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Abstract. Collisionality is one of the key parameters in determining turbulent

transport in the plasma edge, regulating phenomena such as ”shoulder formation”,

separation of scale lengths in the scrape-off layer, turbulence damping and zonal flow

dynamics. Understanding its role is therefore of primary importance for future reactors

like ITER. Obtaining reliable predictions and a better characterization of plasma flow

properties when varying collisionality remains, however, a critical challenge for the

simulations. This paper focuses on the impact of varying collisionality in a non-

isothermal three-dimensional fluid model in the plasma edge of a high field side limited

configuration with parameters typical of a medium-sized tokamak. The present model

can consistently account for the variation of collisionality and its impact on both in

the parallel resistivity η‖ and in the ion and electron parallel thermal conductivities

χ‖e,i. Details on mean flow and turbulence properties of a non-isothermal edge plasma

encompassing open and closed field lines are given. Changing collisionality leads to

significant changes in the flow properties both on the mean and fluctuating quantities.

In particular, lowering collisionality decreases the size of coherent structures, the

fluctuation levels of turbulence, and steepens the density and temperature equilibrium

profiles around the separatrix leading to a global reduction of the turbulent transport.

The scrape-off layer (SOL) width is observed to increase with collisionality, eventually

resulting in the disappearance of the scale lengths separation between near and far

SOL, consistently with previous experimental observations. At low collisionality, where

the presence of narrow feature is well-established, a contribution of heat conduction

increases up to compete with heat convection.

1. Introduction

A key issue for the success of future tokamaks is predicting and controlling the

distribution of particle and heat loads striking the plasma facing components. This

relies on a deeper understanding of transport processes in the scrape-off layer (SOL)
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and ultimately determining its width. Generally, it is claimed that transport along and

across the magnetic field line sets the SOL width [1]. In low confinement plasma (L-

mode), experimental and theoretical results have shown that turbulent transport is the

main cause for the cross-field fluxes [2–5].

A common feature observed in the SOL of many tokamaks during L-mode discharge

is the so-called ”shoulder formation”: the rise of density decay length when a certain

density threshold is overcome [6]. Generally, this is due to an enhancement of turbulence

level that leads to the broadening of equilibrium profile, eventually increasing the

particle flux on the first wall and accelerating its deterioration. It has been suggested

that this phenomenon is related to an increased collisionality [7, 8]. Collisionality is a

measure of the importance of collisional processes in the plasma dynamics. It is usually

defined as an adimensional quantity ν? using the electron-ion collision time τei that

depends on both density and temperature. Recent experiments have shown that the

shoulder formation coincides both with the transition of filamentary structures into a

new dynamic regime [9–11] and with the onset of the divertor detachment [12]. However,

the role played by detachment is less clear, as pointed out in some experimental studies

[13, 14]. Understanding the origin of the shoulder is a critical issue for future reactors, as

ITER, which are expected to operate at high collisionality regime, and with a partially

detached divertor. If the shoulder is caused by a local increment of collisionality due

to the detachment, it will be hard to get rid of it. Meanwhile, if it is the result of an

overall collisionality’s increment owing to density and temperature condition present in

the plasma, it will likewise be suppressed due to the higher temperature available in

bigger size machines [15, 16].

Besides, theoretical and numerical studies on the instability mechanisms in the edge

region [17–19] have shown that collisionality is one of the control parameters which can

change the instability dominating the plasma dynamic. In addition, the reduction of

turbulent transport at low collisionality regime is often invoked as a possible explanation

for the L-H transition [20, 21].

Finally, it has been recognized that zonal flows should have a major role in the

dynamics of turbulence and radial transport [22–24] and that collisionality can impact

their dynamics [25, 26]. When plasma turbulence self-organizes through multi-scale

interactions, zonal flows (toroidal and poloidal symmetric perturbation of electrostatic

potential with a finite radial extend ) and large scale transport events (avalanche,

streamers) play a crucial role on flow properties. Moreover, recent analyses in fluid

turbulence [27, 28] have suggested that zonal flows could impact fluid turbulence

properties.

For all these reasons, the study of the impact of changing collisionality on edge

turbulence properties is a growing interest topic. In this work, we focus on the plasma

edge region, which encompasses the magnetic open field lines of the Scrape-Off Layer

(SOL), the plasma boundary layer in direct contact with the wall, and the outer part

of the closed field region on both sides of the so-called separatrix.

Despite the rapid growth of computer speed and significant improvements in
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computer technology, (gyro)-kinetic simulations remain extremely costly from the

computational point of view. It is particularly true in the near-wall region where particle

recirculation requires addressing the electron and ion dynamics on the same footing and

in a magnetic topology that is much more complex than in the core. Consequently, a

fluid approach, based on drift-reduced Braginskii equations, remains a standard one near

the wall where the temperature is lower and the collisional mean free path significantly

smaller than in the core.

Various state-of-the-art 3D codes exist in the community to investigate edge

plasma turbulence in various configurations (see as examples GRILLIX [29], GBS [30],

BOUT++[31]). Here, simulations have been performed with the code TOKAM3X [32].

This code has been largely used in former studies, mostly in its isothermal version,

assuming a single value of collisionality and examining the effect of turbulence on

complex geometries and/or neutral physics [33–38].

The paper is organized as follows. The non-isothermal TOKAM3X model is briefly

introduced in Sec. 2 together with the numerical setup. Sec. 3 defines the collisionality

and discusses the related parameters in the fluid framework. In Sec. 4, flow properties

are investigated in details in a simulation of reference performed at a given collisionality

value. Sec. 5 analyses how these proprieties are modified when varying the collisionality.

Finally, some concluding remarks are given in Sec. 6.

2. Setup of TOKAM3X simulations

2.1. The physical and numerical model

TOKAM3X is a 3D turbulence code based on two-fluid, electrostatic, drift-reduced

Braginskii equations in the plasma edge of tokamak [32]. By adopting a flux-

driven approach, the code solves in versatile geometry all flow scales simultaneously

without assuming any separation between mean profiles and fluctuations. A non-

isothermal model is reckoned in the present work. Reference scales are defined to make

dimensionless the fluid quantities. For plasma conditions typical of the COMPASS

tokamak retained for the following analysis, the reference values are given in Tab.

1. Time and lengths scales are normalized to the reference ion Larmor radius ρ0
L =√

miT0/eB0 and ion cyclotron frequency 1/Ω0
i = mi/eB0. B0 represents the reference

magnetic field. T0 is the reference temperature that also defines the dimensionless

electronic and ionic temperature Te and Ti. Dimensionless density N and electrostatic

potential Φ are normalized to the reference value n0 and T0/e respectively and velocities

are normalized to the reference ion acoustic velocity c0
s =

√
T0/mi. All the other

normalization conventions are derived from the previous one. Hereinafter all the

considered variables will be treated as adimensional, unless specified otherwise.

The dimensionless set of equations and all the related quantities are given in Appendix

A. They couple the time evolution of six variables: the density N , the ion parallel

momentum Γ‖i(= Nu‖i), the electron and ion energy Ee = 1.5Pe and Ei = 1.5Pi +
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0.5Γ2
‖i/N , respectively, the parallel current J‖ and the electrostatic potential in the form

of vorticity W . Pe = NTe and Pi = NTi are the electron and ion pressures.

ρ0
L[m] 6.88 · 10−4 Ω0

i [s
−1] 5.5 · 107 B0[T ] 1.15

n0[m−3] 5 · 1018 R0[m] 0.56 η0[Ωm] 1.43

T0[eV ] 30 mi/me 2000 χ0[ΩmeV −1] 0.047

Table 1: Reference scales in SI typical of the COMPASS tokamak characteristics. ρ0
L is the

Larmor radius, n0 and T0 are the reference density and temperature at separatrix, Ω0
i is the

ion cyclotron frequency, η0 = B0/en0 is the parallel resistivity of reference, χ0 = B0/en0T0 is

the conductivity of reference and mi,e is the mass of ion and electron.

The direction of magnetic field is such that ion ∇B drift (defined in Appendix

A ) is positive at the bottom of the machine. TOKAM3X has been verified with the

Method of Manufactured Solutions (MMS) and more recently by using the data mining

iPoPe method [39] for the isothermal part of the equations. The numerical scheme is

based on an advanced second-order accurate finite-differences/finite-volumes method.

It is associated with a second-order WENO reconstruction to solve the advection terms

to handle shocks. This approach is thought to be highly conservative.

2.2. Boundary conditions

In the radial direction, homogeneous Neumann boundary conditions are imposed at the

inner and outer boundaries for all variables. For numerical stability at the border, a very

thin buffer region (over four radial points for the grids considered here) is introduced at

each radial boundary in which an artificially very high diffusion is imposed to homogenize

the plasma field over the first flux surfaces (see in [40]). These two buffer regions will

be excluded from our analysis unless specified.

In the open field lines region, Bohm-Chodura conditions are enforced in the parallel

direction. They model the physics of the sheath located next to the limiter wall and in

which quasi-neutrality is no longer valid [1]. These conditions impose a sonic velocity

cs(=
√
Te + Ti) and a parallel current J‖ on the two opposite sided of the limiter target

plates. They can be written in a dimensionless form as:∣∣Γ‖i∣∣ ≥ N
√
Te + Ti

J‖ = jsat[1− e(Λ− Φ
Te

)]
(1)

where Λ is the sheath floating potential (typically Λ ' −3) and jsat is the ion

saturation current equal to ±Ncs = ±N
√
Te + Ti. These conditions can be expressed

likewise by introducing the Mach number M = u‖i/cs and imposing that |M | ≥ 1.

Then, by combining the J‖ in Eq. 1 with the generalized Ohm’s Law (Eq. (A.6)), it
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is possible to get the Robin boundary condition on the parallel gradient of the electric

potential as:

∇‖Φ = Te∇‖log(N) + 1.71∇‖Te ± η‖
√
Te + Ti[1− e(Λ− Φ

Te
)] (2)

It is further required that the second derivative of the density is fixed to 0 and

∂θW = 0 to suppress the diffusive current reaching the target. Regarding the electron

and ion temperatures , assuming that the total heat exhaust in the parallel direction

by the plasma is equal to γe/iNTe/iM , being γi = 2.5 and γe = 4.5 the sheath heat

transmission coefficients for ion and electron [1], the boundary conditions write as:

5

2
NMTe − χ‖,e∇‖Te = γeNMTe

5

2
NMTi − χ‖,i∇‖Ti = γiNMTi

(3)

2.3. Numerical setup

A circular limited geometry with the limiter placed on the high field side has been

considered. The magnetic equilibrium is assumed to be fixed and axisymmetric. The

computational domain encompasses closed and open magnetic field lines, which will be

referred to as the core-edge region and the scrape-off layer (SOL), respectively. All

magnetic flux surfaces are considered to be circular and centered on the magnetic axis.

The safety factor varies radially, with qsep95 ' 4 at the last closed flux surface. The

minor and major radii of the tokamak are a = 334ρL(0.23m) and R0 = 814ρL(0.56m)

respectively, and the aspect ratio is 2.4, corresponding to COMPASS-like parameters.

The total particle and energy fluxes are supposed to come from the plasma core.

The sources are assumed to have a Gaussian shape with half-width a/16 and to extend in

the radial direction over the buffer region. The amplitudes of particle and energy sources

were tuned in order to obtain roughly the reference density and temperature (i.e., N ' 1

and T ' 1 in dimensionless units) at the separatrix in the reference simulation of our

scan. The corresponding integrated sources are 7.5 · 103 and 1.5 · 104 in dimensionless

units respectively for SN and SEe/i which translates to 6.7 ·1020s−1 and 7.5kW (on each

species) in SI units with the reference parameters of Table 1. The latter number might

seem particularly low compared with experiments but can be explained by the fact that

simulations are run in half-torus only and without including any energy loss due to

ionization or radiating impurities. The sources are then kept constant in dimensionless

units for all the simulations presented in this paper. A sketch of the buffer region and

sources is shown in Figure 1.

Finally, the perpendicular diffusion coefficients are chosen equal to DN/Γ/T =

5 · 10−3ρ2
Lωi (i.e. 0.14m2s−1). They are kept constant in space and time throughout

all discussed simulations. These effective diffusion terms can be interpreted as sub-grid

transport terms and are effectively used to damp fluctuations at the discretization grid

scale for numerical stability reasons. One can interpret them as accounting for both
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the collisional transport and the effect of the turbulent small scales (smaller than the

grid spacing) in the cross-field direction. However, no dependency with local plasma

conditions (see [41] for an example of such approach) is taken into account. The value

used in this work results thus from a trade-off between the grid size requirement (directly

related to the computational cost) and the relevant physics.

The grid resolution in the radial Ψ, poloidal,θ and toroidal direction ϕ, is equal

to NΨ × Nθ × Nϕ = 64 × 512 × 64 over the half-torus, implying π-periodicity for the

solution in the toroidal direction. The output sampling frequency is 1/100ωc. The

quasi-steady-state is assumed to be reached when the integrated density, electron and

ion energies over a flux surface are almost constant over time, or likewise, the oscillations’

amplitude of time derivatives of the same quantities are less than 5%. Hereinafter we

will make use of the upstream radial coordinate ru, defined as Ψ − Ψsep, where Ψsep is

the separatrix location, and hence ru results zero at the LCFS. In terms of ru the radial

domain extends over a range [−64ρL, 64ρL]. However, in practice, due to the presence

of the buffer regions, it will be limited to the interval [−58ρL, 58ρL].

Figure 1: Zoom on the radial profiles, between −64ρL and −45ρL, of the particle and energy

sources, integrated over the flux surface. ru = Ψ − Ψsep is the distance from the separatrix.

The green area delimited by −64ρL < ru < −58ρL is the buffer region at the computational

domain’s inner boundary. This region is kept out from the analysis, and it will no longer

appear in the next figures unless specified otherwise. This is also true for the buffer region at

the outer boundary 58ρL < ru < 64ρL (not displayed). The red area denotes the beginning of

the core-edge region.

3. Collisionality

The collisionality is the control parameter of the present study with ν? defined as:

ν? = ν0
eiτ

i
0‖ (4)

where ν0
ei is the inverse of electron-ion collision time and is a constant value

determined once reference temperature T0 and density n0 are fixed. τ i0‖ is chosen to

be equal to the parallel transit time of ions in order to match the usual definition of
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the dimensionless resistivity [10]: τ i0‖ = Lsep‖ /c0
s where Lsep‖ = 2πqsep95 R0 is the parallel

connection length evaluated at the last closed flux surface (qsep95 ' 4 in the considered

cases). Note that this is actually not the normalization of the collisionality νTK3X
? used

in the TOKAM3X model (see Appendix A.1) which does not depend on geometrical

parameters. Practically speaking, since the geometry is held fixed throughout this

study, the two definitions only differ by a multiplicative constant.

Based on the COMPASS-like parameters defined in the section above (Tab.1), we

define a reference collisionality ν?,ref using τ refei ' 25µs.

ν?,ref = νrefei τ
i
0‖ ' 1500

ν? = Cν?,ref
(5)

In this study, we scan the collisionality ν? by varying the constant C in

the range [0.3 − 1000]. In the fluid drift-reduced Braginskii model used here,

collisionality determines both the parallel resistivity η‖ and the ion and electron thermal

conductivities χ‖e,i defined as:

η‖ = 0.51
me

mi

ρ?

2πqsep95 Aν?T
− 3

2
e = η‖0T

− 3
2

e

χ‖e = 3.16
mi

me

2πqsep95 A
ρ?

1

ν?
T

5
2
e = χ‖0eT

5
2
e

χ‖i = 3.9

√
2mi

me

2πqsep95 A
ρ?

1

ν?
T

5
2
i = χ‖0iT

5
2
i

(6)

me,i are the electron and ion mass, A is the aspect ratio and ρ? = ρL/a. The

presence of the geometrical parameters A and qsep in these expressions is due to the

dependency in Lsep‖ of the definition of ν?. A complete definition of the quantity in (6)

and (5) is given in Appendix A.1. Thus, the collisionality scan leads to a variation of the

parallel resistivity η‖ and the thermal conductivities χ‖e/i as well. In order to interpret

the meaning of the ν? scan performed here with respect to experiments, let us note

that scanning ν? while holding ρ? constant for a given machine geometry is equivalent

to scanning the reference density n0. Since the driving fluxes (the amplitude of source

terms) in SI units are proportional to n0, this means that both the particle and energy

sources in SI units are scanned accordingly. In other words, the reported dimensionless

collisionality scan is representative of an experiment in which the particle fuelling and

the heating power would be scanned together, leading to an increase of the density and

a relatively constant temperature (put aside the impact of turbulent transport on the

shape of profiles).

The choice of the COMPASS-like parameters has been made because we are able to

simulate the actual size of the machine in terms of ρ?. Note however that the reference

value ν?,ref , has been increased by a factor of 3 compared to the collisionality that

would be given by the reference parameters given in Tab. 1. This choice is the result

of a compromise between computational cost (increasing with decreasing collisionality)

and fidelity with respect to the experiment. It also allows comparison with previously
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published results with the TOKAM3X code [34]. This way, 0.3ν?,ref actually corresponds

to τ 0
ei, which is the experimental value measured in COMPASS. On the other side,

the two simulations at 100 and 1000ν?,ref correspond to much higher resistivity and

conductivity values than the ones met in experiments. Even so, they allow us, in our

theoretical model, to stress flow properties in high collisionality regimes.

ν∗ η‖0 χ‖0e χ‖0i

1000ν?,ref 10−2 1.61 · 102 4.64

100 ν?,ref 10−3 1.61 · 103 4.64 · 101

10 ν?,ref 10−4 1.61 · 104 4.64 · 102

ν?,ref 10−5 1.61 · 105 4.64 · 103

0.3 ν?,ref 3 · 10−6 5.50 · 105 1.58 · 104

0.3 ν?,ref 3 · 10−6 (η‖(T )) 5.50 · 105 1.58 · 104

Table 2: Scan in dimensionless collisionality ν?. Corresponding dimensionless values of the

parallel resistivity η‖0 and the thermal conductivity χ‖0ei.

In all simulations η‖ is considered as constant and equal to η‖0, except for one case

where the temperature-dependence in T
−3/2
e has been taken into account (Eq.6). On

the contrary, the thermal conductivities χ‖e/i always vary with temperature and the χ‖0
for electron and ion are given in Tab. 2. Typical radial profiles of η‖(Te) and χ‖e(Te)

are illustrated on Fig. 2. They clearly show that they can behave very differently into

the core edge region and the SOL. Profiles of χ‖i(Ti) are not shown here because very

similar. Finally, we notice that the electron thermal conductivity is always larger than

the ion thermal conductivity.

−60 −40 −20 0 20 40 60

ru[ρL]

4.0e-06

6.0e-06

8.0e-06

1.0e-05

η ∥

ν ⋆ =0.3ν⋆, ref
ν ⋆ =ν⋆, ref
0.3ν⋆, ref−η ∥ ⋆T∥

−60 −40 −20 0 20 40 60

ru[ρL]

0

1

2

3

4

5

6

7

χ ∥
e

×105

ν⋆, ref
0.3ν⋆, ref
0.3ν⋆, ref −η ∥ ⋆T∥

Figure 2: Profile averaged in time and ϕ direction extracted from simulations output of the

parallel resistivity η‖ (left) and the electron thermal conductivity χ‖e (right) depending on

the collisionality ν?. The case 0.3ν?,ref − η‖(Te) corresponds to the case (Eq. 6) where the

electron temperature dependence is taken into account. For the parallel conductivities the

temperature dependence is always included. The dashed line corresponds to the radial location

of the separatrix and ru is the distance from it.

Remark 1 - While changing the collisionality changes both the parallel resistivity
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η‖ and the thermal conductivities χ‖e/i, we may expect that the impact of changing the

thermal conductivity is weaker. Indeed, on one side η‖ governs the electric potential

into the vorticity equation and determines both k2
⊥Φ̃ and ũE×B. On the other side, the

thermal conductivity χ‖e/i can be interpreted as a damping term in the energy equa-

tions acting on the parallel length scales only. It tends to reduce k‖ which is naturally

small (fast dynamics in the parallel direction) and so its effect is expected to be small.

This has been confirmed here by supplementary simulations (not shown in the paper)

performed at a fixed parallel resistivity η‖ = 10−5 and a self-consistent variation of the

χ‖e,i, for both ν? = 0.3 and 100ν?,ref . No significant change in the solutions has been

observed on perpendicular transport and turbulent structures for these two values.

Remark 2 - In the SOL, the sheath at the limiter introduces an additional resistance

Rsheath that can be much higher than R‖ (= η‖L‖). In the TOKAM3X model, an

estimate of Rsheath = Te/jsat together with among R‖ and Rsheath is provided in

Appendix B. Therefore, in this flow region, the electrostatic potential profile may be set

through the Bohm boundary condition that could govern the whole dynamic.

4. Reference case

This simulation has been performed to serve as a reference to all other simulations of the

paper. Both plasma equilibrium and turbulence properties of a limited non-isothermal

plasma are detailed. The parallel resistivity η‖ is assumed to be constant here and equal

to η‖0 = 10−5. The parallel thermal conductivities depend on the temperatures with

the values of χ0,e/i provided in Tab.2.

4.1. Edge and SOL turbulence

Fig. 3 shows a typical 3D snapshot of the turbulent solution, characterized by density

and temperature fluctuations. In agreement with former isothermal studies in a similar

configuration, [34], the reference solution shows that plasma turbulence is self-organized

with the occurrence of coherent structures in the core-edge region (closed field lines)

and in the SOL (open field lines). Those bursts of fluctuations, called filaments and

known to be the main responsible for the total radial flux of particles in the SOL [42],

expand along the magnetic field lines in the toroidal direction and propagate outwardly

via ballistic mechanism. They exhibit different sizes in the poloidal plane, with little

radial coherence in the edge of the core region and with a larger coherence in both

radial and poloidal directions into the SOL. This change across the separatrix has been

already observed in many experiments on several machines [5] and corresponds to a

rapid change of the turbulence statistics as already documented experimentally [43].

The radial evolution of the Probability Distribution Function (PDF), skewness and

kurtosis at the LFS of the reference case is shown on Fig. 4. For a general scalar X the

skewness and excess kurtosis are defined as S = 〈(X−〈X〉t,ϕ)3〉t,ϕ
〈(X−〈X〉t,ϕ)2〉3/2t,ϕ

) and K = 〈(X−〈X〉t,ϕ)4〉t,ϕ
〈(X−〈X〉t,ϕ)2〉2t,ϕ

-
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Figure 3: 3D snapshot of density and electron temperature fluctuations showing typical

structures characteristics of edge plasma turbulence. The limiter is shown as thick black

solid line for visual clarity. However in the actual simulations the limiter is taken as infinitely

thin. Reference case, ν? = ν?,ref .

3. The root mean square is evaluated as rms(X) = 〈(X − 〈X〉t,ϕ)2〉1/2t,ϕ .

For the density, the shape of the PDFs is in agreement with the one observed in

former isothermal studies [33]. They evolve from being nearly Gaussian in the edge

of the core region (roughly zero skewness and kurtosis) to being positively skewed in

the SOL with a positive kurtosis indicating a heavy-tailed distribution. The skewness

and the kurtosis sharply increase around the separatrix, underlining a strong change

while crossing it. This indicates the transition from a behavior dominated by small

amplitude events in the edge to a more intermittent regime dominated by the increasing

appearance of large amplitude events in the SOL.

For the electron temperature, the PDFs remain nearly Gaussian in the edge of

the core region as for the density. However, the small shift of the peak indicates a

slight prevalence of small positive temperature events over the negative one (negative

skewness, positive kurtosis). As for the density, the intermittency is preserved, and a

sharp transition is seen across the separatrix, where PDFs move from being negatively

to positively skewed. The negative kurtosis shows a tendency to enhance the presence

of large rare temperature events into the SOL. Contrary to the density, comparisons of

such behavior with experimental measurements are not straightforward due to the high

level of incertitude on temperature fluctuations measurements, which are the results of

indirect measurements [44–47].

4.2. Mean flow and equilibrium profiles

The plasma equilibrium properties are investigated using mean flow variables averaged

both on time and in the toroidal direction ϕ.

Fig. 5 shows radial profiles of density, electron and ion temperatures at both the

high (HFS) and the low (LFS) field sides. In the following with radial profile, we will

mean profile of quantity averaged in time and the toroidal direction ϕ at a specific

poloidal location unless noted otherwise. By default, the HFS profiles are chosen right
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Figure 4: Turbulence fluctuations analysis. PDFs of density (a) and electron temperature (b)

fluctuations at several radial locations on the LFS mid-plane. Profiles average in time and ϕ

direction of skewness (c) and kurtosis (d) at θ = 0(LFS). The dashed lines corresponds to the

separatrix. Reference case, ν? = ν?,ref

above the limiter location. The profiles are characteristic of a L-mode discharge without

any transport barrier. Profiles on the HFS show steeper gradients at the separatrix than

on the LFS, indicating a ballooned transport, i.e. a higher transport on the LFS than

on the HFS. This feature is a well-known property of edge turbulence [48] caused by

magnetic field inhomogeneity, leading to a poloidal asymmetry. Note finally that as

expected from former experimental observations [1], Ti > Te.

The poloidal asymmetry is still visible on Fig. 6. Density and electrons temperature

profiles show indeed significant poloidal gradients leading to total pressure variations

and large parallel flows. Due to the presence of the limiter, these variations are much

larger into the SOL than in the edge of the core region with closed magnetic field

lines. However, poloidal gradients of electronic temperature are slightly smaller than the

density ones due to conduction that only affects the heat transport. The occurrence of

such large parallel flows has been already shown experimentally [48–50] and numerically

[51, 52].
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Figure 5: Profile averaged in time and ϕ direction of density (a) and temperature (b) at

θ = 0(LFS) and θ = 180(HFS). The dashed lines corresponds to the separatrix. The rise on

HFS of the temperature profiles is a numerical artefact due to the buffer region. Reference

case, ν? = ν?,ref .
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Figure 6: Poloidal profiles of density (a) and electrons temperature (b) in the edge of the core

region (closed magnetic field lines (solid lines)) and into the SOL (open magnetic field line

(dashed lines)). θ in degrees increasing in the electron diamagnetic direction. Therefore θ = 0°
corresponds to the LFS midplane, θ = ±90° bottom and top of the machine, θ = ±180° the

HFS midplane. Reference case, ν? = ν?,ref .

4.2.1. The SOL width

The SOL width is a key parameter that determines the heat peak load on the

plasma facing components. It can be determined from the radial profile of the SOL

parallel heat flux at the target, defined here by q‖ = Ncs(γeTe + γiTi), where γe/i are

the sheath heat transmission coefficients for electron and ion normally equal to 2.5 and

4.5. In this reference case, the solution exhibits a double exponential decrease as shown
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on Fig. 7 and the radial profile of the parallel heat flux is well described by:

q‖ = qnexp(−ru/λq,n) + qfexp(−ru/λq,f ) (7)

ru being the distance from the separatrix. The fitting coefficients are qn = 2.128

and qf = 3.842. The squares and stars lines show the slope of the single exponential.

It is worth mentioning that both density and temperature profiles exhibit this double

e-folding length.

These results agree with recent works in limited plasma. Experimental

measurements [53, 54] have shown the same kind of behavior for the decay length of

the heat flux with a wider component (λq,f ) extended up to the wall and a shorter

component (λq,n) extended over few Larmor radii, namely the narrow feature. Such

behavior has been also observed on density profiles with a two-layer structure showing a

steep exponential decay near the separatrix and a much more gradual exponential decay

in the far SOL[7, 8]. It is a critical aspect since it has been measured that the existence

of λq,n dramatically increases the heat flux on the target [55].

Figure 7: Parallel heat flux profile q‖ average in time and ϕ direction (Eq. 7) in the

SOL(ru > 0) at the LFS midplane exhibiting a double exponential fitting. The squares and

stars lines show the slope of the single exponential.The diamond curve is the result of the

fitting. The black curve with error bar is the average profile and its standard deviation. ru is

the distance from the separatrix. Reference case, ν? = ν?,ref .

4.3. Particles and heat transport

The transport of a scalar quantity X is carried out both by convection due to the drifts

and by diffusion. [56]:

ΓΨ
X = u⊥X −D⊥∇⊥X (8)

where ΓΨ is the projection on the flux in the radial direction Ψ, u⊥ is the

perpendicular drift velocity defined in A.1, and D is the diffusion coefficient. In

order to evaluate the turbulent transport, scalar quantities are decomposed into a

mean and a fluctuating part. Let’s introduce a general average operator 〈·〉xi where
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xi = [t,Ψ, θ, ϕ]. Then it is possible to define for any scalar quantity X, its fluctuations

part as X̃ = X−〈X〉t,ϕ, where the averaging is performed both in time and the toroidal

direction and the 〈X̃〉t,ϕ = 0. The magnitude of the turbulent transport depends not

only on the amplitude of the fluctuating transported quantities and their velocity, but

as well as on the relative phase shifts (or cross phases) between them denoted δX̃−Ỹ .

The estimate of δ performed in [57] for two general fluctuating fields having a Gaussian

distribution with a zero mean value and a standard deviation equal to X̃1/2 leading to:

cos(δX̃−Ỹ ) =
〈X̃Ỹ 〉xi√
〈X̃2〉xi · 〈Ỹ 2〉xi

(9)

The Eq.(9) determines the phase shift between Ñ and Φ̃ and between T̃e and Φ̃.

They will be discussed in Sec. 5.

4.3.1. Radial particles flux

According to Eq.(8), the total radial particles flux is ΓΨ
i = NuΨ

⊥i − D⊥∇⊥N that

leads to:

〈ΓΨ
i 〉xi = 〈N〉xi〈uΨ

E〉xi + 〈N〉xi〈uΨ
∇Bi〉xi + 〈Ñ ũΨ

∇Bi〉xi + 〈Ñ ũΨ
E〉xi −D⊥∇⊥〈N〉xi (10)

The first four terms on the RHS of Eq.(10) are respectively the average (mean

flux) and fluctuating (turbulent flux) contributions related to the E × B and the ion

curvature velocity drifts. On Fig. 8a, the relevant contributions of the particle flux

are shown. Here we look at the total flux crossing a flux surface and averaged on time

〈
∫∫

ΓΨ
i · dS〉t. These pictures look essentially the same as a LFS figure (which is not

poloidally integrated) since most of the transport occurs on the LFS.

The averaged terms associated with the E ×B velocity drifts are negligible in this

case, and the fluctuating terms are almost entirely responsible for the particle transport.

In agreement with former studies [58], the fluctuating terms of the E ×B velocity drift

carries out the total amount of particles, while the flux in the radial direction related to

the ion perpendicular drift velocity is almost null. The diffusive flux that accounts for

collisions and small scales turbulence is non-negligible in the core region, but it nearly

vanishes into the SOL.

4.3.2. Radial electron energy flux

The total electron energy flux defines as ΓΨ
e = 5/2NTeu⊥e − 3

2
TeD⊥∇⊥N −

ND⊥∇⊥Te. Its convective part can be decomposed into 10 terms involving mean
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Figure 8: Profiles of various components of the particles (a) and electron energy (b) fluxes

integrated over flux surfaces and averaged on time. The sharp variations of the profiles in the

near vicinity of the radial boundaries are a numerical artefact due to buffer regions. ru is the

distance from the separatrix. Reference case, ν? = ν?,ref .

.

quantities, double and triple correlations such that:

〈ΓΨ
e 〉xi =

5

2

(
〈N〉xi〈Te〉xi〈uΨ

E〉xi + 〈N〉xi〈Te〉xi〈uΨ
∇Be〉xi + 〈Ñ T̃eũΨ

E〉xi + 〈Ñ T̃eũΨ
∇Be〉xi+

+ 〈N〉xi〈T̃eũΨ
E〉xi + 〈uΨ

E〉xi〈Ñ T̃e〉xi + 〈Te〉xi〈Ñ ũΨ
E〉xi+

+ 〈N〉xi〈T̃eũΨ
∇Be〉xi + 〈uΨ

∇Be〉xi〈Ñ T̃e〉xi + 〈Te〉xi〈Ñ ũΨ
∇Be〉xi

)
+

− 3

2
〈TeD⊥∇⊥N〉xi − 〈ND⊥∇⊥Te〉xi

(11)

However, most of the terms in Eq.11 are negligible. The correlation between three

fluctuating quantities are neglected. The major contribution can be reduced at only two

terms as shown in Fig. 8b which shows the radial distribution of the main components

of the electron heat flux averaged over flux surfaces (〈
∫∫

ΓΨ
e · dS〉t). In the edge of the

core region, the electron heat transport is clearly dominated by the convection term

〈Te〉xi〈Ñ ũΨ
E〉xi representing the energy associated to the E × B driven by turbulence.

Instead, into the SOL, the heat conduction is the dominant mechanism. The conduction

term 〈N〉xi〈T̃eũΨ
E〉xi does not correspond to a transport of particles, but it is influenced

by the fluctuations of Te that becomes in the near SOL comparable to the density

fluctuations. As expected from earlier studies [4, 59], present results confirm that the

heat conduction and convection induced by the E ×B drift carry most of the heat.

4.3.3. Poloidal variations of the radial fluxes
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Figure 9: Profile averaged in time and ϕ direction of the radial particles E × B flux,the

conductive and the convective flux heat fluxes at ru = −10ρL (a), closed field lines, and

at ru = 10ρL (b), SOL. θ in degrees increasing in the electron diamagnetic drift direction.

Reference case, ν? = ν?,ref .

Fig. 9 shows the poloidal distribution of particle, convective and conductive heat

fluxes in the edge of the core region and in the SOL. As expected, the particles E × B
velocity drift flux and the heat convective flux shows the same trend. Strongly peaked

in an angular sector around θ = 0°, it confirms the signature of a ballooned transport in

the edge of the core region, with the presence of non-symmetric large amplitude parallel

flows at the outboard midplane (LFS). Comparatively, the conductive heat is flatter

because the parallel heat conduction reduces poloidal (LFS/HFS) asymmetries on Te
fluctuations. In the SOL, the ballooning of the flux is reduced. The higher temperature

gradient leads to an increased contribution of the conduction. It is worth noticing that

additional local peaks occur in the SOL close to the limiter due to perturbations induced

in the plasma.

5. Impact of collisionality on flow properties

Simulations have been performed in the range of collisionality values between 0.3 to

1000 times ν?,ref . All values of ν? and corresponding η‖0 and χ‖0e/i are given in Tab

2. As mentioned in Sec. 3, ν? ≥ 100ν?,ref are artificially high values, in the sense

that they are much higher than realistic values of experiments. They allow stressing

the impact of high collisionality on the plasma properties. Besides, numerical results

show that solutions behave differently at these two values than at lower, more realistic

collisionality values. For the smallest collisionality value ν? = 0.3ν?,ref , a simulation

has been also performed with a time and space-dependent parallel resistivity, η‖(T
−3/2
e )

(Eq.6). However, the following results only show a small impact with respect to the

solution obtained with constant η‖ at the same collisionality. The impact of varying the

collisionality is firstly analyzed on turbulence through the edge and SOL fluctuations,

then on equilibrium profiles and mean flow properties.
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5.1. Edge and SOL fluctuations

5.1.1. Impact on the fluctuations amplitude

The amplitude of fluctuations is a measure of the level of turbulence energy.

Fig.10 shows the radial profiles of the relative fluctuations level of density and

electron temperature (rms(N)/N, rms(Te)/Te) at the LFS midplane. In agreement

with experiments, the fluctuation levels of temperature are usually smaller than for the

density at the same collisionality [60, 61].

In the edge of the core region, the fluctuations levels increase with the radius at the

LFS midplane and steepen at the separatrix for all values of ν? smaller than 10ν?ref in

agreement with experiments [5, 62]. The maxima are reached right across the separatrix

into the SOL region. When decreasing the collisionality, the fluctuations level for both

density and temperature decreases in the core, while into the SOL, it is nearly insensitive

for the density but increases for the temperature fluctuations. Such behavior for the

temperature fluctuations into the SOL suggests an additional instability mechanism

injecting energy into the system when lowering the collisionality value. A candidate

could be the sheath-driven conductive wall instability (SCW), which is a drift-wave like

instability for the temperature, and thus it should exhibit an increasing intensity when

collisionality has a small non-zero value [63–67]. The coupling mechanism between the

plasma and this instability is related to a positive feedback loop between the driving

temperature fluctuations T̃e, the parallel current fluctuations j̃‖ and the electric potential

fluctuations Φ̃ through the Bohm boundary condition Eq.1 and the Ohm’s Law (Eq.

A.6). Lowering the collisionality increases the values of rms(Te)/Te, and thus increases

the level of energy.

Differently, for the two high collisionality values ν? = 100, 1000ν?,ref , the variations

of the fluctuations level over the radius is weak for both the density and the temperature

with relatively flat profiles. Moreover, in the edge of the core region (closed field lines)

and in the SOL (open field lines) as well, the fluctuations level globally decreases when

the collisionality increases.

5.1.2. Impact on the probability density functions

The impact of varying collisionality on turbulence statistical properties is analyzed

here from the PDFs of density and temperature, Fig. 11.

No major change is observed when changing collisionality compared to the reference

case for ν? ≤ 10ν?,ref . The near-zero skewness in the edge of the core region for every

collisionality value indicates Gaussian-like shape PDFs (not shown here) that evolve

rapidly across the separatrix to positively skewed PDFs into the SOL, holding their

intermittent signature. PDFs into the SOL shrink when lowering the collisionality

(smaller skewness), meaning the amplitude of high density and temperature events

reduce with ν?.
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Figure 10: Profiles averaged in time and ϕ of the density (a) and electron temperature (b)

fluctuations level at the LFS depending on the collisionality ν?. The sharp variations of the

profiles at the radial boundaries is an artifact related to the numerical buffer regions introduced

in Sec.2.

At the two high collisionalities ν? = 100, 1000ν?,ref , the skewness acts in a

completely different way with respect to the reference case. PDFs evolve from positively

skewed PDFs into the edge of the core region to negatively skewed ones into the SOL,

except for the temperature at ν? = 100ν?,ref where the PDF remains positively skewed

along the radius. Besides, the PDFs show a symmetric distribution with a double peak

(same amplitude positive and negative event equally probable). A possible explanation

might be correlated with the fact that turbulent structures at very high collisionality

are no longer electrically connected with the target causing a different redistribution

of their amplitude [15, 68]. Also, as described in the next section, the size of coherent

structures increasing with collisionality, the turbulence structures spread over both open

and closed field lines simultaneously.

5.1.3. Impact on the coherent structures size

The impact of changing collisionality on the size of the coherent structures is of

primary importance because this can change transport quantity as ũΨ
E ' −kθΦ̃. Results

in Fig. 12 show that turbulence structures remain aligned along the magnetic field lines

as already shown for the reference case on Fig. 3. When decreasing the collisionality

from 1000ν?,ref to 0.3ν?,ref , the size of the structures is strongly reduced, meaning that

k‖ ' kϕ and k⊥ ' kθ are increasing. This is in agreement with studies on filamentary

structures [9, 69] which have shown the same trend. We can note that the radial

expansion of turbulence structures follows the same trend.

5.1.4. Impact on the phase shift
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Figure 11: PDFs of density and temperature fluctuations into the SOL at ru = 30ρL depending

on the collisionality (a, b). Profile averaged in time and ϕ direction of density and temperature

skewness depending on the collisionality (c, d).

Figure 12: 2D maps of electrostatic potential Φ̃ over flux surfaces at ru = −10ρL (closed

magnetic field lines region), zoom in on LFS. From left to right ν? = 1000, 10, 0.3ν?,ref . Black

dashed lines are the magnetic field lines.
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As mentioned in Sec. 4, the magnitude of particles and energy fluxes also depends

on the phase shifts between fluctuations of the electric potential and plasma density

and the electric potential and electron temperature. Moreover, the phase shifts between

the electric potential and plasma density fluctuations guide the identification of the

instabilities that drive turbulence at the plasma edge. In particular, a phase shift close

to π/2 corresponds to the linear interchange instability, while a phase shift smaller than

π/4 is typical of the linear drift wave instability [17]. These theoretical results are

rigorously valid in linear regimes, the information provided cannot be considered fully

conclusive in the nonlinear regimes investigated in the present simulations.

Tab 3 reports the values measured in the simulations. In the edge of the core region,

present results show a reduction of the phase shifts when lowering the collisionality value.

This could suggest that at low collisionality, the main drive of turbulence changes from

the interchange to the drift wave instability. For the collisionality of the reference

case and smaller (ν? = ν?,ref and ν? = 0.3ν?,ref ), δÑ−Φ̃ is about π/4. Into the SOL,

the reduction is less marked due to the dominance of the sheath resistance Rsheath,

which is collisionality independent, on the parallel resistance R‖. This suggests that

the interchange instability remains stronger into the SOL regardless of the collisionality

value as already reported in gyro-fluid simulations in [70]. On the other side for higher

collisionalities (ν? > 10ν?,ref ) the phase shift is closer to π/2 in both the edge core region

and into the SOL, underlining the predominance of the interchange mechanism at high

collisionalities in the whole simulation domain.

Finally, the decreasing value of δT̃e−Φ̃ when lowering the collisionality value in the

edge of the core region can be related to the property of the electrons to become more

and more adiabatic. In this case, from the Ohm law, we can expect that the phase

between the electric potential and the density and the electron temperature reduces.

ν∗
δÑ−Φ̃ δT̃e−Φ̃

EDGE SOL EDGE SOL

1000ν?,ref 0.46π 0.43π 0.58π 0.63π

100ν?,ref 0.42π 0.37π 0.67π 0.58π

10ν?,ref 0.36π 0.34π 0.5π 0.49π

ν?,ref 0.27π 0.35π 0.32π 0.47π

0.3ν?,ref 0.24π 0.35π 0.27π 0.47π

0.3ν?,ref (T ) 0.23π 0.34π 0.27π 0.47π

Table 3: Scan in dimensionless collisionality ν?. δÑ−Φ̃ and δT̃e−Φ̃ denote the post-treated

relative potential-density and potential-temperature phase shifts, respectively. The bold line

shows the reference case.
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5.2. Equilibrium profiles and radial fluxes

The complex interactions between large-scale fluctuations described above, micro-

turbulence, and mean flow leads to investigate the impact of the collisionality on the

equilibrium profiles and the transport properties. Fig. 13 shows the time-toroidal

averaged profiles of the density, the electrostatic potential, and the electron and

ion temperatures at the LFS midplane. Results show that generally lowering the

collisionality increases the radial gradient of all fields across the separatrix excepted

for ν? = 100, 1000ν?,ref cases for which the radial profiles are globally flat.
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Figure 13: Profile averaged in time and ϕ direction of the density N (a), the electrostatic

potential Φ (b), the electron Te (c) and the ion Ti (d) temperature profiles at LFS depending

on the collisionality values. The dashed line shows the separatrix.

The density profiles in the core-edge (Fig. 13a) steepen when lowering ν? that leads

to an increase of the diffusive particles flux. Since the imposed total flux is constant

in such simulations, the convective transport is reduced by decreasing collisionality

value, Fig. 15a. This is in agreement with the lower density fluctuations level and

the lower value of δÑ−Φ̃ when ν? < ν?,ref as seen above. Indeed when ν? is equal to

the reference case collisionality or larger, the turbulent E × B transport still increases

mostly because the phase shift rises up, and even if rms(N)/N goes down. In the case
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where ν? = 1000ν?,ref , although the phase shift reaches its maximum, the amplitude

of fluctuations is so low that they are no longer able to provide any contribution to

the radial particle flux. Instead, it is the mean-field transport that drives ΓΨ
i . Into the

SOL, the mean density profiles flatten with increasing ν? as already reported in many

experiments in tokamaks [71–74]. Here the profiles seem to be mostly independent of the

collisionality except in the near SOL. This might be due to the fact that no matter what

the collisionality is, the effective value of the resistance is always big enough to prevent

the appearance of any gradients. Indeed for ν? ≤ ν?,ref the sheath resistance overwhelm

the parallel one (Appendix B). Meanwhile when ν? ≥ 10ν? the parallel resistance raises

up to be a bigger than Rsheath. At this point, R‖ dominates the dynamic into the SOL,

but its value is so high that the resulting profile remains flat. Recent analyses have

also suggested a link between the SOL profiles and the filaments dynamics [75]. The

reduction of the turbulent particle transport could be interpreted as a consequence of

the effect of the E × B shear on the dynamics of turbulent eddies [76–78]. However,

results in Fig.15b show that the increase of the E × B shear with collisionality is only

localized around the separatrix while the reduction of the turbulent particle transport

is global over the radius. At most, the increasing shear could explain the small pits into

the profiles observed at the separatrix on Fig. 15a for ν? < ν?,ref .

The value of the shear depends on the Φ-radial profile (Fig.13b). The electrostatic

potential presents a maximum right after the separatrix and two different concavities

in the core-edge region and the SOL. That leads to two opposite contributions of uθE
(negative and positive), thus increasing the overall shear between the two regions. The

gradients of the electrostatic potential in the edge of the core region are the same as the

ion pressure gradients ∇Φ ' −∇Pi, and they decrease when increasing the collisionality

value. Into the SOL, the relation Φ ' ΛTe is always invoked to estimate the radial

electric field (EΨ ' −3∂ΨTe ). Since electron temperature profiles into the SOL vary

with collisionality (Fig13c), one could expect the profiles of electrostatic potential to

behave in the same way. However, results show that into the SOL the electrostatic

potential always decreases when ν? ≤ 10ν?,ref . It reaches a value independent of ν?,

whereas a slight increase in the far SOL is observed for ν? ≥ 100ν?,ref . Therefore,

although the relation Φ ' ΛTe is a good approximation at the HFS midplane, as

shown in 14a and 14b, it does not well describe the situation for both higher and lower

collisionality values than ν?,ref at the LFS midplane. The reason for this discrepancy

is due to the presence of non-null parallel gradients of density and temperature,

respectively on Fig 14c and 14d. In the case where ν? ≤ ν?,ref the temperature poloidal

profiles are almost flat with nearly zero gradients. On the contrary, the density profiles

show quite large variations at all collisionality values. For ν? ≥ 10ν?,ref a strong increase

in the parallel gradient of Te is observed. This could partially explain the increment of

the electrostatic potential at the highest collisionality value. These results agree with

the recent theoretical work of [79] which shows that to estimate the radial electric field,

we need to take into account not only the value at the sheath but the local values of

the density and the temperature.
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Figure 14: Profile averaged in time and ϕ direction of the electrostatic potential Φ (a), the

electron temperature Te (b) at HFS depending on ν?. Profile averaged in time and ϕ direction

of N (c) and Te(d) in the SOL at ru = 5ρL depending on ν?
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Figure 15: Profile averaged in time and ϕ directions of the turbulent particles radial flux

(〈Ñ ũΨ
E〉t,ϕ) (a) and of the E×B shear (〈∂Ψu

θ
E〉t,ϕ) (b) at LFS depending on the collisionality.



3D global simulations of the collisionality impact 24

Focusing now on temperature profiles, results show that Te and Ti behave quite

similarly with temperatures decreasing with the radius. For ν? < 10ν?,ref , the radial

gradients remain nearly insensitive to the collisionality values in the edge of the closed

field lines region and the far SOL. However, near the separatrix, the gradients increase

when the collisionality value is decreased. The electron temperature keeps the same

value at the separatrix, meanwhile when decreasing the collisionality value, Te increases

in the edge and decreases in the SOL. For the ion temperature, the value at the separatrix

changes, Ti increases in the core-edge while the temperature in the SOL remains roughly

unchanged. For the two high values of the collisionality, ν? ≥ 100ν?,ref , the profiles of

Ti are approximately flat over the whole radius.

The variation of the radial energy flux with collisionality values at LFS and HFS is

shown in Fig 16a and 16b.

The respective part in percent of each component of the total flux is shown at four

radial locations, two before and two after the separatrix. The fluxes are normalized

to their total value. Contribution lower than the 3% are merged into subscript ”other

contr.”

In Fig 16a we can observe that except for the very high collisionality (ν? =

1000ν?,ref ), where the mean contribution 〈NTeuΨ
E〉t,ϕ is prevailing over the other as

it was for the particle flux, convection 〈Te〉t,ϕ〈Ñ ũΨ
E〉t,ϕ and conduction (〈N〉t,ϕ〈T̃eũΨ

E〉t,ϕ)

are largely dominant whatever the collisionality values. Convection heat flux dominates

in the edge of the core region in all simulations. The high temperature fluctuations at low

collisionality values contribute to increase the heat conduction into the SOL at a level

where it becomes comparable and even higher than the convective contribution. Indeed,

after the separatrix the thermal conductivity decreases, and therefore the gradient of

temperature becomes much stronger. This leads to a transport of heat without transport

of particles. In the edge of the core region, an increasing diffusive contribution is

observed (〈D⊥ 3
2
Te∇N〉t,ϕ) when lowering the collisionality for ν? ≤ ν?,ref due to the

existence of higher density gradients. A third order contribution (〈Ñ T̃eũΨ
E〉t,ϕ) is active

into the SOL associated with larger fluctuations found when ν? is below ν?,ref . At HFS

(Fig 16b) in the core-edge region the contribution given by the curvature drift uΨ
∇B,e

arise compared to LFS in all the whole range of analyzed collisionality. However, this is

much stronger at low collisionality. For ν? ≥ 10ν?,ref the curvature is counterbalanced

mostly by the heat convection. Meanwhile, when ν? = 1000ν?,ref the contribution of

the average electric drift is always prevalent at all radial location, except right after

the separatrix. The presence of strong curvature drift has been suggested to induce the

development of parallel Kelvin-Helmholtz instability as reported in [80, 81].In closed field

line conduction heat, it seems to play a minor role, whereas its importance increases

in the near SOL. Diffusive term seems to be relevant at ν? ≤ ν?,ref , whereas a small

contribution due to solely fluctuations arise across the separatrix for ν? ≤ ν?,ref
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Figure 16: Heat flux components distribution in percent of the total flux at θ = 0◦ (Fig 16a)

and θ = 180◦ (Fig 16b) in four radial locations and depending on the collisionality.

5.3. SOL width

The change of N and Te,i profiles with ν? has a direct impact on parallel heat fluxes.

Experimentally the presence of the narrow feature in limited plasma has been found to

be very sensitive at the collisionality changes [53]. The narrow feature present in the

reference case at ν?,ref remains when decreasing the collisionality to 0.3ν?,ref , Fig. 17a.

However, this is no longer true when increasing the collisionality to 10ν?,ref for which

the fit with a single exponential becomes an excellent approximation, Fig. 17b.

To complete our analysis, the evaluations of λq,n and λq,f with respect to ν? are

shown on Fig 18. Results show that both near and far SOL widths increase when

increasing the collisionality value. This enlargement of the SOL width with collisionality

is in agreement with former experimental studies in [15]. The amplitude of the narrow

feature increases when ν? decreases, as demonstrated by an lower ratio qn/qf at ν?,ref
than at 0.3ν?,ref with values equal to about 0.5 and1.1, respectively. The decrease

of the narrow feature strength qn/qf with increasing ν?, eventually resulting in its
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Figure 17: a-b)Magnification of profile averaged in time and ϕ direction of parallel heat into the

near SOL at LFS for ν? = 0.3ν?,ref (left) and ν? = 10ν?,ref (right) showing the disappearance

of the narrow feature when increasing collisionality. c-d) Contribution of electrons and ions for

the profile in Fig. a and b. The vertical axis is normalized to the value of the q‖ at separatrix.

Dashed black lines are the profile averaged in time and ϕ direction of q‖ into the whole SOL

at LFS.

disappearance, is consistent with previous experimental results[53]. Furthermore,qn/gf
correlates well with the value of the EXB shear close to the LCFS (Fig 15b), which,

according to the theoretical model from [82], is the primary cause of its formation.

Moreover we can investigate the relative contribution that ion and electrons give

singularly to q‖ in Fig. 17c and 17d for ν? = 0.3, 10ν?,ref respectively. The percentage

refers to the value of q‖ at the separatrix. The part associated with the electrons is

always dominant regardless of the collisionality. In the near SOL, they seem to be

responsible for the formation and the disappearing of the narrow feature, although at

0.3ν?,ref even the ions exhibit a smaller peak. Decreasing ν? appears to increase the

ions’ contribution in accordance, for example, with numerical studies performed in [83].

A simple estimate of the SOL width can be made balancing out the parallel
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q‖ ' −χ‖∇‖Te and perpendicular q⊥ ' −χ⊥∇⊥Te power:

L2
‖

χ‖
=
λ2
q

χ⊥
(12)

For the parallel thermal conductivity we can assume χ‖ ∝ ν−1
? (eq. (6) ). The

dependence of temperature is neglected both because the value of χe is almost constant

as shown in fig 2 and when ν? is small the temperature parallel gradient are almost null.

The The estimate of χ⊥ could be made both from experimental [84, 85] or simulations

data [86]. Generally we can assume that χ⊥ = a2/τE where τE is the energy confinement

time. The scaling law provided in [87] by analysing experimental data of several machine

during L-mode discharge it claims that the τE is proportional to ν−0.19
? . Assuming this

relation:

λq = L‖

√
χ⊥
χ‖

∝

√
ν−0.19
?

ν−1
?

∝ ν0.4
?

(13)

Fitting the simulation data gives rise to a power law λq ∝ ν0.12
? . In fig 18 we

display both scalings with their respective confidence interval. We realize that the

diffusion model in (13) fails at ν? ≤ 10ν?,ref , whereas it seems to reproduce the trend for

ν? ≥ 100ν?,ref . A weak dependence of the λq against ν? has been pointed out as well in

thorough multi-machine experimental comparison [88] and in recent theoretical based

on turbulent transport theory [89].It should be noted that λq is strongly dependent from

plasma parameters [90–94] which in turn are influenced by the variations of ν?. This

might reflect into changes of SOL width which are not taken into account in the simple

estimate we made.

Figure 18: Variations of λq with collisionality. λq = λq,f , (diamond) with a single exponential

fit. λq,n (stars) in the case where a double exponential fit is used. λq,f and λq,n are defined

in Eq. 7. The case where the resistivity is temperature dependent overlap with the lower

collisionality case. The confidence interval at 95% is enlightened by the red area.
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5.4. Poloidal asymmetries

The impact of collisionality on the parallel dynamics is now analyzed. Fig. 19 shows

the poloidal distribution of the parallel Mach number, the radial turbulent particle flux

(associated with density and E×B velocity fluctuations), and the radial convective and

conductive heat fluxes.

The poloidal profiles of the Mach number are similar to those of the former

isothermal studies [35]. They remain almost independent on the collisionality value

and show a stagnation point close to the LFS midplane with a parallel flux becoming

sonic at the HFS. When ν? > 10ν?,ref , close to the target plate a supersonic regime

seems to be achieved (M > 2) due to the build-up of an effective particles sink [51]. No

substantial change is shown concerning the particles and heat fluxes when changing ν?
below ν?,ref . They are poloidally concentrated at the outboard midplane, and the peak

is slightly shifted towards the bottom of the machine. They decrease when approaching

the top of the machine until a smaller peak is reached at the HFS on the targets. When

ν? = 10ν?,ref the ballooning character of radial fluxes becomes more marked. For higher

collisionality values, the typical shape of the interchange ballooning disappears, the vast

majority of convective fluxes seem to lie between the LFS midplane and the bottom of

the machine. For these cases, large scale steady flows take over turbulence in radial

transport and break the poloidal distribution.

Concerning the conductive heat flux, instead, it is rather homogeneously distributed

over the whole poloidal domain, when ν? ≤ 10ν?,ref . A reduction of the heat conduction

between the HFS and the LFS is observed when the ν? is raised up. This is due to the

existence of larger poloidal asymmetries in temperature fluctuations, favored by a lower

heat conductivity in these cases.
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Figure 19: Poloidal distribution at ru = 5ρL of Mach number, 〈Ñ ũΨ
E〉 component of radial

particle flux, heat radial flux into the SOL. In latter figure solid lines represent the convective

part and dashed lines represent the conductive part.

5.5. Zonal Flows

To investigate the impact of varying collisionality on zonal flows, we plot on Fig. 20 the

spatio-temporal evolution of the particles flux in the (r, t)-plane for two collisionality

values, 10ν?,ref and 0.3ν?,ref . The long range quasi-coherent turbulence structures in
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the edge of the closed field lines region observed at 10ν?,ref are broken into smaller and

less coherent structures at 0.3ν?,ref . This can be related to a direct cascade of energy

from the largest scales of the flow to the smallest ones.
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Figure 20: 2D spatio-temporal evolution of the particles flux averaged on the flux surfaces in

the (r, t) plane 10ν?,ref (left) and 0.3ν?,ref (right). The black line denotes the separatrix.

It would be tempting to attribute this change in the pattern at low ν? to zonal

flows. We have estimated the amplitude of zonal flows energy depending on the

collisionality values. It is defined as the ratio between the energy of all fluctuating

(ω 6= 0, kθ = 0, kϕ = 0)-modes of vE,θ and the energy of all modes as:

EZF =

∑
ω ṽ

2
E,θ(ω 6= 0, r, kθ = 0, kϕ = 0)∑
ω,kθ,kϕ

ṽ2
E,θ(ω 6= 0, r, kθ, kϕ)

(14)

which is plotted on Fig. 21. Results show that the relative energy of zonal

flow increases when decreasing the collisionality value. Meanwhile, the fluctuations

level decreases as shown in Fig. 10. Therefore, these results suggest that a part of

the turbulent energy is transferred from the small turbulence scales to the zonal flow

when decreasing the collisionality [95]. This behavior would suggest an inverse cascade

mechanism that could partially explain the decrease of the turbulent flux.

6. Concluding remarks

The present study has investigated the impact of changing the plasma collisionality ν? in

the tokamak edge. The study has been performed in a circular limited L-mode plasma

with the limiter placed at the high field side (HFS) midplane. The TOKAM3X fluid

turbulence code has been used for this purpose. In the considered model, changing ν?
impacts self-consistently the parallel resistivity and the parallel thermal conductivities

of the ions and the electrons.

We have first reported results for a reference simulation at ν? = ν?ref = 1500 corre-

sponding to realistic conditions for the COMPASS tokamak. The flow properties are in

general agreement with former isothermal studies and experimental observations. The
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Figure 21: Profile averaged in time and ϕ direction of the relative energy of the zonal flow

with respect to the total energy EZF (Eq. 14) depending on the collisionality.

interchange dominated turbulence is ballooned at the LFS, with an intermittency be-

havior dominated by small-amplitude events in the core-edge region (nearly Gaussian

PDFs) and characterized by the increasing appearance of large-amplitude events into

the SOL (positively skewed PDFs). The SOL radial profiles of parallel heat flux exhibit

a double scale length, where it appears the so-called narrow feature. Besides, results

show that the heat conduction and convection generated by turbulence fluctuations

carry most of the radial energy flux. While convection dominates both perpendicular

particle and heat fluxes in the edge-core region, a significant increment of the conductive

heat flux is observed in the SOL.

Simulations with four different collisionality values have been performed to compare

against the reference case with ν? ∈ [0.3ν?,ref , 1000ν?,ref ]. A supplementary simulation

at 0.3ν?,ref has also been run, including the temperature dependency of the parallel re-

sistivity. In the latter case, the radial distribution of η‖ shows the presence of two zones

of almost constant resistivity in the core-edge region and SOL with a rapid transition

around the separatrix of an order of magnitude. However, our analyses do not show any

significant variations with respect to the simulation performed at the same collisionality

with a spatially constant parallel resistivity η‖ = η‖0.

Present results allow us to draw the following main conclusions:

• Changing collisionality has a stronger impact in the edge of the closed field lines

region rather than in the SOL. This is related to the fact that charge circulation in

the SOL is governed by the sheath resistance which dominates plasma resistivity

below a certain collisionality value.

• In the closed field lines region, the general trend is a stabilization of interchange

driven turbulence at low collisionality leading to a reduction of the fluctuations

level and an enlargement of the gradient of the equilibrium profiles. The increase

of the radial gradients is especially marked for temperatures in the vicinity of the
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separatrix. The steepening of gradients is followed by an increase of the shear of the

radial electric field at the separatrix and has a local impact on the radial transport.

Nevertheless, it does not explain the global reduction of turbulent transport in

the core-edge region. These results suggest, however, that lowering collisionality

strengthens the energy level of zonal flow. It was found that collisionality influences

zonal flow dynamics as predicted by gyro-kinetic theory. The interplay between the

turbulent transport and zonal flow could lead to destroy the coherence of avalanche

driving transport events.

• The E×B driven turbulent transport of particles and the convective heat transport

are highly reduced at low collisionality values, whereas the diffusive particles and

fluctuations driven conductive heat transport are enhanced

• The scaling of the SOL width λq is weakly sensitive on the collisionality values

with resulting power dependence equal to ' 0.12. The results show two different

transport dynamics in the closed field lines region and in the SOL that could explain

the formation of narrow feature. For collisionality value low enough, the transition

between the two zones is not instantaneous, but it is ruled by the presence of

the layer at the beginning of the SOL that is a reminiscence of the edge-core

transport. Lowering the collisionality value strengthens the existence of the narrow

feature. Moreover, associated to the presence of the narrow feature, a higher level of

conductive heat transport is observed in accordance with experimental observation.

• The formation of density shoulder solely related to an increasing collisionality seems

to be incompatible with our results when ν? ≤ 10ν?,ref .
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Appendix A. The TOKAM3X equations

The TOKAM3X code is 3D fluid model based on drift-reduced Braginskii equations for

the study of edge plasma turbulence [96]. It accounts for the dynamic of electrons and

ions dynamic and only fluctuations of the electric potential are considered (electrostatic
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assumption). The isothermal model is detailed in [32] is extended here to non-isothermal

plasma, including energy balance equations.

The magnetic field is fixed and axisymmetric. The vector ~b = ~B/B defines the

direction of the magnetic field. The gradients in the parallel and perpendicular directions

are respectively defined as ∇‖· = ~b · ∇· and ∇⊥· = ∇ · −~b∇‖·.
u⊥ei define the first-order electric and curvature drift velocities such that:

u⊥e = uE + u∇Be =
B ×∇Φ

B2
− 2Te

B

B ×∇B
B2

u⊥i = uE + u∇Bi =
B ×∇Φ

B2
+

2Ti
B

B ×∇B
B2

(A.1)

The curvature drift B×∇B replaces the diamagnetic drift (udiam = (B×∇P )/B2)

to explicitly account for the so called ”diamagnetic cancellation”, [97][98].

The dimensionless equations (reference scales in Tab.1) for the electronic density

N , the ionic parallel momentum Γ, the electrostatic potential Φ, the energy for the

electrons and the ions, and the parallel current j‖ which defines the parallel advection

velocity for electrons are the following:

∂tN +∇ · [N(u‖i~b+N~u⊥i)] = ∇ · (D⊥N∇N) + SN (A.2)

∂tΓ‖,i +∇ ·
[
Γ‖,i

(
u‖i~b+ ~u⊥i

)]
= −∇‖(Pi + Pe)

+∇ · (D⊥ΓN∇
(
u‖i
)
) +∇ ·

(
D⊥Nu‖i∇N

)
+ SΓ‖,i

(A.3)

∂t

(
3

2
Pe

)
+∇ ·

[
5

2
Pe

(
u‖i~b+ ~u⊥e

)]
+∇ · ~qe =

+ u⊥e · ∇Pe − u‖i~b · ∇Pe +Q‖e

+∇ · (D⊥TeN∇⊥Te) +∇ ·
(
D⊥N

3

2
Te∇⊥N

)
+ SEe

(A.4)

∂t

(
3

2
Pi +

1

2
Nu2

‖i

)
+∇ ·

[(
5

2
Pi +

1

2
Nu2

‖i

)
(~u⊥i + u‖i~b)

]
+ ~∇ · ~qi =

+ u⊥i · ∇Pi + u‖i~b · ∇Pe +Q‖i +∇ · (D⊥TiN∇⊥Ti)

∇ ·
[
D⊥N

(
3

2
Ti +

1

2
u2
‖i

)
∇⊥N

]
+∇ ·

(
D⊥ΓΓ‖,i∇u‖i

)
+ SEi

(A.5)

N∇‖Φ = ∇‖Pe + 0.71N∇‖Te − η‖Nj‖ (A.6)

∂tW + ~∇·
(
Wu‖i~b+W~uE +W~u∇Bi

)
= ~∇ · (N(~u∇Bi − ~u∇Be)) + ~∇ · (J‖~b)
+ ~∇ · (D⊥W ~∇W ) + SW

(A.7)
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Equation (A.7) corresponds to the charge conservation (∇ · J = 0) and equation

(A.6) is the generalized Ohm’s law.

W = ∇· 1
B2 (∇⊥Φ +∇⊥Ti + Ti∇⊥ logN) defines the vorticity under the Boussinesq-

like approximation [99], pe,i = NTe,i is the pressure, Q‖e/i = ±3me
mi
νTK3X
?

N
τe

(Te − Ti)

is the collisional the energy equipartion term between ions and electrons. η‖Nj‖ −
0.71N∇‖Te = R‖ is a friction force due to collisions. ~qe/i = −χ‖e/i∇‖Te/i~b is the

conductive term in the electron and ion energy equations where χ‖e/i are the thermal

conductivties for electrons and ions. The perpendicular diffusion terms account for other

transport mechanisms not included in the model such as collision driven classical and

neoclassical transport. They are also needed to damp fluctuations of scales smaller than

the grid size [32].

Appendix A.1. Resistivity in TOKAM3X

This section describes the procedure to get the dimensionless parallel resistivity η‖ used

in TOKAM3X.The starting point is the expression derived by Braginskii: (‡)

ηB‖ =
0.51me

nee2τei
(A.8)

where ne and τei are the dimensional density and electron-ion collision time

measured respectively in m−3 and seconds s, and . ηB‖ is evaluated in Ωm. The τei
is defined as:

τei =
3(2π)3/2ε20

√
meT̂

3/2
e

nee5/2lnΛ
(A.9)

where T̂e is the electron temperature in eV and the lnΛ is the Coulomb logarithm

which is equal to 5.2−0.5ln(ne/1020) + lnT̂e for T̂e ≥ 10eV . Therefore the adimensional

resistivity η‖ is given by the ratio between ηB‖ and the reference resitivity η0, equal to

B0/en0 (see Tab. 1):

η‖ = 0.51
me

eB0

n0

neτei
= 0.51

me

mi

1

Ω0
iNτei

(A.10)

here N = ne/n0 and Ω0
i = eB0/mi are the dimensionless density and the reference

ion cyclotron frequency. Since both τei and lnΛ depends on density and temperature,

it is convenient to explicit the dependence in terms of the adimensional density N and

temperature Te. Hence we can rewrite the Eq. (A.9) as it follows:

τei =
3(2π)3/2ε20

√
meT

3/2
0

e5/2n0lnΛ0

T̂
3/2
e n0

neT
3/2
0

lnΛ0

lnΛ
= τ refei

T
3/2
e

N
lnΛ? (A.11)

where ln Λ0 is the Coulomb logarithm calculated using the reference parameters in

Tab. 1 and lnΛ? is the ratio lnΛ0/lnΛ. As shown in Wesson Appendix, the Coulomb

‡ Reference [98] contains all relations used in this paragraph
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logarithm varies between 13 − 20 over a wide range of temperatures and densities,

therefore and it is safe to assume that Λ? ' 1. Then we can substitute the (A.11) into

(A.10) getting to:

η‖ = 0.51
me

mi

1

N

N

T
3/2
e

1

Ω0
i τ

ref
ei

(A.12)

τ refei being the ion collision time calculated with reference parameters in Tab. 1. The

term (Ω0
i τ

ref
ei )−1 can be written as ρ?ν

′
?, where ρ? = ρL/a and ν

′
? = a/(c0

sτ
ref
ei ) leading

to the definition of collisionality used into TOKAM3X defined:

νTK3X
? = ρ?ν

′

? =
ρL
a

a

csτ
ref
ei

=
1

Ω0
i τ

ref
ei

(A.13)

Comparing the latter expression with the definition of ν? given in (4) we get the

following equivalence:

ν? =
2πqA
ρ?

νTK3X
?

η‖ = 0.51
me

mi

ρ?
2qπAν?T

− 3
2

e

(A.14)

where we recover the definition of the parallel resistivity given in (6). The same

procedure can be applied to χ‖e,i knowing that the dimensional parallel ionic and

electronic thermal conductivities are given by χ‖,e = 3.16peτei
me

and χ‖,i = 3.9piτi
mi

, where

τi is the ion collision time which can written as function of τei: τi ' (mi
me

)1/2τei.

Appendix B. Sheath resistivity

In this section we derive a relation between the parallel and sheath resistance. In

TOKAM3X model the sheath is not treated explicitly into the code, but we account

for its presence through the Bohm boundary condition (Eq. (1)). The procedure has

carried out starting from dimensional quantity. If we linearize this condition we can get

a ratio between a potential the sheath and the current entering into the sheath that we

define as Rsheath

j‖ =
jsate

T̂e

(ΛT̂e
e
− Φ

)
Rsheath =

ΛT̂e
e
− Φ

j‖
=

T̂e
ejsat

(B.1)

The parallel resistance of the plasma is taken using (A.8):

R‖ = η‖L‖ = 0.51
meνeiL‖
e2ne

(B.2)
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Therefore the ratio between

Rsheath

R‖
=

T̂ee
2ne

0.51emeνeiL‖jsat
=

T̂e
0.51meνeiL‖cs

=

=
T̂ec

0
s

0.51meν0
ei
N

T
3
2
e

L‖csc0
s

=

√√√√ T̂ 2
e

m2
e

m2
i
(T̂e + T̂i)T0

1

0.51ν?

T
3/2
e

N

Te'Ti−−−→' mi

2me

T
1/2
e

0.51ν?

T
3/2
e

N
=
mi

me

1

ν?

T 2
e

N
' 2000

1

ν?

T 2
e

N

(B.3)

Here we have considered ĉs as the dimensional ion sound speed equal to

√
(T̂e + T̂i)/mi.

We find that Rsheath/R‖ >> 1, when ν? << 2000T 2
e /N . Assuming that T 2

e /N '
1,meaning being on separatrix, the relation become ν? << 2000. Therefore in the case

ν? ≤ ν?,ref the resistance of the sheath rule out the SOL dynamics. We mention as well

that if we consider a deuterium plasma the mass ration will be doubled enhancing the

strength of the shear. A similar relation has been found in [100].
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[49] Gunn J, Boucher C, Dionne M, Ďuran I, Fuchs V, Loarer T, Nanobashvili I,
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