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Résumé 

Traditionnellement, l’étude scientifique de la vision chez l’être humain consiste à décomposer 

les calculs complexes effectués par le cortex visuel en une cascade d’opérations basiques 

implémentées par de petits circuits neuronaux. Selon cette idée, l’information visuelle circule 

dans un seul sens, ou feedforward, comme dans une machine automatique extrêmement 

efficace, où l’activité des millions de neurones de la rétine est transformée en concepts visuels 

abstraits et complexes en à peine un claquement de doigts. 

Cette approche a permis de découvrir de nombreux mécanismes fondamentaux intervenant 

dans le cortex visuel et d’élaborer des modèles aussi performants que de vrais humains dans 

de nombreuses tâches visuelles très complexes. Par exemple, les réseaux neuronaux profonds, 

ou deep neural networks, sont considérés comme des représentations fidèles du cortex visuel 

humain, ainsi que les meilleurs algorithmes dans le domaine de l’intelligence artificielle. 

Cependant, en se basant uniquement sur des modèles feedforward et des mesures de l’activité 

de circuits neuronaux, il est possible de passer à côté d'autres aspects fondamentaux de la 

vision humaine, tels que l'influence des connexions récurrentes dans le cerveau ou encore 

l’importance du contexte global d’une image lorsqu’elle est analysée par le cortex visuel. 

Des paradigmes psychophysiques peuvent être utilisés pour sonder les méandres de la vision 

humaine, par exemple le visual crowding (« encombrement visuel »), dans lequel un objet-cible 

est plus difficile à identifier lorsqu'il est entouré par d'autres objets qui lui ressemblent. De 

nombreuses expériences utilisant ce paradigme on produit des résultats qui ne peuvent pas 

être expliqués par les modèles traditionnels de la vision humaine. Par exemple, en présence 

de nombreux objets qui se ressemblent entre eux, l’objet-cible est aussi facile à reconnaître 

que s’il était isolé (uncrowding). Nous appelons ces résultats les effets globaux du crowding.  

Dans cette thèse, je commence par analyser quels modèles de la vision humaine sont capables 

de produire du uncrowding. Je sélectionne ces modèles en fonction de différents facteurs 

architecturaux et fonctionnels et je compare leur performance. Je montre que le seul modèle 

qui se comporte comme le système visuel humain est un modèle de segmentation, i.e., un 
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modèle où la manière dont les éléments visuels sont groupés entre eux influence la perception 

individuelle de ceux-ci. 

Ensuite, je montre que les effets globaux du crowding ne peuvent pas émerger de modèle se 

basant uniquement sur des statistiques locales. Il a été proposé qu’un tel modèle, le Texture 

Tiling model, peut produire ces effets simplement parce qu’il contient de nombreuses 

dimensions, sans utiliser de processus de segmentation. Je teste ce modèle en me basant sur 

un grand nombre de résultats expérimentaux utilisant le crowding. Je montre que ce modèle 

est équivalent à un modèle de basse dimension et qu'il n'explique aucun des résultats testés. 

Ensuite, je me concentre sur les deep neural networks, qui sont les représentants les plus 

performants des modèles feedforward, tant du point de vue de l’intelligence artificielle que 

celui des neurosciences. Je teste deux réseaux, AlexNet et ResNet-50, qui ont été proposés 

comme modèles du système visuel humain. Je montre que la manière dont ces réseaux sont 

construits fait qu’ils ne peuvent pas produire du uncrowding. 

Enfin, j'utilise un algorithme génétique pour générer des stimuli en fonction de la performance 

de différents modèles. Le but est d'éviter de définir moi-même des stimuli qui favorisent 

certains modèles au départ. Je compare les stimuli qui sont produits par les modèles à ceux 

qui sont produits par les humains. Je montre que seuls les modèles qui incluent des processus 

de segmentation se comportent comme des humains. 

Pris ensemble, les résultats de ma thèse mettent en évidence l'importance des processus de 

segmentation dans le système visuel humain. Ils démontrent que ces processus sont un ajout 

prometteur aux modèles traditionnels, pour mieux comprendre les mécanismes 

fondamentaux de la vision chez l’être humain. 

Mots-clefs 

Vision humaine, visual crowding, modélisation, groupement visuel, segmentation, interactions 

locales, contexte global, réseaux feedforward, réseaux récurrents, algorithme génétique 



     

Abstract 

Human vision has evolved to make sense of a world in which elements almost never appear in 

isolation. Surprisingly, the recognition of an element in a visual scene is strongly limited by the 

presence of other nearby elements, a phenomenon known as visual crowding. Crowding 

impacts vision at all levels and is thus a versatile tool to understand the fundamental 

mechanisms of vision. 

For decades, visual crowding was perfectly well explained by traditional feedforward models 

of vision. In these models, vision starts with the detection of low-level features. This 

information is combined locally along the hierarchy of the visual cortex to build more and more 

complex feature detectors, until neurons respond selectively and robustly to complex objects. 

Crowding happens when nearby elements interfere in this local feature combination process 

and impair target recognition. 

However, recent studies have shown that crowding is not determined by local interactions but 

by the global configuration across the entire visual field. Depending on how elements group 

together, crowding can even almost disappear, a phenomenon called uncrowding. Hence, 

crowding is rather a complex, global and high-level phenomenon, that simple feedforward 

models cannot explain. 

In this thesis, I first analyse which models of crowding can explain uncrowding. I compare the 

performance of diverse models, selected according to different architectural and functional 

features, such as feedforward vs. recurrent architecture, local or global information 

processing, including a grouping stage or not. I show that the only model that reproduces 

human behaviour includes a dedicated recurrent grouping processing stage. 

Second, I show that global effects in crowding cannot be explained by low-level accounts. It 

was argued that the Texture Tiling model, based on a complex and high-dimensional pooling 

stage, may account for global effects in crowding, without requiring any recurrent grouping 

stage. To test this model, I use a large pool of recent crowding data. I show that the Texture 

Tiling model is equivalent to a simple pooling model and is thus as limited as these models. 
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Next, I focus on deep neural networks, which are well in the spirit of the feedforward 

framework of vision and have become state-of-the-art models both in computer vision and 

neuroscience. I test whether AlexNet and ResNet-50, which have been proposed as realistic 

models of the visual system, exhibit uncrowding. I show that these networks do not reproduce 

uncrowding for principled reasons. 

Finally, I use a genetic algorithm to generate stimuli based on the performance of different 

models, i.e., in a bottom-up manner. The goal is to avoid using stimuli that favour models of 

grouping from the start. I compare the distribution of stimuli that are produced by the models 

to the ones that are produced by humans. I show that only the models that include grouping 

and segmentations processes behave like humans. 

Taken together, the results in my thesis highlight the importance of recurrent grouping and 

segmentation processes in human vision when large portions of the visual field are involved. 

These results can be used as direct guidelines for future models of vision, in order to constraint 

how recurrent processing should be incorporated to improve the performance of deep neural 

networks and other feedforward models of vision, and help them generalize to more complex 

visual inputs. 

Keywords 

Human vision, visual crowding, modelling, grouping, segmentation, local pooling, global 

processing, feedforward networks, recurrent networks
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The traditional framework of human vision 

Humans recognize objects without effort, even though there are thousands object classes (e.g. 

car, plant, dog, bottle, etc.), and there are virtually infinitely many possible instances for each 

object (different shapes, sizes, colors, poses, internal configurations, locations, points of view, 

lighting conditions, etc.). In order to solve this task, the human visual system must convey 

information from the activity of more than 10 million cone photoreceptors per retina (1) into 

robust and invariant object-like representations. Although it seems extremely complex in terms 

of computations, this task requires no more than 150 ms of cortical processing in humans (2–

4). How is this even possible? What is the machinery underlying such an efficient system? 

To unveil the mechanisms of human vision, it is necessary to rely on simple (yet powerful) 

models. To this end, based on electro-physiological and anatomical studies of different regions 

of the visual cortex in cats and monkeys (5–7), vision was first formulated as a feedforward and 

hierarchical process. Object recognition was shown to occur in a dedicated stream of the visual 

cortex (ventral stream; 8), organized in subsequent cortical areas whose role is to encode 

different features that characterize the content of the visual input (9,10; see Fig 1, top). 

Connections between the layers only go in one direction: from simple, very localized and 

retinotopically organized features in the first visuo-cortical areas (11) to more complex and 

abstract features in the higher regions of the ventral stream, that respond specifically to 

objects but are relatively oblivious to low-level properties of the visual input (12). Importantly, 

the neurons’ receptive field size increases along the processing hierarchy, and their responses 

become more robust and invariant to continuous transformation of objects in the visual field 

(pose, size, shape, etc.). 

Based on the incoming activity of the retinal ganglion cells, the first layers of the visual cortex 

detect simple, local and low-level oriented edges (Fig 1, bottom). Then, the subsequent layers 

combine this information locally and in a feedforward manner to build more and more complex 

feature detectors (e.g., object parts, such as doorknobs or wheels). This feature combination 

process leads to a final stage in which the patterns of activity are selective and robust to the 

presence of complex objects (e.g., any type of car, from any point of view), which allows 

complex object recognition. 
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Fig 1. Top. Extremely simplified schematic of the ventral stream anatomy, as observed in the primate visual cortex. 

Light coming from the outer world is first processed by the retina and sent to the visual cortex through the visual 

part of the thalamus, the Lateral Geniculate Nucleus (LGN). The early layers of the visual cortex (V1, V2 V4) encode 

the content of the image less and less locally, as receptive fields sizes increase with cortical depth. Neurons in the 

infero-temporal cortex (IT) respond with high selectivity to different object parts (posterior IT; PIT) and whole 

objects (anterior IT; AIT) but are oblivious to simple and local image features. Finally, object-related information 

coming from IT is integrated in the Pre-Frontal Cortex (PFC) to make a decision regarding the high-level content 

of the visual input. Bottom. How object recognition is supposed to work according to traditional feedforward 

models of human vision. The processing architecture loosely matches the anatomy of the ventral stream depicted 

above. Between layers, information is filtered and integrated into more and more complex features, using simple 

and local mathematical transformations, such as local filter convolutions, until complex objects are detected, 

selectively and robustly. 

Modelling visual perception as a feedforward process is particularly useful since complex and 

high-level visual processing, such as object recognition, can be broken down into local and 

mathematically tractable sub-problems, performed by simple neuronal circuits (13). In past 

decades, electro-physiological studies discovered various low-level basic input-output 

functions in the early visual cortex and described them in terms of local synapse circuitries, 

e.g., surround suppression (11,14,15), cross-orientation suppression (16,17), or end-stopping 

(18–20). All these functions are easy to implement and to understand, because they can be 

reproduced by simple neuronal circuits. 

According to traditional vision research, it is sufficient to combine these basic processing blocks 

in a hierarchical, retinotopic and feedforward fashion to explain how humans recognize objects 

in a scene (21,22). As a major breakthrough, it was shown that object representations invariant 

to any transformation can be built with local feature detectors and max-pooling operations 

(21,23). Based on this idea, many artificial models of object recognition were designed and 
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tested (24–29). All these models reach high levels of performance in object recognition tasks, 

while relying on a small number of parameters and computations. 

Following the same inspiration, more recently and thanks to the increasing capacity of modern 

computers, a new class of models, namely the deep feedforward convolutional neural 

networks, were developed (30,31). These networks can not only perform object recognition as 

well as humans (32–35), but they also excel in a large number of vision-based tasks, often 

exceeding human performance. These tasks range from object segmentation (36), to image 

synthesis (37,38) and scene understanding (39). 

Importantly, the traditional framework of human vision is particularly well embedded in deep 

convolutional neural networks: they use the same feedforward layered architecture and the 

same kind of basic operations to build linearly separable object-like representations. In 

addition, deep neural networks share interesting similarities with the human visual system. For 

example, after being trained on image recognition, activity in the different layers of deep 

neural networks resembles the activity observed in the visual areas of the primate ventral 

stream (40–43). The same applies to the shape of their receptive fields (44,45). For all these 

reasons, deep neural networks have also been studied as models of human vision (46,47). 
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Importance of specific and well-controlled probes  

Reducing vision to basic computations performed by local cortical circuits makes electro-

physiological measurements the natural choice to access fundamental properties of the visual 

cortex. Most variables and sources of noise are controlled, allowing to access local circuits 

connectivity with extreme precision. However, to study these circuits in isolation, feedback and 

lateral connections must play only a little role in the visual cortex, such as modulatory effects 

(48–50), noise disambiguation (51–53), uncertainty reduction (54), or the propagation of 

learning signals as in biologically plausible deep neural networks (55–58). 

It has been shown that this is not the case. For example, even at the very first stage of the 

visual cortex (V1), 85% of the input comes from intracortical regions, i.e., from lateral or top-

down connections (59). Moreover, characterizing orientation tuning properties of macaques 

V1 neurons in terms of linear response to simple stimuli has little predictive power for their 

response to natural images (60,61). The same holds for hue tuning curves measured in the V4 

area. Hue tuning properties in response to artificial stimuli are considerably altered in natural 

images (62). This suggests that it is almost impossible to study even the most basic circuits of 

the visual cortex in isolation without being restricted to extremely simple paradigms, 

measurements and models. Finally, the complexity associated to summarizing all physiological 

measurements of any functional area of the human visual cortex under a comprehensive 

theory increases exponentially with the number of measured neurons (63). 

These findings are in sharp contrast with findings in the retina, where neural firing to natural 

scenes is captured well by convolutional neural network models, even at the cellular level (64); 

or with the LGN, whose cell responses to complex image patterns are well explained by a 

feedforward linear filter model (65). The difference with the visual cortex is that recurrent 

connections play a sparser role in the retina and the LGN. Hence, the expected output of the 

retina and the LGN are well-defined and formulating them as input/output functions is easier. 

In the visual cortex, it is harder to define what or where the output is: visual information is not 

transient, but is integrated for long periods of time (66–69), up to 450 ms. The only relevant 

outputs that can be defined without ambiguity are high-level, human-level perceptions and 

sensations. Hence, it is very hard, if not impossible, to map different sets of physiological 
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measurements to actual functions of the visual cortex, given the complex ontology and 

numerosity of its possible outputs (70). 

According to Marr’s tri-level framework (71–73), the visual cortex can be studied at three 

different levels: computational (what are the goals pursued by human vision and why are they 

appropriate), algorithmic (how are computations implemented and what do they represent), 

and hardware implementation (how can these algorithms be realized physically). From that 

perspective, physiological measurements are powerful tools to addressing mainly 

implementational questions about the visual cortex but seem less adapted to algorithmic and 

computational questions. For all these reasons, it is crucial to pair physiological observations 

with measurements that are taken at a higher level of abstraction, namely, psychophysical 

paradigms (22). Psychophysics bridges the gap between the stimulation of the visual system 

and high-level processes by providing well-controlled procedures to access actual human 

perceptions and sensations (74–76). Pairing physiological and psychophysical measurements 

is not new. For example, evidence for the existence of invariant object-representations in the 

visual cortex were backed-up by numerous psychophysical studies (77–79). 

Compared to physiological measurements, psychophysical paradigms have the possibility to 

ask different questions that may sometimes be more adapted to the required level of 

understanding. Rather than being in competition, these different levels complement and 

constrain each other. Eventually, to fully understand human vision, we need a coherent set of 

theories at all levels. Importantly, psychophysical measurements are less stringently bound by 

stimulus and paradigm complexity because they reside on a higher level of abstraction. 

Moreover, compared to physiological measurements, it is just as straightforward to use 

psychophysical paradigms to validate models of the visual system, since they rely on a set of 

well-controlled assessment methods and well-defined stimuli. This would not be the case, for 

example, for psychological paradigms. As a probe into the fundamental processes of human 

vision, the psychophysical paradigm that was used through this thesis is visual crowding. 
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Visual crowding and traditional models of vision 

In visual crowding, identification of a target is impaired by the presence of nearby flankers. The 

target is visible, but its features appear jumbled and distorted (Fig 2a). Crowding is ubiquitous. 

It occurs for simple lines (80), letters (81), digits (82), Gabors (83), faces (84), everyday objects 

(85), and is observed in other modalities, e.g., audition (86–89) or touch (90). Because it affects 

so many aspects of perception, crowding may be the burden that any perceptual system needs 

to cope with because of its constraints (finite size, time, resolution, etc.). It is thus a precious 

tool to study the fundamental mechanisms of human visual perception (91). In the last 

decades, visual crowding has been characterized in detail by numerous studies that have 

focused mainly on very simple paradigms, i.e., involving few flankers only. 

Based on the result of these studies, several hallmarks of crowding were formulated. Crowding 

was found to be stronger for flankers sharing similar low-level features with the target, such as 

orientation, colour, size, etc. (80,92–94). The spatial extent of crowding was determined to 

grow linearly with eccentricity, i.e., equal to half the target eccentricity when flankers are 

aligned in the radial direction (Bouma’s law; see Fig 2b; 78,92) and 2-3 times smaller when 

aligned in the tangential direction (radial-tangential anisotropy; 93). Crowding was shown to 

be stronger with flankers on the peripheral side of the target than on the foveal side (inward-

outward anisotropy; 92,94,95), and weaker in the lower than in the upper visual field (99). 

The majority of models of visual crowding proposed that crowding is the consequence of 

feature integration or pooling (100–107). This explanation is in line with feedforward models 

of vision, in which features must be integrated along the visual processing hierarchy to yield 

target identification. Crowding happens when the target’s features are compulsorily pooled 

with features of the flankers because they fall within the same receptive field (see Fig 2c-d). 

The perceived features of the target are averaged with the flankers’ perceived features. 

Importantly, pooling is thought to happen at the early stages of vision. This means that even 

though crowding happens between faces or houses, it is the result of the interactions between 

low-level features that make up the objects (108). Depending on the paradigm, crowding may 

be partially imputed to substitution errors, in which the representation of the spatial order of 

elements is noisy (109–111). In this case, the reported visual element is not the target but one 

of the flankers, leading to more errors. 
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Fig 2. a. Visual crowding in everyday life. The child on the right is harder to identify compared to the one on the 

left because of the neighbouring signs that share similar features (colours, shape, size). b. Crowding in 

psychophysical experiments. Crowding happens in various visual recognition tasks (letters, Gabors, faces, etc.). 

The target letter is easier to identify on the right than on the left, except at the second row, where the flankers 

lie outside Bouma’s window. c. Target identification according to feedforward models of vision. The output of 

local contrast detectors, the receptive fields of which are represented by the small black circles, are integrated in 

an intermediate pooling stage (black arrows). The output of this integration is used at a higher-level to recognize 

the letter (exclamation marks). d. Visual crowding according to feedforward models of vision. When flankers are 

added, some irrelevant information is pooled along the processing hierarchy. As a consequence, the neurons that 

integrate local features along the hierarchy are less optimally activated than in the unflanked condition. Hence, it 

is harder for the higher-level neurons to identify the target (question marks). 

fMRI studies located the cortical area where visual crowding happens at least after the V1 level 

(112), which matches the pooling theory, since feature detection (the step prior to feature 

integration) happens in V1 (6). Moreover, the pooling explanation accounts for Bouma’s law, 

since receptive field sizes grow approximately linearly with eccentricity (cortical magnification; 
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110–113). Several neuroanatomical and neurophysiological studies designated area V4 as a 

promising locus for visual crowding. This is in quantitative agreement with Bouma’s law (117), 

since the cortical magnification factor in this area is roughly equal to 0.5 (117,118). The shape 

of the receptive fields in area V4 is consistent with the radial-tangential anisotropy (118). 

Moreover, V4 is a plausible site for the type of feature integration that is presumed to yield 

crowding (119,120).  

These considerations resulted in models that can be tested quantitatively. For example, Van 

den Berg et al. (107) proposed a model based on the spatial integration of population coding 

signals. This model is physiologically plausible and accounts quantitatively for different 

hallmarks of crowding, such as Bouma’s law, the radial-tangential anisotropy or the inward-

outward anisotropy. Moreover, this model explains both types of errors in crowding, 

substitution and averaging, using a single pooling mechanism. 

To sum up, the majority of visual crowding studies are perfectly in line with the traditional 

framework of vision research and are well explained by local feedforward models based on 

pooling. 
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Challenges to vision models and importance of visual grouping 

Recent studies have measured visual crowding using more complex flanking patterns. 

Importantly, the results of these studies undermine the success of feedforward models of 

crowding. For example, in Manassi et al. (121), human participants were asked to discriminate 

between a left or a right vernier target presented in the periphery, and surrounded by different 

flanker configurations (see Fig 3a). The task is easy when the target is alone (red dashed line) 

but hard when a square flanker is added (crowding; 1st column). However, with added squares, 

performance recovers almost to the unflanked level, an effect called uncrowding (2nd to 4th 

columns). This is in contradiction with the pooling explanation of crowding, in which adding 

flankers always increases crowding strength. 

Uncrowding had already been measured in previous studies (122–124). However, testing more 

complex flanking patterns revealed that crowding strength is determined by the global 

configuration of flankers, i.e, in the whole visual field (5th to last columns), far beyond the range 

predicted by Bouma’s law (Bouma’s window; 118,122). In these studies, the low-level 

perception of a few arcmins vernier offsets is determined by high-level configuration changes 

occurring in a radius of almost 10 degrees (see Fig 3b). Moreover, it was shown that feature 

similarity between the target and the flankers is not always sufficient nor necessary to produce 

crowding (126). 

Furthermore, crowding studies in which the flankers not only cover large portions of the visual 

field, but are also arranged in a dense fashion (dense displays; 124–126), produced results that 

are not in line with classic models of crowding. In dense displays, the range at which flankers 

have an influence on target discrimination performance was found to shrink to the nearest 

neighbour distance, way beneath Bouma’s window (130). Crucially, the range of interaction 

does not scale with target eccentricity in dense displays (131). These results are in 

contradiction with Bouma’s law and the pooling account of crowding. 
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Fig 3. a. Observers were asked to discriminate between a left or right vernier presented at 9° of eccentricity and 

surrounded by different flanker configurations (121,125). The y-axis shows the vernier offset threshold for 75% 

of correct responses. When the target is alone, performance is good (red dashed line). When a square is placed 

around the target, performance decreases dramatically (crowding, 1st column). When more squares are added, 

performance recovers almost to the unflanked level (uncrowding, 2nd to 4th column). Crowding strength is strongly 

affected by the configuration of flankers in the whole visual field (5th to last columns). b. Illustration of different 

receptive field sizes at 9° of eccentricity. The dashed circles indicate Bouma’s window. Elements having a dramatic 

influence on crowding strength lie far beyond Bouma’s window. c. Two-stage model. The stimulus is first parsed 

into different groups, and interaction happens only within each group. When more squares are added, it becomes 

easier to segment the target from the group of flankers. 

Moreover, studies involving displays with realistic and semantically rich content showed that 

crowding is not merely due to the integration of the low-level features that make up the objects 

but can happen at any stage of the visual hierarchy, including high-level (132,133). For 

example, crowding between visual scenes was dramatically reduced by removing semantic 

information of the flanker scenes (134). Alternatively, crowding between faces was shown to 

be stronger for upright than for inverted flanker faces, only for upright target faces (135,136). 



Introduction 

 

24 

 

Crowding and uncrowding seem to be strongly affected by the global configuration of the 

elements in the visual field, even at the scale of a vernier target. Local feedforward models 

cannot account for these effects. Previous studies have shown that crowding happens at a level 

where configuration information is already extracted (137) and that crowding is stronger 

within, rather than between, Gestalt clusters of visual elements (138). Van den Berg et al. (107) 

proposed that adding grouping processes to their population coding model using feedback 

connections could account for configuration effects in crowding. They suggested that adding 

inhibitory connections from higher levels in their model might suppress the integration of 

signals between different perceptual groups. 

Moreover, the classic hallmarks of crowding can also be explained as the consequence of 

processes that do not have to be feedforward. For example, it was proposed that the limited 

resolution of selective attention is responsible for visual crowding (139). This process has a 

coarser grain than pure visual acuity and could, in theory, account for Bouma’s law. Moreover, 

attention models were linked to the time resolution of crowding (140) and to stronger effects 

in the upper visual field (99). 

For all these reasons, it is appealing to explain high-level configurational effects of crowding 

with models that process visual inputs globally and incorporate recurrent connections. One 

successful idea has been to model crowding as a two-stage process in which elements are first 

parsed into different groups, before interactions happen within each group only (see Fig 3c). 

Along these lines, Francis et al. (141) proposed a model in which elements are grouped by 

illusory contours and parsed in different layers of the network by a recurrent segmentation 

stage, reproducing the uncrowding effect. The segmentation process arises from a competition 

between different populations, in which activity is modulated by high-level inhibitory signals, 

as suggested by Van den Berg et al. (107). The success of the model of Francis et al. (141) 

unveils the potential importance of grouping and segmentation processes in human vision, 

once large portions of the visual field are taken into account.  
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Overview of the thesis 

In this thesis, extensive modelling studies are performed to outline the importance of grouping 

and segmentation processes in visual crowding and human vision in general. The main 

approach is to pit different classes of models against each other by comparing their abilities to 

explain the global aspects of crowding described in the previous section. The first class of 

models are feedforward models, which are built upon the traditional framework of vision 

research. In addition, recurrent models that include grouping and segmentation processes are 

considered. This thesis consists of four chapters, each addressing an important aspect of 

crowding and human vision from a modelling perspective. 

First, although Francis et al. (141) explained global aspects of crowding with a recurrent model 

of grouping and segmentation, it is important to make sure that feedforward models cannot. 

Indeed, many different feedforward models of crowding exist, all with their specific hypotheses 

about human vision. Moreover, other recurrent models exist that process global aspects of the 

visual input. For this reason, in Chapter 1, we compare the performance of different models 

on a large battery of crowding stimuli for which we know that global configuration plays a role 

in humans. We relate the success or failure of the models to their key characteristics, such as 

having a feedforward vs. recurrent architecture, processing information locally vs. globally, or 

whether they include a grouping stage or not. 

Second, Rosenholtz et al. (142) suggested that global aspects of crowding could be explained 

by more sophisticated pooling models, such as the Texture Tiling Model (TTM). Contrary to 

simple pooling models, the pooling stage of the TTM is high-dimensional and preserves rich 

information, which supports a fine-grained representation of the visual input. This fine-grained 

representation could drive the global effects observed in crowding at a later post-perceptual 

stage, without requiring any grouping stage in the visual hierarchy. For example, Rosenholtz et 

al. (142) argued that uncrowding was simply caused by the reduction in target location 

uncertainty in the presence of many flankers (cueing). However, the model’s predictions in 

Rosenholtz et al (142) were not tested quantitatively and very few conditions were presented. 

For example, many conditions in which cueing increases and crowding increases as well were 

omitted. For this reason, in Chapter 2, we test this model extensively using crowding paradigms 
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from different studies in which effects of configuration are observed in humans 

(121,125,126,143). 

Third, deep feedforward convolutional neural networks have become state-of-the-art models 

both in computer vision and neuroscience. It has been shown that these networks are subject 

to crowding (144). In Chapter 3, we investigate whether they also reproduce uncrowding, as 

observed in humans. We test different versions of deep networks that have been proposed as 

models of the visual system, namely AlexNet (31) and ResNet-50 (35). Moreover, we test a 

version of ResNet-50 that has been trained to focus on global aspects of the visual input by 

removing textural information in the training set (145). 

Fourth, it is important to test the predictions of grouping and segmentation processes beyond 

uncrowding paradigms. In Chapters 1 to 3, stimuli are “cherry-picked” to pit models against 

each other. However, a fairer model comparison would involve stimuli that are not designed 

to highlight the importance of grouping processes. To this end, in Chapter 4, we used the data 

of Van der Burg et al. (130) in which the range of interaction between visual elements is shrunk 

to the nearest neighbour distance, which is the exact opposite as in uncrowding paradigms 

(121,125). Importantly, the stimuli in this paradigm are generated using a genetic algorithm 

(146), i.e. in a bottom-up manner, which means that they are not chosen by the modeller. 

To give an overview of the main contributions of this thesis, I first show that the only models 

of crowding that are able to explain uncrowding include a dedicated recurrent grouping stage 

(Chapter 1). Second, I show that global effects in crowding cannot be explained by low-level 

accounts, even when including a high-dimensional pooling stage (Chapter 2). Third, I show that 

deep feedforward convolutional networks do no reproduce uncrowding for principled reasons 

(Chapter 3). Finally, I show that grouping and segmentation processes are crucial to explain 

human behaviour beyond uncrowding paradigms (Chapter 4). Taken together, the results in 

my thesis highlight the importance of recurrent grouping and segmentation processes in 

human vision when large portions of the visual field are involved. These results can be used as 

direct guidelines for future models of vision, in order to constraint how recurrent processing 

should be incorporated in deep neural networks to improve their performance and help them 

generalize to more complex visual inputs. 
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Abstract 

In crowding, perception of an object deteriorates in the presence of nearby elements. Although 

crowding is a ubiquitous phenomenon, since elements are rarely seen in isolation, to date 

there exists no consensus on how to model it. Previous experiments showed that the global 

configuration of the entire stimulus must be taken into account. These findings rule out simple 

pooling or substitution models and favor models sensitive to global spatial aspects. In order to 

investigate how to incorporate global aspects into models, we tested a large number of models 

with a database of forty stimuli tailored for the global aspects of crowding. Our results show 

that incorporating grouping like components strongly improves model performance.  
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Author Summary 

Visual crowding highlights interactions between elements in the visual field. For example, an 

object is more difficult to recognize if it is presented in clutter. Crowding is one of the most 

fundamental aspects of vision, playing crucial roles in object recognition, reading and visual 

perception in general, and is therefore an essential tool to understand how the visual system 

encodes information based on its retinal input. Classic models of crowding have focused only 

on local interactions between neighboring visual elements. However, abundant experimental 

evidence argues against local processing, suggesting that the global configuration of visual 

elements strongly modulates crowding. Here, we tested all available models of crowding that 

are able to capture global processing across the entire visual field. We tested 12 models 

including the Texture Tiling Model, a Deep Convolutional Neural Network and the LAMINART 

neural network with large scale computer simulations. We found that models incorporating a 

grouping component are best suited to explain the data. Our results suggest that in order to 

understand vision in general, mid-level, contextual processing is inevitable.  
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Introduction 

When an element is presented in the presence of nearby elements or clutter, it becomes 

harder to perceive, a well-known effect called crowding. One of the main characteristics of 

crowding is that the element itself is not invisible, contrary to contrast- and backward-masking; 

rather its features appear jumbled and distorted (Fig 1). Crowding is a ubiquitous phenomenon 

because elements are rarely encountered in isolation in everyday situations (Fig 1c). Thus, 

understanding crowding is crucial for understanding vision in general. For about half century, 

the consensus was that flankers interfere with a target element only when placed within a 

spatially restricted window around the target, the so-called Bouma law (Fig 1b; 1–4):  

Size of Bouma’s window ≈ 0.5*eccentricity 

Classic models of crowding proposed that early visual areas, such as V1, process the features 

of stimuli with high precision. Crowding occurs when neural signals are pooled along the visual 

hierarchy, e.g., when V2 neurons pool neural signals from V1 neurons (5). Hence, in line with 

classic hierarchical feedforward processing (Fig 2a), crowding may be seen as a natural 

consequence of object recognition in the visual system. For example, a hypothetical neuron 

coding for a square might respond to signals from neurons coding for the lines making up the 

square. In order to achieve translational invariance, the square neuron is sensitive to lines all 

over its receptive field and pools this information in order to decide whether a square is 

present. According to this logic, crowding occurs when elements that do not belong to the 

same object are pooled. In this sense, crowding is an unwanted by-product of object 

recognition and, for this reason, a bottleneck of vision (for a review, see 2,6). Other models 

have proposed that performance in crowding deteriorates because features of the target are 

substituted for features of the flanking elements. As mentioned, all these models are local in 

the sense that crowding is determined by nearby elements only. Based on these two lines of 

thought, pooling and substitution, researchers have suggested that with more flankers, 

performance deteriorates because more irrelevant features are pooled or substituted. 
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Fig 1. Crowding. a. In crowding, the perception of a target element deteriorates in the presence of nearby 

elements. When fixating the left cross, the target letter V on the right is hard to identify because of the nearby 

flankers. b. The task is easier than in (a), because the flankers are further away from the target letter V. Bouma’s 

law states that crowding occurs only when flankers are sufficiently close to the target, within the so-called 

Bouma’s window. c. Crowding is a ubiquitous phenomenon since elements are rarely seen in isolation. For 

example, when fixating the central red dot, the child on the left is easier to detect because it is not surrounded 

by nearby flankers, as is the child on the right.  

The understanding of crowding has largely changed in the last decade. For example, it has been 

shown that detailed information can survive crowding (7,8). Crowding occurs in the fovea and 

is not restricted to the periphery, contrary to earlier proposals (9,10). Most importantly for the 

present discussion, performance depends on elements far outside of Bouma’s window. For 

example, in supercrowding, elements outside of Bouma’s window decrease performance 

beyond the decrement arising from elements within the window (11). Surprisingly, adding 

flankers can even reduce crowding, and such uncrowding effects can depend on elements 

outside of Bouma’s window (Fig 2; 9,12–16, review: 17). For example, observers performed a 

vernier discrimination task. When a surrounding square was added to the vernier, the task 

became much more difficult: a classic crowding effect. However, adding more flanking squares 

improved performance gradually, i.e., performance improved the more squares were 

presented (18; Fig 2b). The entire line of squares extends over 17 degrees in the right visual 

field, while the single vernier offset threshold is less than 200’’ (Fig 2d). Hence, performance is 

not exclusively determined by local interactions: fine-grained vernier acuity in the range of 

about 200’’ depends on elements as far away as 8.5 degrees - a ratio of two orders of 

magnitude, extending far beyond Bouma’s window. Moreover, performance depends on the 

overall configuration (19). For example, in three-by-seven displays of squares and stars (Fig 2c), 

a shift of the central row changes performance strongly (Fig 2c, 4th and 5th configurations). 
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Similar effects were found with stimuli other than verniers (20,21), as well as in auditory (22) 

and haptic crowding (23).  

 

Fig 2. a. Standard view of visual processing. First, edges are detected by low-level neurons with small receptive 

fields. Higher level neurons pool signals from lower level neurons in a hierarchical, feedforward manner, creating 

higher level representations of objects by combining low-level features (24,25). For example, two low-level edge 

detectors may be combined to create a “corner” representation. Four such corner detectors can be assembled to 

create a rectangle representation. Receptive field size naturally increases along this pathway since, for example, 

a rectangle covers larger parts of the visual field than the lines making up the rectangle. b. Uncrowding. Observers 

performed a vernier discrimination task. The y-axis shows the threshold, for which observers correctly 

discriminate the vernier offset in 75% of trials (performance is good when the threshold is low). First, only a 

vernier is presented, an easy task (performance for this condition is shown as the dashed horizontal line). Then, a 

flanking square is added making the task much more difficult (a). This is a classic crowding effect. Importantly, 

adding more flanking squares improved performance gradually, i.e., performance improved the more squares are 

presented (18). We call this effect uncrowding.  c. The global configuration of the entire stimulus determines 

crowding. Performance is strongly affected by elements far away from the target as shown in these examples 

(14). d. Performance is not determined by local interactions only. In this display, fine-grained vernier acuity of 

about 200’’ depends on elements as far away as 8.5 degrees - a difference of two orders of magnitude, extending 

far beyond Bouma’s window. 
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Because they cannot produce long-range effects, local models cannot explain the global 

aspects of crowding. Here, we tested which global models, integrating information across large 

parts of the visual field, can explain global effects on crowding (see Fig 3 for a list). We also 

tested the most prominent local models to verify our hypothesis that local models are 

inadequate to explain global aspects of crowding. The models are described in detail in the 

supplementary information (see Suppl. Inf. A). 

The models differ with respect to four criteria:  

Spatial extent: Local vs. Global. In a local model, elements far from the target do not exert any 

effects on the target. By contrast, in a global model, any element in the visual field may 

potentially interfere with target processing. 

Mechanism of interference: Pooling, substitution, or other? 

Organisation: Feed-forward (features at a given level are only affected by lower level features) 

vs. recurrent processing (features at a given level can be affected by lower or higher-level 

features). 

Grouping component: Does the model incorporate a grouping component? Certain models 

explicitly compute grouping-like aspects by determining which low-level elements should 

belong to the same higher-level group. Only elements within a group interfere with each other.   
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Fig 3. The models tested and their characteristics. Models may integrate information locally or globally, and the 

interference mechanism may be pooling, substitution, or other. Models are feed-forward or recurrent and may 

or may not compute grouping-like aspects of the stimulus.  The aim of the current work is to investigate which 

models can explain the global effects of crowding.  
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Methods 

To test the models, we used human data from previous work exploring the 

crowding/uncrowding phenomena (9,10,14,16,18,19). The stimulus database comprises 40 

different stimuli belonging to 12 different categories: circles, Gestalts, hexagons, irregular1, 

irregular2, lines, octagons, patternIrregular, patternStars, squares and stars. An example of 

each category is shown in Fig 4. Behavioral results can be found in the original papers. In each 

category, we have the vernier target alone, plus crowding and uncrowding configurations. All 

the stimuli are shown in Fig 5 and behavioural results can be found in the original papers. With 

a few exceptions (see details in Suppl. Inf. A), we ran each model on all stimuli. For some 

models, we could not use the entire database because computation time was too long (deep 

convolutional networks, LAMINART, Texture Tiling Model), or because the model was not 

adapted to accommodate certain kinds of stimuli (Population Coding). Human and model 

results are summarized in the Results section (Fig 5-6). The code we used is available online at 

https://github.com/adriendoerig/beyond-boumas-window-code (except the Texture Tiling 

Model, which Rosenholtz and colleagues will share in a forthcoming publication). All the results 

can be found at https://github.com/adriendoerig/beyond-boumas-window-results. 

There are two fundamentally different approaches to measure model performance. First, a 

linking hypothesis may be used to relate model output to performance (both are scalar 

numbers). For example, template matching computes how similar the model output is to the 

target image. If they are similar, performance is good. The second, textural approach is used 

to quantify performance in textural models. The idea is that peripheral vision is ambiguous 

because information is compressed by summary statistics. If a model uses a proper algorithm 

for representing these ambiguities, presenting the processed image in the fovea should lead 

to similar human performance as presenting the original unprocessed image in the periphery 

(26). Accordingly, to measure the performance of textural algorithms, the stimuli are fed 

through a texture synthesis procedure. Then, observers freely examine the output image and 

report vernier orientation. If this task is easy, performance is good. For each model, we used 

the linking hypothesis proposed by the original authors when available. When this was not 

possible (for example for Alexnet, which has never been applied to crowding results before), 

we detail which linking hypothesis we used in the corresponding section. In the Supplementary 

https://github.com/adriendoerig/beyond-boumas-window-code
https://github.com/adriendoerig/beyond-boumas-window-results
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information, we present, first, textural models (Suppl. Inf. A; SA1-SA4) and, second, models 

using a linking hypothesis (Suppl. Inf. A; SA5-SA12). 

An important point is that different readouts lead to different results. Hence, the different 

methods of model evaluation used here could affect our results. However, we are mainly 

interested in qualitative rather than quantitative comparisons and the readout functions we 

used cannot confuse crowding and uncrowding. More specifically, the readout processes we 

use produce results monotonically linked to the model outputs. Hence, they cannot confuse 

uncrowding cases (a U-shape function where the vernier alone condition leads to good 

performance, a single flanker deteriorates performance, and multiple flankers lead again to 

good performance) with cases that do not show uncrowding (a monotonic function where the 

vernier alone condition leads to good performance, a single flanker deteriorates performance, 

and multiple flankers deteriorate performance even more). 

Because different models were evaluated differently, it was impossible to come up with one 

performance measure and to compare models via something like the Akaike Information 

Criterion. However, despite this variety of performance measures, our results are qualitatively 

unambiguous: each model either is capable of producing uncrowding, or it is not. We took the 

parameters directly from the original models whenever possible. Otherwise, we tried our best 

to search the parameter space. We cannot exclude that other combinations of parameters fit 

the dataset better. However, we will argue that models that cannot produce uncrowding fail 

to do so for principled reasons, and not because of poor parameter choices (see Discussion). 

 

Fig 4. Stimulus categories. We used 40 different stimuli from 11 different categories. The task was always to report 

the offset direction of the central vernier. This figure shows one example from each category. The stimulus 

database is tailored to test for global effects such as uncrowding. Human data was taken from previous work 

(9,10,14,16,18,19). Human and model results are summarized in the discussion (Fig 5 shows the results for all 

stimuli and models).  
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Results 

 

Fig 5. Summary of results. Detailed results for each model can be found in the Supplementary Information (Suppl. 

Inf. A). Here, the results for all models (columns) are summarized. In black, the left panel displays all crowding 

stimuli and the right panel displays all uncrowding stimuli (i.e., better performance when extra elements are 

added to the crowded condition) as observed in human data (rows). Superscript numbers indicate which 

publication the results are taken from (1: Sayim, Westheimer & Herzog (16); 2: Manassi et al. (10); 3: Manassi, 

Sayim & Herzog (18); 4: Manassi et al. (14)). Red indicates that the model predicts crowding, green indicates 

uncrowding and gray indicates that we did not run the model on the stimulus. Only the LAMINART model is 

capable of producing uncrowding consistently. Fourier and the Wilson-Cowan network produce uncrowding but 
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suffer from overfitting (see Discussion). For these two models, we provide the results for the best parameters. 

For example, the Wilson and Cowan network with different parameters can explain the lines category but then it 

cannot explain the squares categories. 

 

Fig 6. All models produce crowding, but only the Fourier, Wilson and Cowan and LAMINART models produce 

uncrowding. The Fourier and the Wilson and Cowan model overfit and thus do not capture general principles (see 

Fig 5). The LAMINART is the only model, which explicitly computes grouping like aspects (illusory contours, see 

Suppl. Inf. A; SA7) and segments the image into different layers.   
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Discussion 

For decades, crowding was thought to be fully determined by nearby elements. For this reason, 

target elements were presented only with a few nearby elements, and models were local in 

nature. However, experiments of the last two decades have shown that elements far beyond 

Bouma’s window can strongly affect performance. Crowding can become stronger (11) or 

weaker (9,12–15) when elements are presented outside Bouma’s window. Hence, local models 

cannot provide a complete account of crowding. In addition to spatial extent, it is the specific 

stimulus configuration that determines crowding. Configurational effects are not small 

modulations of crowding but have large effect sizes and, more importantly, these effects can 

qualitatively change the pattern of results. For example, in Fig 2b, performance changes in a 

non-linear U-shaped fashion with best performance for the unflanked target, strong crowding 

for few flankers, and weaker crowding when flankers make up a regular configuration.   

A major question is at which computational level crowding occurs. In local models, only nearby 

elements interfere with target processing, often due to low level mechanisms such as pooling. 

In global models, features across the entire visual field are potentially important. Global 

interactions may be restricted to low level features, such as the orientations of the stimulus 

elements. At the other extreme, explicitly computing objects may turn out to be necessary (for 

example the squares in Fig 2). Likewise, face crowding may or may not necessitate the explicit 

computation of faces (7,50,57,58). For this reason, other global models explicitly compute 

grouping-like aspects. Only elements within a group interfere with each other. Classically, 

models restricting themselves to lower level features are given priority because they offer 

more parsimonious explanations. 

Model comparison 

Here, we investigated all available models suited to explain the global aspects of crowding. All 

models (leaving aside Deep Textures, which was never proposed to explain crowding with 

laboratory stimuli) produced crowding comparable to the human data. However, only the 

LAMINART model was consistently able to produce uncrowding (see Fig 5, more details in 

Suppl. Inf. A; SA7). The Wilson and Cowan network (more details in Suppl. Inf. A; SA5) produced 

uncrowding only for the squares category (and to a lesser extent for the lines and irregular1 

when they were used as training sets). The Fourier model (more details in Suppl. Inf. A; SA12) 
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produced uncrowding only for the Gestalts and lines stimuli. In both models, uncrowding 

depended heavily on parameter values, a signature of overfitting. In the Wilson and Cowan 

network, the end-stopped receptive fields grouped elements of similar size, but this did not 

generalize to explain other global effects.  

We think there are principled reasons why most models cannot reproduce most of the global 

uncrowding findings. First, the effects of global configuration (Fig 2b) operate on a much higher 

level than most models can capture. To phrase it this way, we think that human performance 

is based on global configurations and not on simple hidden sub-regularities, such as repeating 

patterns or simple summary statistics. Second, as Wallis et al. (29) put it: “Based on our 

experiments we speculate that the concept of summary statistics cannot fully account for 

peripheral scene appearance. Pooling in fixed regions will either discard (long-range) structure 

that should be preserved or preserve (local) structure that could be discarded. Rather, we 

believe that the size of pooling regions needs to depend on image content”. For this reason, 

we think that performance in crowding cannot be explained simply as a by-product of basic 

spatial processing, e.g., by summary statistics. In contrast, which elements interfere seems to 

depend on the global stimulus layout. We propose that the LAMINART model can consistently 

produce uncrowding because it can deal with this requirement by incorporating a grouping-

like process: elements linked by illusory contours are grouped together and segmented from 

elements in other groups. Interference happens only between elements within a group. 

Another way to approach the importance of grouping for crowding is that it provides extra 

information that makes one condition inherently easier than another. Vernier acuity tasks are 

often thought to be mediated by the responses of one or more feature detector. Each feature 

detector might itself look like a vernier offset or might be similar to an orientation detector like 

a Gabor. Regardless, correct performance at the vernier task requires precise placement of the 

detector; a slightly misplaced detector can easily give the wrong answer, particularly when the 

vernier is flanked by other stimuli. Crowding induces location uncertainty. Any information that 

helps placing the detector – essentially any cue to the right position – would improve 

performance. Strong stimulus grouping could be one such cue (30). In this case too, it is crucial 

to understand how the brain groups visual elements across the entire visual field. 
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The LAMINART model links elements by illusory contours, which is a rather basic grouping 

mechanism (details in Suppl. Inf. A; SA7). It remains an open question whether more complex 

features are necessary to explain crowding/uncrowding such as an explicit computation of 

objects, e.g. squares, faces etc. For example, can the irregular shapes category be explained 

with simple contour integration? Likewise, it remains an open question whether face crowding 

can be explained without the explicit computation of faces.  

In the LAMINART model, the grouping and interference processes are separate. Alternatively, 

grouping and interference may be intimately linked. One possibility is that the groups 

correspond to optimal statistical representations. For example, elements may form a group 

when they can be well compressed by summary statistics. In this scenario, grouping is part of 

the summary statistics process itself. There are probably many other ways in which grouping 

may play a role. 

A major problem with the grouping approach is the lack of a well-defined, objective measure 

of grouping. If there is no objective measure, groups can be chosen ad hoc to explain 

experimental results, leading to circular explanations. As a first step towards an objective 

measure of grouping, subjective measures (i.e., asking observers to report what they feel 

belongs to a group) can complement studies. Such subjective ratings about perceptual groups 

have correlated well with psychophysical performance levels (10).  

Future Models 

As we have shown, none of the current models can fully explain (un)crowding. What would the 

model of the future look like? What components are crucial? 

First, as mentioned earlier, we can rule out local models because elements across large parts 

of the visual field influence perception of the target. 

Second, to explain the complex effects of spatial configurations in crowding, our results suggest 

that grouping-like, mid or higher-level aspects need to be incorporated in a model. However, 

the exact nature of this process is unknown. For example, it may or may not be that mid-level 

processing is sufficient. In addition, the incorporation of higher-level processes does not 

exclude the additional use of summary statistics and other lower level components. The 

grouping stage is difficult to study because of the seemingly infinite number of possible visual 
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configurations. We believe that new tools are needed to help navigate the huge search space 

effectively. For example, Van der Burg, Olivers, & Cass (31) have proposed a genetic algorithm 

to find configurational features important for crowding. 

Third, we cannot rule out feedforward models. Indeed, it is a mathematical fact that any 

recurrent model can be “unfolded” into a feed-forward network (32–34). However, these 

feedforward models are usually extremely large and computationally expensive. For this 

reason, we suggest that models with feedback connections are much more likely to be able to 

explain how complex spatial configurations influence target processing. For example, higher 

level grouping processing, such as computing the squares and grouping them together, may 

feed back to lower level processing of the target, i.e., the vernier. Support for this hypothesis 

comes from the finding that the deep neural networks could not produce uncrowding, 

presumably because high-level features cannot influence low-level processing. 

Fourth, the nature of interference remains unclear. One option is that interference occurs 

during complex spatial processing by an unknown mechanism. Another option is that the 

classic interference mechanisms operate after complex spatial processing is accomplished. For 

example, pooling may occur only for grouped elements. In the same line of reasoning, Chaney 

et al. (35), Van den Berg et al. (36) and Harrison & Bex (37) noted that adding a grouping stage 

to their interference mechanism may help explain a wider range of results. Combining complex 

spatial processing with good interference mechanisms may, therefore, allow for a happy 

marriage between interference- and grouping-based mechanisms leading to a truly unified 

model of crowding.  
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Conclusion 

The global stimulus configuration plays a crucial role in crowding, which cannot be captured by 

local models. For this reason, we propose that models of crowding need to include grouping 

like processes. While our results show that none of the current models lacking a grouping 

process can explain the global uncrowding phenomena, they may be good candidates for a 

potential second, interference stage.  

How are basic features of the visual field grouped to form objects? The most successful model 

we analyzed, the LAMINART variation, suggests that this is done by linking features together 

by illusory contours. Further work is needed to assess how far this mechanism can go and what 

additional components are necessary, such as summary statistics. For example, the groups may 

correspond to optimal statistical representations (elements that can easily be compressed 

using summary statistics would form a group).  

Most importantly, large scale, configurational effects are not restricted to visual crowding with 

vernier targets. Uncrowding occurs also for letters and Gabors (38), as well as in audition (22) 

and haptics (23). Similar effects are found in backward masking (39) and overlay masking 

(16,40). Hence, crowding is only a special case of contextual processing. Vision research has 

largely missed these aspects because of the use of well-controlled stimuli, which are usually 

presented in isolation or, as in crowding, with only a few nearby flankers. Our results suggest 

that in order to understand vision in general, a mid-level, contextual processing stage is 

inevitable.  
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Abstract 

In visual crowding, the perception of a target deteriorates in the presence of nearby flankers. 

Traditionally, target-flanker interactions have been considered as local, mostly deleterious, 

low-level and feature specific, occurring when information is pooled along the visual processing 

hierarchy. Recently, a vast literature of high-level effects in crowding (grouping effects and 

face-holistic crowding in particular) led to a completely new understanding of crowding, as a 

global, complex, and multi-level phenomenon that cannot be captured or explained by simple 

pooling models. It was recently argued that these high-level effects may still be captured by 

more sophisticated pooling models, such as the Texture Tiling model (TTM). Unlike simple 

pooling models, the high-dimensional pooling stage of the TTM preserves rich information 

about a crowded stimulus and, in principle, this information may be sufficient to drive high-

level and global aspects of crowding. In addition, it was proposed that grouping effects in 

crowding may be explained by post-perceptual target cueing. Here, we extensively tested the 

predictions of the TTM on the results of six different studies that highlighted high-level effects 

in crowding. Our results show that the TTM cannot explain any of these high-level effects, and 

that the behavior of the model is equivalent to a simple pooling model. In addition, we show 

that grouping effects in crowding cannot be predicted by post-perceptual factors such as target 

cueing. Taken together, these results reinforce once more the idea that complex target-flanker 

interactions determine crowding and that crowding occurs at multiple levels of the visual 

hierarchy. 

  



Chapter 2: Global and high-level effects in crowding cannot be predicted by either high-dimensional pooling or 
target cueing 

 

55 

 

Introduction 

In crowding, perception of a target strongly deteriorates when flanking elements are added 

(Pelli, 2008; Strasburger et al., 2011; Whitney & Levi, 2011). Classically, crowding was explained 

by pooling or bottleneck models where features of the target and nearby flankers are pooled 

within receptive fields of low-level neurons (Levi, 2008; Wilkinson et al., 1997). In line with this 

hypothesis, target-flanker interactions in crowding were characterized as (1) locally confined 

(Bouma’s law; Bouma, 1970; Toet & Levi, 1992), (2) deleterious (Parkes et al., 2001; Wilkinson 

et al., 1997) and (3) low-level feature specific (Andriessen & Bouma, 1976; Chung et al., 2001; 

Levi et al., 1994, 2002). 

Classic pooling models were seriously challenged by recent results in the last decade, and 

widely dismissed. First, elements beyond Bouma’s window were shown to modulate crowding 

strength (Harrison et al., 2013; Malania et al., 2007; Manassi et al., 2012; Vickery et al., 2009). 

Second, it was shown that grouping determines crowding: depending on the stimulus 

configuration, adding flankers can reduce or increase crowding strength (Livne & Sagi, 2007, 

2010; Malania et al., 2007; Saarela et al., 2010). Third, crowding was shown to occur at multiple 

levels along the visual hierarchy, e.g., for objects and faces (Kimchi & Pirkner, 2015; Louie et 

al., 2007; Sun & Balas, 2015). Taken together, target-flanker interactions in crowding are (1) 

global, (2) complex (i.e, crowding does not simply increase when more flankers are added), and 

(3) occur at multiple levels of the visual processing (reviews: Herzog et al., 2015, 2016; Herzog 

& Manassi, 2015; Manassi & Whitney, 2018). As a consequence, simple pooling models do not 

seem adequate to explain this large body of results (Doerig et al., 2019). 

In response to this line of evidence, Rosenholtz et al. (2019) recently proposed that high-

dimensional pooling models, e.g., the Texture Tiling Model (TTM; Rosenholtz, 2014; 

Rosenholtz, Huang, & Ehinger, 2012; Rosenholtz, Huang, Raj, et al., 2012), can explain all these 

effects. In a first stage, the TTM computes V1-like responses from low-level, multi-scale and 

oriented feature detectors. In a second stage, the model pools these features locally to 

generate a large set of second-order correlations (high-dimensional pooling). Contrary to 

simple pooling models, the high-dimensional pooling stage preserves rich information which 

supports a fine-grained representation of the visual input and may, in principle, explain 

complex crowding effects at a later post-perceptual stage. Still, the TTM shares the 
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characteristics of the simpler pooling models: pooling occurs only in spatially confined regions, 

is restricted to low-level processing, and occurs at a single processing level. Crucially, if the TTM 

can predict all of the high-level effects in the recent literature, it means that target-flanker 

interactions are not high-level. 

Here, we tested the TTM on a large body of evidence for high-level effects in crowding (Canas-

Bajo & Whitney, 2020; Farzin et al., 2009; Manassi et al., 2012, 2013, 2015, 2016). First, we 

show that, in contrast to what Rosenholtz et al. (2019) claimed, the TTM does not reproduce 

any of the grouping effects in Manassi et al. (2012, 2013, 2015, 2016; section “TTM & Grouping 

Effects”). Second, we show that the TTM has the same limitations as simple pooling models, 

strictly dependent on flanker pixel density and blind to high-level configurational aspects 

(subsection “TTM & prediction power”). Third, Rosenholtz et al. (2019) argued that the 

grouping effects in crowding (Manassi et al., 2012, 2013, 2015, 2016) arise because different 

flanker configurations cue the target location in different ways and, thus, may modulate 

crowding strength in a later post-perceptual stage. We show that cueing plays no real role in 

Manassi et al. (2012, 2013, 2015, 2016; subsection “Grouping effects and target cueing”). 

Fourth, we show that holistic face processing can occur in peripheral vision despite low-level 

crowding, and that the TTM cannot reproduce this result because low-level information is lost 

irretrievably at the pooling stage of the model (section “TTM & Face Crowding”, single face 

discrimination task). Fifth, we show that the TTM cannot account for crowding between holistic 

representations of faces (Farzin et al., 2009; section “TTM & Face Crowding”, gender face 

discrimination task). 
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General Materials and Methods 

Mongrel generation 

To assess TTM performance, we generated mongrels for different stimuli, by using the code 

shared by Rosenholtz et al. (2019; https://dspace.mit.edu/handle/1721.1/121152). The TTM 

takes an image as input and outputs several images rather than a performance measure, such 

as accuracy. The outputted images, called mongrels, share the same pooled statistics as the 

original input image. The idea is that mongrels, when viewed foveally and for unlimited time, 

mimic the peripheral perception of the input image (Balas et al., 2009; Rosenholtz et al., 2019). 

The TTM requires to set a radius for the fovea. Rosenholtz et al. (2019) suggested a value 

between 16 and 32 pixels. The latter value is what was used in Rosenholtz et al. (2019). As in 

preliminary pilots a value of 32 did not yield sufficiently strong crowding, we used a value of 

16. In order to control for ceiling effects, we repeated some experiments with a radius of 32. 

Stimulus images were taken from Manassi et al., (2012, 2013, 2015, 2016), Canas-Bajo & 

Whitney (2020), and Farzin et al. (2009). The layout of the stimuli was identical to the original 

publications. Every pixel was 1/30 degrees of the stimulus used in the original experiment (i.e., 

the resolution was 30 pixels per degree). In the original experiment of Manassi et al. (2012, 

2015), stimuli were displayed on oscilloscopes. Here, we adapted our stimuli to a LCD 

presentation by having white lines on a black background, as in Manassi et al. (2013, 2016). All 

generated mongrels are available at 

https://github.com/albornet/TTM_Verniers_Faces_Mongrels. 

Ethics 

Participants gave oral consent before the experiment, which was conducted in accordance 

with the Declaration of Helsinki except for preregistration (World Medical Organization, 2013) 

and was approved by the local ethics committee (Commission éthique du Canton de Vaud, 

protocol number: 164/14, title: Aspects fondamentaux de la reconnaissance des objets 

protocole général). 

  

https://dspace.mit.edu/handle/1721.1/121152
https://github.com/albornet/TTM_Verniers_Faces_Mongrels
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TTM & Grouping Effects  

Methods 

Stimuli 

The stimuli that we used to generate the mongrels consisted of a vernier target alone or 

surrounded by various flanker configurations (Figure 1). The vernier target consisted of two 

vertical 40 arcmin lines separated by a vertical gap of 4 arcmin. The vernier target was offset 

either to the left or to the right. The offset size varied according to the eccentricity at which 

the vernier target was presented (see next paragraph). 
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Figure 1. Stimuli used to validate the TTM. In the original experiments, observers were asked to discriminate the 

offset of a vernier target presented in the right hemifield and in the periphery (here shown in the center of each 

image), while looking at a fixation dot. Different flanker configurations were presented across the studies: 

“Short/Same/Long lines” and “Boxes” in Manassi et al. (2012); “Completion” and “Butterflies” in Manassi et al. 

(2015); “Shapes” in Manassi et al. (2013); “Patterns” in Manassi et al. (2016). In the original experiments as well 

as in the TTM validations, the target eccentricity was 3.88° in the “Lines”, “Boxes”, “Completion” and “Butterflies” 

experiments, and 9° in the “Shapes” and “Patterns” experiments. 

Sixteen flanker configurations were taken from Manassi et al. (2012; Figure 1, 

“Short/Same/Long lines” and “Boxes”) and eight configurations from Manassi et al. (2015; 

Figure 1, “Completion” and  “Butterflies”). For these conditions, each stimulus configuration 

was presented to the TTM with a vernier target eccentricity of 3.88° and a vernier offset size 

of 8 arcmin. Eight configurations were taken from Manassi et al. (2013; Figure 1, “Shapes”) and 

four configurations from Manassi et al. (2016; Figure 1, “Patterns”). For these conditions, each 

stimulus configuration was presented to the model with a vernier target eccentricity of 9° and 

a vernier offset size of 14 arcmin. 

In all configurations, except the ones in the “Patterns” experiment, two vertical lines (called 

the “pointers”) were placed above and below the vernier target. In the original experiments, 

the pointers were used to reduce target location uncertainty (Manassi et al., 2012, 2013, 

2015). For these configurations, we also generated mongrels using stimuli in which the pointers 

were removed. In total, 72 different flanker configurations were used (including the vernier 

alone conditions, at both eccentricities, with and without pointers). For each configuration, 30 

different mongrels were generated (split equally between left and right vernier offset), for a 

total of 2160 unique mongrel samples shown to every participant. 

Vernier offset discrimination task 

Crowding strength in the TTM was quantified by performing a target discrimination task in free-

viewing conditions, using the mongrels. We presented the generated mongrel images to 

observers and asked them to discriminate between left and right vernier offset (2AFC task). 

The mongrels were shown in a random order (mixed conditions). 

In order to familiarize with the task, prior to the experiment, observers were shown 10 

examples of the original stimulus images in which only the target was present, followed by 10 

original stimulus images in which the target was embedded in different flanker configurations, 
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and finally 10 mongrels. In all these examples, the vernier target (or the part of the mongrel 

that corresponded to the vernier target) was highlighted and labelled.  

13 observers performed this task (6 males, 7 females, 31.8 ± 2.9 years old). For each flanker 

configuration, we measured the discrimination performance (error rate = 1-accuracy) and 

computed the corresponding standard error of the mean across observers. Human 

performance in the vernier offset discrimination task was compared to the human data coming 

from the corresponding original crowding experiments (Figures 2 to 6). 

Vernier offset matching algorithm 

To avoid biases introduced by observers using different strategies to perform the mongrel 

discrimination tasks, we also performed mongrel vernier offset discrimination using a template 

matching algorithm. The algorithm searched for a target in the mongrels by sliding left- and 

right-sided vernier target templates over the whole image. For each location in the mongrel, a 

match value was defined by cross-corelating the template with the part of the image that lay 

under the template. Each match value was weighted by a function that decreased with the 

distance of the location of the template to the original position of the target, to help the 

algorithm focus on the most likely location of the vernier in the mongrel (Eq. 1). 

𝑀𝑠(𝑖, 𝑗) = e−(D(i,j) σ⁄ )2 ∙ ∑ 𝑇𝑘,𝑙
𝑠 ∙ 𝐼𝑖+𝑘,𝑗+𝑙

𝑘,𝑙
     (1) 

𝑀𝑠(𝑖, 𝑗) was the weighted match value of the s-sided vernier template at location (i, j), 𝑇𝑘,𝑙
𝑠  was 

the value of the s-sided vernier template at location (k, l) in the template coordinates, 𝐼 was 

the mongrel array. 𝐷(𝑖, 𝑗) was the distance in pixels between the location of the template and 

the original target position and σ was the width of the weighting function in pixels. σ was set 

to 50 pixels. For each mongrel, the algorithm decided for a left or a right vernier as the side of 

the template that obtained the highest weighted match value. 

Results 

Lines experiment 

In Manassi et al. (2012), crowding was strong when a vernier target was flanked on each side 

by two short lines or by two lines of the same length as the vernier, but weak when flanked by 
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two longer lines. When increasing the number of flankers, crowding decreased for short 

flankers, stayed constant with same-length flankers, and slightly decreased with long flankers 

(Figure 2, left). Hence, adding flankers can lead to non-monotonic effects in crowding strength, 

contrary to what is predicted by simple pooling models.  

As with the simple pooling models, in both TTM validation tasks, crowding strength increased 

when increasing the number or the size of the flankers (Figure 2, center and right). The TTM 

performance differs from human data, in which adding flankers reduced crowding strength in 

certain conditions. 

 

Figure 2. Lines. Left. Data from Manassi et al. (2012). Offset discrimination thresholds were determined for vernier 

targets presented in the periphery at 4 degrees of eccentricity. Center. TTM validation in which observers 

discriminate between left and right offset verniers in mongrel images. Right. TTM validation with a template 

matching algorithm using the same mongrels as in the human experiment. Green dashed lines indicate vernier 

alone performance. Red lines indicate chance level (50% accuracy). Note that the y-axis labels are different. 

Completion experiment 

In Manassi et al. (2015), crowding was strong when a vernier was flanked by 16 same-length 

straight verniers but decreased when a same-length straight vernier mask was added at target 

location (Figure 3, left, straight vs comp16). Crowding was strong for control conditions in 

which a longer mask was used or using a same-length mask but having only 2 vernier flankers 

(Figure 3, left, comp16b & comp2). Hence, adding a single element can drastically change 

crowding strength, which cannot be explained by simple pooling models. 

In both TTM validation tasks, crowding strength decreased when adding a same-length vernier 

mask at target location, as in the human data (Figure 3, center & right, straight vs comp16). 
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However, crowding strength also decreased when using a longer mask or having only 2 vernier 

flankers (Figure 3, center & right, straight vs comp16b & comp2), and gradually increased when 

adding more flankers (Suppl. Inf. B, SB1), showing that the configuration played no role. 

 

Figure 3. Completion. Left. Data from Manassi et al. (2015). Offset discrimination thresholds were determined for 

vernier targets presented in the periphery at 4 degrees of eccentricity. Center. TTM validation in which observers 

discriminate between left and right offset verniers in mongrel images. Right. TTM validation with a template 

matching algorithm using the same mongrels as in the human experiment. Note that the algorithm made 0% 

errors for in the comp2 condition (the data is not missing). Green dashed lines indicate vernier alone performance. 

Red lines indicate chance level (50% accuracy). Note that the y-axis labels are different. 

Boxes & crosses experiment 

In Manassi et al. (2012), crowding was strong when the vernier target was flanked by 2 same-

length flankers (Figure 4, left, bars). Crowding decreased when adding flankers to form boxes 

or boxes containing a cross (Figure 2, left, boxes and boxescrosses), but stayed high when the 

added flankers were not embedded in box shapes (Figure 2 left, crosses). These results were 

taken as evidence that flanker configuration modulates crowding strength. 

The TTM failed to reproduce these results. In both TTM validation tasks, weak crowding was 

observed for the bars, and stronger crowding was observed when adding more flankers (Figure 

2, center & right, bars vs boxes & crosses & boxescrosses), regardless of the configurations. 
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Figure 4. Boxes and crosses. Left. Data from Manassi et al. (2012). Offset discrimination thresholds were 

determined for vernier targets presented in the periphery at 4 degrees of eccentricity. Center. TTM validation in 

which observers discriminate between left and right offset verniers in mongrel images. Right. TTM validation with 

a template matching algorithm using the same mongrels as in the human experiment. Green dashed lines indicate 

vernier alone performance. Red lines indicate chance level (50% accuracy). Note the different y-axis labels. 

Shapes experiment 

In Manassi et al. (2013), crowding was strong when the vernier target was flanked by a single 

square (Figure 5, left, 1S). Crowding decreased when the vernier was flanked by three 

additional squares on each side but remained strong when the added flankers were diamonds 

(Figure 5, left, 7S vs 7D1S). Crowding was strong in control conditions (Figure 5, left, 7L & 6L1S). 

The results showed that high-level shape processing can determine low-level vernier acuity. 

The TTM did not reproduce this set of results. In both TTM validation tasks, crowding was 

strong for all tested conditions, independently of shape configuration (Figure 5, center & right). 

A similar pattern was found using diamonds instead of squares (Suppl. Inf. B, SB2). 

 

Figure 5. Shapes. Left. Data from Manassi et al. (2013). Offset discrimination thresholds were determined for 

vernier targets presented in the periphery at 9 degrees of eccentricity. Center. TTM validation in which observers 
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discriminate between left and right offset verniers in mongrel images. Right. TTM validation with a template 

matching algorithm using the same mongrels as in the human experiment. Green dashed lines indicate vernier 

alone performance. Red lines indicate chance level (50% accuracy). Note that the y-axis labels are different. 

Pattern experiment 

In Manassi et al. (2016), crowding was strong when the vernier was embedded in a single 

square (Figure 6, left, 1S). Crowding was still strong when the vernier was embedded in an 

array of alternating squares and stars, but strongly decreased when the vernier was embedded 

in three identical rows of alternating squares and stars (Figure 6, left, A vs B). Crowding was 

strong in both control conditions (Figure 6, left, C & D). These results showed that the high-

level spatial configurations of elements across large parts of the visual field, well beyond the 

range attributed to local pooling (Bouma, 1970), affect vernier discrimination performance. 

Again, the TTM failed to reproduce these results. In both TTM validation tasks, crowding was 

strong for all tested conditions (Figure 6, center & right). Note that, to avoid ceiling effects in 

which crowding is too high to show differences between conditions, we also generated 

mongrels with a larger foveal radius (32 instead of 16 pixels) for all conditions in the Shapes 

and Patterns experiments (i.e., the ones in Figures 5 & 6, as well as Suppl. Inf. B, SB2). We also 

computed the TTM performance for these mongrels, using the template matching algorithm. 

We obtained lower crowding levels, but a similar qualitative behavior was observed (Suppl. Inf. 

B, SB3). 

 

Figure 6: Patterns. Left. Data from Manassi et al. (2016). Offset discrimination thresholds were determined for 

vernier targets presented in the periphery at 9 degrees of eccentricity. Center. TTM validation in which observers 
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discriminate between left and right offset verniers in mongrel images. Right. TTM validation with a template 

matching algorithm using the same mongrels as in the human experiment. Green dashed lines indicate vernier 

alone performance. Red lines indicate chance level (50% accuracy). Note that the y-axis labels are different. 

Taken together, the results of the TTM matched none of the results of Manassi et al. (2012, 

2013, 2015, 2016), which showed that: (1) increasing the number of flankers led to non-

monotonic effects (Figure 2); (2) adding a single element drastically changed crowding 

behavior (Figure 3; completion effect); (3) flanker configuration determined crowding (Figure 

4); (4) high-level processing determined low-level processing in crowding (Figure 5); (5) adding 

flankers beyond Bouma’s window considerably affected crowding strength (Figure 6). None of 

these effects were reproduced by the TTM. 

TTM & prediction power 

As a global measure of the explanatory power of the TTM for each condition of Manassi et al. 

(2012, 2013, 2015, 2016), we plotted the error rates (%) in the mongrel vernier offset 

discrimination task as a function of the threshold elevation in the original crowding 

experiments (Figure 7A). The measured correlation was not significantly different from zero 

(r(34) = -0.044; p-value = 0.799), indicating that the TTM explains none of the reported results. 

A similar correlation was found using the template matching algorithm (Suppl. Inf. B, SB5). 

 

Figure 7. A. TTM performance in the mongrel vernier offset discrimination task showed no correlation (r=-0.044, 

p=0.799, BF01=4.672) with the original data from Manassi et al. (2012, 2013, 2015, 2016). B. TTM performance as 

a function of the sum of the flanker pixels in the corresponding conditions. Each dot indicates a flanking condition 

in Figure 1. The red line indicates chance level performance. For illustrative reasons, we plotted all tested 

conditions in a unique graph. Separate plots for all experiments are shown in the supplementary information 

(Suppl. Inf., SB6). Fitting the data with a psychometric function (see Eq. 3 in Suppl. Inf. B, SB11), we found a strong 

correlation between the TTM and the fitted performance (r(34)=0.796, p<0.001, BF10>106). 
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Second, to assess the TTM behavior, we plotted its performance for each condition as a 

function of the flanker “density” in the corresponding original stimulus images (Figure 7B). To 

compute the flanker density, we counted the number of flanker pixels around the target. Each 

pixel contribution was weighted by a function that decreased with the distance to the target, 

mimicking Bouma’s law (Bouma, 1970). For each condition, the pixel density was defined as 

the sum of all weighted pixel contributions belonging to the flanker configuration (all details 

about the methods are given in Suppl. Inf. B, SB11). The error rate increased with flanker 

density (Figure 7B). Fitting the data with a psychometric function (see Eq. 3 in Suppl. Inf. B, 

SB11), we found a strong correlation between the TTM and the fitted performance 

(r(34)=0.796, p<0.001, BF10>106). Crucially, this is the exact result that would be expected using 

a simple pooling model, suggesting that the TTM is blind to complex stimulus configuration and 

grouping cues, and simply relies on pixel density. 

Grouping effects & target cueing 

Rosenholtz et al. (2019) argued that the results in Manassi et al. (2012, 2013, 2015, 2016) do 

not necessarily imply the existence of grouping processes in crowding. Instead, it was proposed 

that target cueing plays a crucial role. Different stimulus configurations may cue the target 

location of the target in different ways, thus reducing target location uncertainty, leading to 

differences in crowding strength. Importantly, this explanation is entirely based on post-

perceptual decision-making mechanisms. This is not a viable explanation for four main reasons. 

First, cueing does not explain the results of Manassi et al. (2012, 2013, 2015, 2016). In these 

experiments, some flanker conditions strongly cue the target location but still produce strong 

crowding. In each comparison in Figure 8, the vernier target location is more cued by the 

flankers on the left side than on the right side. According to the cueing argument, crowding 

should be weaker on the left side compared to the right side. However, the human data show 

the exact opposite trend. For example, on the first line of the left panel in Figure 8, in the 

condition on the right (6S1D), the target location is clearly cued by the central diamond. There 

is no ambiguity at all about where the target is: it is inside the central diamond. In the condition 

on the left (7S), the line of squares casts more doubts on the location of the target. 

Nevertheless, crowding is 7.5 times larger on the right than on the left (Manassi et al., 2013). 
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Figure 8. Right column, for both panels. Conditions in which the target location is weakly cued by the flanker 

configuration. Left Column, for both panels. Conditions in which the target location is strongly cued by the flanker 

configuration. If cueing had a strong impact on target discrimination performance, crowding would decrease from 

left to right in all comparisons. However, crowding strength either increases (left panel) or stays constant (right 

panel), while target cueing always increases. All conditions are taken from Manassi et al. (2012, 2013, 2015, 2016). 

Second, in Manassi et al. (2012, 2013, 2015), two vertical lines were placed above and below 

the vernier target as “pointers”, in order to clearly cue the target location in all conditions. As 

reported in Manassi et al. (2012, 2013, 2015), the aim was to minimize the target location 

uncertainty. Rosenholtz et al. (2019) argued that these pointers may instead increase crowding 

by creating multiple offsets among vernier, flankers and pointers lines. However, in Manassi et 

al. (2012, 2013, 2015), the pointers were actually further from the vernier than reported by 

Rosenholtz et al. (2019), making this offset confusion argument unlikely (see Figure 17 in 

Rosenholtz et al. (2019) vs Suppl. Inf. B, SB7). Moreover, we measured the performance of the 

TTM model with all conditions, with or without pointers. The model did not show any 

significant increase in crowding strength with the pointers (Suppl. Inf. B, SB8). 

Third, the effects measured in Manassi et al. (2012, 2013, 2015, 2016) correspond to changes 

in threshold elevation up to 10 times the unflanked threshold. The strength of cueing effects 
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in the literature has been consistently reported as small, with an average of 10% to 20% of 

difference in performance (Nazir, 1992; Scolari et al., 2007; Wilkinson et al., 1997; Yeshurun & 

Rashal, 2010). Thus, cueing does not seem even remotely sufficient to be considered as a viable 

explanation for global effects in crowding.  

Fourth, a large part of these grouping effects in visual crowding were also found in foveal vision 

(Malania et al., 2007; Sayim et al., 2008, 2010; Waugh & Formankiewicz, 2020), where 

uncertainty is greatly reduced. Rosenholtz et al. (2019) argued that evidence for grouping 

effects in foveal vision casts doubts on whether these results are due to crowding. However, 

old and recent literature has shown evidence for crowding in foveal vision (Coates et al., 2013, 

2018; Danilova & Bondarko, 2007; Flom et al., 1963; Lev et al., 2014; Lev & Polat, 2015; Sayim, 

Greenwood, et al., 2014; Siderov et al., 2013; Westheimer & Hauske, 1975), as well as grouping 

processes acting in foveal (Banks & White, 1984; Bock et al., 1993; Tannazzo et al., 2014) and 

peripheral vision (Banks & Prinzmetal, 1976; Banks & White, 1984; Livne & Sagi, 2007; 

Tannazzo et al., 2014; Wolford & Chambers, 1983). In other words, showing evidence for 

grouping effects in foveal vision does not invalidate any claim about grouping effects in 

crowding, but instead strengthens them. 

To sum up, post-perceptual cueing cannot account for the effects measured in Manassi et al. 

(2012, 2013, 2015, 2016). These effects must hence be yielded by more complex interactions 

than what was previously thought to happen in visual crowding, such as contextual grouping 

(Malania et al., 2007; Manassi et al., 2012; Saarela et al., 2009). 
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TTM & Face Crowding 

In the previous section, we showed that the TTM cannot explain the grouping effects found in 

Manassi et al. (2012, 2013, 2015, 2016) and that these effects cannot be explained by post-

perceptual cueing. In this section, we tested the TTM with holistic face perception. Faces are 

considered as an invaluable tool to probe high-level visual processing, as they are analyzed 

holistically rather than as a set of separate features (Sergent, 1984). Mooney faces (Mooney, 

1957), in particular, are the gold standard stimulus to test for holistic processing. Mooney faces 

(Fig. 9) are two-tone shadow images that are readily perceived as faces despite the lack of 

bottom-up processes that can segment or parse the image into features like an eye or mouth 

(Cavanagh, 1991; Fan et al., 2020; Grützner et al., 2010). That is, to see the mouth, eye, nose, 

eye separation, or other features, one must first recognize the stimulus as a face. This kind of 

holistic processing is necessary to recognize Mooney faces, and it has been operationalized in 

the literature by the inversion effect (McKone, 2004; Taubert et al., 2011): upright faces are 

recognized more easily than inverted ones (Farah et al., 1995; Kanwisher et al., 1998; Latinus 

& Taylor, 2005; Rossion, 2008; Sergent, 1984; Yin, 1969). The inversion effect is especially 

strong for Mooney faces (Canas-Bajo & Whitney, 2020; McKone, 2004; Schwiedrzik et al., 

2018). Here, we tested the TTM with Mooney faces and found that it cannot predict two main 

results in holistic processing in crowding: (a) crowded object information is not lost at early 

stages of visual processing (inversion effect in a single face discrimination task; Bayle et al., 

2011; Boucart et al., 2016; McKone, 2004) and (b) crowding occurs at high-level stages of visual 

processing between faces (crowding between holistic face representations; Farzin et al., 2009; 

Louie et al., 2007; Manassi & Whitney, 2018; Sun & Balas, 2015). 

Methods 

Single face discrimination task 

We reproduced the single face discrimination task of Canas-Bajo & Whitney (2020). Observers 

were shown two images, one on each side of the visual field (Figure 9). Both images subtended 

a visual angle of 6° by 4.2° and were presented at the same eccentricity on both sides (6°, 10°, 

14° or 18°). One image was always a face, whereas the other one was always a scrambled 

version of the same face (Schwiedrzik et al., 2018). The face could either be upright or inverted. 

Observers’ task was to discriminate which of the two images was a face by pressing the left or 
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right arrow on a keyboard (2AFC), while fixating a cross in the center of the screen. The position 

on which the face appeared was randomized on each trial (either a face on the right and the 

corresponding scrambled face on the left or vice versa). There was no time constraint for giving 

a response. The distance to the screen was 64 cm. 

 

Figure 9. Single face discrimination task. Observers were asked to discriminate which of the two images was a 

face (left or right, 2AFC), by pressing the left or right arrow, while fixating the central cross. Across the experiment, 

the face could be either upright or inverted. In these examples, an upright face is presented on the left side (left 

panel), and an inverted face is presented on the right side (right panel). 

There were 5 different faces, for a total of 20 different stimuli per eccentricity (2 sides, 2 face 

orientations, 5 different faces). Every stimulus was shown 10 times for a total of 200 trials per 

eccentricity. The experiment was run in blocks of fixed eccentricities. In each block, the stimuli 

were shown in a random left/right order. For each condition (upright vs inverted face) and 

eccentricity, we computed discrimination performance (error rate = 1-accuracy) and the 

corresponding standard error of the mean, computed over human observers (Figure 11A). 

In order to validate the TTM, we tested mongrel images with the same single face 

discrimination task as in Canas-Bajo & Whitney (2020). For each stimulus, 10 different 

mongrels were generated using the TTM. Face discrimination performance in mongrel images 

was quantified by performing the single face discrimination task in free-viewing conditions. The 

experiment was run by blocks of eccentricity, for a total of 200 mongrels shown per 

eccentricity. Seven observers (2 males, 5 females, 25.4 ± 1.2 years old) performed the task. For 

each condition (upright vs inverted face) and eccentricity, we computed discrimination 

performance (accuracy [%]) and the corresponding standard error of the mean computed 

across observers. Performance in the single face discrimination task was then compared to the 

mongrel validation task (Figure 11). 
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Gender face discrimination task 

Mongrel images were generated, following Experiment 6 from Farzin et al. (2009), which 

measured crowding induced by Mooney face flankers in a gender face discrimination task. 

Mooney faces were taken from Schwiedrzik et al. (2018). The size of the faces was the same as 

in Farzin et al. (2009), i.e., 1.53° by 2.48°. In these stimuli, the target face, which was always 

presented upright, could either be alone or surrounded by six other randomly selected Mooney 

faces (Figure 10). Flankers could either by upright or inverted. There were three different 

flanking conditions (target alone, upright flankers, inverted flankers) and four different target 

eccentricities (3°, 4.5°, 6° and 10°). Compared to the original experiment, we had an additional 

eccentricity (4.5°) in order to avoid floor and ceiling effects in the mongrel discrimination task. 

For each condition and eccentricity, 20 different Mooney faces were used as target (split 

equally between males and females), for a total of 240 original stimuli (20 faces x 3 flanking 

conditions x 4 eccentricities). 10 different mongrels were generated for each stimulus, for a 

total of 2400 unique samples shown to every participant. Seven observers (2 males, 5 females, 

25.4 ± 1.2 years old) performed the task. 

 

Figure 10. Examples of stimuli used in the face crowding task. There were three main conditions (upright target 

alone, target with upright flankers or target inverted flankers) presented at four different eccentricities. 

Crowding strength in the TTM was quantified by performing a gender discrimination task in 

free-viewing conditions. We presented the generated mongrel images and asked observers to 
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indicate the gender of the target face (2AFC task). Mongrels were shown in a randomized 

order. Prior to the experiment, observers familiarized with the task as in the mongrel vernier 

offset discrimination task described above. For each condition and eccentricity, we computed 

the discrimination performance (accuracy [%]) and the corresponding standard error of the 

mean computed across observers. Performance in the mongrel gender crowding 

discrimination task was then compared to the behavioural data of Farzin et al. (2009; Figure 

12). 

In addition to the behavioral experiment, we measured the gender discrimination performance 

with a template matching algorithm. The algorithm matched original target face templates to 

all mongrel images. As for the Vernier offset matching algorithm, a face target was searched in 

the mongrels by sliding target face templates over the image (see Eq. 1 for the detailed 

computation). For each mongrel, the algorithm outputted the gender of the target face 

template that had the best match. Accuracy was computed as the percentage of correct 

answers. The performance of the algorithm was also compared to the data of Farzin et al. 

(2009; Suppl. Inf. B, SB10). 

Results 

Single face discrimination task 

The results of the single face discrimination task are plotted in terms of accuracy (Figure 11A). 

Data were analyzed using a linear mixed effect model, with eccentricity and face orientation 

as the two fixed effects and individual subjects as a random intercept. The two fixed effects 

showed no significant interaction (χ2(1)=0.062, p=0.803). The main effect of face orientation 

was significant (χ2(1)=30.99, p<0.001), but not the effect of eccentricity (χ2(1)=0.755, 

p=0.385). The difference in effect size between the full model and the reduced model, 

excluding the effect of eccentricity, was 0.4% (full model: rm
2=0.243, rc

2=0.696, reduced model: 

rm
2=0.239, rc

2=0.692). 
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Figure 11. TTM & single Mooney face recognition. A. Face discrimination task. Observers were asked to 

discriminate an upright/inverted face from a scrambled face at all tested eccentricities. Accuracy remained on a 

constant high level for all eccentricities. Crucially, accuracy was higher for upright than for inverted faces. B. 

Mongrel face discrimination task. Accuracy decreased with increasing eccentricity, contrary to the behavioral 

results. Using a linear mixed effect model, no significant difference between the upright and inverted face 

conditions was observed (i.e., no significant effect of face orientation on model performance). Shaded regions 

indicate the standard error of the mean. 

Observers were able to discriminate an upright/inverted face from a scrambled face at all 

tested eccentricities (Figure 11A). Crucially, observers’ accuracy was higher for upright than 

inverted faces (Figure 11A, upright vs inverted), indicating a differential processing of inverted 

(low-level) and upright (holistic) faces, even at 18 deg eccentricity. The results suggest that face 

representations can survive any putative within-face low-level crowding, allowing holistic 

recognition of Mooney faces in the periphery. 

Next, we tested whether the TTM could predict the inversion effect in individual Mooney faces 

(Figure 11B). As before, we validated the mongrels with the single face discrimination task. 

Observers were shown the mongrels of the original stimuli and were asked to tell which 

mongrel image was a face (free unconstrained viewing; see Methods for details). Data were 

analysed using a linear mixed effect model, with eccentricity and face orientation as the two 

fixed effects and individual subjects as a random intercept. The two fixed effects showed no 

significant interaction (χ2(1)=0.647, p=0.421). The main effect of eccentricity was significant 

(χ2(1)=88.779, p<0.001), but the effect of face orientation was not (χ2(1)=0.494, p=0.482). The 

difference in effect size between the full model, including both effects and the reduced model 

excluding the effect of face orientation, was only 0.2% (full model: rm
2=0.798, rc

2=0.802, 

reduced model: rm
2=0.796, rc

2=0.800). 
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These results show that the face discrimination performance in the TTM decreased with 

increasing eccentricity, contrary to the behavioral results (Figure 11, A vs B). More importantly, 

there was no difference between the upright and inverted mongrel face conditions (Figure 

11B, orange vs. blue). The lack of inversion effect shows that the TTM treats upright and 

inverted faces as the same class of stimuli and, hence, it lacks any kind of holistic processing. 

We ran another version of the mongrel validation task in which all mongrels generated with 

images comprising an inverted face were flipped upside-down. Hence, in this control task, 

observers were only shown upright mongrel faces, although they were processed either as 

upright or inverted faces in the TTM. This was done to isolate inversion effects in humans from 

inversion effects in the TTM as much as possible. The results were comparable (Suppl. Inf. B, 

SB9).  

Taken together, the results show that holistic face recognition occurs also in peripheral vision, 

replicating and extending previous reports (Bayle et al., 2011; Boucart et al., 2016; Canas-Bajo 

& Whitney, 2020; McKone, 2004). Hence, crowded face-specific information is not lost at the 

early stages of visual processing but can be easily retrieved (Figure 11A). The TTM cannot 

explain this class of results. The TTM causes an irretrievable loss of face-specific information: 

discrimination performance drops with eccentricity and the inversion effect is eliminated 

(Figure 11B). 

Gender face discrimination task 

In Farzin et al. (2009), observers were asked to discriminate the gender of an upright face 

presented in the periphery. Accuracy decreased with increasing eccentricity (Figure 12A, black 

line). This decline in performance for isolated faces is an unsurprising consequence of the small 

size of the faces and the difficulty of the gender discrimination task. More importantly, when 

the same upright face was flanked by inverted or upright flankers, accuracy decreased, a 

standard hallmark of crowding. Crucially, upright flankers crowded more compared to inverted 

ones (blue line falls below orange line). This is an inversion effect in crowding: it shows that 

stimuli seen as faces crowd each other. When the same flanker stimuli are not seen as faces 

(i.e., are inverted), they do not crowd. Crowding is therefore gated by “similarity”, and the 

“similarity” must be at the level of holistic face representations. In the original publication (see 

Experiment 6 in Farzin et al., 2009), ANOVA resulted in a significant main effect of eccentricity 
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and flanker orientation (paired-samples 2-tailed t-tests revealed that upright face flankers 

impaired performance more than inverted flankers at 3° and 6° of eccentricity). Here we tested 

whether the TTM makes a similar prediction. 

We computed the TTM performance for this experiment in a mongrel gender discrimination 

task (see Methods for details, gender face discrimination task). The results (Figure 12B) were 

analyzed using a linear mixed effect model, with eccentricity and face orientation (upright vs. 

inverted) as fixed effects and individual observers as a random intercept. The two fixed effects 

showed no significant interaction (χ2(1)=0.479, p=0.489). The main effect of eccentricity was 

significant (χ2(1)=121.11, p<0.001), but the effect of face orientation was not (χ2(1)=0.620, 

p=0.431). The difference in effect size between the full model, including both effects 

(eccentricity and face orientation) and the reduced model excluding the effect of face 

orientation, was only 0.2% (full model: rm
2=0.691, rc

2=0.691, reduced model: rm
2=0.689, 

rc
2=0.689). 

 

Figure 12. TTM & crowding of Mooney faces. A. Face crowding task, data from Farzin et al. (2009). Target 

discrimination performance decreased when eccentricity increased. When the target face was flanked by inverted 

faces, crowding increased with increasing eccentricity (orange). When the target was flanked by upright faces, 

crowding increased even more with eccentricity (blue). Shaded regions indicate the standard error of the mean. 

Stars indicate a significant difference in crowding strength between the upright and inverted flanker face 

conditions (paired student t-test, 2-tails). B. Mongrel face crowding task. Accuracy decreased with eccentricity. 

When analysing the results using a linear mixed effect model, no effect of flanker face orientation was exposed. 

Shaded regions indicate the standard error of the mean. 

As in Farzin et al. (2009; Figure 12A), TTM performance decreased with eccentricity (Figure 

12B). However, unlike Farzin, et al (2009), the linear mixed effect model revealed no significant 
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overall effect of flanker orientation, and no interaction between eccentricity and target 

orientation. Simply put, the TTM does not predict a systematic difference in crowding as a 

function of the flanker orientation. And, when TTM does predict a trending difference, it is 

often in a direction opposite that in the empirical data (blue-above-orange in Fig. 12B 

compared to orange-above-blue in Fig. 12A). These results show that the TTM can predict a 

general increase of crowding with eccentricity (i.e., low-level crowding) but it fails to predict 

face-selective or holistic effects in crowding. 

Taken together, the results depicted in Figure 11 and 12 show that the TTM is not able to 

predict peripheral face recognition or the effects of high-level face processing in crowding. It 

fails to predict crowding of single faces (Figure 11) and multiple faces (Figure 12). In fact, target 

information in the TTM is irretrievably lost at a low-level pooling stage and crowding occurs 

only between low-level features (Figure 7). In this light, it is unsurprising that the TTM fails to 

explain a broad array of findings in the peripheral face recognition literature (Boucart et al., 

2016; Farzin et al., 2009; Kovács et al., 2017; Kreichman et al., 2020). 
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Figure 13. TTM mongrel examples used in the single face and gender face discrimination tasks. The stimuli (TTM 

input) are highlighted in red. To give a representative sample of the TTM outputs for each example, we show 

mongrels for different eccentricities. Note that we cropped the mongrels for ease of comparison. All mongrels 

can be found at https://github.com/albornet/TTM_Verniers_Faces_Mongrels.  



Chapter 2: Global and high-level effects in crowding cannot be predicted by either high-dimensional pooling or 
target cueing 

 

78 

 

Discussion 

Classic models describe crowding as a relatively simple, local and low-level phenomenon 

(Greenwood et al., 2009; Levi et al., 2002; Nandy & Tjan, 2012; Parkes et al., 2001; Van den 

Berg et al., 2010; Wilkinson et al., 1997). Recent studies, however, provided clear-cut 

psychophysical evidence that crowding is in fact more complex than previously thought, 

involving global interactions and occurring at multiple stages of visual processing (Farzin et al., 

2009; Manassi et al., 2012, 2013, 2015, 2016; Manassi & Whitney, 2018; Saarela et al., 2009, 

2010; Whitney & Levi, 2011). Against this new view of crowding, Rosenholtz et al. (2019) 

argued that (1) high-dimensional pooling is sufficient to explain the new results and (2) target 

cueing plays a crucial role in these effects. Here, we quantitatively tested these claims on a 

large array of experimental data and showed that (1) TTM fails to account for human crowding 

performance and (2) target cueing does not play a role. In the following, we will describe 

implications from our two sets of data on grouping effects and face recognition. 

TTM & grouping effects 

Using a mongrel offset discrimination task, we showed that the TTM did not reproduce any of 

the results of Manassi et al. (2012, 2013, 2015, 2016), in which: (1) increasing the number of 

flankers sometimes reduces crowding strength (Figure 2); (2) adding a single element has a 

dramatic effect on crowding strength (Figure 3; completion effect); (3) the overall 

configuration  of the flankers determines crowding (Figure 4); (4) high-level processing strongly 

affects low-level processing (Figure 5), and (5) adding flankers beyond Bouma’s window 

strongly modulates crowding strength (Figure 6). 

It was proposed that the best predictor of visual crowding is grouping between target and 

flankers: crowding increases when the target groups with the flankers, but decreases when the 

target ungroups and stands out from the flankers (Malania et al., 2007; Saarela et al., 2009, 

2010; Sayim et al., 2008, 2010). In line with this hypothesis, in Manassi et al. (2012) and in 

Saarela et al. (2009), subjective ratings on target-flankers grouping correlated with crowding 

strength. Furthermore, Doerig et al. (2019) showed that only models that included a grouping 

stage could explain these results (see also Doerig, Schmittwilken, et al., 2020). In the TTM, 

crowding strength was never reduced, when additional flankers were added, regardless of 

flanker configuration (Figures 2-6). 
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The only result that was reproduced by the TTM is the reduction in crowding strength when 

adding a straight-vernier mask at target location in the Completion experiment (Figure 3, 

center and right, straight vs comp16). We attribute this reduction in crowding strength to a 

local effect of the mask. When the mask is added, the region around the target is summarized 

by different local statistics than when the mask is absent (higher spatial frequencies, locally). 

Hence, this region stands out from the rest of the image. It is thus better reconstructed by the 

TTM, yielding better performance. However, crowding in the TTM was still reduced in the 

control conditions (Figure 3, center and right, comp16b & comp2), further supporting the 

notion that the mask induces a local effect only: when the configuration of the grating is broken 

by the presence of the long mask (comp16b) or by the absence of many flankers (comp2), 

crowding is still reduced. This is in contradiction to the human data, in which crowding is 

reduced by the global layout of the flankers. In addition, crowding strength with various 

numbers of same length flankers (Suppl. Inf. B, SB1), was always weaker with than without the 

mask and always increased with more flankers, contrary to the human data. 

Taken together, these results suggest that a pooling model, even a high-dimensional one, 

cannot account for the complexity of visual crowding. Comparing the performance of the TTM 

for all tested conditions to the corresponding human performance measured in Manassi et al 

(2012, 2013, 2015, 2016), we found no significant correlation (Figure 7A). Moreover, we found 

that the TTM performance strongly correlates with the amount of flankers around the target 

(Figure 7B), similar to a simple pooling model. It seems as if the TTM is blind to complex 

configurations and grouping cues. We propose that the reason for this lies in the model 

architecture, i.e., feedforward pooling cannot explain high-level effects in crowding (Doerig, 

Bornet, et al., 2020; Doerig et al., 2019; Doerig, Schmittwilken, et al., 2020). 

There are several reasons why the TTM failed. First, elements outside the pooling regions of 

the TTM can change crowding performance in humans but not in the TTM. Second, the 

strength of the TTM is the compression of information implemented by the computation of 

summary statistics, which may play a role for grouping. However, the TTM does not allow to 

change the scale of the pooling regions in function of the specificities of the stimuli. For this 

reason, the TTM filters out fine-grained information that is crucial for human performance. As 

put by Wallis et al. (2017), “Based on our experiments we speculate that the concept of 

summary statistics cannot fully account for peripheral scene appearance. Pooling in fixed 
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regions will either discard (long-range) structure that should be preserved or preserve (local) 

structure that could be discarded. Rather, we believe that the size of pooling regions needs to 

depend on image content”. We think that the TTM summary statistics are important in 

crowding but need to adapt to the stimulus global configuration (including feedback 

processing) and not hard-wired. 

Importantly, in contrast to what was proposed by Rosenholtz et al. (2019), cueing cannot 

account for grouping effects in crowding. Cueing may be an explanation for some 

configurations, but overall, it is a poor predictor of crowding strength (Figure 8). Moreover, 

cueing studies only report small effect sizes (Nazir, 1992; Scolari et al., 2007; Yeshurun & 

Rashal, 2010), far beneath the effect sizes measured in Manassi et al. (2012, 2013, 2015, 2016). 

Hence, grouping effects in crowding are not post-perceptual, e.g., caused by differences in 

target visibility or target cueing. They are purely perceptual and are caused by complex target-

flanker interactions occurring along the visual processing hierarchy. 

Rosenholtz et al. (2019) argued that, since effects of contextual grouping were also found in 

foveal vision (Saarela & Herzog, 2008; Sayim et al., 2010, 2011; Sayim, Manassi, et al., 2014; 

Waugh & Formankiewicz, 2020), they may not be due to genuine crowding. However, 

literature showed that crowding can occur in foveal (Coates et al., 2013, 2018; Danilova & 

Bondarko, 2007; Flom et al., 1963; Lev et al., 2014; Lev & Polat, 2015; Sayim, Greenwood, et 

al., 2014; Siderov et al., 2013; Westheimer & Hauske, 1975) and peripheral vision (Levi, 2008; 

Pelli, 2008). Importantly, the stimuli in foveal experiments were the same as in peripheral 

crowding and so were the results. In any case, the TTM needs either to explain the peripheral 

effects, independent of where or not there is foveal crowding, or to convincingly explain why 

not. 

TTM & face crowding 

In another set of experiments (Figures 9 and 11), we focused on single face recognition in 

peripheral vision. Using a single Mooney face discrimination task, we showed that holistic face 

recognition occurs in peripheral vision, i.e., a better recognition performance for upright than 

for inverted faces (Figure 11A, upright vs inverted), reproducing the results found in Canas-

Bajo & Whitney (2020) and in line with old and recent literature (Farah et al., 1995; Rossion, 

2008; Sergent, 1984; Yin, 1969). The advantage in recognizing upright Mooney faces speaks 
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for a differential processing involved between inverted (low-level) and upright (holistic) faces. 

These results cannot be explained by models of crowding based on simple pooling. According 

to this class of models, the two-tone black and white blobs constituting a Mooney face should 

crowd themselves in peripheral vision (e.g., Fig. 11B), thus becoming more unrecognizable 

when increasing in eccentricity (Martelli et al., 2005). Instead, our results show that the 

representation of these object parts nevertheless survives crowding (see also Manassi & 

Whitney, 2018), allowing holistic recognition of Mooney faces. 

Using a mongrel Mooney face discrimination task, we showed that the low-level visual 

information that is merged in the pooling stage of the TTM is irretrievably lost. Despite the high 

dimensionality of the pooling in the TTM, at increasing eccentricities the features that compose 

the faces crowd each other in the model and cannot be used for further processing in the 

mongrel face discrimination task (Figure 11B). This is in contradiction with the results of the 

single face discrimination task we performed (Figure 11A; Canas-Bajo & Whitney (2020), and 

with recent evidence that face representations can survive crowding and influence subsequent 

perceptual judgments (Kouider et al., 2011). 

Next, we focused on holistic face crowding (as found in Experiment 6 of Farzin et al., 2009; 

Figure 12A), in which upright flanker faces yielded more crowding than inverted ones in a 

gender face discrimination task. This inversion effect showed that crowding can occur 

selectively between high-level holistic representations conveyed by Mooney faces. 

We tested whether the TTM could predict this result. Using a mongrel gender crowding 

discrimination task (Figure 10), we showed that the TTM did not reproduce holistic face 

crowding (Figure 12B). While crowding occurred in the TTM when face flankers were added, 

there was no effect of flanker face orientation on the TTM performance. This result confirms 

that crowding indeed happens selectively between high-level representations and cannot arise 

from low-level accounts, even using a high-dimensional pooling stage. 

It was recently argued that the face crowding results in Farzin et al. (2009) may be due to 

differences in flankers reportability (Reuther & Chakravarthi, 2019). When target and flankers 

belong to the same category (upright faces as target and flankers), crowding may arise in part 

from reporting the flankers’ gender instead of the target one (substitution errors). However, 

when target and flankers belong to different categories (upright face as target and inverted 
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faces as flankers), substitution errors are less likely to occur because flankers cannot be 

inadvertently reported. Hence, the decrease in crowding strength may be ascribed to the lack 

of substitution errors. As in the target cueing argument (Figure 8), this explanation assumes 

that target location uncertainty (and substitution errors, as a consequence) plays a crucial role 

in crowding, driving the entire difference in crowding strength between upright and inverted 

face flankers. We would argue that the stimuli in Farzin et al. (2009) are edge-defined high-

contrast faces with clearly defined target locations, and thus make it unlikely that so many 

substitution errors occur on an object level. More importantly, however, this argument 

assumes that, prior to target-flanker substitution, upright/inverted faces are processed 

differently. thus implying some kind of holistic face processing, just as Farzin et al. (2009) 

suggested.   

Model assessment method 

It may be argued that the TTM may reproduce high-level effects in crowding using a different 

set of model parameters. For example, some of the TTM failures could result from ceiling 

effects. Here, using the parameters suggested by Rosenholtz et al. (2019), we found that 

crowding was too weak for most stimuli, which may obscure complex effects. For this reason, 

we decreased the fovea radius parameter from 32 to 16 pixels to increase crowding in all 

conditions. Still, for most stimuli that included large flanker configurations at large 

eccentricities (Shapes and Patterns experiments; Figures 5 & 6, as well as Suppl. Inf. B, SB2), 

performance was at chance level and hence, high-level effects might have gone unnoticed. For 

all these stimuli, we ran a follow-up experiment in which we kept the fovea radius parameter 

as 32 pixels to make the task easier. This did not improve the model predictions, as measured 

by the template matching algorithm (Suppl. Inf. B, SB3). 

Moreover, it may be argued that assessing the TTM performance using behavioral mongrel 

discrimination tasks can introduce biases coming, for example, from different strategies used 

by human observers. First, it should be noted that the method we used is the same as in 

Rosenholtz et al. (2019) and their previous work (Balas et al., 2009; Keshvari & Rosenholtz, 

2016; Rosenholtz, Huang, & Ehinger, 2012; Rosenholtz, 2011; Zhang et al., 2015). Nevertheless, 

to control for unwanted human biases, we also quantified performance using a template 

matching algorithm (see Methods for details). This did not change the results qualitatively 
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(Figures 2 to 6, as well as Suppl. Inf. B, SB1-5 and SB10.). The measured performances were 

similar to what was measured in the behavioral tasks, and none of the high-level effect of 

crowding were reproduced. 

Model improvements 

We would like to mention that the TTM accounts for a variety of perceptual properties of 

human vision (Alexander et al., 2014; Chang & Rosenholtz, 2016; Rosenholtz, 2011; Rosenholtz, 

Huang, Raj, et al., 2012), as well as many properties of crowding (substitution effects, Bouma’s 

window, etc.). Hence, our results should not be taken as a complete invalidation of the model. 

They rather suggest that, to capture human behavior fully, models of crowding and of vision in 

general need to incorporate more specific mechanisms that account for complex visual 

processing. Our results provide evidence that high-level effects cannot emerge even from the 

most sophisticated and high-dimensional pooling models, such as the TTM. 

How could these models be improved? First, to explain the complex effects in Manassi et al 

(2012, 2013, 2015, 2016), we propose to add a recurrent grouping and segmentation stage to 

existing models of crowding. In such models, the high-level configuration of the stimulus 

affects lower-level target acuity, so that crowding interference only occurs within perceptual 

groups. Recent work confirmed that recurrent grouping and segmentation processes are a 

promising addition to capture global aspects of crowding (Bornet et al., 2019; Doerig, Bornet, 

et al., 2020; Doerig et al., 2019; Doerig, Schmittwilken, et al., 2020; Francis et al., 2017). 

Second, to explain why crowding happens at multiple levels, such as in holistic crowding 

between faces (Farzin et al., 2009; Manassi & Whitney, 2018; Whitney & Levi, 2011), we 

propose to consider high-level statistics in high-dimensional pooling models, such as the TTM. 

By pooling information at all stages (instead of a low-level unique one), the model could 

account for holistic effects in high-level crowding. Alternatively, Chaney et al. (2014) proposed 

the Hierarchical Sparse Selection (HSS) model. In this model, fine-grained information is 

preserved by the feature integration process occurring in the visual cortex because of the high 

density of neurons paving the visual field (note that this is slightly different to the high-

dimensional pooling stage of the TTM, in which fine-grained information is preserved because 

of the large number of pooled features). Crowding happens in the HSS model because, for the 
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sake of efficient visual perception, the neurons that are selected to decode the target features 

are sampled sparsely. 

In conclusion, our results provide evidence that high-level effects cannot emerge even from 

the most sophisticated and high-dimensional pooling models, such as the TTM. Moreover, 

target cueing is not a viable explanation for these effects. Hence, crowding remains a complex, 

global and multi-level perceptual phenomenon, as well as a precious and versatile probe to 

understand what may be missing from current models of human vision. 
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Abstract 

Feedforward Convolutional Neural Networks (ffCNNs) have become state-of-the-art models 

both in computer vision and neuroscience. However, human-like performance of ffCNNs does 

not necessarily imply human-like computations. Previous studies have suggested that current 

ffCNNs do not make use of global shape information. However, it is currently unclear whether 

this reflects fundamental differences between ffCNN and human processing or is merely an 

artefact of how ffCNNs are trained. Here, we use visual crowding as a well-controlled, specific 

probe to test global shape computations. Our results provide evidence that ffCNNs cannot 

produce human-like global shape computations for principled architectural reasons. We lay 

out approaches that may address shortcomings of ffCNNs to provide better models of the 

human visual system. 
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Introduction 

Vision is a complex process that remained beyond the reach of computer systems for decades. 

Only recently, deep feedforward Convolutional Neural Networks (ffCNNs) have shown 

tremendous success in an impressive number of computer vision tasks, ranging from object 

recognition (1) and segmentation (2), to image synthesis (3,4) and scene understanding (5). 

ffCNNs and the human visual system share several similarities. For example, after training on 

complex visual datasets such as ImageNet (6), ffCNN neural activities show high correlations 

with human and non-human primate neural activities (7–10) and the receptive fields of 

neurons in the earlier layers of these ffCNNs are qualitatively similar to those in the retina and 

early visual cortex (11,12). Because of these similarities, ffCNNs trained on complex visual tasks 

were proposed as models of the human visual system (7–9,13,14). However, human-like 

performance of ffCNNs does not necessarily imply human-like computations. Importantly, 

several studies have shown that ffCNNs usually rely on local features while humans strongly 

rely on global shape information (15–18).  

There are two main options to explain why ffCNNs do not process global shape like humans. 

First, this difference may come from training. ffCNNs are typically trained on ImageNet. It is 

interesting and surprising that local features seem to be the easiest way for these networks to 

classify natural images. However, a different training set in which local features are not 

predictive of the classes may require networks to rely on global shape computations. To 

address this possibility, Geirhos et al. (19) created a new dataset in which textural information 

was of no avail for object recognition. They used a textural algorithm (20) to randomly swap 

textures in ImageNet. For example, the texture of a cat image was replaced by elephant-skin 

texture. This training dataset biased an ffCNN (ResNet50; 21) towards shape-level features, 

because textural information was no longer useful for classifying this dataset. They validated 

the network’s shape-bias by showing increased robustness to local noise and textural changes.  

Alternatively, ffCNNs may be incapable of matching human global computations for principled 

architectural reasons. Even though Geirhos et al.’s network was able to ignore local features, 

it may not use global computations in the same way as humans. One difficulty in addressing 

this question is that there is no consensus about how to experimentally diagnose how deep 

networks compute global information.  
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To specifically investigate local vs. global processing in humans and machines, we use visual 

crowding as an experimental probe. Crowding is the technical term for the everyday 

observation that objects are harder to perceive in clutter. Neighbouring visual elements are 

perceived as jumbled or indistinct, and are hard to recognize (Fig 1; 22–24). This phenomenon 

is strongest in the periphery, but also occurs in the fovea (25,26) . This phenomenon is 

ubiquitous in natural vision since elements rarely appear in isolation (Fig 1a). Crowding can also 

be studied with high precision in psychophysical experiments. For example, when a vernier 

target (i.e., two vertical bars with a horizontal offset) is presented alone, the direction of the 

horizontal offset is easy to report. This task becomes harder in the presence of a surrounding 

square flanker (Fig 1b, column 1). Interestingly, the global configuration of flankers across the 

entire visual field determines crowding. For example, adding flankers as far away as 8.5 degrees 

from the 200 arcsec target can improve performance depending on the global configuration 

(uncrowding; Fig 1b; 27,28). This strong dependency of performance on global configurations 

provides a qualitative signature which can easily be tested in models. Importantly, 

(un)crowding occurs across multiple paradigms (26,29,30) and is not restricted to vision 

(31,32). Hence, (un)crowding is not an idiosyncratic effect related to a specific paradigm. It 

rather reflects a general strategy used by the brain. This kind of general strategy for vision is 

precisely what we expect models to explain. 

Crowding effects have been shown in ffCNNs (17,33,34), and may occur by pooling the target 

and nearby flankers along the processing hierarchy. We hypothesize that this mechanism may 

not produce uncrowding because simple pooling can only deteriorate target-relevant 

information when flankers are added (Fig 1c). However, intuitions are not to be trusted in 

complex systems with millions of parameters. Furthermore, new global processing strategies 

may emerge in shape-biased networks such as Geirhos et al.’s. Hence, it is currently unclear 

whether ffCNNs can carry out human-like global computations that lead to (un)crowding. 

Here, we thoroughly investigated (un)crowding in AlexNet (1), an ffCNN that was used as a 

model of the human visual system (7,12), ResNet50 (21), a more sophisticated ffCNN, and the 

shape-biased network by Geirhos et al. (19). We provide experimental evidence suggesting 

that it is the architecture of ffCNNs that prevents them from performing human-like global 

computations, and not the training procedure.  
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Fig 1. a. In crowding, perception of a target deteriorates in the presence of nearby visual elements. Crowding is 

ubiquitous in everyday vision, since elements rarely appear in isolation. When fixating on the central red dot, it is 

more difficult to spot the kid on the right than on the left, because of the nearby signposts. b. (Un)crowding. Visual 

elements can be rescued from crowding depending on the global configuration of flankers (uncrowding). In this 

experiment, observers reported the horizontal offset direction of two vertical bars (i.e., a vernier) presented at 9° 

of eccentricity. The vernier was presented either alone (red dashed line) or surrounded by a flanker configuration 

(x-axis). The y-axis shows the offset for which observers correctly report the vernier offset direction in 75% of the 

trials (threshold; performance is good when the threshold is low). When the vernier is presented alone, the task 

is easy (red dashed line). Adding a flanking square (column 1) makes the task much harder, a classic crowding 

effect. When more squares are added, performance recovers almost to the unflanked level (second column, 

uncrowding). Uncrowding strongly depends on the configuration (columns 2 to 8). For example, column 4 shows 

a configuration of flankers with a strong uncrowding effect. In comparison, column 5 has the same flankers but in 

a different configuration producing strong crowding. c. Crowding in ffCNNs. In the feedforward framework of 

vision, embodied by ffCNNs, crowding occurs by pooling of visual features across a hiererachy of local feature 
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detectors. In this example, a stimulus with five squares and a vernier target is presented. Each circle represents a 

neuron and shows the elements in its receptive field. In early layers, receptive fields are small and the vernier is 

in the receptive field of a single neuron (green). Neighboring neurons respond to parts of the squares (blue). At 

this level, the vernier is well represented. In the next layer, however, information about the vernier is pooled with 

information of the sourrouding flanker. Vernier-related information is “corrupted” by the flankers, making the 

offset direction harder to decode (crowding; blue-green). In subsequent layers, even more target-unrelated 

information is pooled. For this reason, we hypothesize that adding more flankers may always lead to more 

crowding in ffCNNs. Modified from Doerig, Bornet et al. (17) with permission.    
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Methods 

The code is available online at https://github.com/adriendoerig/Doerig-Bornet-Choung-

Herzog-2019. The supplementary information for this Chapter is provided at this address. 

Experiment 1a 

We presented different (un)crowding stimuli to AlexNet (trained on ImageNet prior to our 

experiment) and assessed how information about the target vernier is preserved along the 

network hierarchy. We used decoders to detect vernier offset direction based on the activity 

in each layer (Fig 2). Each layer had its own decoder, consisting of batch normalization (35), 

followed by a hidden layer of 512 units, followed by an ELU non-linearity (36), finally projecting 

to a softmax layer composed of 2 nodes coding for left and right offsets. The weights of AlexNet 

were frozen during this process, only the decoder weights were trained. The decoders were 

trained using Adam optimizers (37) to minimize the cross-entropy between the predicted and 

the presented vernier offsets. Each image in the training set consisted of a vernier plus a non-

overlapping random configuration of flankers (composed of 18x18 pixels squares, circles, 

hexagons, octagons, stars or diamonds). These configurations had between 1 and 7 columns 

and between 1 and 3 rows of flankers of the same shape. We added Gaussian noise to each 

image. Training was successful, i.e., the network was well able to detect the vernier offset 

direction in the training images. 

 

Fig 2. Different stimuli were fed to AlexNet. AlexNet’s weights were trained on ImageNet prior to the experiment 

and were frozen during the experiment. To investigate how well information about the vernier offset is preserved 

https://github.com/adriendoerig/Doerig-Bornet-Choung-Herzog-2019
https://github.com/adriendoerig/Doerig-Bornet-Choung-Herzog-2019
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throughout the network hierarchy, we trained one decoder (in red) at each layer to discriminate the vernier offset 

direction based on the activity elicited by the stimulus in this layer. For example, the stimulus at the top left of 

this figure is presented. This elicits activities in each layer of AlexNet and the decoders are trained to retrieve the 

offset direction based on this activity. Only the decoders are trained (red). In the training set, the vernier and a 

flanker configuration were simulatneously shown, but never overlapped (top). In the testing set, we presented 72 

different (un)crowding configurations and measured performance for each configuration and each layer. In these 

testing images, the vernier was always surrounded by the flanker configuration (bottom). In this example, 

configurations of squares are shown, but we also used different shapes (see main text).  

Our main question was how the network generalizes to the (un)crowding stimuli. Importantly, 

during training, the vernier target and the flanking configurations were presented 

simultaneously but never overlapped (Fig 2). During testing the vernier was surrounded by 

different flanker configurations, as in the psychophysical (un)crowding stimuli (Fig 2). The 

testing set consisted of 72 different configurations of flankers with Gaussian noise. There were 

6400 trials per configuration with the configuration presented at different locations. For each 

layer of AlexNet, performance was measured as the proportions of correct vernier offset 

discrimination made by the decoder. We repeated this entire procedure 5 times, including 

training and testing, and report averaged performances. 

Experiment 1b 

We tested an ffCNN with a more sophisticated architecture (ResNet50) trained on ImageNet, 

and the same ffCNN architecture trained on a dataset tailored to bias the network towards 

global shape computations (i.e., Geirhos et al.’s shape-biased version of ResNet50). To this end, 

we applied exactly the same procedure as in experiment 1a to both the original version of 

ResNet50 and Geirhos et al.’s shape-biased version. The only difference was that we used 64 

hidden units instead of 512, because this achieved better performance (i.e., better 

classification performance on crowded conditions). 

Experiment 2 

In experiment 2, we investigated which parts of the stimulus configurations the network mainly 

relies on by using an occlusion sensitivity measure (similarly to 12). We used the networks with 

decoders trained in experiment 1. For a given configuration, we collected the vernier offset 

decoder’s output at each layer. Then we slid a 6x6 pixels Gaussian noise patch over the entire 

configuration and measured for each patch position P and network layer L how much the noise 
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patch affected the vernier offset discrimination. The noise patch had the same statistics as the 

background noise, effectively removing parts of the stimulus. The rationale is that when the 

patch occludes parts of the stimulus, which are important for classification, decoder 

predictions should be strongly affected. On the other hand, if the patch occludes an 

unimportant part of the stimulus, decoder predictions should not be affected. Since the global 

stimulus configuration matters for uncrowding, we were interested to see if the network relies 

on the global configuration or if it simply focused on the region close to the vernier.  

For each patch location P and layer L, we quantified how much the noise patch biased vernier 

offset classification towards or away from the correct response: 

𝑠𝑐𝑜𝑟𝑒𝑃,𝐿 =
{𝑇⃗ ∙ (𝑦𝑃,𝐿⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑥𝐿⃗⃗⃗⃗ )}𝑙𝑒𝑓𝑡_𝑣𝑒𝑟𝑛𝑖𝑒𝑟

2
+

{𝑇⃗ ∙ (𝑦𝑃,𝐿⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑥𝐿⃗⃗⃗⃗ )}𝑟𝑖𝑔ℎ𝑡_𝑣𝑒𝑟𝑛𝑖𝑒𝑟

2
  

Where 𝑥𝐿⃗⃗⃗⃗ = (𝑥1, 𝑥2)𝐿 is the output of the decoder for layer L on the original stimulus without 

a noise patch (𝑥1 and 𝑥2 respectively correspond to the network’s prediction for a left- or right-

offset vernier), 𝑦𝑃,𝐿⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (𝑦1, 𝑦2)𝑃,𝐿 is the output of the decoder for layer L with the noise patch 

at position P and 𝑇⃗  is a vector equal to (+1,−1) if the correct vernier offset is left and 

(−1,+1) otherwise. To avoid biases related to offset direction, we computed the mean score 

of the left- and right-offset versions of each stimulus.  

Using this procedure, we obtained maps indicating which regions of a stimulus are most 

important for vernier offset discrimination. We used four different stimuli from Manassi et al. 

(27): a vernier alone, a vernier flanked by one square (leading to crowding in humans), a vernier 

flanked by a row of seven squares (leading to uncrowding in humans), and a vernier flanked by 

a row of seven alternating squares and stars (no uncrowding in humans). Additional stimuli are 

shown in the supplementary material.  
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Results 

Experiment 1a 

Unlike humans, AlexNet shows crowding but not uncrowding. The vernier offset is easily 

decoded from each layer when the vernier is presented alone, and performance drops when a 

single flanker is added. Crucially, performance deteriorates further when more flankers are 

added, regardless of the shape type (Fig 3a). Squares produced more crowding than circles, 

hexagons, octagons or diamonds, presumably because the vertical bars of the squares 

interfered with the vernier more strongly. These results hold for all layers of AlexNet 

(supplementary material).  

Fig 3b shows that, unlike humans who show strong uncrowding depending on the 

configuration, only the number of shapes seems to affect crowding in AlexNet – and not the 

configuration. Although certain configurations with three flankers have a higher percentage of 

correct response than certain configurations with a single flanker, this effect is driven by the 

shape type and not by the configuration of shapes. For example, the networks are better at 

dealing with diamonds than squares (Fig 3a; probably squares interfere more with verniers due 

to their vertical edges). Still, adding extra shapes always deteriorates performance compared 

to a single shape, regardless of the configuration. This pattern of results is similar in all layers 

of AlexNet (supplementary material).  

Experiment 1b 

We applied the same analysis to the original ResNet50 and Geirhos et al.’s shape-biased 

version of ResNet50. The results for both networks are qualitatively similar to the results for 

AlexNet in experiment 1a (Fig 3c&d). One difference is that the performance of the decoder is 

always below chance level with diamonds. This indicates that information about the vernier 

offset survives, even though the diamond flanker reverses the prediction. Adding additional 

diamond flankers brings performance closer to chance level, indicating that less information 

about the vernier offset survives, i.e., crowding increases when adding flankers. Another 

difference is that the squares lead to the least amount of crowding, contrary to AlexNet. 

First, these results show that using a more sophisticated ffCNN (i.e., ResNet50) does not allow 

ffCNNs to explain global uncrowding effects. Second, crucially, Geirhos et al.’s training method 
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to bias ffCNNs towards shape does not lead to uncrowding either. This suggests that ffCNNs 

do not carry out human-like shape level computations for architectural reasons, and not 

because of the way they are trained. 

 

Fig 3. a. Vernier offset discrimination performance for AlexNet with an increasing number of identical flankers. 

The x-axis shows different flanker configurations. Each color corresponds to one flanker shape, and brighter colors 

indicate more flankers (from darkest to lightest: 1, 3, 5 & 7 identical flankers). The single dark blue bar on the left 

corresponds to the vernier alone condition. The y-axis indicates the percentage of correct vernier offset 

responses. Unlike humans, for whom performance improves when more identical flankers are added (Fig 1b, 

columns 1&2; 27), performance deteriorates or stagnates for AlexNet with all flanker shapes. The results of this 

figure are decoded from layer 5 of AlexNet. Decoding vernier offsets from the other layers in AlexNet led to similar 

results (see supplementary material). b. Vernier offset discrimination performance for AlexNet with 72 

configurations. The x-axis shows different flanker configurations sorted by number of flankers. Different colors 

correspond to different kinds of flanker configurations. The labels correspond to the number of flankers in the 

configuration, and an asterisk indicates alternating shapes (e.g. square-circle-square-circle-square). From left to 

right: vernier alone, single flanker, 3 identical flankers, 5 identical flankers, 5 flankers alternating between two 

shapes, 7 identical flankers, 7 flankers alternating between two shapes and configurations of 3x7 flankers. The y-

axis indicates percent correct of vernier offset discrimination for each flanker configuration (the dashed lines 

shows the mean percent correct for each kind of flanker configuration). The results of this figure are decoded 
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from layer 5 of AlexNet. Decoding vernier offsets from the other layers in AlexNet led to similar results (see 

supplementary material). c&d. Vernier offset discrimination performance with an increasing number of identical 

flankers for ResNet50 (original version in c, Geirhos et al.’s shape-biased version in c). The results for both 

networks are qualitatively similar to the results for AlexNet in panel a. The results of this figure are decoded from 

the output of the third bottleneck unit (see our shared code and He et al. 21). Decoding vernier offsets from the 

other layers led to similar results (see supplementary material). 

Experiment 2 

Uncrowding requires global computations across large regions of the visual space. The 

configuration in its entirety determines performance and not only the elements in the 

neighborhood of the target (17,27,28). As mentioned, it has been proposed that ffCNNs focus 

largely on local features. This is indeed what we observed in experiment 2 in AlexNet (Fig 4), 

ResNet50 (supplementary material), and Geirhos et al.’s shape-biased version of ResNet50 (Fig 

4): only elements in a local region around the target matter for classification. The same results 

also hold for the eight other stimulus types we tested (supplementary material). In general, as 

expected, occluding the vernier target deteriorates performance and occluding parts of the 

flanker surrounding the vernier improves performance. Occluding other parts of the stimulus, 

however, does not generally affect performance. Certain cases are harder to explain, such as 

the 1square condition shown in the top right panel of Fig 4, in which occluding parts of the 

vernier improved classification. Although we cannot provide a definitive explanation, we 

suggest that this may be due to the classifier confusing a vertical bar of the square with a 

vertical vernier bar. Alternatively, this may be due to the background noise present in each 

stimulus. In rare cases, the occluder has an effect even when it does not cover the stimulus 

(e.g. in the bottom right panel of Fig 4). These cases are also probably due to background noise. 

Aside from these small peculiarities, the finding that only elements in the neighborhood of the 

vernier affect classification is very stable over all stimuli and network layers (see images and 

animations in the supplementary material).  

These results suggest that the inability of ffCNNs to explain uncrowding stems from their focus 

only on local features close to the vernier. Importantly, although Geirhos et al.’s shape-biased 

network is biased towards global features, still, performance seems determined only by 

elements close to the vernier. 
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Fig 4: Occlusion analysis. Results of the occlusion analysis for AlexNet (top) and the shape biased ResNet50 

(bottom). Stimuli on the left lead to good performance in humans, while stimuli on the right lead to strong 

crowding in humans (27). For both AlexNet and the shape biased ResNet50, the network’s decisions rely only on 

local elements in the target neighborhood regardless of the global stimulus configurations. To create these maps, 

we summed the maps for each layer of Alexnet to show which stimulus regions are most relevant across the 

network. For the shape-biased ResNet50, we used the third convolutional layer in the first bottleneck, and the 

output of the first 9 bottleneck units (see our shared code and He et al., 2016). We then applied a threshold to 

each map at 0.4 times the maximal value in the map, for visibility. Per-layer results without thresholding can be 

found in the supplementary material, as well as animations showing what happens as the threshold value is 

changed. Results for the original ResNet50 and other layers of the shape-biased network are also shown in the 

supplementary material.  
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Discussion 

(Un)crowding is ubiquitous. It occurs in vision, audition and haptics (24,27,31,32). This 

pervasiveness is not surprising because elements rarely appear in isolation. Any perceptual 

system needs to cope with crowding to process information in cluttered environments. 

(Un)crowding is a probe into how the visual system computes global information.  

In this contribution, we asked whether large ffCNNs trained on complex visual tasks can explain 

(un)crowding. We chose this approach because these ffCNNs are often used as brain models. 

The idea is that the weights learned by these ffCNNs to solve complex visual tasks may lead to 

human-like visual processing. For this reason, we did not change the ffCNN weights for 

quantifying (un)crowding, i.e., we only trained the additional decoders. We found that these 

ffCNNs do not seem to carry out human-like global computations. 

Experiment 1 shows that current ffCNNs do not explain (un)crowding. In other words, training 

an ffCNN on a complex natural image recognition task does not automatically yield a network 

performing similarly to the human visual system. Experiment 2 suggests that this is due to the 

inability of ffCNNs to take the entire stimulus configuration into account. In ffCNNs, only 

elements in the target’s neighborhood affect performance. Global features do not affect how 

local parts are processed. In humans, on the other hand, the global configuration strongly 

affects processing of local parts. For example, vernier offset information can be “rescued” by 

certain global configurations.  

This difference could not be remedied by a different training protocol. Indeed, all our results 

also hold for Geirhos et al.’s shape-biased ffCNN. We suggest that, although Geirhos et al.’s 

training procedure successfully biased the networks towards global features, it does not show 

human-like global shape computations. Indeed, the network still seems limited to combining 

features by pooling along the feedforward cascade. Hence, unlike in humans, global 

configuration cannot affect processing of local parts. For these reasons, our results suggest 

that the inability of ffCNNs to perform human-like object shape processing is rooted in their 

feedforward pooling architecture. Because of this pooling, performance deteriorates when 

flankers are added. For this principled reason, we propose that ffCNNs cannot produce 

uncrowding in general, independently of the specific ffCNN, training procedure and loss 

function. In support of this proposal, we showed in a separate contribution that ffCNNs 
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specifically trained on classifying verniers and flanking shapes, as well as counting the number 

of flankers, do not produce global (un)crowding either (38).  

Global processing is not only an issue for ffCNNs but for other models too. We showed that no 

existing model of crowding based on local and feedforward computations can explain 

uncrowding (17,27,30,39). There seems to be a principled difference in computational 

strategies, based on architecture, between humans and feedforward pooling systems. 

Hence, despite their well-known power, further aspects need to be incorporated into ffCNNs. 

We propose that recurrent, global grouping and segmentation is crucial to explain how the 

brain deals with global configurations (17,38). Specifically, we propose that a flexible recurrent 

grouping process determines which elements are grouped into an object. In the case of 

(un)crowding, elements are first grouped together and then only elements within a group 

interfere with each other. If the configuration of flankers ungroups from the target, the target 

is released from crowding. Francis, Manassi, and Herzog (40) proposed a spiking neural 

network with a dedicated recurrent grouping process, which is able to explain why 

(un)crowding occurs (see also Bornet et al.; 41). However, this model is tailored to group 

oriented edges and cannot generalize to grouping of more complex features. Deep learning 

models are promising because they are more flexible and can be trained to deal with any kind 

of stimulus.  

Doerig et al. (38) showed that capsules networks (42), combining CNNs with a recurrent 

grouping and segmentation process, can explain (un)crowding, including temporal 

characteristics of uncrowding. Linsley et al. (43) proposed recurrent grouping and 

segmentation modules to improve CNNs, and there are several other approaches to 

experiment with grouping and segmentation in recurrent network architectures (8,44–46). 

More work is needed to compare and characterize computations in different recurrent 

architectures. 

Our results contribute to the expanding literature showing that there is much more to vision 

than combining local feature detectors in a feedforward hierarchical manner (15–

17,38,42,43,45–53). In line with the present findings, many studies have highlighted other 

fundamental differences between ffCNNs and humans in local vs. global processing. For 

example, Baker et al. (15) showed that ffCNNs but not humans are affected by local changes 
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to edges and textures of objects. Brendel and Bethge (16) showed that ffCNNs classify 

ImageNet images almost as well when using small local image patches than when using the 

entire images. These results clearly show that image classification is underconstrained as a 

testbed. For this reason, well-controlled psychophysical stimuli, which allow detailed analysis, 

should be used in addition to image classification (54). Simply testing whether deep learning 

systems reproduce idiosyncratic illusions, without linking them to computational mechanisms, 

does not provide principled insights. Hence, an important question will be what are the crucial 

benchmarks targeting principled computational processes. Here, using crowding, we showed 

a fundamental difference in local vs. global processing between humans and ffCNNs, and 

suggest that grouping and segmentation are promising additions to make deep neural 

networks better models of vision.  

Historically, psychophysical results were seen as stepping stones towards object recognition 

models. Today, the picture has been reversed: we have powerful artificial vision models, but 

they do not reproduce even simple psychophysical results. The fact that ffCNNs can solve 

complex visual tasks in a different way than humans reveals that there are many ways of doing 

so. There are many roads to Rome. Despite the diversity of possible strategies to solve complex 

vision tasks, deep insights can be derived by comparing the crucial underlying computations 

adopted by different systems.  
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Abstract 

In crowding, perception of a target deteriorates in the presence of nearby flankers. 

Traditionally, it is thought that visual crowding obeys Bouma’s law, i.e., all elements within 

pooling distance interfere with the target, and that adding more elements always leads to 

stronger crowding. Crowding is predominantly studied using sparse displays (a target 

surrounded by a few flankers). However, many studies have shown that this approach leads to 

wrong conclusions about human vision. Van der Burg et al. (1) proposed a paradigm to measure 

crowding in dense displays using genetic algorithms. Displays were selected and combined 

over several generations to maximize human performance. In contrast to Bouma’s law, only 

the target's nearest neighbours affected performance. From previous studies, we know that 

visual grouping is a promising addition to explain why elements beyond Bouma’s window 

interfere with the target. Here, we tested whether this explanation also helps explain crowding 

in dense displays. We compared the performance of models that include a grouping stage to 

models that do not. We used the same genetic algorithm, but instead of selecting displays 

based on human performance we selected displays based on the model’s outputs. We found 

that all models based on the traditional feedforward pooling framework of vision were unable 

to reproduce human behaviour. In contrast, all models involving a dedicated grouping stage 

explained the results successfully. We show that traditional models can be improved by adding 

a grouping stage.  
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Author summary 

To understand human vision, psychophysical research has focused on very simple paradigms. 

Based on this research, vision was described as a cascade of feed-forward computations in 

which local features detectors pool information along the processing hierarchy to form 

complex and abstract features. However, recent data that uses more complex paradigms has 

challenged this view. For example, Van der Burg et al. (1) studied visual crowding in dense 

displays and found that the range at which visual elements interact with each other (which was 

believed to be half the eccentricity) is shrunk to the nearest neighbour distance only. In our 

study, we aim at understanding this discrepancy. From previous studies, we know that visual 

grouping is a promising addition to current models of vision. We compared the performance 

of different models of vision to the human data of Van der Burg et al. (2019). We found that 

all models based on the traditional pooling framework of vision failed to reproduce the human 

data, whereas all models that included grouping and segmentation processes were successful 

in this respect. We concluded that grouping and segmentation processes explain naturally and 

consistently the difference between simple and complex displays in vision paradigms.  
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Introduction 

In the classic framework, vision is a feed-forward process that starts with the analysis of basic 

features such as oriented edges (2–5). These basic features are pooled along the visual 

hierarchy to form more complex feature detectors, until neurons respond to objects (6–10). A 

strength of modelling visual perception as a feedforward process is that it breaks down the 

complexity of vision into mathematically tractable sub-problems. However, it has become clear 

that this classic framework cannot account for a wide range of experimental results (11–14). 

For example, in a vernier discrimination task, two slightly offset vertical bars are presented in 

the periphery of the visual field (Fig 1a). The task is to determine whether the bottom bar is 

offset to the left or to the right. The task is easy when the target is displayed in isolation (Fig 

1b, red dashed line) but adding a square around the vernier severely impairs performance (i.e., 

crowding, Fig 1b, first column). 

In the classic framework, such impairments are explained by flankers and target features being 

pooled along the visual hierarchy (15–18). For example, in Fig 1c, the vernier target and the 

flankers are pooled, which deteriorates the representation of the vernier. It is often claimed 

that: a) only elements within the pooling distance, i.e., inside the so-called Bouma’s window, 

affect each other (19–22) and b) adding more flankers within this window always leads to more 

crowding because more irrelevant information is pooled. Bouma’s window is approximately 

equal to half the target eccentricity.  

However, recent research has shown many effects that cannot be explained in this framework. 

For example, flankers far from the target can in fact strongly improve performance, depending 

on the global configuration of the stimulus (uncrowding; Fig 1b, second to last columns; 

11,12,23–29). As another example, it has been shown that detailed information can survive 

crowding (30,31). Hence, a) interactions are not restricted to Bouma’s window and b) adding 

flankers does not always deteriorate information.  
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Fig 1. a. Visual crowding in everyday life. When looking at the red fixation dot, the child on the right is more 

difficult to identify than the same child on the left, because the nearby signposts lead to crowding (see also 32). 

b. Manassi et al. (33) presented a vernier in the periphery, surrounded by different flanker configurations. The y-

axis shows the vernier offset threshold for 75% of correct responses (bigger numbers indicate a more difficult 

condition). In the absence of flankers, the threshold is low (red dashed line). When a square is placed around the 

target, the task is much harder (crowding, 1st column). When more squares are added, performance recovers 

almost to the unflanked level (uncrowding, 2nd column). Crowding strength is strongly affected by the whole 

flanker configuration (3rd to last columns). c. Classic hierarchical model of crowding. Local information is pooled 

along the feedforward hierarchy of the visual system, to form more complex feature detectors. In this example, 

neurons (circles represent the extent of their receptive fields) detect simple oriented features in the first layer, 

simple shapes in the second layer and shape configurations in the last layer. Along the hierarchy, pooled activity 

dilutes information related to vernier offset. In this view, adding more flankers can only lead to stronger crowding. 

Adapted with permission from (34). 

Obviously, studies with sparse displays cannot reveal these important effects. However, one of 

the main problems studying crowding in displays that contain a large number of flankers is that 

the configuration space increases exponentially with the number of flankers. For example, a 

relatively simple array of 8 by 8 either vertical or horizontal flanking bars has more possible 

configurations than there are seconds since the Big Bang. Among all these possible 
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configurations, it is unknown how many may show interesting effects that are not captured by 

the classic framework of vision. How can these configurations be discovered? 

Recently, Van der Burg et al. (1) proposed a paradigm in which observers had to discriminate 

an almost vertical target, slightly tilted to the left or to the right, embedded in different 

configurations of vertical and horizontal flankers. First, Bouma’s law was verified using sparse 

displays, in which only 4 either vertical or horizontal flankers surrounded the target (Fig 2a). 

Then, they showed 15-by-19 arrays (284 distractors and 1 target), containing either vertical or 

horizontal flankers at every position (dense displays, Fig 2b, top). Understanding which 

distractors at what location interfere with target identification in dense displays is difficult (if 

not impossible) using a factorial design, as there are 2284 possible display configurations. 

To circumvent the problem of combinatorial explosion, Van der Burg et al. (1) used a genetic 

algorithm (GA; Fig 2b, bottom; 35). In this study, participants performed the orientation 

discrimination task. Subsequently, for each participant, the displays that led to the highest 

accuracy were selected and combined using a crossover and mutation procedure to generate 

the next generation of displays. This process was repeated over six generations to maximize 

human performance (see Methods for more details; see 36–38 for a similar methodology to 

study visual search in complex displays). Using this procedure, performance increased 

dramatically over generations (Fig 2c, bottom). Interestingly, this performance improvement 

was predominantly caused by changes to the target's nearest neighbours and, to a lesser 

extent, by other flankers within a radius of 1° (Fig 2c, top), which is in contradiction with 

Bouma’s law. It seems as if Bouma’s window has shrunk. 
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Fig 2. a. Top. Example display of the crowding experiment involving sparse displays in Van der Burg et al. (1). 

Observers reported whether the target was tilted to the left or right from vertical while fixating the white dot on 

the left. The target was surrounded by either four horizontal or vertical flankers. The dashed circle, which was not 

visible during the experiment, indicates Bouma’s window. Bottom. Human performance (proportion of correct 

responses) for both flanker orientations and different target-flanker distances. Error bars indicate the standard 

deviations across observers. The shaded area corresponds to the unflanked condition. The horizontal dashed lines 

indicate chance level performance. The vertical dashed line indicates Bouma’s window. Less crowding was 

observed for horizontal flankers and Bouma’s law was verified. b. Top. Example of a dense display. The task was 

the same as in the sparse display experiment. Bottom. GA procedure used in Van der Burg et al. (1). For every 

participant, 20 dense displays (whose proportion of vertical flankers was set to lead to 67% of performance) were 

chosen as the first generation (N=1). Then the displays that led to the highest accuracy were selected as the 

parents of the next generation (children). This selection process was repeated for 6 generations of displays (N=2-

6). c. Results of the GA procedure in Van der Burg et al. (1). Bottom. During the GA procedure, human performance 

increased over generations. Top. Map depicting which locations in dense displays were crucial for the 

performance improvements caused by the GA procedure. For each flanker location, the proportion of vertical or 

horizontal flankers in generation 6, over all participants, was compared (two-tailed t-test) to displays coming from 

a random selection process between generations (neutral condition). Red/blue slots correspond to locations in 

which the proportion of horizontal/vertical flankers increased significantly after the evolution process (p < 0.05, 

not corrected for multiple comparisons to increase the possibility to find evidence for Bouma’s law). More details 

are given in the Methods. 

Here, we investigated which models of crowding can explain these results. To do so, we applied 

the same GA procedure as in Van der Burg et al. (1), but instead of selecting the displays based 

on human performance, we selected them based on model performance. First, we tested 

several leading models of crowding that are based on the classic feedforward pooling 

framework of vision: a model that artificially reproduced Bouma’s law in dense displays, a 

population coding model (39), a model based on summary statistics (40) and a convolutional 

neural network classifier (34,41). 

However, we did not expect the former models to reproduce human behaviour for dense 

displays. Indeed, several studies found that a visual grouping stage is necessary to explain 

global configuration effects in crowding (34,42,43). For this reason, we also tested several 

models of crowding that include grouping and segmentation processes: a model of low-level 

segmentation (44), a convolutional neural network augmented with grouping processes 

(43,45) and a model that combined the population coding and the segmentation models. We 

compared the results obtained with both classes of models. 
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We show that only the models that contain a dedicated grouping mechanism explain the 

results of Van der Burg et al. (1). Hence, we propose that grouping is required to explain which 

elements within Bouma’s window affect target discrimination performance. Because grouping 

is also crucial to understand which elements beyond Bouma’s window impact performance 

(42), we propose that visual grouping (and not Bouma’s law) determines the range of 

interactions in crowding and naturally and consistently explains why this range highly depends 

on the nature and the configuration of the visual stimulus.  



Chapter 4: Shrinking Bouma’s window - Models of crowding in dense displays 

 

116 

 

Methods 

The stimuli and the GA procedures were the same as in Van der Burg et al. (1). We simply 

replaced human observers with models. The displays were composed of a target (a bar tilted 

by either +5 or -5 degrees from vertical) embedded in a dense array of 284 flanking bars, each 

of which was either vertical or horizontal, positioned in a regular and rectangular grid of 15 

rows and 19 columns, spanning 11.25° by 14.25° (see Fig 2a, top, for an example display). The 

fixation point (when the tested model used one) was located 0.75° to the left of the centre of 

the leftmost column. The target was always displayed at the same position (8th row, 8th column, 

eccentricity = 6°) and the task of the models was to report if it was tilted to the left or to the 

right from vertical. As in the human experiments of Van der Burg et al. (1), model performance 

for each display was always computed as the proportion of correct responses in 12 trials. 

For each model, the GA procedure started with 20 dense displays featuring random 

configurations of flankers (first generation). The 4 configurations that led to the best model 

performance were selected as parent configurations . Then, for each model, 12 children 

configurations were generated by randomly mixing the parent nodes. Each child node had a 

50% chance to come from the first parent display and another 50% chance to come from the 

second one. After this crossover procedure, each node had a 4% chance to be randomly 

assigned to either a horizontal or a vertical flanker (i.e., a mutation procedure). Those new 

configurations constituted the next generation of the GA. The same generative process was 

repeated for 6 generation. To reduce noise, the whole GA was run 4 times, like in Van der Burg 

et al. (1), where each participant performed 4 sessions. 

For each model tested with the GA procedure, we monitored the proportion of vertical and 

horizontal flankers at each location of the dense displays in the last generation and compared 

all of them to the respective proportions in the last generation of a random selection process, 

i.e., a neutral condition, as in Van der Burg et al. (1). In this neutral condition, the GA 

parameters were the same as when running the models, except that the displays were selected 

randomly between the generations. The difference between the model behaviour and the 

random selection behaviour is presented as a proportion map where a red or a blue slot 

indicates that a vertical or a horizontal flanker was significantly preferred at that location, 

compared to the last generation of randomly selected displays (two-tailed t-tests; p < 0.05). 
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Like in Van der Burg et al. (1), the statistical tests were not corrected for multiple comparisons 

to maximize the possibility of finding evidence for Bouma’s law in the results. Colour intensity 

represents effect size. Black spaces indicate that neither vertical nor horizontal flankers were 

significantly preferred and therefore that a flanker at that location did not interfere with the 

target in dense displays. We call this the preference measure (see Fig 2c, top, for corresponding 

human results). In addition, we made sure that the GA procedure worked, i.e., that model 

performance increased along the generations. We call this the performance measure (see Fig 

2c, bottom, for corresponding human results). In the results section, we refer to both the 

performance and the preference measures as the GA measures. 

In the GA procedure reported by Van der Burg et al. (1), the proportion of vertical flankers in 

the first generation of dense displays was set to lead to an initial performance of 67% for each 

individual human observer to avoid floor and ceiling effects. Here, we wanted to make a fair 

comparison between different models. If two models would require for example 10% and 90% 

of vertical bars, respectively, to have a performance of 67% in the first generation of displays, 

it would be easier to see a significant increase of horizontal bars in the subsequent generations 

for the second model than for the first one. For this reason, the initial proportion of vertical 

flankers was set to a single value for all models, which corresponds to the mean of what was 

used in Van der Burg et al. (1), i.e., 30% of vertical flankers in the first generation. If any model 

was far from this 67% requirement, we adapted the target orientation amplitude in dense 

displays, mentioning it in the description of the model. 

Prior to the GA procedure, we fitted the tuneable parameters of each model using two control 

experiments. The goal was to find the best parameters for an optimal GA procedure and to 

have the fairest comparison between models. First, we measured model performance for the 

same sparse display experiment as in Van der Burg et al. (1). We call this the sparse display 

measure (see Fig 2a, bottom, for corresponding human results). Second, we measured model 

performance for randomly generated dense displays, in which the proportion of vertical 

flankers varied from 0.0 to 1.0 by increments of 0.2. We call this the proportion measure. Note 

that we performed the proportion measure with humans as well, because no data was 

available for this variable (for more details, see Suppl. Inf. C; SC8). 
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The four measures (preference, performance, sparse display, proportion) are reported in the 

Results section by running each model 10 times, to simulate 10 different human subjects. The 

reported standard deviations are computed over these 10 runs. The code for the entire 

procedure is available at https://bitbucket.org/albornet/shrinking_boumas_window. Note 

that the main measure that was used to compare how well model behaviour reproduced 

human behaviour is the preference measure. All other measures were used as controls to 

ensure that the parameters of the model allowed convergence of the GA procedure. Also note 

that no quantitative assessment was performed to compare models in the preference 

measure, since the results were unequivocal. Either the model results fitted the human 

behaviour or did not. 

  

https://bitbucket.org/albornet/shrinking_boumas_window
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Results 

Results for all models are summarized in Fig 3. Specific descriptions of the models and details 

about the results can be found in the supporting information of this Chapter (Suppl. Inf. C). 

Pooling models 

First, to rule out the possibility that the GA procedure itself produced the shrinking of Bouma’s 

window, we repeated what was done in Van der Burg et al. (1) and used a simple linear pooling 

model whose weights were fitted to produce Bouma’s law (Bouma model). The model 

qualitatively reproduced the human data for the proportion and the sparse display measures 

but failed to reproduce the human GA measures Fig 3, 2nd row), suggesting that the GA 

procedure does not produce the shrinking of Bouma’s window by itself. 

Then, we tested more advanced models based on the traditional, feedforward pooling 

framework of vision. First, we used a model based on the population coding idea (Popcode 

model; 39). This model provides a physiologically plausible description of feature integration 

that accounts for various fundamental features of crowding. Second, we used a model of 

texture computation (Texture model; 40), based on low-level summary statistics, which can be 

seen as high-dimensional pooling (17). Texture models may be particularly well suited for 

dense displays, because they encode complex natural information in a very efficient way. Third, 

we used a deep convolutional neural network (CNN classifier; 45). Deep neural networks can 

be seen as a chain of nested pooling and convolution operations. They contain millions of 

parameters from which unexpected behaviours could arise. The results obtained with these 

pooling models are shown in Fig 3 (3rd to 5th rows). Except for the CNN classifier, all pooling 

models qualitatively reproduced human results for the sparse display and the proportion 

measures. However, they all failed to reproduce human data for the GA measures, either 

because no specific configuration was found by the GA procedure to steadily increase model 

performance (Texture model, CNN classifier) or because too many elements within Bouma’s 

window were highlighted by the GA procedure (Popcode model, Bouma model). More details 

in Suppl. Inf. C; SC1-SC4. 
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Grouping models 

Finally, we tested several models that describe vision as a two-stage process. In such models, 

prior to interference such as depicted in the former models, visual elements are parsed into 

different perceptual groups. Interference only happens after the grouping stage and hence 

only occurs within these groups. First, we used a model of segmentation based on the 

recurrent integration of low-level contours (Laminart model; 45). The interference stage is the 

same as in the Bouma model. Second, we used a Capsule Network, a type of deep neural 

convolutional network that includes recurrent processing to implement grouping and 

segmentation (43,45). The results obtained with these models are shown in Fig 3 (6th and 7th 

rows). Both models qualitatively reproduced the human results for the sparse display and the 

proportion measures. Importantly, both models were also able to qualitatively reproduce the 

human results for the GA measures: the radius for target-flanker interaction shrank to the 

nearest neighbour distance. 

Despite their success at explaining the shrinking of Bouma’s window, these two-stage models 

face problems of their own. Interference in the Laminart model was fitted to the human sparse 

measure data (i.e., it did not propose an actual interference mechanism), and the Capsule 

network was difficult to train properly, since only 1 network out of 10 trained networks could 

reach sufficient performance to be used in the GA procedure (for details, see Suppl. Inf. C; SC5-

SC6). Exploiting the strengths of visual grouping and of a sophisticated interference 

mechanism, we combined the Laminart and the population coding models, to test if such an 

association would lead to a happy marriage between both families of crowding models (Popart 

model). Indeed, this combined model was able to reproduce human behaviour in the 

preference measure by proposing an actual interference mechanism, i.e., the one of the 

population coding model, and without requiring any training or pruning(Fig 3, last row; for 

more details, see Suppl. Inf. C; SC7). 
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Fig 3. Results for all models, for the four measures described in the Methods section. The first row contains the human data. 

For every measure and every model, green/red frames indicate whether a model did or did not qualitatively reproduce the 

corresponding human data (for the performance measure, green corresponds to an improvement of at least 10 points of 

accuracy during the GA procedure), respectively. For the sparse display measure, a grey background indicates that the model 

results were fitted to the human data of Van der Burg et al. (1), which does not represent a true achievement of the model. 

The vertical dashed lines in the sparse display measure and the dashed circles in the preference measure indicate the limit of 
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Bouma’s window. The horizontal dashed lines in all measures indicate chance level accuracy. In general, all models were able 

to reproduce the sparse display measure and the proportion measure, except for the CNN classifier. Moreover, all models 

based on the traditional, feed-forward pooling framework of vision failed to reproduce human results for the GA measures 

(performance and proportion measures), either because the GA procedure was unable to find flanker configurations that 

improved model’s performance (Texture model, CNN classifier) or because too many elements within Bouma’s window were 

highlighted by the GA procedure (Bouma model, Popcode model). Finally, all models that contain a grouping stage qualitatively 

reproduced human results for the GA measures.  
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Discussion 

To understand crowding and vision in general, simple paradigms are the choice to control for 

complexity and unwanted interactions. For example, based on the traditional framework of 

vision, many studies have investigated crowding with simple paradigms and characterized it in 

detail as a local interference mechanism (15–18). However, simple paradigms may lead to 

carved-in-stone principles that are true only in such simple cases but do not apply to realistic 

situations. As shown here and in many previous publications, this problem seems to manifest 

in crowding. For example, Bouma’s law holds true only for sparse displays (1,33,46,47). 

Complex displays come with their own problems and questions, which are absent in sparse 

displays. For example, with many flankers, the question is not only how visual elements 

interfere with the target, which is the main question in almost all crowding studies, but also 

which elements interact with each other. In addition, it is difficult to determine which displays 

to test out of the virtually infinitely many possible ones. To cope with the latter problem, Van 

der Burg et al. (1) proposed to use a GA procedure to study crowding in dense displays. In their 

paradigm, among all elements within Bouma’s window, only the target’s nearest neighbours 

had an influence on target discrimination performance. 

Here, we applied this procedure to many different models of visual crowding, each coming 

with its specific hypotheses about the visual system. Such an extensive comparison is a good 

way to rule out or give support to general principles about human vision, because it is possible 

to identify, among all models, the common causes for the failure or success to explain the 

results. We have shown that none of the tested models that are based on a cascade of 

feedforward computations and pooling are able to reproduce the findings of Van der Burg et 

al. (1). These models produced results in which either no element or too many elements within 

Bouma’s window were highlighted by the GA procedure. In contrast, all the models that include 

a grouping process could reproduce the human results. It seems that a global grouping and 

segmentation process is crucial to explain crowding in dense displays. Importantly, combining 

a global grouping stage and a local interference stage led to the best results (Popart model).   

Along the same line, Manassi et al. (33) showed that elements beyond Bouma’s window can 

have a strong impact on target discrimination, and that the configuration of elements in the 

whole visual field determines crowding strength (see also 24,25). A similar extensive 
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comparison of models showed, once again, that only models that could reproduce these 

results contained a dedicated grouping stage (46; see also 34,43,49). Moreover, Van der Burg 

et al. (49) showed that crowding in dense displays does not depend on target eccentricity but 

only on the configuration of the nearest neighbours. For all these reasons, it becomes clear 

that grouping, and not Bouma’s window, determines which elements interfere with each other 

in human vision.   

It is important to note that, contrary to our previous work (34,42), we did not pick the stimuli 

to pit models against each other. The GA procedure produced the stimuli in a bottom-up 

fashion. As a limitation for pooling models, we cannot rule out that running the procedure for 

more generations may lead to “good” configurations which were not found using only 6 

generations. However, there are principled reasons that explain why pooling models do not 

reproduce human results. Indeed, without grouping and segmentation to “rescue” the target 

from the flankers, all elements within Bouma’s window would decrease performance. 

Grouping and segmentation seem crucial to explain crowding in general (42,44,48,50). 

Moreover, it is known that texture models and other models based on pooling do not 

reproduce human grouping and segmentation (34,42,43,51,52). Hence, it seems unlikely that 

simply adding generations in the GA algorithm could lead to human-like behaviour. Moreover, 

even if these models did find interesting configurations after a thousand generations, they 

would not reproduce an important behaviour, namely, rapid convergence of the GA. 

How exactly grouping is implemented in humans is an open question. Here, we have used two 

different grouping mechanisms. The grouping mechanism in the Laminart model is the 

formation of illusory contours between well-aligned edges that favour the parsing of visual 

elements into different layers of the network. This model works particularly well for the kind 

of displays that are used in Van der Burg et al. (1), because vertical and horizontal elements 

placed on a regular grid are either perfectly aligned or not aligned at all. However, this 

mechanism breaks down for more naturalistic stimuli, in which the complexity of low-level 

edges leads to an excess of illusory contours and, therefore, to bad segmentation. Capsule 

networks use a fundamentally different mechanism in which grouping is determined by 

recurrently maximizing the agreement between how neurons interpret a stimulus (45). This 

mechanism is much more general than for the Laminart model and is a promising candidate as 

a general framework to understand grouping and segmentation (43). There are many more 
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possibilities. For example, Linsley et al. (53) proposed another general recurrent grouping 

mechanism that is scalable to solve complex visual tasks at a state of the art level. 

An important question for future research will be to pit different models of grouping and 

segmentation against each other. (Un)crowding is one testbed in this respect, but there are 

many others, for example involving texture segmentation (51,52), naturalistic image 

segmentation (53) or spatiotemporal grouping and segmentation (54). Given the importance 

of grouping and segmentation, investigating which models can explain these results is an 

important step towards a better understanding of human vision.  
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Summary of the results 

For decades, human vision was studied mainly in terms of low-level circuits, using electro-

physiological and neuro-anatomical measurements as constraints for successful models (1–4). 

This approach was fruitful, as it allowed to discover important fundamental mechanisms and 

paved the road for future vision research. Based on these discoveries, human vision was 

modelled as a feedforward hierarchy of increasingly complex representations (5). The models 

built upon this framework were able to explain how humans can recognize complex objects 

with low computational costs and few resources (5–12). These efforts resulted in the recent 

development of deep convolutional neural networks, state-of-the-art models both in 

computer vision (13–17) and neuroscience (18–25). 

However, relying only on feedforward models and low-level circuits measurements misses 

important aspects of human vision since, as shown, these circuits cannot be studied in isolation 

(26). One reason is that recurrent connections play a central role in the visual cortex. For 

example, feedback occurs at the very first stage of vision. Indeed, V1 neurons respond to 

illusory contours only after they are formed in V2 (27–29). Moreover, neuron tuning properties 

are considerably altered by the presence of contextual elements, as exposed in V1 (30,31) and 

V4 (32). 

Although many object recognition tasks can be solved by feedforward circuits using very simple 

computations, this is only a small subset of what vision does. Human vision has evolved to 

encapsulate many intricate behavioural functions. It is thus likely subject to more constraints 

than object recognition performance only, motivating the use of recurrent connections. In 

particular, recurrent connections in the visual cortex might allow the integration of contextual 

information in the representation of natural visual stimuli (33). Although every recurrent 

network has an equivalent unfolded feedforward network, the former use orders of magnitude 

fewer parameters and neurons (34). Hence, given the importance of recurrent connections in 

the human visual cortex, vision cannot be reduced to basic computations. It is important to 

probe high-level properties of human vision using adapted paradigms. 

Along these lines, visual crowding can be used as a probe into human vision. Based on the 

success of feedforward models, it is usually described as the consequence of mandatory 

pooling that occurs along the processing hierarchy necessary to perform object recognition 
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(35–40). This explanation was validated by comparing the predictions of feedforward pooling 

models to different hallmarks of visual crowding, such as Bouma’s law (41). 

However, crowding paradigms involving more complex displays undermined the success of 

feedforward models of crowding. First, some hallmarks have been found to no longer be true. 

For example, Manassi et al. (42–45) showed that crowding in a vernier discrimination task can 

be strongly affected by elements that lie far beyond Bouma’s window, and that adding more 

flankers can release the target from crowding (uncrowding). Importantly, high-level 

information about the global layout of the flankers affects low-level information. Configuration 

changes occurring in a range of almost 20 degrees determine the perception of a vernier target 

that depends on few arcmins offsets (45). Second, hallmarks of crowding can be explained as 

the consequence of the limited resolution of selective visual attention (46–48). Selective 

attention can arise both from top-down or bottom-up factors (49). Given the relative balance 

between feedforward and recurrent connections in the visual cortex, crowding and its 

hallmarks may as well be the consequence of, or at least heavily influenced by top-down 

processes. 

These results raise the possibility that feedforward models of vision lack global computations 

and top-down processing. The results in this thesis show that local feedforward models cannot 

reproduce global effects in crowding. In contrast, it is shown that only the models that include 

grouping and segmentation processes reproduce human behaviour. Taken together, these 

results highlight the importance of visual grouping in models of human vision. 

In Chapter 1, we used a large battery of stimuli in which the global flanker layout has a strong 

impact on crowding strength as measured in behavioural experiments. We tested whether 

different models could predict the amount of crowding associated to different flanker 

configurations. More specifically, in half of the stimuli, flankers far outside Bouma’s window 

release the target from crowding in human data (uncrowding). 

The results showed that the most informative characteristic in predicting the success of a 

model was whether the model contains a grouping stage or not. More precisely, amongst all 

tested models, the only model that reproduced human behaviour consistently (i.e., not due to 

overfitting) contained a dedicated grouping stage. Different models that include recurrent 

connections but do not implement grouping did not reproduce human behaviour. This 
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suggests that grouping and segmentation processes are needed to explain global properties of 

visual crowding and human vision in general. 

In the “winning” model (Laminart model; 50), segmentation is initiated locally by a top-down 

signal that triggers the networks dynamics before segmentation spreads along connected 

contours. This top-down signal can be interpreted as the tendency of human observers to 

segment the visual stimulus as efficiently as possible to perform the vernier discrimination task. 

It could be argued that this is in contradiction with a large body of literature showing that 

perceptual grouping may occur independently of top-down attentional selection (51–54). 

However, selection signals in the Laminart model need not be top-down. In a recent 

conference proceeding, it was shown that uncrowding could as well arise from bottom-up 

salience in the Laminart model (55). 

Other models of grouping capture human behaviour as well, as shown by a different study that 

measured the performance of capsule networks. A capsule network is a type of deep 

convolutional network adding recurrent processing to implement grouping and segmentation, 

using the same stimuli (56). Importantly, the authors compared the behaviour of capsule 

networks to different types of deep neural networks using the same number of parameters, 

but that did not implement grouping processes (one purely feedforward, one with lateral 

connections and one with recurrent connections). Uncrowding occurred only for capsule 

networks, suggesting that recurrent processing itself is not sufficient to reproduce the effects 

of configuration in crowding. Importantly, uncrowding was effective only after a certain 

number of recurrent iterative loops, meaning that recurrent processes are necessary to 

reproduce global configuration effects in crowding. 

In Chapter 2, we tested whether the Texture Tiling model (57) captures global configuration 

effects in crowding. Rosenholtz et al. (57) argued that visual grouping and segmentation 

processes are not needed to reproduce these effects. They showed that information about the 

spatial configuration of flankers passes through the high-dimensional pooling stage of their 

model. This information can later yield uncrowding effects at the decision process level, for 

example by reducing the target position uncertainty. This scenario does not require top-down 

computations (58). 
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The results of Chapter 2 showed that the texture tiling model fails to reproduce global 

configuration effects in crowding. Overall, the human performance in the original crowding 

experiments had no correlation with the performance of the model. Moreover, we showed 

that the behaviour of the model is equivalent to a simple pooling model. Indeed, in the Texture 

Tiling model, crowding increases in a monotone fashion, depending on the density of pixels in 

the flanking patterns. This is in contradiction with human results, in which flanker density is a 

weak predictor. 

Along the same line, in a recent study, we dissected global effects in visual crowding by 

breaking down the flanker configurations that involve uncrowding (59). Vernier discrimination 

performance was measured in humans for different partitions of flanker configurations (for 

example, seven square flankers are split into two distinct configurations containing only the 

vertical or horizontal lines of the squares). First, crowding could not be explained by the 

performance of its parts (summing the effect of the flanker parts did not equal the effect of 

the whole), arguing against a pooling explanation. Second, three different models processing 

the input globally were validated on the data. One model was the Texture Tiling model, based 

on high-dimensional, low-level pooling (57). Both other models included grouping processes, 

either based on low-level feature integration (the Laminart model; 54) or on shape-level 

feedback (capsule network; 50,55). The texture tiling model reproduced none of the results, 

and the Laminart model only accounted for a subset of the data. The capsule network 

reproduced the whole set of human results, suggesting that object-like grouping is necessary 

to explain global effects in crowding. 

In Chapter 3, emphasis was put on deep convolutional neural networks. The reason is that 

these networks are the most successful models in terms of behavioural performance in various 

vision-based tasks, in which they often outperform humans. In addition, their neurons’ activity 

shows correlation with the neurons of the primate ventral stream (61–63), making them a 

potential model of human vision (18,24,25). In this study, we used different versions of deep 

convolutional neural networks pretrained on ImageNet (64), and trained simple classifiers to 

perform a vernier discrimination task to investigate whether these networks reproduce global 

effects observed in human crowding experiments (in this case, uncrowding). 
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We used AlexNet (15), because it is often compared to the human visual system (18,23) and 

ResNet-50 (65), a more sophisticated neural network that reaches better standards in object 

recognition and correlates better with primate cortical activity (66). Moreover, to investigate 

whether this failure was due to the general architecture of deep convolutional networks or to 

their training regime, we used a version of ResNet-50 trained on a modified version of 

ImageNet that forces the network to focus on global aspects of the stimulus when performing 

image recognition (67). 

As a result, all tested networks showed crowding, but none reproduced uncrowding effects 

when adding more flankers. Occluding specific regions of the stimuli revealed that all networks 

focused on local features and ignored the overall configuration, consistent with a local pooling 

account of crowding in deep networks. Overall, the results of this study suggest that deep 

neural networks do not reproduce global aspects of visual crowding because they are based 

on local pooling, and not because of their training procedure. 

Although both humans and deep neural networks are subject to visual crowding when 

performing object recognition tasks, the reasons for this impairment are fundamentally 

different. A consequence of this finding is that, although deep neural networks reach the same 

performance as humans in a large number of vision-based tasks, it cannot be concluded that 

the architecture and computations used to perform the tasks are the same. These results cast 

doubt on the proposed similarity between the neural activity of deep neural network and 

neurons in the primate ventral stream (61–63). 

Along these lines, it was shown that a network trained on ImageNet and a randomly initialized 

counterpart show similar correlations to neurons in the mouse visual cortex (68). A more 

extensive study toned this claim down, but acknowledged that using deep neural networks as 

models of human vision was not as straightforward as it seems (69). As a side comment, it is 

still unknown what neural code is used by the visual cortex and whether the correlated 

activities are of relevance at all. 

Recently, Lonnqvist et al. (70), in a similar study as the one of Chapter 3, used crowding as a 

probe to compare the behaviour of deep convolutional neural networks and humans. Instead 

of focusing on effects of configuration, they manipulated parameters in simple crowding 

stimuli, such as size, target-flanker spacing and feature similarity. They also found that although 
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both humans and deep networks are subject to crowding, the underlying reasons for this 

breakdown are different. More specifically, they found that local pooling is the primary source 

of crowding in deep networks, independently of their specific architecture. They proposed that 

crowding in humans is unlike that in convolutional neural networks because there are many 

recurrent connections in the human visual cortex, which are absent from deep networks. The 

results in Chapter 3 add to this affirmation that only adding recurrent connections or global 

computations to traditional models of vision is not fully sufficient to reproduce all aspects of 

human-like object recognition. Indeed, it has been argued that ResNet-50 can be seen as an 

unfolded recurrent network (34). Our results show that this network does not reproduce 

uncrowding, and that training it to focus on global aspects of the visual input does not suffice 

either. 

Inward-outward anisotropy is seen as a litmus-test for crowding (71). In the study of Lonnqvist 

et al. (70), to enforce a fairer comparison between humans and networks, cortical 

magnification was added by deteriorating the resolution of the image input in the periphery. 

An inward-outward anisotropy was observed. However, the direction of the effect was the 

opposite of what is observed in humans. This suggests that simple pooling combined with 

cortical magnification does not account for the inward-outward anisotropy in visual crowding. 

Alternatively, cortical magnification was implemented in the population coding model of Van 

den Berg et al. (40) by scaling the neural population pooling range with eccentricity. In their 

model, a peripheral flanker induced more crowding than a foveal flanker, as in humans. 

Moreover, their model predicted the anisotropy to be strongest at intermediate target-flanker 

spacings, as observed in Farzin et al. (72). As another alternative, we modelled inward-outward 

anisotropy as the consequence of visual segmentation, combined to cortical magnification 

(73). We found that segmenting the target from the flankers is harder for a peripheral flanker 

because of its impoverished representation, producing the expected effect. Our model also 

predicted the anisotropy effect to be strongest at intermediate target-flanker spacing. 

Here, two models based on pooling make opposite predictions for a specific hallmark of 

crowding, whereas two different accounts of crowding make a similar prediction. As a possible 

limitation of the latter model validation, the tested stimuli might only represent a tiny subset 

of the possible relevant configurations to measure. To eliminate this possible confound, it is 
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important to complete these validations using different paradigms in which the stimuli are 

determined in a bottom-up manner and in the future. 

This is what was done in Chapter 4. This study used human data from Van der Burg et al. (74) 

in which visual crowding was measured in dense displays. Instead of sticking to specific 

hallmarks or paradigms, the stimuli were selected using a genetic algorithm (75). Importantly, 

the stimulus selection was made in a bottom-up manner. In the previous chapters, we used 

paradigms tailored to probe the global aspects of crowding. Here, we tested whether our 

model results also hold true for stimuli that were not designed to highlight the importance of 

grouping processes. Importantly, the human data of Van der Burg (74) suggest that Bouma’s 

window shrinks to the nearest neighbour distance, which is the exact opposite effect compared 

to the human data used in Chapter 1 to 3, in which elements beyond Bouma’s window affect 

crowding strength. 

The results of Chapter 4 are in line with the previous chapters. All models based on pooling 

cannot reproduce the human data, whereas all models that include grouping and 

segmentation processes can explain the data. Putting together the latter results with the ones 

in Chapter 1, visual grouping better explains the range of interaction between visual elements 

than Bouma’s window. Crucially, a two-staged model in which a segmentation model (Laminart 

model; 54) is connected to the population coding model of Van den Berg et al. (40), based on 

feedforward pooling, led to the best results and proved that a happy marriage can be sealed 

between both classes of models. 

It is possible to model the human visual system in many ways. In this thesis, the main approach 

that we chose was to pit different classes of models against each other, based on the same 

sets of stimuli and paradigms. This approach can be related to comparative biology, in which 

small genotypic differences lead to drastic phenotype differences. Species-fair comparisons 

are the key to avoid drawing misrepresentative conclusions using this approach (76). Here, a 

first step towards fair model comparisons was to select paradigms and stimuli in both top-

down and bottom-up fashions. 
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Limitations 

In this thesis, it was shown that models need to include a grouping stage to explain global 

aspects of crowding. However, although model results are unequivocal, grouping strength 

between target and flankers is hard to assess quantitatively in a human experiment. Hence, a 

direct correlation between grouping strength and uncrowding is complex to establish. To 

answer this concern, subjective ratings can be used to assess how much the target stands out 

from different flanker configurations in humans. However, this measure may be subject to 

biases from different strategies that observers use to estimate grouping strength. 

Another limitation is that the results in this thesis do not point towards specific mechanisms 

that would explain how the global configuration affects target visual acuity in crowding 

paradigms and it is yet unclear how grouping models would account for the classic effects of 

crowding. In particular, do far away objects only ever improve performance, or can they 

interfere and deteriorate performance further, even when beyond the known interference 

range? In the former case, the classic interference mechanisms would operate only after global 

spatial processing, and pooling would occur only within groups. In the latter case, interference 

would occur during global spatial processing, by an unknown and more complex mechanism 

that would require further research. Evidence from “super-crowding” paradigms (77–79) 

speaks towards the latter case, since elements beyond Bouma’s window can further 

deteriorate performance. However, these effects are restricted to a smaller range than what 

is attributed to uncrowding effects. Since the question is still pending, it is important to propose 

and compare different mechanisms for how elements may be grouped during neural 

processing. The networks that were used as representative of grouping models in the current 

thesis (Laminart model, Capsule network) come with their own weaknesses. Artificial vision 

research has come with many different architectures dedicated to performing image 

segmentation, which were not tested in the frame of this thesis (80–87). 

Finally, although the modelled paradigms involve feature integration across large portions of 

space, they do not involve feature integration along the dimension of time. Using new 

paradigms in which time-based integration is observed in humans would allow to compare 

predictions from different hypotheses and mechanisms as models of visual grouping. An 

appealing example of such a paradigm is given in the next section.  
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Prospects 

To come back to Marr’s tri-level framework developed in the Introduction (88,89), the results 

in this thesis mainly addressed algorithmic questions about the visual system. Recurrent 

connections in models of vision should implement grouping and segmentation processes to 

reproduce human behaviour. Now the question arises of why such processes are crucial to 

human vision (Marr’s computational level). In other words, if feedforward models of vision 

reach high levels of performance in many complex vision tasks, why should recurrences be of 

any need at all? There are two answers to this question. On the one hand, recurrences could 

only play a superficial role in vision, which may explain why neuroscience and artificial vision 

has quickly converged to purely feedforward networks. On the other hand, recurrences in the 

visual cortex might play a central role by allowing efficient computations in terms of space, 

time, and energy, as well as rich dynamics which can be used to generalize well to new tasks 

while relying on a small set of training data (90). 

The results in this thesis support a view of the visual system in which the interplay between 

bottom-up processing and top-down inferences is not restricted to simple modulative effects, 

but rather a central mechanism of perception, in line with Bayesian hierarchical models of 

vision (91–96). Recently, CNNs with added feedback attentional processes were proposed, in 

which high-level context-dependent information drives lower layers’ activations (97,98). In 

these models, the feedforward sweep lets all information flow to the upper layers, while 

feedback loops close certain gates according to higher-level activation, as a top-down feature-

selective salience map. This mechanism reinforces relevant information and leads to better 

object recognition and localization performance in cluttered environments. This can be linked 

directly to visual crowding, in which performance is impaired in cluttered environment, but can 

be rescued by higher-level information. 

There are various models that endorse this framework. The results in the current thesis suggest 

that the interplay between the top-down and bottom-up tracks should implement grouping 

and segmentation processes to reproduce human behaviour. However, as developed in the 

previous section, these results do not point towards a particular implementation or 

connectivity in the visual cortex. What exactly is defined by visual grouping in this context and 

what are the mechanisms that support human-like behaviour? Does it occur as the 
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consequence of object-level top-down activity, or from time-consuming local recurrent 

computations? 

To tackle these questions, more advanced psychophysical paradigms may be needed. In the 

current thesis, it was shown that focusing on simple experimental paradigms to study human 

vision might be incomplete, because this does not reflect the complex ontology of its outputs 

and functions. Human vision has evolved in complex environments, in which elements are 

almost never presented in isolation. To capture the nature of the functions and connectivity it 

has developed, it is essential to use paradigms that reflect the natural settings of human vision. 

In Chapters 1 to 4, the importance of visual grouping was studied by using paradigms that span 

large portions of the visual field. However, although these paradigms highlight feature 

integration across space, they ignore that vision exists in time. They cannot investigate, for 

example, the importance of visual grouping across different instants in time. Well-controlled 

psychophysical paradigms in which elements span large portions of space and time might help 

to further characterize the grouping mechanisms that occur in human vision. 

A good example is the sequential meta-contrast paradigm (SQM; 80,81). In this paradigm, 

observers are shown a sequence of frames consisting of two diverging streams of lines, starting 

with a single central line (Fig 1c). When the central line is offset, observers perceive the offset 

in the entirety of the stream to which they attend. Drissi-Daoudi et al. (101) investigated 

feature integration across time by including a second offset line later in the stream. If both 

offsets are opposed, the stream is perceived without offset. If they are the same, the stream 

is perceived with a larger offset. Importantly, this feature integration occurs until the offset 

frames are separated by up to 450 milliseconds. Moreover, when a third offset is included in a 

frame that is just outside this time-window, it is not integrated in the stream. It is as if vernier-

offset features are mandatorily integrated across space and time by continuous subconscious 

processing, and that the brain “waits” for nearly half a second before it reaches a discrete 

conscious percept afterwards. 

Low-level bottom-up processes cannot explain these results because the periods involved are 

way longer than any known bottom-up integration mechanism, such as visual persistence 

(102). Moreover, attention determines whether and how low-level information is integrated. 

Drissi-Daoudi et al. (101) proposed that in this paradigm the spatio-temporal continuity 
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between the line elements creates a grouped percept that is stabilized thanks to higher-level 

processes. Integration across large periods of time would be used by the brain, for example, to 

perform object segmentation over a cluttered background or behind intermittent occlusions. 

Modelling integration over large periods of time and using dynamical stimuli requires good 

assumptions about the real-time flow of information in the visual cortex. A first step towards 

this goal is to take neuron transmission delays in hierarchical and recurrent models of vision. 

In such models, setting the physical duration of one input frame following real physiological 

axonal delays and brain oscillatory dynamics as measured in the visual cortex can link network 

computations to the real timing involved in dynamical stimuli (103). 

Predictive coding, a type of multi-layered and recurrent model, can be seen as an 

implementation of the hierarchical Bayesian framework described above (104). This type of 

model provides promising insights regarding the results in the SQM paradigm. In predictive 

coding, bottom-up input is minimized through inhibition by top-down expectations and acts as 

an unsupervised prediction error signal (105). Lotter et al. (106) proposed a deep predictive 

coding network in which the role of top-down activity is to predict future input frames in 

realistic video streams (Fig 1a). Since objects are usually composed of elements that move 

together in natural video streams, this network can be seen as a model of object-level 

grouping. 

Recently, Hogendoom and Burkitt (107) proposed to incorporate axonal delays in the 

predictive coding framework. They suggest that minimizing prediction error and predicting 

future frames in such a network might cause both bottom-up and top-down connections to 

carry information about the location and speed of visual elements. This may facilitate the 

synchronization of representations throughout all layers of the hierarchy (Fig 1b), similarly to 

the emergence of the dual stream architecture in the primate visual cortex (108). Importantly, 

because of this synchronization process, bottom-up connections would carry extrapolations 

about the future states of the stimulus. In other words, even the very first frame following 

stimulus onset would never reach higher levels of the hierarchy in its intact form, forcing top-

down processes to integrate low-level information over large periods of time. 
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Fig 1. a. Deep predictive coding network for future frame predictions, as proposed by Lotter et al. (106). In the 

bottom-up pass, the output of each layer is the difference between the prediction of its own input and the actual 

received input. In the top-down pass, each layer updates its own representation states, based on higher-level 

information, to generates latent space predictions. b. Different ways of updating the states and inputs of the 

network. The vertical dashed-lines separates the network time-step simulations. Left. Classic propagation of 

information, as done in Lotter et al. (106). At each time step, visual information propagates through the whole 

network (full bottom-up and top-down pass). Center. The propagation of information takes axonal delays into 

account. Every (bottom-up, top-down or lateral) connection takes one time-step to propagate information. Right. 

After training, if prediction error is minimal, information is synchronized throughout the layers. This implies that 

top-down and bottom-up connections carry extrapolations about future visual states. c. SQM paradigm. Different 

versions give rise to different conscious percepts. d. Input and output of the predictive coding network of Lotter 

et al. (106) trained to perform next frame prediction with instant propagation of information. Integration occurs 

in the network but does not last more than one frame (90; ongoing work). 
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Although long periods of integrations might be produced, this kind of network cannot explain 

the emergence of discrete percepts, such as the ones highlighted by the results of the SQM 

paradigm. For this, a threshold mechanism would be needed, such as in a drift diffusion model 

(110). Alternatively, attractor states could be formed, for example by forcing the network to 

converge to stable states during training, even when the input is highly dynamical (contractor 

recurrent back-propagation; 92). The discrete percepts would arise as the network jumps 

between stable states, driven by a dynamical input that overcomes its stability. The length of 

the window of integration would be set by the amount of stability that the network acquired 

during training.  

To summarize, adding biological realism to hierarchical and recurrent models of the visual 

cortex will potentially provide a fertile ground for new ideas and facilitate investigation on how 

human-like visual grouping works in space and time, hopefully contributing to the conception 

of better models of human vision.  
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Conclusion 

In this thesis, visual crowding was used as a testbed to probe human visual processing. It was 

shown that focusing only on feedforward models and low-level circuits’ measurements 

potentially misses important aspects of human vision. Comparative modelling studies were 

performed and showed that mid-level grouping and segmentation processes are crucial to 

understand global effects in visual crowding. Importantly, these effect are not idiosyncratic. As 

shown in the Introduction, they rather reflect a general and ubiquitous strategy of perception 

to process information efficiently when large portions of the visual field are involved. Hence, 

the results in this thesis do not apply to (un)crowding paradigms only. They provide constraints 

for future artificial vision models. It becomes more and more clear that adding recurrences to 

artificial models of vison can improve their performance, as well as their biological plausibility. 

However, recurrent connections are extremely under-constrained, and feedforward models 

still reach higher levels of performance in many complex visual tasks. Here, it was shown that 

implementing grouping and segmentation processes using recurrent connections reproduces 

human behaviour in complex settings. Hence, this simple addition may help state-of-the-art 

networks to process large parts of the visual input more efficiently and more robustly. 

This work can be embedded in a more general effort to understand the complexity of the brain. 

Modelling the brain boils down to identifying the inductive biases that evolution has found to 

reach sufficient performance on a large variety of complex tasks, relying on the most efficient 

computations that comply with the physical constraints of perceptual systems. It has been 

proposed that, to expose these biases, vision research should focus on three essential 

components of network systems: objective functions, learning rules and architecture (112). 

One striking example of inductive bias that drove vision research forward is the translational 

invariance of semantic content in images, constraining artificial networks to implementing local 

feature detectors with convolutional filters. This reduced the networks’ number of parameters 

needed to perform object recognition by several orders of magnitude and allowed 

convergence to very high levels of performance in a short amount of time. This led to the 

success of feedforward models of human vision. 

Another example is the use of simple explanations to make sense of the outer world. Here, the 

constraint is to encode information as efficiently as possible, i.e, to minimize an objective 
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function defined by the amount of activity in the whole network as, for example, in predictive 

coding. Visual grouping is well embedded in this idea, since object-level feedback helps explain 

a lot of neural activity, especially with dynamic inputs. 

Finding and searching for these inductive biases helps us understand how network 

computations may reflect the natural symmetries of the outer world, reminiscent of Noether’s 

theorem, in which every symmetry of a physical system has a corresponding constraint, i.e., a 

conservation law (113,114). For example, in the case of the translational symmetry of objects 

in the visual field (an object’s identity does not change if translated in the visual field), an 

associated constraint can be observed in perceptual systems trained on image recognition: the 

rapid emergence of using shared convolutional filters, as observed in the primate visual cortex 

as well as in the success of deep convolutional networks. Following this path may hopefully 

lead vision research to at least a fraction of the success that was achieved by physics in the last 

century. 
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A: Supplementary information for Chapter 1 

Back to Chapter 1: [Introduction] - [Methods] - [Results] - [Discussion] 

SA1: Epitome model 

Spatial extent Mechanism Organisation Grouping component 

Local Substitution Feedforward No 

In the Epitome model, described by Jojic et al. (1), large repeating patterns are summarized by 

small repeated representative image patches. Repeated patterns are substituted with their 

exemplars. The original image can subsequently be retrieved with good accuracy from the 

compressed representation, even though neighboring features encoded in the same patch are 

mingled. Epitomes are effectively a “substitution” model that exploits regularities. Although 

this model was not proposed as a model of crowding, it embodies many of the key 

characteristics of local pooling and substitution models.  

Using the authors’ code available online (http://www.cis.upenn.edu/~jshi/software/) with the 

original parameters (designed to optimize image reconstruction accuracy for natural images 

and texture overlays), we ran the model on all stimuli. To evaluate performance, we (the 

authors) used the classic texture evaluation method, analysing the results qualitatively (see 

methods). In addition, we computed the model threshold as: 

 

where leftStim(x,y) is the normalized intensity of pixel (x,y) in the left vernier offset version of 

the output. Effectively, this equation quantifies how different the normalized output images 

are for the left and the right vernier offset versions of the stimulus. If they are very different, 

the task is easy. Consistently across the dataset, the model successfully produces crowding but 

not uncrowding: performance was always worse when adding more flankers (Fig SA1). We 

suggest that the model cannot explain uncrowding because it compresses information from 

local regions of the image, ignoring global structure. 
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Fig SA1. Epitomes. a. Illustration of the epitome model. An image (left) is compressed into an epitome (center), a 

summary of local features. The image on the right is reconstructed from the epitome. b. As an example for the 

classic texture evaluation, we show the stimulus and reconstructed image for the 1- and 7-square conditions. 

Human vernier offset thresholds are better for the 1-square than the 7-square condition. The model does not 

produce uncrowding because vernier offset direction in the output is not easier to make out in the 7-square than 

in the 1-square case (according to the authors’ judgment). c. Example for our performance measure. Human and 

model thresholds (see main text for how model threshold was computed) for vernier alone (condition 1), single 

square (condition 2) and 7 squares (condition 3). The 7-square threshold is higher than the 1- square threshold, 

in contrast with human performance. Note: the model outputs a number quantifying how different the left and 

right vernier offset versions of the input are (so the higher this difference, the better the performance). To make 

comparison with the human threshold easier, we applied the following monotonic transformation to the output: 

“threshold-like output” = 1/“raw output”. Then, we scaled the result to be in the same range as the human results. 

This monotonic re-scaling cannot not change the conclusions because monotonic outputs are mapped on 

monotonic performance and the same is true for U-shaped functions (see methods). 

Back to Chapter 1: [Introduction] - [Methods] - [Results] - [Discussion] 

SA2: Single texture model 

Spatial extent Mechanism Organisation Grouping component 

Global Pooling Feedforward No 

Portilla & Simoncelli (2) proposed a set of statistics capable of capturing the key aspects of 

texture appearance to human vision (Fig SA3a). Balas et al., (3) suggested an explanation of 

crowding in which peripheral vision might measure these texture statistics in pooling regions 
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that overlap and tile the visual field. The intuition is that summary statistics provide an efficient 

way of extracting relevant information at low computational cost from natural images. Though 

Balas et al. proposed a model covering the entire visual field as described in the next 

subsection, they initially tested the predictions of a single pooling region, since texture 

synthesis procedures did not exist for multiple overlapping pooling regions. Each of their 

stimuli fell within a single Bouma-sized patch. They have since suggested that using a single 

pooling region, which greatly reduces computation time, can often suffice for texture-like 

stimuli that fall within a single pooling region (4). 

Although the model was intended by Balas et al. to be applied only over a Bouma’s window-

sized patch, we applied it to the entire stimulus to see if this kind of texture synthesis could 

capture long-range interactions between the vernier and other elements. The texture statistics 

are computed from pixel intensities taken from the entire image. Using the code provided by 

Portilla & Simoncelli (https://github.com/LabForComputationalVision/textureSynth), we 

created textures from all of our stimuli and the authors analyzed the results qualitatively using 

the texture measure (see Fig SA3c for two examples). The model produces strong crowding: 

vernier offsets are harder to discriminate from the textures when flankers are present. 

However, the model cannot explain uncrowding: consistently across our whole dataset, 

uncrowded conditions are worse than crowded conditions for this model (Fig SA3c). More 

elements always deteriorate performance. In their original contribution, Balas et al. seeded the 

texture synthesis algorithm using a low-pass, noisy version of the stimulus to reduce position 

noise. We also ran our stimuli using this method (see results repository online). While the 

output images became less distorted than without using the seed, it did not change the 

conclusion, because the target vernier remained much harder to detect in the textures 

synthesized from the uncrowded 7 flankers than from the crowded single flanker stimuli – i.e., 

there was no uncrowding. 

Back to Chapter 1: [Introduction] - [Methods] - [Results] - [Discussion] 

SA3: Texture tiling model (TTM) 

Spatial extent Mechanism Organisation Grouping component 

Local Pooling Feedforward No 
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The TTM model was first described by Balas et al. (3), with its first full instantiation developed 

by Freeman & Simoncelli (5). It computes summary statistics for overlapping local patches of 

the visual field, mimicking the way V2 receptive fields size grows with eccentricity (Fig SA3b). 

Balas, Rosenholtz and others have studied this model extensively, calling it the Texture Tiling 

Model (TTM; 31,32). In a series of papers, this model explained well the local aspects of visual 

tasks such as crowding and visual search. We ran a selection of stimuli through the TTM model 

(circles, squares, and irregular1). As with the previous textures, the results were analysed by 

the authors using the classic texture measure. Crowding was well captured, but uncrowding 

could not be explained by TTM (Fig SA3d). The vernier was not better represented as the 

number of flankers increased. 

 

Fig SA3. Texture Synthesis and Texture Tiling Model. a. A texture (right) synthesized from the input on the left 

using the Portilla & Simoncelli (2) summary statistics. The output resembles crowding. Pooling- and substitution-

like effects occur. b. Instead of applying the summary statistics process to the whole image at once, only local 

patches of the image are processed, yielding a local summary statistics model. The local patches are thought to 

reflect V2 receptive fields. c. Whole-field summary statistics. From left to right: stimuli and Portilla & Simoncelli 

textures for the vernier, 1-square and 7-square conditions. The vernier offset is easy to determine from the 

texture in the vernier alone condition, and slightly harder in the crowded condition (a right-offset is discernable 

in the middle top of the display). Across all data, the model consistently produces crowding, but no uncrowding, 

as exemplified in the right condition in which no offset is present at all. d. Texture Tiling model. The left column 

shows three synthesized examples from the 1-square condition. On the right is the 7-flanking squares case. The 

model cannot produce uncrowding: since the stimulus on the right is less crowded than on the left in the human 

data, the direction of the vernier should be easier to make out on the right than on the left. However, this is not 

the case. 
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We suggest that TTM alone cannot explain uncrowding because it is a sophisticated local 

mechanism that scrambles together neighboring elements. There is no mechanism allowing 

elements that do not share a pooling region with the target to directly affect the target 

representation. Our results suggest that neither pooling summary statistics over the entire 

stimulus nor pooling over previously tested local regions explains the behavioural results. If the 

whole field is used, uncrowding cannot occur because more elements mean more interference 

and thus worse performance. On the other hand, using local regions does not help because far 

away elements cannot improve performance in cases where humans show uncrowding. 

Back to Chapter 1: [Introduction] - [Methods] - [Results] - [Discussion] 

SA4: Deep textures 

Spatial extent Mechanism Organisation Grouping component 

Global Pooling Feedforward No 

Gatys and colleagues (8) used deep neural networks to create textures. The algorithm starts 

with a noise image and iteratively modifies it to match the correlations between neuron 

activities in a set of layers. This procedure synthesizes textures that are often indistinguishable 

from the original image, creating true metamers (9). Deep textures were not intended to be 

applied to images like our stimuli, nevertheless we were interested in seeing if they could 

handle them because one could think of deep textures as synthesizing textures based on 

learned features rather than on the hand-coded features of Portilla & Simoncelli (2). Perhaps 

the learned features provide a better representation and thus better predict crowding. 

Using Gatys et al.’s code (https://github.com/leongatys/DeepTextures) with their suggested 

set of parameters, we created textures of each stimulus in our database (Fig SA4a shows a 

selection of examples). We first evaluated model performance by the classic texture measure 

performed by the authors. Since the results were much less clear than for the previous texture 

approaches, we also conducted a psychophysical experiment with naive participants. Five 

subjects performed the classic texture measure: they were first explained the texture 

synthesizing process and then were shown textures synthesized from our stimuli. They were 

asked to report if they thought the texture was synthesized from a left- or right-vernier 

stimulus. We used three categories of stimuli (Gestalts, squares and circles), with ten textures 

https://github.com/leongatys/DeepTextures


Supplementary information 

 

156 
 

per stimulus (a total of 100 textures). Performance was at chance for all stimuli. Textures for 

the untested stimulus categories strongly resemble the tested categories (the vernier offset 

orientation is not visible in the textures, even for the vernier-alone condition). We tried 

different stimulus sizes, but this did not improve the results. In conclusion, despite its clear 

success at texture synthesis for natural images, the model in its present form is not suitable to 

study crowding with our stimuli. 

Wallis et al. (10) have proposed a foveated model in which these deep statistics are computed 

over local image patches, just as the TTM computes Portilla and Simoncelli’s statistics over 

local patches. The code is not yet publicly available, so we did not test it explicitly, however, 

we believe it will not explain uncrowding for exactly the same reasons that the TTM does not 

handle uncrowding better than Portilla and Simoncelli’s whole field statistics: distant elements 

that are not in pooling regions around the target cannot affect the target representation. 

 

Fig SA4. Deep textures. a. In the deep texture algorithm, the correlation between a deep neural network’s unit 

activities is used as a summary statistic. Textures are then synthesized to match that statistic. b. Original stimuli 

and textures synthesized from these stimuli using the deep textures algorithm by Gatys et al. (8). The vernier 

offset is poorly visible, therefore, despite its success at synthesizing textures, the model in its present form is not 

suitable to our stimuli. We tried different zooms on our stimuli, but the results did not change. 

Back to Chapter 1: [Introduction] - [Methods] - [Results] - [Discussion] 
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SA5: Wilson & Cowan network with end-stopped receptive fields 

Spatial extent Mechanism Organisation Grouping component 

Global Pooling Recurrent No 

Wilson & Cowan (11) proposed a mathematical model of simple cortical (excitatory and 

inhibitory) neurons interacting through recurrent lateral connexions. Variations of this kind of 

model have successfully accounted for visual masking data using stimuli similar to our lines 

category (12). We used a similar neural network for our crowding stimuli. The model first 

convolves the input image with an on-center, off-surround receptive field mimicking 

processing by the LGN. Next, the input activations are fed into both an excitatory and an 

inhibitory layer of neurons, which are reciprocally connected such that the excitatory units 

excite the inhibitory units and the inhibitory units inhibit the excitatory units. Details of the 

model, its filters, and its parameters can be found in (12) and (13). Although the filters are 

local, the strength of activity at any given pixel location partly depends on the global pattern 

of activity across the network because of the feedback connections. More generally, the 

feedback in the network functions like a discontinuity detector by enhancing discontinuities 

and suppressing regularities. Clarke, Herzog & Francis (14) applied this model to crowding 

stimuli, but it performed poorly and produced no uncrowding. For example, there was no 

difference between the stimuli in the Gestalts category and the length of the bars in the lines 

category had no effect at all on performance.  Here, to improve the model, we replaced the 

classic receptive fields by end-stopped receptive fields so that each neuron is optimally 

activated only by stimuli of a specific length. There were three different sizes for the end-

stopped receptive fields, corresponding to the size of a vernier bar, the size of the whole 

vernier, and the size of the flankers. To measure performance for each stimulus, for each end-

stopped receptive field size, we took as output the state of the excitatory layer after 

stabilization (40 time-steps) and cross-correlated it with the vernier alone output. The cross-

correlations for each end-stopped receptive field size were summed to yield a single output 

number per stimulus. We then fitted a psychometric function on one class of stimuli (training 

set) and used this function to provide model performance for all other classes of stimuli (testing 

set). Apart from the end-stopped receptive fields modification, we used the same parameters 

as in Hermens et al. (12). 
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We fit the psychometric function based on the model’s output for the squares category, i.e., 

the squares category is the training set, and used this fit to measure performance on all other 

stimulus categories, i.e., all other categories are the testing set. We also tried to use each of 

the other categories as the training set; using the squares yielded the best results. The model 

produces crowding: performance drops in the presence of flankers. It also produces 

uncrowding but only for the training set (squares) and, to a lesser extent, for the irregular1 

category. Indeed, performance is better in the 7 squares than in the single square condition 

(Fig SA5b), and marginally better in the 7 irregular1 than in the single irregular1 condition (Fig 

SA5c). For the other categories, there is no uncrowding (see Fig SA5d for an example). The 

choice of the training and testing sets has a strong influence on the conditions, which mimics 

human performance. Squares and lines are the categories for which size regularity seems to 

play the most important role. For all other classes, there is no uncrowding, regardless of the 

training set (circles, Gestalts, irregular2, hexagons, octagons, patternIrregular, patternStars & 

stars – Fig SA5c). This poor generalization capability suggests that the model uses idiosyncratic 

features of its training set rather than capturing general regularities, similar to overfitting. 

 

Fig SA5. Wilson and Cowan network with end-stopped receptive fields. a. Structure of the network in (12) which 

we augmented with end-stopped receptive fields. An excitatory and an inhibitory layer of neurons are activated 

by the stimulus and interact with one another. The output of the excitatory layer is cross correlated with a vernier 

template to measure performance. Figure from Hermens et al. (12). b. Output for the squares category (trained 
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on the squares category). In accordance with human results, performance is better in the 7 squares than in the 1 

square case. c. Output for the irregular category (trained on the squares category). Performance is marginally 

better in the 7 irregular1 than in the 1 irregular1 case. d. Output for the stars category (trained on the squares 

category). There is no uncrowding for this stimulus. Uncrowding occurs only for specific kinds of stimuli, where 

element size regularities seem important. Further, performance depends strongly on which data are used for the 

training set, suggestive of overfitting. e. Model output images. Columns are different stimuli: vernier, 1 square 

and 7 squares. The first row shows the stimuli, and the three subsequent rows show the model output for the 

short, medium and long end-stopped receptive fields. The crucial result is that the vernier is better represented 

in the short and medium populations in the 7 squares than in the 1 square conditions (i.e., uncrowding occurs). 

As mentioned, uncrowding occurred for very few stimuli categories. In cases that didn’t show uncrowding, the 

vernier representation deteriorated further when flankers were added (not shown). Note: the model outputs a 

cross-correlation quantifying how similar the model output is to the model output in the vernier alone condition 

(so the higher this cross-correlation, the better the performance). To make comparisons with human thresholds 

easier, we applied the same linking hypothesis as Hermens et al. (12): we fitted a psychometric function to link 

model outputs to behavioural results, as explained in the main text. 

Back to Chapter 1: [Introduction] - [Methods] - [Results] - [Discussion] 

SA6: Zhaoping’s V1 recurrent model 

Spatial extent Mechanism Organisation Grouping component 

Global Pooling Recurrent No 

This recurrent neural network model is described by Li Zhaoping (15). The network consists of 

a grid of neurons tuned to 12 orientations that are linked by lateral connections that follow a 

specific pattern (see Fig SA6a&b). The connectivity pattern allows the network to reproduce 

many experimental effects such as pop-out, figure-ground segmentation and border effects. It 

has also been shown to highlight certain parts of visual displays such as masked verniers (16), 

and we wondered if it could similarly produce uncrowding. We recoded the network from 

scratch following the detailed instructions and using the same parameters as in (15) and 

studied it as another recurrent model of early visual cortex. We ran all our stimuli and assessed 

performance by cross correlating each output with the output of the vernier without flankers. 

The magnitude of the cross-correlation is taken as a measure of vernier offset discrimination 

performance. The model produces crowding but not uncrowding consistently across the 

dataset (see Fig SA6c). 
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Fig SA6. V1 Segmentation model. a. The input is sampled at each grid position by neurons tuned to 12 orientations, 

mimicking V1 simple cells. b. The connectivity pattern between cells depends on their relative position and 

orientation as shown here. Solid lines indicate excitation and dashed lines indicate inhibition. As shown, each 

neuron excites aligned neurons and inhibits non-aligned neurons. Each neuron has the same connectivity pattern, 

suitably rotated and translated. c. Output images for the square category. Each small oriented bar shows the 

maximally active orientation at this grid position. d. Results for the squares category. The dashed red bar shows 

the vernier threshold, which is matched for humans and the model. As shown, uncrowding does not occur in the 

model, because performance is worse for the 7 squares than the 1 square stimulus. Note: the model outputs a 

cross-correlation quantifying how similar the model output is to the model output in the vernier alone condition 

(so the higher this cross-correlation, the better the performance). To make comparison with the human threshold 

easier, we applied the same procedure as we did for the epitomes, i.e., we applied the following monotonic 

transformation to the output: “threshold-like output” = 1/”raw output”. Then we scaled the result to be in the 

same range as the human results. This monotonic re-scaling does not change the conclusions – the phenomenon 

of uncrowding cannot be altered. 

Back to Chapter 1: [Introduction] - [Methods] - [Results] - [Discussion] 

SA7: A variation of the Laminart model 

Spatial extent Mechanism Organisation Grouping component 

Global Pooling Recurrent Yes 
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The LAMINART model by Cao & Grossberg (17) is a neural network capable of computing 

illusory contours between collinear lines. Francis, Manassi & Herzog (18) augmented it with a 

segmentation process in which elements linked by illusory contours are grouped together by 

dedicated neural populations. This dedicated neural processing operates in the same way for 

all conditions and plays an important role in explaining many other visual phenomena (review: 

44). This model process was intended as an implementation of a two-stage model of crowding, 

with a strong grouping process: stimuli are first segmented into different groups and, 

subsequently, elements within a group interfere. After dynamical processing, different groups 

are represented by distinct neural populations. Performance is determined by template 

matching. Importantly, crowding is low when the vernier is alone in its group (i.e., when the 

population representing the vernier does not represent other elements) and high otherwise.  

The segmentation process is started by local selection signals and spreads along connected 

contours (Fig SA7). The location of each selection signal follows a Gaussian distribution centred 

on a given location, with a constant standard deviation. Uncrowding occurs when the selection 

signals hit a group of flankers without hitting the vernier, rescuing it from the deleterious 

effects of the flankers. In our simulations, each stimulus is run twenty times, each time drawing 

a new selection signal location. The final performance is averaged over these twenty trials. 

Crucially, segmentation becomes easier with more flankers, because a group of many flankers 

connected by illusory contours produces a larger region for selection (Fig SA7).  

To account for the observers’ proclivity to succeed in the vernier discrimination task, the 

central location of a selection signal is tuned to produce the least amount of crowding for any 

condition. This assumption follows the idea that an observer does the best job possible for any 

given situation. Although this added flexibility is not present in other models, it does not 

constitute an unfair advantage for the LAMINART. Indeed, it is not strictly necessary in order 

for the model to produce uncrowding. For example, if the segmentation signals’ central 

location followed a uniform distribution over the whole stimulus, it would still hit a large group 

of flankers (without hitting the target) more easily than a small group of flankers. In summary, 

whenever the flankers form a wide group that can be easily segregated from the vernier, 

uncrowding should be produced. Hence, uncrowding is largely independent of the selection 

signals’ distribution.  
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Many stimuli in the dataset had been simulated by the model in Francis et al. (18). Here, we 

improved the model by using more orientations and we ran the model on our full dataset, 

using the template matching measure (some stimuli could not be run for reasons detailed 

below). Overall, the LAMINART explains the data set well (Fig SA7). More precisely, the 

categories circles, Gestalts, lines, octagons, squares and hexagons are all well explained. 

Categories irreg1, irreg2 and stars cannot be explained, but they include bars of many different 

orientations, and the current LAMINART simulation is only capable of handling eight 

orientations. We did not run the stimuli in the patternStars and patternIrregular categories 

because they are too large to be processed in realistic time. In general, situations where the 

model fails tend to be those in which the model groups elements while the data suggests it 

should not, leading in some cases to no uncrowding, and in other cases to excessive 

uncrowding. One example is when flankers (e.g., squares and stars) group together when they 

should not. Another example is when flankers group with the target vernier (e.g., irreg1), 

suggesting the need to improve the grouping mechanism itself (Fig SA7). Across all stimuli and 

all models, the LAMINART is by far the most successful model in this comparative study 

because it can explain a wide range of uncrowding results, as well as capture classic crowding 

effects. 

Back to Chapter 1: [Introduction] - [Methods] - [Results] - [Discussion] 
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Fig SA7. The LAMINART variation. Top. Activity in the LAMINART model. Colors represent the most active 

orientation (red: vertical, green: horizontal). When a stimulus is presented, segmentation starts to propagate 

along connected (illusory or actual) contours from two locations marked by attentional selection signals. Visual 

elements linked together by illusory contours form a group. After dynamic, recurrent processing, the stimulus is 
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represented by three distinct neural populations, one for each group. Crowding is high if other elements are 

grouped in the same population as the vernier, and low if the vernier is alone. On the left, the flanker is hard to 

segment because of its proximity to the vernier. Across the trials, the selection signals often overlap with the 

whole stimulus, considered as a single group. Therefore, the flanker interferes with the vernier in most trials, and 

crowding is high. On the right, the flankers are linked by illusory contours and form a group that spans a large 

surface. In this case, segmentation signals can easily hit the flanker group successfully (without hitting the vernier). 

The vernier thus ends up alone in its group in most trials and crowding is low. Top-center.  The left row shows 

human performance with the square flanker stimuli. The right row is the output of the LAMINART model. It fits 

the data very well. The same holds true for a majority of our stimuli. To compute the LAMINART’s output values, 

we used the same linking hypothesis as in the original description of the model (18): template matching is used 

to decide if the target vernier offset is left or right, and this result is monotonically transformed into a threshold-

like measure. Bottom-center. Sometimes flankers group together (illusory contours are formed) when they should 

not, and the model erroneously predict uncrowding for this condition. Bottom. Sometimes flankers group with 

the vernier when they should not. Here, weak illusory contours connect the central flanker and the vernier. No 

uncrowding can be produced for this condition because segmentation always spreads to the vernier, 

independently of the success of the selection signals. 

Back to Chapter 1: [Introduction] - [Methods] - [Results] - [Discussion] 

SA8: Alexnet (convolutional neural network) 

Spatial extent Mechanism Organisation Grouping component 

Local Pooling Feedforward No 

Deep Convolutional Neural Networks (CNNs) are local, feedforward, pooling networks. Training 

involves using feedback signals to adjust weights between neurons in subsequent layers. Once 

the network has been trained, users typically fix the weights and use the network in a 

feedforward manner. Given enough time and training samples, CNNs can learn any function 

by learning adequate weights (20,21). CNNs fit very nicely in the standard view of vision 

research, in which basic features, such as edges, are combined in a hierarchical, feedforward 

manner to create higher-level representations of complex objects (Fig 2a in the main text of 

Chapter 1). We reasoned that crowding would occur in these networks for exactly the same 

reason as in classic local pooling models: the target and the flankers’ representations at a given 

layer are pooled within the receptive fields of the subsequent layer, thus, leading to poorer 

performance. Although deep networks obviously compute groups such as objects or animals, 

these groups have no effect whatsoever on crowding of lower level features. Indeed, there are 
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no connections from higher to lower level layers. Thus, elements far away from the vernier 

cannot interact with nearby elements and lead to uncrowding. To test this hypothesis, we 

processed the square category through AlexNet (22), a deep net trained to classify natural 

images with high accuracy, using Tensorflow (23). In order to determine vernier offset 

discrimination in different layers, we trained classifiers to identify the vernier offset from the 

activations of different layers of Alexnet (Fig SA8a). The classifiers had a single hidden layer 

with 512 units, followed by a softmax layer with two outputs, corresponding to left and right. 

In the training phase, we ran verniers through the network, and trained classifiers to identify 

the offset orientation from the different layers’ activations (which were normalized to zero 

mean and unit standard deviation). Each layer had its own classifier. We used all ReLU layers 

following the convolution layers and the last fully connected layer. A different classifier was 

trained for each of these layers. During the test phase, we used verniers alone, verniers flanked 

with a single square (crowded stimuli) and verniers with 7 squares flankers (uncrowded 

stimuli). Both training and testing stimuli had varying sizes, offsets and positions in the image. 

Fig SA8 shows average performance for each layer over 6 runs. For each run, we trained a new 

classifier on each layer, using 250000 verniers in the training set. In the testing phase, we ran 

3000 verniers, 3000 crowded stimuli and 3000 uncrowded stimuli through Alexnet. Our 

classifiers identify vernier orientation from the layer activations for each of these inputs. 

Interestingly, our classifiers could well retrieve the test vernier orientations with 100% 

accuracy in all convolutional layers (layers 2, 3, 4 and 5). Adding square flankers deteriorated 

performance strongly. The single square (crowded) stimuli could be decoded only in the 

convolutional layers 2, 3 and 4, and in fully connected layer 7, but with much poorer accuracy 

than the vernier alone. Crucially, unlike in humans, the 7 squares (uncrowded) stimulus 

performance was always worse or equal to the performance on the single square (crowded) 

stimulus. Hence, the deep network produced crowding, but not uncrowding. We suggest that 

the mechanism leading to these results is similar to the classic local pooling account of 

crowding.  
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Fig SA8. Alexnet. a. Stimuli consisted of either verniers, verniers surrounded by a single square or verniers with 

seven squares. The stimuli had varying sizes, vernier offsets and positions. Alexnet’s architecture and a classifier 

are shown on the right (there was a classifier at each layer). The boxes correspond to the input (leftmost box) and 

activated neuron layers (see 47 for the detailed architecture of Alexnet). We trained softmax classifiers on all 

ReLU layers following the convolution layers and the last fully connected layer to detect vernier orientation from 

the layer’s activity. b. Accuracy of softmax classifiers trained to detect vernier orientation from different layers in 

the deep neural network Alexnet. Across all layers, the offsets in crowded stimuli (1 square flanker) are always 

better detected than offsets in uncrowded stimuli (7 square flankers). This runs contrary to human performance. 

NB. This model only produces percent correct, there is no output image. 

Back to Chapter 1: [Introduction] - [Methods] - [Results] - [Discussion] 

SA9: Hierarchical sparse selection (HSS) 

Spatial extent Mechanism Organisation Grouping component 

Local Sparse readout Feedforward/recurrent No 

This model was described by Chaney, Fischer & Whitney (24). In a series of experiments, it was 

shown that in spite of difficulty identifying a crowded target, crowding does preserve some 

information about the target, i.e., information is rendered inaccessible but not destroyed (see 

7,8 for reviews). For example, a face surrounded by other faces cannot be explicitly identified, 

but information about its features can nevertheless survive crowding and contribute its holistic 

attributes to the perceived average of a set of faces (27). To accommodate these results, 

Chaney et al. (2014) proposed that information is not lost along the visual processing hierarchy. 

Instead, crowding occurs because readout is sparse. Specifically, given a feature map 

representing a stimulus, only a subset of the neurons from this map can be used to decode the 

target, which leads to crowding’s deleterious effects (Fig SA9a). 
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Using the author’s code, we tested all our stimuli and found that crowding could be explained, 

but uncrowding did not occur in the model (Fig SA9b). Originally, the model was used to detect 

crosses, triangles and circles. We modified the model’s readout layer to classify vernier 

orientation, which was achieved with 99.13% accuracy (the rest of the model does not need 

any change to accommodate new stimuli). Then, we dropped 75% of the neurons for the 

imperfect readout, which led to a vernier classification accuracy of 81.48%. We tested all our 

stimuli by asking the model to classify the vernier orientation, first without dropping any 

neurons, then with 75% of the neurons dropped for the sparse readout, as we did for the 

verniers. For all stimuli, performance dropped with the sparse readout. For example, the 1 

square condition was classified with 93.35% accuracy when all neurons were used, and this 

dropped to 75.55% with sparse readout. The 7 squares condition had a similar profile, but 

classification accuracy was worse than for the 1 square condition (71.73% with all neurons and 

59.23% with sparse readout). This pattern of results was found in all stimulus categories: sparse 

readout impaired performance and adding more flankers impaired performance too. Thus, 

there was crowding but no uncrowding. We would like to mention that Chaney et al. argue 

that uncrowding can in fact be explained, if the target and flanker are represented in different 

feature maps, which are however not implemented at the moment. In essence, visual stimuli 

are segmented into different feature maps (this must happen early in the visual pathway to 

explain the low-level vernier results), and subsequently the HSS model applies within feature 

maps, on this pre-segmented input. 

 

Fig SA9. Hierarchical Sparse Selection model. a. The model posits that receptive fields along the visual hierarchy 

are large and dense. This allows for “lossless” transmission of information through the visual system. For instance, 

the offset of the vernier in this illustration is not corrupted by pooling thanks to the density of the receptive fields 
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(blue and red circles). Crowding occurs because, when we try to access information, only a few sparse receptive 

fields are used for readout (red circles). Hence, crowding occurs at readout because of sparse sampling of 

receptive fields. This sparse readout can occur at any stage of visual processing, for example from low-level 

features (shown here) to faces. b. Uncrowding does not occur in the Hierarchical Sparse Selection model because 

performance is worse for the model on the 7 squares than the 1 square condition, contrary to human 

performance. NB. This model only produces a scalar output, there is no output image. 

Back to Chapter 1: [Introduction] - [Methods] - [Results] - [Discussion] 

SA10: Saccade-confounded summary statistics 

Spatial extent Mechanism Organisation Grouping component 

Local Pooling Feedforward No 

Nandy & Tjan (28) proposed a model linking summary statistics to saccadic eye movements: 

crowding is proposed to occur because the acquisition of summary statistics in the periphery 

is confounded by eye-movement artifacts. This leads to inappropriate contextual interactions 

in the periphery and in this way produces crowding. For the present purposes this is not directly 

relevant, because foveal and peripheral uncrowding results are qualitatively identical (29), 

which the saccade-confounded summary statistics model cannot explain since it suggests that 

crowding can only occur in peripheral regions. Moreover, it is not clear how uncrowding can 

occur in this model. 

Back to Chapter 1: [Introduction] - [Methods] - [Results] - [Discussion] 

SA11: Population coding 

Spatial extent Mechanism Organisation Grouping component 

Local Overlapping 
population codes 

Feedforward No 

This kind of model was first described by Van den Berg, Roerdink, & Cornelissen (30). A similar 

model was proposed by Harrison & Bex (31). Both models elegantly produce both pooling and 

substitution behaviour by assuming that an element’s orientation is represented by a 

population code: a probability distribution of its orientation. When many elements are present, 

the population codes interfere and disturb the target element’s representation, which leads to 
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crowding. This interference depends on distance and is usually modeled as a 2D Gaussian. 

Dayan & Solomon (32) proposed a model in which elements are represented as probability 

distributions. They added a Bayesian process to account for the accumulation of evidence over 

time. Their model captures local crowding effects similarly to Van den Berg et al. and Harrison 

& Bex’s models: the interference comes from the representations of neighbouring elements 

deleteriously affecting each other. This model and the one by Van den Berg and colleagues 

cannot handle images as input and thus could not be tested with our stimuli. 

We have shown elsewhere that the Harrison & Bex (31) implementation cannot explain 

uncrowding (33). Agaoglu & Chung (34) showed that the interaction between elements 

depends on which of them is considered as the target for report. Hence, the crowding 

interference between elements in the display depends on the task, which is not easily 

incorporated in the models without a dedicated process. Van den Berg et al. (30) suggested 

that elements do not interfere when they are represented in different perceptual groups, 

similar to the LAMINART model. Similarly, Harisson & Bex (31) have suggested that a 

preprocessing stage determining which elements interfere is needed. 

Back to Chapter 1: [Introduction] - [Methods] - [Results] - [Discussion] 

SA12: Fourier model 

Spatial extent Mechanism Organisation Grouping component 

Global Fourier Feedforward No 

The Fourier transform is sensitive to global aspects of spatial configurations because it is based 

on periodic features. Even if it was never explicitly proposed to explain crowding, it may 

capture some effects of uncrowding that have to do with regularities in the stimulus. Previously 

(14,35), we used a Fourier-based model and tested it on the entire dataset. Essentially, this is 

a texture-like model, assuming that the brain Fourier transforms the visual input. Repetitive 

structures, such as arrays of squares are more compactly coded in the Fourier space than the 

2D space. We restate the results here for comparison with the other models. The model first 

bandpass filters the stimuli (passing a small range of frequencies at all orientations), then 

computes the Fourier transforms of the filtered left- and right-offset cases for each stimulus. 

Similarly to what was done to measure performance of Zhaoping’s recurrent V1 model, these 



Supplementary information 

 

170 
 

are cross-correlated with the filtered versions of the verniers without any flankers and the 

magnitude of the cross-correlation is taken as a measure of vernier offset discrimination 

performance. This process is repeated over all possible passbands (which is finite given a fixed 

image size) until the pass-band yielding performance most similar to humans is found. Across 

the dataset, this approach failed to reproduce the data (see Fig SA12), suggesting that such a 

simple use of global regularities in the display is insufficient to explain crowding. Depending on 

the set of Gabor filters, uncrowding occurred for certain stimuli, but this was never consistent 

over several stimulus types, which is suggestive of overfitting. With one set of filters the lines 

category could be explained, with another the Gestalts category could be explained. 

 

Fig SA12. Fourier model. a. The Fourier model computes Fourier transforms for the left- and right-offset versions 

of each stimulus. If these transforms are very different, crowding is low because the offset direction is easy to 

decode in Fourier space (35). b. Output of the Fourier model. The black bars represent human data; the white 

bars represent the model output. The model failed on most stimuli (35). Note: this model only produces a scalar 

output, there is no output image. 

Back to Chapter 1: [Introduction] - [Methods] - [Results] - [Discussion] 

  



Supplementary information 

 

171 
 

B: Supplementary information for Chapter 2 

Back to Chapter 2: [Introduction] - [General Materials and Methods] - [TTM & Grouping 

Effects] - [TTM & Face Crowding] - [Discussion] 

SB1: Comparison between Lines and Completion experiments 

 

Figure A. Comparison between Lines and Completion experiments. Left. Offset discrimination thresholds were 

determined for vernier targets presented in peripheral vision. Bars indicate flanker configurations threshold 

elevation compared to the vernier alone (green dashed line). Data are taken from Manassi et al. (2015). Center. 

As a validation of the TTM, we asked observers to discriminate between left and right offset vernier in mongrel 

images. Green dashed line indicates vernier alone performance. Red line indicates chance level (50% accuracy). 

Right. As a further model validation, we measured the performance of our template matching algorithm, using 

the same mongrels as in the human experiment. We compared the crowding induced by different number of 

same length flankers, with (same, blue) and without (compl, purple) the mask. In both our validation tasks, 

crowding was always weaker with than without the mask, contrary to the human data, in which this effect appears 

only for 16 flankers. Moreover, with or without adding the mask, crowding always increased with more flankers. 

Back to Chapter 2: [Introduction] - [General Materials and Methods] - [TTM & Grouping 

Effects] - [TTM & Face Crowding] - [Discussion] 
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SB2: Shapes experiment with diamonds 

 

Figure B. Shapes experiment with diamonds. Left. Offset discrimination thresholds were determined for vernier 

targets presented in peripheral vision. Bars indicate flanker configurations threshold elevation compared to the 

vernier alone (green dashed line). Data are taken from Manassi et al. (2013). Center. As a validation of the TTM, 

we asked observers to discriminate between left and right offset vernier in mongrel images. Green dashed line 

indicates vernier alone performance. Red line indicates chance level (50% accuracy). Right. As a further model 

validation, we measured the performance of our template matching algorithm, using the same mongrels as in the 

human experiment. In the original experiment, crowding was strong when the vernier target was flanked by a 

single diamond and decreased when three additional diamonds were added on each side (1st column, 1D vs 7D). 

When the flanking diamonds were rotated by 45°, crowding was strong again (1st column, 6S1D). The TTM did not 

reproduce this set of results: for both our model validation tasks (2nd and 3rd columns) crowding was strong for all 

tested conditions, independently of the flanker configuration. The same validation was performed with a different 

fovea radius parameter in the TTM, yielding similar results (Suppl. Inf. B, SB3). 

Back to Chapter 2: [Introduction] - [General Materials and Methods] - [TTM & Grouping 

Effects] - [TTM & Face Crowding] - [Discussion] 
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SB3: Shapes and Patterns experiments with larger fovea parameter 

 

Figure C. Shapes and Patterns experiments with a larger fovea radius parameter in the TTM. Left. Offset 

discrimination thresholds were determined for vernier targets presented in peripheral vision. Bars indicate flanker 

configurations threshold elevation compared to the vernier alone (green dashed line). Data are taken from 

Manassi et al. (2013). Right. As a validation of the TTM, we measured the performance of our template matching 

algorithm. Results are qualitatively similar to the ones depicted in Figure 3 and in Suppl. Inf. B, SB2. 

Back to Chapter 2: [Introduction] - [General Materials and Methods] - [TTM & Grouping 

Effects] - [TTM & Face Crowding] - [Discussion] 
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SB4: Butterflies experiment 

 

Figure D. Butterflies experiment. Left. Data from (Manassi et al., 2015). Offset discrimination thresholds were 

determined for vernier targets presented in the periphery at 4 degrees of eccentricity. Center. TTM validation in 

which observers discriminate between left and right offset verniers in mongrel images. Right. TTM validation with 

a template matching algorithm using the same mongrels as in the human experiment. Green dashed lines indicate 

vernier alone performance. Red lines indicate chance level (50% accuracy). 

Back to Chapter 2: [Introduction] - [General Materials and Methods] - [TTM & Grouping 

Effects] - [TTM & Face Crowding] - [Discussion] 

SB5: TTM and prediction power - Template match algorithm performance 

 

Figure E. A. When plotting error rates in the mongrel offset matching algorithm as a function of psychophysical 

thresholds data from Manassi et al. (2012, 2013, 2015, 2016), no correlation was found (r(36)=-0.191, p=-0.264, 

BF01=2.647). B. We plotted the error rates measured in the mongrel offset matching algorithm with all tested 

flanking conditions as a function of the sum of the flanker pixel density (see Methods for details). Each dot 

indicates a flanking condition in Figure 1. The red line indicates chance level performance. The data are well fitted 

by a psychometric function (blue line, see Method for details. The correlation between the measured error rates 

and the error rates predicted by the fitted function is strong (r(36)=0.739, p<0.001, BF10>104). 
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Back to Chapter 2: [Introduction] - [General Materials and Methods] - [TTM & Grouping 

Effects] - [TTM & Face Crowding] - [Discussion] 

SB6: TTM and prediction power - Separate experiments 

 

Figure F. We plotted the error rates measured in the mongrel offset discrimination task with all tested flanking 

conditions as a function of the sum of the flanker pixel density (see Methods for details). Each dot indicates a 

flanking condition in Figure 1. The red line indicates chance level performance. We fitted the datapoints for all 

experiments separately, using a psychometric function (blue lines, see Method for details). To have more 

datapoints in the fits, we also used the conditions in which we removed the pointers. The correlations are all 

significant. “Lines”: r(24)=0.929, p<0.001; “Completion”: r(10)=0.923, p<0.001; “Butterflies”: r(6)=0.981, p<0.001; 

“Boxes”: r(8)=0.759, p=0.011); “Patterns” and  “Squares”: r(22)=0.992, p<0.01. 

Back to Chapter 2: [Introduction] - [General Materials and Methods] - [TTM & Grouping 

Effects] - [TTM & Face Crowding] - [Discussion] 

SB7: Pointers location in Manassi et. al (2012) 
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Figure G. In Manassi et al. (2012, 2013, 2015), pointers were added above and below the target to reduce its 

location uncertainty. It was argued that these pointers may increase crowding by creating multiple offsets among 

vernier, flankers and pointers lines (Rosenholtz et al., 2019) (left). However, the pointers used in the actual 

experiment were further from the vernier than reported by the authors (right), reducing the likeliness that 

pointers create more crowding. 

Back to Chapter 2: [Introduction] - [General Materials and Methods] - [TTM & Grouping 

Effects] - [TTM & Face Crowding] - [Discussion] 

SB8: Effect of pointers in the TTM 

 

Figure H. We measured human performance in the mongrel offset discrimination task for all conditions in Manassi 

et al. (2012, 2013, 2015), with or without pointers (bottom). The actual layout of the different conditions is shown 

in Figure 1. The TTM did not show any significant increase in crowding strength (top panel, “All”, t(12)=1.485, 

p=0.151). Analyzing the conditions separately, not correcting for multiple comparisons to maximize evidence for 

an effect of pointers, only the “Boxes” experiment exhibited a significant difference (t(12)=2.905, p-value=0.008). 

All the other conditions did not (“Lines”: t(12)=1.162, p=0.119; “Completion”: t(12)=0.776, p=0.445; “Butterflies: 

t(12)=0.382, p=0.706, “Shapes”: t(12)=0.273, p=0.787). 

Back to Chapter 2: [Introduction] - [General Materials and Methods] - [TTM & Grouping 

Effects] - [TTM & Face Crowding] - [Discussion] 
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SB9: Single face discrimination task - reverted back 

 

Figure I. TTM & single Mooney faces, reverted-back version. A. Single face discrimination task. Observers were 

able to discriminate an upright or an inverted face from a scrambled face at all tested eccentricities. Moreover, 

performance was higher for upright than for inverted faces. B. Mongrel single face discrimination task. In this task, 

the mongrels that came from original stimuli in which the face was inverted were reverted back, so that they 

appeared upright to the observers. This was done in order to isolate inversion effects in the TTM from inversion 

effects in humans as much as possible. As in Figure 7B, performance decreased when the eccentricity was 

increased, contrary to the behavioral results. Moreover, no significant difference between the upright and 

inverted face conditions was observed. The data were analyzed using a linear mixed effect model, with 

eccentricity and face orientation as the two fixed effects and individual subjects as a random intercept. The two 

fixed effects showed no significant interaction (χ2(1)=0.015, p=0.902). The main effect of eccentricity was 

significant (χ2(1)=94.862, p<0.001), but the effect of face orientation was not (χ^2(1)=1.158, p=0.282). The 

difference in effect size between the full model, including both effects and the reduced model excluding the effect 

of face orientation, was only 0.4% (full model: rm
2=0.819, rc

2=0.826, reduced model: rm
2=0.815, rc

2=0.822). 

Back to Chapter 2: [Introduction] - [General Materials and Methods] - [TTM & Grouping 

Effects] - [TTM & Face Crowding] - [Discussion] 

SB10: Mongrel gender matching algorithm 
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Figure J. TTM & crowding in Mooney faces, algorithm results. A. Face crowding task, data from Farzin et al. (2009). 

Target discrimination performance decreased when eccentricity increased. When the target face was flanked by 

inverted faces, crowding increased with increasing eccentricity (orange). When the target was flanked by upright 

faces, crowding increased even more with eccentricity (blue). B. Mongrel gender matching algorithm results. As 

with the gender crowding discrimination task, accuracy decreased with eccentricity but did not differ between 

the upright and inverted flanker conditions, contrary to the behavioural data. 

Back to Chapter 2: [Introduction] - [General materials and methods] - [TTM & grouping 

effects] - [TTM & face crowding] - [Discussion] 

SB11: TTM & Pixel density - Detailed methods 

To assess the behaviour of the TTM, we plotted human performance in the mongrel vernier 

offset discrimination task (error rate [%]) against the flanker pixel density in the original stimuli. 

For each stimulus image, the flanker pixel density was computed as a weighted sum of the 

pixels that belong to the flanking pattern. Each pixel contribution was weighted by a function 

that decreased exponentially with the distance to the target (Eq. 2), mimicking Bouma’s law 

(Bouma, 1970). 

S = ∑ e−D(i,j)2 σ2⁄

𝑖,𝑗
    (2) 

S was the sum of all pixel contributions, D(i, j) the distance from pixel (i, j) to the target and σ 

the width of the weighting function. σ was set to the target eccentricity divided by 4 so that 

weights vanished for distances bigger than Bouma’s law radius. To evaluate how close the TTM 

was to a simple pooling model, we fitted a psychometric function to the TTM performance (Eq. 

3). 

P(S | a, b, c) = 100 ∙ [tanh(a ∙ S − b) ∙ (0.5 − c) + c]    (3) 

P was the output performance (error rate [%]) computed by the fitted psychometric function, 

a, b and c were the fitted parameters. P was bounded by a basic error rate (c) and chance 

level (50%). 

Back to Chapter 2: [Introduction] - [General materials and methods] - [TTM & grouping 

effects] - [TTM & face crowding] - [Discussion] 
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C: Supplementary information for Chapter 4 

Back to Chapter 4: [Introduction] - [Methods] - [Results] - [Discussion] 

SC1: Bouma’s law model 

To set a basis for our analysis, we used a model that assumes Bouma’s law (42) holds true in 

dense displays. In this model (Fig SC1, top), any flanker in the dense display creates the same 

amount of interference as it would do in a sparse display. To set interaction weights between 

the flankers and the target, we used the data from the sparse display experiment of Van der 

Burg et al. (1; Fig 2a in the main text of Chapter 4, bottom). Based on this data, we defined 

interaction weights for any flanker as the performance drop that it would cause in the sparse 

display experiment, and the total interaction T as the sum of the weights of all flankers in the 

display. For each display, we defined the probability for the model to make a correct response 

as in Eq. 1. 

𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝑚𝑎𝑥[𝑃𝑢𝑛𝑓𝑙𝑎𝑛𝑘𝑒𝑑 ∙ (1 − 𝐴 ∙ 𝑇), 0.5] (1) 

Punflanked comes from the sparse display experiment in Van der Burg et al. (43) and is the average 

proportion of correct responses without flankers and A is a global gain for the interaction 

weights. A was set to 1.0 for sparse displays but was lowered to 0.3 for dense displays to avoid 

the model being always at chance level. It was tuned to obtain approximately 67% performance 

for the first generation in the GA procedure. Performance for each display was defined as the 

probability of correct responses. 

Note that this model was used in Van der Burg et al. (43), to investigate whether the GA 

procedure was able to produce behaviour consistent with Bouma’s law in the first place. 

However, directly using the probability of correct responses to select the best displays at each 

generation, without simulating trials, might have discounted variability in the evolution process 

of the GA. Hence, for completeness, we ran a second version of the model that, instead, 

selected the best displays based on the simulation of 12 trials (still using the probability of 

correct responses as in Eq. 1, the first version of the model corresponds to running the second 

one with an infinite number of trials). 
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Fig SC1. Top. Bouma model. Flanker-target distance-dependent weights were defined as how much performance 

dropped from the unflanked level in the sparse display experiment of Van der Burg et al. (43). For each display, 

the probability of correct response is a decreasing function of the sum of its flankers’ weights (see Eq. 1). Bottom. 

Results obtained with the second version of the Bouma model (same description as in Fig 3 in the main text of 

Chapter 4).  

The results for both ways of selecting the best displays between generations are shown in Fig 

3 in the main text of Chapter 4 (2nd row) for the first version and in Fig SC1 (bottom) for the 

second version. Both versions reproduced human results for the sparse display and the 

proportion measures. Model performance improved as much as in the human experiment 

during the GA procedure for the first version, but the second version produced only a minor 

improvement. This may be due to the variability added by the selection process in the second 

version of the model. In consequence, the GA procedure did not highlight any specific location 

in the preference measure for the second version of the model, whereas essentially all 

elements inside Bouma’s window were highlighted for the first version. In summary, both 

versions of the model did not account for the shrinking of Bouma’s window. 

Back to Chapter 4: [Introduction] - [Methods] - [Results] - [Discussion] 

SC2: Population coding model 

The population coding model (44) provides a physiologically plausible description of the spatial 

integration of orientation signals and accounts for various aspects of visual crowding. In this 

model, a population of orientation-sensitive neurons encodes the content of each location in 
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the stimulus array (Fig SC2). These neuron populations constitute the first layer of the model. 

Neurons in the second layer pool stimulus information locally, using a weighted summation of 

the population activities in the first layer. The weighting fields are expressed in cortical 

coordinates and hence depend on the population eccentricity. Then, orientation is decoded 

from the activity of the population in the second layer that corresponds to the target location. 

A mixture of von Mises distribution is fit to the population activity and the maximum value of 

the fitted function is taken as the decoded orientation. For each display, performance was 

computed as the proportion of decoded orientations of same sign as the target orientation. 

Model parameters were the same as in (44), except for the pooling range that was adapted to 

produce Bouma’s law in sparse displays. For dense displays, the model was very close to chance 

level, because the pooled activity from horizontal flankers was so large that it overwhelmed 

the activity coming directly from the target. To solve this issue, we added a prior to select target 

orientation: the value of the fitted von Mises mixture function was set to zero for any 

orientation outside the range [-45°, 45°], before it was used to decode the target orientation. 

However, even using the former prior, simply because there were too many flankers that were 

pooled in dense displays, the model was too close to chance level for the GA to work 

(performance could not increase during the GA procedure). To help the model reaching 67% 

of accuracy in the first generation, we increased the target orientation to ±10° (instead of ±5°), 

for dense displays only. 

 

Fig SC2. Population coding model. Populations of orientation-selective neurons encode the content of every 

element in the display array (red arrows). Then, the activity responsible for each location of the array is pooled to 

a second layer of neuron populations (blue arrows). Pooling weights (represented here by the thickness of the 



Supplementary information 

 

182 
 

arrows) depend on the cortical distances between the populations. Finally, the target orientation is decoded from 

the second layer activity by fitting a mixture of von Mises distributions (green) to the activity of the population 

responsible for the target. The sign of the target orientation is used to report a left or a right target. 

Results obtained with the model are shown in Fig 3 in the main text of Chapter 4 (3rd row). The 

model reproduced human behaviour very well for the sparse display measure. For the 

proportion measure, the model performed better than humans for small proportions of 

vertical flankers. This may have been due to the prior that we added to the decoding process 

of the model. The GA procedure increased model performance dramatically, even to a larger 

extent than in the human experiment. The preference measure highlighted a large portion of 

the locations inside Bouma’s window, which is not in accordance with the human results. Note 

that there was an  inward-outward anisotropy (45) in the highlighted locations, i.e., flankers on 

the peripheral side of the target had more impact than flankers on the foveal side. This can be 

explained, because the model takes cortical magnification into account: pooling distances are 

expressed in cortical units and hence, pooling has a larger range for populations located in the 

periphery than near the fovea. In summary, this model reproduces human results for all 

measures, except the preference measure. 

Back to Chapter 4: [Introduction] - [Methods] - [Results] - [Discussion] 

SC3: Texture model 

Texture models (46) iteratively update an array of pure noise, until an image is produced that 

matches a specific set of statistics computed from the model’s visual input. These models are 

seen as models of vision, because they provide a very efficient way to encode visual 

information in the brain, even for natural images (which are rather complex in terms of visual 

content, like our dense displays). Balas et al. (47) proposed that crowding is the result of such 

statistics being computed over pooling regions. They proposed to use the model of Portilla et 

Simoncelli (46) over a Bouma-sized patch centred on the target to generate textures whose 

content reflect the amount of crowding associated to the flanker pattern present in the input 

image. Rosenholtz et al. (40) proposed to improve this model by computing the statistics over 

many tiled regions whose size grow with eccentricity. However, we did not use the latter model 

because it was computationally too heavy: given the stimulus dimensions, it would have taken 

approximately 2 years to run the GA procedure on our lab computer. 
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We used the code available at https://github.com/LabForComputationalVision/textureSynth 

to produce the same kind of Bouma-sized textures, using the displays of Van der Burg et al. 

(43). For each display trial, we generated a texture and decoded whether the target was 

oriented to the left or to the right, using a template match algorithm (Fig SC3a). The algorithm 

uses left and right target templates and looks for the best match over the whole texture. Every 

trial produced a different texture image, because the generative process is stochastic. The 

performance of the model was then the fraction of correct responses over the trials. 

The reason why an algorithm was used instead of human observers looking at the textures, (as 

in 40) is that, to create new generations of displays, the GA procedure must know the 

performance associated to the parent displays. Hence, it would have required the textures to 

be generated during the experiment, which would have added about 1 minute of texture 

computation between every button press in a human experiment, making it last about 64 hours 

per human participant. To make sure that our template match algorithm captured human 

performance qualitatively, we ran an experiment in which humans looked freely at the Bouma-

sized textures generated by the model for dense displays in which the proportion of vertical 

flankers was varied. The task was to decide whether the texture came from a display that 

contained a target tilted to the left or to the right compared to vertical. We fitted the 

parameters of the template match algorithm to match human performance (Fig SC3b). 

As with the population coding model, the results of the texture model for dense displays were 

too close to chance level. Therefore, we increased the target orientation to ±15° (instead of 

±5°), for dense displays only, so that performance was around 67% for the first generation of 

displays in the GA procedure. Note that this was not the case with the validation experiment 

we ran to produce the panel in Fig SC3b.  

 

Fig SC3. a. Texture model. First, the stimulus display is cropped, so that only a Bouma-sized patch around the 

target is sent to the texture model. Then, the model iteratively matches a set of statistics between the input patch 

https://github.com/LabForComputationalVision/textureSynth
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and the output texture. Finally, an algorithm chooses whether the texture comes from a display in which the 

target is tilted to the left or to the right by convolving left and right filters to the output texture and looking for 

the maximal match. b. Comparison between the template match algorithm and experimental results in which 

human observers discriminated the target orientation from the output textures in free-viewing conditions, for 

different proportions of vertical flankers (TA stands for target alone). The algorithm captures human behaviour. 

The results obtained with the model are shown in Fig 3 in the main text of Chapter 4 (4th row). 

For the sparse display measure, the model performance did not show a clear dependence on 

target-flanker distance, aside from the performance bump that happened when the flankers 

went outside the cropping range. This suggests that interference in this model does not depend 

on the relative location of elements, which is in contradiction with human results. This was 

already a hint that the model would not highlight special configuration in the GA procedure 

but would at best behave like the second version of the Bouma model. As expected, although 

the model reproduced human results for the proportion measure, performance did not 

improve in the GA procedure and the preference measure did not highlight any location, 

exactly as with the second version of the Bouma model (Fig SC1, bottom). In summary, the 

texture model only reproduced human results for the proportion measure. 

Back to Chapter 4: [Introduction] - [Methods] - [Results] - [Discussion] 

SC4: CNN classifier 

Deep feedforward convolutional neural networks (CNNs) share many similarities with humans 

in their architecture, in their activity patterns (48,49), as well as in the performance they reach 

in a large number of visual tasks (50,51). Here, we used the same method as in (52), testing 

AlexNet (53) as a representative of CNNs, because it is often used as a model of the human 

visual system (54–57). The weights of AlexNet were already trained on ImageNet (58). To 

perform the crowding task, we trained different classifiers to decode target orientation (left or 

right) based on the activity of each layer of the network. The training set was made of images 

that contained both the target and an array of vertical and horizontal flankers (Fig SC4). Only 

the weights of the classifier were affected by the training phase. In the image samples of the 

training set, the target never overlapped with the flanker array. After this training phase, the 

model used in the GA procedure consisted in AlexNet, plus the classifier whose layer gave the 

best fit of Bouma’s law for sparse displays (which was the fourth layer). The performance of 

the model was then simply the fraction of correct classifications over the trials. 
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Fig SC4. CNN classifier. The stimulus display is processed by the architecture of Alexnet. On top of each layer, a 

decoder was trained to discriminate between left or right targets from the layer activity. The weights of Alexnet 

(which have been previously trained on ImageNet) did not change during the training process. The training set 

was composed of samples containing the target alone and an array of vertical and horizontal flankers that never 

overlapped with the target. The loss function of the classifier was the cross-entropy on target classification. After 

training the classifiers, the whole model was tested with the four measures described in the Methods section. 

The reported results came from the trained classifier put on top of the layer that gave the best fit of Bouma’s law 

in the sparse display measure. Adapted with permission from (52). 

The results obtained with the model are shown in Fig 3 in the main text of Chapter 4 (5th row). 

None of the layers reproduced Bouma’s law qualitatively in the sparse display measure. We 

report all measures that we obtained with a classifier put on top of the fourth layer of Alexnet, 

which gave the least bad fit. For dense displays, the model performance generally decreased 

with the proportion of vertical flankers. However, the model was at chance level with 100% of 

horizontal flankers. During the GA procedure, model performance increased only marginally. 

The preference measure did not highlight any specific location that was crucial for this 

improvement. In summary, the CNN classifier replicated none of the human results. 

Back to Chapter 4: [Introduction] - [Methods] - [Results] - [Discussion] 

SC5: Contour segmentation model (“Laminart”) 

The Laminart model (59) is a spiking neural network that computes illusory contours between 

aligned edges. In the model, grouping is crucial. Elements linked by any contour (illusory or 

real) are grouped together by dedicated neural populations. Stimuli are first segmented into 

different groups by the network's dynamics and, subsequently, elements within a group 

interfere (Fig SC5). Importantly, crowding is weak when the target belongs to a different group 

than most flankers, and strong otherwise. The segmentation process is triggered by local 
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selection signals whose activity then spreads along connected contours. The location of the 

selection signals determines the output of the segmentation process. 

It is very time consuming to run the model (for our displays, it would need to simulate several 

millions of spiking neurons for each display trial) and cannot go through the whole GA 

procedure in a realistic amount of time. However, exploiting the fact that the flankers are 

exclusively vertical or horizontal, we built a faster segmentation algorithm that reproduce the 

model behaviour for the displays used in Van der Burg et al. (43). For each display, the 

algorithm links neighbouring bars whenever they or their tips are aligned (Fig SC5, right). The 

different groups are defined as all disconnected sets of bars that are linked by the former 

procedure. This corresponds exactly to the behaviour of the full Laminart model but requires 

much less time to run. 

At each trial, the algorithm sends selection signals that segment any group that is reached. In 

Francis et al. (59), because the visual stimuli tested with the model consisted of a vernier target 

flanked on both sides, two selection signals were sent at each trial, one on each side of the 

target. Here, because the flankers lie on all sides of the target, four selection signals are sent 

around the target at each trial. The segmentation layer that contains the target was used to 

compute target-flanker interference. For each trial, the total interference, T, was defined 

exactly as in the Bouma model, and a choice was made about the orientation of the target, 

with a probability of correct response defined by Equation 1 in S1 Suppl. Inf.. The only 

difference with the Bouma model is that, thanks to the segmentation process, a single gain A, 

was used for sparse and dense displays, without preventing the GA procedure to work. The 

performance for each display was defined as the fraction of correct responses over the trials. 

 

Fig SC5. Laminart model. In the original model (59), the stimulus is processed by an array of orientation-selective 

feature detectors. Coloured pixels that are depicted in the images correspond to the most active oriented cell at 

that location (red, green, blue, purple and turquoise for vertical, horizontal, oblique, almost vertical and almost 

horizontal orientations). Recurrent connections compute illusory contours between well-aligned edges. Elements 
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that are linked by illusory contours belong to the same group. Then, local, top-down selection signals (blue circles) 

trigger a recurrent segmentation process, parsing the visual input in different segmentation layers (here, SL0 and 

SL1, but there can be more segmentation layers). After dynamic processing, all elements that are linked, through 

an actual or an illusory contour, to a location that is touched by a selection signal are parsed to the corresponding 

segmentation layer. Crowding is computed simply by applying the Bouma model to the segmentation layer that 

contains the target. Left. If only a few flankers are segmented with the target, crowding is weak. Center. If the 

target is linked with a large group of flankers through illusory contours, crowding is strong. Right. Because it would 

have taken too long to simulate the model for large displays, the segmentation process was replaced by an 

algorithm that reproduces its behaviour, given the simplicity of the stimuli involved in Van der Burg et al. (43). 

The algorithm assigns all elements to groups by linking pairs of well-aligned edges. After sending a selection signal, 

all groups of elements that are reached appear in the corresponding segmentation layer. 

Results obtained with the Laminart model are shown in Fig 3 in the main text of Chapter 4 (6th 

row). The model reproduced Bouma’s law simply because target-flanker interference was 

defined as in the Bouma model. The model reproduced human results for the proportion 

measure. During the GA procedure, performance increased with the generations. The 

preference measure revealed that the flanker locations that were crucial for this improvement 

were the target’s nearest neighbours. This can be explained by the fact that, whenever all these 

crucial locations contain horizontal flankers, a “grouping shield” is created around the target 

(such as in Fig SC5a, left), so that: a) no illusory contour can ever group flankers with the target; 

b) a segmentation signal has a large probability to hit a flanker that is linked to this shield, 

parsing many flankers to a different segmentation layer than the one of the target. For these 

reasons, the target’s nearest neighbours were more crucial to determine crowding strength 

than in other models. In summary, this model replicated all human results well, but 

interference in the model was directly fitted to the sparse display data instead of proposing a 

mechanism. 

Back to Chapter 4: [Introduction] - [Methods] - [Results] - [Discussion] 

SC6: Capsule network 

Capsule networks are deep neural networks in which layers of neurons communicate through 

a recurrent process that implements grouping (Fig SC6). Each layer is made of many capsules, 

groups of neurons encoding specific features within their pattern of activity. Layers 

communicate through a time-consuming recurrent process called “routing by agreement” 

(60), in which each capsule in the lower layer predicts the activity of each capsule in the next 
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layer. Grouping happens when many capsules agree that a certain higher-level capsule should 

be highly active: the corresponding higher-level capsule is activated and other higher-level 

capsules for which there is no agreement are shut down (Fig SC6, right). The entire network is 

trained end to end through backpropagation. Doerig et al. (61) showed that Capsule networks 

can explain uncrowding based on their grouping capabilities. 

We trained the model for the GA procedure using a similar approach as in Doerig et al. (61). 

The Capsule network was first trained to recognize targets and groups of horizontal or vertical 

elements using a training set consisting of images that either contained a target in isolation or 

a rectangular array of 1 to 49 uniformly horizontal or vertical flankers. During the training 

phase, the Capsule network was also trained to discriminate between left and right targets (Fig 

SC6, left). The model was trained until it was able to classify the target with 67% of accuracy on 

a validation set composed of dense display arrays with 30% of vertical flankers. Note that only 

one of the 10 models we trained reached this performance level. After the training phase, this 

model was tested with sparse and dense displays. The performance was defined as the fraction 

of correct classifications over the trials. Note that only Bouma-sized crops were sent to the 

Capsule network during training, validation and testing. This was done for a better convergence 

of the training loss and because the training process would have required too much memory 

to fit on our computer with full stimulus arrays. 

 

Fig SC6. Left. Capsule network. The stimulus display is processed by a set of convolutional layers, conveying 

information to the primary capsules, which then projects to the secondary capsules. Routing by agreement 

happens between the primary and secondary capsules. In this case primary capsules encode visual elements 

(target, horizontal, vertical element) and the secondary capsules encode groups of visual elements. The output 

of the secondary capsules is sent to 3 different simple decoders (for stimulus reconstruction, stimulus location 

decoding and target orientation discrimination). The training set is composed of samples containing either the 

target alone or an array of exclusively vertical or horizontal flankers. The loss of the classifier is a combination of 
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a reconstruction loss, and of cross-entropies on target classification and on stimulus location. In addition, a margin 

loss makes sure that the activity in the secondary capsules corresponds to the correct types of visual elements 

(target, horizontal, vertical group). After training the whole network end to end, we tested it with the four 

measures described in the Methods section, using the target orientation decoder to generate responses for each 

stimulus. Right. Routing by agreement. In this example, capsules in the lower layer encode basic shapes, and 

capsules in the higher layers encode objects. The activity pattern of each capsule encodes the characteristics of 

the input it is responsible for (size, location, orientation, etc.). Both primary capsule’s outputs try to predict how 

activity is going to look in the secondary capsules. Because their predictions match in the boat capsule (dashed 

shapes vs. full shapes), the projection that lead to this agreement (dark arrows) is strengthened over time by the 

recurrent routing process. Because these same primary capsules do not agree with each other in the house 

capsule, this projection (light arrows) is weakened by the routing process. Adapted with permission from (61). 

Results obtained with the Capsule network are shown in Fig 3 in the main text of Chapter 4 (7th 

row). Surprisingly, the model reproduced Bouma’s law qualitatively simply by being trained at 

identifying targets and flankers (albeit unflanked performance is higher than in humans). The 

model reproduced human results for the proportion measure as well. The GA procedure 

improved the performance of the Capsule network along the generations, and the preference 

measure showed that the flanker locations that were crucial for this improvement were just 

above and below the target. In summary, this model replicated all human results well, except 

that only the flankers directly above and below the target (and not those to the left and right) 

are highlighted by the preference measure. One caveat is that only one out of the 10 models 

we trained reached good target discrimination in dense displays. 

Back to Chapter 4: [Introduction] - [Methods] - [Results] - [Discussion] 

SC7: Two-stage model (“Popart”) 

The contour segmentation model (Laminart model; 1) explained the configuration effects in 

dense displays very well, but the way to measure target-flanker interaction was simply to fit 

the experimental data of Van der Burg et al. (43) for sparse displays. On the other hand, the 

population coding model (44) is the best at explaining sparse display results but does not 

replicate the preference measure. For these reasons, we combined both models into a two-

stage model (Fig SC7). 

In this combination, the segmentation model acts as a grouping stage and selects which 

elements in the visual field are going to interfere with each other. Only the flankers that were 
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parsed in the same group as the target are sent to the interference stage. The population 

coding model acts as an interference stage and determines how the elements that were 

selected during the first grouping stage interfere. The parameters of both models were kept 

the same as in their respective descriptions above. The only difference was that the 

performance measure of the segmentation model was now computed by feeding the content 

of the target’s segmentation layer to the population coding model. 

 

Fig SC7. Popart model. The model is composed of two stages. Left. Grouping stage. The Laminart model algorithm 

is used to parse the stimulus in different segmentation layers. Right. Interference stage. From the output of the 

segmentation algorithm, a new stimulus is built. Only the elements present in the segmentation layer that 

contains the target are processed by the population coding model to generate a response. 

Results obtained with the model are shown in Fig 3 in the main text of Chapter 4 (last row). 

Thanks to the combination of both segmentation and population coding models, the Popart 

model qualitatively reproduces human results for all measures. 

Back to Chapter 4: [Introduction] - [Methods] - [Results] - [Discussion] 

SC8: Human experiment for proportion measure 

We asked human participants to sit at 62 cm from an LCD screen (120 Hz refresh-rate), in a 

dimly lit room. The experiment was programmed and run using OpenSesame (62). The task 

was to discriminate between a left or a right target (tilted by 5°) presented in the periphery of 

the visual field. At each trial, as was done in Van der Burg et al. (43), the location of the target 

was either on the left or on the right of a central white fixation dot (0.1° radius). The possible 

target locations were indicated by two red dots (0.02° radius). These dots were visible during 

the whole experiment. When displayed, the target was embedded in an array of 15 rows by 19 

columns of vertical or horizontal flankers (dense display, see Fig 2b in the main text of Chapter 

4). The target was always displayed at 6° of eccentricity (8th row, 8th column in the flanker 
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array). A trial consisted of 500 ms during which the white and the red dots were presented 

alone, followed by 150 ms in which the target and the flanker array appeared, followed by an 

unlimited amount of time in which the observers could give their response by pressing a key. 

After the response was recorded, a new trial was initiated. The experiment consisted of 11 

blocks (1 for practice) of 24 trials each. In each block, trials for each condition (0%, 20%, 40%, 

60%, 80% or 100% of vertical elements in the flanker array) were mixed and evenly distributed 

(i.e., 6 trials per condition). At the end of each block, feedback was given to the observer as 

the proportion of correct responses in the performed block. We ran 7 participants in total, but 

we discarded 1 participant who was at chance level for all conditions. Results are shown in Fig 

3 in the main text of Chapter 4 (top row, 2nd column). Participants gave oral consent before the 

experiment, which was conducted in accordance with the Declaration of Helsinki except for 

the preregistration (World Medical Organization, 2013) and was approved by the local ethics 

committee (Commission d'éthique du Canton de Vaud, protocol number: 164/14, title: Aspects 

fondamentaux de la reconnaissance des objets protocole général). 

Back to Chapter 4: [Introduction] - [Methods] - [Results] - [Discussion] 
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