢, and pu,_, =6, . Consequently, the dispersion

n pn

relation is found:

w=lu, + k7. (49)

For [ =0, the two corresponding solutions are the plane waves to the positive

_1
and the negative direction with velocity: (g1) é. For [ =0, the dispersion lines
are displaced along the frequency axis by lw, . This is caused by the temporal

periodicity of the medium corresponding to the “empty temporal lattice” model,
analogously with the “empty spatial lattice” [30]. For small values of the

excitation frequency w the dominant modes are for /=0 and /=1, which

intersect at w=3jw, and k= 1Q,/zz and result in the equations:

[§Ew2 — kK +epu wlw— wm)] E,(w)+ [eflﬁwQ +ep w(w— wm)] E (w)=0, (50)

[{?ulw(w —w, )+ pw(w— wm)z}EO(w) 51)
—l—[Eﬁ(w — wm)z —k*+ e pw(w— wm)]El(w) =0.

It can be shown that k(w) = k(w, —w), which implies that the bands possess a
mirror symmetry about the intersection point w=3w, . This suggests a gap

between the k—bands. This gap can be found (analogously to the spatial
periodic equivalent [31,32]) as:
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Ak
k

1
~ E‘m: - m/: ) (52)

where m_,m, are the modulation depths for the permittivity and the
permeability respectivelyll and % = \/ziw, where the material modulation is

considered as simply: () = g,[1+m_cos(w,t)] and u(t) = p,[1+m, cos(w,t)] .

Let us limit our analysis to the case of a periodic permittivity, € = ¢(¢) and a
constant permeability, i = p,. The resulting equation is a particular case of

the Sturm—Liouville eigenvalue problem:

d d
[5[% (t) E] +q, (t)]E(t) + @) E(t) =0, (53)
where:  q,()=2*1), q,®)=c®SL, A=L£ and w@)=c@t). The

Sturm—Liouville problem guaranties that the eigenvalues: k% are real and

the modes form a complete basis and are orthogonal (with respect to the weight

function of (¢) )i, Different eigenmodes suggest different wavenumbers. The

field modes have the form: E (w,t) =Y E, e "“ ™", for the r™ solution (with

k =k ). The orthogonality relations for two modes r and ¢ are:

i Notice that when the wave impedance remains constant: M, =m _, the wave in the

H ’
time—domain exhibit no temporal reflections and thus the % — gap closes.

i This is not guaranteed in the case where both permittivity and permeability are temporally
modulated.
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%Zan_pEm(w)Egn(w) =5, (54)

r np

where § is the Kronecker delta function and NV, is the normalization factor

which satisfies the completeness relation:
L ("B (0)E (w,the “dw = 2m8(t -1 (55)
Zﬁfo (W )E (w,t)e w = 276(t —t').

Eq. (48) becomes:

2
Z (w—mw,)’e, , — i—’épn E_(w)=0. (56)

n,p 0

The solutions of eq. (56) possess a symmetry around n%’", n € 7. To illustrate
such a symmetry we define two frequencies: w, =nw_ / 2+w and
Wy, =Nw, / 2 —w. Plugging them into eq. (56), we find that they correspond to
the same eigenvalues k,, which means: k(nw, /24 w)=Fk(nw, /2—w). This
symmetry indicates the presence of a maximum or a minimum at nw_ /2

leading to the relation:

ak . (57)
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Eq. (57) indicates a group velocity reaching to infinity. If it is assumed that
just a single k (harmonic solution) exists then according to the uncertainly
principle the wave must fill the whole space, therefore the speed of the wave
1s irrelevant. If now it is assumed that the wave doesn’t fill the whole space,
then the velocity of the information is not the group velocity but the front
velocity as found by Sommerfeld [33], which is a high frequency component

leading to a velocity equal to the velocity of light.

For the long—wavelength limit an effective parameter of the permittivity can
be obtained (similarly as is derived using the Green—Liouville approximation

n eq. (31)—(32)):

(58)

Cett = L
fo d%(t)

In Fig. 3, the dispersion relation is shown for the case of a step variation of the

permittivity:

€ O<t<r
e(t) = 59
® {62, T<t<T (59)

with T period. In Fig. 3(a), the dispersion of the time periodic—medium with

e, =2¢,, &,=¢, and T=T/2, while in Fig. 3(b) the dispersion with ¢, = 3¢,,

e, =¢, and 7=T/2 are computed.
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Figure 3: (a) Dispersion relation of the time periodic medium with & = 2¢,, & = &
and 7 = T/2. (b) Dispersion relation of the time periodic medium with &, = 3¢, &, = &,
and t = T/2. The calculations were performed considering 201 Floquet harmonics.

Figure adapted from [18].

The symmetries of the dispersion relations as found before [R(w +nw, ) = k(w)
and k(nw, /24 w)=k(nw, /2—w)] allow the complete computation of the

dispersion relation by finding the corresponding solutions in the vicinity of the

light cone for € = ¢, .

2.8 Parametric amplification at the momentum gaps

In this subsection, the wave behavior in the k—gaps of a time—periodic
medium is studied and explained. As proven in Section 2.2, energy is not
conserved in these problems and waves can be amplified. To deal with such a
problem, techniques are employed regarding hypergeometric equations and

their stability [18].

28



The electric displacement field equation for a time—periodic permittivity (with

a period of 7) is:

IT, K
—T,=0. 60
dtZ /L0€(t) d ( )

Eq. (60) is the general Hill’s equation [34]. The field vector: T, =[T},, dtTd]T,

results in the reformed equation:

0 1
¥ 0

1oe(t)

dT, =

t

T,. (61)

Since the differential equation is of the second order the Wronskian is a 2x2

matrix, formed by the two independent solutions T, and T,:
W()=[T,, T,]. Hence the time—evolution from ¢, to ¢, of the wave signal
is defined by the matrix: ®(¢,,t,) = W(,)W(,)'. As it is directly found by the

Floquet theory for a time—periodic system: ®(m71,0) = ®(T,0)" .

In order to check the stable wave solutions, the eigenvalues A\ and A, of

d(T',0) should be restricted to ‘/\12‘ <1.

The eigenvalues are:

Mg

_ (@(T,0) \/ )

tr(®(T',0)) r .
2 M

2
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and thus, the stability condition requires:

|tr(®(T',0))| < 2. (63)

If we return back to the problem of the step variation of the permittivity (see
eq. (59)), ®(T,0) has a closed form formulation (since the two independent
solutions are easily found as shown in previous subsections) and the stability

condition (63) leads to the inequality:

cos 2k [wme] cos k T _Late, sin 2k [w me] sin k <1 (64)
L‘)m\//‘o‘gz 2 \/M0€1 2 VE1Es wm\/ﬂogz 2 \//‘051

Assuming a small variation of the medium: ‘52 —El‘ﬂ 0 we find marginal

instability for:

L3 f—2(62 +) =n, neZ. (65)
W Ho&:1€9

222 which is no coincidence. Indeed, the condition of (65)

e tey ?

From eq. (568): €4 =

is at the k—gap of the dispersion relation:
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k w

=n—=.
\ HoEett 2

(66)

In these specific frequencies, the energy provided to modulate the medium is
optimally coupled to the existing wave, leading to parametric wave pumping.

This i1s evident since at these frequencies the eigenvalues of ®(T,0) collide to

unity and the system experiences ¢ — multiplied instability. This means that
no matter how small the difference of the dielectric permittivity, the system
provides gain of parametric nature to the wave signal. From the mathematical
analysis, we find that the second solution is an evanescent mode which is also
an acceptable solution which corresponds to the absorption of the external
pump that causes the time—modulation (the parametrical amplified one
usually dominates). The stability charts regarding the condition (64) are

1llustrated for representative values of 7 in Fig. 4. The stability charts are

defined by the parameters ¢ = —**— and ¢ =

2
Y Hoetf Wity

2k [ 1
Eeff

- %}, which are often used

in the analysis of the corresponding Hill’s equationsiv. The a parameter
represents the wave operation in relation with the effective permittivity, while

g represents the modulation depth (which is a quantitative parameter

proportional to €, —¢,).

v The solution can be mapped as shown in [18] with the Hill’s equation:
d’T(¢)

e +[a—2¢f(OIT(E) =0, where £ =w, t/2 and f(£) is = — periodic.
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3 Unstable wave solution

[ Stable wave solution

Figure 4: Illustration of the stability charts for (a) T =T/4, (b) t=T/2 and (¢c) T =
3T /4. The a —axis is defined by the a parameter which symbols the wave operation
taking into account the effective permittivity, while the g —axis is defined by the q
parameter which is proportional to the difference of €, and ¢,. Blue color: stable wave

solutions, red: unstable wave solutions. Figure adapted from [18].

As also theoretically calculated it can be seen from the stability charts that for

q — 0 then: a =n”, which is the parametric amplification condition of (66).

Such property in the Hill’s stability chart is general regarding any
time—periodic coefficient (meaning physically for any time—periodic
permittivity function). This mathematical observation from the corresponding
hypergeometric equations is in full agreement with the band structure

properties and their symmetries as defined in the Section 2.7.

For 7= T/ 2 the stability chart is symmetric, meaning that if ¢ — —g the chart

will not change. As the modulation becomes asymmetric, this asymmetry
follows in the stability chart. Another important remark is that the density of

stable regions is reduced as the absolute value of ¢ increases. Even though

the stability charts present the stable and unstable regions for every possible

combination of the parameters (¢, a and 7), the representative wave state

parameters for the wave propagation problem form the geometric locus of a
line, starting from (0,0) point and continuing with an angle

0 = arctan 2(g, +¢,)/(g, —¢,) (similar Hill stability charts and geometric loci

can be obtained for general periodic £(¢) ). For 8 = 90°, the geometric locus does
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not intersect with any region with instability; this means obviously that for

g, =€, the dispersion relation does not exhibit momentum gaps. As the angle

0 deviates from 90°, the line intersects with instability regions. As the
modulation depth increases, 6 decreases and the size of the k— gaps are also

increased. From (64) and Fig. 4, it is evident that a critical angle 0, exists,

below which the unstable regions occupy most of the space, and hence most
wave numbers are not stable. This phenomenon is linked with the coexistence

of unstable regions for the Meissner equation and is found for: a = 42q
resulting to 6, = arctan(2) ~63.43° or 6. =180° —arctan(2) ~116.57°. These

remarks provide us with a criterion for operating with parameters that lead to

possibly denser stable region. More specifically, it yields a relation between ¢,
and ¢,. When they are not of the same sign, the operating parameters are most
likely to land in instability.

In Fig. 5 the stability chart with the corresponding geometric loci are shown
regarding the same examples computed in fig. 3. For ¢ =2¢,, ¢, =¢, and
7=T/2 the angle is 6, ~80.54° (green line in the stability chart), while for
e, =3¢, &, =¢, and T=T/2 the angle is 6, ~75.96° (blue line in the stability

chart).
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Figure 5: Stability chart with the geometric loci (lines) associated with the operating
parameters in Fig. 3, with green (a) and blue (b) color respectively. Figure adapted

from [18].

For the symmetric modulation (7 = T/ 2) it is evident that wave propagation
has the same dispersion when the values of ¢ and ¢, are swapped. This is

directly linked with the fact that the stability chart is also symmetric. When
this happens the operating line at the stability chart has an angle ' =180° — 6.

These operations correspond to the lines of Fig. 5 with angle of: 91' ~ 99.46°

(green line) and 02/ ~104.04° (blue line). Generally, as expected the exhibited

k —gaps of the dispersion relations (see Fig. 3) correspond to the parametric

amplification conditions at the stability chart. The n™ k—gap corresponds to

the parametric—amplification operation: w = n%"’
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Chapter 3:

PT —symmetry and time—variant media

In this chapter, the connection of P7 —symmetry and wave propagation in
time—varying media is shown. This chapter starts with a brief introduction to
PT — symmetric wave systems and continues with their connection with
waves under time—variation via a time—transitioning state matrix and the
scattering by a parametrically amplifying time—Floquet slab via the
appropriate scattering matrix conditions. This chapter is mainly based on the

author’s published work [17,19].

3.1 Introduction to PT —symmetry

Bender and Boettcher in [3] showed that a wide class of non—Hermitian
Hamiltonians that commute with the 7P7 operator can exhibit real

eigenvalues. Namely for a given eigenvalue problem:

H|y(x)) = A|v(r)), (67)

where H is the Hamiltonian. Then if [H,P7]=0, where P is the parity

operator (r — —r) and 7 is the time—reversal operator (t — —t), the

Hamiltonian can have real spectra even if it is not Hermitian. According to the
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Schrodinger equation: H = — - V? 4 V(r) and P7 —symmetry indicates that

the potential obeys the condition: V' (—r)=V(r).

Despite the elegance of such theoretical results, quantum mechanics are built
naturally by the Hermitian theory, meaning that such potentials that satisfy
the P7 — symmetry condition may not be found in nature. This is not the case
in the optical regime, where optical material technologies have advanced, and
the presence of material gain and loss can be implemented resulting in optical
devices with a distribution of gain and loss. Hence the developed P7 — theory
can be directly applied to optics. One way to apply this theory to optics is by

the application of the paraxial equation of the electric—field envelope U :

iU 4 LU 1 kn(x)U =0 and its direct analogies with the Schrédinger

2kong ox?

equation leading to the P7 —symmetry condition: n'(—x)=n(x) of the
refractive index [35]. Another approach is related to the eigenvalue and

eigenmode problem formulated directly from Maxwell’s equations as shown

in [36]:

VxLvxH="H. (689)

where ¢ is the relative permittivity. Eq. (68) can be considered as the master
equation and describes the electromagnetic fields. It defines an eigenvalue
problem: LH=)H, where £ = Vx1Vx and A= “C’—j is the eigenvalue of the
operator L, which is proportional to the square of the frequency. This
formulation resembles quantum mechanics problems, meaning that the

eigenmodes and eigenvalues of L give us the magnetic modes and their

corresponding eigenfrequencies. It can be easily proved that for a real function
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of €,(r), £ is Hermitian which means that for two arbitrary fields H, and H,

the inner product satisfies the relation: (H,|£H, )= (£H, |H,) . In addition, £

is linear and is positive semi—definite (all the eigenvalues w”® are nonnegative),
hence the eigenvectors form an orthogonal basisvi. For a complex permittivity,
L is non—Hermitian. If it is P7 — symmetric, which means that the operator

commutes with the P7 operator: [£,P7]=0 then e (-r)=¢,(r) (same

relation with the potential obtained for Schrédinger equation and the
refractive index for the paraxial equation of diffraction [37]) and real
eigenvalues can be observed. Additionally, between the real spectra and the
complex ones there exists a degeneracy called exceptional point in which
eigenvalues and eigenmodes collide. This point is the margin between

propagating and evanescent modes.

Another way to check for such symmetries is through their scattering
properties [38]. Consider an optical cavity coupled to a discrete set of scattering
channels, where incoming waves enter as inputs and exit as outputs from the

corresponding channels. The electric field satisfies the solution:
VQE(r)+%E(r) =0 and has the form: E(r) = Zn[anefl"(r,w) —l—bne,‘:”t(r,w)},
where e (r,w) and e”“(r,w) represent the input and output modes of the n'™
channel. The input a, and output b, amplitudes are connected with the S

matrix:

S8, (wa, =b,. (69)

¥The inner product is defined as: <V|u> = fv*udsr .

¥ This is not the case if the electric field was considered: -V xVxE = :—jE (it is clear that

the operator of the electric field is not self—adjoint).
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The S matrix is symmetric due to the Lorentz reciprocity theorem regardless

that the refractive index n(r) is complex [39]. As noticed by [40] the
time—reversal operator 7 has the property: 7e (r,w) = e”“(r,w") while for the

parity operator P (which mixes the channel functions and hence is a

permutation matrix, but does not mix input with output channels and vice

versa): Pe" (r,w) = Znﬂmein/om(r,w). If the cavity is P7 —symmetric then
there exists a valid solution (P7)E(x) at w" frequency:
(PT)E(r) = Zn[(PTa)nefl”(r,w*) —I—(PTb)neZ”t(r,w*)] which leads to the P7T —

condition of the scattering matrix:

(PDS(w ) (PT)=8"(w). (70)

3.2 Exceptional points and operator symmetries under

time—variance

Electromagnetic modes and the resulting parametric amplification at the
momentum gaps from a time—periodic modulation were studied in the
previous chapter. In this section, the simple case of a temporal material jump
is considered and the connection between the parametric amplification
phenomena with the exceptional—point theory will be established [17], without
assuming any time—periodicity. In addition, the time—domain scattering
problem is examined under the parity and time—reversal operators offering

extra physical insights to this wave problem.

An exceptional point is an operating condition, in which (at least) two
eigenvalues and eigenmodes collide and the operator £ (or a Hamiltonian H)
loses (at least) one of its dimensions and exhibits thus a degeneracy [41]. Such

points are often connected with P7 —symmetric systems providing the
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operating bounds of real spectra and signify interesting wave phenomena.
Such theory can be extended to time—varying systems by formulating a state

matrix, which models the time—evolutional behavior of the wave.

Let us assume that at { =7 there is an abrupt change in the medium from

€,k to €,,4, that can be modelled by the scattering formulation of the

previous section. The phase transmission matrix is defined as:

t,(t) = Al (71)

where ©=1,2 and the matrix of coefficients is C(t)=[C,, C,]", where C,,

are the amplitudes of 7, ,(¢) . The coefficients matrix is thus:

C(r") = t,(1)S, ', (' — 7)S,C(0) = H(r')C(0), (72)

where S, is defined in (42), I:I(T/):tl(T)Sgltz(T'—T)SO is the

time—transitioning state matrix of this system and 7’ is the time moment of

observation (7'>7). Since the problem neglects any conductivity the

determinant of the time—transitioning state matrix is unit: det[I:I (7' )} =1 vii,

Its eigenvalues and eigenmodes are:

Vil Tf conductivities were considered the determinant would have been:

0, [oF
Lt 2(r'=7)
& E.

det[ﬁ](T’)] —e
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A, =b+Ab*—1,

a
C =
TN+
a
C =
A +c

where:

5

)

N — k
b(kyglyulaEQMug,T’T)_COS[MT

(e1py +eatty) 2
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(73)

(74)

(75)

(76)

(77)

(78)

Evidently the b parameter determines the energy transitions. The

eigenvalues satisfy the condition: A A =1. The system supports two

propagating modes when |b| <1, as both eigenvalues are complex and unitary,

and one evanescent and one parametrically amplifying for |b| >1las one 1is

lower and the other is higher than unity. The special transition case: |b| =1 1s

associated with exceptional points since the eigenvalues and their eigenmodes

collide: A, =X =+1 and C, =C .
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A plot of the eigenvalue transitions is given in Fig. 6. In Fig. 6(a) the real part
of the eigenvalues is shown as a function of the parameter b, while in Fig. 6(b)
the position of the eigenvalues on the complex plane is presented (arrows
showing the position of the eigenvalues as b changes values from a negative
—3 to a positive value +3). The b parameter determines the energy
conversions that occur as the wave takes energy from the modulation and vice

versa and their overall energy—transition characteristics.
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Figure 6: Graphical representations of the transitions of the eigenvalues of the
time—transitioning state matrix of a system in which an abrupt change of material
parameters occurs. (a) Evolution of the real part of the eigenvalues and (b) chart
showing both real and imaginary part of the eigenvalues as b shifts values. For |b| <
1 the eigenvalues are complex and the waves represent propagation, for |b| > 1 the

eigenvalues become real representing amplification, while at |b| =1 exceptional
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points are observed. The arrows at (b) show the quantitative change of the eigenvalues

as b increases in values (from —3 to +3). Figure adapted from [17].

As proven in [16], a step temporal material jump results in a gain ratio of the

2
’

electromagnetic energy density: u,/u, = (¢4, + 14,6,)/(25,11,), where u = e|E

but this ratio is not the only quantitative value which defines the energy gain.

Indeed, the energy interactions depend also on the time variables. As

. ey . . k k .
presented in the stability charts of Fig. 7, we fix T and NET while 7 and

7/ vary in time. For a selected group of values (noted as red in Fig. 7) the
system supports amplified modes, which means that the relative time that

separates the initial knowledge of the field (£ =0) the time of the change

(t = 7) and the time of observation (¢ =7') play an important role also.

42



0 1 2 T 3 4 5
(c)”
4
l~é3
I
- 2
[
1
ﬂu 1 2 3 4 5
T

) amplified and
| propagatingmodes [T evaelescent modes

Figure 7: Stability charts for fixed values of k/+/e;u; and k/ve 1y (a) k/\eiu, =1,
k/Neus =2, (0) k/Veru =1, k/Veps =3, (©) k/Veru =2, k/\/ezu, =1 and (d)
k/\eipuy = 3, k/\Je;,u, = 1. Figure adapted from [17].

As seen also from Fig. 7, a swap of values for \/f_;ﬁ and \/EkT results in a swap
1 22

of the temporal axis of Fig. 7, 7 and 7’ — 7. This property of the stability charts

indicates certain operator symmetries in time and in space.

The effect of the parity operator on the matrix of coefficients 1is:
PC(t) =[C;, C;]1". For real eigenvalues, A,: PC, =C, and PC_=C_, while
for complex A, : PC, =C_ and PC_=C, . The physical interpretation of these

results is intriguing. In the case of real eigenvalues (where the one mode is
amplified and the other evanescent) the change of space is not going to affect

the electromagnetic modes. On the contrary, for complex eigenvalues (where
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both modes are propagating) the change of space is very important as the

modes are interchanged.

The effect of the time—reversal operator on the matrix of coefficients 1is:
TC(t) =[C,, C,]". For time—varying homogeneous media, time—reversal is
not the complex conjugate operator as it would have been in most of the

stationary problems. The time—reversal relation of the state matrix is:
(’H—:T*I(T’)T)(Tci) =)\.'(7C.). 7TH '(+/)T is the new state matrix with 7C,
its corresponding eigenvectors. If the modulation is symmetric, meaning that
starting from ¢ =0 we observe the waves at time: 7’ = 27, where the medium
has spent equal time having the two different wave parameter values then
TH '(+')T has interchanged eigenvalues and eigenvectors with H(+'). This
leads us to conclude that P7 —symmetry can be established since a double
interchange of the eigenvalues and eigenmodes by the implementation of the
PT operator overtly brings back the system to its initial form. Such P7 —
symmetric wave—states are exhibited without the presence of material gain

and loss. The only necessary condition is a symmetric time—modulation of a

dynamic medium.

3.3 PT —symmetric scattering of a time—Floquet slab: Parametric

amplification and bidirectional invisibility

In this subsection, a parametric time—Floquet system is considered which is
modulated with a frequency twice that of the incident field. Such systems
under specific conditions exhibit P7 symmetry. In full agreement with the
PT scattering theory, examples that exhibit coherent—perfect—absorption
(CPA) or laser operations, phase transitions and anisotropic transmission

resonances are provided [19].
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Let us assume a special case of a time—Floquet system, which is a Mathieu

medium that was first introduced in [42]. Such medium is subject to a uniform

time—modulation of its refractive index: u(t):uo\/1—2mcos(2§2t), where
u, =+ 1is the velocity of the medium when it is not modulated, m is the
modulation depth and w, =2Q is the modulation frequency. The scalar

one—dimensional wave equation 1is:

O*p(x,t)

— u%[1 — 2mcos(20t
ot ol (2Q2t)]

0*Y(x,t)
ox? (79)

where for an electromagnetic problem as modelled in chapter 2: ¢ could be the

electric displacement or the magnetic induction and the modulation of the
refractive index would be in regards to the permittivity or the permeability

respectively. A general solution of the form: (x,t) = X(x)T'(t) is considered,

which produces two coupled ordinary differential equations

dx
d;fl;(t) + k*ul[1—2mcos(2Q8)]T'(¢) = 0. (81)

k* is a constant value (physically related to the square of the wave number of
the medium) that defines the Sturm—Liouville problem. This eigenvalue
problem is well known, and it provides the dispersion relation of the system

(see chapter 2). The solution is a wave of the form
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W(x,t) = f W(x,t; k)dE. (82)
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