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Abstract. A quasilinear operator for wave-particle interactions in the electron
cyclotron range is derived using the cold plasma dispersion relation. The finite
width of the beam implies a broadening of the resonance layer in the velocity
space which allows the use of a numerically efficient treatment of the operator.
The specific case of a pure heating injected at the outer mid-plane is then treated.
It allows to treat the beam propagation and absorption easily, simplifying the
implementation of the source term in the gyrokinetic code. This specific case is
implemented in the gyrokinetic PIC code ORB5 using a Langevin approach. The
derivation and verification of the source operator are presented.

1. Introduction

One of the main mechanisms to heat a hot plasma is to send a wave that will transfer
its energy to particles via wave-particle interaction. For an efficient coupling of the
wave with the plasma, resonant processes are needed, implying that the wave frequency
is a multiple of the cyclotron frequency of one of the species present in the plasma.
When the beam frequency is in the electron cyclotron (EC) range, the beam deposits
its energy on electrons. This process can be used to heat the plasma or to generate a
current. One of the advantages of using an EC beam is that the spatial deposition of
the power is narrow, which allows controlling MHD instabilities [1].

It has been experimentally observed that the area of deposition of an EC beam
can be wider than expected, potentially leading to inaccurate power deposition [2].
Two mechanisms have been proposed to explain this observation. The first option is
the scattering of the beam by turbulent fluctuations essentially at the edge [3]. This
mechanism has been numerically and experimentally tested in the toroidal device
TORPEX and the tokamak TCV for transmitted EC waves using a full-wave beam
propagation code in presence of turbulent fluctuations [4, 5]. It has been shown in TCV
that density fluctuations in the Scrape-Off Layer lead to instantaneous fluctuations
of the transmitted beam power profile consistent with experimental observations.
These instantaneous fluctuations tend to broaden the beam on average. This effect
is expected to be significant in ITER, where the beam will have to travel over a
longer path before reaching the resonance than in today’s tokamaks [6]. The second
proposed mechanism suggests that the heating due to the power deposition leads to
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a locally enhanced radial transport of particles. This mechanism has been tested by
coupling a beam propagation code (Ray Tracing) with a local Fokker-Planck code and
by adding an ad hoc transport term [7, 8, 9]. Especially, it has been shown in [9]
that this ad hoc transport needs to be localised both in position and velocity spaces
where the wave-particle interaction takes place to match Hard X-Ray measurements
from suprathermal electron Bremsstrahlung emission. To study this problem on a
first-principle basis, the coupling of a global flux-driven gyrokinetic code with a wave
propagation code is an appropriate tool.

Different global flux-driven gyrokinetic codes have been developed in the last two
decades. To the authors knowledge, all of these codes are using simplified source terms
[10, 11, 12, 13], able to sustain profiles for long simulations but too simple to study in
detail the effect of the source on transport. The implementation of a realistic source
in a flux-driven gyrokinetic code will therefore enable the study of different physical
problems related to the modification of transport by the presence of the source. In
this paper, the implementation of a realistic EC source in a flux-driven gyrokinetic
source is reported for the first time.

The rest of this article is organised as follow. In part 2, the general form of
quasi-linear operators for wave-particle interactions is presented in the specific case of
a uniform and constant magnetic plasma. In part 3, the specific case of a beam with a
frequency in the EC range is treated. In part 4, the resonance broadening due to the
finite width of the beam is treated analytically. To ease the first implementation of this
source in the gyrokinetic code, the specific case of a pure heating beam propagating
along the mid-plane is detailed in part 5. In part 6, the numerical scheme for the
implementation of the source in the ORB5 code is presented. The implementation is
verified by investigating several test cases in part 7.

2. Quasi-linear operator for wave-particle interactions

Historically, the quasilinear formalism for the diffusion operator describing the
interaction between radio-frequency waves and an infinite and uniform plasma has
been developed by Kennel and Engelmann [14]. Relativistic effects have been added
to the model by Lerche [15].

We consider an electric field propagating in a plasma. In this paper, a
monochromatic wave of pulsation ωb is considered. This electric field in real space can
be represented as a Fourier transformation from the corresponding Fourier description

E (x, t) =

∫
d3k

(2π)
3

∫
dω

2π
eik·x−iωtEk (k, ω) [δ (ω − ωb) + δ (ω + ωb)] . (1)

In this expression, k is the wave vector and Ek the component of the electric field
associated with k. The propagation of this electric field leads to a plasma-wave
interaction that can be represented by a quasilinear operator. The quasilinear operator
for the general case of a uniform plasma immersed in a constant and uniform magnetic
field B0 is given by

∂F

∂t
= Q =

+∞∑
n=−∞

Qn (2)

where F is the distribution function of the species coupling with the beam and n
stands for the harmonic considered. Each component Qn takes the form [16]

Qn = ∇v · [Dn · ∇vF ] (3)
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with the diffusion matrix defined as

Dn = lim
V→0

1

V

π

2

Z2e2

m2

∫
d3k

(2π)
3

∫
dω

2π

k2
‖

ω2v2
⊥
δ
(
ω − k‖v‖ − nωc

) ∣∣w?T
n Ek

∣∣2 unuTn

× [δ (ω − ωb) + δ (ω + ωb)] . (4)

In this expression, m, Ze and ωc = ZeB0

mγ are respectively the mass, the charge and the

relativistic cyclotron frequency (with γ the relativistic Lorentz factor) of the species
considered. k‖, k⊥ are the parallel and perpendicular components of the wave vector
with respect to the magnetic field and V is the volume of integration. The exponents
T and ∗ refer respectively to the matrix transpose and to the complex conjugate. The
integration over frequencies can be directly performed here, leading to

Dn = lim
V→0

1

V
π
Z2e2

m2

∫
d3k

(2π)
4

k2
‖

ω2
bv

2
⊥
δ
(
ωb − k‖v‖ − nωc

) ∣∣w?T
n Ek

∣∣2 unuTn . (5)

We define a basis (ex, ey, ez) such that B0 = B0ez and k = k⊥ex + k‖ez. The
vector wn in Eq.5 is defined in the Cartesian basis (ex, ey, ez) as

wn =

 v⊥
n
ρJn (ρ)

−iv⊥J ′n (ρ)
v‖Jn (ρ)

 . (6)

In this expression, Jn is the n-th Bessel function of first kind and ρ = k⊥v⊥/ωc
its argument, accounting for Finite Larmor Radius effects. In Eq.5, un represents the
direction of the diffusion due to wave-particle interaction which reads in the cylindrical
basis

(
e⊥, e‖

)
(Note that un does not have an eϕ component due to the symmetry of

the problem).

un =

( ωb

k‖
− v‖
v⊥

)
. (7)

Using the resonance condition, ωb = k‖v‖ + nωc, one can define the vector sn as

sn = un
k‖

ωb
=

(
nωc

ωb
k‖v⊥
ωb

)
=

(
s⊥n
s
‖
n

)
(8)

allowing the simplification of the definition of the diffusion matrix Eq.5 which reads

Dn = DnsnsTn =

(
D⊥⊥n D

⊥‖
n

D
⊥‖
n D

‖‖
n

)
(9)

with the resonant diffusion coefficient defined as

Dn = π
Z2e2

m2
lim
V→0

1

V

∫
d3k

(2π)
4 δ
(
ωb − k‖v‖ − nωc

) ∣∣Π?T
n Ek

∣∣2 . (10)

In this expression, Πn = wn/v⊥. Consequently one gets

Π?T
n Ek = Jn−1 (ρ)

Ek,+√
2

+ Jn+1 (ρ)
Ek,−√

2
+
v‖

v⊥
Jn (ρ)Ek,‖ (11)

where Ek,+, Ek,− are respectively the left- and right-handed polarized electric field
components

Ek,± =
Ek,x ± iEk,y√

2
. (12)
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3. Plasma-wave interaction in the electron cyclotron range

3.1. Details of interaction with electrons

The quasi-linear operator presented in the part 2 is valid for any species. In the
rest of this paper a beam with a typical frequency in the EC range is considered.
Hence, only electrons will couple to the beam. Since ωce = −Ωe/γ < 0, where
Ωe = eB/me is the non-relativistic absolute value of the electron cyclotron frequency,
the resonant condition in Eq.10 implies that the plasma-wave coupling will mainly take
place with negative harmonics n ≤ 0. Moreover, the argument of the Bessel functions
ρ = −k⊥v⊥γ/Ωe is negative. Using the properties J−n (x) = (−1)

n
Jn (x) and

Jn (−x) = (−1)
n
Jn (x), the resonant diffusion can be specified for a beam interacting

with electrons

D−n = π
e2

m2
e

lim
V→0

1

V

∫
d3k

(2π)
4 |Ek|2 |Θn

k |
2
δ

(
ωb − k‖v‖ − n

Ωe
γ

)
(13)

where ρe = k⊥v⊥γ/Ωe, |Ek|2 = |Ek,x|2 + |Ek,y|2 + |Ek,z|2 and

Θn
k =

Jn+1 (ρe)√
2

Ek,+

Ek
+
Jn−1 (ρe)√

2

Ek,−

Ek
+
v‖

v⊥
Jn (ρe)

Ek,‖

Ek
. (14)

Similar equations are the basis of EC wave interaction treatment in the bounce-average
drift kinetic Fokker-Planck code LUKE [17]. In particular, it can be noted that Eq.13
is equivalent to equation 4.228 in LUKE’s technical report [18].

3.2. Beam propagation and polarisation

In the next step, one should obtain the beam direction
(
k‖, k⊥

)
. Far from resonances,

the propagation of an EC wave can be described in the cold plasma limit, which reads
[1] (

SN 2 −RL
) (
N 2 − P

)
tan2 θ + P

(
N 2 −R

) (
N 2 − L

)
= 0 (15)

where N = c |k| /ωb is the index of refraction, θ is the angle between the wave vector
k and the magnetic field B0 (sin θ = k⊥/k, cos θ = k‖/k). In the dispersion relation,
Eq.15, the Stix coefficients [19] are defined as

P = 1−
(
ωp
ωb

)2

(16)

with ωp =
√
nee2/ (ε0me) the electron plasma frequency,

R =
P − Ωe

ωb

1− Ωe

ωb

, (17)

L =
P + Ωe

ωb

1 + Ωe

ωb

, (18)

and S = (R+ L) /2. The dispersion relation Eq.15 is a second order equation in
N 2 which possess two solutions. The first one, called the ordinary mode (O-mode),
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corresponds to N 2 = P for a perpendicular propagation
(
θ = π

2

)
and N 2 = L for a

parallel propagation (θ = 0).

N 2
O (θ) =

(RL+ SP) tan2 θ + P (R+ L) + Gθ
2
(
S tan2 θ + P

) (19)

where

Gθ =

√
(SP −RL)

2
tan4 θ + P2 (L −R)

2 (
tan2 θ + 1

)
. (20)

The second mode called the extraordinary mode (X-mode) corresponds to SN 2 = RL
for a perpendicular propagation and N 2 = R for a parallel propagation.

N 2
X (θ) =

(RL+ SP) tan2 θ + P (R+ L)− Gθ
2
(
S tan2 θ + P

) . (21)

An important property of the cold-plasma limit is the relative weight of the electric
field components in the basis (ex, ey, ez) defined in the first section. They read

i
Ek,y

Ek,x
=

T
S −N 2

(22)

where T = (R−L) /2 and

Ek,z

Ek,x
= − N

2 cos θ sin θ

P −N 2 sin2 θ
. (23)

For quasi-perpendicular propagation NX/O (θ) |cos θ| < vT /c, corresponding to
the limit case implemented in the gyrokinetic code, thermal corrections to the cold-
plasma dispersion relation are small except if (ωp/Ωe)

2 ' (vT /c)
2

for the X-mode

around the fundamental resonance, or if the assumption (ωp/Ωe)
2 � 1 breaks for

the X-mode around the second harmonic resonance and for the O-mode around the
fundamental resonance [20]. In the rest of this paper, we assume that the EC wave
can be described in the cold plasma limit. The injection of Eq.22,23 in Eq.13,14 then
leads to the approximated resonant diffusion coefficient

D̃−n =
πe2N (θ0)

m2
eωb

c∣∣v‖∣∣ lim
V→0

1

V

∫
d3k

(2π)
4 |Ek|2 δ

[
N (θ) cos (θ)− λ

(
v‖, v⊥

)
N (θ0)

] ∣∣∣Θ̃n
k

∣∣∣2 (24)

where

λ
(
v‖, v⊥

)
=

(
1− Ωe

ωb

n

γ

)
c

v‖
(25)

and

Θ̃n
k =

 (1 + T
S−N 2(θ)

)
Jn+1 (ρ̃e) +

(
1− T

S−N 2(θ)

)
Jn−1 (ρ̃e)

−2N
2(θ) cos(θ) sin(θ)
P−N 2(θ) sin2(θ)

v‖
v⊥
Jn (ρ̃e)


2

√
1 +

(
T

S−N 2(θ)

)2

+
(
N 2(θ) cos θ sin θ
P−N 2(θ) sin2 θ

)2
(26)

with ρ̃e = sin (θ)N (θ) ωb

Ωe

v⊥
c γ.
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4. Broadening of the resonance by the finite width of the beam

4.1. Analytical treatment of the resonance

In practice, the beam possess a Gaussian shape of width W0 in the direction
perpendicular to its propagation. Due to the finite width of the beam, the Fourier
transform of the electric field also possess a Gaussian shape of width 1/W0 in the
direction perpendicular to k0. Moreover the amplitude of the wave-vector has to
fulfill the dispersion relation. As a consequence the Fourier transform of the electric
field takes the form

|Ek|2 = |Ek,0|2 exp

[
−
(ϕ
σ

)2
]

exp

[
−
(
θ − θ0

σ

)2
]
δ

(
k − N (θ)ωb

c

)
k0 (27)

where θ0 is the mean angle between the direction of propagation and the direction of
the magnetic field and σ = 1/ (k0W0), with k0 = N (θ0)ωb/c. Injecting this ansatz in
Eq.24, one gets

D̃−n =
πe2N (θ0)

m2
eωb

c∣∣v‖∣∣ lim
V→0

1

V

|Ek,0|2

(2π)
4 k0k

2
res exp

[
−
(
θres − θ0

σ

)2
]

sin (θres)

×
∣∣∣Θ̃n

k,res

∣∣∣2 ∫ 2π

0

exp

[
−
(ϕ
σ

)2
]
dϕ (28)

where kres = [N (θres)ωb] /c and

Θ̃n
k,res =

 (1 + T
S−N 2(θres)

)
Jn+1 (ρ̃res) +

(
1− T

S−N 2(θres)

)
Jn−1 (ρ̃res)

−2N
2(θres) cos(θres) sin(θres)
P−N 2(θres) sin2(θres)

v‖
v⊥
Jn (ρ̃res)


2

√
1 +

(
T

S−N 2(θres)

)2

+
(
N 2(θres) cos θres sin θres
P−N 2(θres) sin2 θres

)2
(29)

with ρ̃res = sin (θres)N (θres)ωbv⊥γ/ (Ωec), and the resonant angle θres is solution of

N (θres) cos (θres) = λ
(
v‖, v⊥

)
. (30)

For v‖ = 0, the resonance condition reads(v⊥
c

)2

= 1−
(
ωb
nΩe

)2

(31)

which implies that there is a single point in the velocity space where resonance is
possible. In practice, we will neglect the plasma-wave interaction for the case v‖ = 0.

The next step is to express the resonant diffusion coefficient as a function of the
real electric field. To do so, we use Parseval’s theorem

|E0|2 = lim
V→0

1

V

∫
d3k

(2π)
3

∫
dω

2π
|Ek|2

= lim
V→0

2 |Ek,0|2 k0ω
2

V (2π)
4
c2

∫ π

0

sin (θ) exp

[
−
(
θ − θ0

σ

)2
]

×N 2 (θ) dθ

∫ 2π

0

dϕ exp

[
−
(ϕ
σ

)2
]
. (32)
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Substituting this relationship in Eq.28, one gets

D̃−n =
πe2N (θ0)

2m2
eωb

c∣∣v‖∣∣ |E0|2
sin (θres) exp

[
−
(
θres−θ0

σ

)2]N 2 (θres)∫ π
0

sin (θ) exp
[
−
(
θ−θ0
σ

)2]N 2 (θ) dθ

∣∣∣Θ̃n
k,res

∣∣∣2 . (33)

In practice, σ is often small compared to one. A good proxy of the resonant diffusion
coefficient is therefore

lim
σ→0

D̃−n =

√
πe2N (θ0)

2m2
eωbσ

c∣∣v‖∣∣ |E0|2 exp

[
−
(
θres − θ0

σ

)2
] ∣∣∣Θ̃n

k,res

∣∣∣2 . (34)

Even-tough this approximation is not used in the following of this paper, it could be
used to lighten the numerical cost of the operator.

To construct the effective matrix of diffusion Eq.9, it is useful to express the
vector sn, Eq.8, as function of θ(

s⊥n
s
‖
n

)
=

(
−nΩe

ωbγ

N (θres) cos (θres)
v⊥
c

)
=

(
−nΩe

ωbγ

λ
(
v‖, v⊥

)
v⊥
c

)
. (35)

We deduce the values of D⊥⊥n , D
⊥‖
n and D

‖‖
n by multiplying Eq.33 by the appropriate

combination of s⊥n and s
‖
n (θres).

4.2. Determination of θres

One of the difficulties left is the determination of θres which is solution of Eq.30. If
λ = 0 then θres = π/2. If λ

(
v‖, v⊥

)
< 0, we use the property

N (π − θres) cos (π − θres) = −λ
(
v‖, v⊥

)
(36)

to come back to a case where λ > 0. Using the dispersion relation (Eq.19 or 21) and
the definitions of R, L and S, one gets after a bit of algebra

N (θ) cos (θ) =
1− τ
1 + τ

×

(
ωb

Ωe
P (1 + τ)

)2

− 2τ − P
(
1 + τ2

)
± (1− P)

√
4τ2 +

(
ωb

Ωe
P (1− τ2)

)2

(
ωb

Ωe

)2

P (1 + τ)
2 − P (1− τ)

2 − 4τ
(37)

where τ = tan2
(
θ
2

)
. At the resonance, ωb ∼ nΩe, and N (θ) cos (θ) is therefore

a function of t and P for a given harmonic n. The most commonly used modes of
operation are O1, X2 and X3. For the O-mode, the cut-off implies 0 < P < 1, whereas
for the X2 and X3 modes, the cut-off implies 1/n < P < 1 [1]. A numerical study
represented in Fig.1 shows that N (θ) cos (θ) is a strictly decreasing function of τ for
the three modes of interest. It implies that Eq.30 possess a unique solution if and only
if ∣∣λ (v‖, v⊥)∣∣ ≤ N (θ = 0) . (38)

This solution can be efficiently found by a binary search.
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Figure 1. N (θ) cos (θ) is a decreasing function of τ for the modes X2 (top left),
X3 (top right) and O1 (bottom).

5. Specific case of a pure heating propagation along the mid-plane

5.1. Link between the amplitude of the electric field and the power carried by the beam

The theory developed in the previous sections is general, except for the use of the cold-
plasma dispersion relation whose limits were already discussed. Spatial dependence
of all quantities appearing in Eq.33 needs to be prescribed. For plasma quantities,
spatial dependencies can directly be taken from the global gyrokinetic code. On the
other hand, parameters related to the beam propagation should be computed with
another code, e.g. a ray-tracing code. Moreover, an iterative interaction between the
plasma and the beam codes is in principle required to accurately compute the power
loss along the beam path due to plasma absorption. This is left for a future work. To
avoid the coupling of the gyrokinetic code with a beam propagation code, a purely
heating beam (θ0 = π/2) injected along the mid-plane is considered. Due to the
axisymmetry, the beam propagates perpendicularly to the magnetic field (θ0 = π/2)
everywhere. The beam width W0 is assumed to be independent of the position for
simplicity. The source is also assumed to be axisymmetric to increase the size of the
interaction area in the 5D phase-space, easing the numerical handling of the resonance
described in the next section.

The only free parameter left is the amplitude of electric field |E0|2 as a function
of space. Its value is related to the power of the beam. Indeed, the power of the beam
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across a surface x reads

P = vgε0π
3/2RW0 |E00|2 (39)

where R is the major radius and vg = (∂k/∂ωb)
−1

represents the group velocity at
which the energy is supposed to flow and |E00| represents the amplitude of the electric
field at the center of the beam. The amplitude of the electric field is therefore given
by

|E0|2 (R,Z) =
P (R)

vg (R) ε0π3/2RW0
exp

[
−
(
Z

W0

)2
]

(40)

where Z represents the vertical coordinate.
The group velocity can be computed for an exact perpendicular propagation

θ0 = π/2. For the X-mode propagating perpendicularly to the magnetic field, the
group velocity reads

vXg = NX
(π

2

)
c

[
ω2
b −

(
ω2
p + Ω2

e

)]2[
ω2
b −

(
ω2
p + Ω2

e

)]2
+ ω2

pΩ2
e

= NX
(π

2

)
c

S2

[
1−

(
Ωe

ωb

)2
]

S2

[
1−

(
Ωe

ωb

)2
]
− Ωe

ωb
T
. (41)

For the O-mode propagating perpendicularly to the magnetic field, the group velocity
reads

vOg = NO
(π

2

)
c. (42)

5.2. Model for the evolution of the beam power along the path

To determine the evolution of the beam power along its path, a simple model of
absorption derived by Bornatici [21] is used. The local absorption coefficient of a
X-polarized wave propagating quasi-perpendicularly to the background magnetic field
(NX | cos(θ)| < vT /c), where vT =

√
Te/me is the thermal velocity of electrons, of a

weakly relativistic (vT /c� 1) cold Maxwellian plasma, assuming that Finite Larmor
Radius effects can be neglected (ω2

p < Ω2
e), reads [22]

α(X)
n (θ) = αn(θ) φn+ 3

2
(ωb) µ

(X)
n (θ) (43)

for n ≥ 2, where n is the harmonic number and

αn(θ) =
πn2n−1

2nΓ (n)

(vT
c

)2(n−1) ω2
p

c

(
1 + cos2 θ

)
(sin θ)

2(n−1)
(44)

where Γ is the Euler integral of the second kind and the relativistic profile of the
resonance is given by

φq(ωb) =

{
1

Γ(q)

(
c
vT

)2q (
nΩe−ωb

ωb

)q−1
1
ωb

exp
[
− c2

v2T

nΩe−ωb

ωb

]
if ωb < nΩe

0 otherwise
(45)

and

µ(X)
n (θ) = [NX (θ)]

2n−3

[
1 +

(ωp/Ωe)
2

n (n2 − 1− (ωp/Ωe)2)

]2

for n ≥ 2 (46)
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Given the finite width in θ, the local absorption coefficient should be integrated
over angles

α̃ =

∫ π

0

α(X)
n (θ)F (θ) dθ

=

∫ π−θ0

−θ0
α(X)
n (θ0 + ∆θ) exp

[
−∆θ2

2σ2

]
d (∆θ)

σ
√

2π

=

∫ π−θ0

−θ0

[
α(X)
n (θ0) + ∆θ

α
(X)
n

dθ
(θ0) +O

(
∆θ2

)]
exp

[
−∆θ2

2σ2

]
d (∆θ)

σ
√

2π

= α(X)
n (θ0) +O

[(
σ

θ0

)2
]

(47)

where the first order correction term has been neglected by using its parity in
combination with the hypothesis σ � θ0. As a consequence of Eq.47, only the leading
order term is kept, implying that Eq.43 is in practice evaluated in θ0.

The optical thickness of the plasma τX is defined by the integral of the absorption

coefficient along the beam path τX =
∫ L

0
α

(X)
n (θ0)ds, with s the curvilinear abscissa

along the beam path of length L. The beam power is then given by PEC =
PEC,0 exp(−τX). The same methodology applies to the O-mode, considering for n ≥ 1

α(O)
n (θ) = αn(θ) φn+ 5

2
(ωb) [NO(θ)]

2n−1
(vT
c

)2

(48)

The simple absorption model of Bornatici has been compared against the linear
Landau damping calculation of the C3PO Ray Tracing code [23], using a range of TCV-
like plasma equilibria. An analytic MHD equilibria has been used, based on Grad-
Shafranov solution and assuming Solov’ev profiles, derived by Cerfon and Freidberg
[24]. It assumes that the pressure profile evolves as 1 − ρ2, where ρ is the square
root of normalized poloidal magnetic flux, and the density profiles is proportional to√

1− ρ2. The temperature profile is deduced from pressure and density profiles, using
ne,edge = ne,0/20 and Te,edge = Te,0/20. The on-axis magnetic field has been fixed
to B0 = 1.5 T and a pure-ECRH X2 beam at 75 GHz is launched from the outer
midplane.

Figure 2 shows a poloidal view of C3PO simulation results and an example of
the EC beam power along a ray path obtained both with C3PO and Bornatici’s
analytic model. The absorption occurs at the same location in both cases, while the
absorption level is slightly lower with the analytic model. Temperature and density
scans are shown in figure 3 and 4 respectively. The absorption level and the absorption
characteristic length (taken between Pabs/Pabs,max = 0.9 and Pabs/Pabs,max = 0.1)
are compared. In general, Bornatici’s model absorbs slightly less power, over a slightly
longer length than C3PO simulations. This effect tends to reduce for better absorption
conditions (higher density and temperature) and the overall agreement between both
method is rather good within TCV parameters range.

6. Numerical handling of the source term

In the previous section, an ECRH source has been derived with the aim of an easy
implementation in a flux-driven gyrokinetic code. There are different numerical
approaches to implement the gyrokinetic equations: Eulerian, Lagrangian, semi-
Lagrangian [25]. Up to now, the choice of the gyrokinetic code was unspecified. We
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Figure 2. Left: poloidal view of a pure-ECRH C3PO simulation in a TCV-like
plasma (ne,0 = 2 · 1019 m−3, Te,0 = 2 · 103 eV and B0 = 1.5 T), for a X2
EC beam at 75 GHz. Black dots represent the maximum of absorption. Right:
Power profile along the red ray of the left plot, computed with C3PO and with
Bornatici’s analytic model.

Figure 3. Temperature scan comparing Bornatici’s analytic model and C3PO
pure-ECRH simulations for ne,0 = 2 ·1019 m−3, Te,0 = 0.5-5 ·103 eV, B0 = 1.5 T
and a X2 EC beam at 75 GHz. Left: absorption level. Right: absorption
characteristic length.

now make the choice to use the ORB5 code [13] which is using a particle-in-cell (PIC)
approach.

6.1. Fokker-Planck form

As suggested in [26], quasi-linear wave-particle interaction can be efficiently
implemented in PIC codes using a Langevin approach. To do so, the first step consists
in expressing Qn in the form of a Fokker-Planck operator

Qn = ∇v · [∇v · (DnF )− ΓnF ] (49)

where the drag force is defined as

Γn = ∇v · Dn (50)
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Figure 4. Density scan comparing Bornatici’s analytic model and C3PO pure-
ECRH simulations for ne,0 = 0.5-3 ·1019 m−3, Te,0 = 2 ·103 keV, B0 = 1.5 T and
a X2 EC beam at 75 GHz. Left: absorption level. Right: absorption characteristic
length.

The divergence of a second-order tensor field in cylindrical polar coordinates where
there is no ϕ dependence is given by

Γn = ∇v · Dn = Γ⊥n ê⊥ + Γ‖nê‖ (51)

with

Γ⊥n =
1

v⊥

∂
(
v⊥D

⊥⊥
n

)
∂v⊥

+
∂D
⊥‖
n

∂v‖
(52)

Γ‖n =
1

v⊥

∂
(
v⊥D

⊥‖
n

)
∂v⊥

+
∂D
‖‖
n

∂v‖
(53)

In most of the velocity space, centered finite differences are used to numerically
estimate the drag terms. An exception is made for markers with low parallel velocities.
Indeed the term c/

∣∣v‖∣∣ in Eq.33 implies a quick variation of the resonant diffusion
coefficient for low parallel velocities. These variations are difficult to treat numerically.
An approximate version of the drag terms is used for markers with a parallel velocity
lower than a given value (

∣∣v‖∣∣ ≤ vlim). In practice, the value vlim = 0.1vT is chosen.
To compute the approximate drag terms, we use the fact that s‖ � s⊥, even for low
parallel velocities compared to the thermal velocity, to discard terms proportional to

D
⊥‖
n and D

‖‖
n . The parallel drag is therefore approximated to be zero. Moreover

the main dependence of the resonant diffusion coefficient with respect to v⊥ is in the
Bessel function for the X-mode. A good proxy for Eq.52 in the case of a X-mode is
therefore given by

Γ⊥
n,|v‖|≤vlim = D⊥⊥n

[
1

v⊥
+
Jn−2 (ρ̃res)

Jn−1 (ρ̃res)

∂ρ̃res
∂v⊥

]
. (54)

It is possible to use the fact that ρ̃res � 1 to further approximate Eq.54. Indeed the
Bessel functions are well approximated by Jn (x) ' (x/2)

n
/n! for x� 1. Using these

properties, the drag terms are well approximated by

Γ⊥
n,|v‖|≤vlim =

D⊥⊥n
v⊥

(2n− 1) (55)
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Γ
‖
n,|v‖|≤vlim = 0. (56)

A similar calculation can be performed for the O-mode and leads to the same
approximate result for the drag term. Therefore Eq.55 and 56 are used for both
modes for markers with low parallel velocities (

∣∣v‖∣∣ ≤ vlim).

6.2. Langevin form

In order to efficiently solve the Fokker-Planck equation, we shall find and solve the
underlying stochastic process. Such a process can be found by deploying Ito’s lemma
for Fokker-Planck type equation as used for the collision operator in ORB5 [27]. Hence,
solution to Eq.49 is equivalent to the solution of the stochastic process

dv =
∑
n

(Γndt+ GndW) (57)

where dW = Wt+dt−Wt is a Wiener process with increments which follows Gaussian
distribution, and Gn · GTn = 2Dn. Eq.57 is discretised using the Euler-Maruyama
scheme. The evolution of the marker position in the velocity space then reads

∆vi =
∑
n

(
Γn,i∆t+ Gn,i

√
∆tRi

)
(58)

where i is the index of the marker considered, Γn,i and Gn,i are evaluated at the
position in the 5d phase space of the marker before the kick and

Ri =

(
R⊥i
R
‖
i

)
(59)

where R⊥i , R
‖
i are independent random numbers sampled from Gaussian distributions

with zero mean and a variance of one. Any Gn,i such as Gn,i · GTn,i = 2Dn,i gives
exactly the same dynamics. One solution is given by

Gn,i =
√

2Dn,i

(
0 s⊥n,i
0 s

‖
n,i

)
(60)

In summary, Eq.57 is in the specific case considered here(
∆v⊥,i
∆v‖,i

)
=
∑
n

[(
Γ⊥n,i
Γ
‖
n,i

)
∆t+

√
2Dn,i∆t

(
s⊥n,i
s
‖
n,i

)
R
‖
i

]
(61)

Note that the contribution of R⊥i completely disappeared. This is due to the special
form of Dn which possess one zero eigenvalue. In other words, the diffusion is
unidirectional along the vector sn.

7. Numerical tests of the source term implemented in ORB5

The source operator described in the previous sections has been implemented in the
global gyrokinetic code ORB5 [13]. In this section, the implementation is verified by
studying the evolution of the distribution function due to this source term. All other
modules of the code (movement of markers, collisions...) are turned-off for simplicity.
As a consequence, the distribution function evolves only due to the source, according
to Eq.2.
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7.1. Description of the test

In the tests performed in this section, flat profiles of density ne and temperature
Te are used. The density and temperature are scanned around reference values
ne,ref = 1 · 1019 m−3 for density, Te,ref = 1.2 · 103 eV for the temperature. An
analytical axisymmetric magnetic geometry with circular concentric flux surfaces has

been used for these tests [28]. The magnetic field reads B = B0R0

R

[
ε
q̄eχ + eΦ

]
where

χ stands for the poloidal angle, Φ for the toroidal angle, ε = r
R0

is the inverse aspect

ratio and q̄ (r) = q (r)
√

1− ε2 with q the safety factor. The on-axis magnetic field
intensity has been fixed to B0 = 1.4 T and a constant value for q̄ = 10 has been used.
With this choice the poloidal component of the magnetic field is negligible. The minor
and major radii have been fixed respectively to a = 25 cm, R0 = 88 cm which are
values typical of TCV. The frequency and the width of the beam have been scanned
around reference values, fref = 78 GHz and W0,ref = 2 cm respectively. Most of
the results presented here are done with a X2 heating. The results obtain with a O2
heating is presented only for the reference parameters.

The numerical tests shown in this section have been performed with 4 · 107 of
markers on a simulation domain with a minor radius ranging from rmin = 0 to
rmax = 0.2a. This is a regular density of markers for ORB5. Results are converged
with respect to the number of markers. The time step is chosen to ensure the condition
maxr,v (Dn) ∆t � 1. For realistic values of the beam intensity (∼ 105 W), this
condition is satisfied with time steps typically chosen for simulations in presence of
electrons. In practice for the tests presented here the time step has been fixed to
∆t = 1Ω−1

i where Ωi = eB/mi is the cyclotron frequency of a proton. The beam
power at the entry of the plasma has been fixed to P0 = 1 W to ensure that the
condition maxr,v (Dn) ∆t � 1 is fulfilled. The linear dependency of the source with
the beam power allows to extrapolate the results obtain here to an arbitrary power
input at the condition to have a time step small enough.

7.2. Velocity dependence of the resonant diffusion coefficient

The resonant diffusion coefficient Eq.33 possess dependencies in the poloidal plane
and in the velocity space. In Fig.5, the velocity dependence of the resonant diffusion
coefficient of the reference case is represented at mid-plane and for the radial position
where the absorption is maximal. The red circle in Fig.5 corresponds to the solution
of the resonant condition for the dominant angle θ0, which reads for the special case
of a pure perpendicular propagation (v/c)

2
= 1− [ωb/ (nΩe)]

2
. The maximum of the

diffusion coefficient is slightly above the red circle in the direction of increasing v⊥
because of the dependency of the argument of the Bessel functions ρ̃res in Eq.29, with
respect to this variable. The factor c/

∣∣v‖∣∣ in Eq.33 implies that the maximum of the
resonant diffusion coefficient of the X-mode is reached for low but non zero parallel
velocities. As a consequence, velocity derivatives of the resonant diffusion coefficient
close to the zero parallel velocity axis are difficult to handle numerically. The drag
terms are therefore computed approximately in this region as described in the section
6.1.

In Fig.6, the resonant diffusion coefficient is plotted for a O2 beam. All other
parameters are the same as for the reference case. A major difference with the reference
X2 mode is the amplitude of the diffusion coefficient which is much lower compared
with the one of the X2 mode. This is a due to the fact that for the O2 mode, the
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electric field is mainly aligned with the magnetic field. On the other hand for the
X2 mode the electric field is mainly perpendicular to the magnetic field. Given the
different orders of the Bessel functions in front of the components of the electric field
in Eq.14 a better coupling of the X-mode is expected compared with the O-mode. The
qualitative difference in the shape of the diffusion coefficient between the O2 and the
X2 modes is also a consequence of the difference of polarisation between the modes.
Indeed, in Eq.14, the is a factor

v‖
v⊥

in front of the term proportional to the parallel
component of the electric field. This factor implies that the maximum of the resonant
diffusion coefficient of the O-mode corresponds to higher parallel velocity compared
with the one of the X-mode. Therefore there is less difficulty to treat drag terms for
low parallel velocity markers in the case of a O-mode beam compared with the X-mode
case. The approximation of the drag terms described in the section 6.1 is nevertheless
applied for better results and consistency with the X-mode.
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Figure 5. Effective diffusion coefficient at the maximum of absorption for the
reference case (X2, f = 78 GHz, W0 = 2 cm, ne = 1019 m−3, Te = 1.2 · 103 eV).
The diffusion coefficient is given in units v2T Ωe.

7.3. Absorption profiles

The power deposited on electrons can be computed by using the evolution of the
marker position in velocity space. Indeed, for one given marker i, the energy evolution
due to one kick can be computed with the use of Eq.61 and reads

∆
(
v2
i

)
= 2

(
v‖,i∆v‖,i + v⊥,i∆v⊥,i

)
+
(
∆v‖,i

)2
+ (∆v⊥,i)

2
(62)

Eq.62 can be ensemble average and divided by the time step. This leads to〈
∆
(
v2
i

)〉
∆t

= 2
∑
n

[
v‖,iΓ

‖
n,i + v⊥,iΓ

⊥
n,i +Dn,i

[(
s
‖
n,i

)2

+
(
s⊥n,i
)2]]

+ ∆t
∑
n

[(
Γ
‖
n,i

)2

+
(
Γ⊥n,i

)2]
(63)
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Figure 6. Effective diffusion coefficient at the maximum of absorption for the O2
mode. All other parameters are the same as for the reference case (f = 78 GHz,
W0 = 2 cm, ne = 1019 m−3, Te = 1.2 · 103 eV). The diffusion coefficient is given
in units v2T Ωe.

By multiplying this quantity by the weight of the marker times me

2 , and by summing
over the markers in a spatial bin, one gets access to the ensemble average power
deposition on this bin. Note that Eq.63 allows to put a quantitative limit for the
maximum time step which is allowed for a given source amplitude.

In Fig.7, the ensemble average power deposited by the ORB5 source is plotted
as a function of the major radius and compared with Bornatici’s absorption model
for the reference case. A good agreement is found for the amplitude, the width
and the position of absorption. The small discrepancy between ORB5 results and
the prediction of Bornatici for the total power absorbed is the consequence of the
approximate drag terms used for low parallel velocities and described in the section
6.1. The two dotted lines in Fig.7 corresponds respectively to the major radii where

ωb = nΩe and ωb = nΩe

√
1− (3vT /c)

2
. Most of the deposition power deposition is

expected in between these two positions which then gives a good proxy for the width
of the deposition area.

In Fig.8 the ensemble average power deposited by the ORB5 source is plotted
as a function of the major radius for the O2-mode with the same parameters as the
reference case. The fraction of power deposited is as expected much lower than the
one of the X2-mode. In the figures 9, 10 and 11, scans in density, temperature and
the beam frequency are respectively represented. For all these parameters a good
agreement for the position, the amplitude and the width of the power deposition is
found. A scan with respect with the beam width W0 has also been performed and is
not represented here. As expected from Bornatici’s prediction, this parameters has a
negligible impact on the radial profile of absorption.
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Figure 7. Fraction of the power deposited as a function of the major radius for the
reference case (X2, f = 78 GHz, W0 = 2 cm, ne = 1019 m−3, Te = 1.2 · 103 eV).

Conclusion

In this paper, a quasilinear operator describing the interaction of a beam with electrons
in a magnetised plasma is derived. This operator is well suited for an efficient
numerical implementation thanks to an analytical treatment of the resonance, relying
on the finite width of the plasma beam.

A specific case, corresponding to a perpendicular injection on the midplane
has been implemented in the gyrokinetic code ORB5 using the equivalence between
Fokker-Planck and Langevin equations. This specific case, corresponding to a pure
heating scheme, allows to treat the propagation of the beam without the usage of a
beam propagation code. To avoid a costly iteration between the beam intensity and
the power absorbed by the plasma, the beam amplitude is computed thanks to an
analytical model.

The numerical source implementation has been verified by studying the shape of
the source term both in velocity and real space and by performing scans in different
physical quantities known to modify the power deposition. A good agreement is found
between the numerical results and the theoretical expectation.

In a forthcoming article, the effects of the source term presented in this article on
the transport will be studied in details. The more general case of a non-perpendicular
beam injection also be implemented and studied.
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Figure 8. Fraction of the power deposited as a function of the major radius
for the O2-mode. All other parameters are the same as for the reference case
(f = 78 GHz, W0 = 2 cm, ne = 1019 m−3, Te = 1.2 · 103 eV).
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Figure 9. Fraction of the power deposited as a function of the major radius
for different densities. On the left plot, the density is ne = 5 · 1018 m−3,
whereas on the right plot it is ne = 2 · 1019 m−3. The other parameters are
unchanged compared with the reference case (X2-mode, f = 78 GHz, W0 = 2 cm,
Te = 1.2 · 103 eV).
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Figure 10. Fraction of the power deposited as a function of the major radius
for different temperatures. On the left plot, the temperature is Te = 5.4 · 102 eV,
whereas on the right plot it is Te = 2.2 · 103 eV. The other parameters are
unchanged compared with the reference case (X2-mode, f = 78 GHz, W0 = 2 cm,
ne = 1019 m−3).
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Figure 11. Fraction of the power deposited as a function of the major
radius for different frequencies. On the left plot, the frequency of the beam
is fbeam = 75 GHz, whereas on the right plot it is fbeam = 81 GHz. The
other parameters are unchanged compared with the reference case (X2-mode,
W0 = 2 cm, ne = 1019 m−3, Te = 1.2 · 103 eV).
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