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Abstract: We propose a system of coupled microring resonators for the generation frequency
combs and dissipative Kerr solitons in silicon at telecommunication frequencies. By taking
advantage of structural slow-light, the effective non-linearity of the material is enhanced, thus
relaxing the requirement of ultra-high quality factors that currently poses a major obstacle to
the realization of silicon comb devices. We demonstrate a variety of frequency comb solutions
characterized by threshold power in the 10-milliwatt range and a small footprint of 0.1 mm2,
and study their robustness to structural disorder. The results open the way to the realization of
low-power compact comb devices in silicon at the telecom band.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Kerr frequency combs in microresonators have been the object of intense research during the
last decade, due to their wide range of applications in science and engineering [1–4]. They have
brought about significant advances in several areas of sensing and communications, such as light
detection and ranging (LIDAR) [5], optical atomic clocks [6], exoplanet exploration [7], optical
frequency synthesis [8] and high-resolution spectroscopy [9,10]. Kerr frequency combs originate
from an interplay between the Kerr non-linearity and the frequency dispersion, which may be
normal [11] or anomalous [12]. In the most common approach, a comb is generated when the free
spectral range (FSR) of the resonator increases with frequency (anomalous dispersion), thereby
causing multiple parametric resonant four-wave mixing (FWM) processes, leading to a frequency
comb of evenly spaced emission lines [13,14]. When all the targeted resonant frequencies of
the resonator participate in the parametric process, the non-linear dynamics may give rise to a
comb with a single FSR frequency spacing, known as dissipative Kerr solitons (DKS). A DKS is
the result of two balances: the one between Kerr non-linearity and dispersion, which stabilizes
their spectral shape, and the one between linear losses and parametric gain, which stabilizes
their amplitude [15–18]. The threshold excitation power for the onset of DKSs is proportional
to the squared photon loss rate. This makes microring resonators one of the most employed
platforms for comb generation, as ultra-high quality factors are easily achieved with almost no
geometry optimization effort. In particular, crystalline and silicon-nitride (Si3N4) rings have
achieved Q-factors in the 109 and 107 ranges, respectively, leading to threshold powers in the
milliwatt and sub-milliwat regimes [19–22]. While Si3N4 has become the standard platform for
DKS generation in silicon photonics, the Kerr non-linearity of this material is relatively small,
thus requiring such ultra-low loss resonances for low-power operation.

Silicon is characterized by a Kerr coefficient n2 ten times larger than that of Si3N4, and
silicon ring resonators are compliant with CMOS technology. Since the power required for
non-linear Kerr-based phenomena is inversely proportional to n2, the possibility of frequency
comb generation in silicon is appealing. Indeed, silicon has also been investigated for the
generation of DKS in the mid-infrared [23,24]. However, efficient DKS generation has not been
demonstrated so far in the telecommunication band, due to the considerable non-linear losses
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occurring within this frequency range – particularly two-photon absorption (TPA) and a variety
of free-carrier effects at high excitation powers [25]. Additionally, silicon ring resonators are
also subject to large propagation losses, stemming from sidewall surface roughness, which set an
obstacle to the achievement of ultra-high quality factors needed for low-power operation [20,26].

In this work, we propose a different approach to the generation of low threshold frequency
combs in silicon at the telecom band. Our approach leverages structural slow-light to enhance
the non-linear processes, thereby requiring significantly lower values of the quality factor,
which can be easily achieved with silicon microring structures. The system that we propose
is illustrated in Fig. 1. It consists in a silica-encapsulated (SiO2) coupled-resonator optical
waveguide (CROW) formed by coupled single-mode silicon microrings. This configuration takes
advantage of structural slow-light [27–29] to effectively enhance the non-linearity of the material
and consequently decrease the threshold power required to trigger cascaded FWM [30–35]. We
study this design both in terms of first-principle FDTD simulations and using a coupled-mode
effective model that has proven extremely accurate for this kind of geometries [28,29]. The
proposed Si/SiO2 CROW is found to support frequency combs and DKSs with pump power in
the milliwatt range at telecom frequencies, with repetition rates as low as 3.2 GHz and a small
footprint of about 0.1 mm2. We also investigate the effects of disorder, which are modeled both
in terms of a reduced quality factor and by assuming randomly distributed resonant frequencies
for the CROW modes. We find that DKS states are still possible in presence of disorder with
standard deviation up to 1/16 of the CROW FSR, which is 20 times larger than the typical
fluctuations found in standard state-of-the-art microring resonators. While our proposed device
may be more challenging to fabricate than typical platforms for DKS generation, it opens the
way to the realization of low-power DKS in silicon at the telecommunication band with greater
flexibility for dispersion engineering. Moreover, the CROW geometry holds great promise for
slow-light comb generation in other materials where high non-linear gain coefficients may be
challenging to achieve due to fundamental or technological limitations.

Fig. 1. Schematic illustration of the coupled-resonator optical waveguide formed by a
closed loop of silicon microring resonators studied in this work. The system is pumped by a
continuous-wave (cw) laser source in the telecom band via a bus waveguide, and the whole
structure is encapsulated in silica. A dissipative Kerr soliton is depicted in red.

The paper is organized as follows. In Sec. 2, we survey the coupled-mode formalism, originally
derived in Ref. [36]. We study the dispersion and intrinsic losses of the device in Sec. 3. In
Sec. 4, we compute the non-linear dynamics of the system to find the frequency comb and DKS
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solutions. The effect of disorder on the DKS states are analyzed in Sec. 4. The conclusions of
this work are drawn in Sec. 6.

2. Formalism

The set of equations describing the non-linear dynamics of the Bloch mode slowly-varying
envelopes Bα(t) in a system of coupled single-mode Kerr resonators is given by [36]

Ḃα(t) = −

[︂γα
2

− iσα

]︂
Bα(t) + iGα0

∑︂
µη

Bµ(t)B∗
η(t)Bα+η−µ(t) +

γα
2
Fαδα,α0 , (1)

where γα is the total loss rate of the Bloch mode with momentum α, σα = Ω0 − ωα is the
detuning between the laser and mode frequencies, Gα0 is the non-linear gain at the pumped mode
frequency ωα0 and Fα is the pump amplitude. The rotating frame has been introduced in Eq. (1)
setting Bα(t) → Bα(t)eiσα t. Note that, when considering a system of coupled single-mode
resonators with periodic boundary conditions, the CROW Bloch mode basis is the natural choice
to describe the dynamics of the electromagnetic fields because they form an orthogonal set. This
is why we employ the Bloch momentum to label the slowly-varying envelopes, instead of the
mode indices of the individual Kerr resonators. In presence of TPA, which is the main source of
non-linear losses in silicon at telecom frequencies, Gα0 is complex-valued and can be written as:

Gα0 = gα0 + igTPA
α0 =

(︃
aωα0ng,α0n2

ϵVc

)︃
+ i

(︃
acng,α0 βTPA

2ϵVc

)︃
, (2)

where ng,α0 is the the group index, Vc is the single resonator non-linear mode volume, a is the
lattice period, n2 and βTPA stand for the Kerr and TPA coefficients, respectively, of the material
with dielectric constant ϵ , and c is the speed of light in vacuum. Equation (1) is normalized so
that |Bα(t)|2 is the instantaneous power of the corresponding Bloch mode propagating along the
CROW direction. This choice differs from the one usually adopted in microring resonators, where
the squared modulus of the envelope function represents the instantaneous energy in the resonator
mode (or photon number if given in units of ℏω). Power normalization is the natural choice when
the group velocity differs considerably from the phase velocity [33], and it is therefore the most
appropriate choice for the present work focusing on the slow-light regime.

The coupling to an external bus waveguide is included by assuming that the total loss rate γα
is the sum of the intrinsic radiative decay rate of the mode γα,int and the loss rate through the bus
waveguide γα,ext, i.e.,

γα = γα,int + γα,ext. (3)

We then use coupled mode theory [37] to establish the relation between the pump amplitude in
Eq. (1) and the laser power P

γ2
α

4
|Fα |

2 =
c

L
√
ϵ
γα,extP, (4)

where L = Ma is the total length of the waveguide of M resonators. Equation (4) allows us to
derive the external power threshold for frequency comb generation from the threshold of the
internal field amplitude |Fα0 |

2
th(σα0 ) previously derived in Ref. [36]

Pth(σα0 ) =
L
√
ϵγ2

α0

8ηcgα0

f (κ)
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1 +
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γ2
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+
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α0

gα0

f (κ) +
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2

g2
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f 2(κ)

]︄
. (5)

In Eq. (5), η = γα0,ext/γα0 is the coupling efficiency, which is equal to 1/2 for critical
coupling, and f (κ) = (

√
1 + κ2 + 2κ)/(1 − 3κ2) is a function of the material properties only, with
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κ = gTPA
α0 /gα0 = cβTPA/(2n2ωα0 ). The minimum power threshold can be easily found by solving

∂Pth/∂σα0 = 0, leading to

Pmin
th =

ϵ3/2MVcγ
2
α0

8ηωα0cng,α0n2
f (κ) [1 + κf (κ)]2 , (6)

where we have used the definition of gα0 from Eq. (2).
Equations (5) and (6) express the power threshold for comb generation in CROWs, in presence

of TPA and slow-light. The latter is especially important due to inverse dependence of Pth on the
group index ng, which effectively enhances the Kerr non-linearity of the material and decreases
the minimum power to trigger parametric FWM between the resonator modes. For typical
microring resonators, the CROW system is replaced by a homogeneous waveguide, resulting in a
group index which approaches the refractive index of the material, i.e., ng,α0 →

√
ϵ , and a total

effective mode volume given by Veff = MVc. If we further assume f (κ = 0) = 1 (i.e. no TPA
limit), we recover from Eq. (6) the well known expression for the power threshold widely used
for microring frequency combs [19,38]

Pmin
th (ng,α0 →

√
ϵ , βTPA → 0) =

ϵVeffγ
2
α0

8ηωα0cn2
. (7)

3. System and model

Ring resonator modes are efficiently confined due to total internal reflection. The evanescent
field immediately outside the ring typically decays over a short distance compared to the ring
size, even when the refractive index contrast of the core-cladding is not large. This strong light
confinement allows us to employ a tight-binding (TB) model in the weak and nearest-neighbor
approximation to accurately describe our CROW system depicted in Fig. 1. The TB dispersion
relation is analytical and given by [39]

ω(α) = ωc − 2J cos(aα), (8)

with ωc denoting the mode frequency of the single rings and J the coupling strength between
two rings. Equation (8) holds under the assumptions of single-mode resonators and periodic
boundary conditions. The former is fulfilled as long as the FSR of the microring is much
larger than the TB bandwidth 2J, which is easily achieved for small-size rings as discussed

Fig. 2. System of two coupled silicon ring resonators with radius R = 5 µm and cross
section 500 × 250 nm2, separated by a distance d. The center-to-center separation is given
by a = 2R + d + 500 nm and the structure is completely encapsulated in silica.
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below. The latter applies to the closed loop of coupled rings, as shown in Fig. 1, resulting in
negligible bending losses [40]. In order to compute the model parameters ωc and J, we consider
the system of two identical rings separated by a distance d, as illustrated in Fig. 2. The rings
have radius R = 5 µm, cross section 500 × 250 nm2 and refractive index nsi = 3.47 (silicon at
telecom frequencies) [41]. Additionally, the whole system is assumed to be encapsulated in silica
(SiO2). Figure 3 shows the results obtained from first-principles FDTD calculations carried
out with a commercial software [42]. The normal modes of the coupled rings, arising from
the TE mode at ωc/2π = 196.27 THz in each ring, are shown in Fig. 3(a). The fields of the
bonding and anti-bonding modes are respectively even and odd under inversion with respect
to the mirror plane located at the center of the system (see Fig. 2). We report in Fig. 3(b) the
associated quality factors, which for large distance d approach to the value of the uncoupled
system, ∼ 7.8 × 105. The coupling strength J, shown in Fig. 3(c), is extracted from Fig. 3(a) and
is defined as half the normal-mode frequency separation. From FDTD simulations of the single
resonator, we obtain a ring FSR of 2.12 THz at the frequency ωc/2π, i.e. roughly five times
larger than the largest value of 2J considered, thus validating our assumption of single-mode
coupling. Note that, under such resonant single-mode coupling regime, the dispersion features
of the microring are not important in our analysis because the Bloch modes of the CROW are
superpositions of the same mode in all resonators. We set the distance d = 200 nm. This value
is a good compromise between large coupling strength, low intrinsic normal mode losses and
fabrication feasibility [26]. For this distance, we infer from Fig. 3 J = 118 GHz, Qb = 3.64 × 105

(bonding) and Qa = 1.57 × 105 (anti-bonding). We plot in Figs. 4(a) and 4(b) the corresponding
dispersion relation να = ωα/2π [Eq. (8)] and group index ng, where a = 10.7 µm. As depicted
in Fig. 1, a total number of M = 100 microrings are considered. The resulting super-ring has
radius ∼ 170 µm and the band being considered contains 100 Bloch modes. We computed the
dispersion relation of the super-ring using FDTD. For this calculation we assumed an elementary
computational cell containing a single ring and Bloch boundary condition along the main CROW
axis. The computed dispersion is displayed in Fig. 4(a). The agreement with the TB result
validates our nearest-neighbor coupling model. The quality factor of the band, extracted from
these FDTD simulations, is reported in Fig. 4(c) and ranges from 0.95 × 105 at the edges of
the Brillouin zone, to 2.52 × 105 close to aα = 0. In order to achieve stimulated parametric
FWM between the CROW modes, assisted by slow-light enhancement of the non-linear response,
the system is driven at aα0 = 0.22 where ng,α0 = 86.7 and Qα0 = 2.45 × 105. We compute the
minimum threshold power from Eq. (6) and obtain Pmin

th = 9.4 mW. For this calculation we used
Vc = 4.83 µm3 obtained from FDTD calculations, γα0,int = ωα0/Qα0 , critical coupling η = 1/2
to an external bus waveguide, and non-linear coefficients of silicon at telecom frequencies [43],

Fig. 3. (a) Normal mode frequencies of the bonding and antibonding states arising from the
coupling of two identical single-mode ring resonators. (b) Quality factors of the modes in
(a). (c) Coupling strength between the microring modes, defined as half the normal-mode
frequency separation from panel (a).
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i.e., n2 = 5.52 × 10−18 m2/W and β = 1 × 10−11 m/W. This threshold value is comparable to the
one of rings of size of several hundred micron, operating in the ultra-low loss regimes (quality
factors of the order of 107) [18].

Fig. 4. (a) Tight-binding dispersion of the CROW. Regions where dispersion is normal and
anomalous are colored in red and blue, respectively. The corresponding FDTD simulations
with Bloch boundary conditions are also shown (green crosses). (b) Group index of the
modes in (a). (c) Simulated Q factor of the band in (a). A cw pump is applied at aα0 = 0.22.

The present CROW does not require ultra-high quality factors to generate parametric FWM
at low threshold power, thanks to the structural slow-light factor 1/ng entering Eqs. (5) and (6).
Ultra-high quality factors, typically achieved in Si3N4 resonators, would be extremely challenging
to realize in silicon rings due to propagation losses originating from surface roughness [20,43].
The device that we propose thus enables silicon as a material for the realization of comb devices.
In what follows, we investigate the generation of frequency combs and DKS.

4. Slow-light frequency combs and DKS

We plot in Fig. 5(a) the power threshold computed from Eq. (5) as a function of σα0/γα0 (dashed
red), and the boundaries of the optical bistability region for the driven mode (continuous blue)
[15,19,36]. We search for the steady state solutions of Eq. (1) by scanning the value of σα0 for
different values of the pump power. The coupled-mode equations are integrated over 100 photon
lifetimes of the pumped mode (enough to reach the steady state of the system), using an adaptive
time step Runge-Kutta method and fast Fourier transform to efficiently compute the non-linear term
[44]. We take into account the α-dependent quality factor Qα from Fig. 4(c), with corresponding
intrinsic loss rates γα,int = ωα/Qα and total loss rates given by γα = 2γα,int at critical coupling.
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The pump field at time t = 0 is assumed to have Gaussian shape ψ(θ, 0) = exp[−0.5(Mθ/2π)2]
along the CROW, where ψ(θ, t) =

∑︁
α Bα(t)e−i(α−α0)θL/2π is the envelope function of the solution

and θ is the polar angle denoting the position along the CROW (see Fig. 1). We show in
Figs. 5(b)–5(e) four representative frequency combs found for the four values of pump power and
detuning highlighted in Fig. 5(a). Figures 5(b)–5(c) correspond to super-critical Turing patters
(they are excited above threshold) with 2-FSR and 3-FSR spacing, respectively. Figure 5(d)–5(e)
show sub-critical combs (excited below threshold) with single FSR spacing, which are the
signature of soliton structures. The steady state envelope functions of these combs, denoted
as ψs(θ), are shown in Figs. 5(f)–5(i). Two and three Turing rolls emerge respectively for the
spectra with 2-FSR and 3-FSR spacing, in agreement with the Lugiato-Lefever model predictions
[15], while single solitons arise in the cases of 1-FSR spacing.

Fig. 5. (a) Pump power threshold (dashed-red) and bistability boundaries (continuous-blue)
as a function of the laser detuning σα0 with respect to the frequency of the driven mode ωα0 .
(b) Super-critical Turing pattern of 2-FSR repetition rate (6.4 GHz), for a driving power
P = 17.3 mW. (c) Super-critical Turing pattern of 3-FSR repetition rate (9.6 GHz) pumped
with P = 32.1 mW. (d) Soliton pulse with single FSR repetition rate (3.2 GHz) pumped
with P = 17.3 mW. (e) Soliton pulse with single FSR repetition rate (3.2 GHz) pumped
with P = 24.7 mW. (f)-(i) corresponding envelope functions of the frequency combs in
(b)-(e). All |Bα |

2 and |ψs |2 quantities are given in units of γα0 f (κ)/(2gα0 ). The frequency
bandwidth of the comb is obtained by multiplying the repetition rate by (Nl − 1), where Nl is
the number of comb lines with non-negligible power.

Even in presence of TPA, the present silicon CROW supports DKS structures at telecom
frequencies and low power. This is achieved thanks to the non-linear enhancement provided by
slow-light, which enable operating at significantly lower Q-values than those required in current
microring resonators. The advantage brought by slow-light comes at the expense of the comb
band-width, which is of the order of 45 GHz with a repetition rate of 3.2 GHz. Nevertheless,
few-GHz repetition rates are desirable for applications in spectroscopy and signal processing in
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electronics [45], and they are usually obtained in centimeter-size resonators [46] – much larger
than the 340 µm diameter of the present device.

5. Effects of disorder

In order to study the robustness of our results against structural disorder arising at the fabrication
stage, we model the effects of surface roughness by assuming a random deviation of the Bloch
mode frequencies from the ideal values, and an additional loss channel. The quality factor
associated to this additional loss channel is denoted by Qr. The total quality factor of the ring
mode, denoted as Qc,tot, is then computed as

1
Qc,tot

=
1

Qc
+

1
Qr

, (9)

with Qc representing the FDTD-computed quality factor of the ideal system with perfect walls.
As silica encapsulation smooths out structural imperfections at the ring surfaces [47,48], a lower
bound to the Qr can be estimated from a silicon-on-insulator (SOI) configuration (where sidewalls
are exposed directly to air). The total quality factor of the same ring geometry but in a SOI setup
is reported in Ref. [41] with a value of QSOI

c,tot = 2.2 × 105. We then carry out the corresponding
SOI simulation from which we obtain QSOI

c = 7 × 105. Using QSOI
c,tot and QSOI

c in Eq. (9) we get
Qmin

r = 3.2 × 105. Thereby, the normal mode quality factors of the CROW in presence of surface
roughness, Qα,r, can be approximated by assuming the lower bound of Qr, i.e.

1
Qα,r

=
1

Qα
+

1
Qmin

r
. (10)

This increases the minimum power threshold of Eq. (6) from Pmin
th = 9.4 mW to Pmin

th = 29.3
mW, under critical coupling conditions (η = 1/2).

The effect of disorder on the frequencies of the Bloch modes is modeled as

ωdis
α = ωα + δω, (11)

where δω are random fluctuations following a Gaussian probability distribution with standard
deviation σdis. This random term models random variations of both ωc (due to sidewall
roughness) and J (due to imperfect positioning of the microring resonators). The new parameters
γr
α,int = ωα0/Qα,r and ωdis

α are introduced in the coupled-mode equations Eq. (1) which is solved
under the same conditions as in Sec. 4, but integrated over 150 photon lifetimes of the pumped
mode (enough to reach the steady state of the disordered system). We first focus on the soliton
state of Fig. 5(d) and plot in Fig. 6(a) the average of Ps =

∫ π

−π
|ψs(θ)|2dθ/2π over an ensemble of

50 disorder realizations as a function of the laser detuning σα0 , for different values of σdis. Notice
that, for perfectly ordered frequencies, i.e., σdis = 0, where the effect of surface roughness is only
considered on the quality factor of the CROW modes Qα,r, the characteristic step in Ps (signature
of the soliton appearance) is still present but with a pump power increased from P = 17.3 mW to
P = 54 mW. We show in Fig. 6(b) the frequency comb and corresponding envelope function
in the inset along the super-ring polar angle θ at σα0/γα0 = −1.4874 [same of Fig. 5(d)]. As
disorder in the Bloch mode frequencies increases, the step in the averaged waveguide power
becomes less evident thus making soliton states more unlikely to appear. Selected realizations
for the different disorder magnitudes employed in this analysis are shown in Figs. 6(c)–6(e).
Here, we clearly see the effects of disorder on the soliton envelope, which starts to loss its spatial
localization at σdis = 0.24 GHz. We now focus on the state shown in Fig. 5(e), whose disorder
analysis is presented in Fig. 6(f). In order to recover the same step features in presence of
sidewall roughness, the pump power is increased from P = 24.7 mW to P = 77.1 mW. Selected
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realizations are also shown for this case in Figs. 6(g)–6(j) at σα0/γα0 = −1.75355 [same of
Fig. 5(e)]. Interestingly, for the largest disorder magnitude considered, the step in ⟨Ps⟩ is still
present and a spatially localized soliton envelope is more likely to appear than in Fig. 6(e), thus
making this higher-power state more robust against random fluctuations on ωα.

Fig. 6. (a) Averaged Ps over 50 disorder realizations for different disorder magnitudes σdis,
as a function of the laser detuning σα0 . The pump power is set to P = 54 mW. (b) Frequency
comb of the soliton state computed at σα0/γα0 = −1.4874 for σdis = 0 (state iii). The
envelope function ψ(θ) is displayed in the inset. (c)-(e) Selected disorder realizations of
the soliton combs computed at σα0/γα0 = −1.4874 for the different disorder magnitudes
considered in (a). (f) Same as (a) with a pump power of P = 77.1 mW. (g)-(j) Same as
(b)-(e), computed at σα0/γα0 = −1.75355 (state iv). All |Bα |

2 and |ψs |2 quantities are
given in units of γα0 f (κ)/(2gα0 ).

While disorder magnitudes of the order of 0.2 GHz might be challenging to achieve in modern
fabrication techniques, they are ∼ 1/16 of the CROW FSR (3.2 GHz), which is around 23
times the typical relative frequency fluctuation (with respect to the FSR) in modern microring
resonators [49]. Therefore, our results clearly evidence the extremely robust nature of DKS
against random fluctuations on the resonator frequencies.

6. Conclusions

We have studied the formation of frequency combs and DKS in a CROW made of silica-
encapsulated ring resonators, operating at telecommunication frequencies. Thanks to slow-light
enhancement of the non-linear response of the CROW, combs and DKSs can be generated for
significantly lower values of the quality factor, than those typically required by a microring
resonator. These low values of the quality factor can be achieved in silicon structures even in
presence of losses induced by surface roughness. Our study shows that combs and DKSs can
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arise already for pump power in the 10 mW range. This range of pump values also allows to rule
out additional non-linear loss mechanisms due to free-carrier absorption at the 1.55 µm band,
which become relevant for input intensities larger than 10 GW/m2 [50].

We have also addressed the effects of surface roughness and random frequency fluctuations
arising from surface roughness introduced at the fabrication stage. Our results show that DKSs
are robust against fabrication imperfections for values of the disorder amplitude well above those
routinely achieved in microring resonators. The only effect of disoreder is a moderate increase of
the power required for comb generation, due to the reduced quality factor.

The CROW structure that we propose opens the way to efficient, compact and low power comb
and DKS generation in silicon devices at telecom frequencies.
Disclosures. The authors declare no conflicts of interest.
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