
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Tessellation and lmprovement of Simplicial Meshes
using Neural Networks

Alexis PAPAGIANNOPOULOS

Thèse n° 8439

2021

Présentée le 3 juin 2021

Prof. W. Curtin, président du jury
Prof. F. Gallaire, Dr P. Clausen, directeurs de thèse
Prof. D. Triantafyllidis, rapporteur
Dr L. Ladicky, rapporteur
Prof. L. Villard, rapporteur

Faculté des sciences et techniques de l’ingénieur
Laboratoire de mécanique des fluides et instabilités
Programme doctoral en mécanique

To my parents, brother and wife . . .

Acknowledgements
This is the occasion to thank great leaders, guides, colleagues, and friends:

Prof. Avellan, who always kept a sound scientific critical approach in my work and made this

possible with his support and wisdom.

Dr. Clausen, for constantly leading me to put my fullest potential at use and for closely

following up with all the details of our work.

Prof. Curtin, for being supportive and open to help all the time, as well as accepting to be a

member of the Juries.

Prof. Gallaire, for his welcoming and great collaborative spirit. Even if our partnership was

short, I will always appreciate his quick and dynamic actions.

Prof. Villard, Prof. Triantafyllidis and Dr. Ladicky for taking interest in my doctoral thesis work

and agreeing on evaluating it.

Mr. Flynn, for his outstanding talent and his unbreakable will to continue working, regardless

of the adverse period we all faced.

The whole “old” LMH group and the LFMI group, specially to Isabelle and Petra Erika – Your

guidance, advice and understanding was crucial, thank you so much!

Lastly, this work is dedicated to my parents, my brother, my wife, the memory of my grandpar-

ents and my friends. Each one for them kept me going with their constant support and good

attitude.

Lausanne, February 8, 2021 A. P.

i

Abstract
Modern mesh generation addresses the development of robust algorithms that construct

a discrete representation of the geometry into polytopal elements conforming to divergent

properties: (i) fidelity to complex geometrical features, (ii) support for high spatial resolution

in areas of interest and sparsity elsewhere, and (iii) preservation of optimal element geometry

(quality).The automation of the meshing process with respect to these properties is still

considered a critical bottleneck as it is often tied to the development of complex algorithms;

although such algorithms produce meshes that satisfy desirable properties, they may entail a

significant computational cost. To tackle the automation hurdles of current algorithms, this

research work studies the adaption of Neural Networks (NNs) that have been proven efficient

in automating complex problems, for the development of meshing algorithms.

A machine learning meshing scheme for the generation of simplicial meshes is proposed

based on the predictions of NNs. The scheme is applied to small contours with up to 16 edges.

The data extracted from the meshed contours are utilized to train NNs that approximate the

number of vertices to be inserted inside a contour cavity, their location, and the connectivity.

Based on an element quality metric, the results show a maximum deviation of 27.3% on the

minimum quality between the elements of the meshes generated by the scheme and the ones

generated from a reference mesher. This level of deviation corresponds to produced meshes

with element angles that lie between 28◦ ≤ θ ≤ 106◦ in the worst case. Such results validate the

use of the developed scheme for good quality mesh generation.

The trained NNs of the meshing scheme, along with a set of NNs that reposition vertices of

a mesh, are used to develop a machine learning based mesh improvement algorithm that

applies operations to improve the quality of elements. The efficiency of the operations is

validated and evaluated after their inclusion to local mesh improvement schemes that are

applied to: (i) perturbed static meshes containing low quality elements and (ii) dynamic

meshes that are subjected to simulations. The operations improve the quality for all test cases

at a reduced computational cost when compared to existing operations. In the worst case, the

application of the improvement schemes result in static meshes with element angles between

31◦ ≤ θ ≤ 109◦ and in dynamic meshes with minimum and maximum angles that lie between

35◦ ≤ θmi n ≤ 44◦ and 90◦ ≤ θmax ≤ 108◦, respectively, during the course of the simulation.

Finally, an iterative machine learning based scheme is developed to mesh larger uniform

and adaptive element size meshes. Based on a high-resolution contour that represents the

boundaries of a geometry, an initial mesh for a low-resolution contour is created using the

meshing scheme developed for small contours. Next, vertices are inserted in the edges of

iii

Abstract

the elements and projected to the high-resolution contour. Each sub-contour created after

this process is meshed using the meshing scheme. The quality of the elements is improved

using the developed mesh improvement algorithm. The application iterates until an element

target edge length is achieved. Examples of meshed geometries represented by high resolution

contours with up to 201 edges, demonstrate that the application produces good quality

uniform and adaptive meshes containing up to 1,658 elements with angles laying between

28◦ ≤ θ ≤ 111◦.

Keywords: Simplicial Mesh, Mesh Generation, Mesh Improvement, Neural Networks, Machine

Learning

iv

Résumé
La génération de maillages concerne le développement d’algorithmes robustes qui construisent

une représentation discrète de la géométrie en éléments polytopaux conformant à des pro-

priétés divergentes : (i) fidélité aux caractéristiques géométriques complexes, (ii) support

d’une haute résolution spatiale dans des zones d’intérêt et d’une faible densité ailleurs, et (iii)

préservation de la géométrie optimale des éléments (qualité). L’automatisation du processus

de génération de maillage respectant ces propriétés est souvent considérée comme un goulot

d’étranglement car elle est souvent liée au développement d’algorithmes complexes ; bien que

ces algorithmes produisent des maillages satisfaisant des propriétés désirables, ils peuvent en-

traîner un coût computationnel important. Afin de surmonter les obstacles à l’automatisation

des algorithmes actuels, ce travail de recherche étudie l’adaptation de réseaux de neurones

artificielles (RNs) qui ont été prouvés efficaces pour automatiser des problèmes complexes,

pour le développement d’algorithmes de maillage.

Un schéma d’apprentissage automatique pour la génération de maillage simpliciaux est pro-

posé selon les prédictions de RNs. Le schéma est appliqué aux petits contours qui contiennent

jusqu’à 16 arêtes. Les données extraites des contours maillées sont utilisées pour entraîner les

RNs qui prédisent le nombre de sommets à insérer dans la cavité des contours, leurs positions,

et la connectivité. Basée sur une métrique de qualité d’éléments, les résultats démontrent

une déviation maximale de 27.3 % sur la qualité minimale entre les éléments des maillages

générés par le schéma développé et ceux des maillages générés par le schéma de référence. Ce

niveau de déviation correspond à des maillages ayant des angles d’éléments compris entre

28◦ ≤ θ ≤ 106◦, au pire des cas. De tels résultats valident l’utilisation du schéma pour générer

des maillages de bonne qualité.

Les RNs entraînés pour le schéma de maillage, ainsi qu’un ensemble de RNs repositionnant

les sommets du maillage, sont utilisés pour développer un algorithm d’apprentissage auto-

matique d’amélioration de maillage, qui applique des opérations pour améliorer la qualité

des éléments. L’efficacité des opérations est évaluée et validée à la suite de leur inclusion

dans les schémas locaux d’amélioration de maillage qui sont appliqués à : i) des maillages

statiques perturbés contenant des éléments de faible qualité, et ii) des maillages dynamiques

qui sont sujet à des simulations. Ces opérations améliorent la qualité pour tous les cas tests à

un coût computationnel réduit comparativement aux opérations existantes. Au pire des cas,

au cours de la simulation, l’application des schémas d’amélioration dérivent des maillages

statiques ayant des angles compris entre 31◦ ≤ θ ≤ 109◦ et des maillages dynamiques avec

des angles minimum and maximum compris entre 35◦ ≤ θmi n ≤ 44◦ et 90◦ ≤ θmax ≤ 108◦,

v

Résumé

respectivement.

Finalement, un schéma itératif d’apprentissage automatique est développé afin de mailler de

plus larges maillages de taille d’éléments uniforme et adaptative. Basé sur un contour de haute

résolution représentant les extrémités d’une géométrie, un maillage initial pour un contour

de basse résolution est créé en utilisant le schéma de maillage développé pour des petits

contours. Ensuite, des sommets sont insérés aux arêtes des éléments et projetés aux contours

de haute résolution. Chaque sous-contour, créé après ce processus, est maillé en utilisant

le schéma de maillage. La qualité des éléments est améliorée avec l’algorithme développé

d’amélioration de maillage. L’application itère jusqu’à ce qu’une taille d’arête cible est atteinte.

Des exemples de géométries de maillage représentés par des contours de haute résolution

jusqu’à 201 arêtes, démontrent que l’application produit des maillages uniformes et adaptifs

de bonne qualité contenant jusqu’à 1,658 éléments et des angles compris entre 28◦ ≤ θ ≤ 111◦.

Keywords : Maillage Simplicial, Génération de Maillage, Amélioration du Maillage, Réseaux de

Neurones, Apprentissage Automatique

vi

Contents
Acknowledgements i

Abstract (English/Français/Deutsch) iii

1 Introduction 1

Introduction 1

1.1 Motivation . 1

1.2 Meshes . 2

1.3 Mesh Generation algorithms . 6

1.3.1 Quadtree/Octree . 6

1.3.2 Advancing front . 8

1.3.3 Delaunay methods . 9

1.3.4 Hybrid methods . 14

1.4 Mesh improvement . 15

1.5 Artificial Neural Networks . 21

1.5.1 Training process . 25

1.5.2 Hyperparameters . 28

1.5.3 Convolution . 32

1.6 State of the art . 34

1.6.1 Automatic mesh generation . 34

1.6.2 Mesh Improvement algorithms . 35

1.6.3 Machine learning and meshes . 38

1.7 Research Objective . 43

1.8 Outline . 44

2 Meshing of 2-D simplicial contours using Neural Networks 47

2.1 Problem Statement . 47

2.2 Algorithm overview . 48

2.3 Feature transformation and training data acquisition 50

2.4 Prediction of the number of inner vertices . 53

2.5 Prediction of the inner vertices positions . 54

2.6 Prediction of the connectivity . 56

2.6.1 Triangulation algorithm . 56

vii

Contents

2.6.2 Grid sampling augmentation of the inner vertices 62

2.6.2.1 Adaptive sampling strategy . 62

3 Results and validation of 2-D simplicial contour Meshing using Neural Networks 65

3.1 Experimental Conditions . 65

3.1.1 Error metrics . 65

3.1.2 Training dataset populations . 65

3.1.3 N N i hyperparameters . 66

3.2 Results . 68

3.2.1 Predictions of the number of inner vertices 68

3.2.2 Prediction of the inner vertices positions 70

3.2.3 Prediction of the connectivity . 73

3.2.4 Efficiency of adaptive sampling . 76

3.2.5 Overall prediction of the meshing scheme 78

3.3 Conclusions . 78

4 2-D Local Mesh Improvement using Neural Networks 83

4.1 Local Mesh Improvement Operations . 84

4.1.1 Reconnection . 84

4.1.2 Vertex Repositioning . 85

4.1.3 Surface control . 87

4.1.4 Size control . 88

5 Results and validation of 2-D Local Mesh Improvement using Neural Networks 91

5.1 Experimental parameters and results . 91

5.1.1 NN hyperparameters and training populations 91

5.1.2 Experiments . 92

5.1.2.1 Static Mesh Improvement . 94

5.1.2.2 Dynamic Mesh Improvement . 100

5.2 Conclusions . 110

6 Meshing large meshes 113

6.1 Scheme for large mesh generation with uniform element size 113

6.2 Scheme for large mesh generation with adaptive element size 115

7 Conclusion and outlook 119

7.1 Conclusion . 119

7.2 Outlook . 122

Bibliography 125

Bibliography 134

A Supplementary material 135

viii

Contents

A.1 Back propagation . 135

A.2 Gmsh© mesh generation . 137

A.2.1 Contour mesh generation . 137

A.2.2 Test cases mesh generation . 138

A.3 Triangulation algorithm . 142

A.3.1 Locking mechanism . 142

A.3.2 Sub-contour detection . 142

B Code 145

B.1 Mesh generation . 145

B.1.1 Feature Transformation . 145

B.1.2 Approximation of inner vertices location 146

B.1.2.1 Point selection . 146

B.1.2.2 Interpolation . 149

B.1.3 Triangulation algorithm . 150

B.1.3.1 Vertex locking mechanism . 150

B.1.3.2 Spotting sub-contours . 152

B.1.3.3 Triangulation . 165

B.2 Mesh Improvement . 173

B.2.1 Mesh class . 173

B.2.2 Reconnection . 176

B.2.3 Vertex repositioning . 179

B.2.4 Boundary/interface vertex repositioning 181

B.2.5 Edge Length control . 185

B.3 Large Mesh generation . 191

Curriculum Vitae 201

ix

List of Figures

1.1 A 2D triangular cap element with a large angle (a) and a 3D sliver tetrahedral

element (b) with large dihedral angles. These type of elements introduce large

errors to the gradients of the basis functions. 3

1.2 Examples of a structured mesh (a) and an unstructured mesh (b). 5

1.3 (a) The original geometry (b) A bounding box occludes the geometry and cells are

inserted. Smaller cells are inserted for a better approximation of more complex

regions. (c) The cells are meshed according to templates. (d) The final mesh after

snapping the vertices of boundary cells to vertices of the geometry’s boundary

and cutting elements with vertices outside the geometry domain. 6

1.4 (a) The boundary of the geometry is discretized according to a user defined edge

length. An edge (facet) is connected to a vertex Popt to form an element. A circle

of radius r centered at Popt is used to spot possible intersections with other

fronts or to check if other vertices are included in it. (b) A vertex of another front

is spotted inside the circle of the candidate vertex. (c) In this case the original

candidate vertex is rejected and the vertex that belongs to the neighbor front

is selected to form a new element. (d) The formation of the front after several

stages of the method. (e) The final mesh. 8

1.5 Example of Delaunay criterion. (a) maintains the criterion while (b) does not. . 9

1.6 From left to right: A vertex P is inserted in a triangulation The vertex is included

into the circumcircle of the shaded triangular elements The elements whose

circumcircle include P are deleted and the vertices of the countour cavity formed

after the deletion are connected with P . 10

1.7 Steps of the CDT algorithm. (a) A bounding box composed of two simplices

(triangles) occludes the vertices of the discretized boundary of the geometry. (b)

An initial triangulation is performed using the Boywer-Watson algorithm. The

initial triangulation contains the vertices of the discretized boundary and the

vertices of the boundary box. (c) After the initial triangulation, the boundary

facets are recovered and the elements that are located outside of the geometry

are deleted (d) Delaunay refinement inserts new vertices to strategic locations of

the initial triangulation to improve the size and shape of the elements. 10

xi

List of Figures

1.8 (a) A constrained edge (highlighted) is encroached if a vertex is contained within

its diametral circle (Ruppert (1993)). The constrained edge is split until no ver-

tices are included in the diametral circle no constrained edge is encroached. (b)

Alternatively an encroached constrained edge can be spotted if a badly shaped

element (t) and its circumcenter (c) lie on opposite sides of it (Chew (1989)). All

vertices in the encroached constrained edge’s diametral circle are deleted and a

point is inserted in the middle of it to form new elements. 13

1.9 Example of smoothing operation. The vertex is repositioned to improve the

quality of elements that are connected to it. 15

1.10 Examples of flip operator in 2D and 3D. In 2D, the flip operator changes the

connectivity by swapping the adjacent edge of two elements (a). In 3D, there are

several variants of the flip operator: the 2-3, 3-2 flip operators (b) and the 2-2,

4-4 flip operator (c) where the numbers denote the number of tetrahedra before

and after applying the operation. 16

1.11 Edge removal and multi-face removal operations. Edge removal triangulates

the domain R that contains the ring vertices around the edge ab which is an

common edge for the tetrahedra in I . After the triangulation T the faces are

connected with the vertices a and b to form the new set of tetrahedra J . Multi-

face removal adjoins the sandwiched faces of the set of tetrahedra J , connects

the a and b to form an edge, and connects the ring of vertices R with a and b to

form the new set of tetrahedra I . 16

1.12 Example of vertex cavitation. The operation views the mesh as graph with nodes

that correspond to the elements and directed edges that correspond to facet

adjacent elements with a parent-child relation. Starting from the elements of p

and following the directed edges, adjacent elements are visited to check whether

they are included in the formation of a cavity C that includes p. The vertices of

C are connected to p to form new elements. 17

1.13 Vertex insertion operation. (a) Example of edge insertion. An vertex is inserted in

the middle of an edge. The vertices of the element are connected to the inserted

vertex to form new elements. (b) Example of tetrahedral insertion. A vertex is

inserted in the barycenter of the tetrahedron and the vertices of the tetrahedron

are connected with it. 18

1.14 Example of edge contraction. An element is removed by collapsing its short edge. 18

1.15 Neural network with feed forward architecture. Neurons are grouped into a se-

quence of c layers L[1], ...,L[c]. The hidden layers L[1], ...,L[c−1] contain h1, ...,hc−1

hidden neurons, and the output layer L[c] is composed of m output neurons.

Each layer is associated with a set of free parameters a = (a[1], .., a[c]). For ev-

ery layer l the free parameters are defined as the pair a[l] = (w [l],b[l]), where

w [l] = (w [l]
1,1, w [l]

1,2, .., w [l]
1,hl

, ..., w [l]
hl−1,1, ..., w [l]

hl−1,hl
) are the weight synapses, b[l] =

(b[l]
1 , ..,b[l]

hl
) are the biases, and hl is the number of neurons of the L[l] layer.

The output of each neuron is an output of a non linear function y [l]
j , where

l ∈ {1,2, ...,c}, j ∈ {1,2, ...,hl }. 22

xii

List of Figures

1.16 Perceptron neuron model. The input signals X [l−1] = (x[l−1]
1 , .., x[l−1]

hl−1
) from L[l−1]

layer are transformed using the activation function to the signal u[l]
j = b[l]

j +∑hl

i=1 w [l]
i , j x[l−1]

i . The outcome of u[l]
j is then given as input to the activation

function g [l] that defines the output signal y [l]
j . The output signal y [l]

j becomes

an input signal x[l]
j for neurons of the L[l+1] layer. 23

1.17 Graphs of the logistic, hyperbolic, and ReLU activation functions. 24

1.18 Example of gradient descent for fitting a giving dataset (X (i),Y (i)), where i =
{1,2, ..m}, to a straight line ha(x) = w0 +w1x. The free parameters a = (w0, w1)

are updated through the iterative process w j ,t+1 = w j ,t −η(∂L (wt)/∂w j), where

j = {0,1}, using the objective functional L (wt) = (1/2m)
∑m

i=0(ha(X (i) −Y (i))2.

At each iteration the free parameters a get closer to the minima of the objective

functional and the line fits better the dataset. 26

1.19 Optimization path using batch gradient descent, SGD and mini batch SGD

for a convex loss function. Batch gradient descent, although computationaly

expensive, is proven to converge to the minimal of convex loss funtions. SGD

is faster, however, due to its nature, the optimization path may oscillate and

overshoot near the minima. Mini batch SGD can be computationally efficient

and can reduce the oscillations of SGD. 29

1.20 Optimization path using mini batch SGD with different optimization strategies.

Momentum and Adam add an additional computational cost at each free param-

eter update step but reduce the oscillating behavior of mini batch SGD making

it possible to reach faster the minima. 31

1.21 (a) Example of a convolutional NN. Multiple kernels are used to apply convolu-

tion to the input signal resulting in multiple convoluted feature maps. Each of

convoluted feature map undergoes a pooling process. The process of convolu-

tion and pooling can repeat before flattening the result and connecting it with

an NN. (b) Example of convolution and pooling operation to an input signal of

signal n ×2. Using a kernel K of size 2×2 with a stride FK = 1 the convoluted

signal has a size (n −1)×2. Applying the max pooling layer with a stride Fp = 1

results in a signal (n −2)×2. 32

2.1 (a) A set of points and edges defines a closed boundary ∂V (contour) with an in-

terior continuous domain V (cavity). (b) To form a good quality mesh consisting

of simplicial (triangular) elements whose edges respect a specific length, vertices

are inserted in strategic locations of the interior domain V and are connected

resulting in the discretization of V into Vi , i = 1,2, ...Nel triangular elements,

where Nel is the number of elements such that ∪Nel

i=1Vi =V . The intersection of

sub domains Vi ∩V j is at most an element edge; the tessellated domain does not

contain intersections between the elements of the mesh. 47

xiii

List of Figures

2.2 The meshing scheme consists of four steps: (i) The initial contour with NC

edges is scaled and rotated with respect to a regular polygon with NC edges

inscribed in a unitary radius circle. (ii) N N1 is used to approximate the number

of inner points NI , providing as input the contour vertex coordinates PC and the

requested target edge length ls . (iii) N N2 takes as input the vertex coordinates PC ,

patches of grid points from G , and the target edge length ls . It outputs the scores

SG for each grid point. Based on SG , NI grid points are selected and interpolation

is applied to a region around them. Next, to approximate the inner vertices PI ,

the local minimum of the interpolated surface are found. (iv) N N3 takes as input

the contour vertices PC and the inner point vertices PI and outputs the entries

of a connection table A. The contour is meshed with a triangulation algorithm

that meshes the cavity of the contour based on A. After the termination of the

algorithm, if a sub-contour with P
′
C contour coordinates is created containing

N
′
I inner vertices with P

′
I coordinates, N N3 is called recursively to mesh the

sub-contour, until no further sub-contour emerges. 49

2.3 From left to right: Steps followed to acquire the mesh of a contour. Step (i) of the

algorithm consists of a feature transformation applied to the contour that causes

the scaling of the target elements size of edge length l to ls . Next, following steps

(ii) and (iii) of the proposed meshing scheme, based on the prediction of N N1,

one vertex is inserted in the interior of the contour (cavity), and its location is

predicted using N N2. The final step (iv) of the meshing scheme uses N N3 and a

triangulation algorithm to connect the edges of the contour with inner vertices

or contour vertices to create the mesh. 50

2.4 Procrustes superimposition on contours with 6 edges with requested element

size l . The reference contour is a regular hexagon inscribed in a unit circle

with coordinates Q = {qi , i = 1,2, ..,6}. The contour is scaled by a scale factor

S, changing the target edge length from l to ls = Sl , and rotated to best fit the

point of the reference polygon to acquire the points of the transformed contour

PC = {pi , i = 1,2, ..,6}. 51

2.5 Example of creation of contour with 6 edges. A unit circle is divided into 6

sectors. From each sector a point pi , i = {1, ..,6} is selected. To avoid the creation

of contours with very short edges, no points are selected from the inner region

of a circle with small radius r . 52

2.6 The generated contours are meshed by applying CDT followed by refinement for

various target edge lengths ls producing a graded mesh. The number of inner

vertices NI and their coordinates PI from the graded mesh are used to train the

N N1 and N N2. By knowing the location PI of the inner vertices, the connection

table A of the contour is calculated to be included in the training dataset of N N3. 52

xiv

List of Figures

2.7 N N1 architecture for the prediction of number of vertices. It takes as input the

contour coordinates PC = {pi = (xi , yi), i = 1,2, .., NC } and the scaled target edge

length ls . N N1 outputs the approximation N̂I of the number of inner vertices

that should be inserted inside the cavity of the contour to achieve the target edge

length ls . 53

2.8 Example of the N N2 approximation of two inner vertices p I ,1 and p I ,2 (NI = 2)

for a contour with 8 edges. (a) Based on the scores SG , the grid points p̂G1 and

p̂G2 are selected as the first two grid points with the minimum score. (b) Then,

interpolation is applied to a local region around them. Here, interpolation is

applied to find the scores on a region around p̂G1 . This region includes the grid

points around p̂G1 . The number of grid points included in the region depends on

the target edge length ls . By locating the local minimum of the interpolated sur-

face, the approximation p̂ I ,1 of p I ,1 is acquired. (c) The interpolation procedure

is also applied to p̂G2 to obtain p̂ I ,2. 54

2.9 The grid G defined over the contour is divided into Np patches Gk , k = {1,2..Np }

(here Np = 4). N N2 takes as input the contour coordinates PC = {pi , i = 1,2, .., NC },

the coordinates of the NGk grid points PGk = {pG(i , j) : (i , j) = {1,2, .., a}×{1,2, .., a}, a2 =
NGk } that are included inside a patch, and the target edge length ls . It outputs

the scores ŝi , j that correspond to each grid point inside the patch. 55

2.10 The cavity is meshed according to the entries of the connection table. Here, the

connection table contains the values of qwor st . Each facet (row) is connected

with the vertex (column) that has the maximum value of qwor st . First, each row

is ordered by increasing quality. Subsequently, the columns are ordered with

the same criteria. Once the connection table is sorted, the meshing algorithm is

called. When computing the connection table, the connection entry of a facet

with a vertex that forms a element outside the cavity of contour (e.g {p2, p3, p4})

is omitted to zero by computing the signed area of the element. Valid elements

have a positive signed area, while invalid have a negative signed area. In the

depicted example, the triangulation algorithm starts by connecting the facet

{p1,p2} with the vertex p3 to create the element {p1,p2,p3}. This connection is

done with accordance to the higher value of the row of the connection table (i.e

0.66). The creation of {p1,p2,p3} locks the vertex {p2} for any further connections.

Since {p2,p3} is another contour facet included in the formed element, {p2,p3}

is tagged as locked (Fl ocked). This removes the row {p2,p3} and the algorithm

proceeds to connect facet {p2,p3} with p6. In a similar fashion, all the facets

of the contour are connected with the vertex that contains the highest entry to

form the mesh incrementally, one element after the other. 57

xv

List of Figures

2.11 (a)-(e) Example of meshing a 2-D cavity while the sets Vlocked and Fl ocked are

updated. (a) First, the facet (edge) {p3,p4} is connected to vertex p5. The creation

of the element {p3,p4,p5} locks vertex p4, as it can no longer be connected with

another facet. The facet {p4, p5} is also locked as it can no longer connect with

another vertex. Vlocked now contains vertex p4 and {p4, p5} is tagged as Flocked .

(b) Facet {p2,p3} connects with vertex p6 creating the element {p2,p3,p6}. (c)

The creation of element {p2,p3,p6} causes the apparition of element {p3,p5,p6}.

Vl ocked will be updated with vertices p3 and p5 and facet {p5, p6} will be tagged as

Fl ocked . (d) By connecting the facet {p1,p2} with vertex p7 the element {p1,p2,p7}

locks vertex p1 and tags facet {p1, p7} as Flocked . (e) The creation of element

{p1,p2,p7} causes the apparition of element {p2,p6,p7} that locks vertices p2 and

p6. All vertices are now included in Vl ocked (termination of the algorithm) . . . 58

2.12 (a) Example of the appearance of a sub-cavity with a single element. After a

first iteration of the triangulation algorithm the facets of the contour are con-

nected with the vertex that corresponds to the highest entry of the connection

table. This also causes the appearance of the sub-cavity containing the ele-

ment {p2,p4,p6}. The element is added to the list of elements to terminate the

triangulation process. (b) Example of sub-cavity that forms a contour. After

a first iteration of the triangulation algorithm, once all facets of the contour

are connected to the vertex that corresponds to the highest entry, the contour

{p2,p4,p6,p8,p10} is formed. In this case, the triangulation algorithm is called

recursively to mesh the new contour. (c) Example of sub-cavity that forms a

contour that contains inner points. After a first iteration of the triangulation

algorithm, the contour {p0,p2,p4,p6,p8,p10} is formed that contains the inner

points p I ,1 and p I ,2. Similarly, the triangulation algorithm is called recursively

to mesh the contour with the inner points. 59

2.13 N N3 starts by applying 2-D convolution to the coordinates PC that are ordered

in a circular way. It proceeds by applying a pool function to the convoluted result.

The flattened outcome of pooling along with the coordinates of the inner vertices

PI are then connected with multilayer perceptrons. It outputs the entries ai , j of

the connection table. 61

2.14 Example of sampling inner vertices for the training of N N3 for NI = 3. From a

grid of inner vertices, p I ,1 is randomly chosen and all the vertices contained at a

distance of 0.1ls from it are excluded from being selected later on. p I ,2 is then

selected, imposing the same exclusion zone, and finally p I ,3. All the vertices

from the grid are at a distance of 0.1ls from the edges of the contour. 62

xvi

List of Figures

2.15 (a) For the highlighted edge, the worst mesh quality is calculated by connecting

this edge with each point of the grid. (b) By doing so, a quality surface is defined

for this edge. (c) Curves depicting the quality values q along the original quality

surface and the smoothed quality surface for a fixed y-value. By smoothing,

sudden peaks are eradicated. (d) Vertices are sampled from the smoothed surface

according to curvature criteria; the higher the curvature the more vertices are

sampled. 63

2.16 (a) Example of adaptive sampling for ith edge (highlighted) of a contour with

10 edges and two inner vertices. (b) Surface S1,i is defined by computing the

minimum quality of each grid vertex taking into account p I ,1 as a second point.

By smoothing S1,i and implementing the curvature loss criteria, vertices are

sampled from the surface to form the set of inner vertices V1,i . (c) In a similar

fashion the surface S2,i is defined and vertices from it are sampled to form the

set V2,i . To train the NN, a pair of vertices with one vertex belonging to V1,i and

another belonging to V2,i is sampled. The collected vertices must be at a distance

of at least 0.3ls from each other. 64

3.1 Histogram of contour populations with NC edges that are used for training. The

population of 6000 contours with 4 edges is found to be an adequate training

set for acquiring satisfactory accuracy from the N N s involved in the meshing

procedure. To retain or acquire a level accuracy needed for good quality mesh-

ing, for contours with 6 and 8 edges a training population of approximately

12000 and 24000 contours, respectively, is required; this leads to the choice of

generating contour populations used for training that increase exponentially

with the number of edges. 66

3.2 (a)-(g) In alphabetical order, the histogram of the contour populations for NC =
(4,6,8,10,12,14,16) number of edges (Fig. 3.1) divided into groups according

to the number of vertices NI that are inserted by the reference mesher. Each of

these groups is used to train N N2 and N N3. 67

xvii

List of Figures

3.3 The mean absolute error e as a function of target edge lengths ls ranging from 0.2

to 1. The mean absolute error is defined as e = ∣∣NI − N̂I
∣∣=∑n

i=1(N (i)
I − N̂ (i)

I)/n,

where N̂I = (N̂ (1)
I , ..., N̂

(nNC)
I) are the number of vertices predicted by the NN,

NI = (N (1)
I , ..., N

(nNC)
I) are the number of vertices inserted from the reference

mesher during refinement and nNC the number of contours with NC edges in

the test population. The mean absolute error e increases with increase in the

number of contour edges NC . For example, for a target edge length ls = 0.2, e

for the population of contours with 16 edges is approximately 2.3 times higher

than the mean error for the population of contours with 4 edges due to the larger

variation of number of inner vertices NI that the reference mesher inserts for

the populations of 16 edges. e also increases with the decrease of the target

edge length ls which is also due to the fact that the variation on the number of

inner vertices NI inserted by the reference mesher during refinement is larger

for smaller target edge lengths. For instance, for the population of contours with

14 edges and the target edge lengths ls = 0.2 and ls = 1, e decreases from 1.3 for

0.2 respectively, while the standard deviation of inner vertices NI for these target

edge lengths decreases by 12%. 69

3.4 The real number of inner vertices NI and the predicted number of inner vertices

N̂I as a function of the target edge length for a random contour with 12 edges

(a) and a random contour of with 16 edges (b). For the contour with 12 edges

the NI and N̂I differ by one point for ls = 0.2, two points for ls = 0.3 and are the

same for the rest of the target edge lengths. For the contour with 16 edges, NI

and N̂I differ by one point for the target edge lengths ls = {0.2,0.3,0.4} and are

same for the rest of the values ls . It can be concluded that N N1 is appropriate to

use for meshing purposes. 70

3.5 The mean squared error of euclidean distance edi st as a function of grid res-

olutions of 10×10, 20×20, and 40×40. The mean square error is defined as

edi st = ||p I ,1 − p̂ I ,1|| =∑n
i (p(i)

I ,1 − p̂(i)
I ,1)2/n, where p I ,1 = (p(1)

I ,1, ..., p(n)
I ,1) are the real

locations of the inner vertex inserted by the reference mesher during refine-

ment and p̂ I ,1 = (p̂(1)
I ,1, ..., p̂(n)

I ,1) are the predictions of the inner vertex for n = 100

contours with NC edges. For every contour population, the error reaches con-

vergence by using a grid with resolution 20×20. 71

3.6 (a)-(g): In alphabetical order, the average errors ewor st =∑nNC ,I ewor st /nNC ,I
(%)

and emean =∑nNC ,I emean/nNC ,I
(%) for a number of nNC ,I

random contours with

NC = {4,6,8,10,12,14,16} edges as a function of inner vertices NI . The range

of inner points covers at least 68% of each contour population with NC edges.

Maximum ewor st of 23.41% occurs for the case of contours with 12 edges and

14 inner vertices (e). In most cases, both ewor st and emean tend to increase with

the increase in the number of inner vertices; the displacement error from the

predicted vertices of N N2 increases with the number of vertices NI , which, in

turn, increases the triangulation errors ewor st and emean 72

xviii

List of Figures

3.7 (a) A contour with 8 edges with inner vertices inserted by the reference mesher

during refinement (circular points) and inner vertices approximated by the

scores of N N2 (diamond points). (b) The graded reference mesh with its inner

vertices. (c) The resulting mesh with approximated vertices. In this case, the

triangulation errors account for ewor st = 22.3% and emean = 9.8%. 73

3.8 (a)-(g): Validation of the developed triangulation algorithm. The average trian-

gulation errors, ewor st and emean , between meshes that are generated by using

the triangulation algorithm with calculated connection table and the graded

reference meshes for random contours with NC = {4,6,8,10,12,14,16} edges as

a function of number of inner vertices NI . The levels of triangulation errors

indicate that the triangulation algorithm causes little to no significant error

propagation in the connection scheme. 74

3.9 (a)-(g): Validation of the connectivity network N N3. The average triangulation

errors, ewor st and emean , between contours meshed by using the triangulation

algorithm (predicted connection table by N N3) and the graded reference meshes

for random contours with NC = {4,6,8,10,12,14,16} edges as a function of the

number of inner vertices NI . The inner vertices are those inserted in the cavity

by the reference mesher during refinement. The accuracy of N N3 is dependent

on the number of NI sampled inner vertices of a contour during the data aug-

mentation process. For example in the case of contours with 6 edges for NI = 6

(b) the training contour population is for 3% lower than that for NI = 4 but there

is reduction of 23% of ewor st ; this is due to the fact that the training of N N3

for NI = 6 relies on sampling 100 groups of six inner vertices for each contour,

whereas for NI = 4, 50 groups of four inner vertices are sampled. 75

3.10 Average worst triangulation error ewor st when N N∗
3 is trained for different confi-

dence levels of inner vertices populations (Table 3.1) with random and adaptive

sampling. (a) For the prediction of the connectivity with one inner vertex at

96% confidence level, the sample population of inner vertices with adaptive

sampling is 35% lower than that with random sampling. Even though N N∗
3 is

trained with lesser number of samples, 27% better accuracy is achieved. (b) For

the prediction of the connectivity with two inner vertices at 90% confidence

level, 18% better accuracy is achieved for a 22% lower sample population by

applying adaptive sampling. (c) The accuracy for prediction of the connectivity

with four inner vertices at 90% confidence level is 27% higher for a 17% lower

sample population with adaptive sampling as compared to random sampling. 77

3.11 (a)-(g): The average triangulation errors, ewor st and emean , between meshes gen-

erated with the meshing scheme and the graded reference meshes for random

contours with NC = {4,6,8,10,12,14,16} edges as a function of number of inner

vertices NI . The inner vertices are those predicted by N N2. In all cases, there

is an increase of ewor st and emean compared to the previous tests where N N2

and N N3 are used separately. A maximum ewor st of 27.3% occurs for the case of

contours with 16 edges and 18 inner vertices. 79

xix

List of Figures

4.1 Example of mesh partitioning during reconnection algorithm for a square mesh.

(a) Initially all elements that have a quality qel lower than a quality threshold

qthr esh (highlighted) are included in the set E ={1,2,3,4,5,6}. (b) The contours

(dotted line) that are extracted after edge traversal of the elements 1 → 2 → 3 → 4

and 5 → 6 undergo the reconnection operation. (c) The triangulated contours

after the applying the reconnection operation (Fig. 4.2). 84

4.2 From left to right: Example of a local mesh configuration containing elements

below a quality threshold. Edges of the elements are deleted creating a contour

cavity. The cavity undergoes the feature transformation F and is feeded to

N N3. N N3 outputs values of the connection table. Based on the values of the

connection table the triangulation algorithm of the meshing scheme meshes the

contour cavity. The connectivity information of the elements is mapped back

using F−1 to the original mesh to complete the reconnection process. 85

4.3 Example of mesh partitioning during the smoothing operation. A vertex v with

qv ≤ qthr esh is spotted (a). A new optimal vertex position is predicted using N NS

for the contour including all the elements that are connected with the vertex

(dotted line) (b). 85

4.4 From left to right: Example of a local mesh configuration containing a vertex

below a quality threshold. The elements that are connected to the vertex are

deleted to create a contour cavity. The contour is transformed and the coordi-

nates of the transformed contour are given as an input to N NS . N NS outputs

the position of an inner vertex that is optimal quality-wise given that all contour

points are connected with it. Finally, the vertex is mapped back to the mesh. . 86

4.5 Architecture of N NS and N N∗
S . Both are feeding forward NNs that output the co-

ordinates p̂o = (xo , yo) of the optimal vertex position for the vertex repositioning

and surface control operations. N NS takes as input the contour coordinates PC

whereas N N∗
S takes as input PC and also the tangents t = (t1, t2) of the boundary

or interface the reallocated vertex belongs to. 86

4.6 Example of local meshing configurations containing a low quality vertex that

belongs to a boundary (a) and a low quality vertex that belongs to an interface

(b). The edges of the element connected to the vertex are deleted to form an

open contour in the case of a boundary vertex and a closed contour for the

interface vertex. The contour coordinates along with tangents of the boundary

or interface curve are transformed and given as an input to N N∗
S . N N∗

S outputs

the optimal position of the vertex which is mapped back to the mesh. Finally,

the vertex is projected to the curve. 88

4.7 Example of a local mesh configuration containing three long edges. First, a

vertex is inserted in the middle of each long edge. The long edges are deleted

to form a contour cavity containing the inserted vertices. The contour with the

inner vertices are meshed using N N3. Finally, the connectivity information is

mapped through F−1 to the mesh. 89

xx

List of Figures

4.8 Example of a local mesh configuration containing two short edges. First, a

vertex is inserted in the middle of each short edge. The elements containing the

short edges and their adjacent elements are deleted to form a contour cavity

containing the inserted vertices. The contour with the inner vertices are meshed

using N N3. Finally, the connectivity information is mapped through F−1 to the

mesh. 89

5.1 (a) The contour populations for training N N3, N NS and N N∗
S . The population of

6000 contours with 4 edges is found to be an adequate training set for acquiring

good quality mesh improvement results. To retain the same level of accuracy

the contour populations are increased at at a nearly exponential rate with the

number of NC edges. (b) The initial contour populations of NC = {4,5,6,7} is

augmented by sampling 10,20,30 and 50 NI -pairs of inner vertices for NI =
{1,2,3,4} respectively. The training pairs (NC , NI) are used to train N N3 for the

application of the size control operations to mesh the contour cavities with the

inner vertices that are created after partitioning the mesh. 92

5.2 Example of mesh improvement for a meshed square in a domainΩ= [0,1]×[0,1].

(a) Initially the mesh has a mean quality qmean = 0.97, a minimum quality

qwor st = 0.83, and a element angle distribution ranging between 43◦ ≤ θ ≤ 94◦.

(b) After random edge flipping and vertex perturbation the mean quality of the

mesh decreases to qmean = 0.63, the minimum quality decreases to qwor st =
0.05, and the element angles lie between 1◦ ≤ θ ≤ 176◦. (c) After applying the

reconnection and vertex repositioning operations, the mean quality of the mesh

increases to qmean = 0.96, the minimum quality qwor st = 0.89, and element

angles lie between 41◦ ≤ θ ≤ 84◦. 95

5.3 Example of applying the surface control operation to the interface vertices of a

curve (highlighted) of a square mesh in a domainΩ= [0,1]×[0,1]. (a) Initially the

mesh has a mean quality qmean = 0.93, a minimum quality qwor st = 0.77, and a

element angle distribution lying between 32◦ ≤ θ ≤ 102◦. (b) After perturbing the

interface vertices, the mean quality of the mesh decreases to qmean = 0.68, the

minimum quality decreases to qwor st = 0.32, and the element angles lie between

6◦ ≤ θ ≤ 159◦. (c) After applying the surface control operation to the interface

vertices, the mean quality of the mesh increases to qmean = 0.92, the minimum

quality increases to qwor st = 0.7, and the element angles range between 31◦ ≤
θ ≤ 109◦. 96

xxi

List of Figures

5.4 Example of improving the quality of a square mesh in a domain Ω = [0,1]×
[0,1] containing a circular interface in the center (highlighted). (a) Initially the

mesh has a mean quality qmean = 0.93, a minimum quality qwor st = 0.78, and a

element angle distribution ranging between 34◦ ≤ θ ≤ 96◦. (b) After randomly

flipping the edges and perturbing the vertices, the mean and minimum quality of

the mesh decrease to qmean = 0.67 and qwor st = 0.04, respectively, with element

angles lying between 2◦ ≤ θ ≤ 175◦. (c) After applying the reconnection operation

followed by the vertex repositioning operation to the vertices to the perturbed

mesh, the mean quality of the mesh increases to qmean = 0.92, the minimum

quality increases to qwor st = 0.74, and element angles lie between 29◦ ≤ θ ≤ 95◦. 98

5.5 Example of applying the mesh improvement operations of a square mesh in

a domain Ω = [0,1]× [0,1] containing an airfoil shaped hole. (a) Initially the

mesh has a mean quality qmean = 0.91, a minimum quality qwor st = 0.74, and

a element angle distribution lying between 32◦ ≤ θ ≤ 107◦. (b) After perturbing

the vertices and flipping the edges, the mean quality of the mesh decreases to

qmean = 0.64, the minimum quality decreases to qwor st = 0.03, and element

angles lie between 7◦ ≤ θ ≤ 173◦. (c) After applying the reconnection operation

followed by vertex repositioning and surface control, the mean quality of the

mesh increases to qmean = 0.94, the minimum quality increases to qwor st = 0.76,

and the element angles lie between 31◦ ≤ θ ≤ 102◦. 100

5.6 (a)-(c): The circular interface’s horizontal translation for different timesteps t .

(d): The minimum quality qwor st as a function of the simulation timestep t .

qwor st has a range between 0.50 ≤ qwor st ≤ 0.79 before the application of the

mesh improvement scheme and 0.69 ≤ qwor st ≤ 0.81 after applying the scheme.

(e) The minimum angles lie between 10 ≤ θmi n ≤ 28 before the application of

the scheme and 28 ≤ θmi n ≤ 40 after the application. The maximum angles lie

between 94 ≤ θmax ≤ 133 before the application of the scheme and 80 ≤ θmax ≤
108 after the application. 102

5.7 (a)-(c): The collapsing circle for different timesteps. (d):The minimum quality

qwor st as a function of the simulation timestep t . qwor st lies between 0.68 ≤
qwor st ≤ 0.74 before the application of the scheme and 0.75 ≤ qwor st ≤ 0.79 after

the application. (e) The minimum angles lie between 27 ≤ θmi n ≤ 38 before

the application of the scheme and 39 ≤ θmi n ≤ 46 after the application. The

maximum angles lie between 108 ≤ θmax ≤ 116 before the application of the

scheme and 90 ≤ θmax ≤ 104 after the application. 104

xxii

List of Figures

5.8 (a)-(c): Timesteps of the diagonal translation of the elliptical interface. (d): The

minimum quality as a function of the simulation timestep. The minimum quality

of the mesh qwor st lies between 0.41 ≤ qwor st ≤ 0.77 before the application of the

mesh improvement scheme and 0.69 ≤ qwor st ≤ 0.83 after its application. (e) The

minimum angles lie between 19 ≤ θmi n ≤ 36 before the application of the scheme

and 33 ≤ θmi n ≤ 45 after the application. The maximum angles lie between

94 ≤ θmax ≤ 133 before the application of the scheme and 84 ≤ θmax ≤ 100 after

the application. 105

5.9 (a)-(c): Timesteps of the zalesak disc rotation. (d): The initial interface and the de-

formed interface after the completion of the rotation. (e): The minimum quality

as a function of the simulation timestep. qwor st lies between 0.58 ≤ qwor st ≤ 0.69

before applying the mesh improvement scheme and 0.68 ≤ qwor st ≤ 0.74 after

its application. (f) The minimum angles lie between 26 ≤ θmi n ≤ 32 before the

application of the scheme and 35 ≤ θmi n ≤ 44 after the application. The maxi-

mum angles lie between 99 ≤ θmax ≤ 117 before the application of the scheme

and 90 ≤ θmax ≤ 107 after the application. 108

5.10 (a)-(c): Timesteps of the vortex flow deformation of the circular interface. (d):

The initial interface and the deformed interface after the completion of the

simulation. (e): The minimum quality as a function of the simulation timestep.

qwor st has a range between 0.58 ≤ qwor st ≤ 0.79 before the application of the

mesh improvement scheme and 0.71 ≤ qwor st ≤ 0.84 after the application. (f)

The minimum angles lie between 21 ≤ θmi n ≤ 32 before the application of the

scheme and 27 ≤ θmi n ≤ 37 after the application. The maximum angles lie

between 98 ≤ θmax ≤ 120 before the application of the scheme and 90 ≤ θmax ≤
108 after the application. 110

6.1 Example of the refinement process using N N3 to create a mesh with a target

edge length ls for a high resolution contour S (150 edges) forming a circle. (a)

Points are sampled from S to form an initial contour. (b) N N3 is called to mesh

the initial contour. (c) If an edge of the initial mesh has a length le that is bigger

than ls , then nK = K −1 vertices are inserted to the edge, where K = [le /ls]. (d)

If the vertices of an edge belong to the high resolution contour S, the inserted

vertices are projected to S. N N1 and N N2 are used to predict the number and

location of inner vertices for each sub-contour with a target edge length equal to

the average edge length of each sub-contour. (e) Each sub-contour composed of

vertices of the elements, the inserted vertices, and the predicted inner points is

meshed using N N3. As a post-treatment, the vertex repositioning operations are

applied by calling N NS and N N∗
S . (f) The refinement process is repeated until

the edge lengths are close to ls . 114

xxiii

List of Figures

6.2 Example of adaptive meshing for a high resolution contour S (201 edges) forming

an airfoil. (a) A sizing function h is defined over the inner domainΩS . The values

of the sizing function represent the local target edge lengths that will dictate the

elements sizes. The darker areas represent smaller values of the sizing function,

i.e regions where smaller elements should be created to better approximate the

geometry of the airfoil. (b) Points are sampled from S to form an initial contour

that is meshed using N N3 (c). Points are inserted incrementally on each edge

until all lengths of the segments that are created after the subdivision are close to

the assigned size function value for each inserted vertex. The number of interior

points and their location are predicted using N N1 and N N2. (e) Finally, after

meshing each sub-contour with its inner vertices using N N3, N NS and N N∗
S are

called to improve the quality. 116

6.3 Example of adaptive meshing for a high resolution contour with a circular hole

in the middle.(a) The sizing function is defined such that elements of smaller size

are created near the circular hole . (b) Since N N3 is able to only mesh contours

that are watertight (i.e no holes), the high resolution contour is divided into

four sub-regions (contours containing 150 edges). Points are sampled from the

sub-regions to form four contours. (c) Each of the four contours, is meshed

using N N3. (d) Based on the initial meshes, the adaptive meshing process is

applied and iterated until the edge lengths of elements are close to the values of

the assigned sizing function. 118

A.1 Example of generating a graded mesh of a contour geometry with Gmsh©. (a)

In the i nput .g eo file the points, edges (Segments), contour (LineLoop) define

the geometry input. The Trasfinite command constraints vertices from being

inserted at the edges of the contour. Mesh.CharacteristicLengthFactor defines

the uniform target edges length. (b) The geometry of the i nput .g eo file. (c) The

graded mesh after calling the command "i nput .g eo −2−al g o del 2d out put .msh". 138

A.2 Example of generating a graded mesh of the zalesak disc geometry with Gmsh©.

(a) In the i nput .g eo file first the geometry of the square border is created and

its points are assigned a target edge length 0.5. Next, the geometry of the circle

and the slot is created. The slotted disc is a result of a boolean difference btw

the surface of the circle and the slot. The vertices of the slotted disc interface

are assigned a target edge length 0.1. The size of the mesh elements will then be

computed by interpolating these values of the square’s points and the interface’s

points (Mesh.MeshSizeFromPoints). (b) The geometry of the i nput .g eo file. (c)

The graded mesh of zalesak disc after calling the command "i nput .g eo −2 −
al g o del 2d out put .msh". 140

xxiv

List of Figures

A.3 Example of generating a graded mesh of the square with the parabolic interface

geometry with Gmsh©. (a) In the i nput .g eo file first the geometry of the square

border are created and its assigned a target edge length 0.5. Next, the geometry

parabolic interface is created. The slotted disc is a result of a boolean difference

btw the surface of the circle and the slot. The vertices of the parabolic interface

are assigned a target edge length 0.1. The size of the mesh elements will then be

computed by interpolating these values of the square’s points and the interface’s

points (Mesh.MeshSizeFromPoints). (b) The geometry of the i nput .g eo file. (c)

The graded mesh of the square including the parabolic interface after calling the

command "i nput .g eo −2 −al g o del 2d out put .msh". 141

A.4 (a) Example of a locked contour vertex p1. Starting from the contour facet {p0, p1}

of element E1 the adjacent by edges of the elements E2 and E3 are visited via the

traversal of facets {p0, p1} → {p1, p I ,1} → {p1, p I ,2} → {p1, p2}. The facet {p1, p2} is

a contour facet. Therefore, the contour vertex p1 is locked. (b) Exampled of a

locked interior vertex. Edges of elements surrounding the interior vertex p I are

traversed. Starting from facet {p I , p0} this leads to the edge traversal {p I , p0} →
{p I , p1} → {p I , p2} → {p I , p3} → {p I , p4} → {p I , p5} → {p I , p6} → {p I , p0}. The

starting facet {p I , p0} is also the last visited facet. Therefore, p I is locked. 142

A.5 Example of spotting a sub-contour P . After the connection of of contour facets

with element. The vertices (contour or inner) {p0, p1, p2, p3, p4, p5, p6} are open

for further connections and are contained in the set of vertices to visit Vvi si t .

The list of facets to visit Fvi si t are the facets that link the open vertices. Fvi si t

contains facets that are located in the interior of a contour (appearing after the

creation of elements) or contour facets. Starting from p0, vnext = p1 is visited

through the facet of Fvi si t = {p0, p1}. p1 is removed from the list Vvi si t . The rest

of the vertices from Vvi si t are visited using the facets of Fvi si t in a similar fashion.

Each time a vertex is visited it is removed from the set Vvi si t . The traversal stops

at p0 which is the initial visiting vertex. All the edges visited from Fvi si t are

contained the the set Fcontour which contains the facets of sub-contour P 143

xxv

List of Tables
1.1 Examples of compound operations composed by the successive application of

other operations. 19

3.1 Sampling sizes for the mean populations of the contours inner vertices with

random and adaptive sampling for different confidence levels. 78

6.1 The number of elements Nel , minimum angles θmi n , maximum angles θmax ,

worst quality qwor st and the mean quality qmean for the circle (Fig. 6.1), airfoil

(Fig. 6.2) and contour with circular hole (Fig. 6.3) examples (the closer a quality

value is to 1 the better). 118

7.1 Weekly growth rate (%) of 3D contour training datasets along with the intended

initial goal population. 124

xxvii

Nomenclature
List of Abbreviations

AI Artificial Intelligence

ALE Arbitrary Lagrangian Eulerian

BMU Best Matching Unit

CAD Computer Aided Design

CDT Constrained Delaunay Triangulation

CNN Convolutional Neural Networks

FEM Finite Element Method

GCNN Geodesic Convolutional Neural Networks

GCN Graph Convolutional Networks

GNG Growing Neural Gas

LEPP Longest Edge Propagation Path

LIG Let It Grow

NN Artificial Neural Network

PDE Partial Differential equations

ReLU Rectified Linear Unit

RNN Recursive Neural Networks

SBMU Second Best Matching Unit

SGD Stochastic Gradient Descent

SOM Self Organizing Maps

SPR Small Polyhedron Reconstruction

xxix

Nomenclature

Greek Letters

Γ Discretized geometry domain

λ Weight decay

Ω Geometry domain

ω Angular velocity

Ωs High resolution domain contour

θ Angle

θmax Maximum angle

θmi n Minimum angle

Latin Letters

∆T Period

` Loss function per training sample

Â Estimated connection table

N̂I Estimated number of inner vertices

p̂ I Estimated inner vertices coordinates

p̂o Estimated optimal vertex position

r̂ Unit vectors along radius r

ŜGk Estimated score of grid points included in a patch

ŝi , j Estimated score of grid point

x̂, ŷ Unit vectors along x and y axis

A Convolution matrix

FK Stride step size

L Number of hidden layers

e Mean absolute error of N N1 prediction

∂V boundary of domain (contour)

v Velocity

xxx

Nomenclature

A Connection table

a Neural Network free parameters

Aor der ed Ordered connection table

b Neuron bias

C Polyhedral cavity

c Number of hidden layers

dA Dimension of connection table

E List of elements

emean Relative difference of qmean between predicted mesh and reference mesh

ewor st Relative difference of qwor st between predicted mesh and reference mesh

F Procrustes superposition transform

F−1 Inverse procrustes superposition transformation

G Grid

g Activation function

Gk Grid patch

h Sizing function

I , J Set of tetrahedra

L Hidden layers

le Edge length

ls Target edge length

Lthr esh Long edge length threshold

lthr esh Short edge length threshold

M Pooling matrix

m Momentum term

N
′
I Sub-contour number of inner vertices

nbatch Number of trainind batch included in a batch

NC Number of contour edges

xxxi

Nomenclature

Nel Number of elements

NGk Number of grid points included in a patch

NG Grid resolution

NI Number of inner vertices

nNC ,I Number of contours with NC edges and NI inner vertices

nNC Number of contours with NC edges

Np Number of patches

Ntr ai n Number of traning population

N N∗
3 Neural network used for the prediction of the connectivity with adaptive point strategy

N N∗
S Neural Network used for the application of surface control

N N1 Neural network used for the prediction of the number of inner vertices

N N2 Neural network used for the prediction of the location of inner vertices

N N3 Neural network used for the prediction of the connectivity

N NS Neural Network used for the application of vertex repositioning

P Set of vertices

P
′
C Sub-contour vertices coordinates

P
′
I Sub-contour inner vertices coordinates

PC Contour vertices coordinates

PGk Grid point coordinates included in a patch

PI Inner vertices coordinates

p I Inner vertices coordinates

po optimal vertex position

QC Reference contour vertices coordinates

qel Quality of element

qmean Mean quality value of elements in mesh

qv Quality of vertex

qwor st Minimum quality value of element in mesh

xxxii

Nomenclature

R Domain of inner vertices ring

r Radius

S Quality surface

SGk Score of grid points included in a patch

SG Scores of grid points

si , j Score of grid point

T Total number of timesteps

t Tangents

u Combination function

V Interior domain (cavity)

w Synaptic weights

X Training input batch

x, y Cartesian coordinates

Y Labels of training input batch

edi st Squared error btw location of original vertex location and approximated one

xxxiii

1 Introduction

1.1 Motivation

Mesh generation concerns the tessellation of geometry’s domain into a set of elements. The

shape of the elements varies from triangles and quadrilaterals in 2D to tetrahedra, pyramids,

prisms, hexahedra and other polyhedral elements in 3D. Triangle and tetrahedral elements are

also known as simplicial elements. Meshes are used in multiple scientific fields. The discretiza-

tion of Partial Differential Equations (PDE) is based on the use of meshes to approximate

solutions of underlying physics in fields such as structural analysis (Portaneri et al. (2019),

Sumner & Popović (2004)), fluid dynamics (Baker (1997), Lohner (1995), Liang et al. (2007)) ,

aerodynamics (Hassan et al. (1996)), quantum mechanics (Solanpää & Räsänen (2018)) etc. In

Computer Aided Design (CAD), meshes are used for the tessellation of stereolithographic files

(Beniere et al. (2013), Lavoué et al. (2005)) and surface reconstruction from point clouds (Mar-

ton et al. (2009)). In computer graphics, meshes are utilized to render objects, for animation

and visual effects (Portaneri et al. (2019), Sumner & Popović (2004)).

For the tessellation of complex geometries, adaptivity is an essential mesh property. Physi-

cal objects are usually simple and smooth in some parts, complex and contorted in others.

Therefore, elements of smaller size are needed to accurately approximate complex regions

of a geometry. However, limited computational resources can restrict the generation of a

uniform mesh with elements with the same size as the ones used to approximate the complex

regions. Thus, small elements and bigger ones must co-exist in a mesh. Mesh generation

algorithms must also satisfy element shape requirements. The aforementioned applications

can either require a mesh with isotropic elements that approach the shape of their regular

polygon counter part or anisotropic elements that are elongated in a particular direction.

These requirements lead to the development of mesh generation algorithms that can suffer

from complex code of extensive size, explicit handling and a significant computational cost.

Meshing algorithms are difficult to be transported to acceleration platforms such as GPU

architectures limiting the choices of computational frameworks. Moreover, mesh generation

algorithms do not always guarantee a mesh that meets the element shape and size qualifi-

1

Introduction

cations. To ensure efficiency, post mesh improvement heuristics that move the vertices of

the elements and re-adjust their connectivity might be required. Mesh improvement can

either be applied globally over the whole domain of the mesh or locally to regions of badly

shaped elements. Local mesh improvement is opted for meshes used in simulations where the

vertices move according to the motion of the material points. Local mesh improvement has to

be applied at each simulation step to ensure a converging solution. The heuristic nature of

local mesh improvement algorithms does not always guarantee robustness and could account

for a significant computational cost over the course of a simulation.

There is therefore a demand for a computationally efficient meshing and mesh improvement

framework that is able to comply to the needs and exceptions of a geometry, satisfy mesh

requirements, and avoids as much as possible explicit treatment. Machine learning algo-

rithms use computational methods that are able to solve complex problems based on data

observation and pattern recognition without relying on predetermined equations or explicit

algorithm implementation. Machine learning has been successfully applied for the resolution

of complex tasks such as image pattern recognition (Egmont-Petersen et al. (2002)), natural

language processing (Young et al. (2018)), autonomous driving (Grigorescu et al. (2020)) etc.

Therefore, machine learning has the potential to be a useful tool for mesh generation and

mesh improvement. Existing meshing algorithms are able to provide datasets to train machine

learning models for mesh generation and mesh improvement without the need of the underly-

ing meshing technique involved. This data driven approach has the potential to provide an

automated meshing framework that bypasses the complexities and computational hurdles of

existing meshing algorithms. It is, therefore, within the scope of the present research work to

simplify the process of meshing and to adapt mesh generation and mesh improvement to an

automatic data driven framework using machine learning tools that could help overcome the

aforementioned issues.

1.2 Meshes

The generation of a mesh starts with an input geometry or a set of vertices (point cloud)

to be tessellated embedded in a 2D or a 3D dimensional space. For a given geometry, the

tessellation can either take part on the boundary of the geometry (surface meshing) or its

inner domain. The boundary of a geometry can either have an explicit representation of

parametric surface or b-spline surface, or an explicit representation of a lower dimension

mesh (e.g poly line representation for 2D mesh generation, triangular face representation for

3D mesh generation). To respect the features of the target geometry and provide an optimal

discrete approximation its boundary, elements have to be of appropriate size with respect to

more complex regions of interest (e.g curvature of geometry).

With respect to numerical computation, the shape and size of elements in a mesh play a

crucial role to the behavior of numerical methods that are based on the discretization of partial

differential equations (e.g. Finite Element Method (FEM), Finite Volume Method (FVM)). For

2

1.2. Meshes

simplicial elements, the shape of triangular elements can be characterized in terms of angles

of adjacent edges. For tetrahedral elements, the shape is characterized in terms of dihedral

angles between adjacent triangular faces and the plane angles between the adjacent edges

on each triangular face. Badly shaped elements introduce errors in the interpolation of field

values (in particular on the derivatives of basis functions), on the condition number of the

stiffness matrix used to solve the linear system of the involved numerical method and on the

approximation of the field values with respect to the asymptotic solution (Shewchuk (2002c)).

In Cheng et al. (2012), the following observations are made with respect to the effects of the

element shape:

• Triangular elements with large angles (cap) (Fig.1.1a) and tetrahedral elements with large

dihedral angles (sliver) (Fig.1.1b) introduce large errors in numerical approximations

of differential operators. The errors in the gradients becomes unbounded as triangle

angles and dihedral angles approach 180◦.

• Triangular elements with small angles and tetrahedral elements with small dihedral

angles lead to poorly conditioned numerical integration schemes that compromise the

condition number of the stiffness matrix.

• Highly skewed elements occupying small areas (2D) or volume (3D) place restrictions

on the maximum time-step when solving time dependent problems using explicit

integration techniques.

(a) (b)

Figure 1.1: A 2D triangular cap element with a large angle (a) and a 3D sliver tetrahedral
element (b) with large dihedral angles. These type of elements introduce large errors to the
gradients of the basis functions.

The size and shape of an element can be encapsulated as a numerical value known as quality.

Multiple quality measures of simplicial elements have been proposed based on geometrical

features of the element; these include measures based on the minimum sine of the element

(Freitag & Ollivier-Gooch (1997a)), the area to edge length and volume to edge length ratio

for 2D and 3D simplicial elements respectively (Parthasarathy et al. (1994)), the radius ratio

between the inscribed and circumscribed hypersphere (Caendish et al. (1985)) and so on.

Mesh improvement algorithms aim at improving the quality of the elements of a mesh.

3

Introduction

Simulations of material motion (e.g deformation, fluid flow) modeled by continuum mechan-

ics make use of algorithms solving the underlying partial differential equations (PDE) that

follow either a Eulerian description, a Lagrangian description (Malvern (1969)) or an arbitrary

Lagragian-Eulerian (ALE) description (Donea et al. (1982)). In the Eulerian description, which

is widely used in fluid mechanics, the computational mesh is fixed and the material points can

move through it. In the Lagrangian description, which is mostly used to simulate elastic and

plastic solids, the vertices of the mesh move in accordance with the motion of the material

points. The vertices of a mesh following the ALE description can either be held fixed in a

Eulerian manner or moved in a Lagrangian fashion. Eulerian algorithms can handle large

distortions of the material at an expense of progressive smoothing (blur) of the field values

(velocity, deformation gradient, phase field) caused by the projection of the material points

to the mesh. The smoothing of the field values produces numerical errors such as artificial

viscosity, artificial plasticity, or the disappearance of small features (e.g thin sheet artificial

evaporation, smoothing of surface details). On the other hand, Lagrangian algorithms allow for

lower smoothing of the field values, an easy handling of free surfaces and interfaces between

different materials but is unable to follow large distortions without recoursing to mesh im-

provement techniques. Global mesh improvement is avoided since it can be computationally

costly, and can quickly accumulate large numerical errors because of the need to re-interpolate

physical properties such as velocity and strain from the old mesh to the new one. Hence, local

mesh improvement is favored. Local mesh improvement algorithms rely on operations that

improve the mesh quality by relocating the position of a vertex to improve the quality of the

adjoint elements and/or by changing the mesh topology locally. Usually such a local approach

in mesh improvement entails the use of a scheme where different combinations of operations

are applied heuristically that improve the badly shaped elements of the mesh.

With regards to their underlying topology, meshes can be categorized into structured and

unstructured meshes. Structured meshes are characterized by regular configurations in

which all vertices and elements are represented in form of a uniform template. Structured

meshes support implicit connectivity with vertices and faces usually being aligned with the

coordinate axis (Fig. 1.2a). Simplicial structured meshes can either be trivially constructed

by block subdivision of a regular grid (Allwright (1988)), be algebraic (Cook (1974)), or rely

on solving PDE equations over the domain to be tessellated (Thompson et al. (1985)). Due

to the regularity in indexing and connectivity, structured meshes offer a low computational

storage and can facilitate the application of efficient numerical methods. However, due to

topological regularity, problems can occur when complex geometry constraints are met or if

variable spatial resolution is desired. Such constraints, limit the use of structured meshes for

the tessellation of simple geometrical domains.

On the other hand, unstructured meshes do not have regular connectivities instead such

meshes tesselate a domain into a set of irregular triangle or tetrahedral elements (Fig. 1.2b).

Compared to structured meshes, unstructured ones offer a far more geometric flexibility, vari-

able spatial resolution and are generally preferred when tessellating complex objects. Although

the development of unstructured mesh generation algorithm entails a greater complexity and

4

1.2. Meshes

(a) (b)

Figure 1.2: Examples of a structured mesh (a) and an unstructured mesh (b).

computational cost compared to structured mesh generation algorithms the potential for

variable and adaptive spatial resolution can lead to significant computational savings due to a

reduced total element count. The mesh generation algorithms for the creation of unstructured

meshes can be separated into the following categories:

1. Grid based methods (Quadtree/Octree)

2. Advancing front

3. Delaunay methods

4. Hybrid methods

In what follows, a brief description of the aforementioned unstructured mesh generation and

mesh improvement methods is provided.

5

Introduction

1.3 Mesh Generation algorithms

1.3.1 Quadtree/Octree

(a) (b)

(c) (d)

Figure 1.3: (a) The original geometry (b) A bounding box occludes the geometry and cells are
inserted. Smaller cells are inserted for a better approximation of more complex regions. (c)
The cells are meshed according to templates. (d) The final mesh after snapping the vertices
of boundary cells to vertices of the geometry’s boundary and cutting elements with vertices
outside the geometry domain.

Quadtree and Octree methods (Yerry & Shephard (1983), Schneiders & Bünten (1995), Schei-

ders (2000), Greaves & Borthwick (1999), Fischer & Bar-Yoseph (2000), Maréchal (2001)) rely on

the use of a grid that covers the boundary of a geometry to generate triangular and tetrahedral

meshes, respectively. The structure of quadtrees and octrees is a tree data structure that

can be applied to subdivide the dimensional space of the geometry by means of recursive

subdivision with cells known as quads (2D) and octants (3D). Initially, a bounding box that

encloses the geometry is first created and then is filled with four equally sized cells. Each cell

is then subdivided several times to produce cells of smaller size (Fig. 1.3b). Stopping criterions

for the subdivision could be based on the local geometry of a domain (e.g local curvature of a

boundary), the distance of point cells to the surface/curve, a prescribed element size func-

tion, a velocity and deformation gradient, a maximum level of refinement etc. Defined rules

guarantee the termination of the subdivision process, such a rule is the one level difference

(2:1 rule); the rule states that two cells sharing at least an edge are at the same or subsequent

depth of the tree structure.

After the creation of the cells in the bounding box the simplicial elements are generated (Fig.

1.3c). The cells corner vertices are considered to be part of the mesh vertices. The simplices are

6

1.3. Mesh Generation algorithms

created by subdividing the cells according to predefined patterns corresponding to the possible

cell vertices configuration. For a cell, the application of the 2:1 rule reduces the amount

of possible internal vertices configurations with regards to its neighbor cells. The are 16

possible patterns for the creation of triangular elements and 78 for the creation of tetrahedral

elements. To reduce the number of patterns for the creation of tetrahedral elements, in 6

patterns are used after observing that those patterns represent 90% of internal oct-cells (Yerry &

Shephard (1983)). The rest of the octants are meshed using a fast tetrahedralization algorithm

where vertices of the octant are connected with an interior vertex. Another approach applies

Delaunay criterion (Schroeder & Shephard (1990)) (see Section 1.3.3) to create tetrahedral

elements in an oct-cell. To create compatible triangulations between the overlapping faces

of the oct-cells this procedure is followed in an orderly manner. An alternative way to create

tetrahedral elements involves inserting at a first step a vertex at the center of each oct cell and

connect the vertices of each of its face with it to form tetrahedral elements (Frey & George

(2007)). Next, the faces of the oct-cells are triangulated using the 16 predefined patterns and

each triangular face is connected with the centroid vertex.

After generating the simplices a mesh is created for the bounding box that encloses the

boundary of the geometry. The last step of the algorithm involves conforming the mesh to

the boundary of the geometry (Fig. 1.3d). To recover the mesh of the geometry, the vertices of

the cells are categorized through a coloring scheme as being outside or inside the geometry.

Cells with all vertices being outside the geometry are discarded. Cutting points are introduced

to each boundary cell edge with vertices that are located outside and inside the geometry.

After cutting the cells according to the cutting points and projecting boundary vertices to

geometry boundary, further subdivision may be needed to the resulted boundary faces for

the introduction of new boundary simplices (Labelle & Shewchuk (2007)). Another approach

relies on further refining tetrahedra located in boundary cells and deforming them through

an optimization procedure to adapt the boundary of the geometry (Neil Molino & Fedkiw

(2003)). Although these strategies can be effective with respect to boundary conformity, they

may produce badly shaped elements near the boundary or lead to a mesh that is much denser

in elements near the boundary than the interior of the domain.

Tree data structures are very efficient in storing and querying geometrical information. Octree

and quadtree mesh generation algorithms are very fast and robust providing elements of an

appropriate shape and size in the interior of the geometry. A consequence of the nature of

the algorithm is that the worst shaped elements are located at the boundary of the geometry.

Another drawback of these types of algorithm is the difficulty to handle mesh sizing. The

application of rules to the nodes of the tree, such as the one level difference limits the choices

of cell sizing (power of 2) and results to a limited mesh density gradation as well. This could be

solved by applying more sophisticated rules to the cells but, as a trade off, the search of proper

predefined patterns to create elements of appropriate shape becomes more complicated. As a

consequence, octrees and quadtrees are less suitable for adaptivity.

7

Introduction

1.3.2 Advancing front

Popt
r

(a) (b) (c)

(d) (e)

Figure 1.4: (a) The boundary of the geometry is discretized according to a user defined edge
length. An edge (facet) is connected to a vertex Popt to form an element. A circle of radius r
centered at Popt is used to spot possible intersections with other fronts or to check if other
vertices are included in it. (b) A vertex of another front is spotted inside the circle of the
candidate vertex. (c) In this case the original candidate vertex is rejected and the vertex that
belongs to the neighbor front is selected to form a new element. (d) The formation of the front
after several stages of the method. (e) The final mesh.

The advancing front method (George (1971), Seveno et al. (1997), Löhner & Parikh (1988),

Kallinderis et al. (1995), Löhner (1996)) starts with the discretization of the geometry boundary

into facets, i.e edges in 2D and triangular faces in 3D, with a length that meets user defined

criteria. These facets form the initial front which advances into the interior domain of the

geometry. At each step, a facet is selected and is connected with a vertex in the interior domain

forming an element. After the creation of the element, the facet is removed from the front,

leading to a new front. This process iterates until all fronts are merged and the interior domain

is covered by elements (Fig. 1.4).

A critical feature of advancing front algorithms is the choice of vertex to connect the facet

with. The vertex may already exist or a new one must be chosen to form an element of optimal

shape and size. The newly formed element might intersect with other fronts and thus is

rejected. Additionally, a candidate vertex might be located close to a front vertex. In this case

the front vertex is preferred as a new candidate vertex for element formation instead to avoid

the formation of element with small edges at some later stage.

The method starts with a selection of a facet based on some criteria, such as minimum edge

length. The next stage involves the selection of a vertex to connect it with the facet to form an

element. A quite common strategy of vertex selection for a facet is to start with the placement

of an optimal vertex Popt (Fig. 1.4a). Popt is selected so that the tentative element formed with

8

1.3. Mesh Generation algorithms

the connection to the facet satisfies element size and shape. As a next stage, a spatial search

for a potential alternative candidate vertex P is conducted. This involves the search within

a hypersphere around Popt (circle in 2D, sphere in 3D) with a radius size related to regional

element size requirements. If no new vertices are located inside the hypersphere an element

is formed using Popt as a connecting vertex with the facet. If vertices are located inside the

hypersphere they are ordered with respect to the increasing distance from Popt (Fig. 1.4b, Fig.

1.4c). Subsequently, the formed element is checked for potential intersections. If the elements

formed with all candidate vertices P lead to intersections, then the process of optimal point

placement is repeated with reduced element size.

Unlike grid based methods, advancing front methods comply with the boundary discretization

and provide elements of appropriate shape in the boundary layer. Another offered advantage

over grid based methods, is that they are invariant with respect to rigid motions of the geometry.

A main issue with advance front methods is that they present problems when fronts merge in

regions where there are sudden changes of element size requirements; the procedure might

need to restart with new parameters (Seveno et al. (1997)). As a result, the convergence of

the method in 3D is not guaranteed. Moreover, the intersection checking phase renders the

meshing process rather slow when compared to other methods.

1.3.3 Delaunay methods

(a) (b)

Figure 1.5: Example of Delaunay criterion. (a) maintains the criterion while (b) does not.

9

Introduction

Figure 1.6: From left to right: A vertex P is inserted in a triangulation The vertex is included
into the circumcircle of the shaded triangular elements The elements whose circumcircle
include P are deleted and the vertices of the countour cavity formed after the deletion are
connected with P .

(a) (b)

(c) (d)

Figure 1.7: Steps of the CDT algorithm. (a) A bounding box composed of two simplices
(triangles) occludes the vertices of the discretized boundary of the geometry. (b) An initial
triangulation is performed using the Boywer-Watson algorithm. The initial triangulation
contains the vertices of the discretized boundary and the vertices of the boundary box. (c)
After the initial triangulation, the boundary facets are recovered and the elements that are
located outside of the geometry are deleted (d) Delaunay refinement inserts new vertices to
strategic locations of the initial triangulation to improve the size and shape of the elements.

Delaunay mesh algorithms aim at creating elements whose circumscribed hypersphere does

not contain any other vertex (Fig. 1.5). The Delaunay criterion is not a mesh generation

algorithm, it provides a criteria for which to connect vertices in a space. Given a set of vertices,

a popular method to generate a mesh using the Delaunay criterion is the incremental Boywyer-

Watson (Watson (1981)) algorithm, also developed by Hermeline (Hermeline (1982)). The

10

1.3. Mesh Generation algorithms

algorithm starts with an initial simplex element (triangle in 2D, tetrahedra in 3D) that includes

all the vertices. One vertex from the set is added at the time. If the circumsphere of an element

contains the newly added vertex then the element is deleted. The deletion of elements using

this criteria forms a contour cavity. Finally, the vertices of the contour cavity are connected

with the inserted vertex to form new elements (Fig. 1.6).

In 2D, for a given number of points a mesh generated with connections handled with the

Delaunay criteria can guarantee the maximization of the elements minimum angles which

also minimizes the appearance of thin elements (sliver) which are often undesired. However

this is not the case in 3D, as the criteria fails to spot every badly shaped thin tetrahedral ele-

ment (sliver) and post-processing procedures are required to remove them. Such procedures

include sliver exudation (Cheng et al. (2000)) that deletes sliver tetrahedral elements based

on an extension of the Delaunay criterion and weight assignment to the points of elements

that satisfy a ratio property or the use of variational methods that move the vertices, thus

not preserving their original location (furtherly discussed in the following section). Based

on the sliver exudation method of Cheng et al. (2000), another method for eliminating sliver

tetrahedra is presented in Edelsbrunner et al. (2000). The method is based on perturbing the

mesh vertices such that a new Delaunay tetrahedralization of the perturbed vertex set contains

no slivers. More precisely, it is shown that a vertex can be moved within a sphere (perturbation

ball) that does not contain forbidden regions. The forbidden regions are defined as volumes of

tori containing the remaining vertices of the tetrahedra connected to the target vertex. If the

target vertex is moved within the perturbation ball, any tetrahedra that are connected to it will

not be sliver in the new tetrahedralization. The method assumes the mild perturbations of

the mesh vertices do not depend on the direction the vertices are perturbed. Therefore, when

boundaries are introduced and boundary vertices are either not allowed to move or move

in restricted directions the method does not guarantee the elimination of sliver elements. A

consequence of applying the method to boundary domains is that by perturbing the interior

vertices for sliver elimination can lead to the possible appearance of sliver tetrahedra contain-

ing boundary vertices (Li (2001)).

Constrained Delaunay algorithms (CDT) (Paul Chew (1989), Shewchuk (2002a)) are applied

to mesh the domain Ω of a geometry using the Delaunay criterion. Initially, a bounding

box is created around a given discretised boundary geometry Γ (Fig.1.7a). An initial mesh is

generated using the aforementioned incremental method to the set of points in Γ and the

bounding box (Fig.1.7b). This initial mesh however does not guarantee extracting a mesh

of Ω; the initial mesh may not contain facets (edges in 2D, faces in 3D) that are part of the

boundary Γ. In 2D, iteratively swapping the element edges can recover the initial boundary

(George et al. (1991)), while, in 3D, the same method may be insufficient to resolve this issue;

additional facet operations along with insertion of new vertices may be required (Weatherill &

Hassan (1994), George et al. (1991)) without though guaranteeing the recovery of the original

boundary facets. In an attempt to conserve as much as possible the original boundary by

avoiding the insertion of many additional vertices a Delaunay relaxation for the recovery of

11

Introduction

the boundary facets is also proposed (Shewchuk (2002b), Si & Gärtner (2005), Si & Shewchuk

(2014)). Once all the facets of the discretized geometry are recovered, the elements located

outside ofΩ are deleted (Fig.1.7c).

The initial mesh generated ofΩ contains all the boundary vertices. Such a mesh may include

badly shaped elements. To improve the shape and size of the mesh’s elements, additional

vertices are inserted either on the boundary or the interior domain strategically though the

process of Delaunay refinement and the connectivity is updated using the Delaunay criterion

(Fig.1.7d). The insertion of vertices is based on two rules:

1. The diametrical circle of a constrained edge (edge that is not allowed to be flipped) is

defined as the smallest circle that includes the edge. A constrained edge is said to be

encroached if a vertex other than its endpoints is included on or inside its diametral

circle (Ruppert (1993)) (Fig. 1.8a). Another criteria to determined if a constrained edge

is encroached relies on checking if the edge is included a badly shaped element and its

circumcenter lie on opposite sides of the edge (Chew (1989)) (Fig. 1.8b). Any encroached

constrained edge is split into two edges by inserting a point in the middle of the edge .

2. Each badly shaped element (an element that has a circumradius-to-shortest edge ratio

greater than some bound) is split by inserting a new vertex in new locations (e.g cir-

cumcenter of the element, centroid) to delete the element. If the new vertex encroachs

upon any constrained edge then it is not added. Instead the constrained edges it would

encroach upon are split.

12

1.3. Mesh Generation algorithms

(a)

(b)

Figure 1.8: (a) A constrained edge (highlighted) is encroached if a vertex is contained within its
diametral circle (Ruppert (1993)). The constrained edge is split until no vertices are included
in the diametral circle no constrained edge is encroached. (b) Alternatively an encroached
constrained edge can be spotted if a badly shaped element (t) and its circumcenter (c) lie on
opposite sides of it (Chew (1989)). All vertices in the encroached constrained edge’s diametral
circle are deleted and a point is inserted in the middle of it to form new elements.

The vertices added though this process are also known as Steiner points. The process of

refinement aims at creating a mesh where badly shaped elements are avoided and to satisfy

shape and size criteria. Common strategies for refinement include the insertion of Steiner

points to the centroid of the elements (Weatherill & Hassan (1994)) or their circumhypersphere

center (Chew (1989), Ruppert (1993)). Using the latter strategy triangles can be generated with

a minimum bound on any angle in the mesh. Other methods insert new vertices at the end

points of the segment connecting the center of two adjacent elements circumhypersheres

(Voronoi segment) (Rebay (1993)) or along the edges of the initial triangulation at a specified

spacing ratio (George et al. (1991)).

In 2D, the convergence of CDT with the application of a refinement process is guaranteed and

offers the creation of a mesh that satisfies user specified shape and size criteria. However, as

mentioned, in 3D the Delaunay criteria does not suffice to guarantee the non existence of

sliver elements. Moreover, boundary recovery may require complex procedures and is not

always feasible. Overall, the problem of boundary recovery leads to an extensive increase in

13

Introduction

the complexity of a CDT algorithm.

1.3.4 Hybrid methods

The three aforementioned methods of mesh generation share their own advantages and

drawbacks. Hybrid mesh generation methods combine seperate methods to benefit from the

advantages of a method while avoiding the bottlenecks of another. Delaunay type methods

have been combined with advancing front methods to place new vertices in a Delaunay

mesh (Marcum & Weatherill (1995)). Vertices are inserted incrementally, but added from the

boundary towards the interior. Each facet is examined to determine the ideal location for a

new vertex on the interior of the existing Delaunay mesh. The vertex is then inserted and local

reconnection is performed.

Conversely, the advance front method has been combined with the Delaunay criterion

(Mavriplis (1995), Merriam (1991)); based on the advance front approach elements are incre-

mentally created by connecting a facet with a vertex while the Delaunay criterion is used to

adjust the placement of the vertex and adjust the connectivity of merging fronts. The use of

such a method can help to overcome the problems that occur when fronts are merged using

the classical approach.

Kd-trees are data structures used to subdivide point sets into blocks of unequal size each

containing approximately equal number of points. The blocks are subdivided by alternatively

splitting each dimension of the domain using a subdivision rule such as the number of points

included in a block or by computing the median coordinate value of the splitting dimension.

Kd-trees have been used in conjunction with Delaunay algorithms for mesh generation of

large point data sets. The subdivision of the domain allows for a parallel implementation of

Delaunay based algorithms to the points included in each block of the domain (Morozov &

Peterka (2016), Guo et al. (2020)). To ensure that the final mesh conforms to the Delaunay

criterion additional strategies are invoked. In Morozov & Peterka (2016) the size of the blocks

is dynamically adapted to include neighbor vertices if a circumsphere of an element from

the current Delaunay tessellation intersects with one of the neighbor cells. In Guo et al.

(2020), once each block is meshed further mesh reconstruction procedures are followed to the

overlapping areas based on constrained Delaunay and a graph cut algorithm. The overlapping

areas are then merged with the meshed non overlapping regions to obtain the final mesh.

In Schroeder & Shephard (1990) an octree method is combined with the Delaunay criterion.

The basic motivation is to build an octree procedure for octant geometries that can then be

meshed using the Delaunay criterion. This hybrid approach keeps the spatial addressability,

localized mesh control, geometric simplification features of the octree technique, while taking

advantage of simple and optimal properties with the Delaunay triangulation. The major

difficulty lies in maintaining the compatibility between octants because they are individually

triangulated. Although hybrid methods achieve to combine the advantages of separate mesh-

ing algorithms, they can lead to the development of algorithms of higher complexity than their

14

1.4. Mesh improvement

combined counterparts.

1.4 Mesh improvement

The most used methods to improve the quality of the mesh are smoothing and topological

operations. Smoothing improves the quality of a mesh by repositioning its vertices without

changing the connectivity either by moving them to the centroid of their adjoint vertices

(Laplacian smoothing) or based on a optimization based algorithm (Fig. 1.9). Although

Laplacian smoothing is effective for triangular meshes, it can fail to improve the quality of

tetrahedral elements or to guarantee mesh validity. Alternatively, smoothing can be effective

using numerical optimization on smooth objective functions defined on a local domain of

low quality elements (local smoothing), such as maximizing the squared sum of the elements

qualities that are connected to the vertex (Parthasarathy & Kodiyalam (1991)), local non

smooth objective functions like maximizing the minimum angle of the connected elements

(Freitag et al. (1995)) or on objective functions defined over the whole domain of the mesh

(global smoothing). The latter case involves a series of mesh improvement methods also

known as variational methods. Essentially, in the variational approach, the low quality mesh

is used as a reference to generate a new mesh with improved quality under a coordinate

transformation of its vertices which is determined by minimizing a mesh functional. For

example, such mesh functionals include functionals based on the conditioning of the Jacobian

matrix of the coordinate transformation (Knupp (1996), Knupp & Robidoux (2000)), functionals

based on equidistribution and alignement conditions (Huang & Russell (2010), Huang (2001)),

or the energy of harmonic mappings (Dvinsky (1991)).

Figure 1.9: Example of smoothing operation. The vertex is repositioned to improve the quality
of elements that are connected to it.

Local mesh improvement methods focus on improving the quality of a mesh by applying local

smoothing coupled with geometrical operations on local mesh configurations of the mesh

that include low quality elements. Topological operations change the topology of the mesh by

removing a set of elements and replacing with another set occupying the same space. These

include:

• Flip operators: The flip operator changes the connectivity locally by swapping the

adjacent facets of elements. In 2D, the flip operator swaps the adjacent edge of the

element. The 3D flip operator includes the 2-3 flip, 3-2 flip, 2-2 flip, and 4-4 flip (Freitag

& Ollivier-Gooch (1997a)). The numbers denote the number of tetrahedra that are

removed and created after flipping adjacent faces (Fig. 1.10).

15

Introduction

(a)

2-3

3-2

(b)

4-4

2-2

(c)

Figure 1.10: Examples of flip operator in 2D and 3D. In 2D, the flip operator changes the
connectivity by swapping the adjacent edge of two elements (a). In 3D, there are several
variants of the flip operator: the 2-3, 3-2 flip operators (b) and the 2-2, 4-4 flip operator (c)
where the numbers denote the number of tetrahedra before and after applying the operation.

• Edge removal: Edge removal (de L’isle & George (1995)) starts by removing an edge from

the mesh along with all the m tetrahedra that share the edge. Next, new connections are

created by flipping edges that result in 2m−4 tetrahedra. If a and b are the endpoints of

the edge to be removed, the operation creates a new triangulation T (using a triangula-

tion algorithm of Klincsek (1980)) for the domain R that is formed by the ring of vertices

around the target edge ab. As a result the set I of tetrahedra that shared the edge before

applying the operation are replaced by a set J of new tetrahedra of better quality (Fig.

1.11).

Edge removal

Multi-face removal

a

b

I J

a

bb b b

a a a

R T

Figure 1.11: Edge removal and multi-face removal operations. Edge removal triangulates the
domain R that contains the ring vertices around the edge ab which is an common edge for
the tetrahedra in I . After the triangulation T the faces are connected with the vertices a and b
to form the new set of tetrahedra J . Multi-face removal adjoins the sandwiched faces of the set
of tetrahedra J , connects the a and b to form an edge, and connects the ring of vertices R with
a and b to form the new set of tetrahedra I .

16

1.4. Mesh improvement

• Multi-face removal: Multi-face removal is the inverse operation of edge removal. It

adjoins faces that are sandwiched between two endpoints of an edge to form new

tetrahedra. If m faces are removed the 2m tetrahedra are replaced with m +2 (Fig. 1.11).

• Vertex cavitation: Vertex cavitation (Klingner & Shewchuk (2008)) builds a polyhedral

cavity C around a vertex p and fills it with new elements by connecting the vertex with

the polyhedral vertices (Fig. 1.12). p could be inserted or be part of an existing element.

Unlike Delaunay refinement, the elements that are deleted to form C do not rely on

a circum-hypersphere criterion but on an combinatorial optimization algorithm that

maximizes the quality of the worst new element.

The algorithm views the mesh as a graph with nodes that correspond to its elements and

directed edges (u, w), if element u shares a facet (edge in 2D, face in 3D) with element

w . u is considered the parent of w whereas w is the child of u. The elements that

contain p are considered the root elements. Those elements are included in the cavity

C . Next, starting from the facets of the root element (u) an adjacent element is visited

(w). If by deleting the shared facet and connecting p with the vertices of the visited

element w , the worst quality of the newly formed elements is higher than the quality

of the root element then the adjacent element is included to C . Subsequently, all the

children elements w of the parent adjacent element u that was included in C are visited.

A children element u is added to C if by deleting all the facets that lead to it by following

the directed edges from the root element and connecting the remaining vertices to p

leads to the formation of new elements whose worst quality is better than the elements

that were formed by its parent element w . It may possible that elements of u that are

formed in the aforementioned fashion may be inverted, i.e topologically invalid, in

which case u is not included in C . An additional stopping criterion for the formation

of C is that the visit to new elements should not surpass a specific length following the

directed graph from the root element.

p ppp p

C

Figure 1.12: Example of vertex cavitation. The operation views the mesh as graph with nodes
that correspond to the elements and directed edges that correspond to facet adjacent elements
with a parent-child relation. Starting from the elements of p and following the directed edges,
adjacent elements are visited to check whether they are included in the formation of a cavity
C that includes p. The vertices of C are connected to p to form new elements.

Other operations change the topology of the mesh by adding new elements or deleting existing

elements. Such operations include:

17

Introduction

• Vertex insertion: Vertex insertion inserts a vertex at the barycenter either of a facet (edge

insertion in 2D/3D, face insertion in 3D) or an element (face insertion in 2D,tetrahedral

insertion in 3D) and connects the vertices of the element with it to form new elements

(Fig .1.13).

(a) (b)

Figure 1.13: Vertex insertion operation. (a) Example of edge insertion. An vertex is inserted
in the middle of an edge. The vertices of the element are connected to the inserted vertex to
form new elements. (b) Example of tetrahedral insertion. A vertex is inserted in the barycenter
of the tetrahedron and the vertices of the tetrahedron are connected with it.

• Edge contraction: Edge contraction removes an edge from the mesh by replacing

the two endpoints with a single vertex (Fig. 1.14). As a result, the operation removes

elements from the mesh that are unnecessarily too small. Additionally, the operation

may improve the quality of a mesh as it removes elements that have a bad quality

because they possess an edge that is too small.

Figure 1.14: Example of edge contraction. An element is removed by collapsing its short edge.

In many cases, the application of solely one of the aforementioned operations is unable to

improve the quality of a mesh. This leads to the application of an operation on top of an

another one. For example, contraction is often followed by smoothing the vertices of the

contracted edge. Similarly, after the application of vertex cavitation further topological and

smoothing operations are applied to the retriangulated cavity. Compound operations (Tab.

1.1) are composed by the successive application of other base operations. As the application

of base operations may lead to being stuck in a local optimum that is far from the global

optimum, the application of compound operation leads the way to a better local optimum by

"climbing" valleys of the objective function.

18

1.4. Mesh improvement

Category Operation
Cavitation Edge Cavitation : Edge insertion followed by vertex cavitation around the new vertex.

Face cavitation: Face insertion followed by vertex cavitation around the new vertex.
Tetrahedron cavitation: Tetrahedron insertion followed by vertex cavitation around the new vertex.

Contraction Face contraction: Edge insertion followed by edge contraction.
Tetrahedron contraction: Face insertion followed by edge contraction of the new edge.
Tetrahedron contraction: Edge insertion on a edge followed by edge insertion on the opposite edge.
Next, edge contraction is applied to the edge linking the two new vertices.

Smoothing Edge smoothing: Performs the succesive vertex smoothing of the two vertices of an edge.
Tetrahedron smoothing: Performs the succesive vertex smoothing of the four vertices of a tetrahedron.

Topological Multiface replacement: Multiface removal followed by edge removal.

Table 1.1: Examples of compound operations composed by the successive application of other
operations.

Local mesh improvement algorithms involve the application of schemes that apply a combi-

nation of mesh improvement operations using a hill climbing method; an operation is applied

only if it improves the quality of the mesh. If the operation succeeds to improve the quality

then another operation is applied for further improvement. As a result, the quality of the mesh

after applying the improvement scheme cannot be worse than the original mesh. The mesh

improvement scheme stops when the quality of the mesh cannot be further improved or if the

quality gain to computational time ratio is small.

The Stellar improvement scheme (Klingner & Shewchuk (2008)) is an example of a local

mesh improvement scheme for tetrahedral meshes. The scheme relies on improvement

passes during which a list of operations solely of a specific category (cavitation, contraction,

smoothing or topological) is applied to elements that either are below a quality threshold or

have edges that are too large or too small. Initially, the improvement scheme builds a list of

elements E that are below a quality threshold (goalQuality) (Alg. 1, Line 2). Subsequently,

the SmoothingPass procedure (Alg. 1, Line 3) is called, during which the operation of vertex

smoothing is performed to all the vertices of the E once. Then, the procedure TopologicaPass

is called (Alg. 1, Line 4) which applies topological operations, for example edge removal, on

every element in the E. Next, the ContractionPass procedure(Alg. 1, Line 5) is called, which

applies edge contraction.

The scheme proceeds to regulate the edge length of the elements according to shortGoal-

Length and LongGoalLength by calling the SizingControl procedure. At the beginning of this

procedure, edges that are too short are contracted by calling the ContractionPass procedure

(Alg. 2, Line 4). Then, the edges that are too long are split using the CavitationPass procedure

(Alg. 2, Line 5). If the shortest and longest edges didn’t change after the previous passes, a

SmoothingPass and a TopologicalPass is applied to improve the quality of the elements in E

(Alg. 2, Lines 6-9). After improving the quality of the elements, the edge lengths are regulated

again. The sizing loop is repeated multiple times until a desirable short and long edge length

is met. Once the SizingControl procedure is finished, the quality of the elements in E by

applying a loop of improvement passes (Alg. 1, Lines 7-23) consisting of a SmoothPass, a

TopologicalPass, a ContractionPass, and a CavitationPass. The loop is repeated until a certain

goal quality is met or a number of improvement passes is exceeded.

19

Introduction

Algorithm 1: Stellar Improvement Scheme

1 StellarImprovement (maxNumOfPasses, goalQuality)
2 build list of elements E with a quality below goalQuality
3 Call procedure SmoothingPass
4 Call procedure TopologicalPass
5 Call procedure ContractionPass
6 Call procedure SizingControl
7 while numOfPasses <maxNumOfPasses do
8 if minQuality ≥ goalQuality then
9 return

10 end
11 else
12 Call procedure SmoothingPass
13 if minQuality has not improved and meanQuality has not improved then
14 Call procedure TopologicalPass
15 end
16 if minQuality has not improved and meanQuality has not improved then
17 Call procedure ContractionPass
18 end
19 if minQuality has not improved and meanQuality has not improved then
20 Call procedure CavitationPass
21 end
22 end
23 end

Algorithm 2: Sizing control

1 SizingControl (shortGoalLength, longGoalLength, maxIterations)
2 while (minEdgeLength < shortGoalLength or maxEdgeLength > longGoalLength)

and (numIterations < maxIterations) do
3 Grab all too short and too long edges in the mesh
4 Call procedure ContractionPass
5 Call procedure CavitationPass
6 if minEdgeLength and maxEdgeLength didn’t change then
7 call procedure SmoothingPass on every bad element in E
8 call procedure TopologicalPass on every bad element in E

9 end
10 end

The Stellar improvement scheme is only an example among various schemes. In principle,

the selection of the series of operations to be applied make local mesh improvement a combi-

natorial optimization problem; The final mesh that emerges after applying an improvement

scheme is dependent on the order of the operations. For example, if the TopologicalPass and

CavitationPass had a head priority over the SmoothingPass, a different mesh would emerge

after the application of the scheme. It is unclear how a particular order of a selection influences

the optimization path and how it differs from another selection

20

1.5. Artificial Neural Networks

Other heuristic parameters for mesh improvement include:

• Parameters associated with a mesh improvement operation the selection of which can

influence the result of the final mesh. For example, in vertex cavitation the bigger

the cavity is artificially expanded, there are more changes that subsequent topological

operations to the remeshed cavity are able to improve the quality of the mesh. However,

the bigger a cavity is expanded the more computational time is required for the operation

to be applied.

• When a mesh improvement operation is applied to an element, it is possible that it

affects its adjacent elements. For the mesh improvement scheme to be successful it

is essential to improve the affected elements as well. The depth of an improvement

loop determines how many recursive calls are initiated to improve the quality of those

affected elements when an unsuccessful operation is applied. When the depth is in-

creased the computational time can increase exponentially. It is unclear which level of

depth we must reach with the hope of improving a local mesh configuration.

• The choice of successive operations following the unsuccessful one in the case of com-

pound operations is also unclear. For example, the application of smoothing operations

on the affected elements after the application of a topological operation, beats the pur-

pose of applying it in the first place, since topological operations affect the connectivity

and not the position of the vertices.

• The result of the final mesh can differ by applying a list of operations to each element

under a quality threshold or applying the same operation to all of them.

• The priority in which elements below a quality threshold are improved affects the overall

outcome as well. For example, in the case of the smoothing operation, sorting element

from worst to best quality can restrict the range which the vertices of the elements can

be moved.

Overall the aforementioned parameters render the development of local mesh improvement

schemes that is optimal in terms of quality and computational time a complex task. Therefore,

although the local approach of improvement schemes are favorable for the improvement of

Lagrangian meshes, where the smoothing of the field values needs to be avoided as much

as possible, they may lead to the development of complicated algorithms that account for a

significant computational time during the course of a simulation and are not always robust.

1.5 Artificial Neural Networks
Machine learning refers to an artificial intelligence (AI) field of study that enables systems

to automatically learn and improve from experience without or with little explicit human

interference. It focuses on the development of algorithms that acquire data and build models

21

Introduction

.

.

.

x1

x2

xn

.

.

.

𝑤11
[1]

𝑤21
[1]

𝑦1
[1]

𝑦2
[1]

𝑦ℎ1
[1]

.

.

.

𝑦𝑚
[𝑐]

𝑤𝑛1
[1]

𝑤12
[1]

𝑦2
[𝑐]

𝑦1
[𝑐]

y1

y2

ym

𝑤𝑛2
[1]

𝑤𝑛ℎ1
[1]

𝑤1ℎ1
[1]

𝑤22
[1]

. . .

𝑏1
[1]

𝑏2
[1]

𝑏ℎ1
[1]

.

.

.

𝑦1
[𝑐−1]

𝑦2
[𝑐−1]

𝑦ℎ𝑐−1
[1]

𝑏ℎ𝑐−1
[𝑐−1]

𝑤11
[𝑐]

𝑤12
[𝑐]

𝑤1𝑚
[𝑐]

𝑏1
[𝑐−1]

𝑤21
[𝑐]

𝑤22
[𝑐]

𝑤2𝑚
[𝑐] 𝑤ℎ𝑐−11

[𝑐]
𝑤ℎ𝑐2
[𝑐]

𝑤ℎ𝑐−1𝑚
[𝑐]

𝑏2
[𝑐−1]

𝑏1
[𝑐]

𝑏2
[𝑐]

𝑏𝑚
[𝑐]

Figure 1.15: Neural network with feed forward architecture. Neurons are grouped into a
sequence of c layers L[1], ...,L[c]. The hidden layers L[1], ...,L[c−1] contain h1, ...,hc−1 hidden
neurons, and the output layer L[c] is composed of m output neurons. Each layer is associated
with a set of free parameters a = (a[1], .., a[c]). For every layer l the free parameters are de-
fined as the pair a[l] = (w [l],b[l]), where w [l] = (w [l]

1,1, w [l]
1,2, .., w [l]

1,hl
, ..., w [l]

hl−1,1, ..., w [l]
hl−1,hl

) are the

weight synapses, b[l] = (b[l]
1 , ..,b[l]

hl
) are the biases, and hl is the number of neurons of the L[l]

layer. The output of each neuron is an output of a non linear function y [l]
j , where l ∈ {1,2, ...,c},

j ∈ {1,2, ...,hl }.

in order to make better decisions according to prior observation or data records.

According to the learning method that is adopted, machine learning algorithms are usually

categorized as being either supervised or unsupervised. In supervised learning, a model at

hand is trained using a certain data set along with its respective labels. Thus, once a model is

trained on known data, it can be further used with another set of data to infer their labels. In

unsupervised learning, however, prior labels are inaccessible or accessible but unimportant for

the application being addressed. This latter, thus, consists in studying how systems can infer

functions to define hidden structures from unlabeled data. Semi-supervised learning is an-

other direction whose aim is to exploit a small-sized label data and a large-sized unlabeled data

A popular set of supervised and unsupervised learning algorithms are artificial neural networks.

There are many different types of neural networks. In supervised learning, the feed forward

Neural Network, also known as multilayer perceptron, is an important one, and most of the

literature in the field is commonly referred to this as an artificial neural network (NN). A NN

is characterized by a set of neuron models that are interconnected forming an architecture.

22

1.5. Artificial Neural Networks

Hence, neurons in a feed-forward NN are grouped into a sequence of c layers L[1], ...,L[c], so

that neurons in any layer are connected only to neurons in the next layer. The input layer

L[0] consists of n external inputs and is not counted as a layer of neurons; the hidden layers

L[1], ...,L[c−1] contain h1, ...,hc−1 hidden neurons, respectively, and the output layer L[c] is

composed of m output neurons (Fig. 1.15). Communication proceeds layer by layer from

the input layer via the hidden layers up to the output layer. The states of the output neurons

represent the result of the computation.

A feed forward Neural Network architecture defines a non linear function composition:

y(X ; a) = y [c]((y [c−1](..y [2](y [1]; a[1]); a[2]); a[c−1]); a[c]) (1.1)

where X = (x1, x2, ..., xn) is an input signal and a = (a[1], .., a[c]) is a set of free parameters asso-

ciated with each layer. For every layer L[l] the free parameters are defined as the pair a[l] =
(w [l],b[l]), where w [l] = (w [l]

1,1, w [l]
1,2, .., w [l]

1,hl
, ..., w [l]

hl−1,1, ..., w [l]
hl−1,hl

) are the weight synapses, b[l] =
(b[l]

1 , ..,b[l]
hl

) are the biases and hl is the number of neurons at the L[l] layer. The output of each

neuron is an output of a non linear function y [l]
j , where l ∈ {1,2, ...,c}, j ∈ {1,2, ...,hl }.

.

.

.

𝑏𝑗
[𝑙]

𝑥1
[𝑙−1]

𝑥2
[𝑙−1]

𝑥ℎ𝑙−1
[𝑙−1]

𝑤1,𝑗
[𝑙]

𝑤2,𝑗
[𝑙]

𝑤ℎ𝑙−1.𝑗

[𝑙]

𝑦𝑗
𝑙

𝑋 𝑙−1 ; 𝑤𝑖,𝑗
𝑙
, 𝑏𝑗

𝑙
≡ 𝑥𝑗

𝑙
𝑢𝑗
[𝑙] 𝑔 𝑙

Figure 1.16: Perceptron neuron model. The input signals X [l−1] = (x[l−1]
1 , .., x[l−1]

hl−1
) from L[l−1]

layer are transformed using the activation function to the signal u[l]
j = b[l]

j +∑hl

i=1 w [l]
i , j x[l−1]

i .

The outcome of u[l]
j is then given as input to the activation function g [l] that defines the output

signal y [l]
j . The output signal y [l]

j becomes an input signal x[l]
j for neurons of the L[l+1] layer.

The input of the j th neuron in the L[l] layer is obtained by forming the a linear combination of

the h[l−1] input signals X [l−1] = (x[l−1]
1 , .., x[l−1]

hl−1
) from the L[l−1] layer:

23

Introduction

u[l]
j = b[l]

j +
hl∑

i=1
w [l]

i , j x[l−1]
i (1.2)

, u is also known as the combination function. The output of the neuron is the non linear

function:

y [l]
j (X [l−1]; w [l]

i , j ,b[l]
j) ≡ x[l]

j = g [l](u[l]
j) = g [l](b[l

j +
hl∑

i=1
w [l]

i j x[l−1]
i) (1.3)

, where g is known as the activation function of the neuron. The output signal of the neuron is

subsequently transferred as an input signal x[l]
j for neurons of the next layer l +1 (Fig. 1.16).

Three of the most used activation functions (Fig. 1.17) include:

• The logistic function:

g (u) = 1

(1+e−u)
(1.4)

• The hyperbolic tangent function

g (u) = tanh(u) = (eu −e−u)

(eu +eu)
(1.5)

• The Rectified Linear Unit (ReLU)

g (u) =
u, for u ≥ 0

0, for u < 0
(1.6)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
u

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

g

Logistic
Hyperbolic
ReLU

Figure 1.17: Graphs of the logistic, hyperbolic, and ReLU activation functions.

Activation functions allow the NNs to create complex mappings between the network’s inputs

and outputs, which are essential for learning and modeling complex data, such as images,

24

1.5. Artificial Neural Networks

video, audio, and data sets which are non-linear or have high dimensionality. Almost any

process imaginable can be represented as a functional computation in a NN, provided that

the activation function is non-linear.

The choice of activation function plays an essential role for the training process of an NN

(see next section) to predict values where gradients are updated through an iterative process.

The logistic function is smooth and derivable at every point, which is a desirable property

for any activation function. The output of the logistic is normalized in the range 0 to 1. The

logistic function is mostly used before the output layer for classification . The hyperbolic

tangent function has a similar behavior with logistic function. The output of the logistic is

normalized in the range -1 to 1. Unlike the logistic function the hyperbolic tangent function

is zero centered making it easier to model inputs that have strongly negative, neutral, and

strongly positive values. Both the logistic and hyperbolic functions can cause a vanishing

gradient problem that renders the gradient update procedure of the training process inefficient

(especially for NNs with large number of layers), which in turn leads to inaccurate predictions

of the NN. To overcome the problem of vanishing gradient, the ReLU function is preferred for

NNs with a large number of layers. Moreover, compared to the the aforementioned activation

functions that involve expensive operations (exponentials, etc.), the ReLU can be implemented

by simply thresholding a matrix of activations at zero. However, when inputs approach zero,

or are negative, the gradient of the function becomes zero, the network causing issues to the

training procedure.

1.5.1 Training process

Given a dataset D = {(X (k),Y (k))}N
k=0, where X (k) = (x(k)

1 , .., x(k)
n) are the per sample input signals

and Y (k) = (y (k)
1 , .., y (k)

m) are the desirable outputs, a NN undergoes a training process during

which its parameters a are adjusted such that the non linear function y(X ; A) best fits the

set of desirable outputs. For a set of free NN parameters a = (w,b) the approximation Ŷ of

the desirable output Y is measured using a loss function L (Ŷ ,Y ; A), also known as objective

functional.

The training process is equivalent to finding a set of free parameters A through an optimization

process such that to minimize the loss function:

L (Ŷ ,Y ; a) =L (y(X ; a),Y) =L (y(X ; w,b),Y) =
N∑

k=1
`(y(X (k); w,b),Y (k)) (1.7)

, where `(y(X (k); w,b) = `k is the per sample loss function.

Gradient descent is the most popular optimization strategy used for the training of NNs.

To minimize a functional L : RD → R, gradient descent uses a local linear information to

iteratively move toward a local minimum. Through the iterative process of free parameter

update:

25

Introduction

at+1 = at −η∇L (at) (1.8)

the local minimum of L is found (Fig. 1.18). The choice of the initial value of w0 and η,

also known as learning rate, define how the process of finding the local minimum behaves.

The initial value w0 affects the number of iterations to reach to a minimal of the objective

functional. If the value of η is too small the convergence to the minimal of the objective

function can be slow whereas if it’s too big gradient descent can fail to converge to the minimal

or even diverge.

−1.0 −0.5 0.0 0.5 1.0
x

0.0

0.5

1.0

1.5

2.0

2.5

y

Data and fit

w0=0.000,w1=0.000
w0=1.400,w1=0.129
w0=1.820,w1=0.225
w0=1.946,w1=0.296
w0=1.984,w1=0.348

−1 0 1 2 3 4
w0

−4

−2

0

2

4
w

1

0.400

0.
80
0

1.200

1.600

2.
00

0
2.
40

0

2.800

3.
20

0

3.600

4.000

4.400

4.800

4.
80
0

5.200

5.
20
0

5.600
5.60

0

6.000
6.400

objective functional

Figure 1.18: Example of gradient descent for fitting a giving dataset (X (i),Y (i)), where
i = {1,2, ..m}, to a straight line ha(x) = w0+w1x. The free parameters a = (w0, w1) are updated
through the iterative process w j ,t+1 = w j ,t −η(∂L (wt)/∂w j), where j = {0,1}, using the objec-
tive functional L (wt) = (1/2m)

∑m
i=0(ha(X (i) −Y (i))2. At each iteration the free parameters a

get closer to the minima of the objective functional and the line fits better the dataset.

To apply gradient descent to the loss function of eq.1.7 the expression of the gradient of the

per sample loss function `k = `(y(X (k); w,b),Y (k)) with respect to the parameters a = (w,b)

must be calculated, e.g.:

∂`k

∂w [l]
i , j

and
∂`k

∂b[l]
i

(1.9)

for l = 1,2, ...,c.

To compute the derivatives of eq.1.9 and apply gradient descent the back propagation algo-

rithm is applied.

26

1.5. Artificial Neural Networks

For a training dataset D = {(X (k),Y (k))}N
k=0, for every layer L[l], where l = 1,2, ...c the derivative

of the per sample loss function `k = `(y(X (k); w,b),Y (k)), ∂`k /∂w [l]
i , j and ∂`k /∂b[l]

j , can be

stored using a Jacobian matrix:

[
∂`k

∂b[l]

]
=

∂`1
∂b1

∂`1
∂b2

. . . ∂`1
∂bhl

∂`2
∂b1

∂`2
∂b2

. . . ∂`1
∂bhl

...
...

. . .
...

∂`N
∂b1

∂`N
∂b2

. . . ∂`N
∂bhl

and using the compact notation :

[[
∂`k

∂w [l]

]]
=

∂`1
∂w1,1

∂`1
∂w1,2

. . . ∂`1
∂w1,hl

∂`2
∂w2,1

∂`2
∂w2,2

. . . ∂`2
∂w2,hl

...
...

. . .
...

∂`N
∂whl−1,1

∂ln
∂whl−1,2

. . . ∂ln
∂whl−1,hl

The values of the partial derivatives can then be used to update the free parameters a = (w,b)

of the NN though with gradient descent as in eq.1.8:

w [l] ← w [l] −η∑
n

[[
∂`n

∂w [l]

]]
and b[l] ← b[l] −η∑

n

[
∂`n

∂b[l]

]
(1.10)

The training procedure is carried out by the back propagation algorithm. For a NN consisting

of L[c] layers the back propagation algorithm (see Appendix A.1) for a input training signal

X = (x1, x2, .., xn) can be summarized as followed:

(i) Forward pass : During this phase the signal is propagated through the network, ∀l =
1,2, ...,c :

u[l] = w [l]X [l−1] +b[l] (1.11)

and

X [l] = g [l](u[l]) (1.12)

is calculated.

(ii) Backward pass: Starting from the last layer L[c] we compute the Jacobian matrix:

27

Introduction

[
∂`

∂X [c]

]
=∇`(X [c]) (1.13)

where X [c] = (x[c]
1 , x[c]

2 , ..., x[c]
hc

) are the output signals. Then for the layers L[c−1], ...,L[1]:

[
∂`

∂X [l]

]
= (w [l+1])T

[
∂`

∂u[l+1]

]
(1.14)

[
∂`

∂u[l]

]
=

[
∂`

∂X [l]

]
¯ ġ [l](u(l)) (1.15)

from eq. 1.13, 1.14 and 1.15 the partial derivatives of the loss function with respect to

the free parameters of the NN can be acquired:

[[
∂`

∂w [l]

]]
=

[
∂`

∂u[l]

]
(X [l−1])T (1.16)

[
∂`

∂b[l]

]
=

[
∂`

∂u[l]

]
(1.17)

(iii) Gradient step: Using 1.16 and 1.17 the weights and biases of the NN are updated using

gradient step as in eq.1.10.

(iv) Iteration: The steps (i)-(iii) are repeated until specified termination criteria are met.

This criteria are either based on an error threshold or the number of iterations.

1.5.2 Hyperparameters

Hyperparameters are the set of parameters that influence the behavior of gradient descent

for the minimalization of the loss function L . A set of such parameters involves the learning

rate η, the initial values of the weights w0, the choice of activation function, the number

of hidden neurons and the number of hidden layers. Another parameter that dictates the

training behavior of the NNs is the size of the training data that partakes in the free parameter

a = (w,b) update. For the training of the NNs, three main variants of gradient descent are

generally applied based on the size of training data. Based on the amount of training data a

trade off is made between the accuracy of the parameter update and the computational time

of the update.

The standard gradient descent algorithm, also known as batch gradient descent, computes the

gradient of the loss function with respect to the parameters a = (w,b) for the entire training

dataset:

28

1.5. Artificial Neural Networks

at+1 = at +η∇at L (at) = at +η
N∑

k=1
∇`k (y(X (k); at),Y (k)) (1.18)

Since the gradients of the whole dataset need to be computed to perform just one update,

batch gradient descent can account for big computation times and can be hard to manage for

resources that don’t meet the memory requirements of the dataset. Moreover, the gradient is

computed incrementally so by the time ∇`k is calculated, ∇`k−1,∇`k−2, ...∇`1 have already

been computed; therefore, better estimate â of at could be achieved. Despite all of the draw-

backs, batch gradient descent has been proven to converge to a local or global minima for

problems of convex optimization (Fig 1.19).

In contrast to bath gradient descent, stochastic gradient descent (SGD) updates the parameters

for each training example X (k) and Y (k), where k = 1,2, ...N :

at+1 = at +η∇`k (y(X (k); at),Y (k)) (1.19)

Batch gradient descent
SGD
Mini batch SGD

Minima

Figure 1.19: Optimization path using batch gradient descent, SGD and mini batch SGD for a
convex loss function. Batch gradient descent, although computationaly expensive, is proven
to converge to the minimal of convex loss funtions. SGD is faster, however, due to its nature,
the optimization path may oscillate and overshoot near the minima. Mini batch SGD can be
computationally efficient and can reduce the oscillations of SGD.

SGD is much faster than batch gradient descent; batch gradient descent may suffer from

redundant computations if the training dataset contains similar examples. SGD avoids the

29

Introduction

redundant computations by performing one parameter update at the time. A consequence

of the stochastic step is that the parameter updates may lead to an oscillated trajectory to

the minima of the objective function due to high variance between steps (Fig 1.19). However,

this fluctuations enable SGD to a potentially better local minima. On the other hand, this

ultimately complicates convergence to the exact minimum, as SGD will keep overshooting.

However, when the learning rate is decreased, SGD shows the same convergence behaviour

as batch gradient descent, almost certainly converging to a local or the global minimum for

non-convex and convex optimization respectively.

Mini batch SGD is a mixture of SGD and batch gradient descent. At each step, mini batch SGD

performs parameter update for a mini batch of B training example batches:

at+1 = at +η∇
B∑

b=1
`k(t ,b)((y(X k(t ,b); at),Y k(t ,b)) (1.20)

The order to visit the batch samples k(t ,b) can either be sequential or with uniform sampling

without replacement. The aforementioned parameter update reduces its variance leading

to a more stable convergence (Fig 1.19). Additionally, the separation of the training dataset

into mini batches allows for it to fit in processing memory taking advantage of computational

resources and also for the parallelization of the gradient computation for each batch.

Another hyperparameter involves the optimization method used to reach the local minima

while using mini batch SGD to reduce the oscillating behavior of the optimization path and

reach faster to the minimal of the loss function. A first improvement in the optimization of the

mini batch SGD involves adding a momentum term that accelerates in the direction of finding

a minima of the loss function (Fig. 1.20). This is done by adding a term m during the update

process which adds inertia to the step direction. If g t =∑B
b=1`k(t ,b)((y(X k(t ,b); at),Y k(t ,b)) and

γ> 0 then the parameters are updated as:

mt = γmt−1 +ηg t (1.21)

wt+1 = wt −mt (1.22)

Another class of methods exploits the statistics over the previous steps to compensate for the

anisotropy of the loss function contours. The Adam optimization method uses the first and

second moments of the gradient mt an vt respectively (Fig. 1.20). The first moment involves

the exponentially decaying average of the previous gradient (similar to momentum) while the

second moment involves the decaying average of the previous squared gradients:

mt =β1mt−1 + (1−β1)g t (1.23)

30

1.5. Artificial Neural Networks

vt =β2vt−1 +β2g 2
t (1.24)

Because mt and vt are initialized as zero value vectors, during the initial steps they are biased

towards zero. To counteract these biases the bias corrected first and second moment estimates

m̂t and v̂t respectively are computed:

m̂t = mt

1−βt
1

(1.25)

v̂t = vt

1−βt
2

(1.26)

Using m̂t and v̂t yields the update rule :

at+1 = at − η√
v̂t +ε

m̂t (1.27)

Batch gradient descent

Adam
Minima

Momentum

Figure 1.20: Optimization path using mini batch SGD with different optimization strategies.
Momentum and Adam add an additional computational cost at each free parameter update
step but reduce the oscillating behavior of mini batch SGD making it possible to reach faster
the minima.

The term generalization in supervised machine learning algorithms refers to their ability to in-

fer new information of unknown data; after being trained on a given dataset, an algorithm can

successfully make accurate predictions on new data. However, a model can make inaccurate

predictions if it has not been trained enough on the training data (underfitting). The inverse is

also possible; a model can predict inaccurately if it has been trained too much on the training

data. The latter case is also known as overfitting. To this end, regularization techniques aim

31

Introduction

at reducing the generalization error but not the training error. Such a technique involves

regulating the values of the weights in a neural network. It has been observed that NNs with

smaller weights tend to generalize better and overfit less. Thus, to avoid overfitting a weight

term 0 <λ< 1 can be added during the update step of the weights during gradient descent.

λ is referred to as weight decay. According to eq.1.27 the introduction of regularization term

yields the following update step for the weights:

wt+1 = wt − η√
v̂t +ε

m̂t −ηλwt (1.28)

1.5.3 Convolution

.
.
.

.

.

.
.

.

.

Convolution Pooling Convolution Pooling Flattening
MLPInput

Kernels Kernels

NNNN

(a)

𝑥1,1 𝑥1,2

𝑥2,1 𝑥2,2

𝑥3,1 𝑥3,2

𝑥𝑛−1,1 𝑥𝑛−1,2

𝑥𝑛,1 𝑥𝑛,2

𝑘2𝑘1

𝑘3 𝑘4
.
.
.

𝑎1 = 𝑘1 𝑥1,1+ 𝑘2 𝑥1,2+ 𝑘3 𝑥2,1+ 𝑘4𝑥2,2

𝑎2 = 𝑘1 𝑥2,1+ 𝑘2 𝑥2,2+ 𝑘3 𝑥3,1+ 𝑘4𝑥3,2

𝑎𝑛−1 = 𝑘1 𝑥𝑛−1,1+ 𝑘2 𝑥𝑛−1,2+ 𝑘3 𝑥𝑛,1+ 𝑘4𝑥𝑛,2

𝑚1= 𝑚𝑎𝑥[𝑎1, 𝑎2]

𝑚2= 𝑚𝑎𝑥[𝑎2, 𝑎3]

𝑚𝑛−2= 𝑚𝑎𝑥[𝑎𝑛−1, 𝑎𝑛−2]

𝑎3 = 𝑘1 𝑥3,1+ 𝑘2 𝑥3,2+ 𝑘3 𝑥4,1+ 𝑘4𝑥4,2

Kernel

Input Signal

Convolution

𝑥4,1 𝑥4,2

𝑥𝑛−2,1 𝑥𝑛−2,2

𝑎𝑛−2 = 𝑘1 𝑥𝑛−2.1+ 𝑘2 𝑥𝑛−2,2+ 𝑘3 𝑥𝑛−1,1+ 𝑘4𝑥𝑛−2,2

.

.

.

.

.

.

Pooling

F K =1

F p =1

(b)

Figure 1.21: (a) Example of a convolutional NN. Multiple kernels are used to apply convolution
to the input signal resulting in multiple convoluted feature maps. Each of convoluted feature
map undergoes a pooling process. The process of convolution and pooling can repeat before
flattening the result and connecting it with an NN. (b) Example of convolution and pooling
operation to an input signal of signal n ×2. Using a kernel K of size 2×2 with a stride FK = 1
the convoluted signal has a size (n−1)×2. Applying the max pooling layer with a stride Fp = 1
results in a signal (n −2)×2.

32

1.5. Artificial Neural Networks

NNs often feature a convolution layer that processes the multidimensional input signals by

applying the same linear transformation locally, enabling weight sharing. Convolution layers

have been proven to improve the accuracy of NNs with respect to image, text and signal

processing input. Weight sharing of the signal input allows for input feature extraction by mod-

eling automatically local correlations. Convolution layers are often combined with pooling

layers that downscale the convoluted result and preserve the signal structure. A convolutional

NN (CNN) is a NN composed of a convolution layer that processes the input features through

multiple stages of convolution and pooling layers before being connected to a feed forward

architecture (Fig. 1.21a). CNNs are designed to automatically and adaptively learn spatial

hierarchies of features and are commonly applied to input signals with a grid like structure

(e.g pixels of an image).

In the context of a(CNN), a convolution is a linear operation that involves the multiplication

of a set of weights with the input signal, much like a traditional NN. The multiplication is

performed between an array of input signal and a array of weights, called a kernel. The kernel

has a smaller dimension than the input signal and the type of multiplication applied between

a filter-sized patch of the input and the kernel is element wise. If the kernel is designed

to detect a specific type of feature in the input signal, then the application of that kernel

systematically across the entire input signal allows the filter an opportunity to discover that

feature anywhere in the signal. For example, with the use of convolution, local patterns in an

image can be discovered even if the image is subjected to distortions (e.g rotation, scaling). In

2D convolution, if the /input signal is of size S =C ×H and the convolution kernel is a signal

of size s = c ×h then the output will be of size (C − c +1/FK)× (H −h +1/FK), where FK is

the step size when moving the kernel across the signal (stride) (Fig. 1.21b). Given an input

X ∈RS and convolution kernel K ∈Rs , the convolution matrix A is defined as:

A (i , j) =
C−1∑
m=0

H−1∑
n=0

X (m,n)K (i −m, j −n), 0 < i <C + c −1 , 0 < j < H +h −1 (1.29)

The 2D convolution matrix A of size CK × HK , where CK = (C − c +1/FK) and HK = (H −
h +1/FK), undergoes a pooling process. A pooling layer provides a typical downsampling

operation which reduces the dimensionality of the feature maps in order to introduce a

translation invariance to small shifts and distortions, and decrease the number of learnable

parameters. Given a pooling area size hp ×wp and a stride Fp there are two main types of

pooling producing a signal of size (CK −cp +1/Fp)×(HK −hp +1/Fp). Max-pooling is defined

as:

M(i , j) = max
0≤m<cp

max
0≤n<hp

A (Fp i +m,Fp j +n) (1.30)

Similarly, average pooling is defined as:

33

Introduction

M(i , j) =
cp∑

m=0

hp∑
n=0

1

cp hp
A (Fp i +m,Fp j +n) (1.31)

1.6 State of the art

1.6.1 Automatic mesh generation

The analysis to generate a compatible mesh that respects the geometric features and the accu-

racy requirements of numerical solutions takes up to 80 % of the whole meshing procedure

on account of automation absence (Hughes et al. (2005)). The automation of the meshing

procedure is still considered a critical bottle neck. In recent years, several strategies have

been proposed to lessen user intervention to generate good quality meshes. In real world

applications, the meshing of input surfaces can be proven a complicated problem as they may

contain small gaps, self-intersections etc. There is no robust and automatic way to cleanup

a surface. Users have to perform a cleanup manually to assure a well-defined input that

can be proven to be a computational laboring work. If the input is not well defined a raw

implementation of a meshing algorithm could either not be robust or generate a mesh lacking

features of the original geometry. To this extend, an automation aspect of the mesh generation

procedure includes techniques to robustly generate high quality meshes of the input geometry

and preserve its features as much as possible even if the input is not well defined.

In Hu et al. (2018), a pipeline method is presented to generate tetrahedral meshes taking

as input triangle surfaces that represent the boundary of a geometry without connectivity

information, also known as triangle soups. Initially, a bounding box that encloses the vertices

of the input triangle surfaces is constructed and a Delaunay tetrahedralization is performed. To

conform to the input boundary and resolve potential self-intersections of the input geometry,

a binary space partitioning is perfomed to detect convex polygons formed by the intersection

between the elements of the initial mesh and the triangle faces of the input geometry. The

vertices of the polygons are connected with their barycenter to form an initial volumetric

mesh within a bounding box larger than the triangle soup. Mesh improvement operations are

followed to improve the quality of the mesh. Finally, the winding number filtering algorithm

is applied to remove all the elements outside the boundary of the input geometry. In a

similar automation context, Guo et al. (2019) propose an automatic triangular surface mesh

generation pipeline for CAD models comprised of surface patches. An initial simple coarse

triangulation is performed which tessellates the CAD model by preserving the geometric

fidelity. This coarse triangulation may include inverted or self-intersecting elements caused

by the intersection between the inner and outer boundaries or when a point of the patch is

too close to a curve of the geometry. Therefore, a procedure is followed to delete invalid edges

and to insert points to avoid an invalid topology. Next, based on the initial triangulation, each

patch is meshed in a parametric 2D domain using Constrained Delaunay Triangulation and,

then, is mapped back to the 3D object space. Finally, a mesh improvement routine is applied

34

1.6. State of the art

to improve the quality of the mesh.

Automation can also refer to either the inclusion of additional features or the modification to

the body of an established mesh generation algorithm. For example, an automated meshing

process is presented in Ma & Sun (2019) based on the advancing front method for the creation

of quadratic elements. To address the issue of manual domain decomposition for mesh

generation with internal feature constraints, the algorithm is enriched with an automatic

subregion decomposition that is defined by constraint lines and points in the interior of a

geometry and meshes each subregion separately. The extension of the quad-tree algorithm for

the creation of quadrilateral elements is addressed in Pochet et al. (2016), where for a better

mesh adaption, points of cells near to target curve geometry are attracted to the curve. Next,

for a better approximation of the geometry, the cells near the curve are subdivided using six

refinement cells instead of four.

Other automatic procedures focus on generating meshes that are suitable computational

domains to apply numerical methods. For example, starting from a geometry represented

by a stereolithographic (STL) model, Liu et al. (2017) propose an automatic routine that

generates polyhedral meshes suitable for the application of scaled boundary finite method to

perform stress analysis. An octree grid is created to enclose the geometry and then the mesh

is constructed by applying trimming operations that take into account the recovery of sharp

features first to the edges, then faces and finally cells. The trimming operations are based

on signs assigned to the vertices of the grid that represent whether they are located inside,

outside or on the geometry.

The aforementioned work names only a few of the latest advancements on the automation of

mesh generation. Although these methods are proven to be efficient and are a step forward

to counter explicit user handling, they still might involve the development of complicated

algorithms that may include an extensive computational time trade-off.

1.6.2 Mesh Improvement algorithms

Mesh improvement algorithms can either have a global approach or local approach to improve

the quality. Global approaches (Alliez et al. (2005), Huang & Russell (2010), Huang (2001)), also

known as variational, rely on the minimization of a mesh functional over the domain of the

mesh. The vertices of a mesh are moved and the connectivity is adjusted to minimize the mesh

functional. The mesh functionals (usually convex) are defined such that the minimization

leads to a global minimum. However, apart from the computational cost of such an approach,

in many contexts a global dislocation of the vertices that may also not conform to the boundary

of the original mesh is not desired. This is more evident in the case of dynamic simulations

using Lagrangian meshes. Although global mesh improvement schemes can be applied

for simulations using the Lagrangian approach (Bargteil et al. (2007),Wojtan & Turk (2008)),

they will also cause the accumulation of numerical errors by smoothing the field values by

repeated interpolation on the new location of the vertices. Local approaches on the other

35

Introduction

hand offer a more explicit handling to mesh improvement by improving the quality using local

smoothing, local transformations that replace small groups of tetrahedra with other tetrahedra

of better quality, and a scheme that searches for opportunities to apply them. However, local

optimization techniques often use highly non-convex functionals and get easily stuck in local

minima. As a counter measure, the development of various local mesh improvement schemes

and local mesh improvement operations is studied.

In Freitag & Ollivier-Gooch (1997b), a local tetrahedral mesh improvement scheme is pre-

sented based on smoothing and topological operations. The smoothing operation moves the

vertices to a direction indicated by the solution of a non smooth optimization problem which

is acquired using a gradient descent method. The topological operations used are flipping

operations along with edge removal. The recommended scheme is to perform two passes of

smoothing to the low quality elements followed by a procedure of edge removal to remove the

bad tetrahedra, and then perform another two passes of smoothing operation. In Klingner

& Shewchuk (2008), the Stellar improvement scheme is presented (Section 1.3, Alg. 1). This

scheme was based on Freitag & Ollivier-Gooch (1997b) with the modification and addition

of mesh improvement operations. A constrained vertex smoothing is adapted to lie on flat

boundaries. Edge removal was enhanced to be applied at edges that belonged to the boundary

of the mesh. Compound operations along with vertex cavitation (referred as vertex insertion),

and multiface removal are also added. The same author also presents the Pulsar improve-

ment scheme for dynamic simulations. The Pulsar scheme prioritizes topological operations

and proceeds only if needed to operations that move the original location of vertices (e.g

smoothing) to avoid numerical error and artificial diffusion. For boundaries that approximate

curved surfaces, quadric smoothing is used that is based on the optimization of an isosurface

defined by the distance of a point to the planes created by the neighbor facets; this type of

smoothing aims at perturbing the surface as little as possible. The scheme is used by Wicke

et al. (2010) to examine the potential of dynamic local mesh improvement of Lagrangian

meshes for elastoplastic simulations. To retain the original shape of purely plastic regions,

local mesh improvement takes place in a material space that is free of plastic deformations

and mapped to the world space. In Clausen et al. (2013), the Pulsar scheme is augmented with

algorithms for simulating liquids and solid-liquid interaction, merging, and splitting meshes.

The boundary domain of the mesh is represented by an algebraic point set surface method

(Guennebaud & Gross (2007)) that uses fitting spheres to reconstruct a piece-wise smooth

surface. Instead of quadric smoothing, the boundary vertices are allowed to be moved with

respect to the reconstructed surface. The improvement scheme is also augmented with face

and tetrahedron contraction.

The Longest Edge Propagation Path (LEPP) algorithm (Rivara (1997)) is a vertex insertion

strategy based on an ordered sequence of insertions into edges that don’t degrade the initial

mesh quality. The LEPP path is an ordered path of elements such that each element is adjacent

by edge with the previous one and contains another edge of bigger length. Starting with the

element containing the largest edge, vertices are inserted in the middle of the adjacent edges to

all elements of a path. In 2D, the algorithm can also be used to conduct incremental Delaunay

36

1.6. State of the art

triangulation that will improve the quality of the mesh. The extension to 3D tetrahedral

meshes of the algorithm that improves the quality of the mesh by means of refinement is

proposed by Rodriguez & Maria (2017).

In Chen et al. (2017) the operation of shell transformation is introduced and included in

a tetrahedral mesh improvement scheme. During this operation, the polygon of the ring

vertices, referred as shell, including the target edge can be partially triangulated instead of fully

triangulated as in the case of edge removal leading to an unmeshed part where faces attached

to the edge may still exist. Given one of the remaining faces linked to the target edge due to the

partial triangulation of the shell, the operation can be called recursively to be applied to one

of the remaining edges of the face to triangulate the edge’s corresponding shell. Essentially,

the recursive process renders shell transformation a composite edge removal operation that

is applied to larger group of tetrahedra than that of edge removal. However, there is no

guarantee that a mesh edge is removed by recursively calling the operation under the condition

that the mesh quality does not decrease in the process. Therefore, as the operation can be

computationally costly a user defined number of recursive levels defines the termination

criteria. The operation is used in Zheng et al. (2016) as part local mesh improvement scheme

to study moving boundary problems. During this scheme, the polyhedral contour that includes

neighbor elements of a bad quality element is extracted. Elements may be added artificially

to ensure the topological validity of the polyhedral contour. The polyhedral contour is then

meshed using a Delaunay tetrahedralization algorithm with a refinement strategy. After

the mesh generation, a mesh improvement scheme that includes shell transformation is

used. A parallel version of the scheme is later introduced (He et al. (2019)) using a domain

decomposition (Zhao et al. (2015)) enabling to apply the scheme simultaneously to multiple

polyhedral contours.

The edge removal operation can be viewed as a combination of 2-3 flips around an edge

followed by a 3-2 flip. Dassi et al. (2018) introduce the lazy search flips for an isotropic

tetrahedral mesh improvement scheme that can be viewed as a dynamic approach to attempt

an edge removal operation. During the operation, a sequence of 2-3 flips are performed around

an edge. If the sequence does not improve the mesh quality, then the algorithm reverses the

sequence and explores another one. If the quality is improved, no other sequence is explored.

If the sequence leads to a configuration where no other 2-3 flips can be performed then the

edge is removed by applying a 3-2 flip. The lazy search flips along with global smoothing,

insertion and contraction are included in a mesh improvement scheme. Boundary vertices

are projected into a surface which is reconstructed by the discrete boundary surface using

radial basis functions. When compared to the Stellar improvement scheme, better results

are achieved in term of mesh quality however more sophisticated methods are required to

improve meshes with more complicated curved boundaries.

In Liu et al. (2009), the Small Polyhedron Reconstruction (SPR) operation is presented. A

large polyhedral cavity is created around a bad quality element typically comprised of 20-40

elements. The SPR algorithm then performs an exhaustive search of all possible connections

37

Introduction

to find an optimal tetrahedralization (triangulation in 2D). Compared to flip-based opera-

tions that are usually restricted to a local area of the mesh, SPR can achieve better mesh

improvement by remeshing larger areas; however, the nature of the operation entails a large

computational cost (factorial complexity with regard to number of the polyhedron’s vertices).

Although modifications of the operation can decrease the time performance of the operation

(Liu et al. (2009), Chen & Yang (2014)), it can result in time consuming meshing improvement

schemes if the local reconnection is solely based on SPR. Recently, Marot & Remacle (2020)

present a mesh improvement scheme that includes a modified version of SPR, Growing SPR,

to reduce the computational cost of the operation by addressing the issue of the cavity’s forma-

tion around bad quality element. Starting from the target element, vertex neighbor elements

are added incrementally (with an element quality criterion) to apply the SPR operation until a

better tetrahedralization (or triangulation) is found.

1.6.3 Machine learning and meshes

In recent years, advancements in NNs have led to outstanding performances when applied for

tasks of object classification and semantic segmentation using images (Simonyan & Zisserman

(2015), Sermanet et al. (2014), Chen et al. (2016), ElAdel et al. (2017), Calisto & Lai-Yuen

(2020)). Convolution and pooling layers are able to take advantage of the Euclidean regular

grid like structure of images to extract local features and offer an invariant framework to

variations of an input (LeCun (2012), Krizhevsky et al. (2012)). Recently, there has been an

increasing interest to generalize deep learning methods to non-Euclidean structured data such

as graphs and manifolds, with a variety of applications from the domains of network analysis,

computational social science, or computer graphics. Geometric deep learning (Bronstein et al.

(2017)) refers to the field of deep learning applied to non-Euclidean data such as graphs or

discrete manifolds (i.e meshes). To generalize convolution in graphs a spectral approach is

considered; Observing that the complex exponential corresponds to the eigenfunctions of the

Laplacian operator in Euclidean domains, the eigenfunctions of a graph Laplacian operator

are considered as a generalized version of the typical Fourier basis. Graph convolution (Bruna

et al. (2014), Henaff et al. (2015), Defferrard et al. (2016), Kipf & Welling (2017)) can be achieved

by projecting a provided signal to the eigenfunctions of the graph Laplacian operator (graph

Fourier transform), multiplying the obtained spectrum with a set of learnable spectral filter

coefficients and projecting everything back to the original domain. This intuition has led to

good results for signals defined over one graph. However, graph Laplacian eigenfunctions

are inconsistent across different domains (basis-dependent). To extend convolution in a

consistent way across different domains spatial approaches suggest the application of filters

to local patch operators that are intrinsic to a mesh. Such patch operators include the use

of geodesic polar coordinates (Masci et al. (2015)), anisotropic heat kernels (Boscaini et al.

(2016)), a family of learnable mixture gaussian kernels (Monti et al. (2017)). Other approaches

to adapt NN architectures to mesh topological processing suggest the mapping of a mesh to

a flat torus topology (Maron et al. (2017)); 2D convolution operators are well defined over

a grid of the flat torus. In Verma et al. (2018), the authors propose a dynamic approach to

38

1.6. State of the art

convolution since the operator is calculated according to the features of a vertex. Tangent

convolution (Tatarchenko et al. (2018)) projects the local surface geometry on a tangent plane

of the vertices of a mesh yielding a set of tangential images that can be treated as 2D grids

upon which the convolution operator can be applied. MeshCNN (Hanocka et al. (2019)) is an

NN architecture with convolution, pooling and unpooling layers that are adapted to take into

account the properties of triangular surfaces. Using as input invariant descriptors of the edges

of a mesh, pooling and unpooling operations are defined to collapse edges for the task of

mesh simplification. The various adaptions of the convolution operator achieve to efficiently

extract features from the meshed geometries assuming however that connections to form

elements are already established and therefore such CNN architectures do not address the

mesh generation task.

Through the aforementioned advancements of integrating mesh topology to NN architectures

tasks such as mesh classification, mesh segmentation and shape correspondence are proven

to be efficiently handled by NNs which in turn opened the path for extended applications. In

Baqué et al. (2018), given a mesh, Geodesic Convolutional Neural Networks (GCNN) (Monti

et al. (2017)) are trained to emulate fluid dynamics simulations by regressing the vector and

scalar field values (e.g pressure and drag) over the discrete domain. The GCCN can also be

used in an objective function to optimize the mesh representation of shape using an ADAM

algorithm with respect to a desirable physics effect. In Wang et al. (2018) the Pixel2Mesh

architecture takes as an input a 2D RGB image to generate a mesh representing the depicted

object. The architecture combines the classic CNN networks to extract feature from the image

with a Graph Convolutional Network (GCN) (Defferrard et al. (2016)) to deform an initial

coarse ellipsoid mesh with triangular faces. The vertices of the mesh are adjusted using the

GCN while a graph unpooling layer inserts new vertices to the edges of the mesh to refine

regions according to the geometrical features of the input image. The architecture is later

on extended for generating meshes from multi-view images (Wen et al. (2019)). Litany et al.

(2018) use the local spatial patch operators of Monti et al. (2017) to introduce a variational

autoencoder that performs shape completion. Although these recent advancements show a

promising path for mesh related tasks, they assume the existence of an initial mesh that can

be given as input.

The integration of NNs to the mesh generation procedure has been previously studied in

both an unsupervised and supervised learning setting. Self-organizing maps (SOM) (Kohonen

(2013), López-Rubio & Ramos (2014), Fort (2006)) are unsupervised learning NNs that map

multidimensional data onto lower dimensional subspaces where geometric relationships

between linked neurons indicate their similarity. The weights of the neurons are adjusted

using a competitive learning algorithm; at each iteration, the neurons compete each other to

win an input pattern and only one neuron is activated and declared as a winner (Best Matching

Unit). The weights of the neurons that are linked with the winner neuron are updated to better

fit the input pattern while the weights of the other neurons remain unchanged. SOMs have

been utilized for generating meshes based on input patterns that correspond to a set of points

distributed inside a geometry by a density function (Ahn Chang-Hoi et al. (1991), Manevitz

39

Introduction

et al. (1997), Nechaeva (2006)). The density function dictates which parts of the geometry

should be approximated by more elements than elsewhere. In the meshing context, a SOM is

a fixed grid (triangular or quadrilateral) of linked neurons that adapt their point coordinates

(weights) according to the points of the mesh density function using competitive learning.

A main drawback of using SOM is that the size of the used grid is fixed which may cause

the appearance of badly shaped elements for irregular mesh density functions. Moreover,

strategies have to be adopted to ensure that the generated mesh fits the boundary and that

elements do not appear outside the boundary of non-convex geometries. In order for the

SOM to fit the boundary of the geometry domain Manevitz et al. (1997) suggest a interweaving

algorithm of 1D and 2D competitive learning between boundary neurons and interior neurons.

For non convex geometries, elements that are located out of the boundary are simply deleted.

Based on the interweaving algorithm, Nechaeva (2006) present an improved algorithm that is

parralelizable and adapts better on the boundary of non convex geometries.

To counter the drawback of the SOM’s fixed size grids Let-it-grow (LIG) neural networks

(Alfonzetti et al. (1996) , Triantafyllidis & Labridis (2002)) are suggested for mesh generation.

LIG networks start with an initial coarse grid and additional neurons are added in accordance

to a density function. During the first phase of the mesh generation algorithm using LIG

networks, using competitive learning like SOMs, a point (input pattern) is provided by the

density function, the BMU is located and is moved along with its connected neurons towards

the position of the point. Next, a signal counter that is assigned to the BMU is incremented

and the mesh is checked for topological validity. This is repeated for a specified number of

iterations. During the second phase, a new node is added in the midpoint of the edge that

contains the neuron with the maximum signal counter and the furthest neighborhood neuron.

During the learning process the Delaunay criterion can be used to adjust the connections

between the neurons. The algorithms iterate until a desirable number of nodes is achieved.

One main drawback of LIG networks lies in the computational complexity of finding the BMU

when the mesh includes a large number of neurons. Triantafyllidis & Labridis (2002) suggest

an initial Constrained Delaunay Triangulation applied to the boundary of the geometry to

form the initial grid upon which LIG competitive learning is applied. Moreover, algorithms

that reduce the computational complexity of finding the BMU are presented for the generation

of large meshes.

The Growing Neural Gas (GNG) network model also referred as Topology learning network

(Fritzke (1995), Martinetz & Schulten (1994)) is an unsupervised learning algorithm that uses

competitive learning but unlike SOM and LIG networks does not need an initial specification

on the number of neurons or prefixed connections; additional neurons are added and the

connections are adjusted as long as the algorithm keeps running. The algorithm starts by

adding an initial input pattern and generate neurons that are connected by an edge. The BMU

is moved closer to the input pattern as well as all the neurons connected to the BMU. Next,

the second BMU (SBMU) is determined. If the BMU and SBMU are connected the age of the

edge is set to zero otherwise the neurons are connected. The age of edges emanating from the

BMU is then incremented. If an edge has an age larger than a maximum age threshold then it

40

1.6. State of the art

is deleted. If the deletion of the edge results in neurons with no edges then they are deleted as

well. After a specified number of iterations, a neuron is inserted halfway between the edges of

the worst matching unit and the neighbor neurons. The process is iterated until a specified

condition is met, such as a maximum number of iterations. The method is proven to be able

to create Delaunay triangulations (Martinetz & Schulten (1994)) under a proper distribution

of training input patterns. A raw implementation of GNN to a point cloud however may not

result in a topologically valid mesh; after the termination of the algorithm, the set of neurons

and edges may not result in global triangle coverage. Therefore, to acquire a triangular mesh,

post processing steps are required like removing invalid edges that are not adjacent to two

triangular elements, face reconstruction, face reorientation, and fill potential cavities with

elements (Holdstein & Fischer (2008), Melato et al. (2007)).

Using supervised learning, in Yao et al. (2005), a NN is utilized to accommodate the meshing

process with 2-D quadrilateral elements using the advancing front method. The NN is used to

bypass heuristic ’if-then’ rules of the element extraction process that define a good quality

element. The coordinates of some boundary points are the input of the NN and the parameters

that are used to create good quality quadrilateral elements are the output. The construction of

training samples relies on manually determining the patterns of good quality quadrilateral

elements. The NN is able to extract good quality elements, however, it is restricted to be

trained with a limited number of boundary points as the complexity to find training patterns

increases with the increase in the number of boundary points that are included as the input to

the NN.

In Vinyals et al. (2015), pointer networks are introduced as a new neural architecture. The

networks consist of an encoding and a decoding Recursive NN (RNN). At each step of the

decoding process, a pointer selects a member of the input sequence as the output. Unlike

sequence-to-sequence models (Sutskever et al. (2014)) and Neural Turing Machines (Graves

et al. (2014)), the size of the output does not need to be fixed a priori. Pointer networks are

applied to explore the application of NNs for combinatorial problems where the size of the

output is variable and depends on the size of the input. The problem of Delaunay triangulation

is examined on a set of points using this architecture. The inputs are the coordinates of the

points and the output is a set that contains triplets of integers that correspond to the order

of the input and represent the vertices forming the triangles. As the network is not directly

addressed for mesh generation, the resulting meshes may have intersecting connections and

partial triangle coverage.

A recent addition for mesh generation with NNs using supervised learning is the MeshingNet

NN (Zhang et al. (2020)) that guides standard mesh software to generate meshes with an ele-

ment distribution that provides accurate solutions when solving Partial Differential Equations

(PDE) with FEM. The traditional approach to generate such a mesh involves an a posteriori

error estimation. An initial solution is calculated on a relatively coarse mesh and then auxiliary

problems are calculated on an element or a patch of elements to approximate local errors. The

local errors can be used in conjunction with the initial solution to approximate a global error

41

Introduction

that can indicate which regions of the mesh should either contain more elements (refinement)

or potentially contain less elements while not harming the accuracy of the solution. Mesh-

ingNet takes as input the coordinates of the geometry’s boundary (polygon), parameters of the

PDE and mean value coordinates of a point (parametric coordinates relative to the vertices

of a polygon) inside the geometry and outputs the local area upper bound around that point

that dictates the local element distribution. To train the network, the local area upper bound

is calculated based on the error on solving the PDE on a low density uniform element mesh

and a high density uniform element mesh. After the training, a low density uniform mesh

is generated for the given geometry and the vertices of the mesh are given as input to the

network. Based on the local area upper bound of the inner vertices, a mesher is called to refine

accordingly.

42

1.7. Research Objective

1.7 Research Objective

The goal of the present research work is to explore the potential of machine learning techniques

applied to a mesh generation and local mesh improvement framework. In particular, NNs that

are proven to be effective for problems that are complex and time consuming are integrated

in an automatic mesh generation and mesh improvement procedure. Despite the variety of

previous approaches in the use of machine learning frameworks for mesh generation and

improvement, none of these methods can currently replace the standard algorithms which

are mostly based on grid based, constrained Delaunay or advancing front methods. The

integration of machine learning in the field of mesh generation and mesh improvement

remains an area open to exploration with great potential. The main scope of this thesis is

therefore to explore the integration of NNs and study their accuracy when used as a main

component for: (i) robust mesh generation and (ii) mesh improvement. The intermediate

steps to accomplish this goal are categorized into the development of the following techniques:

1. Mesh generation for small contours

A novel data driven mesh generation framework using NNs is proposed for simplicial contours.

The contours have a maximum number of NC = 16 edges. The presented meshing scheme

uses NNs to generate triangular meshes of good quality on 2D contours for a target element

size. Each of the NNs is assigned to predict a step towards mesh generation. Three NNs are

used to predict the number of inner vertices that must be inserted inside the cavity of the

contour, their location, and how to connect vertices to form elements. The predictions of a

NN assigned to predict a step of the meshing scheme are pipelined to proceed to the next

step. The meshing scheme generates meshes, based on datasets of meshed contours that

are generated using a reference 2D CDT meshing algorithm. The accuracy of the scheme is

evaluated by comparing the quality of the mesh generated by the neural networks with that

generated by the reference mesher.

2. Local mesh improvement operations

The trained NNs of the aforementioned meshing scheme are then used to develop local mesh

improvement operations with the addition of NNs that reposition vertices of the mesh to

improve its quality. First, the mesh is partitioned into local mesh configurations. The local

mesh configurations contain low quality elements or edges that are either too short or long

according to user defined target edge lengths. The contours of the local mesh configurations

are extracted and a mesh improvement operation is applied to them. The number of the

contours edges is in accordance with the trained NNs of the meshing scheme. The developed

operations are validated and evaluated in terms of the quality outcome as part of local mesh

improvement schemes that are applied for static meshes and dynamic meshes where the

vertices move according to a prescribed equation.

43

Introduction

3. Large mesh generation

Finally to overcome the limitation of the meshing scheme’s application for a limited number

of contour edges, an extended scheme is presented for the generation of large size meshes.

The scheme is based on the application of all the trained NNs used in the aforementioned

procedures. Given a high resolution contour that represents the boundary of a geometry,

vertices are sampled to form a low resolution contour with a number of edges that conforms

to the trained NNs. The low resolution contour is meshed using the initial meshing scheme.

The mesh is then refined by inserting vertices on the elements edges. The inserted vertices

that belong to the edges of the low resolution contour are projected to the high resolution

contour. Additional vertices are added in the interior of the sub-contours that are formed

through this process and meshed using the NNs of the meshing scheme for small contours. To

further improve the quality of the reproduced mesh, the NNs that reposition the vertices are

called. The extended scheme is adapted to generate meshes with both a uniform and adaptive

scale element size.

1.8 Outline

Apart from the introduction, the rest of the thesis is organized as follows:

In chapter 2 the mesh generation scheme for small contours is described. The problem

statement along with the pre-processing steps of training data acquisition and feature transfor-

mation of the contour population are initially described. Subsequently, the methodology and

NN architecture for each step of the meshing scheme is provided. These steps include: (i) the

prediction on the number of inner vertices to be inserted inside the cavity of a contour based

on a target edge length, (ii) the prediction of the location of the inner vertices, and (iii) the

prediction of the connectivity to form the elements of the mesh. Because the training of the

NN that predicts the connectivity is based on sampling vertices inside a contour, an adaptive

sampling strategy is presented to reduce the population of training data. Chapter 3 contains

the results of applying the meshing scheme on random contours. The error metrics along

with the experimental parameters of the training population sizes, NN hyper-parameters,

and computational resources are presented. The accuracy of each step and that of the over-

all meshing scheme are evaluated. Results on the efficiency of the inner vertices adaptive

sampling strategy to reduce the training population are also presented.

Chapter 4 contains the overview of the mesh improvement operations that are developed

based on the trained NNs of the meshing scheme. These operations include: (i) reconnection,

(ii) vertex repositioning, (iii) surface control , and (iv) size control. A description of the vertex

repositioning and surface control NNs is also provided. In chapter 5, the mesh improvement

operations are included in local mesh improvement schemes to validate and evaluate their

efficiency. The training populations and NN hyper-parameters are provided.Tests are carried

out on static and dynamic meshes. The vertices of static meshes are perturbed and their edges

are randomly swapped to degrade their quality. The quality and angle distribution of the

44

1.8. Outline

elements before and after the application of the local mesh improvement scheme is presented.

The efficiency in dynamic meshes where the vertices move according to an analytical velocity

field is measured in terms of minimum quality of the mesh before and after the application of

the local mesh improvement scheme for each simulation time step.

In Chapter 6 the extension of the meshing scheme for the generation of larger meshes is de-

scribed. The algorithms for uniform and adaptive element scale size are presented. Examples

of meshed geometries with their corresponding qualities are also demonstrated.

Chapter 7 concludes the thesis by offering a final summary of results and conclusions. A

general outlook and objectives on future research are also provided.

45

2 Meshing of 2-D simplicial contours
using Neural Networks

2.1 Problem Statement

In this chapter, the problem of simplicial mesh generation for a target element size is studied

in bounded domains. The boundary of the domain ∂V , i.e contour, is composed of piecewise

linear segments forming the edges of the contour (Fig. 2.1). The continuous interior domain

V , i.e cavity, is then tessellated into Vi , i = 1,2, ...Nel triangular elements. To achieve a good

quality mesh composed of a target element edge size (target edge length), inner vertices are

strategically placed in the cavity of the contour. The final mesh is topologically valid if each

element edge is incident to only one or two elements and there are no element entanglements

(manifold condition).

�

∂�

(a)

∂�

��

��

(b)

Figure 2.1: (a) A set of points and edges defines a closed boundary ∂V (contour) with an
interior continuous domain V (cavity). (b) To form a good quality mesh consisting of simplicial
(triangular) elements whose edges respect a specific length, vertices are inserted in strategic
locations of the interior domain V and are connected resulting in the discretization of V
into Vi , i = 1,2, ...Nel triangular elements, where Nel is the number of elements such that
∪Nel

i=1Vi =V . The intersection of sub domains Vi ∩V j is at most an element edge; the tessellated
domain does not contain intersections between the elements of the mesh.

47

Chapter 2. Meshing of 2-D simplicial contours using Neural Networks

2.2 Algorithm overview

The machine learning methods that are used for data with a grid-like underlying structure (e.g

image processing) can’t be applied to a meshing framework. Unlike the grid structure of pixel-

based data, the underlying Euclidean space of possible contour inputs does not have such an

organized structure. Due to the lack of structure, a naive brute force method of providing as

input the unprocessed point coordinates of a random contour does not result in sufficiently

robust and accurate pattern recognition from the NNs (Yao et al. (2005)). The proposed scheme

is instead intentionally designed to ensure a high level of consistency among the data provided

to the NNs such as to ease NNs learning abilities while minimizing the amount of learning

data. To this end, the first stage of the presented algorithm consists of a pre-processing step

that applies a feature transformation to best fit a reference contour circumscribed in a unitary

circle. This transformation provides a scale and rotation invariant shape representation of the

contours. Furthermore, the contour vertex indexing has to follow a specific ordering rule, e.g

clockwise or anti-clockwise, to underline patterns of vertex connections that form the edges

of the contour.

To achieve a target element size, the target edge length is part of the inputs of the NNs of the

scheme. The accuracy of an approximation of the inner vertices from a reference mesher is

very crucial to the overall mesh output of the presented meshing scheme. The use of a grid

covering the contour is opted to estimate the location of the inner vertices. The cells of a grid

are associated with a distance function. The location of the inner vertices is stored in the form

of a distance function to these vertices. A local interpolation is performed around grid points

to maximize the accuracy of the approximation.

To avoid intersection between elements and opt for connections that lead to good quality

elements, a triangulation algorithm is used. The triangulation algorithm is based on the output

values of a NN. The output values of the NN represent the probability of connecting the face of

an element (edge) to another vertex of the mesh. The values are stored in a connection table

which is used by the triangulation algorithm to assess the connections and avoid element

entanglement.

48

2.2. Algorithm overview

��������

�������������������

������

�������

������

���l��

���
�l��

����	�

l�
l

���

���

���

��

��

�

��	������������

�����������������

���������

��’��’	�� ���
�����

Figure 2.2: The meshing scheme consists of four steps: (i) The initial contour with NC edges
is scaled and rotated with respect to a regular polygon with NC edges inscribed in a unitary
radius circle. (ii) N N1 is used to approximate the number of inner points NI , providing as
input the contour vertex coordinates PC and the requested target edge length ls . (iii) N N2

takes as input the vertex coordinates PC , patches of grid points from G , and the target edge
length ls . It outputs the scores SG for each grid point. Based on SG , NI grid points are selected
and interpolation is applied to a region around them. Next, to approximate the inner vertices
PI , the local minimum of the interpolated surface are found. (iv) N N3 takes as input the
contour vertices PC and the inner point vertices PI and outputs the entries of a connection
table A. The contour is meshed with a triangulation algorithm that meshes the cavity of
the contour based on A. After the termination of the algorithm, if a sub-contour with P

′
C

contour coordinates is created containing N
′
I inner vertices with P

′
I coordinates, N N3 is called

recursively to mesh the sub-contour, until no further sub-contour emerges.

The proposed meshing algorithm consists of the following steps (Fig. 2.2, Fig.2.3):

(i) To mesh a contour of NC edges for a user target element size of edge length l , first a

feature transformation is applied to it. The contour is scaled and rotated with respect to

a regular polygon of NC edges that is inscribed in a circle of unit radius. This transfor-

mation also changes l to ls = Sl , where S is the scaling factor of the transformation and

ls is the scaled target edge length.

(ii) The first neural network N N1 takes as input the transformed contour vertex coordinates

PC = {pi = (xi , yi), i = 1,2, ...NC } of the transformed contour and target edge length ls .

The output of N N1 is the number of vertices NI that should be inserted inside the cavity

of the contour, i.e the interior domain of the contour, to achieve the target edge length

ls .

49

Chapter 2. Meshing of 2-D simplicial contours using Neural Networks

(iii) The approximation of the coordinates of the inner vertices PI = {p I ,i , i = 1,2, .., NI } is

done with the help of a square grid G over the contour. The second neural network N N2

takes as input the coordinates of the contour PC , the target edge length ls , and patches

of G . A surface is defined over the grid whose local minima determine the most probable

locations of the inner vertices. N N2 outputs the values of the surface for the grid points

contained in the input patch. Based on these values, NI grid points are selected and

a regional interpolation follows. Finally, the local minima of the interpolated surface

reveals the approximated locations of PI .

(iv) The third neural network N N3 takes as input the vertex coordinates PC of the trans-

formed contour and the coordinates of the inner vertices PI and outputs the entries of a

connection table A. The connection table contains values representing the probability

of connecting the face of an element (edge) to one of the inner vertices p I ,i or with

another contour vertex pi . The mesh is created using a triangulation algorithm that is

based on the values of the connection table. Because the triangulation algorithm con-

nects contour edges with vertices, this may lead to the formation of inner sub-contours

that are not meshed. In this case, the triangulation algorithm is called recursively to

mesh the sub-contours.

Gmsh© is used as the reference mesher (see Appendix A.2.1). Gmsh© is a wrapper imple-

menting a Delaunay algorithm, written in C++, as presented in Lambrechts et al. (2008). The

NNs are implemented and trained using Pytorch (Paszke et al. (2017)). The triangulation

algorithm used to predict the connection of the mesh has been developed by the author and

implemented in Python.

l

��� ���������� ����
l�

Figure 2.3: From left to right: Steps followed to acquire the mesh of a contour. Step (i) of the
algorithm consists of a feature transformation applied to the contour that causes the scaling of
the target elements size of edge length l to ls . Next, following steps (ii) and (iii) of the proposed
meshing scheme, based on the prediction of N N1, one vertex is inserted in the interior of the
contour (cavity), and its location is predicted using N N2. The final step (iv) of the meshing
scheme uses N N3 and a triangulation algorithm to connect the edges of the contour with
inner vertices or contour vertices to create the mesh.

2.3 Feature transformation and training data acquisition

The connectivity of a mesh is not changed if a contour is rotated or scaled. The contour

to be meshed undergoes a feature transformation that assists pattern recognition by the

50

2.3. Feature transformation and training data acquisition

NNs involved in the scheme. The required scaling and rotation invariance is achieved by

applying the Procrustes superimposition on a reference contour (Gower (1975)). For a con-

tour with NC edges and P∗
C contour coordinates, a regular polygon is used with NC edges

inscribed in a unit circle as a reference. Procrustes superimposition imposes a linear trans-

formation to the contour points P∗
C = {p∗

i , i = 1,2, ...NC } so that they best conform to the

points of the reference contour QC = {q i , i = 1,2, ...NC } (Fig. 2.4). This pre-processing step

is essential to ensure consistency among the data provided to the NN. The centered Eu-

clidean norms ||P∗
C || =

∑NC

i=1 (p∗
i −p∗)2 and ||QC || =∑NC

i=1 (qi −q)2, where p∗ =∑NC

i=1 p∗
i /NC and

q =∑NC

i=1 qi /NC , scale the coordinates of P∗
C and QC to the same unit norm by applying the

transformation P∗
||C || = P∗

C /||P∗
C || and Q||C || =QC /||QC ||. Singular Value Decomposition (SVD)

is applied to A =Qᵀ
||C ||P

∗
||C ||. SVD decomposes A to A =UCV which yields the optimal rotation

matrix R =UV ᵀ and the scaling factor S = ||QC ||tr (C). The rotation matrix and the scaling

factor define the transformation F : P∗
C → PC , F (P∗

C) = PC = S(P∗
C /||P∗

C ||)R +q = SP∗
||C ||R +q .

Similarly, if P∗
I = {p∗

I ,i , i = 1,2, ...NI } are the coordinates of inner vertices of a contour cavity

and NI is the number of inner vertices, F (P∗
I) maps the vertices to their relative locations PI

inside the transformed contour.

�� ��

��

����

��

�� ��

��

����

��

��

��
��

��

��

��

����� ������

F

��
���

�

��
�

��
�

��
�

��
�

Figure 2.4: Procrustes superimposition on contours with 6 edges with requested element
size l . The reference contour is a regular hexagon inscribed in a unit circle with coordinates
Q = {qi , i = 1,2, ..,6}. The contour is scaled by a scale factor S, changing the target edge length
from l to ls = Sl , and rotated to best fit the point of the reference polygon to acquire the points
of the transformed contour PC = {pi , i = 1,2, ..,6}.

The training of the NNs is based on sets of contours with NC edges. To generate a mesh

contour of NC edges (Fig. 2.5), random points are chosen from a disc of unit radius that is

divided into NC sectors. A point is randomly selected from each sector and these points are

connected subsequently to form a random contour. To avoid the creation of a contour with

very short edges, the selection of points is excluded from the inner region of a circle with small

radius r .

51

Chapter 2. Meshing of 2-D simplicial contours using Neural Networks

�
��

��

��

�� ��

��

Figure 2.5: Example of creation of contour with 6 edges. A unit circle is divided into 6 sectors.
From each sector a point pi , i = {1, ..,6} is selected. To avoid the creation of contours with very
short edges, no points are selected from the inner region of a circle with small radius r .

After applying the Procrustes transformation to the contour sets, the contours are meshed

using Constrained Delaunay Triangulation (CDT) (Paul Chew (1989)) followed by a refinement

process for multiple-scaled target edge lengths ls . CDT generates an initial triangular mesh

with respect to the boundaries of a contour. Subsequently, inner vertices (Steiner points)

are inserted in the cavity of the contour and the connections are updated to comply with

the target edge length and satisfy quality criteria resulting in a graded mesh. Constraints are

added to avoid vertex insertion along the edges of the contour. The number of inner vertices

NI inserted and their coordinates PI are then used to train N N1 and N N2 respectively. The

information on the inner vertices also allows to compute the connection table A of the contour

that is used to train N N3 (Fig. 2.6).

��� ��

���

���

���

l�

����������������

��

�

Figure 2.6: The generated contours are meshed by applying CDT followed by refinement for
various target edge lengths ls producing a graded mesh. The number of inner vertices NI and
their coordinates PI from the graded mesh are used to train the N N1 and N N2. By knowing
the location PI of the inner vertices, the connection table A of the contour is calculated to be
included in the training dataset of N N3.

52

2.4. Prediction of the number of inner vertices

2.4 Prediction of the number of inner vertices

To predict the number NI of inner vertices N N1 is used. The NI inner vertices that are inserted

during the refinement process (after creating an initial mesh with CDT) inside a contour is

used to train N N1 which outputs an approximation N̂I . Based upon the approximated number

of inner vertices N̂I , the meshing scheme proceeds to approximate their location.

N N1 is a feedforward NN with multilayer perceptrons. For a contour with NC edges, N N1 takes

as input the contour vertex coordinates PC and target edge length ls (Fig. 2.7). The network

is trained to minimize the loss function L (NI , N̂I) = |NI − N̂I |, where NI is the number of

vertices that are inserted during the refinement process of the reference mesher and N̂I is the

number of vertices that are predicted by N N1 (Alg. 3).

Figure 2.7: N N1 architecture for the prediction of number of vertices. It takes as input the
contour coordinates PC = {pi = (xi , yi), i = 1,2, .., NC } and the scaled target edge length ls .
N N1 outputs the approximation N̂I of the number of inner vertices that should be inserted
inside the cavity of the contour to achieve the target edge length ls .

Algorithm 3: Training algorithm of N N1 for the prediction of number of inner vertices.

1 PC : Contour vertices coordinates

2 ls : Target edge length

3 NI : Number of inner vertices

4 N̂I : Estimated number of inner vertices

5 Ntr ai n : Number of training data population

6 Initialise weights WK of N N1

7 while required number of iterations is not reached do

8 foreach training example in D = {(P (n)
C , l (n)

s , N (n))
I)}Ntr ai n

n=1 do

9 Compute N̂ (n)
I using current parameters

10 Calculate loss function L (N (n)
I , N̂ (n)

I) = |N (n)
I − N̂ (n)

I | and ∂L
∂WK

11 Update WK using Adam learning rate optimization

12 end

13 end

53

Chapter 2. Meshing of 2-D simplicial contours using Neural Networks

2.5 Prediction of the inner vertices positions

To approximate the location of the inner vertices inside the cavity, a grid G of resolution

NG = nG ×nG is first defined inside a boundary box that includes all the vertices PC of the

contour. After acquiring the coordinates of the inner vertices PI from the graded reference

mesh, the distance between each grid point and inner vertex in the contour is calculated. Each

grid point is assigned a score, which is defined as the distance to the closest vertex. The scores

of the grid points are used to choose those that are closest to the inner vertices (Fig. 2.8a).

First, the grid point with the lowest score is selected. Next, interpolation is applied to find the

scores on a local domain of the selected grid point to determine the local minimum (Fig. 2.8b).

The minimum is the approximation of an inner vertex. The number of grid points included

in the local domain depends on the target edge length ls . Finally, the grid points around the

selected grid point are excluded. The same procedure is applied for the next grid point with

the lowest score to acquire the next approximation of an inner vertex (Fig. 2.8c).

N N2 is used to predict the scores of the grid points. The use of the grid allows the adaption

of the score of the grid points so that the predictions of N N2 lead to valid triangulations and

adhere to the target edge length. To avoid the predictions of vertices that are located outside

the contour, the score of the grid points that are located near or outside the boundary of the

contour is penalized. After choosing a grid point with minimum score, the grid points around

it are restricted from being selected for the approximation of the subsequent inner vertex,

to ensure that the predictions complied with the desired target edge length. This procedure

avoids predictions of inner vertices that are too close due to inaccuracy of the scores by N N2.

(a) (b) (c)

Figure 2.8: Example of the N N2 approximation of two inner vertices p I ,1 and p I ,2 (NI = 2) for
a contour with 8 edges. (a) Based on the scores SG , the grid points p̂G1 and p̂G2 are selected as
the first two grid points with the minimum score. (b) Then, interpolation is applied to a local
region around them. Here, interpolation is applied to find the scores on a region around p̂G1 .
This region includes the grid points around p̂G1 . The number of grid points included in the
region depends on the target edge length ls . By locating the local minimum of the interpolated
surface, the approximation p̂ I ,1 of p I ,1 is acquired. (c) The interpolation procedure is also
applied to p̂G2 to obtain p̂ I ,2.

54

2.5. Prediction of the inner vertices positions

N N2 is a feedforward NN with multilayer perceptrons that takes as input the contour vertex

coordinates PC , the coordinates of the grid points PGk contained in each patch, and the target

edge length ls (Fig. 2.9). It outputs the scores si ,g for the points contained in the patch. The

objective loss function is the mean squared error L (si , j , ŝi , j) = ∑
i , j (si , j − ŝi , j)2/NGk , where

si , j is the calculated score of the grid point pGi , j , ŝi , j is the score that the NN outputs, and NGk

is the number of grid points included in the patch (Alg. 4).

Figure 2.9: The grid G defined over the contour is divided into Np patches Gk , k = {1,2..Np }
(here Np = 4). N N2 takes as input the contour coordinates PC = {pi , i = 1,2, .., NC }, the co-
ordinates of the NGk grid points PGk = {pG(i , j) : (i , j) = {1,2, .., a}× {1,2, .., a}, a2 = NGk } that are
included inside a patch, and the target edge length ls . It outputs the scores ŝi , j that correspond
to each grid point inside the patch.

Algorithm 4: Training algorithm of N N2 for the prediction of location of inner vertices.

1 PC : Contour vertices coordinates

2 ls : Target edge length

3 PGk : Coordinates of grid points contained in the patch

4 SGk : Scores of grid points contained in the patch

5 ŜGk : Estimated scores of grid points contained in the patch

6 Ntr ai n : Number of training data population

7 Initialize weights WK of N N2

8 while required number of iterations is not reached do

9 foreach training example in D = {(P (n)
C , l (n)

s ,P (n)
Gk

,S(n)
Gk

)}Ntr ai n
n=1 do

10 Compute Ŝ(n)
Gk

using current parameters

11 Calculate loss function

L (S(n)
Gk

, Ŝ(n)
Gk

) = ||S(n)
Gk

− Ŝ(n)
Gk

||22/NGk =
∑

i , j (s(n)
i , j − ŝ(n)

i , j)2/NGk and ∂L
∂WK

12 Update WK using Adam learning rate optimization

13 end

14 end

55

Chapter 2. Meshing of 2-D simplicial contours using Neural Networks

2.6 Prediction of the connectivity

2.6.1 Triangulation algorithm

The final step of the meshing algorithm is to find the most probable connections between a

face (edge) of the contour and a vertex, that would lead to a good quality mesh. The connection

table A is a tool that lists the different probabilities for each contour edge to be connected with

either a contour vertex or an inner vertex. Based on the values of A, a triangulation algorithm

is used to mesh the contour.

Given a facet Fi (edge in 2-D) of a contour, the probability P (Fi , v j) of connecting this facet

to a vertex v j to form an element must be determined. For each entry P (Fi , v j), starting with

the contour, the facet Fi is connected to a vertex v j and then the remaining region is meshed

using CDT. The element quality of the resulted mesh is measured using the following metric:

qel =
4Aelp
3l 2

r ms

(2.1)

where 0 < qel ≤ 1 , Ael is the area of the triangular element and lr ms =
√

1
3

∑3
i=1 l 2

i , where

li , i = 1,2,3 are the edge lengths of the triangular element. The lowest and mean element

quality, qwor st and qmean , respectively, are calculated among the mesh elements, and stored as

the probability P (Fi , v j) = (qwor st , qmean). qmean is used to differentiate between two vertices

of the same lowest quality qwor st . If the facet Fi to a vertex v j forms an elements that is

located outside the interior domain of a contour, then the probability is omitted to zero. Such

elements are spotted by calculating their signed area. Due to the anti-clock wise ordering of

the contour vertices, the signed area of such an invalid element is negative.

The connection table A contains the entries ai , j = P (Fi , v j), where ai , j is the probability

that the Fi (i th row) facet of the contour connects with the v j (j th column) vertex; v j being

either a contour vertex or an inner vertex. The connection table is then ordered by increasing

quality; first the facets are ordered (rows) and then the vertices (columns). Given an ordered

connectivity table, a region is meshed by the following procedure (Fig. 2.10): the entry with

the highest probability is first chosen. If two entries having the highest probability had the

same value of qwor st , the one with the highest qmean is favored. This entry indicates which

facet is to be connected to which vertex. The row containing the entries for the former facet is

then eliminated.

After a facet has been connected, a element is formed that contains vertices and facets which

may not be available for further connection. In such a case, the vertices and facets is considered

to be locked and are included in a set of locked vertices Vlocked and a facets are tagged as

locked Flocked (Fig. 2.11) (Alg. 5, Lines 23-30). The connection of facets in Flocked is bypassed

by removing the row from the connection table (Alg. 5, Line 27). The connections of facets

with vertices included in Vlocked is also bypassed (Alg. 5, Lines 14-16) (for more details on

locking mechanism, see Appendix A.3.1). Connections that crossed existing mesh elements

56

2.6. Prediction of the connectivity

��

��

��

��

��

��

��

��

��

��

��

��

������

��������
��

�� �� �� �� ��

�������

�������

�������

�������

�������

�������

� � �
� � �
� � �
� � �

� �
��

����
����
����

���� ����
���� ����
���� ����

����
����

����
����
��������

����
���� ����

����
����

Figure 2.10: The cavity is meshed according to the entries of the connection table. Here, the
connection table contains the values of qwor st . Each facet (row) is connected with the vertex
(column) that has the maximum value of qwor st . First, each row is ordered by increasing
quality. Subsequently, the columns are ordered with the same criteria. Once the connection
table is sorted, the meshing algorithm is called. When computing the connection table, the
connection entry of a facet with a vertex that forms a element outside the cavity of contour (e.g
{p2, p3, p4}) is omitted to zero by computing the signed area of the element. Valid elements
have a positive signed area, while invalid have a negative signed area. In the depicted example,
the triangulation algorithm starts by connecting the facet {p1,p2} with the vertex p3 to create
the element {p1,p2,p3}. This connection is done with accordance to the higher value of the row
of the connection table (i.e 0.66). The creation of {p1,p2,p3} locks the vertex {p2} for any further
connections. Since {p2,p3} is another contour facet included in the formed element, {p2,p3}
is tagged as locked (Flocked). This removes the row {p2,p3} and the algorithm proceeds to
connect facet {p2,p3} with p6. In a similar fashion, all the facets of the contour are connected
with the vertex that contains the highest entry to form the mesh incrementally, one element
after the other.

are naturally avoided by assigning a group id to separate sub-cavities (Alg. 5, Lines 19-23)

and enforcing connections among facets and vertices having the same group id (Alg. 5, Lines

14-16) (see Appendix A.3.2 for spotting sub-contours). This procedure is repeated for the next

highest entries.

57

Chapter 2. Meshing of 2-D simplicial contours using Neural Networks

��

����

��

�� ��

��

(a)

��

����

��

�� ��

��

(b)

��

����

��

�� ��

��

(c)

��

����

��

�� ��

��

(d)

��

����

��

�� ��

��

(e)

Figure 2.11: (a)-(e) Example of meshing a 2-D cavity while the sets Vlocked and Flocked are
updated. (a) First, the facet (edge) {p3,p4} is connected to vertex p5. The creation of the
element {p3,p4,p5} locks vertex p4, as it can no longer be connected with another facet. The
facet {p4, p5} is also locked as it can no longer connect with another vertex. Vl ocked now
contains vertex p4 and {p4, p5} is tagged as Flocked . (b) Facet {p2,p3} connects with vertex p6

creating the element {p2,p3,p6}. (c) The creation of element {p2,p3,p6} causes the apparition
of element {p3,p5,p6}. Vl ocked will be updated with vertices p3 and p5 and facet {p5, p6} will
be tagged as Flocked . (d) By connecting the facet {p1,p2} with vertex p7 the element {p1,p2,p7}
locks vertex p1 and tags facet {p1, p7} as Fl ocked . (e) The creation of element {p1,p2,p7} causes
the apparition of element {p2,p6,p7} that locks vertices p2 and p6. All vertices are now included
in Vl ocked (termination of the algorithm)

At the end of the procedure vertices that remain open for connection may cause the appear-

ance of sub-cavities. If the sub-cavity contains only a single element (Fig. 2.12a), this element

is merely added to the mesh. Otherwise, the sub-cavity forms a sub-contour that may also

contain inner vertices (Fig. 2.12b, 2.12c). In such a case, the algorithm is called recursively

(Alg. 5, Lines 32-37).

58

2.6. Prediction of the connectivity

��

��

�� ��

��

��

(a)

��

��

��

��

��
��

��

��

��

���

(b)

(c)

Figure 2.12: (a) Example of the appearance of a sub-cavity with a single element. After a
first iteration of the triangulation algorithm the facets of the contour are connected with the
vertex that corresponds to the highest entry of the connection table. This also causes the
appearance of the sub-cavity containing the element {p2,p4,p6}. The element is added to the
list of elements to terminate the triangulation process. (b) Example of sub-cavity that forms a
contour. After a first iteration of the triangulation algorithm, once all facets of the contour are
connected to the vertex that corresponds to the highest entry, the contour {p2,p4,p6,p8,p10} is
formed. In this case, the triangulation algorithm is called recursively to mesh the new contour.
(c) Example of sub-cavity that forms a contour that contains inner points. After a first iteration
of the triangulation algorithm, the contour {p0,p2,p4,p6,p8,p10} is formed that contains the
inner points p I ,1 and p I ,2. Similarly, the triangulation algorithm is called recursively to mesh
the contour with the inner points.

59

Chapter 2. Meshing of 2-D simplicial contours using Neural Networks

Algorithm 5: Triangulation algorithm used for connecting facets of the contour with inner

vertices. The algorithm is coded in Python.

1 Aor der ed : ordered connection table row-wise and then column-wise

2 F : set of contour edges

3 V : set of contour vertices and inner vertices

4 Vopen : set of vertices open for connections

5 Vlocked : set of locked vertices

6 Flocked : locked facets

7 Mesh (F,V,Aor der ed):

8 foreach facet Fi (row) in Aor der ed do

9 do

10 Connect Fi with v j (column) to form element ei , j

11 if every vertex v in ei , j doesn’t have the same group id then

12 proceed to connect Fi with next v j

13 end

14 if there is a vertex v in ei , j that belongs to Vlocked then

15 proceed to connect with next v j

16 end

17 validate ei , j

18 while ei , j is not validated;

19 if ei , j divides cavity to sub-cavities then

20 foreach subcavity do

21 assign same group id to vertices of sub-cavity

22 end

23 end

24 if a vertex v of ei , j is locked contains another contour facet then

25 insert v in Vl ocked

26 if element ei , j contains another contour facet Fk then

27 remove facet Fk (kth row) (tagged as Flocked) from Aor der ed

28 end

29 end

30 end

31 Vopen=V \ Vl ocked

32 if Vopen is not empty then

33 CheckForSubContours(Vopen)

34 foreach Sub-contour with edges F
′

and set of vertices V
′

do

35 Mesh(F
′
, V

′
,A

′
or der ed)

36 end

37 end

The connection tables A of the training contour datasets are calculated and then used to train

N N3. N N3 outputs the entries of the connection table A of dimension dA = NC × (NC +NI),

60

2.6. Prediction of the connectivity

where NC is the number of edges of the contour and NI is the number of inner vertices. N N3

takes as input the coordinates of the contour PC and the coordinates of the inner vertices

PI . It first applies convolution and pooling to the coordinates of the contour. The flattened

results of pooling along with the coordinates of the inner vertices are then connected with

multilayer perceptrons (Fig. 2.13). The network is trained to minimize the loss function

L (ai , j , âi , j) =∑
i , j (ai , j − âi , j)2/NdA , where ai , j is the real value of the entry to the connection

table A, âi , j is the entry that N N3 predicts, and NdA = NC · (NC +NI) (Alg. 6).

Figure 2.13: N N3 starts by applying 2-D convolution to the coordinates PC that are ordered in
a circular way. It proceeds by applying a pool function to the convoluted result. The flattened
outcome of pooling along with the coordinates of the inner vertices PI are then connected
with multilayer perceptrons. It outputs the entries ai , j of the connection table.

Algorithm 6: Training algorithm of N N3 for the prediction of connectivity.

1 PC : Contour vertices coordinates

2 PI : Inner vertices coordinates

3 A: Connection table

4 Â: Estimated connection table

5 Ntr ai n : Number of training data population

6 NdA : Dimension of flattened connection table

7 Initialize weights WK of N N3

8 while required number of iterations is not reached do

9 foreach training example in D = {(P (n)
C ,P (n)

I , A(n))}i , i = 1, .., Ntr ai n do

10 Compute ˆA(n) using current parameters

11 Calculate loss function

L (A(n), Â(n)) = ||A(n) − Â(n)||22/NdA =
∑

i , j (a(n)
i , j − â(n)

i , j)2/NdA and ∂L
∂WK

12 Update WK using Adam learning rate optimization

13 end

14 end

61

Chapter 2. Meshing of 2-D simplicial contours using Neural Networks

2.6.2 Grid sampling augmentation of the inner vertices

N N3 takes as input the contour vertices coordinates PC and the NI inner vertices coordinates

PI . For each contour, the NI inner vertices that are inserted during the refinement process of

the reference mesher are used along with sets of NI vertices that are sampled randomly inside

the contour. This process of data augmentation is mandatory for the meshing scheme as the

vertices provided as input to N N3 are an approximation of the inner vertices inserted by the

reference mesher. Thus, to increase the efficacy of learning, N N3 must be trained for multiple

NI inner vertices and not only the ones inserted by the reference mesher. The output of N N3

depends on the order in which the NI vertices are inserted. The structure of the connection

table is column-wise dependent on the order of the input inner vertices of N N3. As a result,

small perturbations of the inner vertices may have a great impact on the mesh connectivity.

After considering various ordering methods (angular, coordinates), it is found that none of

them are invariant to perturbations of the inner vertices coordinates. Therefore, a sampling

process is chosen that selects NI vertices randomly from the interior of a contour cavity with

a target edge length rule (Fig. 2.14). The sampled inner vertices along with the coordinates

of the contour are included in the training set of N N3 without applying any ordering rule to

them. This choice improves consistency which facilitates the learning process of N N3, as the

approximation of the entries of the connection table are now based on the actual coordinates

of the inner vertices, and do not rely on a specific ordering rule.

Figure 2.14: Example of sampling inner vertices for the training of N N3 for NI = 3. From a grid
of inner vertices, p I ,1 is randomly chosen and all the vertices contained at a distance of 0.1ls

from it are excluded from being selected later on. p I ,2 is then selected, imposing the same
exclusion zone, and finally p I ,3. All the vertices from the grid are at a distance of 0.1ls from the
edges of the contour.

2.6.2.1 Adaptive sampling strategy

Although the process of random sampling facilitates the learning of N N3, it causes the ac-

cumulation of large training populations. In an attempt to reduce the training populations

and maintain or improve the accuracy of the connectivity predictions, an alternative method

of sampling is also examined. A NN, N N∗
3 , is trained that takes as input the coordinates

PC of the contour, the coordinates of an inner vertices p I , j , where j = 1,2..NI , and an edge

index i , where i = {1,2,3...NC }. N N∗
3 outputs the entries of the connection table of the i th

62

2.6. Prediction of the connectivity

row, i.e. the quality values of the mesh that correspond to connections with the i th edge of

the contour. Therefore, the predictions of the full connection table are obtained by calling

N N∗
3 for i = 1,2, .., NC . On a grid G , for every vertex gi , j ∈G that is located inside a contour,

the worst quality of the mesh is calculated, given that the vertex is connected with an edge

(Fig. 2.15a). In the process, a quality surface Si is defined, where i = {1,2, ..., NC }, for every

edge of a contour (Fig. 2.15b). Each quality surface Si is smoothed to avoid the appearance

of sudden peaks while maintaining the maximum values (Fig. 2.15c). Vertices are sampled

from Si according to the curvature loss criteria, i.e. more vertices are sampled from regions

where the rate of change of curvature is high (Fig. 2.15d). The process of sampling of vertices

from the smoothed quality surface using the curvature loss criteria is more efficient than that

from the un-smoothed surface. This is because peaks with a sudden change in curvature lead

to a sampling set of vertices with higher reconstruction loss as compared to that from the

smoothed surface. Thus, the smoothing process assists in the training of N N∗
3 by providing a

set of sampled vertices that provides more representative information on the quality surface

within a contour.

(a) (b)

(c) (d)

Figure 2.15: (a) For the highlighted edge, the worst mesh quality is calculated by connecting
this edge with each point of the grid. (b) By doing so, a quality surface is defined for this edge.
(c) Curves depicting the quality values q along the original quality surface and the smoothed
quality surface for a fixed y-value. By smoothing, sudden peaks are eradicated. (d) Vertices are
sampled from the smoothed surface according to curvature criteria; the higher the curvature
the more vertices are sampled.

Similarly, for multiple inner vertices, given the position of NI − 1 inner vertices, a quality

surface is defined by calculating the minimum quality of each grid vertex from G . Each surface

63

Chapter 2. Meshing of 2-D simplicial contours using Neural Networks

Sn,i , where n = 1,2.., NI and i = 1,2,3...NC , is smoothed and vertices are sampled by using the

curvature loss criteria to form sets of inner vertices Vn,i (Fig. 2.16). From each set Vn,i , an

inner vertex is sampled. An additional criterion is imposed so that the sampled vertices must

be at a distance of at least 0.3ls from one another. The sampled vertices are used to train N N∗
3 .

(a)

(b)

(c)

Figure 2.16: (a) Example of adaptive sampling for ith edge (highlighted) of a contour with
10 edges and two inner vertices. (b) Surface S1,i is defined by computing the minimum
quality of each grid vertex taking into account p I ,1 as a second point. By smoothing S1,i and
implementing the curvature loss criteria, vertices are sampled from the surface to form the set
of inner vertices V1,i . (c) In a similar fashion the surface S2,i is defined and vertices from it are
sampled to form the set V2,i . To train the NN, a pair of vertices with one vertex belonging to
V1,i and another belonging to V2,i is sampled. The collected vertices must be at a distance of
at least 0.3ls from each other.

64

3 Results and validation of 2-D simpli-
cial contour Meshing using Neural
Networks
3.1 Experimental Conditions

3.1.1 Error metrics

Experiments are conducted in testing populations of random contours. The predictive approx-

imation on the number of vertices using N N1 is evaluated by calculating the mean absolute

error between the predictive value and the real value. For a contour, the predictive approxima-

tion of the location of the inner points (N N2) and the connectivity (N N3, N N∗
3) are evaluated

in terms of quality of the generated mesh using the output values of the respective NN. Two

different mesh qualities are calculated, the worst quality q̂wor st = mini∈{1,..,Nel } q (i)
el and the

mean quality q̂mean =∑Nel

i q (i)
el /Nel , where Nel is the number of total elements and qel is the

quality metric as defined in section 2.5.1. The contour is then meshed using the parameters

acquired by applying the reference algorithm of CDT followed by refinement to calculate

the values qwor st and qmean . The relative differences ewor st = (qwor st − q̂wor st)/qwor st and

emean = (qmean−q̂mean)/qmean define the worst and mean triangulation error, respectively, for

a contour. ewor st and emean are used as error metrics when approximating with N N2, N N3 and

N N∗
3 . For a population of contours with NC edges and NI inner vertices the expected values

E(ewor st) and E(emean) are estimated by calculating the averages ewor st =∑nNC ,I ewor st /nNC ,I

and emean =∑nNC ,I emean/nNC ,I
, where nNC ,I

is the number of meshed contours participating

in the test population.

3.1.2 Training dataset populations

Contour training datasets are populations of contours for Nc = {4,6,8,10,12,14,16} edges. The

population of contours that are generated, are increased at a nearly exponential rate with

the number of edges (Fig. 3.1); it is observed that this increase is necessary to retain a level

of accuracy from the NNs involved in the meshing scheme so that it provides good quality

meshes.

The populations of contours used for the training of N N1 (Fig. 3.1) are divided into groups

65

Chapter 3. Results and validation of 2-D simplicial contour Meshing using Neural Networks

Nc

6000 12000
24000

48000

95000

190000

380000

0

50000

100000

150000

200000

250000

300000

350000

400000

4 6 8 10 12 14 16

C
o

n
to

u
r

p
o

p
u

la
ti

o
n

Figure 3.1: Histogram of contour populations with NC edges that are used for training. The
population of 6000 contours with 4 edges is found to be an adequate training set for acquiring
satisfactory accuracy from the N N s involved in the meshing procedure. To retain or acquire a
level accuracy needed for good quality meshing, for contours with 6 and 8 edges a training
population of approximately 12000 and 24000 contours, respectively, is required; this leads to
the choice of generating contour populations used for training that increase exponentially
with the number of edges.

with respect to the number of inner vertices inserted by the reference mesher during the

refinement process for target edge lengths ranging from 0.2 to 1 (Fig. 3.2). Each of these groups

is then used to train N N2 and N N3.

The training data were generated in a machine with 64 GB memory and 2 CPUs Intel© Xeon©

E5-2660v2 with 2.2 GHz and 10 cores and a machine with 128GB memory with the same 2

CPUs.

3.1.3 N N i hyperparameters

N N1 is trained for 3000 epochs with a learning rate of η= 10−4 and a weight decay of λ= 10−1

with a batch size of nbatch = 512. There are 3 layers with batch normalization and the ReLU

activation function for the first 2 layers with 4 ·NC hidden nodes.

For the training of N N2, the grid G used for the approximation of the inner vertices, is divided

into Np patches Gk ,k = {1,2..Np }. N N2 is trained for 5000 epochs with a learning rate of

η= 10−4 and a weight decay of λ= 10−2 with a batch size of nbatch = 512. There are 3 layers

with batch normalization and the ReLU activation function for the first 2 layers. The first two

layers contain 2 ·NC +NGk hidden nodes and the output layer contains NGk nodes, where NGk

is the number of grid points contained in the patch Gk .

The populations of contours used for training N N3 are the same as the ones used for the

66

3.1. Experimental Conditions

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7 8 9 10 11

C
o

n
to

u
r

p
o

p
u

la
ti

o
n

NINI

(a)

C
o

n
to

u
r

p
o

p
u

la
ti

o
n

NI

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(b)

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C
o

n
to

u
r

p
o

p
u

la
ti

o
n

NI

(c)

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
o

n
to

u
r

p
o

p
u

la
ti

o
n

NI

(d)

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

C
o

n
to

u
r

p
o

p
u

la
ti

o
n

NI

(e)

0

2000

4000

6000

8000

10000

12000

14000

16000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

C
o

n
to

u
r

p
o

p
u

la
ti

o
n

NI

(f)

0

5000

10000

15000

20000

25000

30000

35000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

C
o

n
to

u
r

p
o

p
u

la
ti

o
n

NI

(g)

Figure 3.2: (a)-(g) In alphabetical order, the histogram of the contour populations for NC =
(4,6,8,10,12,14,16) number of edges (Fig. 3.1) divided into groups according to the number
of vertices NI that are inserted by the reference mesher. Each of these groups is used to train
N N2 and N N3.

67

Chapter 3. Results and validation of 2-D simplicial contour Meshing using Neural Networks

training of N N2 (section (3.1.2)) (Fig. 3.2). N N3 is trained for 5000 epochs with a learning rate

of η= 10−4 and a weight decay of λ= 10−1 with a batch size of nbatch = 512. The convoluted

layer contains NC number of filters. The convolution is done using a stride of 2 and filter size

2×2. Max pooling is then applied with stride 2 with 2×1 filters to the convoluted result. There

are 3 fully connected layers with batch normalization and the tanh activation function for the

first 2 layers. The number of hidden nodes for the first two layers is 2 ·NC · (NC +NI). The

output layer contains NC · (NC +NI) nodes which is the flattened dimension of the connection

table.

3.2 Results

3.2.1 Predictions of the number of inner vertices

The prediction of the number of inner vertices from N N1 is evaluated on groups of random

contours with NC edges. The confidence level and confidence interval of each test population

is 95% and 5%, respectively, of each training population as presented in section (3.1.2) (Fig.

3.1). The random contours are meshed by applying CDT with refinement for target edge

lengths ranging from 0.2 to 1. The mean absolute error e is examined. The mean absolute

error is defined as e = |NI − N̂I | =∑nNC

i=1 (N (i)
I − N̂ (i)

I)/nNC
, where N̂I = (N̂ (1)

I , ..., N̂
(nNC)
I) are the

approximations of N N1 and nNC is the number of contours with NC edges in the test popu-

lation. By examining e it is observed that the error increases with the number of edges (Fig.

3.3). For example, for a target edge length of ls = 0.2, the mean absolute error e for the contour

with 16 edges is approximately 2.3 times higher than that for the contour with 4 edges. This is

attributed to the fact that there is a much larger variation in the number of vertices NI being

inserted by the reference mesher during refinement for the contour population of 16 edges

than the contour population with 4 edges. The standard deviation of NI points being inserted

is std16 = 5.2 and std4 = 1.4 for the contour populations with 16 and 4 edges, respectively.

Moreover, in every population of contours with NC edges, the error is higher for smaller target

edge lengths ls . As explained before, this increase in the error is due to the larger variation of

NI points being inserted by the refence mesher during refinement inside a contour population

with NC edge length, as the target edge length gets smaller; e.g. for the contour population

of 14 edges the mean absolute error e for ls = 0.2 and ls = 1 decreases from 1.3 to 0.2 and the

standard deviation of NI for these target edge lengths decreases by 12%. Despite the increase

in the mean absolute error e with increase in the number of contour edges and decrease in

the target edge length, the predictions of N N1 are considered accurate enough to be used for

meshing purposes (Fig. 3.4); e.g. for a random contour of 16 edges the number of vertices

of the graded reference mesh and the number of vertices predicted by N N1 differ by one for

target edge lengths ls = {0.2,0.3,0.4} and is the same as the target edge length increased (Fig.

3.4b).

68

3.2. Results

Figure 3.3: The mean absolute error e as a function of target edge lengths ls ranging from

0.2 to 1. The mean absolute error is defined as e = ∣∣NI − N̂I
∣∣ = ∑n

i=1(N (i)
I − N̂ (i)

I)/n, where

N̂I = (N̂ (1)
I , ..., N̂

(nNC)
I) are the number of vertices predicted by the NN, NI = (N (1)

I , ..., N
(nNC)
I)

are the number of vertices inserted from the reference mesher during refinement and nNC

the number of contours with NC edges in the test population. The mean absolute error e
increases with increase in the number of contour edges NC . For example, for a target edge
length ls = 0.2, e for the population of contours with 16 edges is approximately 2.3 times higher
than the mean error for the population of contours with 4 edges due to the larger variation
of number of inner vertices NI that the reference mesher inserts for the populations of 16
edges. e also increases with the decrease of the target edge length ls which is also due to the
fact that the variation on the number of inner vertices NI inserted by the reference mesher
during refinement is larger for smaller target edge lengths. For instance, for the population of
contours with 14 edges and the target edge lengths ls = 0.2 and ls = 1, e decreases from 1.3 for
0.2 respectively, while the standard deviation of inner vertices NI for these target edge lengths
decreases by 12%.

69

Chapter 3. Results and validation of 2-D simplicial contour Meshing using Neural Networks

(a) (b)

Figure 3.4: The real number of inner vertices NI and the predicted number of inner vertices N̂I

as a function of the target edge length for a random contour with 12 edges (a) and a random
contour of with 16 edges (b). For the contour with 12 edges the NI and N̂I differ by one point
for ls = 0.2, two points for ls = 0.3 and are the same for the rest of the target edge lengths.
For the contour with 16 edges, NI and N̂I differ by one point for the target edge lengths
ls = {0.2,0.3,0.4} and are same for the rest of the values ls . It can be concluded that N N1 is
appropriate to use for meshing purposes.

3.2.2 Prediction of the inner vertices positions

The grid used for the approximation of the inner vertices PI has a bounding box [−1.2,1.2]×
[−1.2,1.2] which includes all the vertices PC of the contours. The resolution of the grid affects

the accuracy of the predictions. To find an appropriate resolution, the accuracy of N N2

for the prediction of one inner vertex p I ,1 on n = 100 random contours is examined. The

mean squared error of the euclidean distance edi st is examined for grid resolutions of of

10× 10, 20× 20, and 40× 40. The mean squared error is defined as edi st = ||p I ,1 − p̂ I ,1|| =∑n
i (p(i)

I ,1 − p̂(i)
I ,1)2/n, where p̂ I ,1 = (p̂(1)

I ,1, ..., p̂(n)
I ,1) are the approximations of the inner vertex for

n contours with NC edges. edi st is calculated for the aforementioned grid resolutions . By

examining the convergence rate of edi st , it is concluded that for the case studies a cell size

of 20×20 is adequate to get accurate results (Fig. 3.5). This resolution also ensures that the

distance between successive grid points is 33% smaller than the smallest target edge length

ls = 0.2. Once a grid point with minimum score is selected, all the grid points contained at a

distance of 0.2ls participate in the interpolation process. The scores of all the grid points that

are contained within a distance of 0.1ls from the edges of the contour are penalized. Finally,

all the grid points contained closer than a distance of 0.1ls from a chosen grid point with

minimum score are excluded as possible candidates for approximation of the next inner vertex.

The grid is divided into 100 patches. Each of the patches contain 4 grid points.

To measure the triangulation error caused by the approximations of N N2 the averages errors

ewor st and emean are measured between the meshes generated using the approximated inner

vertices P̂I ,i , where i = {1,2..., NI }, and the meshes generated using the inner vertices PI ,i that

are inserted from the reference mesher during refinement (Fig. 3.6). All the tests are conducted

on random contours with a sample size of 95% confidence level and 5% confidence interval of

each training group presented in section (3.1.2) (Fig. 3.2).

The triangulation error in the prediction of inner vertices is due to two factors: (1) The resulting

70

3.2. Results

Figure 3.5: The mean squared error of euclidean distance edi st as a function of grid resolutions
of 10×10, 20×20, and 40×40. The mean square error is defined as edi st = ||p I ,1 − p̂ I ,1|| =∑n

i (p(i)
I ,1 − p̂(i)

I ,1)2/n, where p I ,1 = (p(1)
I ,1, ..., p(n)

I ,1) are the real locations of the inner vertex inserted

by the reference mesher during refinement and p̂ I ,1 = (p̂(1)
I ,1, ..., p̂(n)

I ,1) are the predictions of the
inner vertex for n = 100 contours with NC edges. For every contour population, the error
reaches convergence by using a grid with resolution 20×20.

mesh with the predicted inner vertices may have the same connectivities as the mesh with

the inner vertices inserted by the reference mesher during refinement. In this case, the

approximated inner vertices form triangular elements that are of worse quality due to their

displacement (Fig. 3.7). (2) Applying CDT with the approximated inner vertices may result in

a mesh with different connectivities altogether, where worse quality elements appear. The

average error of ewor st increases with the number of inner vertices NI , reaching a maximum

of 23.41% for the case of contours with 12 edges and 14 inner vertices (Fig. 3.6e). This

increase demonstrates how the complexity of a mesh affects the approximations of N N2; the

displacement error accumulated by the prediction of the inner vertices increases with the

number of inner vertices, which in turn causes the increase in ewor st . This effect is mostly

noticeable in the case of contours with 6 edges with one inner vertex and 2 inner vertices

(Fig. 3.6b). Merely by the addition of one inner vertex, ewor st is increased from 1.6% to 10.5%.

A few mild fluctuations in ewor st within the populations of NC edges are explained by the

choice of random contours that belong to the test dataset (e.g. for the case of contours with 14

edges with 3 and 4 inner vertices) (Fig. 3.6a) or because there is an increase in the training

population as the number of inner vertices is increased (e.g. for the case of contours with 14

edges containing 8 and 10 inner vertices) (Fig. 3.6f). In addition, it is observed that emean ,

which has a maximum of 19.7% in the case of a contour with 12 edges and 14 inner vertices

(Fig. 3.6e), does not necessarily follow the pattern of ewor st (Fig. 3.6d). It is expected for emean

to be lower than ewor st , as the mean quality qmean takes into account the qualities of all the

elements in the mesh and not just that of the worst element.

71

Chapter 3. Results and validation of 2-D simplicial contour Meshing using Neural Networks

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.6: (a)-(g): In alphabetical order, the average errors ewor st = ∑nNC ,I ewor st /nNC ,I

(%) and emean = ∑nNC ,I emean/nNC ,I
(%) for a number of nNC ,I

random contours with NC =
{4,6,8,10,12,14,16} edges as a function of inner vertices NI . The range of inner points covers
at least 68% of each contour population with NC edges. Maximum ewor st of 23.41% occurs for
the case of contours with 12 edges and 14 inner vertices (e). In most cases, both ewor st and
emean tend to increase with the increase in the number of inner vertices; the displacement
error from the predicted vertices of N N2 increases with the number of vertices NI , which, in
turn, increases the triangulation errors ewor st and emean .

72

3.2. Results

(a) (b) (c)

Figure 3.7: (a) A contour with 8 edges with inner vertices inserted by the reference mesher
during refinement (circular points) and inner vertices approximated by the scores of N N2

(diamond points). (b) The graded reference mesh with its inner vertices. (c) The resulting mesh
with approximated vertices. In this case, the triangulation errors account for ewor st = 22.3%
and emean = 9.8%.

3.2.3 Prediction of the connectivity

To estimate the triangulation error caused by the triangulation algorithm, the average errors,

ewor st and emean , are measured between the meshes generated with the calculated connection

table A and the graded reference meshes on the same random contours as those used in

section 3.2.2. A maximum triangulation error ewor st = 1.9% is reached in the case of contours

with 14 edges and 10 inner vertices (Fig. 3.8f) and a maximum of emean = 1.5% for contours

with 16 edges and 16 inner vertices (Fig. 3.8g). In some cases, there is no triangulation error

(Fig. 3.8a, Fig.3.8b). The fluctuation in the errors may be caused by the random choice of

contours participating in the test dataset. The level of triangulation error in ewor st and emean

demonstrates that the algorithm does not account for a significant error propagation in the

connection scheme.

The number of sampled vertices chosen for a contour increases according to the number

of vertices NI that are intended to be inside the cavity. 50 NI groups of sample vertices are

chosen for 2 ≤ NI ≤ 4, 100 for 5 ≤ NI ≤ 8, and 200 for NI ≥ 9.

The triangulation error caused by the approximations of N N3 is tested for the random contours

used in section 3.2.2 which contained the NI inner vertices that are inserted by reference

mesher during refinement. The average triangulation errors, ewor st and emean , are calculated

between the meshes that are generated with entries of the connection table that are predicted

using N N3 and the graded reference meshes. A maximum triangulation error ewor st = 24.04%

is reached for the contour with 8 edges and 12 inner vertices. It is observed that there are more

fluctuations as compared to the triangulation errors caused by the prediction of N N2. The

following observations are made upon examining the average triangulation error ewor st :

• For contours with NC edges and NI inner vertices, the accuracy of the connectivity

depends on the number of sampled vertices NI used to train N N3. This is quite evident

73

Chapter 3. Results and validation of 2-D simplicial contour Meshing using Neural Networks

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.8: (a)-(g): Validation of the developed triangulation algorithm. The average triangula-
tion errors, ewor st and emean , between meshes that are generated by using the triangulation
algorithm with calculated connection table and the graded reference meshes for random
contours with NC = {4,6,8,10,12,14,16} edges as a function of number of inner vertices NI .
The levels of triangulation errors indicate that the triangulation algorithm causes little to no
significant error propagation in the connection scheme.

74

3.2. Results

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.9: (a)-(g): Validation of the connectivity network N N3. The average triangulation
errors, ewor st and emean , between contours meshed by using the triangulation algorithm
(predicted connection table by N N3) and the graded reference meshes for random contours
with NC = {4,6,8,10,12,14,16} edges as a function of the number of inner vertices NI . The
inner vertices are those inserted in the cavity by the reference mesher during refinement. The
accuracy of N N3 is dependent on the number of NI sampled inner vertices of a contour during
the data augmentation process. For example in the case of contours with 6 edges for NI = 6
(b) the training contour population is for 3% lower than that for NI = 4 but there is reduction
of 23% of ewor st ; this is due to the fact that the training of N N3 for NI = 6 relies on sampling
100 groups of six inner vertices for each contour, whereas for NI = 4, 50 groups of four inner
vertices are sampled.

75

Chapter 3. Results and validation of 2-D simplicial contour Meshing using Neural Networks

in the case of contours with 6 edges for NI = {4,6} (Fig. 3.9b). Although the training

contour population for NI = 6 inner vertices is 37% lower than that for NI = 4, there is

a 23% reduction in ewor st as the number of sampled inner vertices for NI = 6 is twice

as big as for NI = 4. The same is observed in the case of contours with 10 edges for

NI = {8,10} (Fig. 3.9c). Even though the complexity of the triangulations is increased (i.e.

the number of inner vertices) and the training contour population for NI = 10 is 38%

lower than that for NI = 8, ewor st decreases by 29%.

• For a fixed number of NI sampled inner vertices, ewor st increases with increase in the

number of vertices or decrease in the training data. For example, for the contour with

12 edges with NI = {10,12} (Fig. 3.9e), ewor st increases from 3.6% to 13% whereas the

population of the training contours decreases by 41%. However, for the same contour

population for NI = {6,8}, even though the complexity of triangulation is increased,

ewor st decreases from 10.7% to 8% whereas the training contour population is increased

by 42%. The accuracy of N N3 appears to be more dependent than N N2 on the size of

the training contour populations (Fig. 3.2).

3.2.4 Efficiency of adaptive sampling

To examine the efficacy of the adaptive sampling, the predictions of N N∗
3 are studied for the

case of contours with 10 edges with one inner vertex for a training population of 2000 contours.

On a grid G of resolution 50×50, the worst quality of the mesh is calculated, given that the

vertex is connected with an edge (Fig. 2.15a). First, N N∗
3 is trained with inner vertices that

are sampled randomly from the grid for different sample sizes of the whole population of

inner vertices (Table 3.1). Next, N N∗
3 is trained by providing every i th edge index with vertices

that are sampled adaptively from Si by using the curvature criteria. For each edge, 45 inner

vertices are sampled adaptively i.e. the whole population of inner vertices for a contour is

450. N N∗
3 is trained for different sample sizes of this population. The accuracy of N N∗

3 is

tested on random contours that accounted for a 95% confidence level and 5% for each training

population. Using adaptive sampling, the accuracy is improved by 27% while requiring 35%

less samples with respect to the use of random sampling. (Fig. 3.10a).

Next, adaptive sampling is applied for the case of contours with 10 edges with NI = {2,4}

inner vertices and a training population of 2000 to determine the accuracy of N N∗
3 . Given

the position of NI −1 inner vertices, a quality surface is defined by calculating the minimum

quality of each grid vertex from G . For each edge 45 vertices are sampled from each surface

Sn,i . Thus, for each contour, the whole population is 45×NI ×10 inner vertices. The accuracy

of N N∗
3 is tested on random contours that accounted for 95% confidence level and 5% for

each training population. Once again, using adaptive sampling leads to 18% and 27% better

accuracy for NI = 2 and NI = 4 respectively, with populations that are 22% and 17% lower than

the ones of random sampling (Fig. 3.10b, Fig.3.10c).

76

3.2. Results

(a)

(b) (c)

Figure 3.10: Average worst triangulation error ewor st when N N∗
3 is trained for different confi-

dence levels of inner vertices populations (Table 3.1) with random and adaptive sampling. (a)
For the prediction of the connectivity with one inner vertex at 96% confidence level, the sam-
ple population of inner vertices with adaptive sampling is 35% lower than that with random
sampling. Even though N N∗

3 is trained with lesser number of samples, 27% better accuracy is
achieved. (b) For the prediction of the connectivity with two inner vertices at 90% confidence
level, 18% better accuracy is achieved for a 22% lower sample population by applying adaptive
sampling. (c) The accuracy for prediction of the connectivity with four inner vertices at 90%
confidence level is 27% higher for a 17% lower sample population with adaptive sampling as
compared to random sampling.

77

Chapter 3. Results and validation of 2-D simplicial contour Meshing using Neural Networks

NI Sampling method Mean population of inner vertices Confidence level Sample size

1

Random sampling

689

50 206
68 332
90 495
96 594

Adaptive sampling

450

50 178
68 265
90 359
96 382

2

Random sampling

1378

50 242
68 437
90 772
96 889

Adaptive sampling

2×450

50 252
68 374
90 595
96 662

4

Random sampling

2756

50 265
68 519
90 1071
96 1312

Adaptive sampling

4×450

50 252
68 472
90 888
96 1047

Table 3.1: Sampling sizes for the mean populations of the contours inner vertices with random
and adaptive sampling for different confidence levels.

3.2.5 Overall prediction of the meshing scheme

The meshing scheme is tested for populations of contours with NC = (4,6,10,12,14,16) edges

for target edge lengths varying from 0.2 to 1.0 (Fig. 3.11) with a sample size of 95% confidence

level and 5% confidence interval of each training group (Fig. 3.2). The number of inner vertices

NI , their coordinates, and entries of the connection table are predicted using N N1, N N2, and

N N3, respectively. By using all of the NNs involved in the meshing scheme, an increase in the

triangulation error compared to our previous tests for every contour population is observed,

e.g. for the case of contours with 10 edges and 8 inner vertices (Fig. 3.11g), the average worst

triangulation error is ewor st = 19.4% whereas the average worst triangulation errors caused by

N N2 and N N3 are 17.3% and 10%, respectively. The increase in the error is not only due to

the approximation of the connectivity using N N3 but also because of the triangulation error

caused by using N N2 for the approximation of inner vertices. A maximum triangulation error

ewor st = 27.3% is obtained for the contour population of 16 edges with 18 inner vertices (Fig.

3.11g).

3.3 Conclusions

A novel machine learning scheme was presented for meshing 2D simplicial contours of given

target edge length. The meshing scheme uses three NNs that predicted the number of inner

vertices, their location, and the entries of a connection table. Based on the entries of the

connection table, a triangulation algorithm is applied to mesh the contour. The proposed

meshing scheme generates topologically valid meshes with no element intersections (manifold

78

3.3. Conclusions

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.11: (a)-(g): The average triangulation errors, ewor st and emean , between meshes
generated with the meshing scheme and the graded reference meshes for random contours
with NC = {4,6,8,10,12,14,16} edges as a function of number of inner vertices NI . The inner
vertices are those predicted by N N2. In all cases, there is an increase of ewor st and emean

compared to the previous tests where N N2 and N N3 are used separately. A maximum ewor st

of 27.3% occurs for the case of contours with 16 edges and 18 inner vertices.

79

Chapter 3. Results and validation of 2-D simplicial contour Meshing using Neural Networks

mesh) and can be trained using any classic mesh generator given that no additional vertices are

inserted into the edges of the contour. The meshing scheme avoids the incremental creation

of a mesh because the location of the inserted inner vertices is predicted and known prior to

the connection phase. Heavy post improvements are avoided because inner vertices location

and connectivities are trained such as to maximize mesh quality. The algorithm is compact

and easily transportable.

The accuracy of every NN involved in the meshing scheme and that of the overall meshing

scheme is determined based on a reference mesher that applied CDT followed by a refinement

process. It is demonstrated that the maximum minimum triangulation error of the overall

meshing scheme is 27.3% for the studied contour population. To give a clearer insight into

the accuracy of the meshing scheme, given the quality metric qel used (Section 2.5.1) for an

ideal mesh composed of regular triangular elements with 60◦ angles, the aforementioned level

of error corresponds to variation in angles between 28◦ and 106◦ in the worst case. For the

prediction of the number of vertices with N N1, a maximum mean absolute error e = 1.5 occurs

in the case of contours with NC = 16 edges and a target edge length ls = 0.2; the number of

inner vertices for the meshes generated from the scheme and the meshes from the reference

mesher differs at most by two. For the prediction of the location of the inner vertices, a

maximum minimum triangulation error 23.41% occurs in the case of contours with NC = 12

edges and NI = 14 inner vertices with the use of N N2. For the prediction of the connectivity

of the mesh using N N3, a maximum minimum triangulation error 24.04% is observed for

contours with NC = 8 edges and NI = 12 inner vertices. These levels of error confirm the

reasonably good quality of meshes generated by the scheme. Growth in mesh complexity

(i.e. increase in the number of contour edges and number of inner vertices) requires an

exponential increase of training data with the number of NC edges to reach a reasonably good

level in quality. Furthermore, the pairs of NI inner vertices per contour used for the training of

connectivity predictions, increases with the number NI , reaching a maximum of 200 groups of

NI inner vertices for NI > 9; although these pairs are chosen with a target edge length criterion,

their selection is random. For the prediction of the connectivity, adaptive sampling allows to

increase the accuracy while using significantly less data. To further optimize the accuracy of

the overall scheme and reduce the accumulation of large training sets, it is worth investigating

more strategic approaches for the selection of contour populations and pairs of inner vertices

used for the training procedure. The proposed procedure might still require a large dataset for

contour with a high number of contour vertices. However, up to a certain amount of vertices

on a contour, it is meaningful to mesh regions of a domain separately, as the meshes generated

in two mesh regions located far apart are expected to be weakly correlated.

Performance tests indicate that the proposed meshing scheme is approximately four times

slower than the reference mesher. The meshing scheme is coded in Python while the ref-

erence mesher is written in C++; assuming a speed factor of 5 to 20 between Python and

C++, and that the current implementation of the algorithm is not optimized for performance,

the aforementioned difference in speed validates that the scheme attains reasonably good

performance. There is also a large potential to increase the speed of the meshing algorithm as

80

3.3. Conclusions

it is transportable in terms of code and memory to acceleration platforms such as GPU and

FPGA architectures.

81

4 2-D Local Mesh Improvement using
Neural Networks

Based on the connectivity NN, N N3, and a set of new NNs, N NS and N N∗
S , a set of geometrical

operations are developed to improve the quality of a mesh. First, the mesh is partitioned into

local mesh configurations in accordance to the applied operation. The local mesh configura-

tions include either elements that are below a quality threshold or edges that are too small or

too big according to edge length thresholds. Next, the contours of local mesh configurations

are extracted and the operation is applied to them. The operations include:

• Reconnection: Using the connectivity network N N3, the contour of a local mesh config-

uration that includes low quality elements and no inner vertices is retriangulated.

• Vertex repositioning: Using N NS , an inner vertex of the mesh is repositioned by predict-

ing a new optimal position such that the quality of the adjoined elements improves. The

operation is applied to contours of local mesh configuration that include the element

that are connected to the vertex.

• Surface control: Similar to the vertex repositioning operator, a new position for a

boundary or interface vertex is predicted that improves the quality of adjoined elements

using N N∗
S . The new position of the vertex is constrained to belong to the boundary or

interface that it is part of.

• Size control: The size control operation regulates the length of edges that are too small

or too big. First, it inserts a vertex in the middle of the target edge. Next, the contour

with the inserted inner vertices of the local mesh configuration that include either the

short or long edges is retriangulated using N N3.

83

Chapter 4. 2-D Local Mesh Improvement using Neural Networks

4.1 Local Mesh Improvement Operations

4.1.1 Reconnection

The reconnection operation starts with partitioning the mesh according to an element quality

threshold qthr esh . Every element with a quality qel ≤ qthr esh is included in a set E (Fig. 4.1a).

The extraction of the local mesh configurations contours that participate in the reconnection

operation rely on a Depth First Search (DFS) edge traversal of the elements in E (Fig. 4.1b).

Starting from an element in E , an element that is adjacent to an edge and belongs to E is visited.

The traversal continues by visiting another element of E adjacent by edge to the already visited

element. If no such elements are found near the visited element, the traversal continues from

another edge-neighbor element of the starting element that belongs to E . This procedure

continues until no further edge adjacent elements of E can be found. A supplemental stopping

criterion of the traversal procedure is that the edge number of the contour that includes all

the traversed elements is NC < 10; this supplemental criterion ensures the availability of

trained connectivity networks for meshing small contours. If an element of E is isolated, i.e

not adjacent by edge to an another of the set, then the edge adjacent element that has the

lowest quality is traversed to form an contour with NC = 4 edges.

(a) (b) (c)

Figure 4.1: Example of mesh partitioning during reconnection algorithm for a square mesh. (a)
Initially all elements that have a quality qel lower than a quality threshold qthr esh (highlighted)
are included in the set E ={1,2,3,4,5,6}. (b) The contours (dotted line) that are extracted after
edge traversal of the elements 1 → 2 → 3 → 4 and 5 → 6 undergo the reconnection operation.
(c) The triangulated contours after the applying the reconnection operation (Fig. 4.2).

The reconnection operation is applied to every contour that is extracted using the aforemen-

tioned procedure. Each contour is transformed using the feature transformation F (section

2.3) and meshed using the connectivity network N N3. The connectivity information is then

mapped back to the mesh using the inverse transformation F−1 (Fig. 4.2, Fig. 4.1c).

84

4.1. Local Mesh Improvement Operations

F NN3 F-1

Figure 4.2: From left to right: Example of a local mesh configuration containing elements below
a quality threshold. Edges of the elements are deleted creating a contour cavity. The cavity
undergoes the feature transformation F and is feeded to N N3. N N3 outputs values of the
connection table. Based on the values of the connection table the triangulation algorithm of
the meshing scheme meshes the contour cavity. The connectivity information of the elements
is mapped back using F−1 to the original mesh to complete the reconnection process.

4.1.2 Vertex Repositioning

When applying the vertex repositioning operation, the mesh is partitioned according to the

vertex quality qv . The vertex quality qv is defined as the minimum quality qmi n of the elements

that are connected to it. If a vertex v has a quality qv ≤ qthr esh , the vertex repositioning

operation is applied to the contour that includes all the elements that are connected to v (Fig.

4.3). The operation uses N NS to predict a new optimal location of v such that the quality of

the adjoined elements improves.

(a) (b)

Figure 4.3: Example of mesh partitioning during the smoothing operation. A vertex v with
qv ≤ qthr esh is spotted (a). A new optimal vertex position is predicted using N NS for the
contour including all the elements that are connected with the vertex (dotted line) (b).

The coordinates of the candidate contour are transformed by applying the transformation

F . The coordinates PC of the transformed contour cavity are given as an input to the vertex

repositioning network N NS . N NS outputs the coordinates p̂o = (x̂o , ŷo) which is an approxi-

mation of the optimal inner vertex location quality-wise. Through the inverse transformation

F−1 the optimal inner vertex location is mapped back to the mesh (Fig. 4.4). N NS is trained to

85

Chapter 4. 2-D Local Mesh Improvement using Neural Networks

minimize the loss function L (po , p̂o) =∑
(po − p̂o)2/2 , where po is the real optimal location

of the inner vertex (Fig. 4.5) (Alg.7).

F-1NNS
F

Figure 4.4: From left to right: Example of a local mesh configuration containing a vertex below
a quality threshold. The elements that are connected to the vertex are deleted to create a
contour cavity. The contour is transformed and the coordinates of the transformed contour
are given as an input to N NS . N NS outputs the position of an inner vertex that is optimal
quality-wise given that all contour points are connected with it. Finally, the vertex is mapped
back to the mesh.

p1

p2

pNc

.

.

.

.

.

.

.
𝑝0

t1

t2

.

.

.

.

Contour coordinates

Tangents

Figure 4.5: Architecture of N NS and N N∗
S . Both are feeding forward NNs that output the

coordinates p̂o = (xo , yo) of the optimal vertex position for the vertex repositioning and surface
control operations. N NS takes as input the contour coordinates PC whereas N N∗

S takes as
input PC and also the tangents t = (t1, t2) of the boundary or interface the reallocated vertex
belongs to.

86

4.1. Local Mesh Improvement Operations

Algorithm 7: Training algorithm of N NS and N N∗
S for the prediction of the optimal position

of an inner, boundary or interface vertex.

1 PC : Contour vertices coordinates

2 PI : Inner vertices coordinates

3 po : Real optimal location of inner, boundary or interface vertex

4 p̂o : Estimated optimal location of inner, boundary or interface vertex

5 t = (t1, t2): Tangents of boundary or interface curve

6 Ntr ai n : Number of training data population

7 NdA : Dimension of flattened connection table

8 Initialize weights WK of N NS (N N∗
S)

9 while required number of iterations is not reached do

10 foreach training example in

D = {(P (n)
C , p(n)

o)}i , (D = {(P (n)
C , p(n)

o , t (n))}i f or N N∗
S), i = 1, .., Ntr ai n do

11 Compute ˆp(n)
o using current parameters

12 Calculate loss function

L (p(n)
o , p̂(n)

o) = ||p(n)
o − p̂(n)

o ||22/2 = ((x(n)
o − x̂(n)

o)2 + (y (n)
o − ŷ (n)

o)2)/2 and ∂L
∂WK

13 Update WK using Adam learning rate optimization

14 end

15 end

4.1.3 Surface control

The vertex repositioning operation has also been adapted to relocate boundary and interface

vertices with constraints to respect the geometry of the boundary and interface they are part

of. If the vertex belongs to the boundary, the edges of the elements containing the vertex are

deleted to form an open contour. The coordinates of the open contour with the tangents

t = (t1, t2) of the boundary are transformed and given as input to N N∗
S (Fig. 4.6a). Similarly

to N NS , N N∗
S outputs the optimal position of the vertex quality-wise. The vertex position is

mapped back to the mesh and projected to the boundary. Likewise, when a vertex belongs to

an interface the edges of the elements containing it are deleted to form a closed contour. The

aforementioned procedure is followed to the closed contour and the tangents of the interface

to obtain the approximation of the optimal position of the vertex (Fig. 4.6b).

87

Chapter 4. 2-D Local Mesh Improvement using Neural Networks

F F-1NN*
S

(a)

F NN*
S F-1

(b)

Figure 4.6: Example of local meshing configurations containing a low quality vertex that
belongs to a boundary (a) and a low quality vertex that belongs to an interface (b). The edges
of the element connected to the vertex are deleted to form an open contour in the case of a
boundary vertex and a closed contour for the interface vertex. The contour coordinates along
with tangents of the boundary or interface curve are transformed and given as an input to
N N∗

S . N N∗
S outputs the optimal position of the vertex which is mapped back to the mesh.

Finally, the vertex is projected to the curve.

4.1.4 Size control

The size control operations are used to adjust edge lengths close to a target edge length ls .

When applying the size control operations, the mesh is partitioned into local mesh configura-

tions such that they contain edges that are either shorter than a shorter edge length threshold

lthr esh or longer than a long edge length threshold Lthr esh . To regulate the size of long edges

with an edge length le > Lthr esh , a vertex is inserted in the middle of each edge and the contour

that includes their adjacent elements is extracted (Fig. 4.7). After deleting the long edges

included in the contour to form a cavity, the size control operation is applied. Note that after

such as partitioning of the mesh, the contour cavities could either include one inserted vertex

or multiple inserted vertices if multiple long edges are located inside of it. The contour cavity

with the inner vertices are transformed applying F . The transformed contour cavity and the

inner vertices are then given as input to N N3 that outputs the values of the connection table

A. The triangulation algorithm uses the values to mesh the contour cavity. The connectivity

information is mapped through F−1 to the original mesh.

88

4.1. Local Mesh Improvement Operations

F F-1NN3

Figure 4.7: Example of a local mesh configuration containing three long edges. First, a vertex is
inserted in the middle of each long edge. The long edges are deleted to form a contour cavity
containing the inserted vertices. The contour with the inner vertices are meshed using N N3.
Finally, the connectivity information is mapped through F−1 to the mesh.

The length regulation of edges with a length le ≤ lthr esh starts with inserting a vertex in the

middle of the edges. The contours that include the adjacent elements of the short edges as well

as their neighbor elements are extracted. Subsequently, the short edges are deleted to form a

contour cavity to apply the size control operation (Fig. 4.8). As in the case of partitioning the

mesh to apply the size control operation for the long edges, the contour cavities may include

either one vertex or several vertices if multiple short edges were included in the local mesh

configuration. The contours are then meshed using the same procedure.

F NN3 F-1

Figure 4.8: Example of a local mesh configuration containing two short edges. First, a vertex is
inserted in the middle of each short edge. The elements containing the short edges and their
adjacent elements are deleted to form a contour cavity containing the inserted vertices. The
contour with the inner vertices are meshed using N N3. Finally, the connectivity information
is mapped through F−1 to the mesh.

89

5 Results and validation of 2-D Local
Mesh Improvement using Neural Net-
works
5.1 Experimental parameters and results

5.1.1 NN hyperparameters and training populations

For the connectivity network N N3 used in the reconnection operation where no inner ver-

tices are located inside the contour cavities, the contour training datasets are populations

of contours for NC = {4,5,6,7,8,9} edges. The population of contours that are generated, are

increased at a nearly exponential rate with the number of edges (Fig. 5.1a). Similarly to the

meshing scheme, this increase is necessary to retain a level of desirable accuracy from the

NNs; this level of accuracy in turn ensures that the application of the local mesh operations

lead to good quality meshes. The same population of contours are used to train N NS and

N N∗
S .

When applying the size control operations, N N3 is used to output the values of connection

table A for contour cavities that contain inner vertices. The training of N N3 to predict the

connectivity of a contour cavity with NI inner vertices revolves around a process of data

augmentation; for every contour, the connection table A is calculated for multiple NI -pairs

of inner vertices that are sampled in the interior of the contour cavity and is included in the

training dataset. For NI = {1,2,3,4} inner vertices 10, 20, 30, and 50 pairs of NI inner vertices

are sampled for the initial contour population of NC = {4,5,6,7} edges. This process of data

augmentation results in the training populations shown in Fig. 5.1b.

91

Chapter 5. Results and validation of 2-D Local Mesh Improvement using Neural Networks

4 5 6 7 8 9
NC

0

5000

10000

15000

20000

25000

30000

35000

Co
nt

ou
r p

op
ul
at

io
ns

(a)

(4,1) (5,1) (5,2) (6,1) (6,2) (6,3) (7,1) (7,2) (7,3) (7,4)
(NC,NI)

0

250000

500000

750000

1000000

1250000

1500000

1750000

Tr
ai
ni
ng

 p
op

ul
at

io
ns

(b)

Figure 5.1: (a) The contour populations for training N N3, N NS and N N∗
S . The population of

6000 contours with 4 edges is found to be an adequate training set for acquiring good quality
mesh improvement results. To retain the same level of accuracy the contour populations are
increased at at a nearly exponential rate with the number of NC edges. (b) The initial contour
populations of NC = {4,5,6,7} is augmented by sampling 10,20,30 and 50 NI -pairs of inner
vertices for NI = {1,2,3,4} respectively. The training pairs (NC , NI) are used to train N N3 for
the application of the size control operations to mesh the contour cavities with the inner
vertices that are created after partitioning the mesh.

N NS and N N∗
S are trained for 1000 epochs with a learning rate of η= 10−4 and a weight decay

λ= 10−1 with a batch size nbatch = 512. There are 5 layers with batch normalization and the

ReLU activation function. The number of hidden nodes is (NC +2)2 for N NS , (NC +4)2 and

(NC +2)2 for N N∗
S when used for interface and boundary vertex repositioning respectively,

where NC is the number of contour edges. The hyperparameters and architecture of N N3 are

as presented in section 3.1.3.

5.1.2 Experiments

The proposed operations are tested for static and dynamic mesh improvement on a variety

of meshes using the quality metric of section 2.6.1 (eq 2.1). During the static case studies,

92

5.1. Experimental parameters and results

edges of the mesh are randomly flipped and the vertices are perturbed such that low quality

elements are produced. Unless stated otherwise, the reconnection operation is followed by

vertex repositioning to improve the quality of the mesh using a quality threshold qthr esh = 0.8.

The operations are evaluated in terms of quality and angle distribution of the elements.

In the dynamic test cases, vertices of the mesh are advected according to an analytical ve-

locity field for a total of T timesteps. At each timestep, the mesh is improved using a local

improvement scheme that includes the operations. The operations are reviewed in terms

of minimum quality, minimum and maximum angles before and after applying the scheme.

The scheme (Alg. 8) starts by applying the vertex repositioning and surface control operation

to every vertex with a quality lower than qtr esh (Alg. 8, Line 2). The reconnection operation

is successively applied to every element having a quality below qthr esh (Alg. 8, Line 3). As

a next step, the length of the edges are regulated according to a given target edge length ls .

The size control operation is applied for long edges with a length larger than Lthr esh = 4/3ls

(Alg. 8, Line 4) and for short edges with a length shorter than lthr esh = 4/5ls (Alg. 8, Line 4). If

the minimum quality of the mesh qwor st is lower than qthr esh , the scheme applies the vertex

repositioning and surface control operations followed by the reconnection operation until

either qwor st ≥ qthr esh or a number of maximum iterations maxNumOfPasses is exceeded

(Alg. 8, Lines 6-14). A number of maxNumOfPasses = 5 iterations and a quality threshold of

qthr esh = 0.8 are chosen.

Algorithm 8: The Local Improvement Scheme for the dynamic meshes.

1 ImprovementScheme (maxNumOfPasses, qthr esh , ls)
2 Apply vertex repositioning and surface control operations for every vertex v with

vertex quality qv ≤ qthr esh

3 Apply reconnection operation for every element e with quality qe ≤ qthr esh

4 Apply size control operation for every edge that is longer than Lthr eshol d = 4/3ls

5 Apply size control operation for every edge that is shorter than lthr eshol d = 4/5ls

6 while numOfPasses <maxNumOfPasses do
7 if qwor st ≥ qthr esh then
8 return
9 end

10 else
11 Apply vertex repositioning and surface control operations
12 Apply reconnection operation

13 end
14 end

All initial meshes were generated using the Gmsh© software that applies a CDT algorithm

(Lambrechts et al. (2008)) followed by refinement. The sizing of the elements is calculated

via interpolation of target edge values assigned to the vertices of the initial geometry (see

Appendix A.2.2).

93

Chapter 5. Results and validation of 2-D Local Mesh Improvement using Neural Networks

5.1.2.1 Static Mesh Improvement

Square

Mesh improvement using the operations is tested for a square mesh in a domainΩ= [0,1]×
[0,1] with mean quality qmean = 0.97, minimum quality qmi n = 0.83, angles that lie between

43◦ ≤ θ ≤ 94◦ (Fig 5.2a) and a uniform target edge length ls = 0.12. After edge flipping and vertex

pertubation, the mean quality decreases to qmean = 0.63, the minimum quality decreases to

qwor st = 0.05, and the element angle distribution lies between 1◦ ≤ θ ≤ 176◦ (Fig 5.2b). By

applying the reconnection and vertex repositioning operations, the mean quality increases

to qmean = 0.96, the minimum quality increases to qwor st = 0.89, and the element angle

distribution lies between 41◦ ≤ θ ≤ 84◦ (Fig 5.2c).

94

5.1. Experimental parameters and results

0%

20%

10%

30%

40%

50%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E
le
m
e
n
ts
(%

)

q

0.0%

10.0%

20.0%

30.0%

40.0%

0 20 40 60 80 100 120 140 160 180

42 94

θ

A
n
g
le
s(
%
)

(a)

E
le
m
e
n
ts
(%

)

0.0%

5.0%

10.0%

15.0%

20.0%

0.1 0.2 0.40.3 0.5 0.6 0.7 0.8 0.9 1.0
q

A
n
g
le
s(
%
)

θ

0.0%

5.0%

10.0%

15.0%

20.0%

1 176

0 20 40 60 80 100 120 140 160 180

(b)

q
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

E
le
m
e
n
ts
(%

)

41 84

0 20 40 60 80 100 120 140 160 180
0.0%

2.5%

5.0%

7.5%

10.0%

12.5%

15.0%

17.5%

A
n
g
le
s(
%
)

θ

(c)

Figure 5.2: Example of mesh improvement for a meshed square in a domainΩ= [0,1]× [0,1].
(a) Initially the mesh has a mean quality qmean = 0.97, a minimum quality qwor st = 0.83, and a
element angle distribution ranging between 43◦ ≤ θ ≤ 94◦. (b) After random edge flipping and
vertex perturbation the mean quality of the mesh decreases to qmean = 0.63, the minimum
quality decreases to qwor st = 0.05, and the element angles lie between 1◦ ≤ θ ≤ 176◦. (c) After
applying the reconnection and vertex repositioning operations, the mean quality of the mesh
increases to qmean = 0.96, the minimum quality qwor st = 0.89, and element angles lie between
41◦ ≤ θ ≤ 84◦.

Perturbed interface

The operation of interface surface control is tested in a meshed square on a domainΩ= [0,1]×
[0,1] containing an interior interface curve. Initially, the mesh has qmean = 0.93, qwor st = 0.77,

element angles ranging between 32◦ ≤ θ ≤ 102◦ (Fig. 5.3a) and a uniform target edge length

ls = 0.1. The vertices of the interface are perturbed to produce low quality elements near the

interface lowering the mean quality to qmean = 0.68, the minimum quality to qwost = 0.32,

95

Chapter 5. Results and validation of 2-D Local Mesh Improvement using Neural Networks

and causing element angles to lie between 6◦ ≤ θ ≤ 159◦ (Fig. 5.3b). The interfaces vertices are

then repositioned using the surface control operation. After applying the operation, the mean

quality of the mesh increases to qmean = 0.92, the minimum quality increases to qwor st = 0.7,

and the element angles lie between 31◦ ≤ θ ≤ 109◦ (Fig. 5.3c).

q

E
le
m
e
n
ts
(%

)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0 20 40 60 80 100 120 140 160 180

θ

A
n
g
le
s(
%
)

0.0%

5.0%

10.0%

15.0%

20.0%

32 102

(a)

q
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E
le
m
e
n
ts
(%

)

0.0%
5.0%

10.0%

15.0%

20.0%

25.0%

30.0%
35.0%

40.0%

0 20 40 60 80 100 120 140 160 180

θ

A
n
g
le
s(
%
)

5.0%

10.0%

15.0%

20.0%

0.0%

25.0%

30.0%

35.0%

6 159

(b)

q
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E
le
m
e
n
ts
(%

)

0.0%

5.0%

10.0%

20.0%

25.0%

15.0%

30.0%

0 20 40 60 80 100 120 140 160 180

θ

0.0%

5.0%

10.0%

15.0%

20.0%

A
n
g
le
s(
%
)

31 109

(c)

Figure 5.3: Example of applying the surface control operation to the interface vertices of a
curve (highlighted) of a square mesh in a domainΩ= [0,1]× [0,1]. (a) Initially the mesh has a
mean quality qmean = 0.93, a minimum quality qwor st = 0.77, and a element angle distribution
lying between 32◦ ≤ θ ≤ 102◦. (b) After perturbing the interface vertices, the mean quality of
the mesh decreases to qmean = 0.68, the minimum quality decreases to qwor st = 0.32, and the
element angles lie between 6◦ ≤ θ ≤ 159◦. (c) After applying the surface control operation to
the interface vertices, the mean quality of the mesh increases to qmean = 0.92, the minimum
quality increases to qwor st = 0.7, and the element angles range between 31◦ ≤ θ ≤ 109◦.

96

5.1. Experimental parameters and results

Circular interface

A mesh of a square domainΩ= [0,1]× [0,1] contains a circular interface with qmean = 0.93,

qwor st = 0.78 and element angles that lie between 34◦ ≤ θ ≤ 96◦ (Fig 5.4a). The vertices on the

boundary of the mesh are assigned a target edge length value ls = 0.16, while the vertices that

belong to the circular interface are assigned a target edge length value l I
s = 0.08. The size of

the mesh elements is then computed by interpolating these values inside the domain during

mesh generation. The mesh has its edges randomly flipped and vertices perturbed; as a result,

the mean quality decreases to qmean = 0.67, the minimum quality decreases to qwor st = 0.04

and the element angles range between 2◦ ≤ θ ≤ 175◦ (Fig 5.4b). After applying the operations

of reconnection, vertex repositioning for the interior, and surface control for the interface and

boundary vertices, the mean quality increases to qmean = 0.92, the minimum quality increases

to qwor st = 0.74 and element angles range between 29◦ ≤ θ ≤ 95◦ (Fig 5.4c).

97

Chapter 5. Results and validation of 2-D Local Mesh Improvement using Neural Networks

q
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0%
2.5%

5.0%

7.5%

10.5%

12.5%

15.0%

17.5%

E
le
m
e
n
ts
(%

)

0 20 40 60 80 100 120 140 160 180

θ

A
n
g
le
s(
%
)

0.0%

2.5%

5.0%

7.5%

10.5%

12.5%

15.0%

17.5%

34 96

(a)

q
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E
le
m
e
n
ts
(%

)

0.0%

5.0%

10.0%

20.0%

15.0%

0 20 40 60 80 100 120 140 160 180

θ

0.0%

A
n
g
le
s(
%
)

5.0%

10.0%

15.0%

20.0%

2 175

(b)

q
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E
le
m
e
n
ts
(%

)

0.0%

5.0%

10.0%

20.0%

15.0%

0 20 40 60 80 100 120 140 160 180

θ

0.0%

2.5%

A
n
g
le
s(
%
)

5.0%

7.5%

10.0%

12.5%

15.0%

17.5%

29 95

(c)

Figure 5.4: Example of improving the quality of a square mesh in a domainΩ= [0,1]× [0,1]
containing a circular interface in the center (highlighted). (a) Initially the mesh has a mean
quality qmean = 0.93, a minimum quality qwor st = 0.78, and a element angle distribution
ranging between 34◦ ≤ θ ≤ 96◦. (b) After randomly flipping the edges and perturbing the
vertices, the mean and minimum quality of the mesh decrease to qmean = 0.67 and qwor st =
0.04, respectively, with element angles lying between 2◦ ≤ θ ≤ 175◦. (c) After applying the
reconnection operation followed by the vertex repositioning operation to the vertices to the
perturbed mesh, the mean quality of the mesh increases to qmean = 0.92, the minimum quality
increases to qwor st = 0.74, and element angles lie between 29◦ ≤ θ ≤ 95◦.

Airfoil

A mesh domain Ω= [−3,3]× [−3,3] represents the exterior domain of an airfoil (hole) with

mean quality qmean = 0.94, minimum quality qwor st = 0.74, and elements that lie between

32◦ ≤ θ ≤ 107◦ (Fig. 5.5a). The element size of the mesh is calculated by means of interpolating

the values of the boundary vertices with a prescribed target edge length value ls = 0.2 and the

98

5.1. Experimental parameters and results

values of the airfoil interface vertices with a prescribed target edge length value l I
s = 0.002. The

vertices of the mesh are perturbed and the edges are randomly flipped. As a result, the mean

quality decreases to qmean = 0.64, the minimum quality decreases to qwor st = 0.03, and the

element angles lie between 7◦ ≤ θ ≤ 173◦ (Fig. 5.5b). The operations of reconnection followed

by vertex repositioning of interior vertices and surface control of interface vertices are applied

to improve the quality of the perturbed mesh. The mean quality increases to qmean = 0.94, the

minimum quality increases to qwor st = 0.76 and the element angles lie between 31◦ ≤ θ ≤ 102◦

(Fig. 5.5c).

99

Chapter 5. Results and validation of 2-D Local Mesh Improvement using Neural Networks

q
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

E
le
m
e
n
ts
(%

)
0 20 40 60 80 100 120 140 160 180

θ

0.0%

5.0%

10.0%

15.0%

20.0%

A
n
g
le
s(
%
)

31 107

(a)

q
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0%

E
le
m
e
n
ts
(%

)

2.5%

5.0%

7.5%

10.0%

12.5%

15.0%

17.5%

0 20 40 60 80 100 120 140 160 180

θ

0.0%

5.0%

10.0%

15.0%

20.0%

A
n
g
le
s(
%
)

7 173

(b)

q

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

E
le
m
e
n
ts
(%

)

0 20 40 60 80 100 120 140 160 180

θ

0.0%

5.0%

10.0%

15.0%

20.0%

A
n
g
le
s(
%
)

31 102

(c)

Figure 5.5: Example of applying the mesh improvement operations of a square mesh in a
domainΩ= [0,1]× [0,1] containing an airfoil shaped hole. (a) Initially the mesh has a mean
quality qmean = 0.91, a minimum quality qwor st = 0.74, and a element angle distribution lying
between 32◦ ≤ θ ≤ 107◦. (b) After perturbing the vertices and flipping the edges, the mean
quality of the mesh decreases to qmean = 0.64, the minimum quality decreases to qwor st = 0.03,
and element angles lie between 7◦ ≤ θ ≤ 173◦. (c) After applying the reconnection operation
followed by vertex repositioning and surface control, the mean quality of the mesh increases
to qmean = 0.94, the minimum quality increases to qwor st = 0.76, and the element angles lie
between 31◦ ≤ θ ≤ 102◦.

5.1.2.2 Dynamic Mesh Improvement

Horizontal translation of circular interface

The vertices of a circular interface with radius r = 0.25 inside a rectangle mesh with domainΩ=

[0,2]× [0,1] are translated at an horizontal velocity of vx = 5 ·10−3x̂ , where x̂ is the unit vector

100

5.1. Experimental parameters and results

along the x axis, for a total of T = 180 timesteps. The vertices on the boundary of the mesh

are assigned a target edge length value ls = 0.2, while the vertices that belong to the circular

interface are assigned a target edge length value l I
s = 0.05. The size of the mesh elements

is then computed by interpolating these values inside the domain during mesh generation.

The center of the circular interface is initially located at po = (0.5,0.5) and after t = 180 time

steps its final position is p f = (1.4,0.5) (Fig. 5.6a-c). At each step of the simulation, the local

mesh improvement scheme (Alg. 8) applies the vertex repositioning operation to the interior

vertices of the mesh and the surface control operation to the interface (circle) and boundary

(rectangle) vertices. The reconnection is applied next. The scheme subsequently applies the

size control operations to retain the edge length difference between the elements close to the

interface and the elements elsewhere. Finally, the scheme applies up to 5 iterations of vertex

repositioning and surface control followed by reconnection.

The minimum element quality qwor st of the mesh before applying the local improvement

scheme lies between 0.41 ≤ qwor st ≤ 0.76 (Fig.5.6d), the minimum element angles lie between

10 ≤ θmi n ≤ 28, and the maximum angles lie between 94 ≤ θmax ≤ 133 (Fig.5.6e). At each simu-

lation step, the scheme improves qwor st which lies between 0.69 ≤ qwor st ≤ 0.81 , increases

the minimum element angles that lie between 28 ≤ θmi n ≤ 40, and decreases the maximum

angles that lie between 80 ≤ θmax ≤ 108.

t=0
(a)

t=T/2
(b)

t=T
(c)

0 25 50 75 100 125 150 175
t

0.4

0.5

0.6

0.7

0.8

q w
or
st

pre improvement
post improvement

(d)

101

Chapter 5. Results and validation of 2-D Local Mesh Improvement using Neural Networks

(e)

Figure 5.6: (a)-(c): The circular interface’s horizontal translation for different timesteps t .
(d): The minimum quality qwor st as a function of the simulation timestep t . qwor st has a
range between 0.50 ≤ qwor st ≤ 0.79 before the application of the mesh improvement scheme
and 0.69 ≤ qwor st ≤ 0.81 after applying the scheme. (e) The minimum angles lie between
10 ≤ θmi n ≤ 28 before the application of the scheme and 28 ≤ θmi n ≤ 40 after the application.
The maximum angles lie between 94 ≤ θmax ≤ 133 before the application of the scheme and
80 ≤ θmax ≤ 108 after the application.

Collapsing Circle

The vertices of a circular interface with radius r0 = 0.25 and center p = (0,0) inside a square

mesh domainΩ= [0,1]× [0,1] (Fig. 5.7a) are translated towards the center of the circle at a

constant velocity of vr =−1 ·10−2r̂ , where r̂ is the unit vector along the circle radius direction.

After a total of T = 184 timesteps, the radius of the circle is reduced to r f = 0.07. The vertices on

the boundary of the mesh are assigned a target edge length value ls = 0.16, while the vertices

that belong to the circular interface are assigned an initial target edge length value l I
s = 0.08

(Fig. 5.7c). The size of the mesh elements is then computed by interpolating these values

inside the domain during mesh generation. At each step of the simulation, the edge length of

the elements located around and inside the circle is adapted to the edge length of the interface;

the edge length of the elements whose vertices are within a distance of d = r0 = 0.25 from the

circular interface vertices is adapted according to the target edge threshold of the interface

edge length, while the elements elsewhere retain their initial target edge length.

The minimum quality of the mesh qwor st lies between 0.68 ≤ qwor st ≤ 0.74 before applying

the mesh improvement scheme (Alg. 8) and 0.75 ≤ qwor st ≤ 0.79 after its application (Fig.

5.7d). The minimum angles lie between 27 ≤ θmi n ≤ 38 before the application of scheme

and 39 ≤ θmi n ≤ 46 after the application. The maximum angles lie between 108 ≤ θmax ≤ 116

before the application of scheme and 90 ≤ θmax ≤ 104 after the application (Fig. 5.7e).

102

5.1. Experimental parameters and results

t=0
(a)

t=T/2

(b)

t=T
(c)

(d)

(e)

103

Chapter 5. Results and validation of 2-D Local Mesh Improvement using Neural Networks

Figure 5.7: (a)-(c): The collapsing circle for different timesteps. (d):The minimum quality
qwor st as a function of the simulation timestep t . qwor st lies between 0.68 ≤ qwor st ≤ 0.74
before the application of the scheme and 0.75 ≤ qwor st ≤ 0.79 after the application. (e)
The minimum angles lie between 27 ≤ θmi n ≤ 38 before the application of the scheme and
39 ≤ θmi n ≤ 46 after the application. The maximum angles lie between 108 ≤ θmax ≤ 116
before the application of the scheme and 90 ≤ θmax ≤ 104 after the application.

Diagonal translation of parabolic interface

The vertices of a parabolic interface inside a square mesh domain Ω = [−1,1]× [−1,1] are

translated diagonally at a constant speed v = 10−2x̂+10−2 ŷ , where x̂ and ŷ are the unit vectors

along the x and y axis directions respectively. The simulation is iterated for T = 180 timesteps

(Fig. 5.8a-c). The element size of the mesh is calculated by means of interpolating the values

of the boundary vertices with a prescribed target edge length value ls = 0.5 and the values of

the parabolic interface vertices with a prescribed target edge length value l I
s = 0.1. At each

step of the simulation the size control operations of the scheme (Alg. 8) are applied to retain

the initial edge length of the interfaces; vertices are inserted at the midpoint of an interface

edge when its length is bigger Lthr esh = 4/3l I
s . Similarly, the size control operation for long

edge is applied to all the edges of elements whose vertices are within a distance of d = 2 ·10−2

from vertices of the parabolic interface.

The minimum quality of the mesh qwor st lies between 0.41 ≤ qwor st ≤ 0.77 before applying

the meshing improvement scheme and 0.69 ≤ qwor st ≤ 0.83 after its application (Fig. 5.8d).

The minimum angles lie between 19 ≤ θmi n ≤ 36 before the application of scheme and 33 ≤
θmi n ≤ 45 after the application. The maximum angles lie between 94 ≤ θmax ≤ 133 before the

application of scheme and 84 ≤ θmax ≤ 100 after the application (Fig. 5.8e).

t=0

(a)

t=T/2

(b)

t=Tt=T

(c)

104

5.1. Experimental parameters and results

0 25 50 75 100 125 150 175
t

0.4

0.5

0.6

0.7

0.8
q w

or
st

pre improvement
post improvement

(d)

(e)

Figure 5.8: (a)-(c): Timesteps of the diagonal translation of the elliptical interface. (d): The
minimum quality as a function of the simulation timestep. The minimum quality of the mesh
qwor st lies between 0.41 ≤ qwor st ≤ 0.77 before the application of the mesh improvement
scheme and 0.69 ≤ qwor st ≤ 0.83 after its application. (e) The minimum angles lie between
19 ≤ θmi n ≤ 36 before the application of the scheme and 33 ≤ θmi n ≤ 45 after the application.
The maximum angles lie between 94 ≤ θmax ≤ 133 before the application of the scheme and
84 ≤ θmax ≤ 100 after the application.

Zalesak disc

The interface vertices of a slotted disk located inside a square domain Ω = [0,4]× [0,4] are

moved according to a rotational velocity field v =−ω(y−yo)x̂+ω(x−xo)ŷ , where (xo , yo) = (2,2)

105

Chapter 5. Results and validation of 2-D Local Mesh Improvement using Neural Networks

is the center of rotation , ω= 3 ·10−2 is the angular velocity, and x̂, ŷ are the unit vectors along

the x and y axis directions respectively. The slotted disk undergoes a full rotation after T = 210

time steps. The vertices on the boundary of the mesh are assigned a target edge length

value ls = 0.5, while the vertices that belong to the slotted disc interface are assigned a target

edge length value l I
s = 0.1. The size of the mesh elements is then computed by interpolating

these values inside the domain during mesh generation. The full rotation of the slotted disk

causes the deformation of the initial interface (Fig. 5.9d) as the interface vertices are free to

move to test the efficiency of the surface control operation. At each time step, the size control

operations of the scheme (Alg.8) regulate the edge lengths of the elements located surrounding

the interface as the disk rotates.

The minimum quality of the mesh qwor st lies between 0.58 ≤ qwor st ≤ 0.69 before applying

the mesh improvement scheme and 0.68 ≤ qwor st ≤ 0.74 after its application (Fig. 5.9e).

The minimum angles lie between 26 ≤ θmi n ≤ 32 before the application of scheme and 35 ≤
θmi n ≤ 44 after the application. The maximum angles lie between 99 ≤ θmax ≤ 117 before the

application of scheme and 90 ≤ θmax ≤ 107 after the application (Fig. 5.8f).

t=0
(a)

t=T/2

(b)

t=T
(c)

106

5.1. Experimental parameters and results

Initial disk
Final disk

(d)

(e)

(f)

107

Chapter 5. Results and validation of 2-D Local Mesh Improvement using Neural Networks

Figure 5.9: (a)-(c): Timesteps of the zalesak disc rotation. (d): The initial interface and the
deformed interface after the completion of the rotation. (e): The minimum quality as a
function of the simulation timestep. qwor st lies between 0.58 ≤ qwor st ≤ 0.69 before applying
the mesh improvement scheme and 0.68 ≤ qwor st ≤ 0.74 after its application. (f) The minimum
angles lie between 26 ≤ θmi n ≤ 32 before the application of the scheme and 35 ≤ θmi n ≤ 44
after the application. The maximum angles lie between 99 ≤ θmax ≤ 117 before the application
of the scheme and 90 ≤ θmax ≤ 107 after the application.

Vortex flow deformation

A mesh of a circle of radius r = 0.15 is centered at (0,75) on a domainΩ= [0,1]×[0,1] (Fig. 5.10a)

with a uniform target edge length ls = 0.02. The vertices of the circle’s boundary are stretched

by the velocity field v(t) =−cos(πt/∆T)sin2(πx)cos(2πy)x̂ +cos(πt/∆T)sin2(πy)cos(2πx)ŷ ,

where ∆T = 4 is the assigned period and x̂, ŷ are the unit vectors along the x and y axis

directions respectively. The circular boundary reaches maximum deformation on t =∆T /2

(Fig. 5.10b) and returns to its original position on t = ∆T (Fig. 5.10c). At t = T , due to the

application of the remeshing operations the circular boundary is deformed when compared

to its original state (Fig. 5.10d).

The minimum quality of the mesh qwor st lies between 0.58 ≤ qwor st ≤ 0.79 before the appli-

cations of the mesh improvement scheme and 0.71 ≤ qwor st ≤ 0.84 after the application (Fig.

5.10e). The minimum angles lie between 21 ≤ θmi n ≤ 32 before the application of scheme and

27 ≤ θmi n ≤ 37 after the application. The maximum angles lie between 98 ≤ θmax ≤ 120 before

the application of scheme and 90 ≤ θmax ≤ 108 after the application (Fig. 5.10f).

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

t=0
(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

t=T/2

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

t=T
(c)

108

5.1. Experimental parameters and results

Initial circle
Final circle

(d)

0 50 100 150 200 250 300 350 400
t

0.60

0.65

0.70

0.75

0.80

0.85

q w
or
st

pre improvement
post improvement

(e)

0 50 100 150 200 250 300 350 400
t

20

40

60

80

100

120

θ

θmax pre improvement
θmax post improvement
θmin pre improvement
θmin post improvement

(f)
109

Chapter 5. Results and validation of 2-D Local Mesh Improvement using Neural Networks

Figure 5.10: (a)-(c): Timesteps of the vortex flow deformation of the circular interface. (d):
The initial interface and the deformed interface after the completion of the simulation. (e):
The minimum quality as a function of the simulation timestep. qwor st has a range between
0.58 ≤ qwor st ≤ 0.79 before the application of the mesh improvement scheme and 0.71 ≤
qwor st ≤ 0.84 after the application. (f) The minimum angles lie between 21 ≤ θmi n ≤ 32 before
the application of the scheme and 27 ≤ θmi n ≤ 37 after the application. The maximum angles
lie between 98 ≤ θmax ≤ 120 before the application of the scheme and 90 ≤ θmax ≤ 108 after
the application.

5.2 Conclusions

A novel method for the development of local mesh improvement operations using NNs is

presented. The operations improve the quality of elements that are below a quality threshold

and regulate their edge length according to a short and long edge threshold. The mesh is

partitioned into local mesh configurations that include the target element or edge. The

operations are applied to the extracted contours of the configurations. The reconnection

and size control operations use the connectivity network N N3 to predict the connectivity

of contours. The vertex repositioning and surface control operations use N NS and N N∗
S

networks to predict the coordinates of a new vertex that is of optimal position quality wise,

given that the contour vertices are connected to it.

Compared with existing operations, the set of proposed operations have the potential to

improve the computational cost of local improvement schemes as: (i) In comparison with

the smoothing operation, the vertex repositioning and surface control operations do not

involve the optimization of a local objective functional. Instead, the new optimal location

of a vertex is found through the direct output of N NS and N N∗
S . (ii) In comparison with

existing topological operations that retriangulate cavities, the reconnection operation offers a

computational advantage. The operation does not include the computational cost to find an

optimal cavity as vertex cavitation. Moreover, unlike SPR that performs an exhaustive search

for an optimal triangulation of a cavity, the reconnection operation triangulates directly the

cavity using the predictions of N N3. (iii) The size control operations for long and short edges

can be viewed as composite operations that include the vertex insertion and edge contraction

operation respectively. The inserted vertices regulate the edge lengths and an successive

optimal triangulation for the contours that include vertices is directly predicted using N N3.

The operations are validated and evaluated by including them in local mesh improvement

schemes that are applied to static and dynamic meshes. Given a quality threshold qthr eshol d =
0.8, results in static meshes demonstrate the capacity of the operations to improve the quality

of the perturbed meshes and obtain new meshes with a minimum quality qwor st close to

their original state. In the worst case, a maximum qwor st = 0.7 with element angles that lie

between 31◦ ≤ θ ≤ 109◦ is reached in the example of the perturbed interface (although only

110

5.2. Conclusions

the surface control operation is applied) (Fig. 5.3). When the local mesh improvement scheme

(Alg. 8) is applied to dynamic meshes with a quality threshold qthr esh = 0.8, the minimum

qwor st is improved at each simulation step in all cases. After the application of the scheme, a

minimum qwor st = 0.68 is observed for the rotation of the zalesak disc (Fig. 5.9). For the same

example, after the application of the scheme for each simulation step, the minimum quality

lies between 0.68 ≤ qwor st ≤ 0.74, the minimum angles lie between 35 ≤ θmi n ≤ 44 and the

maximum angles lie between 90 ≤ θmax ≤ 108. Such results conclude that the operations have

the potential to be used for mesh improvement purposes. The local improvement scheme

that was applied for the dynamic meshes is chosen after demonstrating the capacity to attain

qwor st values close to the quality threshold. It is worth investigating the use of alternative local

improvement schemes that use a different set of conditions and different order of operations.

Moreover, since the mesh improvement speed is dependent on the selection of the quality

threshold value, further investigation should involve finding a threshold-speed balance that

provide a good simulation accuracy.

111

6 Meshing large meshes

6.1 Scheme for large mesh generation with uniform element size

The proposed neural network meshing algorithm is used to mesh larger meshes as follows.

Given a high resolution contour S, vertices are sampled to form an initial contour (Fig. 6.1a)

(Alg. 9, Lines 7-8). The number of vertices sampled to form the initial contour is 4 < NC < 16

in accordance with the trained NNs of the meshing scheme. Then, N N3 is called to assemble

the connections and output an initial mesh (Fig. 6.1b) (Alg. 9, Line 9). Assuming a target

edge length ls , for an edge e with edge length le > ls , based on the integer ratio K = [le /ls],

nK = K −1 equidistant vertices are inserted to e (Fig. 6.1c) (Alg .9, Line 13-21). If the vertices

of an edge belong to the high resolution contour, the inserted vertices are projected to it (Fig.

6.1d) (Alg. 9, Lines 22-24). Similarly, to be in accordance with the trained NNs, the maximum

number of inserted vertices per edges is nK = 4. The insertion of the vertices in the elements

of the initial mesh forms sub contours that are meshed using the proposed meshing scheme

for the target edge length that corresponds to the average length of the edges of a sub-contour

l∗s = ∑N
k=1 le(k) /N (Fig. 6.1e) (Alg. 9, Line 29). Subsequently, N NS and N N∗

S are used for the

computation of mesh coordinates to improve the quality (Alg. 9, Line 31). The aforementioned

refinement process is repeated until a target edge length close to ls is reached and no further

vertices are inserted (Fig. 6.1f) (Lines 27,35).

113

Chapter 6. Meshing large meshes

(a) (b) (c)

(d) (e) (f)

Figure 6.1: Example of the refinement process using N N3 to create a mesh with a target edge
length ls for a high resolution contour S (150 edges) forming a circle. (a) Points are sampled
from S to form an initial contour. (b) N N3 is called to mesh the initial contour. (c) If an edge
of the initial mesh has a length le that is bigger than ls , then nK = K −1 vertices are inserted to
the edge, where K = [le /ls]. (d) If the vertices of an edge belong to the high resolution contour
S, the inserted vertices are projected to S. N N1 and N N2 are used to predict the number
and location of inner vertices for each sub-contour with a target edge length equal to the
average edge length of each sub-contour. (e) Each sub-contour composed of vertices of the
elements, the inserted vertices, and the predicted inner points is meshed using N N3. As a
post-treatment, the vertex repositioning operations are applied by calling N NS and N N∗

S . (f)
The refinement process is repeated until the edge lengths are close to ls .

114

6.2. Scheme for large mesh generation with adaptive element size

Algorithm 9: Uniform scale element mesh generation using N N3

1 S: high resolution contour
2 ls : target edge length
3 le : length of edge e
4 (po , pK): endpoint vertices of edge e
5 P : list of inserted vertices
6 Sample NC vertices from S
7 Connect the NC vertices with a line to form a contour with NC edges
8 Form an initial mesh using N N3

9 Refine=True
10 while Refine do
11 foreach edge e = (e(1), ...,e(i), ..,e(n)) in current mesh M do
12 if

∣∣le(i) − ls
∣∣< ε then

13 K = [le(i) /ls]
14 if K > 5 then
15 K=5
16 end
17 for j=1,2,..K-1 do
18 Insert p(i)

j = p(i)
0 + (j /K)(p(i)

0 −p(i)
K)

19 P ← p(i)
j

20 end

21 if endpoint vertices (p(i)
0 , p(i)

K) of edge e(i) belong to the high resolution
contour S then

22 project inserted vertices p = (p(i)
1 , .., p(i)

K−1) to the high resolution
contour S

23 end
24 end
25 end
26 if P is not empty then
27 foreach subcontour formed by the vertices of an existing element of M with the

inserted points P do
28 Mesh subcontour using the meshing scheme for a target edge length equal

to the average edge length of the sub-contour
29 end
30 Update mesh M
31 Apply vertex repositioning using N NS and surface control N N∗

S to improve
quality of M

32 empty P

33 else
34 Refine=False
35 end
36 end

6.2 Scheme for large mesh generation with adaptive element size

Adaptive mesh generation is achieved by defining a sizing function h(ΩS) (Fig. 6.2a, Fig. 6.3a)

over the inner domain of the high resolution contour ΩS . The values of the sizing function

correspond to a target edge length which may vary over the domainΩS ; the generated mesh

115

Chapter 6. Meshing large meshes

using a sizing function contains smaller scale element to approximate better characteristics of

the geometry (e.g curvature) and larger scale elements elsewhere. In the context of the present

meshing scheme, an adaptive strategy is applied by inserting vertices to the edges of an initial

mesh that is generate using the connectivity network N N3 (Fig. 6.2c, Fig. 6.3c) according

to the prescribed values of the sizing function. During the refinement process, equidistant

vertices p = (p1, .., pnK), nK ≤ 4, are inserted to an edge e incrementally while
∣∣le(j) −h(p j)

∣∣< ε
for j = 1,2, ..,nK , where le(j) is the length of the edge e(j) formed by the vertices (p j , p j+1) (Alg.

10, Lines 12-26) and ε is a small positive number; the segment lengths of the subdivided edge

should be close to the value of the sizing function of each inserted vertex. The strategy to

mesh larger scale meshes with an adaptive or uniform element size inherits the automation of

the meshing scheme as it is based exclusively on the use of NNs. Table 2 lists the qualities of

examples used to create uniform (Fig. 6.1) and adaptive (Fig. 6.2, Fig. 6.3) large meshes.

(a) (b)

(c) (d) (e)

Figure 6.2: Example of adaptive meshing for a high resolution contour S (201 edges) forming
an airfoil. (a) A sizing function h is defined over the inner domainΩS . The values of the sizing
function represent the local target edge lengths that will dictate the elements sizes. The darker
areas represent smaller values of the sizing function, i.e regions where smaller elements should
be created to better approximate the geometry of the airfoil. (b) Points are sampled from S to
form an initial contour that is meshed using N N3 (c). Points are inserted incrementally on
each edge until all lengths of the segments that are created after the subdivision are close to
the assigned size function value for each inserted vertex. The number of interior points and
their location are predicted using N N1 and N N2. (e) Finally, after meshing each sub-contour
with its inner vertices using N N3, N NS and N N∗

S are called to improve the quality.

116

6.2. Scheme for large mesh generation with adaptive element size

Algorithm 10: Adaptive scale element mesh generation using N N3

1 S: high resolution contour
2 h(ΩS): sizing function defined over the domainΩS of the high resolution contour
3 ls : target edge length
4 le : length of edge e
5 ε: small positive number
6 (po , pK): endpoint vertices of edge e
7 P : list of inserted vertices
8 Sample NC vertices from S
9 Connect the NC vertices with a line to form a contour with NC edges

10 Form an initial mesh using N N3

11 Refine=True
12 while Refine do
13 foreach edge e = (e(1), ...,e(i), ..,e(n)) in current mesh M do
14 if P is not empty then
15 empty P
16 end
17 K = 1
18 do
19 K+=1
20 for j=1,2,..K-1 do
21 Insert p(i)

j = p(i)
0 + (j /K)(p(i)

0 −p(i)
K)

22 P ← p(i)
j

23 end

24 while
∣∣∣le(j) −h(p(i)

j)
∣∣∣< ε, where j = 1,2, ..K −1 and e(j) is the edge with vertices

(p(i)
j), p(i)

j+1, or K!=5;

25 if endpoint vertices (p(i)
0 , p(i)

K) of edge e(i) belong to the high resolution contour S
then

26 project inserted vertices p = (p(i)
1 , .., p(i)

K−1) to the high resolution contour S
27 end
28 end
29 if P is not empty then
30 foreach subcontour formed by the vertices of an existing element of M with the

inserted points P do
31 Mesh subcontour using the meshing scheme for a target edge length equal

to the average edge length of the sub-contour
32 end
33 Update mesh M
34 Apply vertex repositioning using N NS and surface control N N∗

S to improve
quality of M

35 empty P

36 else
37 Refine=False
38 end
39 end

117

Chapter 6. Meshing large meshes

(a) (b)

(c) (d)

Figure 6.3: Example of adaptive meshing for a high resolution contour with a circular hole in
the middle.(a) The sizing function is defined such that elements of smaller size are created
near the circular hole . (b) Since N N3 is able to only mesh contours that are watertight (i.e
no holes), the high resolution contour is divided into four sub-regions (contours containing
150 edges). Points are sampled from the sub-regions to form four contours. (c) Each of the
four contours, is meshed using N N3. (d) Based on the initial meshes, the adaptive meshing
process is applied and iterated until the edge lengths of elements are close to the values of the
assigned sizing function.

Example Nel θmi n θmax qwor st qmean

Circle 384 40◦ 87◦ 0.88 0.97
Airfoil 247 31◦ 109◦ 0.69 0.90
Contour with hole 1658 (per sub-region) 28◦ 111◦ 0.66 0.85

Table 6.1: The number of elements Nel , minimum angles θmi n , maximum angles θmax , worst
quality qwor st and the mean quality qmean for the circle (Fig. 6.1), airfoil (Fig. 6.2) and contour
with circular hole (Fig. 6.3) examples (the closer a quality value is to 1 the better).

118

7 Conclusion and outlook

7.1 Conclusion

Mesh generation and improvement algorithms play an essential role in computational mod-

eling and industrial design. Despite the advancements made, a critical issue remains the

finding of a balance between automation, complexity and computational cost. Motivated by

the achievements of machine learning tools in solving complex problems, this research work

studies the integration of NNs to mesh generation and improvement for the development of

automatic, robust, and computationally efficient frameworks.

As an initial approach to this direction, a simplicial meshing scheme for small contours is

presented (chapter 2). Given a target edge length, the scheme is based on the use of three

NNs : (i) a NN that predicts the number of inserted vertices inside the cavity of a contour,

(ii) a NN that predicts the location of the inner vertices, and (iii) a NN that predicts the

connectivity. The meshing scheme is trained using meshed contour datasets and generates

meshes without any post treatment by providing information about a contour and a target

element size. The resulting mesh is guaranteed not to contain any intersecting elements using

an intermediate meshing algorithm that is based on predictions of the NN. The meshing

algorithm uses a connection table to form elements by connecting facets of a contour with

vertices. The formation invalid elements is avoided as: (i) The entries of the connection table

that represent the connection of facets with vertices to form elements outside the domain of a

contour are omitted to zero (ii) A locking mechanism excludes vertices and facets from further

connections that lead to intersecting elements (Appendix A.3.1) (iii) A subroutine to spot

sub-contours formed during the triangulation avoids connections that cross existing mesh

elements (Appendix A.3.2). Since the intermediate meshing algorithm used in the meshing

scheme is not coupled with the underlying reference mesher, this offers the possibility to

adapt the scheme to the behavior of any 2D simplicial meshing algorithm. The meshing

scheme offers also a computational advantage over previous works using machine learning

techniques, since the number and location of inner vertices that are inserted in the cavity of

the contour to satisfy element size criteria is predicted a priori the connection phase. This

119

Chapter 7. Conclusion and outlook

offers a more direct pathway to acquire a mesh that satisfies element size criteria; it avoids the

incremental creation of a mesh by inserting inner vertices or elements one by one and skips

intermediate topological consistency (manifold) checks.

The accuracy of the scheme is evaluated by comparing the quality of the mesh generated by the

neural networks with that generated by a reference mesher that applies Constrained Delaunay

Triangulation (CDT) (chapter 3). Based on an element quality metric, after conducting tests

on contours for NC = {4,8,10,12,14,16} number of edges, the results show a maximum average

deviation of 27.3 % on the minimum quality between the elements of the meshes generated by

the scheme and the ones generated from the reference mesher; this level of error corresponds

to variation in element angles between 28◦ ≤ θ ≤ 106◦ in the worst case. Therefore, the scheme

is able to produce good quality meshes that are suitable for meshing purposes. To attain the

demonstrated results, the training contour populations are increased in an exponential rate

with the number of edges. Moreover, to efficiently predict the connectivity of the contours

an augmentation scheme is applied; for predicting the connectivity of a contour with NI

inner vertices, multiple groups of NI inner vertices are sampled randomly using a target edge

length criteria to be included in the training dataset. The number of groups increases with

the number of NI vertices. This data augmentation process leads to the accumulation of

large training datasets. To reduce the amount of training data using this process, an adaptive

strategy is studied; it is shown that using the adaptive sampling strategy for a group of contours

with NC = 10 edges with NI = 4 vertices, a 27 % higher accuracy can be achieved with a 17 %

less sample population compared to the random sampling of inner vertices.

The trained NNs of the meshing scheme are used for the development of local mesh improve-

ment operations (chapter 4). The operations improve the quality of elements that are below a

quality threshold and regulate edge lengths according to short and long edge length thresholds.

The connectivity networks are used for the development of the reconnection operation. The

reconnection operation retriangulates contours of local mesh configurations that contain bad

quality elements. The connectivity networks are also used to develop size control operations.

The size control operation inserts vertices in the middle of target edges and retriangulates

the contour of local mesh configurations that includes the edges. Two new set of NNs are

also introduced for the development of vertex repositioning and surface control operations.

The vertex reposition and surface control operations are based on the prediction of the newly

introduced NNs that output the coordinates of a vertex. The location of the vertex is optimal

quality-wise, given that the edges of the contour that includes the vertex are connected with

it to form elements. When included in local mesh improvement schemes, the operations

have the potential to improve the computational cost. Compared with local smoothing that

moves vertices of a mesh according to the optimization of a local objective functional, the

new positions of the vertices using the vertex repositioning and surface control operations are

found using the prediction of NNs. Compared with vertex cavitation and the SPR operations

that retriangulate cavities including bad quality elements, the reconnection operation does

not entail the computational cost of finding an optimal cavity or performing an exhaustive

search to find an optimal triangulation of the cavity.

120

7.1. Conclusion

The operations are validated and evaluated by including them in local mesh improvement

schemes (chapter 5). The schemes are used to improve the quality of static and dynamic

meshes. The static meshes have their vertices perturbed and edges randomly flipped to

produce bad quality elements. By applying the local improvement scheme to the perturbed

meshes, the quality of all test cases is improved. In the worst case, after the application of the

scheme, the mesh includes element angles that lie between 31◦ ≤ θ ≤ 109◦. By applying a local

mesh improvement scheme to the dynamic meshes, the operations are able to improve the

worst quality at each simulation step for all test cases. In the worst case, the application of

the local mesh improvement scheme results in element minimum angles that lie between

35◦ ≤ θmi n ≤ 44◦ and maximum angles that lie between 90◦ ≤ θmax ≤ 108◦ during the course of

the simulation. The results confirm that the operations can be used for the mesh improvement

purposes.

Finally, all the trained NNs are used to develop an iterative machine learning meshing scheme

for the creation of uniform and adaptive meshes (chapter 6). Based on a high resolution

contour, vertices are sampled to create a low resolution contour. The connectivity networks of

the meshing scheme for small contours is called to generate an initial mesh. Next, vertices

are inserted to the edges of the initial mesh. The number of inserted vertices is dependent

on the desirable target edge length and the maximum number of contour edges the NNs

of the meshing scheme are trained for. The inserted vertices are then projected to the high

resolution contour. Vertices are inserted in the interior of each sub-contour using the NNs of

the meshing scheme for small contours. The connectivity networks are then used to mesh

each sub-contour. Finally, the vertex repositioning and surface control operations are applied

to improve the quality of the resulted mesh. The aforementioned process is repeated until a

target edge length is met. Examples demonstrate that the iterative algorithm generates meshes

containing up to 1,658 elements with angles that lie between 28◦ ≤ θ ≤ 111◦.

The meshing scheme for small contours overcomes some limitations of previous approaches

using NNs with supervised learning for mesh generation (Yao et al. (2005), Vinyals et al. (2015),

Zhang et al. (2020)) and is more automatic as it is able to: (i) generate topologically valid

meshes and provide full triangle coverage of a domain (ii) generate meshes without the use of

an external meshing algorithm (iii) be trained using an automatic procedure without the need

of manual exploration for training patterns. Furthermore, for the generation of large meshes,

the extended scheme offers a more direct approach for mesh generation when compared to

unsupervised learning NNs; the use of SOM, LIG and GNG entail a computational complexity

(the search for BMU) and many iterations to converge to an acceptable mesh. Finally, to the

author’s knowledge, the present research work includes a first study for the development of

local improvement operations using supervised learning NNs.

121

Chapter 7. Conclusion and outlook

7.2 Outlook

The presented work leaves room for further investigation and improvements. Suggestions for

new research possibilities are discussed below.

Reduction of training data size

The contour data of NC edges used for the training of the NNs involves the random selection of

NC points from NC divided sectors of a unitary circle. To avoid the redundancy of the training

data population by generating similar contours, a dimensionality reduction algorithm could

be applied. The algorithm could project the contour population into a lower dimension space

(e.g 2D) where every point represents a contour. Therefore, by employing a sampling strategy

of points from the low dimension space (e.g uniform sampling), a reduced training population

can be created that avoids the inclusion of similar contours. Moreover, such a projection

into a lower dimension space provides a clearer overview of possible "states" in the higher

dimension contour space. This allows for an exploration in the contour space with the use of

reinforcement learning for the NNs involved. By sampling points from the lower dimension

space, the NNs could learn through a trial and error procedure where good outcomes are

rewarded and bad outcomes are penalized.

The training of the connectivity network is based on an augmentation scheme. For a contour,

multiple inner vertices have to be sampled to efficiently regress the values of the connection

table. This augmentation in the training population is necessary as there is no permutation

invariant way of ordering the inner vertices to be given as an input to the NNs. An adaptive

strategy to sample the inner vertices was shown to be efficient to reduce the population of

inner vertices to be sampled and therefore the training population size. However, after a

certain number of inner vertices (NI > 4) the strategy can be computationally expensive.

Therefore, further investigation is needed for the reduction of the connectivity network’s

training population; strategies to this direction could either involve the development of a more

sophisticated sampling strategy or the implementation of a NN architecture that is invariant

to the order of input and respects to the structure of the connection table.

NN hyperparameters and other regression models

The presented hyperparameters of the NNs involved in the development of the mesh gener-

ation scheme and the creation of mesh improvement operations rely on an optimal choice

after multiple trial and error tests. For a more efficient tuning of the NNs architecture, it is

worth investigating the development of NNs based on a evolutionary algorithm that will be

able to provide a clearer perspective regarding the choice of hyperparameters. It is also worth

investigating the use of other machine learning non-linear regression models (e.g Random

forests) for their adaption to the scheme.

Extension to 3D

The meshing scheme for small contours is transparent to 3D for tetrahedral mesh genera-

122

7.2. Outlook

tion. Given a contour composed of triangular faces, the step of predicting the number of

inner vertices is straight forward while the prediction of their location is achievable with the

use of a 3D grid. Since the formation of elements using the meshing scheme relies on the

connection of facet with a vertex to create element, the scheme could be extended to create

tetrahedral elements by connecting triangular faces with a vertex using a connection table.

The implementation in 3D needs to take the following into account:

• Vertex ordering: The ordering of the vertices for 2D contour is anti-clock wise to underlie

the connections of the edges and apply the Procrustes superposition to a reference

contour with a similar ordering. To underlie the connection of faces in 3D, an ordering

for the vertices of the 3D contour could be based on a depth first search (DFS) vertex

visit.

• Tetrahedralization algorithm: The triangulation algorithm of the meshing scheme

visits edges and connects them with a vertex according to an ordered connection table.

The connection table is ordered based on the highest entry values of each edge. In 3D,

however, such an ordering could lead to the formation of self-intersecting elements. To

avoid this, a tetrahedralization algorithm could be based on visiting triangular faces

with high entry values followed by their neighbor faces. If any sub-contours are formed

visiting all the faces, the tetrahedralization algorithm could be called recursively to mesh

them.

• Training data size: The extension to a higher dimension increases the complexity of

good quality mesh generation. Therefore, for efficient predictions of the NNs involved,

a higher amount of training data will be needed compared to the 2D case. An initial

population of 3D contours was generated to study the extension of the meshing scheme

for small contours in 3D. A large portion of computational time involves the calculation

of the connection table for the 3D contours. As an initial goal population, a number

of contours was chosen that increases with the number of faces. Starting from 80000

contours with 12 faces, this number increases with the number of faces. The increase

in the number, at a first stage, was not exponential as in the 2D case. This initial goal

population would give an starting perspective for the behaviour of the NNs involved in

the meshing scheme. An estimation on the amount of time needed to reach this initial

goal population is provided in Table 7.1. The training data are generated in a machine

with 64 GB memory and 2 CPUs Intel© Xeon© E5-2660v2 running at 2.2 GHz and 10

cores and a machine with 128GB memory with the same 2 CPUs.

123

Chapter 7. Conclusion and outlook

No. faces Goal population Weekly growth rate(%)
12 80000 30.1
16 160000 13.57
32 640000 5.8
64 12800000 1.2
128 24000000 0.2

Table 7.1: Weekly growth rate (%) of 3D contour training datasets along with the intended
initial goal population.

Furthermore, the developed operations could be extended for improving surface meshes

that represent the boundary geometry of 3-D objects with 2-D simplicial elements. In this

case, additional restrictions must be taken to respect the underlying surface of the mesh. The

developed surface control operation predicts the optimal location of a vertex that lies in a curve.

The operation could be extended such that it predicts the optimal location of a vertex that lies

in a 2-D surface. In this case, the optimal position of the vertex is calculated using quadric

smoothing that minimizes the distance of the vertex to planes created by the neighbor element

faces contained in the contour of the local mesh configuration. Information of the vertices

optimal location, the planes created by the neighbor elements faces, and the coordinates of

the contour that include the vertex could be included in a dataset that trains a NN to perform

the operation. The operations that change the connectivity of the mesh (reconnection, size

control) could be applied to projected contours of the local mesh configurations in the 2-D

plane. The connectivity information of the operation’s outcome could then be mapped back

in the 3-D space.

Code optimization and parallelization

All the developed algorithms are written in Python. Tests indicate that the perfomance of the

meshing scheme for small contours is approximately four times slower than the reference

mesher which is written in C++. The majority of mesh generation and improvement algorithms

are written in low level programming languages (i.e C++). Therefore, for a proper study in

computational time comparison, the algorithms should be transported in a low level language

where they could be optimized for a maximum performance.

Moreover, apart from the meshing scheme for small contours, the algorithms of mesh improve-

ment operation and large mesh generation are also transportable to acceleration platforms

such as GPU and FPGA architectures. The local mesh improvement operations could be

parallelized as each operation is applied to contours that do not share any connections. As

such, each contour can be processed independently. Similarly, the meshing scheme for large

meshes involves the application of the meshing of multiple small sub-contours. This allows for

the parallel application of the algorithm by meshing independently each of the sub-contours.

124

Bibliography

Ahn Chang-Hoi, Lee Sang-Soo, Lee Hyuek-Jae, & Lee Soo-Young (1991). A self-organizing

neural network approach for automatic mesh generation. IEEE Transactions on Magnetics,

27(5), 4201–4204.

Alfonzetti, S., Coco, S., Cavalieri, S., & Malgeri, M. (1996). Automatic mesh generation by the

let-it-grow neural network. IEEE Transactions on Magnetics, 32(3), 1349–1352.

Alliez, P., Cohen-Steiner, D., Yvinec, M., & Desbrun, M. (2005). Variational Tetrahedral Meshing.

ACM Trans. Graph., 24(3), 617–625.

Allwright, S. E. (1988). Techniques in Multiblock domain decomposition and surface grid

generation, (pp. 559–568). Pineridge Press.

Baker, T. J. (1997). Mesh adaptation strategies for problems in fluid dynamics. Finite Elements

in Analysis and Design, 25(3), 243 – 273. Adaptive Meshing, Part 2.

Baqué, P., Remelli, E., Fleuret, F., & Fua, P. (2018). Geodesic Convolutional Shape Optimization.

CoRR, abs/1802.04016.

Bargteil, A. W., Wojtan, C., Hodgins, J. K., & Turk, G. (2007). A Finite Element Method for

Animating Large Viscoplastic Flow. In ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07 New

York, NY, USA: ACM.

Beniere, R., Subsol, G., Gesquière, G., Breton, F. L., & Puech, W. (2013). A comprehensive

process of reverse engineering from 3D meshes to CAD models. Computer-Aided Design,

45(11), 1382 – 1393.

Boscaini, D., Masci, J., Rodolà, E., & Bronstein, M. (2016). Learning shape correspondence with

anisotropic convolutional neural networks. In Advances in neural information processing

systems (pp. 3189–3197).

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2017). Geometric Deep

Learning: Going beyond Euclidean data. IEEE Signal Processing Magazine, 34(4), 18–42.

Bruna, J., Zaremba, W., Szlam, A., & Lecun, Y. (2014). Spectral networks and locally connected

networks on graphs. In International Conference on Learning Representations (ICLR2014),

CBLS, April 2014.

125

Bibliography

Caendish, J. C., Field, D. A., & Frey, W. H. (1985). An apporach to automatic three-dimensional

finite element mesh generation. International journal for numerical methods in engineering,

21(2), 329–347.

Calisto, M. B. & Lai-Yuen, S. K. (2020). Adaen-net: An ensemble of adaptive 2D-3D Fully

Convolutional Networks for medical image segmentation. Neural Networks, 126, 76 – 94.

Chen, J., Zheng, J., Zheng, Y., Xiao, Z., Si, H., & Yao, Y. (2017). Tetrahedral mesh improvement

by shell transformation. Eng. with Comput., 33(3), 393–414.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. (2016). Deeplab: Seman-

tic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully

Connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, PP.

Chen, X. & Yang, V. (2014). Thickness-based adaptive mesh refinement methods for multi-

phase flow simulations with thin regions. Journal of Computational Physics, 269(Supple-

ment C), 22 – 39.

Cheng, S.-W., Dey, T. K., Edelsbrunner, H., Facello, M. A., & Teng, S.-H. (2000). Silver Exudation.

J. ACM, 47(5), 883–904.

Cheng, S.-W., Dey, T. K., & Shewchuk, J. (2012). Delaunay mesh generation. CRC Press.

Chew, L. P. (1989). Guaranteed-quality triangular meshes. Technical report, CORNELL UNIV

ITHACA NY DEPT OF COMPUTER SCIENCE.

Clausen, P., Wicke, M., Shewchuk, J. R., & O’Brien, J. F. (2013). Simulating Liquids and Solid-

liquid Interactions with Lagrangian Meshes. ACM Trans. Graph., 32(2), 17:1–17:15.

Cook, W. A. (1974). Body oriented (natural) co-ordinates for generating three-dimensional

meshes. International Journal for Numerical Methods in Engineering, 8(1), 27–43.

Dassi, F., Kamenski, L., Farrell, P., & Si, H. (2018). Tetrahedral mesh improvement using moving

mesh smoothing, lazy searching flips, and rbf surface reconstruction. Computer-Aided

Design, 103, 2 – 13. 25th International Meshing Roundtable Special Issue: Advances in Mesh

Generation.

de L’isle, E. B. & George, P. L. (1995). Optimization of tetrahedral meshes. In I. Babuska, W. D.

Henshaw, J. E. Oliger, J. E. Flaherty, J. E. Hopcroft, & T. Tezduyar (Eds.), Modeling, Mesh

Generation, and Adaptive Numerical Methods for Partial Differential Equations (pp. 97–127).

New York, NY: Springer New York.

Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on

graphs with fast localized spectral filtering. In Advances in neural information processing

systems (pp. 3844–3852).

126

Bibliography

Donea, J., Giuliani, S., & Halleux, J. (1982). An arbitrary lagrangian-eulerian finite element

method for transient dynamic fluid-structure interactions. Computer Methods in Applied

Mechanics and Engineering, 33(1), 689 – 723.

Dvinsky, A. S. (1991). Adaptive grid generation from harmonic maps on riemannian manifolds.

Journal of Computational Physics, 95(2), 450–476.

Edelsbrunner, H., Li, X.-Y., Miller, G., Stathopoulos, A., Talmor, D., Teng, S.-H., Üngör, A., &

Walkington, N. (2000). Smoothing and cleaning up slivers. In Proceedings of the Thirty-

Second Annual ACM Symposium on Theory of Computing, STOC ’00 (pp. 273–277). New

York, NY, USA: Association for Computing Machinery.

Egmont-Petersen, M., de Ridder, D., & Handels, H. (2002). Image processing with neural

networks—a review. Pattern recognition, 35(10), 2279–2301.

ElAdel, A., Zaied, M., & Amar, C. B. (2017). Fast DCNN based on FWT, intelligent dropout and

layer skipping for image retrieval. Neural Networks, 95, 10 – 18.

Fischer, A. & Bar-Yoseph, Z. (2000). Adaptive mesh generation based on multiresolution

quadtree representation. International Journal for Numerical Methods in Engineering, 48,

1571 – 1582.

Fort, J. (2006). SOM’s mathematics. Neural Networks, 19(6), 812 – 816. Advances in Self

Organising Maps - WSOM’05.

Freitag, L., Jones, M., & Plassmann, P. (1995). An efficient parallel algorithm for mesh smooth-

ing. In INTERNATIONAL MESHING ROUNDTABLE (pp. 47–58).

Freitag, L. A. & Ollivier-Gooch, C. (1997a). Tetrahedral mesh improvement using swapping and

smoothing. International Journal for Numerical Methods in Engineering, 40(21), 3979–4002.

Freitag, L. A. & Ollivier-Gooch, C. (1997b). Tetrahedral mesh improvement using swapping and

smoothing. International Journal for Numerical Methods in Engineering, 40(21), 3979–4002.

Frey, P. J. & George, P.-L. (2007). Mesh Generation: Application to Finite Elements. ISTE.

Fritzke, B. (1995). A growing neural gas network learns topologies. In Advances in neural

information processing systems (pp. 625–632).

George, J. A. (1971). Computer implementation of the finite element method.

George, P., Hecht, F., & Saltel, E. (1991). Automatic mesh generator with specified boundary.

Computer Methods in Applied Mechanics and Engineering, 92(3), 269 – 288.

Gower, J. C. (1975). Generalized procrustes analysis. Psychometrika, 40(1), 33–51.

Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing machines.

127

Bibliography

Greaves, D. M. & Borthwick, A. G. L. (1999). Hierarchical tree-based finite element mesh

generation. International Journal for Numerical Methods in Engineering, 45(4), 447–471.

Grigorescu, S., Trasnea, B., Cocias, T., & Macesanu, G. (2020). A survey of deep learning

techniques for autonomous driving. Journal of Field Robotics, 37(3), 362–386.

Guennebaud, G. & Gross, M. (2007). Algebraic Point Set Surfaces. ACM Trans. Graph., 26(3).

Guo, B., Wang, J., Jiang, X., Li, C., Su, B., Cui, Z., Sun, Y., & Yang, C. (2020). A 3d surface recon-

struction method for large-scale point cloud data. Mathematical Problems in Engineering,

2020, 1–14.

Guo, J., Ding, F., Jia, X., & Yan, D.-M. (2019). Automatic and high-quality surface mesh genera-

tion for CAD models. Computer-Aided Design, 109, 49 – 59.

Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman, S., & Cohen-Or, D. (2019). MeshCNN: a

network with an edge. ACM Transactions on Graphics, 38, 1–12.

Hassan, O., Morgan, K., Probert, E., & Peraire, J. (1996). Unstructured tetrahedral mesh genera-

tion for three-dimensional viscous flows. International Journal for Numerical Methods in

Engineering, 39(4), 549–567.

He, L., Zheng, J., Zheng, Y., Chen, J., Zhou, X., & Xiao, Z. (2019). Parallel algorithms for moving

boundary problems by local remeshing. Engineering Computations.

Henaff, M., Bruna, J., & LeCun, Y. (2015). Deep Convolutional Networks on Graph-Structured

Data. CoRR, abs/1506.05163.

Hermeline, F. (1982). Triangulation automatique d’un polyèdre en dimension n. ESAIM:

Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse

Numérique, 16(3), 211–242.

Holdstein, Y. & Fischer, A. (2008). Three-dimensional surface reconstruction using meshing

growing neural gas (mgng). The Visual Computer, 24(4), 295–302.

Hu, Y., Zhou, Q., Gao, X., Jacobson, A., Zorin, D., & Panozzo, D. (2018). Tetrahedral Meshing in

the Wild. ACM Trans. Graph., 37(4), 60:1–60:14.

Huang, W. (2001). Variational mesh adaptation: isotropy and equidistribution. Journal of

Computational Physics, 174(2), 903–924.

Huang, W. & Russell, R. D. (2010). Adaptive moving mesh methods, volume 174. Springer

Science & Business Media.

Hughes, T., Cottrell, J., & Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements,

NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics

and Engineering, 194(39), 4135 – 4195.

128

Bibliography

Kallinderis, Y., Khawaja, A., & McMorris, H. (1995). Hybrid prismatic/tetrahedral grid generation

for complex geometries.

Kipf, T. N. & Welling, M. (2017). Semi-supervised classification with graph convolutional

networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,

France, April 24-26, 2017, Conference Track Proceedings: OpenReview.net.

Klincsek, G. (1980). Minimal triangulations of polygonal domains. In P. L. Hammer (Ed.),

Combinatorics 79, volume 9 of Annals of Discrete Mathematics (pp. 121 – 123). Elsevier.

Klingner, B. M. & Shewchuk, J. R. (2008). Aggressive tetrahedral mesh improvement. In

Proceedings of the 16th international meshing roundtable (pp. 3–23).

Knupp, P. M. (1996). Jacobian-weighted elliptic grid generation. SIAM Journal on Scientific

Computing, 17(6), 1475–1490.

Knupp, P. M. & Robidoux, N. (2000). A framework for variational grid generation: conditioning

the jacobian matrix with matrix norms. SIAM Journal on Scientific Computing, 21(6), 2029–

2047.

Kohonen, T. (2013). Essentials of the self-organizing map. Neural Networks, 37, 52 – 65.

Twenty-fifth Anniversay Commemorative Issue.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet Classification with Deep Convo-

lutional Neural Networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.),

Advances in Neural Information Processing Systems 25 (pp. 1097–1105). Curran Associates,

Inc.

Labelle, F. & Shewchuk, J. R. (2007). Isosurface stuffing: Fast tetrahedral meshes with good

dihedral angles. ACM Trans. Graph., 26(3), 57–es.

Lambrechts, J., Comblen, R., Legat, V., Geuzaine, C., & Remacle, J.-F. (2008). Multiscale mesh

generation on the sphere. Ocean Dynamics, 58(5), 461–473.

Lavoué, G., Dupont, F., & Baskurt, A. (2005). A new CAD mesh segmentation method, based

on curvature tensor analysis. Computer-Aided Design, 37(10), 975 – 987.

LeCun, Y. (2012). Learning Invariant Feature Hierarchies. In European conference on computer

vision (pp. 496–505).

Li, X. (2001). Sliver-Free Three Dimensional Delaunay Mesh Generation. PhD thesis, USA.

AAI9996652.

Liang, Q., Rodriguez, C., Egusquiza, E., Escaler, X., Farhat, M., & Avellan, F. (2007). Numerical

simulation of fluid added mass effect on a francis turbine runner. Computer & Fluids, 36,

1106–1118.

129

Bibliography

Litany, O., Bronstein, A., Bronstein, M., & Makadia, A. (2018). Deformable shape completion

with graph convolutional autoencoders. In Proceedings of the IEEE conference on computer

vision and pattern recognition (pp. 1886–1895).

Liu, J., Chen, Y. Q., & Sun, S. L. (2009). Small polyhedron reconnection for mesh improvement

and its implementation based on advancing front technique. International Journal for

Numerical Methods in Engineering, 79(8), 1004–1018.

Liu, Y., Saputra, A. A., Wang, J., Tin-Loi, F., & Song, C. (2017). Automatic polyhedral mesh

generation and scaled boundary finite element analysis of STL models. Computer Methods

in Applied Mechanics and Engineering, 313, 106–132.

Lohner, R. (1995). Mesh adaptation in fluid mechanics. Engineering Fracture Mechanics, 50(5),

819 – 847.

Löhner, R. (1996). Extensions and improvements of the advancing front grid generation

technique. Communications in Numerical Methods in Engineering, 12(10), 683–702.

Löhner, R. & Parikh, P. (1988). Generation of three-dimensional unstructured grids by the

advancing-front method. International Journal for Numerical Methods in Fluids, 8(10),

1135–1149.

López-Rubio, E. & Ramos, A. D. (2014). Grid topologies for the self-organizing map. Neural

Networks, 56, 35 – 48.

Ma, X. & Sun, L. (2019). An automatic approach to constrained quadrilateral mesh generation.

Engineering Computations, 37, 929–951.

Malvern, L. E. (1969). Introduction to the Mechanics of a Continuous Medium. Number

Monograph.

Manevitz, L., Yousef, M., & Givoli, D. (1997). Finite Element Mesh Generation Using Self

Organizing Neural Networks. Computer-Aided Civil and Infrastructure Engineering, 12(4),

233–250.

Marcum, D. L. & Weatherill, N. P. (1995). Unstructured grid generation using iterative point

insertion and local reconnection. AIAA Journal, 33(9), 1619–1625.

Maréchal, L. (2001). A new approach to octree-based hexahedral meshing. In IMR.

Maron, H., Galun, M., Aigerman, N., Trope, M., Dym, N., Yumer, E., Kim, V. G., & Lipman, Y.

(2017). Convolutional Neural Networks on Surfaces via Seamless Toric Covers. ACM Trans.

Graph., 36(4).

Marot, C. & Remacle, J.-F. (2020). Quality tetrahedral mesh generation with hxt.

Martinetz, T. & Schulten, K. (1994). Topology representing networks. Neural Networks, 7(3),

507 – 522.

130

Bibliography

Marton, Z. C., Rusu, R. B., & Beetz, M. (2009). On fast surface reconstruction methods for large

and noisy point clouds. In 2009 IEEE international conference on robotics and automation

(pp. 3218–3223).: IEEE.

Masci, J., Boscaini, D., Bronstein, M., & Vandergheynst, P. (2015). Geodesic convolutional neu-

ral networks on riemannian manifolds. In Proceedings of the IEEE international conference

on computer vision workshops (pp. 37–45).

Mavriplis, D. J. (1995). An Advancing Front Delaunay Triangulation Algorithm Designed for

Robustness. Journal of Computational Physics, 117(1), 90 – 101.

Melato, M., Hammer, B., & Hormann, K. (2007). Neural gas for surface reconstruction. Institut

für Informatik-IfI Technical Report Series.

Merriam, M. (1991). An efficient advancing front algorithm for Delaunay triangulation.

Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J., & Bronstein, M. M. (2017). Geomet-

ric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs. In 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 5425–5434).

Morozov, D. & Peterka, T. (2016). Efficient delaunay tessellation through k-d tree decomposi-

tion. In SC ’16: Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis (pp. 728–738).

Nechaeva, O. (2006). Composite Algorithm for Adaptive Mesh Construction Based on Self-

Organizing maps. In S. D. Kollias, A. Stafylopatis, W. Duch, & E. Oja (Eds.), Artificial Neural

Networks – ICANN 2006 (pp. 445–454). Berlin, Heidelberg: Springer Berlin Heidelberg.

Neil Molino, R. B. & Fedkiw, R. (2003). Tetrahedral mesh generation for deformable bodies. In

In Proc. Symposium on Computer Animation.

Parthasarathy, V., Graichen, C., & Hathaway, A. (1994). A comparison of tetrahedron quality

measures. Finite Elements in Analysis and Design, 15(3), 255 – 261.

Parthasarathy, V. & Kodiyalam, S. (1991). A constrained optimization approach to finite

element mesh smoothing. Finite Elements in Analysis and Design, 9(4), 309 – 320.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A.,

Antiga, L., & Lerer, A. (2017). Automatic differentiation in PyTorch. In NIPS-W.

Paul Chew, L. (1989). Constrained Delaunay triangulations. Algorithmica, 4(1), 97–108.

Pochet, A., Filho, W. C., Lopes, H., & Gattass, M. (2016). A new quadtree-based approach for

automatic quadrilateral mesh generation. Engineering with Computers, 33, 275–292.

Portaneri, C., Alliez, P., Hemmer, M., Birklein, L., & Schoemer, E. (2019). Cost-driven Frame-

work for Progressive Compression of Textured Meshes. In Proceedings of the 10th ACM

Multimedia Systems Conference, MMSys ’19 (pp. 175–188). New York, NY, USA: ACM.

131

Bibliography

Rebay, S. (1993). Efficient Unstructured Mesh Generation by Means of Delaunay Triangulation

and Bowyer-Watson Algorithm. Journal of Computational Physics, 106(1), 125 – 138.

Rivara, M.-C. (1997). New longest-edge algorithms for the refinement and/or improvement of

unstructured triangulations. International Journal for Numerical Methods in Engineering,

40, 3313–3324.

Rodriguez, M. & Maria, C. (2017). Lepp-WCentroid method for tetrahedral mesh improvement.

Ruppert, J. (1993). A new and simple algorithm for quality 2-dimensional mesh generation”. In

Proceedings of the fourth annual ACM-SIAM Symposium on Discrete algorithms, volume 66

(pp.8̃3).: SIAM.

Scheiders, R. (2000). Octree-based hexahedral mesh generation. International Journal of

Computational Geometry & Applications, 10(04), 383–398.

Schneiders, R. & Bünten, R. (1995). Automatic generation of hexahedral finite element meshes.

Computer Aided Geometric Design, 12(7), 693 – 707. Grid Generation, Finite Elements, and

Geometric Design.

Schroeder, W. J. & Shephard, M. S. (1990). A combined octree/delaunay method for fully

automatic 3-d mesh generation. International Journal for Numerical Methods in Engineering,

29(1), 37–55.

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2014). Overfeat:

Integrated Recognition, Localization and Detection using Convolutional Networks. CoRR,

abs/1312.6229.

Seveno, E. et al. (1997). Towards an adaptive advancing front method. In 6th International

Meshing Roundtable (pp. 349–362).

Shewchuk, J. R. (2002a). Constrained Delaunay Tetrahedralizations and Provably Good Bound-

ary Recovery. In In Eleventh International Meshing Roundtable (pp. 193–204).

Shewchuk, J. R. (2002b). Constrained delaunay tetrahedralizations and provably good bound-

ary recovery. In IMR (pp. 193–204).: Citeseer.

Shewchuk, J. R. (2002c). What is a Good Linear Element? Interpolation, Conditioning, and

Quality Measures. In IMR.

Si, H. & Gärtner, K. (2005). Meshing piecewise linear complexes by constrained delaunay

tetrahedralizations. In B. W. Hanks (Ed.), Proceedings of the 14th International Meshing

Roundtable (pp. 147–163). Berlin, Heidelberg: Springer Berlin Heidelberg.

Si, H. & Shewchuk, J. R. (2014). Incrementally constructing and updating constrained delaunay

tetrahedralizations with finite-precision coordinates. Engineering with Computers, 30(2),

253–269.

132

Bibliography

Simonyan, K. & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale

Image Recognition. CoRR, abs/1409.1556.

Solanpää, J. & Räsänen, E. (2018). Fiend–finite element quantum dynamics. arXiv preprint

arXiv:1812.05943.

Sumner, R. W. & Popović, J. (2004). Deformation Transfer for Triangle Meshes. ACM Trans.

Graph., 23(3), 399–405.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to Sequence Learning with Neural

Networks. In Advances in neural information processing systems (pp. 3104–3112).

Tatarchenko, M., Park, J., Koltun, V., & Zhou, Q. (2018). Tangent Convolutions for Dense

Prediction in 3D. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(pp. 3887–3896).

Thompson, J., Warsi, Z. U. A., & Mastin, C. (1985). Numerical grid generation: Foundations

and applications.

Triantafyllidis, D. G. & Labridis, D. P. (2002). A finite-element mesh generator based on growing

neural networks. IEEE Transactions on Neural Networks, 13(6), 1482–1496.

Verma, N., Boyer, E., & Verbeek, J. (2018). Feastnet: Feature-steered graph convolutions for

3D shape analysis. In Proceedings of the IEEE conference on computer vision and pattern

recognition (pp. 2598–2606).

Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer Networks. In C. Cortes, N. D. Lawrence,

D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in Neural Information Processing

Systems 28 (pp. 2692–2700). Curran Associates, Inc.

Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., & Jiang, Y.-G. (2018). Pixel2mesh: Generating

3D mesh models from single RGB images. In Proceedings of the European Conference on

Computer Vision (ECCV) (pp. 52–67).

Watson, D. F. (1981). Computing the n-dimensional Delaunay tessellation with application to

Voronoi polytopes*. The Computer Journal, 24(2), 167–172.

Weatherill, N. P. & Hassan, O. (1994). Efficient three-dimensional delaunay triangulation with

automatic point creation and imposed boundary constraints. International Journal for

Numerical Methods in Engineering, 37(12), 2005–2039.

Wen, C., Zhang, Y., Li, Z., & Fu, Y. (2019). Pixel2mesh++: Multi-view 3D mesh generation via

deformation. In Proceedings of the IEEE International Conference on Computer Vision (pp.

1042–1051).

Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., & O’Brien, J. F. (2010).

Dynamic local remeshing for elastoplastic simulation. ACM Transactions on graphics (TOG),

29(4), 1–11.

133

Bibliography

Wojtan, C. & Turk, G. (2008). Fast viscoelastic behavior with thin features. ACM Trans. Graph.,

27.

Yao, S., Yan, B., Chen, B., & Zeng, Y. (2005). An ANN-based element extraction method for

automatic mesh generation. Expert Syst. Appl., 29, 193–206.

Yerry, M. A. & Shephard, M. S. (1983). A modified quadtree approach to finite element mesh

generation. IEEE Computer Graphics and Applications, 3(1), 39–46.

Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep learning based

natural language processing. IEEE Computational intelligenCe magazine, 13(3), 55–75.

Zhang, Z., Wang, Y., Jimack, P. K., & Wang, H. (2020). Meshingnet: A new mesh generation

method based on deep learning. In V. V. Krzhizhanovskaya, G. Závodszky, M. H. Lees, J. J.

Dongarra, P. M. A. Sloot, S. Brissos, & J. Teixeira (Eds.), Computational Science – ICCS 2020

(pp. 186–198). Cham: Springer International Publishing.

Zhao, D., Chen, J., Zheng, Y., Huang, Z.-g., & Zheng, J. (2015). Fine-grained parallel algorithm

for unstructured surface mesh generation. Computer and structures, 154, 177–191.

Zheng, J., Chen, J., Zheng, Y., Yao, Y., Li, S., & Xiao, Z. (2016). An improved local remeshing

algorithm for moving boundary problems. Engineering Applications of Computational Fluid

Mechanics, 10(1), 403–426.

134

A Supplementary material

A.1 Back propagation

The NN is trained by minimizing a loss function over a training dataset D = {(X (k),Y (k))}N
k=0,

where X (k) = (x(k)
1 , .., x(k)

n) are the per sample input signals and Y (k) = (y (k)
1 , .., y (k)

m) are the

desirable outputs. To apply gradient descent to the loss function:

L (w,b) =
N∑

k=1
`(y(X (k); w,b),Y (k)) (A.1)

the expression of the gradient of the per sample loss function `k = `(y(X (k); w,b),Y (k)) with

respect to the parameters a = (w,b) must be calculated, e.g.:

∂`k

∂w [l]
i , j

and
∂`k

∂b[l]
i

(A.2)

for l = 1,2, ...,c +1.

For clarity a single input of a training example X is considered. According to the architecture

of NN the input signal follows the path:

X [0] ≡ X
w [1],b[1]

−−−−−→ u[1] g [1]

−−→ X [1] w [2],b[2]

−−−−−→ u[2] g [2]

−−→ X [2] w [2],b[2]

−−−−−→ . . .
w [c],b[c]

−−−−−→ u[c] g [c]

−−→ X [c] ≡ f (X ; w,b)

(A.3)

where for the L[l] layer of the NN, X [l] = (x[l]
1 , ..., x[l]

hl
) denotes the output signal, w [l] = (w [l]

(1,1), ...,

w [l]
(hl−1,hl)), b[l] = (b[l]

1 , ...,b[l]
hl

) are the set of weights and biases respectively, u[l] = w [l]X [l−1] +
b[l], and g [l] = g [l](u[l]) ≡ X [l] is the output of the activation functions. The input signal and

output signal of the NN are formally set as X [0] ≡ X and t (X ; w,b) ≡ X [c] respectively. The path

135

Appendix A. Supplementary material

A.3 is also known as forward pass.

By examining the path between two layers:

X [l−1] w [l],b[l]

−−−−−→ u[l] g [l]

−−→ X [l] (A.4)

it can be observed that since g [l] influences the loss function ` of sample input X through x[l]
j

with x[l]
j = g [l](u[l]

j), ∀ j = {1,2, ..,hl }:

∂`

∂u[l]
j

= ∂`

∂x[l]
j

∂x[l]
j

∂u[l]
j

= ∂`

∂x[l]
j

∂g [l]

∂u[l]
j

= ∂`

∂x[l]
j

ġ [l](u[l]
j) (A.5)

and since x[l−1]
i influences ` through u[l]

j with u[l]
j = b[l−1]

j +∑hl

i=1 w [l]
i j x[l−1]

i , ∀i = {1,2, ..,hl−1}:

∂`

∂x[l−1]
i

=∑
i

∂`

∂u[l]
j

∂u[l]
j

∂x[l−1]
i

=∑
i

∂`

∂u[l]
j

w [l]
i , j (A.6)

Since u[l]
j = b[l−1]

j +∑hl

i=1 w [l]
i j x[l−1]

i , w [l]
i j and b[l]

j influence ` through u(l)
j , the chain rule gives:

∂`

∂w [l]
i , j

= ∂`

∂u[l]
j

∂u[l]
j

∂w [l]
i , j

= ∂`

∂u[l]
j

x[l−1]
i (A.7)

and similarly:

∂`

∂b[l]
j

= ∂`

∂u[l]
j

∂u[l]
j

∂b[l]
j

= ∂`

∂u[l]
j

(A.8)

For the j neuron in the last layer L[c] of NN the gradient of the lost function with respect to the

input is:

∂`

∂x[c]
j

= (∇`) j (A.9)

To compute the derivatives of the loss function with respect to the parameters a = (w,b),

∂`/∂w [l]
i , j and ∂`/∂b[l]

j , first the derivative A.9 is computed. Then by propagating backwards,

the derivatives of the loss function with respect to the activation functions are computed using

eq.A.5 and eq.A.6 are calculated. Finally, ∂`/∂w [l]
i , j and ∂`/∂b[l]]

j are computed using eq.A.7

136

A.2. Gmsh© mesh generation

and eq.A.8 respectively.

A.2 Gmsh© mesh generation

The demonstrated graded meshes for training the NNs and those that are subjected to the

mesh improvement are generated using Gmsh©. The software generates a mesh given a .geo

file that describes the geometry of the input. The target edge length can be either defined

uniformly or regionally for adaptive mesh generation. To achieve adaptivity in mesh element

size for the demonstrated examples, the target edge length is defined by an interpolation

process; the points of the geometry are assigned a desirable target edge length and the values

of the target edge length for the rest of the geometry are found by interpolating the assigned

values of the points. Once the input geometry (i nput .g eo) and the desirable target edge

length is defined, the command:

"i nput .g eo −2 −al g o del 2d out put .msh"

is called to generate the mesh (out put .msh). The Constrained Delaunay Triangulation

(del 2d) was used along by a refinement process to satisfy target edge length criteria (uniform

or local). In what follows examples of the .geo files, the geometry and the resulted mesh are

shown.

A.2.1 Contour mesh generation

The i nput .g eo file provides to the reference mesher the information on the geometry of the

contour, the meshing parameters and the target edge length (Fig. A.1). The points, edges

(Segments), contour (LineLoop) and cavity (Surface) are given as information to create the

geometry of the contour. The Trasfinite command restricts points from being inserted at the

edges of the contour. The target edge length is defined via the Mesh.CharacteristicLengthFactor

variable.

137

Appendix A. Supplementary material

(a)

(b) (c)

Figure A.1: Example of generating a graded mesh of a contour geometry with Gmsh©. (a)
In the i nput .g eo file the points, edges (Segments), contour (LineLoop) define the geometry
input. The Trasfinite command constraints vertices from being inserted at the edges of the
contour. Mesh.CharacteristicLengthFactor defines the uniform target edges length. (b) The
geometry of the i nput .g eo file. (c) The graded mesh after calling the command "i nput .g eo −
2 −al g o del 2d out put .msh".

A.2.2 Test cases mesh generation

To generate meshes of adaptive size the points are assigned a target edge length value which

dictates the desired element size at these points. The size of the mesh elements is then

computed by interpolating these values inside the domain during mesh generation (Fig. A.2,

Fig. A.3). The size is given in the form of a 4th point coordinate (x, y, z, ls), where x, y, z are the

138

A.2. Gmsh© mesh generation

coordinates of the point and ls is the target edge length.

139

Appendix A. Supplementary material

(a)

(b) (c)

Figure A.2: Example of generating a graded mesh of the zalesak disc geometry with Gmsh©.
(a) In the i nput .g eo file first the geometry of the square border is created and its points are as-
signed a target edge length 0.5. Next, the geometry of the circle and the slot is created. The slot-
ted disc is a result of a boolean difference btw the surface of the circle and the slot. The vertices
of the slotted disc interface are assigned a target edge length 0.1. The size of the mesh elements
will then be computed by interpolating these values of the square’s points and the interface’s
points (Mesh.MeshSizeFromPoints). (b) The geometry of the i nput .g eo file. (c) The graded
mesh of zalesak disc after calling the command "i nput .g eo −2 −al g o del 2d out put .msh".

140

A.2. Gmsh© mesh generation

(a)

(b) (c)

Figure A.3: Example of generating a graded mesh of the square with the parabolic interface
geometry with Gmsh©. (a) In the i nput .g eo file first the geometry of the square border are
created and its assigned a target edge length 0.5. Next, the geometry parabolic interface is
created. The slotted disc is a result of a boolean difference btw the surface of the circle and the
slot. The vertices of the parabolic interface are assigned a target edge length 0.1. The size of the
mesh elements will then be computed by interpolating these values of the square’s points and
the interface’s points (Mesh.MeshSizeFromPoints). (b) The geometry of the i nput .g eo file. (c)
The graded mesh of the square including the parabolic interface after calling the command
"i nput .g eo −2 −al g o del 2d out put .msh".

141

Appendix A. Supplementary material

A.3 Triangulation algorithm

A.3.1 Locking mechanism

During the triangulation algorithm, the vertices V mesh are verified to be included in the set

of locked vertices Vlocked . For a contour vertex, the elements are traversed using the edges

that are connected to the vertex. Starting from one of the contour edges linked to the vertex,

if the traversal ends with an edge that is also a contour edge, then the vertex is considered

locked (Fig. A.4a). For an interior vertex, starting from an edge connected to the interior point

the elements are traversed in a similar manner. If the final visited edge of the traversal is the

initial one, then the inner vertex is considered locked (Fig. A.4b). A contour facet F is tagged

as Fl ocked an no longer available to form connections if the element that contains the facet F

contains another contour facet.

p1

p0

p2

pI,1

pI,2

E1

E2

E3

(a)

pI

p1

p0

p6

p5
p4

p3

p2

E1
E2

E3

E4
E5

E6

E7

(b)

Figure A.4: (a) Example of a locked contour vertex p1. Starting from the contour facet {p0, p1} of
element E1 the adjacent by edges of the elements E2 and E3 are visited via the traversal of facets
{p0, p1} → {p1, p I ,1} → {p1, p I ,2} → {p1, p2}. The facet {p1, p2} is a contour facet. Therefore, the
contour vertex p1 is locked. (b) Exampled of a locked interior vertex. Edges of elements
surrounding the interior vertex p I are traversed. Starting from facet {p I , p0} this leads to
the edge traversal {p I , p0} → {p I , p1} → {p I , p2} → {p I , p3} → {p I , p4} → {p I , p5} → {p I , p6} →
{p I , p0}. The starting facet {p I , p0} is also the last visited facet. Therefore, p I is locked.

A.3.2 Sub-contour detection

The detection of a sub-contour is based on facet traversal from a set Fvi si t . Fvi si t includes

a set of facets that are located in the interior of the contour (Fi nter i or) and contour facets

(Fcontour). The algorithm starts with an initial set of vertices that are open for connections

(Vopen) and a set of interior facets. Before performing edge traversal to detect sub-contours the

algorithm fist verifies that all the vertices included in Vopen are not locked due to a creation of

an unregistered element (Alg. 11, Lines 9-22). If after the verification, no vertices are included

142

A.3. Triangulation algorithm

in Vopen then the algorithm stops (Alg. 11, Lines 23-25). If open vertices still exist, then the

interior facets that either are common facet that contain a vertex that is locked or are common

facets for two elements are deleted from the list (Alg. 11, Lines 26-35). The updated set of

F f acet along with the set of open vertices Vopen are included in a set of visiting vertices Vvi si t

and visiting facets Fvi si t . Fvi si t also includes the contour facets. Starting from a vertex in

Vvi si t the next vertex vnext that is contained in one of the facets Fvi si t is visited. The facet

that is traversed is included in the set of a sub-contour facet Fsubcontour , the vertex vnext if

then removed from the set Vvi si t and the next vertex that is linked to it through a facet from

Fvi si t is visited. When the visited vertex is identified as the starting vertex, all the facets that

are part of a sub-contour that include the stating vertex have been visited and the sub-contour

is included in a sub-contour list (Alg. 11, Lines 38-49). The procedure of acquiring the formed

sub-contours is iterated until the set Vvi si t is empty (Fig. A.5).

p1
p2

p3

p4
p6

p0

p5

Figure A.5: Example of spotting a sub-contour P . After the connection of of contour facets
with element. The vertices (contour or inner) {p0, p1, p2, p3, p4, p5, p6} are open for further
connections and are contained in the set of vertices to visit Vvi si t . The list of facets to visit
Fvi si t are the facets that link the open vertices. Fvi si t contains facets that are located in the
interior of a contour (appearing after the creation of elements) or contour facets. Starting from
p0, vnext = p1 is visited through the facet of Fvi si t = {p0, p1}. p1 is removed from the list Vvi si t .
The rest of the vertices from Vvi si t are visited using the facets of Fvi si t in a similar fashion.
Each time a vertex is visited it is removed from the set Vvi si t . The traversal stops at p0 which is
the initial visiting vertex. All the edges visited from Fvi si t are contained the the set Fcontour

which contains the facets of sub-contour P .

143

Appendix A. Supplementary material

Algorithm 11: Algorithm for detecting the formation of sub-contours

1 Fcontour : Set of contour facets
2 Fi nter i or : Set of facets on the interior of the contour
3 Vlocked : Set of locked vertices
4 Vopen : Set vertices open for connection
5 Fsubcontour : Set of sub-contour facets
6 SubContour Li st : Sub-contour List
7 Vvi si t : Set of vertices for edge traversal
8 Fvi si t : Set of facets included in traversal

/* Verifying if vertices of Vopen are locked due to unregistered element */

9 foreach vertex v in Vopen do
10 if v is locked after creation of an element E then
11 delete v from Vopen

12 end
13 if v is a contour vertex and not in Vlocked then
14 Perform edge traversal of elements connected with v from starting from both

contour edges linked with v
15 Gather last indices of the vertices from lasst edges found, (v1, v2) found during

edge traversal from both directions that linked to v
16 if edge F = (v1, v2) is found in the set Fi nter i or then
17 Add element E = (F, v) to list of elements
18 Remove F from Fi nter i or

19 Remove v from Vlocked

20 end
21 end
22 end
23 if Vopen is empty then
24 Return
25 end

/* Excluding facets from Fi nter i or */

26 foreach edge F in Fi nter i or do
27 if F has one vertex that belongs in Vlocked then
28 delete F from Fi nter i or

29 end
30 end
31 foreach vertex v in Vopen do
32 if v is connected to a facet F in Fi nter i or and F is a common facet for two elements

then

33 end
34 Remove F from Fi nter i or

35 end
/* Detect sub-contours using sets Vvi si t and Fvi si t */

36 Vvi si t =Vopen

37 Fvi si t = Fcontour +Fi nter i or

38 foreach v in Vvi si t do
39 while Vvi si t is not empty do
40 vvi si t = v
41 do
42 Find facet a F = (vvi si t , vnext) from Fvi si t , where vnext in Vvi si t

43 Include F in Fsubcontour

44 vnext = vvi si t

45 Remove vvi si t from Vvi si t

46 while vnext 6= v ;

47 end
48 Include Fsubcontour in SubContour Li st

49 end
50 return SubContour Li st

144

B Code

B.1 Mesh generation

B.1.1 Feature Transformation

1 import numpy as np

2

3 # Function that applies procrustes superposition to a polygon

4 def apply_procrustes (polygon_points , plot=False) :

5

6 # Get r e f e r e n c e polygon and adjust any random poygon to i t

7 ref_polygon=get_reference_polygon (polygon_points . shape [0])

8

9

10 # Mean of each coordinate

11 mu_polygon = polygon_points .mean(0)

12 mu_ref_polygon = ref_polygon .mean(0)

13

14 # Centralize data to the mean

15 centralised_ref_polygon_points = ref_polygon −mu_ref_polygon

16 centralised_polygon_points = polygon_points −mu_polygon

17

18 # Squared sum of X−mean(X)

19 ss_ref_polygon_points = (centralised_ref_polygon_points * * 2 .) .sum()

20 ss_polygon_points = (centralised_polygon_points * * 2 .) .sum()

21

22

23 # Frobenius norm of X

24 norm_ss_ref_polygon_points = np . sqrt (ss_ref_polygon_points)

25 norm_ss_polygon_points = np . sqrt (ss_polygon_points)

26

27

28 # Scale to equal (unit) norm

29 centralised_ref_polygon_points /=norm_ss_ref_polygon_points

30 centralised_polygon_points /=norm_ss_polygon_points

31

32

145

Appendix B. Code

33 # Finding best rotation to superimpose on regular t r i a n g l e

34 # Applying SVD to the matrix

35 A = np . dot (centralised_ref_polygon_points . T , centralised_polygon_points)

36 U, s , Vt = np . l i n a l g . svd (A , ful l_matr ices =False)

37 V=Vt . T

38 R = np . dot (V ,U. T)

39

40

41 traceTA = s .sum()

42 indices =[i for i in range (polygon_points . shape [0])]

43

44

45

46 polygon_transformed =norm_ss_ref_polygon_points * traceTA *np . dot (

centralised_polygon_points , R) +mu_ref_polygon

47

48 i f plot==True :

49 plot_coords=np . vstack ([polygon_transformed , polygon_transformed [0]])

50 (s , t) =zip (* plot_coords)

51 p l t . plot (s , t)

52 for index , i in enumerate (indices) :

53 p l t . annotate (s t r (i) , (s [index] , t [index]))

54

55 return polygon_transformed

B.1.2 Approximation of inner vertices location

B.1.2.1 Point selection

1 import numpy as np

2

3 ’ ’ ’ Function s e l e c t i n g minimum score (g r i d _ q u a l i t i e s) grid points . The function returns

the s e l e c t e d points , the surrounding grid points and t h e i r s c o r e s to conduct

interpolation . ’ ’ ’

4 def select_points (contour , grid_points , g r i d _ q u a l i t i e s , nb_of_points , nb_of_grid_points ,

target_edge_length) :

5

6 selected_points = []

7 surrounding_points_indices_list = []

8 surrounding_points_list = []

9 g r i d _ q u a l i t i e s _ s u r r o u n d i n g_ l i s t = []

10 g r i d _ q u a l i t i e s _ d u p l i c a t e = g r i d _ q u a l i t i e s . f l a t t e n ()

11

12 # S e l e c t minimum score grid points

13 for i in range (nb_of_points) :

14

15 minimum_index=np . argmin (g r i d _ q u a l i t i e s _ d u p l i c a t e)

16 surrounding_points_index=np . array ([minimum_index+1 ,minimum_index−1 ,

minimum_index+nb_of_grid_points

146

B.1. Mesh generation

17 ,minimum_index−nb_of_grid_points , minimum_index−nb_of_grid_points +1 ,

minimum_index−nb_of_grid_points −1 ,

18 minimum_index+nb_of_grid_points +1 ,minimum_index+nb_of_grid_points −1])

19

20

21 surrounding_points_index_2_ring=np . array ([minimum_index+2 ,minimum_index−2 ,

22 minimum_index+2* nb_of_grid_points ,

23 minimum_index+2* nb_of_grid_points +2 ,minimum_index+2* nb_of_grid_points −2 ,

24 minimum_index+2* nb_of_grid_points +1 ,minimum_index+2* nb_of_grid_points −1 ,

25

26

27 minimum_index−2* nb_of_grid_points ,

28 minimum_index−2* nb_of_grid_points +1 ,minimum_index−2* nb_of_grid_points −1 ,

29 minimum_index−2* nb_of_grid_points +2 , minimum_index−2* nb_of_grid_points −2 ,

30

31

32 minimum_index+nb_of_grid_points +2 ,

33 minimum_index+nb_of_grid_points −2 ,

34

35 minimum_index−nb_of_grid_points +2 ,

36 minimum_index−nb_of_grid_points −2

37

38

39

40])

41 surrounding_points_index_3_ring=np . array ([

42 minimum_index+3 ,minimum_index−3 ,

43

44 minimum_index+3* nb_of_grid_points ,

45 minimum_index+3* nb_of_grid_points +3 ,minimum_index+3* nb_of_grid_points −3 ,

46 minimum_index+3* nb_of_grid_points +2 ,minimum_index+3* nb_of_grid_points −2 ,

47 minimum_index+3* nb_of_grid_points +1 ,minimum_index+3* nb_of_grid_points −1 ,

48

49

50

51 minimum_index−3* nb_of_grid_points ,

52 minimum_index−3* nb_of_grid_points +3 , minimum_index−3* nb_of_grid_points −3 ,

53 minimum_index−3* nb_of_grid_points +2 , minimum_index−3* nb_of_grid_points −2 ,

54 minimum_index−3* nb_of_grid_points +1 ,minimum_index−3* nb_of_grid_points −1 ,

55

56

57

58 minimum_index+nb_of_grid_points +3 ,

59 minimum_index+nb_of_grid_points −3 ,

60

61 minimum_index−nb_of_grid_points +3 ,

62 minimum_index−nb_of_grid_points −3 ,

63

64 minimum_index+2* nb_of_grid_points +3 ,

65 minimum_index+2* nb_of_grid_points −3 ,

66

67 minimum_index−2* nb_of_grid_points +3 ,

147

Appendix B. Code

68 minimum_index−2* nb_of_grid_points −3

69

70

71

72

73])

74

75

76 try :

77 surrounding_points=grid_points [np . asarray (surrounding_points_index)]

78 surrounding_points_2_ring=grid_points [np . asarray (

surrounding_points_index_2_ring)]

79 surrounding_points_3_ring=grid_points [np . asarray (

surrounding_points_index_3_ring)]

80 except IndexError as e :

81 print (e)

82

83 point_minimum=grid_points [minimum_index]

84 selected_points . append(np . array (point_minimum))

85

86 # Surrounding region (ring) in accordance with 20% of t a r g e t edge length

87 i f .6 < target_edge_length <=1:

88 ring=3

89 e l i f .4 < target_edge_length < . 6 :

90 ring=2

91 else :

92 ring=1

93

94 g r i d _ q u a l i t i e s _ d u p l i c a t e [minimum_index]=100

95 i f ring ==3:

96 g r i d _ q u a l i t i e s _ d u p l i c a t e [np . asarray (surrounding_points_index)]=100

97 g r i d _ q u a l i t i e s _ d u p l i c a t e [np . asarray (surrounding_points_index_2_ring)]=100

98 g r i d _ q u a l i t i e s _ d u p l i c a t e [np . asarray (surrounding_points_index_3_ring)]=100

99 surrounding_points_index=np . append(surrounding_points_index_2_ring , np . append(

surrounding_points_index , minimum_index))

100 surrounding_points_index=np . append(surrounding_points_index ,

surrounding_points_index_3_ring)

101 surrounding_points_list . append(surrounding_points_3_ring , (np . append(

surrounding_points_2_ring , np . append(surrounding_points , point_minimum)))) ,

g r i d _ q u a l i t i e s _ s u r r o u n d i n g_ l i s t . append(g r i d _ q u a l i t i e s . f l a t t e n () [np . asarray (

surrounding_points_index)])

102 i f ring ==2:

103 g r i d _ q u a l i t i e s _ d u p l i c a t e [np . asarray (surrounding_points_index)]=100

104 g r i d _ q u a l i t i e s _ d u p l i c a t e [np . asarray (surrounding_points_index_2_ring)]=100

105 surrounding_points_index=np . append(surrounding_points_index_2_ring , np . append(

surrounding_points_index , minimum_index))

106 surrounding_points_list . append(surrounding_points_2_ring)

107 surrounding_points_list . append(np . append(surrounding_points , point_minimum))

108 surrounding_points_list . append(g r i d _ q u a l i t i e s _ s u r r o u nd i ng _ l i s t . append(

g r i d _ q u a l i t i e s . f l a t t e n () [np . asarray (surrounding_points_index)]))

109 else :

110 surrounding_points_index=np . append(surrounding_points_index , minimum_index)

148

B.1. Mesh generation

111 surrounding_points_indices_list . append(surrounding_points_index)

112 surrounding_points=np . append(surrounding_points , point_minimum)

113 surrounding_points_list . append(surrounding_points) ,

g r i d _ q u a l i t i e s _ s u r r o u n d i n g_ l i s t . append(g r i d _ q u a l i t i e s . f l a t t e n () [np . asarray (

surrounding_points_index)])

114 g r i d _ q u a l i t i e s _ d u p l i c a t e [np . asarray (surrounding_points_index)]=100

115

116

117 return np . array (selected_points) ,np . array (surrounding_points_list) ,np . array (

g r i d _ q u a l i t i e s _ s u r r o u n d i n g_ l i s t)

B.1.2.2 Interpolation

1 from scipy import interpolate

2

3

4 # Override interp2d to include quadratic spl ine

5 class quadratic_bspline (interpolate . interp2d) :

6 def _ _ i n i t _ _ (s e l f , * args , * * kws) :

7 try :

8 super (quadratic_bspline , s e l f) . _ _ i n i t _ _ (* args , * * kws)

9

10 except ValueError :

11 kx=ky=2

12 x=args [0]

13 y=args [1]

14 z=args [2]

15 rectangular_grid = (z . s i z e == len (x) * len (y))

16 i f rectangular_grid :

17 s e l f . tck = scipy . interpolate . f i t p a c k . bisplrep (x , y , z , kx=kx , ky=ky , s

=0.0)

18 else :

19 nx , tx , ny , ty , c , fp , i e r = scipy . interpolate . dfitpack . regrid_smth (

20 x , y , z , None, None, None, None,

21 kx=kx , ky=ky , s =0.0)

22 s e l f . tck = (tx [: nx] , ty [: ny] , c [: (nx − kx − 1) * (ny − ky − 1)] ,

23 kx , ky)

24 s e l f . bounds_error = False

25 s e l f . f i l l _ v a l u e = None

26 s e l f . x , s e l f . y , s e l f . z = [np . array (a , copy=copy) for a in (x , y , z)]

27

28 s e l f . x_min , s e l f . x_max = np . amin(x) , np . amax(x)

29 s e l f . y_min , s e l f . y_max = np . amin(y) , np . amax(y)

30

31

32

33 ’ ’ ’ Function that applies interpolation to a neighbor region around the s e l e c t e d grid

points ’ ’ ’

34 def b i l i n e a i r e _ i n t e r p o l a t i o n (surrounding_points , grid_qualities_surrounding ,

selected_point) :

35 s i z e = int (int (len (surrounding_points)) /2)

149

Appendix B. Code

36 surrounding_points=surrounding_points . reshape (size , 2)

37

38

39 z= grid_qualities_surrounding . reshape (int (sqrt (s i z e)) , int (sqrt (s i z e)))

40

41 # Define quadratic b−spl ine of surrounding region

42 z_interp = interpolate . interp2d (surrounding_points [: , 0] . reshape (int (sqrt (s i z e)) , int

(sqrt (s i z e))) , surrounding_points [: , 1] . reshape (int (sqrt (s i z e)) , int (sqrt (s i z e))) , z ,

kind= ’ quintic ’)

43

44 x_new=np . linspace (min(surrounding_points [: , 0]) ,max(surrounding_points [: , 0]) ,100)

45 y_new=np . linspace (min(surrounding_points [: , 1]) ,max(surrounding_points [: , 1]) ,100)

46 z_new=z_interp (x_new , y_new)

47 epsilon=1e−4

48 bnds =((min(surrounding_points [: , 0]) ,max(surrounding_points [: , 0])) , (min(

surrounding_points [: , 1]) ,max(surrounding_points [: , 1])))

49

50 # Find minimum that approximates inner vertex location

51 minimum=minimize (lambda v : z_interp (v [0] , v [1]) , np . array ([selected_point [0]+ epsilon

, selected_point [1]+ epsilon]) , method= ’TNC’ ,bounds=bnds)

52 return np . array ([minimum. x [0] ,minimum. x [1]])

B.1.3 Triangulation algorithm

B.1.3.1 Vertex locking mechanism

1 # Finds element containing the edge and e x i t s (does not give the f u l l l i s t of elements)

2 def edge2elem (edge , set_of_elements) :

3 Found_element = ()

4 Remaining_edge = ()

5

6 for element in set_of_elements . copy () :

7 i f edge [0] in set (element) and edge [1] in element :

8 Found_element=element

9 Remaining_index=set (element) −set (edge)

10 Remaining_index= l i s t (Remaining_index)

11 Remaining_edge=(edge [0] , Remaining_index [0])

12 break

13 else :

14 Found_element=None

15 Remaining_edge=None

16 return Remaining_edge , Found_element

17

18

19

20

21 # Checking i f a contour vertex i s closed (locked)

22 def is_closed_ring (vtx , set_of_elements , * adj_vtx) :

23 contour_edge1 =(vtx , adj_vtx [0])

24 contour_edge2 =(vtx , adj_vtx [1])

150

B.1. Mesh generation

25 visited_elements=set_of_elements . copy ()

26

27 target_edge=contour_edge1

28

29 edges_found = []

30 edges_found . append(contour_edge1)

31

32 proceed=True

33

34 while proceed :

35

36 i f not visited_elements :

37 break

38

39 remaining_edge , found_element=edge2elem (target_edge , visited_elements)

40

41 i f found_element i s None :

42 proceed=False

43 break

44

45 visited_elements . remove (found_element)

46 edges_found . append(remaining_edge)

47 target_edge=remaining_edge

48

49

50

51

52 found_contour_edge1 , found_contour_edge2=False , False

53 found_contour_edges=False

54

55 # Checking i f both contour edges contained in the s e t of edges acquired

56 for edge in edges_found :

57 condition1= contour_edge1 [0] in set (edge) and contour_edge1 [1] in set ((edge))

58 condition2= contour_edge2 [0] in set (edge) and contour_edge2 [1] in set ((edge))

59 i f condition1 :

60 found_contour_edge1=True

61 i f condition2 :

62 found_contour_edge2=True

63

64 i f found_contour_edge1 and found_contour_edge2 :

65 found_contour_edges=True

66

67

68 visited_elements . c lear ()

69 return edges_found , found_contour_edges

1

2

3

4

5 # Checking i f a vertex inside the contour i s closed (locked)

6 def i s_closed_inter ior_point (interior_point , set_of_interior_edges , set_of_elements) :

151

Appendix B. Code

7

8 is_closed = False

9 print ("Checking i f i n t e r i o r point { } i s closed " . format (i nter ior _poi nt))

10 found_edge=False

11 for edge in set_of_inter ior_edges :

12 i f i nter i or _point in edge :

13 for index in edge :

14 i f index ! = i nter ior _poi nt :

15 f irst_found_index= index

16 found_edge=True

17 print ("found { } in { } " . format (interior_point , edge))

18 break

19

20 # the i n t e r i o r i s not linked with any point

21 i f not found_edge :

22 return is_closed

23

24 keep_looking=True

25 visited_elements=set ()

26 while keep_looking :

27 for index , element in enumerate (set_of_elements) :

28 i f set (edge) . issubset (set (element)) and element not in visited_elements :

29 visited_elements . add(element)

30 found_index =[int (i) for i in set (element) −set (edge)]

31 print ("found index { } in element { } " . format (found_index , element))

32

33 # Change edge value

34 l s t = l i s t (edge)

35 l s t =[interior_point , found_index [0]]

36 edge=tuple (l s t)

37 i f found_index==first_found_index :

38 is_closed=True

39 keep_looking=False

40 break

41 e l i f not set (edge) . issubset (set (element)) and index==len (set_of_elements)

−1:

42 break

43 keep_looking=False

44 print (" I n t e r i o r vertex { } i s open" . format (i nter ior _point))

45

46

47

48 return is_closed

B.1.3.2 Spotting sub-contours

1 import numpy as np

2 import torch

3 from more_itertools import unique_everseen

4 from c o l l e c t i o n s import OrderedDict

5

152

B.1. Mesh generation

6

7

8

9

10

11

12 # Function to check i f element with edge1 and edge2 e x i s t s

13 def found_element_with_edges (edge1 , edge2 , set_elements) :

14 found_element=False

15 edge1=set (edge1)

16 edge2=set (edge2)

17 possible_element=edge1 . union (edge2)

18 for element in set_elements :

19 i f set (element) ==set (possible_element) :

20 found_element=True

21 return found_element

22

23

24

25 # Function to check i f the v e r t i c e s of a contour edges are linked with an inner point

26 def l inked_via_inner_point (vtx1 , vtx2 , edges_to_visit , set_of_open_vertices) :

27

28 vtx_set =set ([vtx for edges in edges_to_vis i t for vtx in edges])

29

30 i f vtx1 not in vtx_set and vtx2 not in vtx_set :

31 return True

32

33 for edges in edges_to_vis i t :

34 for index , vtx in enumerate (edges) :

35 i f edges [index]== vtx1 :

36 adjacent_point=edges [(index +1)%2]

37 for edges in edges_to_vis i t :

38 for index , v e r t i c e s in enumerate (edges) :

39 i f edges [index]== adjacent_point and edges [(index +1)%2]==

vtx2 :

40 return True

41 return False

42

43

44

45 # Find elements that are connected to a s p e c i f i c vertex

46 def vert2elem (vtx , set_of_elements) :

47 found_elements=set ()

48 for element in set_of_elements :

49 i f vtx in set (element) :

50 found_elements . add (element)

51 return found_elements

52

53 # Find edges that are connnected to a s p e c i f i x vertex

54 def edge2vert (vtx , polygon , set_inter ior_edges) :

55 found_edges=set ()

56 i f vtx <polygon . shape [0] :

153

Appendix B. Code

57 found_edges . add ((vtx , (vtx +1)%polygon . shape [0]))

58 found_edges . add ((vtx , (vtx −1)%polygon . shape [0]))

59 for edge in set_inter ior_edges :

60 i f vtx in set (edge) :

61 i f edge not in found_edges or edge [: : − 1] not in found_edges :

62 found_edges . add (edge)

63 return found_edges

64

65

66

67 # Sort edges around point counterclock wise #

68 def sort_edges_around_vertex (vertex , edges_around_vert , polygon , points) :

69 polygon_with_points=np . vstack ([polygon , points])

70 edges_coordinates = []

71 edges_indices = []

72 for edges in edges_around_vert :

73 edge_indices=np . asarray (edges i f edges [0]== vertex else edges [: : − 1])

74 edges_indices . append(edges i f edges [0]== vertex else edges [: : − 1])

75 edges_coordinates . append(polygon_with_points [edge_indices])

76

77 e d g e _ l i s t ={edge : edge_coordinate for edge , edge_coordinate in zip (edges_indices ,

edges_coordinates) }

78 v e r t e x _ l i s t ={edge : edge_coordinates [1] − edge_coordinates [0] for edge , edge_coordinates

in zip (e d g e _ l i s t . keys () , edges_coordinates) }

79 vertex_coordinates= l i s t (v e r t e x _ l i s t . values ())

80 a n g l e _ l i s t = []

81 for v e r t i c e s in vertex_coordinates :

82 angle=angle_counterclockwise (np . array ([0 , 1]) , v e r t i c e s)

83 a n g l e _ l i s t . append(angle)

84

85

86 a n g l e _ l i s t ={edge : angle for edge , angle in zip (edges_indices , a n g l e _ l i s t) }

87 sorted_edges=dict (OrderedDict (sorted (a n g l e _ l i s t . items () , key=lambda x : x [1])))

88 print (e d g e _ l i s t)

89 print (sorted_edges)

90 return [* sorted_edges]

91

92

93 ’ ’ ’ Function that performs edge t r a v e r s a l s t a r t i n g from a vertex (s t a r t i n g _ v e r t e x)

based on the current s e t of open v e r t i c e s , the s e t of elements and i n i t i a l s e t of

edges that can be v i s i t e d . Additional edges to v i s i t (candidate_edge) are added in

the process to find spot sub contour . Adjacent edges (init ial_pair_of_adjacent_edges ,

pair_of_adjacent_edges) represent edges that belong in the same sub contour and are

meant to be v i s i t e d one a f t e r another i f a vertex i s part of multiple sub contours (

set_of_common_vertices) r e p r e s e n t s a s e t containing such v e r t i c e s) . ’ ’ ’

94

95 def polygon_2_vtx (start ing_vertex , set_of_elements , i n i t i a l _ e d g e s _ t o _ v i s i t , edges_to_visit

, set_of_common_vertices , init ia l_pair_of_adjacent_edges , pair_of_adjacent_edges ,

set_of_open_vertices , set_orphan_vertices , polygon) :

96

97

98 i f not edges_to_vis i t :

154

B.1. Mesh generation

99 return

100 added_edges=set ()

101 print (" I n i t i a l edges to v i s i t " , edges_to_vis i t)

102

103 # Check f o r candidate edges that could be included in the s e t of edges to v i s i t

104 i f len (set_of_common_vertices) ==0:

105 # i f vertex i s a contour vertex

106 i f vtx <polygon . shape [0] :

107 candidate_point1 =(vtx +1)%polygon . shape [0]

108 i f not l inked_via_inner_point (vtx , candidate_point1 , edges_to_visi t ,

set_of_open_vertices) :

109 is_ok=True

110 candidate_edge1 =(vtx , candidate_point1)

111 for element in set_of_elements :

112 i f set (candidate_edge1) . issubset (set (element)) :

113 is_ok=False

114 i f candidate_edge1 in edges_to_vis i t . copy () or candidate_edge1 [: : − 1] in

edges_to_vis i t . copy () :

115 is_ok=False

116

117

118

119

120 for edge in l i s t (edges_to_vis i t) :

121 i f candidate_edge1 [0] in edge or candidate_edge1 [1] in edge :

122 Found=True

123 break

124

125

126 i f not Found :

127 is_ok=False

128

129 i f is_ok and candidate_edge1 [0] in set_of_open_vertices and candidate_edge1 [1]

in set_of_open_vertices :

130 edges_to_vis i t . add(candidate_edge1)

131 added_edges . add(candidate_edge1)

132 candidate_point2 =(vtx −1)%polygon . shape [0]

133 i f not l inked_via_inner_point (vtx , candidate_point2 , edges_to_visi t ,

set_of_open_vertices) :

134 is_ok=True

135

136

137 candidate_edge2 =(vtx , candidate_point2)

138 for element in set_of_elements :

139 i f set (candidate_edge2) . issubset (set (element)) :

140 is_ok=False

141

142 i f candidate_edge2 in edges_to_vis i t . copy () or candidate_edge2 [: : − 1] in

edges_to_vis i t . copy () :

143 is_ok=False

144

145 Found=False

155

Appendix B. Code

146 for edge in l i s t (edges_to_vis i t) :

147 i f candidate_edge2 [0] in edge or candidate_edge2 [1] in edge :

148 Found=True

149 break

150

151 i f not Found :

152 is_ok=False

153

154 i f is_ok and candidate_edge2 [0] in set_of_open_vertices and candidate_edge2 [1]

in set_of_open_vertices :

155 edges_to_vis i t . add(candidate_edge2)

156 added_edges . add(candidate_edge2)

157

158 else :

159 # i f s e t of commong v e r t i c e s i s not empty

160

161 v e r t e x _ l i s t =set ([vtx for edges in pair_of_adjacent_edges for edge in edges for

vtx in edge]) −set_of_common_vertices

162

163 for vtx in v e r t e x _ l i s t :

164 candidate_point1 =(vtx +1)%polygon . shape [0]

165 is_ok=True

166 i f not l inked_via_inner_point (vtx , candidate_point1 , i n i t i a l _ e d g e s _ t o _ v i s i t ,

set_of_open_vertices) :

167 i f (vtx , candidate_point1) in edges_to_vis i t . copy () or (vtx ,

candidate_point1) in edges_to_vis i t . copy () :

168 for edges_in_same_polygon in ini t ia l_pair_of_adjacent_edges :

169 i f (vtx , candidate_point1) in edges_in_same_polygon or (

candidate_point1 , vtx) in edges_in_same_polygon :

170 is_ok=False

171 i f is_ok :

172 edges_to_vis i t . add ((vtx , candidate_point1))

173 added_edges . add ((vtx , candidate_point1))

174

175

176 candidate_point2 =(vtx −1)%polygon . shape [0]

177 i f not l inked_via_inner_point (vtx , candidate_point2 , i n i t i a l _ e d g e s _ t o _ v i s i t ,

set_of_open_vertices) :

178 i f (vtx , candidate_point2) in edges_to_vis i t . copy () or (vtx ,

candidate_point2) in edges_to_vis i t . copy () :

179 for edges_in_same_polygon in ini t ia l_pair_of_adjacent_edges :

180 i f (vtx , candidate_point2) in edges_in_same_polygon or (

candidate_point2 , vtx) in edges_in_same_polygon :

181 is_ok=False

182 i f is_ok :

183 edges_to_vis i t . add ((vtx , candidate_point2))

184 added_edges . add ((vtx , candidate_point2))

185

186 for vtx in set_of_open_vertices :

187 i f vtx <polygon . shape [0] :

188 candidate_point1 =(vtx +1)%polygon . shape [0]

156

B.1. Mesh generation

189 i f not l inked_via_inner_point (vtx , candidate_point1 , edges_to_visi t ,

set_of_open_vertices) :

190 is_ok=True

191 candidate_edge1 =(vtx , candidate_point1)

192 for element in set_of_elements :

193 i f set (candidate_edge1) . issubset (set (element)) :

194 is_ok=False

195 i f candidate_edge1 in edges_to_vis i t . copy () or candidate_edge1 [: : − 1] in

edges_to_vis i t . copy () :

196 is_ok=False

197 for edges_in_same_polygon in ini t ia l_pair_of_adjacent_edges :

198 i f candidate_edge1 in edges_in_same_polygon or candidate_edge1

[: : − 1] in edges_in_same_polygon :

199 is_ok=False

200

201 Found=False

202 for edge in l i s t (edges_to_vis i t) :

203 i f candidate_edge1 [0] in edge or candidate_edge1 [1] in edge :

204 Found=True

205 break

206

207

208 i f not Found :

209 is_ok=False

210

211 i f is_ok and candidate_edge1 [0] in set_of_open_vertices and

candidate_edge1 [1] in set_of_open_vertices :

212 edges_to_vis i t . add(candidate_edge1)

213 added_edges . add(candidate_edge1)

214

215

216

217 candidate_point2 =(vtx −1)%polygon . shape [0]

218 i f not l inked_via_inner_point (vtx , candidate_point2 , edges_to_visi t ,

set_of_open_vertices) :

219 is_ok=True

220 candidate_edge2 =(vtx , candidate_point2)

221 for element in set_of_elements :

222 i f set (candidate_edge2) . issubset (set (element)) :

223 is_ok=False

224 i f candidate_edge2 in edges_to_vis i t . copy () or candidate_edge2 [: : − 1] in

edges_to_vis i t . copy () :

225 is_ok=False

226 for edges_in_same_polygon in ini t ia l_pair_of_adjacent_edges :

227 i f candidate_edge2 in edges_in_same_polygon or candidate_edge2

[: : − 1] in edges_in_same_polygon :

228 is_ok=False

229

230 Found=False

231 for edge in l i s t (edges_to_vis i t) :

232 i f candidate_edge2 [0] in edge or candidate_edge2 [1] in edge :

233 Found=True

157

Appendix B. Code

234 break

235

236

237 i f not Found :

238 is_ok=False

239

240 i f is_ok and candidate_edge2 [0] in set_of_open_vertices and

candidate_edge2 [1] in set_of_open_vertices :

241 edges_to_vis i t . add(candidate_edge2)

242 added_edges . add(candidate_edge2)

243

244 # A f t e r adding candidate edges to the s e t of edges to v i s i t commence t r a v e r s a l

245 print ("Edges to v i s i t : " , edges_to_vis i t)

246 subpolygon = []

247

248 set_of_points=set ([j for i in edges_to_vis i t for j in i])

249

250 i f s t a r t i n g _ v e r t e x not in set_of_points :

251 return

252

253 found_vertex= s t a r t i n g _ v e r t e x

254 target_edge = []

255 visited_added_edge=False

256 deleted_edges=set ()

257 deleted_adjacent_edges=set ()

258

259 count=0

260 while not closed :

261 i f len (edges_to_vis i t) ==0:

262 return 0

263

264 count+=1

265 for index , edge in enumerate (edges_to_vis i t . copy ()) :

266 v i s i t i n g _ v e r t e x =found_vertex

267

268 ’ ’ ’ t a r g e t edge r e p r e s e n t s an edge that needs to be followed in the s e t to

remain in the same sub−contout ’ ’ ’

269 i f target_edge :

270 i f edge != target_edge [0] and edge != tuple (reversed (target_edge [0])) :

271 continue

272 else :

273 target_edge . pop ()

274

275 i f v i s i t i n g _ v e r t e x not in set (edge) :

276 i f len (edges_to_vis i t) ==0 and visited_added_edge or index== int (len (

edges_to_vis i t)) −1 and visited_added_edge :

277 print (" Reached end found no matching vertex a f t e r v i s i t i n g added

edge ")

278 for edge in deleted_edges :

279 edges_to_vis i t . add(edge)

280 for edge in deleted_adjacent_edges :

281 pair_of_adjacent_edges . add(edge)

158

B.1. Mesh generation

282 return 0

283

284 subpolygon . append(v i s i t i n g _ v e r t e x)

285

286 print (v i s i t i n g _ v e r t e x , " in " , edge)

287

288 ’ ’ ’ S tart ing from a v i s i t i n g vertex may not be a good idea because we do

not know i f i t w i l l be included to c l o s e a polygon ’ ’ ’

289 i f (edge in added_edges or edge [: : − 1] in added_edges) and count==1:

290 continue

291

292

293 for index in set (edge) :

294 i f v i s i t i n g _ v e r t e x != index :

295 found_vertex=index

296 print ("Found vertex : " , found_vertex)

297 subpolygon . append(found_vertex)

298

299 found_crossroad=False

300 found_in_set=False

301

302 ’ ’ ’ Check i f edge i s part of a crossroad (check i f found vertex i s point of

multiple polygons) . I f i t i s , then the next v i s i t i n g edge should be the one

i s the pair of adjacent edges ’ ’ ’

303 i f found_vertex in set_of_common_vertices :

304 found_crossroad=True

305

306 ’ ’ ’ A duplicate edge i s an edge that i s common f o r multiple subcontours ,

and should not be deleted from the l i s t of edges to v i s i t a f t e r beeing

v i s i t e d once ’ ’ ’

307 duplicate_edge=False

308

309 i f found_crossroad :

310

311 for edges_in_same_polygon in pair_of_adjacent_edges . copy () :

312 i f edge in set (edges_in_same_polygon) or tuple (reversed (edge)) in

set (edges_in_same_polygon) :

313 for edges in edges_in_same_polygon :

314 i f found_vertex in edges_in_same_polygon [0] and

found_vertex in edges_in_same_polygon [1] :

315 i f edges != edge and edges ! = tuple (reversed (edge)) and edges

not in deleted_edges and tuple (reversed (edges)) not in

deleted_edges :

316 target_edge . append(edges)

317 found_in_set=True

318 print ("edge { } should be followed by { } " . format (edge ,

edges))

319 count=0

320

321 deleted_adjacent_edges . add(edges_in_same_polygon)

322 pair_of_adjacent_edges . discard (edges_in_same_polygon)

323

159

Appendix B. Code

324 for edges_in_same_polygon in pair_of_adjacent_edges :

325 for edges in edges_in_same_polygon :

326 i f edge==edges or edge [: : − 1] = = edges :

327 count+=1

328 i f count >1:

329 print ("found duplicate edge " , edge)

330 duplicate_edge=True

331 break

332 i f found_in_set :

333 break

334

335

336

337

338 i f not duplicate_edge :

339 print ("Removing edge" , edge)

340 i f edge in added_edges :

341 visited_added_edge=True

342 i f edge not in added_edges :

343 deleted_edges . add (edge)

344 edges_to_vis i t . discard (edge)

345

346 print (edges_to_vis i t)

347 i f found_vertex== s t a r t i n g _ v e r t e x :

348 subpolygon= l i s t (unique_everseen (subpolygon))

349 print ("Back to s t a r t i n g vertex ")

350 closed=True

351 break

352

353 i f len (subpolygon) <3:

354 return

355 else :

356 return subpolygon

357

358 ’ ’ ’ Fucntion that returns a l i s t of sub−contours (sub_polygon) of the current mesh (

contour could be p a r t i a l l y meshed) based on the s e t inner v e r t i c e s that are not

connected (set_orphan_vertices) , the s e t of open v e r t i c e s (s e t _ o f _ o p e n _ v e r t i c e s) , the

s e t of i n t e r i o r edges (s e t _ o f _ i n t e r i o r _ e d g e s) , and the s e t of elements that are

currently formed (set_of_elements) . The function also i n i t i a l l y includes a l i s t of

edges that w i l l be included in a t r a v e r s a l to spot sub−contours . ’ ’ ’

359 def check_for_sub_polygon (set_orphan_vertices , set_of_open_vertices ,

set_of_interior_edges , set_of_elements , polygon , points) :

360

361

362 set_polygon_edges=set (tuple (i) for i in get_contour_edges (polygon))

363

364 i f not set_of_open_vertices or len (set_of_open_vertices) <3:

365 return []

366

367 sub_polygon_list = []

368 modified_interior_edge_set=set_of_interior_edges . copy ()

369

160

B.1. Mesh generation

370 polygon_connectivity =[tuple (i) for i in get_contour_edges (polygon)]

371

372

373 # Taking care of v e r t i c e s that are locked but the element i s not seen

374

375 set_of_unfound_locked_vertices=set ()

376 continue_looking=True

377

378 while continue_looking :

379

380 i f not set_of_open_vertices :

381 continue_looking=False

382

383 set_of_open_vertices_copy=set_of_open_vertices

384

385 for vtx in set_of_open_vertices_copy :

386

387 # Check i f i n t e r i o r vertex i s locked

388 found_locked_vtx=False

389 i f vtx >=polygon . shape [0] :

390 is_closed= is_closed_inter ior_point (vtx , set_of_interior_edges ,

set_of_elements)

391 i f is_closed :

392 set_of_open_vertices . discard (vtx)

393 print (" vtx { } i s closed a f t e r a l l " . format (vtx))

394 continue_looking=False

395 else :

396 continue_looking=False

397 break

398 # find in dices connected to v e r t i c e s

399

400 vtx1 , vtx2 =connection_indices (vtx , get_contour_edges (polygon))

401

402

403 # Traverse from s t a r t i n g from both edges connected to the vertex

404 found_edges1 , isclosed1=is_closed_ring (vtx , set_of_elements , vtx2 , vtx1)

405 found_edges2 , isclosed2=is_closed_ring (vtx , set_of_elements , vtx1 , vtx2)

406 print ("Examining i f vtx { } i s locked " . format (vtx))

407

408 # I f the contour vertex i s locked remove i t from s e t of open v e r t i c e s

409 i f isclosed1 or isclosed2 :

410 print (vtx , " locked a f t e r a l l ")

411 continue_looking=True

412

413 set_of_open_vertices . discard (vtx)

414 for edge in modified_interior_edge_set . copy () :

415 i f vtx in edge :

416 modified_interior_edge_set . discard (edge)

417 break

418 # Checking i f there i s an element formed but not y e t discovered

419

420 # Gather in edges that could connect edges from the edge ring from both s i d e s

161

Appendix B. Code

421 for edge in found_edges1 :

422 i f edge in polygon_connectivity or edge [: : − 1] in polygon_connectivity :

423 found_edges1 . remove (edge)

424 for edge in found_edges2 :

425 i f edge in polygon_connectivity or edge [: : − 1] in polygon_connectivity :

426 found_edges2 . remove (edge)

427 between_edges = []

428 for edge in found_edges1 :

429 for indices in edge :

430 i f indices==vtx :

431 continue

432 between_edges . append(indices)

433 for edge in found_edges2 :

434 for indices in edge :

435 i f indices==vtx :

436 continue

437 between_edges . append(indices)

438

439 for edge in set_of_inter ior_edges . copy () :

440 found_locked_vtx=False

441

442 ’ ’ ’ I f an edge i s btw the edge ring of the vertex then the vertex i s locked

and a new elemet i s added ’ ’ ’

443 i f set (between_edges) ==set (edge) :

444 print (vtx , " locked a f t e r a l l ")

445 found_locked_vtx=True

446 set_of_unfound_locked_vertices . add (vtx)

447

448

449 i f edge in set_of_inter ior_edges or edge [: : − 1] in

set_of_inter ior_edges :

450 # modified_interior_edge_set . discard (edge)

451 # print (edge , " removed ")

452 # modified_interior_edge_set . discard (edge [: : − 1])

453 modified_interior_edge_set . discard ((vtx , between_edges [0]))

454 modified_interior_edge_set . discard ((between_edges [0] , vtx))

455

456

457 modified_interior_edge_set . discard ((vtx , between_edges [1]))

458 modified_interior_edge_set . discard ((between_edges [1] , vtx))

459 element =(vtx , between_edges [0] , between_edges [1])

460 print ("Removed : " , (vtx) , "from set of open v e r t i c e s ")

461

462 print ("Added new element : " , element)

463 print ("Removed : " , (vtx , between_edges [0]) , "from set of edges")

464 print ("Removed : " , (vtx , between_edges [1]) , "from set of edges")

465

466 set_of_elements . add (element)

467 print ("New set of elements" , set_of_elements)

468 set_of_open_vertices . discard (vtx)

469

470 i f found_locked_vtx :

162

B.1. Mesh generation

471 continue_looking=True

472 print ("Re−evaluting set of open v e r t i c e s ")

473 break

474 else :

475 continue_looking=False

476

477 i f found_locked_vtx :

478 break

479

480 print (" set of open v e r t i c e s " , set_of_open_vertices)

481

482 # I f the s e t of open v e r t i c e s i s empty then there i s no subpolygon .

483 i f not set_of_open_vertices or len (set_of_open_vertices) <3:

484 return []

485

486 # In the s e t of open v e r t i c e s there may be v e r t i c e s that are part of multiple sub−

contours .

487 # Checking i f edge that i s connected to vertex belongs to two element f i r s t .

488 # Discard from s e t of i n t e r i o r edges edges that are common f o r two elements

489

490 set_of_common_vertices=set ()

491 pair_of_adjacent_edges=set ()

492 for vertex in set_of_open_vertices :

493 nb_of_polygon=0

494 count=0

495 for edge in modified_interior_edge_set . copy () :

496 counter2=0

497 i f vertex in set (edge) :

498 count+=1

499 for element in set_of_elements :

500 i f set (edge) . issubset (set (element)) :

501 counter2+=1

502 i f counter2 ==2:

503 print ("Edge { } i s common for two elements" . format (edge))

504 count−=1

505 modified_interior_edge_set . discard (edge)

506

507 # i f count i s bigger than 2 i t means that the vertex i s crossroad f o r multiple

subcontours

508 i f count >=2:

509 # Get l i s t of adjacent v e r t i c e s to the open vertex

510 a d j _ v e r t i c e s =sorted (l i s t (vtx for edge in modified_interior_edge_set i f vertex

in set (edge) for vtx in edge i f vtx != vertex))

511

512 # Checking i f v e r t i c e s are linked , i f they are then aren ’ t part of the same

polygon

513 for index , _ in enumerate (a d j _ v e r t i c e s . copy ()) :

514

515

516 edge=tuple ((a d j _ v e r t i c e s [index] , a d j _ v e r t i c e s [(index +1)%len (a d j _ v e r t i c e s)]))

517

518 # Connections could form elements that are not discovered

163

Appendix B. Code

519 i f ((edge in set_of_inter ior_edges or tuple (reversed (edge)) in

set_of_inter ior_edges)and

520 ((vertex , edge [0]) in set_of_inter ior_edges or tuple (reversed ((vertex , edge

[0]))) in set_of_inter ior_edges) and

521 ((vertex , edge [1]) in set_of_inter ior_edges or tuple (reversed ((vertex , edge

[1]))) in set_of_inter ior_edges)) :

522 print ("Found new element : " , (vertex , edge [0] , edge [1]))

523 print (" ({ } , { }) and ({ } , { }) are part of the same element" . format (edge

[0] , vertex , edge [1] , vertex))

524 pair_of_adjacent_edges . add ((((edge [0] , vertex) , (edge [1] , vertex))))

525 continue

526

527 elements_around_vertex=vert2elem (vertex , set_of_elements)

528 edges_around_vertex=edge2vert (vertex , polygon , set_of_inter ior_edges)

529 edge_star=sort_edges_around_vertex (vertex , edges_around_vertex , polygon ,

points)

530 print ("edges s t a r of common vertex " , vertex , " i s : " , edge_star)

531 print ("elements around { } are { } " . format (vertex , elements_around_vertex))

532

533

534 for edge1 in edge_star :

535 position_of_edge1=edge_star . index (edge1)

536

537 for edge2 in edge_star :

538 i f edge2==edge1 :

539 continue

540

541

542 position_of_edge2=edge_star . index (edge2)

543 i f (abs (position_of_edge1 −position_of_edge2) ==1 or abs (

position_of_edge1 −position_of_edge2) ==len (edge_star) −1) and not

found_element_with_edges (edge1 , edge2 , elements_around_vertex) :

544 i f (edge1 , edge2) not in pair_of_adjacent_edges and (edge2 , edge1)

not in pair_of_adjacent_edges and (tuple (reversed (edge1)) , tuple (

reversed (edge2))) not in pair_of_adjacent_edges and (tuple (

reversed (edge2)) , tuple (reversed (edge1))) not in

pair_of_adjacent_edges :

545 i f (edge1 not in set_polygon_edges and edge1 [: : − 1] not in

set_polygon_edges) or (edge2 not in set_polygon_edges and

edge2 [: : − 1] not in set_polygon_edges) :

546 print (edge1 , " i s in the same polygon with " , edge2)

547

548 pair_of_adjacent_edges . add (((edge2 , edge1)))

549 i f edge2 not in modified_interior_edge_set and edge2 [: : − 1]

not in modified_interior_edge_set :

550 modified_interior_edge_set . add(edge2 [: : − 1])

551 i f edge1 not in modified_interior_edge_set and edge1 [: : − 1]

not in modified_interior_edge_set :

552 modified_interior_edge_set . add(edge1 [: : − 1])

553

554 ’ ’ ’ The s e t of common v e r t i c e s includes v e r t i c e s that are part of more than one

sub−contour ’ ’ ’

164

B.1. Mesh generation

555 set_of_common_vertices . add (vertex)

556

557 # i f the s e t found i s l e s s than 4 then now polygon i s formed

558 i f len (set_of_open_vertices) <4:

559 return []

560

561 ’ ’ ’ A f t e r cleaning up edges from the i n t e r i o r s e t include them in the s e t of of

edges to v i s i t to spot sub−contours ’ ’ ’

562 edges_to_vis i t =modified_interior_edge_set

563

564

565

566 sub_polygon_list = []

567 i n i t i a l _ e d g e s _ t o _ v i s i t =copy . deepcopy (edges_to_vis i t)

568 ini t ia l_pair_of_adjacent_edges=copy . deepcopy (pair_of_adjacent_edges)

569

570 try :

571 i f set_of_common_vertices :

572 for vtx in set_of_common_vertices :

573 subpolygon=polygon_2_vtx (start ing_vertex , set_of_elements ,

i n i t i a l _ e d g e s _ t o _ v i s i t , edges_to_visit , set_of_common_vertices ,

init ial_pair_of_adjacent_edges , pair_of_adjacent_edges ,

set_of_open_vertices , set_orphan_vertices , polygon)

574 i f subpolygon i s not None and subpolygon i s not 0 :

575 sub_polygon_list . append(subpolygon)

576 i f subpolygon i s 0 :

577 continue

578

579 print (sub_polygon_list)

580 except :

581 print (" Failed ")

582

583 while edges_to_vis i t :

584 for vtx in set_of_open_vertices . copy () :

585 print (" S t a r t i n g with vertex " , vtx)

586 subpolygon=polygon_2_vtx (vtx , set_of_elements , i n i t i a l _ e d g e s _ t o _ v i s i t ,

edges_to_visi t , set_of_common_vertices , init ia l_pair_of_adjacent_edges ,

pair_of_adjacent_edges , set_of_open_vertices , set_orphan_vertices , polygon)

587 i f subpolygon i s not None and subpolygon i s not 0 :

588 sub_polygon_list . append(subpolygon)

589 i f subpolygon i s 0 :

590 continue

591

592 return sub_polygon_list

B.1.3.3 Triangulation

1 import torch

2

3 # Function checking i f a contour indices are counter clock wise

4 def is_counterclockwise (polygon) :

165

Appendix B. Code

5 area = 0

6 counterclokwise=False

7 for index , _ in enumerate (polygon) :

8 second_index =(index +1)%len (polygon)

9 area+=polygon [index] [0] * polygon [second_index] [1]

10 area −=polygon [second_index] [0] * polygon [index] [1]

11 i f area /2 <0:

12 counterclokwise=False

13 else :

14 counterclokwise=True

15

16 return counterclokwise

17

18

19

20 # Function checking i f a point i s inside a contour

21 def ray_tracing (x , y , poly) :

22 n = len (poly)

23 inside = False

24 p2x = 0.0

25 p2y = 0.0

26 x i n t s = 0.0

27 p1x , p1y = poly [0]

28 for i in range (n+1) :

29 p2x , p2y = poly [i % n]

30 i f y > min(p1y , p2y) :

31 i f y <= max(p1y , p2y) :

32 i f x <= max(p1x , p2x) :

33 i f p1y ! = p2y :

34 x i n t s = (y−p1y) * (p2x−p1x) /(p2y−p1y) +p1x

35 i f p1x == p2x or x <= x i n t s :

36 inside = not inside

37 p1x , p1y = p2x , p2y

38 return inside

39

40

41

42

43

44

45 # Function that c a l l s c o n n e c t i v i t y network to predict e n t r i e s of the connection table (

quality_matrix)

46 @torch . no_grad ()

47 def get_quality_matrix_NN (polygon , inner_points) :

48

49 nb_of_edges=len (polygon)

50 nb_of_inner_points=len (inner_points)

51

52 # Load trained c o n n e c t i v i t y network

53 with open(’ . . / network_datasets / connectivity_NN / ’+ s t r (nb_of_edges) + ’ _ ’+ s t r (

nb_of_inner_points) + ’ _NN_qualities . pkl ’ , ’ rb ’) as f :

54 connection_network=pickle . load (f)

166

B.1. Mesh generation

55

56 procrustes = apply_procrustes (polygon)

57 procrustes_inner_points = apply_procrustes (inner_points)

58

59 input = torch . tensor (np . concatenate ([np . asarray (np . append(procrustes , procrustes

[0] [None , :] , ax is =0) , dtype=np . f l o a t 3 2) , np . asarray (procrustes_inner_points ,

dtype=np . f l o a t 3 2)] , ax is =0) [None, None , : , :])

60

61 quality_matrix= net (input)

62

63 quality_matrix = quality_matrix [0] .numpy() . reshape ([procrustes . shape [0] , procrustes

. shape [0]+ len (inner_points)])

64

65 return quality_matrix

66

67

68 ’ ’ ’ Triangulation function that returns l i s t of elements based on an ordered connection

table (ordered_quality_matrix) ’ ’ ’

69 def t r i a n g u l a t e (polygon , points , ordered_quality_matrix , recursive=True , plot_mesh=True) :

70

71 set_edges=set (tuple (i) for i in get_contour_edges (polygon))

72 contour_edges=set (tuple (i) for i in get_contour_edges (polygon))

73 interior_edges=set ()

74 set_elements=set ()

75 set_locked_vert ices=set ()

76 set_orphan_vertices=set ()

77 set_interior_edge_with_inner_point=set ()

78 print (" i n i t i a l set edges : " , set_edges)

79

80

81 polygon_with_points=np . vstack ([polygon , points])

82

83

84 print ("meshing polygon : " , polygon , " with inner points : " , points)

85

86

87 ’ ’ ’ Go through the edges of the ordered connection table d i c t i i o n a r y (represent by

the keys of the dictionary . The copy of the table i s i t e r a t e d since i t can change

s i z e due to delet ion of e n t r i e s from spott ing locked f a c e t s ’ ’ ’

88 for edge in ordered_quality_matrix . copy () . keys () :

89

90 ’ ’ ’ I f er ror i s raised the edge entry was deleted f o r beeing locked . We proceed

to next edge ’ ’ ’

91 try :

92 ordered_quality_matrix . copy () [edge] [0]

93 except KeyError :

94 continue

95

96

97 ’ ’ ’ Go through the e n t r i e s of the ordered connection table that represent the

vertex to be connected with the edge ’ ’ ’

98 for qualities_with_edges in ordered_quality_matrix . copy () [edge] [0] :

167

Appendix B. Code

99

100 element_created=False

101

102 t a r g e t _ v t x =qualities_with_edges [1]

103

104 ’ ’ ’ Check f i r s t i f there i s sub−contour formed through the creation of an

element . I f there i s the v e r t i c e s of the sub−contour the v e r t i c e s share a

same id . For a connection of edge with an edge to form a non−

i n t e r s e c t i n g element the id of the edge ’ s v e r t i c e s along with the t a r g e t

vertex must be the same . ’ ’ ’

105

106 try :

107 edge_key1= vertex_dict_keys [s t r (edge [0])]

108 edge_key2= vertex_dict_keys [s t r (edge [1])]

109 target_vertex_key=vertex_dict_keys [s t r (t a r g e t _ v t x)]

110 contained_in_vertex1=False

111 contained_in_vertex2=False

112 for key in edge_key1 :

113 i f key in target_vertex_key :

114 contained_in_vertex1=True

115 for key in edge_key2 :

116 i f key in target_vertex_key :

117 contained_in_vertex2=True

118 ’ ’ ’ I f the v e r t i c e s id of the edge and the t a r g e t vertex are not the

same , proceed to connect the edge with next vertex ’ ’ ’

119 i f not contained_in_vertex1 and not contained_in_vertex2 :

120 continue

121 except :

122 pass

123

124 print ("Edge : " , edge , " target ing : " , t a r g e t _ v t x)

125

126 ’ ’ ’ I f the t a r g e t vtx i s in s e t of locked v e r t i c e s than proceed to connect

edge with next vertex ’ ’ ’

127 i f t a r g e t _ v t x in set_locked_vert ices :

128 print (" Target vertex { } i s locked " . format (t a r g e t _ v t x))

129 continue

130

131

132

133 ’ ’ ’ I f the element already e x i s t s proceed to next edge ’ ’ ’

134 element =(edge [0] , edge [1] , t a r g e t _ v t x)

135 print (element)

136 existing_element=False

137 for element in set_elements :

138 i f set (element) == set (element) :

139 print ("Element { } already in set " . format (element))

140 existing_element=True

141 break

142 i f existing_element :

143 break

144

168

B.1. Mesh generation

145

146

147 set_elements . add(element)

148

149

150 ’ ’ ’ Check i f a locked vertex was created a f t e r the creation of the element

151 I f so , add i t to the l i s t ’ ’ ’

152 Found_locked_vertex=False

153 for vertex in element :

154 i f vertex <polygon . shape [0] :

155 _ , isclosed = is_closed_ring (vertex , set_elements , *
connection_indices (vertex , get_contour_edges (polygon)))

156 i f isc losed and vertex not in set_locked_vert ices :

157 print (" Vertex locked : " , vertex)

158 Found_locked_vertex=True

159

160 # New edges a f t e r creation of the element

161 new_edge1=(edge [0] , t a r g e t _ v t x)

162 new_edge2=(edge [1] , t a r g e t _ v t x)

163

164 # Update the s e t of edges

165 i f new_edge1 not in set_edges and tuple (reversed (new_edge1)) not in

set_edges :

166 set_edges . add (new_edge1)

167 interior_edges . add (new_edge1)

168 print ("edges inserted : " ,new_edge1)

169 print (" set of i n t e r i o r edges updated : " , interior_edges)

170 print (" set of edges updated : " , set_edges)

171 i f new_edge2 not in set_edges and tuple (reversed (new_edge2)) not in

set_edges :

172 set_edges . add (new_edge2)

173 interior_edges . add (new_edge2)

174 print ("edges inserted : " ,new_edge2)

175 print (" set of i n t e r i o r edges updated : " , interior_edges)

176 print (" set of edges updated : " , set_edges)

177

178

179

180 element_created=True

181

182 i f target_vtx >=polygon . shape [0] :

183 set_interior_edge_with_inner_point . add (new_edge1)

184 set_interior_edge_with_inner_point . add (new_edge2)

185

186 i f element_created :

187

188 ’ ’ ’ Checking i f locked f a c e t s are formed a f t e r the creation of the

element ’ ’ ’

189 element_edges=set ()

190 for i in permutations (element , 2) :

191 element_edges . add (i)

192 count=0

169

Appendix B. Code

193 indices = []

194 for index , edge_ in enumerate (l i s t (contour_edges)) :

195 i f edge_ in element_edges :

196 indices . append(index)

197 count+=1

198 i f count==2:

199 for index in indices :

200 locked_facet= l i s t (contour_edges) [index]

201 i f locked_facet ! = edge and locked_facet [: : − 1] ! = edge :

202 print (’ spotted locked fa cet { } ’ . format (locked_facet))

203 ’ ’ ’ Delete the entry from connection table that includes the edge

’ ’ ’

204 ordered_quality_matrix . pop(locked_facet)

205

206

207 set_open_vertices=set (range (len (polygon))) −set_locked_vert ices

208 set_interior_edge_with_inner_point_reformed=np . array (l i s t (

set_interior_edge_with_inner_point)) . f l a t t e n ()

209

210

211 for vertex in range (len (polygon) , len (polygon_with_points)) :

212 i f vertex not in set_interior_edge_with_inner_point_reformed :

213 set_orphan_vertices . add (vertex)

214

215

216 ’ ’ ’ Check i f sub−contours are formed a f t e r the creation of an element .

I f so , assign the same id to the v e r t i c e s of each sub−contour ’ ’ ’

217 sub_polygon_list=check_for_sub_polygon (set_orphan_vertices ,

set_open_vertices , interior_edges , set_elements , polygon , points)

218

219

220 i f len (sub_polygon_list) >1:

221 vertex_dict_keys=dict ()

222 for index , v e r t i c e s in enumerate (sub_polygon_list) :

223 for vertex in v e r t i c e s :

224 i f s t r (vertex) not in l i s t ((vertex_dict_keys) . keys ()) :

225 vertex_dict_keys [s t r (vertex)] = [index]

226 else :

227 vertex_dict_keys [s t r (vertex)] . append(index)

228

229 set_orphan_vertices=set ()

230

231 break

232

233

234 i f plot_mesh :

235 tr iangulated ={ ’ segment_markers ’ : np . ones ([polygon . shape [0]+ points . shape [0]]) , ’

segments ’ : np . array (get_contour_edges (polygon)) , ’ t r i a n g l e s ’ : np . array (l i s t (

l i s t (i) for i in set_elements)) ,

236 ’ vertex_markers ’ : np . ones ([polygon . shape [0]+ points . shape [0]]) , ’ v e r t i c e s ’ :

np . vstack ([polygon , points]) }

237 plot (p l t . axes () , ** tr iangulated)

170

B.1. Mesh generation

238 print (" Final edges : " , set_edges)

239 print ("Elements created : " , set_elements)

240 print (" Set of locked v e r t i c e s : " , set_locked_vert ices)

241

242

243 # Find open v e r t i c e s

244 for element in set_elements :

245 for vertex in element :

246 i f vertex >=polygon . shape [0] :

247 continue

248 _ , isclosed = is_closed_ring (vertex , set_elements , * connection_indices (vertex ,

get_contour_edges (polygon)))

249 i f isc losed and vertex not in set_locked_vert ices :

250 print (" Vertex locked : " , vertex)

251 Found_locked_vertex=True

252 set_locked_vert ices . add(vertex)

253 set_open_vertices=set (range (len (polygon))) −set_locked_vert ices

254

255 # Check f o r v e r t i c e s that are not connected to any point

256 set_interior_edge_with_inner_point_reformed=np . array (l i s t (

set_interior_edge_with_inner_point)) . f l a t t e n ()

257 for vertex in range (len (polygon) , len (polygon_with_points)) :

258 i f vertex not in set_interior_edge_with_inner_point_reformed :

259 set_orphan_vertices . add (vertex)

260

261 print (" set of orphan vertex : " , set_orphan_vertices)

262 print (" Set of open v e r t i c e s : " , set_open_vertices)

263 set_edges . c lear () , set_locked_vert ices . c lear () , set_forbidden_intersections . c lear

264 sub_element_list = []

265

266 ’ ’ ’ I f there e x i s t open v e r t i c e s then the triangulation algorithm i s c a l l e d

r e c u r s i v e l y ’ ’ ’

267 i f len (set_open_vertices) >0:

268

269 # Get l i s t of sub−contours

270 sub_polygon_list=check_for_sub_polygon (set_orphan_vertices , set_open_vertices

, interior_edges , set_elements , polygon , points)

271

272

273 for sub_polygon_indices in sub_polygon_list :

274 i f len (set_orphan_vertices) ==0:

275 i f len (sub_polygon_indices) >=3:

276 print ("remeshing subpolygon" , sub_polygon_indices)

277 polygon_copy=np . vstack ([polygon , points])

278 sub_polygon=np . array (polygon_copy [sub_polygon_indices])

279

280 i f not is_counterclockwise (sub_polygon) :

281 sub_polygon=np . array (polygon_copy [sub_polygon_indices [: : − 1]])

282

283 sub_quality=get_quality_matrix_NN (sub_polygon , inner_points = [])

284 sub_order_matrix=Triangulation . order_quality_matrix (sub_quality ,

sub_polygon , check_for_equal=True)

171

Appendix B. Code

285

286

287 sub_elements , _ , _= t r i a n g u l a t e (sub_polygon , sub_order_matrix ,

recursive=True)

288 i f len (sub_elements) ! = 0 :

289 for element in sub_elements :

290 indices=np . asarray (element)

291 print (element)

292 t r i a n g l e =sub_polygon [indices]

293 polygon_indices=get_indices (tr iangle , polygon_with_points)

294 sub_element_list . append(polygon_indices)

295 else :

296 i f len (sub_polygon_indices) >=3:

297

298

299 sub_polygon_inner_points = []

300 inner_points_indices=np . asarray (l i s t (set_orphan_vertices)) .

f l a t t e n ()

301 # inner_points_indices=np . s o r t (inner_points_indices)

302 print ("remeshing subpolygon" , sub_polygon_indices)

303 polygon_copy=np . vstack ([polygon , points])

304 sub_polygon=np . array (polygon_copy [sub_polygon_indices])

305

306

307 i f not is_counterclockwise (sub_polygon) :

308 sub_polygon=np . array (polygon_copy [sub_polygon_indices

[: : − 1]])

309

310 inner_points=np . array (polygon_copy [inner_points_indices])

311 inner_points=sort_points (inner_points . reshape (1 , len (

inner_points) , 2) , len (inner_points)) . reshape (len (

inner_points) , 2)

312

313 for point in inner_points :

314 i s _ i n s i d e =ray_tracing (point [0] , point [1] , sub_polygon)

315 i f i s _ i n s i d e :

316 sub_polygon_inner_points . append(point)

317 print (" Point " , point , " i s inside " ,

sub_polygon_indices)

318

319 i f len (sub_polygon_inner_points) ! = 0 :

320

321 sub_polygon_inner_points=np . array (

sub_polygon_inner_points)

322 sub_polygon_with_points=np . vstack ([sub_polygon ,

sub_polygon_inner_points])

323 sub_quality=get_quality_matrix_NN (sub_polygon ,

sub_polygon_inner_points)

324 sub_order_matrix=order_quality_matrix (sub_quality ,

sub_polygon , sub_polygon_with_points , check_for_equal=

True)

325

172

B.2. Mesh Improvement

326 print (sub_quality , sub_order_matrix)

327 print (sub_polygon)

328 sub_elements , _= t r i a n g u l a t e (sub_polygon ,

sub_polygon_inner_points , sub_order_matrix , recursive=

True)

329 i f len (sub_elements) ! = 0 :

330 for element in sub_elements :

331 indices=np . asarray (element)

332 print (element)

333 t r i a n g l e =sub_polygon_with_points [indices]

334 polygon_indices=get_indices (tr iangle ,

polygon_with_points)

335 sub_element_list . append(polygon_indices)

336 else :

337 sub_quality=get_quality_matrix_NN (sub_polygon ,

inner_points = [])

338 sub_order_matrix=Triangulation . order_quality_matrix (

sub_quality , sub_polygon , check_for_equal=True)

339

340 print (sub_quality , sub_order_matrix)

341 sub_elements , _= t r i a n g u l a t e (sub_polygon , inner_points = [] ,

sub_order_matrix , recursive=True)

342 i f len (sub_elements) ! = 0 :

343 for element in sub_elements :

344 indices=np . asarray (element)

345 print (element)

346 t r i a n g l e =sub_polygon [indices]

347 polygon_indices=get_indices (tr iangle ,

polygon_with_points)

348 sub_element_list . append(polygon_indices)

349

350 return set_elements , sub_element_list

B.2 Mesh Improvement

B.2.1 Mesh class

1 ’ ’ ’ The c l a s s c r e a t e s mesh o b j e c t s reading . vtk f i l e s . A l l mesh improvement

operation are functions of the present c l a s s ’ ’ ’

2 class ModifiableMesh (meshio . Mesh) :

3 def _ _ i n i t _ _ (s e l f , points , c e l l s , point_data=None, cel l_data =None, f i e l d _ d a t a =

None, point_sets=None, c e l l _ s e t s =None, gmsh_periodic=None, info=None, normal=

None, target_edgelength_boundary=None, target_edgelength_interface=None) :

4 super () . _ _ i n i t _ _ (points , c e l l s , point_data , cel l_data , f ie ld_data , point_sets ,

c e l l _ s e t s , gmsh_periodic , info)

5

6 s e l f . vertex_index = None

7 s e l f . l ine_index = None

8 s e l f . tr iangle_index = None

9 s e l f . tetra_index = None

173

Appendix B. Code

10 for c , c e l l in enumerate (s e l f . c e l l s) :

11 i f c e l l . type == ’ vertex ’ :

12 s e l f . vertex_index = c

13 e l i f c e l l . type == ’ l i n e ’ :

14 s e l f . l ine_index = c

15 e l i f c e l l . type == ’ t r i a n g l e ’ :

16 s e l f . tr iangle_index = c

17 e l i f c e l l . type == ’ t e t r a ’ :

18 s e l f . tetra_index = c

19

20 i f s e l f . tetra_index i s not None :

21 s e l f . dimension = 3

22 e l i f s e l f . tr iangle_index i s not None :

23 s e l f . dimension = 2

24 else :

25 s e l f . dimension = 1

26

27 try :

28 s e l f . f i x e d _ v e r t i c e s = s e l f . g e t _ v e r t i c e s () . reshape (−1)

29 except TypeError :

30 s e l f . f i x e d _ v e r t i c e s = np . array ([] , dtype=np . int)

31

32 boundary = np . zeros (s e l f . points . shape [0] , dtype=np . bool)

33 try :

34 for object in s e l f . g e t _ l i n e s () :

35 for vertex in object :

36 i f vertex not in s e l f . f i x e d _ v e r t i c e s :

37 boundary [vertex] = True

38 except TypeError :

39 pass

40

41 i n t e r i o r = np . zeros (s e l f . points . shape [0] , dtype=np . bool)

42 for vertex in range (len (s e l f . points)) :

43 objects = s e l f . get_neighbourhood (vertex)

44 try :

45 _ , index , _ = s e l f . get_contour (objects)

46 except :

47 continue

48 i n t e r i o r [vertex] = vertex not in index

49

50 s e l f . i n t e r i o r _ v e r t i c e s = np . s e t d i f f 1 d (np . nonzero(~boundary & i n t e r i o r) [0] , s e l f

. f i x e d _ v e r t i c e s)

51 s e l f . boundary_vertices = np . s e t d i f f 1 d (np . nonzero (boundary & ~ i n t e r i o r) [0] , s e l f

. f i x e d _ v e r t i c e s)

52 s e l f . i n t e r f a c e _ v e r t i c e s = np . s e t d i f f 1 d (np . nonzero (boundary & i n t e r i o r) [0] , s e l f

. f i x e d _ v e r t i c e s)

53

54 i f normal i s None :

55 normal = [0 , 0 , 1]

56 s e l f . normal = np . array (normal)

57

58

174

B.2. Mesh Improvement

59 i f target_edgelength_boundary i s None :

60 edges = np . copy (s e l f . g e t _ l i n e s ())

61 v al i d = np . concatenate ([s e l f . boundary_vertices , s e l f . f i x e d _ v e r t i c e s])

62 edges = edges [np . i s i n (s e l f . g e t _ l i n e s () [: , 0] , va l i d) & np . i s i n (s e l f .

g e t _ l i n e s () [: , 1] , v a l i d)]

63 length = np . l i n a l g .norm(s e l f . points [edges [: , 0]] − s e l f . points [edges [: , 1]] ,

ax is =1)

64 target_edgelength_boundary = np .mean(length)

65 s e l f . target_edgelength_boundary = target_edgelength_boundary

66

67 i f target_edgelength_interface i s None :

68 try :

69 edges = np . copy (s e l f . g e t _ l i n e s ())

70 v al i d = np . concatenate ([s e l f . i n t e r f a c e _ v e r t i c e s , s e l f . f i x e d _ v e r t i c e s])

71 edges = edges [np . i s i n (s e l f . g e t _ l i n e s () [: , 0] , va l i d) & np . i s i n (s e l f .

g e t _ l i n e s () [: , 1] , v a l i d)]

72 length = np . l i n a l g .norm(s e l f . points [edges [: , 0]] − s e l f . points [edges [: , 1]] ,

ax is =1)

73 target_edgelength_interface = np .mean(length)

74 except :

75 target_edgelength_interface = target_edgelength_boundary

76 s e l f . target_edgelength_interface = target_edgelength_interface

77

78 s e l f . refinement_threshold =4/3

79 s e l f . coarsen_threshold = 4/5

80

81

82 s e l f . generator = np . random . Generator (np . random . PCG64 ())

83

84 def g e t _ v e r t i c e s (s e l f) :

85 i f s e l f . vertex_index i s None :

86 return None

87 else :

88 return s e l f . c e l l s [s e l f . vertex_index] . data

89

90 def g e t _ l i n e s (s e l f) :

91 i f s e l f . l ine_index i s None :

92 return None

93 else :

94 return s e l f . c e l l s [s e l f . l ine_index] . data

95

96 def s e t _ l i n e s (s e l f , l i n e s) :

97 s e l f . c e l l s [s e l f . l ine_index] = s e l f . c e l l s [s e l f . l ine_index] . _replace (data= l i n e s)

98

99 def g e t _ t r i a n g l e s (s e l f) :

100 i f s e l f . tr iangle_index i s None :

101 return None

102 else :

103 return s e l f . c e l l s [s e l f . tr iangle_index] . data

104

105 def s e t _ t r i a n g l e s (s e l f , t r i a n g l e s) :

175

Appendix B. Code

106 s e l f . c e l l s [s e l f . tr iangle_index] = s e l f . c e l l s [s e l f . tr iangle_index] . _replace (data

= t r i a n g l e s)

107

108 def g e t _ t e t r a s (s e l f) :

109 i f s e l f . tetra_index i s None :

110 return None

111 else :

112 return s e l f . c e l l s [s e l f . tetra_index] . data

113

114 def s e t _ t e t r a s (s e l f , t e t r a s) :

115 s e l f . c e l l s [s e l f . tetra_index] = s e l f . c e l l s [s e l f . tetra_index] . _replace (data= t e t r a)

116

117 def get_elements (s e l f) :

118 i f s e l f . dimension == 3 :

119 return s e l f . g e t _ t e t r a s ()

120 e l i f s e l f . dimension == 2 :

121 return s e l f . g e t _ t r i a n g l e s ()

122

123 def set_elements (s e l f , elements) :

124 i f s e l f . dimension == 3 :

125 s e l f . s e t _ t e t r a s (elements)

126 e l i f s e l f . dimension == 2 :

127 s e l f . s e t _ t r i a n g l e s (elements)

128

129

130 ’ ’ ’ Calculates the quality of each element in the mesh . ’ ’ ’

131 def qual i ty (s e l f) :

132

133 i f s e l f . dimension == 2 :

134 qual i ty = np . apply_along_axis (s e l f . t r i a n g l e _ q u a l i t y , 1 , s e l f . g e t _ t r i a n g l e s

())

135 e l i f s e l f . dimension == 3 :

136 qual i ty = s e l f . to_pyvista () . qual i ty

137 else :

138 raise DimensionError (’Mesh must be a surface or volume mesh ’)

139 return qual i ty

B.2.2 Reconnection

1

2

3

4 ’ ’ ’ Function c a l l i n g neural networks to r e t r i a n g u l a t e a contour ’ ’ ’

5 @torch . no_grad ()

6 def r e t r i a n g u l a t e (contour) :

7 i f len (contour) == 3 :

8 return np . array ([0 , 1 , 2] , dtype=np . int)

9

10 net = get_connectivity_network (contour . shape [0])

11

12 procrustes = apply_procrustes (contour)

176

B.2. Mesh Improvement

13 input = torch . tensor (np . asarray (procrustes , dtype=np . f l o a t 3 2) . reshape ((1 , −1)))

14 table = net (input)

15

16 table = table [0] .numpy() . reshape ([contour . shape [0] , contour . shape [0]])

17

18

19

20 index = np . arange (len (contour))

21 ordered_triangles = order_tr iangles (contour , table)

22

23 chosen , c a v i t i e s = tr iangulate2 (procrustes , index , ordered_triangles)

24 new_elements = ordered_triangles [chosen]

25

26 while len (c a v i t i e s) > 0 :

27 cavity = c a v i t i e s . pop ()

28 sub = contour [cavi ty]

29

30 i f len (cavi ty) == 3 :

31 new_elements = np . append(new_elements , np . array ([cavi ty]) , ax i s =0)

32 else :

33 net = get_connectivity_network (sub . shape [0])

34

35 sub_procrustes = apply_procrustes (sub)

36 input = torch . tensor (sub_procrustes . astype (np . f l o a t 3 2)) . reshape ((1 , −1))

37 table = net (input)

38

39 table = table [0] .numpy() . reshape ([sub . shape [0] , sub . shape [0]])

40

41 ordered_triangles = order_tr iangles (sub , table)

42

43 chosen , sub_cavit ies = tr iangulate2 (sub_procrustes , np . arange (len (contour)) ,

ordered_triangles)

44 new_elements = np . append(new_elements , np . take (cavity , ordered_triangles [chosen

]) , axi s =0)

45 c a v i t i e s += np . take (cavity , sub_cavit ies)

46

47

48

49 return new_elements

50

51

52

53

54

55 ’ ’ ’

56 Reconnect the v e r t i c e s inside a c a v i t y given by o b j e c t s using a neural network .

57 ’ ’ ’

58 def reconnect_objects (s e l f , objects) :

59

60 qual i ty = np . apply_along_axis (s e l f . t r i a n g l e _ q u a l i t y , 1 , s e l f . g e t _ t r i a n g l e s () [

objects])

61 q = np . min(qual i ty)

177

Appendix B. Code

62 contour , index , _ = s e l f . get_contour (objects)

63

64 i f len (index) > 10:

65 return False , objects

66

67 contour = contour [: − 1 , : 2] # 2D only !

68 index = index [: − 1]

69 r o l l e d = np . r o l l (contour , 1 , axis =0)

70 contour_direction = np . sign (np .sum(contour [: , 1] * r o l l e d [: , 0] − contour [: , 0] * r o l l e d

[: , 1]))

71 i f contour_direction < 0 :

72 contour = contour [: : − 1]

73 index = index [: : − 1]

74

75 i f len (index) == 3 :

76 return True , index [None , :]

77

78 new = r e t r i a n g u l a t e (contour)

79

80 new_elements = np . take (index , new)

81 new_quality = np . apply_along_axis (s e l f . t r i a n g l e _ q u a l i t y , 1 , new_elements)

82 i f np . min(new_quality) > q :

83 accepted = True

84 else :

85 accepted = False

86

87 return accepted , new_elements

88

89

90

91

92 ’ ’ ’ Reconnect the mesh using neural networks . I t e r a t e d unti l no further improvement i s

made. ’ ’ ’

93 def reconnect (s e l f , maxiter =10) :

94

95 accepted = 1

96 i t e r = 1

97 while accepted > 0 and i t e r <= maxiter :

98 try :

99 p a r t i t i o n = s e l f . connect iv i ty_part i t ion ()

100 except :

101 accepted=0

102 break

103

104

105 i f len (p a r t i t i o n) > 0 :

106 groups = np . unique (p a r t i t i o n)

107 groups = groups [groups >= 0]

108 keep_elements = np . ones (len (s e l f . g e t _ t r i a n g l e s ()) , dtype=np . bool)

109 new_elements = []

110 accepted = 0

111 for i , g in enumerate (groups) :

178

B.2. Mesh Improvement

112 objects = p a r t i t i o n == g

113 i f np . count_nonzero (objects) > 1 :

114 accept , new = s e l f . reconnect_objects (objects)

115 i f accept :

116 keep_elements = np . logical_and (~ objects , keep_elements)

117 try :

118 new_elements = np . append(new_elements , new, axi s =0)

119 except :

120 new_elements = new

121 accepted += 1

122

123 elements = s e l f . g e t _ t r i a n g l e s () [keep_elements]

124

125 i f len (new_elements) > 0 :

126 elements = np . append(elements , new_elements , axis =0)

127 s e l f . s e t _ t r i a n g l e s (elements)

128 print (’ Quality a f t e r { } reconnecting i t e r a t i o n s : { } ’ . format (i t e r , np . min(

s e l f . qual i ty ())))

129 i t e r += 1

130 else :

131 accepted = 0

B.2.3 Vertex repositioning

1

2 ’ ’ ’ Return the location of a reposit ioned vertex ’ ’ ’

3 @torch . no_grad ()

4 def smooth_interior_point (contour) :

5 net = get_smoothing_network (contour . shape [0])

6 procrustes_transform , inverse_transform , _ = get_procrustes_transform (contour)

7 procrustes = procrustes_transform (contour)

8 shape = procrustes . reshape (−1)

9 shape = np . asarray (shape , dtype=np . f l o a t 3 2)

10 input = torch . from_numpy(shape)

11 prediction = net (input [None , :]) [0]

12 return inverse_transform (prediction .numpy())

13

14 ’ ’ ’

15 Reposition a vertex .

16 ’ ’ ’

17 def smooth_vertex (s e l f , vertex) :

18

19 objects = s e l f . get_neighbourhood (vertex)

20 try :

21 contour , index , _ = s e l f . get_contour (objects)

22 except :

23 accepted=False

24 return accepted

25 i f len (contour) > 10:

26 accepted = False

27 else :

179

Appendix B. Code

28 qual i ty = np . apply_along_axis (s e l f . t r i a n g l e _ q u a l i t y , 1 , s e l f . g e t _ t r i a n g l e s () [

objects])

29 q = np . min(qual i ty)

30 old_point = np . copy (s e l f . points [vertex])

31 contour = contour [: − 1 , : 2] # 2D only !

32 new_point = smooth_interior_point (contour) # , len (i n t e r i o r)

33 s e l f . points [vertex] [: 2] = new_point # 2D only !

34 qual i ty = np . apply_along_axis (s e l f . t r i a n g l e _ q u a l i t y , 1 , s e l f . g e t _ t r i a n g l e s () [

objects])

35 accepted = True

36 i f np . min(qual i ty) <= q :

37 s e l f . points [vertex] = old_point

38 accepted = False

39 return accepted

40

41

42

43

44 ’ ’ ’

45 Returns an ordered l i s t of i n t e r i o r v e r t i c e s to be reposit ioned .

46 ’ ’ ’

47 def smoothing_partition (s e l f) :

48

49 qual i ty = s e l f . qual i ty ()

50 vertex_qual i ty = np . zeros (s e l f . i n t e r i o r _ v e r t i c e s . shape)

51 for v , vertex in enumerate (s e l f . i n t e r i o r _ v e r t i c e s) :

52 objects = objects_boundary_includes (s e l f . g e t _ t r i a n g l e s () , vertex)

53 vertex_qual i ty [v] = np . min(qual i ty [objects])

54 p a r t i t i o n = s e l f . i n t e r i o r _ v e r t i c e s [vertex_qual i ty < 0 . 8]

55 vertex_qual i ty = vertex_qual i ty [vertex_qual i ty < 0 . 8]

56 i f len (vertex_qual i ty) > 0 :

57 p a r t i t i o n = p a r t i t i o n [np . argsort (vertex_qual i ty)]

58 return p a r t i t i o n

59

60

61

62 ’ ’ ’

63 Apply vertex reposit ioning to a mesh using neural networks . I t e r a t e s unti l no further

improvement i s made.

64 ’ ’ ’

65 def smooth(s e l f , maxiter =10) :

66

67 accepted = 1

68 i t e r = 1

69 while accepted > 0 and i t e r <= maxiter :

70 try :

71 p a r t i t i o n = s e l f . smoothing_partition ()

72 except :

73 accepted=0

74 break

75 i f len (p a r t i t i o n) > 0 :

76 accepted = 0

180

B.2. Mesh Improvement

77 for v in p a r t i t i o n :

78 i f s e l f . smooth_vertex (v) :

79 accepted += 1

80 print (’ Quality a f t e r { } smoothing i t e r a t i o n s : { } ’ . format (i t e r , np . min(s e l f .

qual i ty ())))

81 i t e r += 1

82 else :

83 accepted = 0

B.2.4 Boundary/interface vertex repositioning

1

2

3 ’ ’ ’

4 Apply vertex reposit ioning a boundary vertex using NN.

5 ’ ’ ’

6 @torch . no_grad ()

7 def smooth_boundary_point (contour , tangents) :

8 net = get_boundary_network (contour . shape [0] −1)

9 procrustes_transform , inverse_transform , tangent_transform =

get_procrustes_transform (contour)

10 procrustes = procrustes_transform (contour)

11 shape = np . concatenate ([procrustes . reshape (−1) , tangent_transform (tangents) . reshape

(−1)])

12 shape = np . asarray (shape , dtype=np . f l o a t 3 2)

13 input = torch . from_numpy(shape)

14 prediction = net (input [None , :]) [0]

15

16 return inverse_transform (prediction .numpy())

17

18

19

20 ’ ’ ’

21 Apply vertex reposit ioning a boundary vertex .

22 ’ ’ ’

23 def smooth_boundary_vertex (s e l f , vertex) :

24

25 objects = s e l f . get_neighbourhood (vertex)

26 i f np . count_nonzero (objects) == 1 :

27 return False

28

29 contour , index = s e l f . get_open_contour (objects , vertex)

30 i f len (contour) < 3 :

31 return False

32 i f len (contour) > 6 :

33 return False

34 contour = contour [: , : 2] # 2D only !

35

36 old_point = np . copy (s e l f . points [vertex])

37 qual i ty = np . apply_along_axis (s e l f . t r i a n g l e _ q u a l i t y , 1 , s e l f . g e t _ t r i a n g l e s () [

objects])

181

Appendix B. Code

38 q = np . min(qual i ty)

39

40 try :

41 spline , d e r i v a t i v e = s e l f . get_spline ([index [0] , vertex , index [− 1]])

42 except :

43 s e l f . points [vertex] = old_point

44 accepted = False

45 return accepted

46

47 tangents = d e r i v a t i v e (np . array ([0 , 1]))

48 tangents /= np . l i n a l g .norm(tangents , axi s =1) [: , None]

49

50 new_point = smooth_boundary_point (contour , tangents)

51

52 fun = lambda s : np . dot (new_point − spline (s) , d e r i v a t i v e (s))

53 try :

54 s0 = brentq (fun , 0 , 1)

55 new_point = spline (s0)

56 s e l f . points [vertex] [: 2] = new_point # 2D only !

57 qual i ty = np . apply_along_axis (s e l f . t r i a n g l e _ q u a l i t y , 1 , s e l f . g e t _ t r i a n g l e s () [

objects])

58 accepted = np . min(qual i ty) > q

59 except ValueError :

60 accepted = False

61

62 i f not accepted :

63 s e l f . points [vertex] = old_point

64

65 return accepted

66

67

68 ’ ’ ’

69 Returns an ordered l i s t of boundary v e r t i c e s to apply vertex reposit ioning .

70 ’ ’ ’

71 def boundary_partition (s e l f) :

72

73 qual i ty = s e l f . qual i ty ()

74 vertex_qual i ty = np . zeros (s e l f . boundary_vertices . shape)

75 for v , vertex in enumerate (s e l f . boundary_vertices) :

76 objects = objects_boundary_includes (s e l f . g e t _ t r i a n g l e s () , vertex)

77 vertex_qual i ty [v] = np . min(qual i ty [objects])

78 p a r t i t i o n = s e l f . boundary_vertices [vertex_qual i ty < 0 . 8]

79 vertex_qual i ty = vertex_qual i ty [vertex_qual i ty < 0 . 8]

80 i f len (vertex_qual i ty) > 0 :

81 p a r t i t i o n = p a r t i t i o n [np . argsort (vertex_qual i ty)]

82 return p a r t i t i o n

83

84

85

86 ’ ’ ’

87 Apply vertex reposit ioning to the boundary v e r t i c e s of a mesh using neural networks .

I t e r a t e s unti l no further improvement i s made.

182

B.2. Mesh Improvement

88 ’ ’ ’

89

90 def smooth_boundary (s e l f , maxiter =10) :

91

92 accepted = 1

93 i t e r = 1

94 while accepted > 0 and i t e r <= maxiter :

95 p a r t i t i o n = s e l f . boundary_partition ()

96 i f len (p a r t i t i o n) > 0 :

97 accepted = 0

98 for vertex in p a r t i t i o n :

99 i f s e l f . smooth_boundary_vertex (vertex) :

100 accepted += 1

101 print (’ Quality a f t e r { } boundary smoothing i t e r a t i o n s : { } ’ . format (i t e r , np .

min(s e l f . qual i ty ())))

102 i t e r += 1

103 else :

104 accepted = 0

105

106

107 ’ ’ ’

108 Apply vertex reposit ioning to a i n t e r f a c e vertex using NNs.

109 ’ ’ ’

110 @torch . no_grad ()

111 def smooth_interface_point (contour , points , tangents) :

112 net = get_interface_network (contour . shape [0])

113 procrustes_transform , inverse_transform , tangent_transform =

get_procrustes_transform (contour)

114 procrustes = procrustes_transform (contour)

115 i n t e r f a c e = procrustes_transform (points)

116 shape = np . concatenate ([procrustes . reshape (−1) , i n t e r f a c e . reshape (−1) ,

tangent_transform (tangents) . reshape (−1)])

117 shape = np . asarray (shape , dtype=np . f l o a t 3 2)

118 input = torch . from_numpy(shape)

119 prediction = net (input [None , :]) [0]

120 return inverse_transform (prediction .numpy())

121

122

123

124

125 ’ ’ ’

126 Returns an ordered l i s t of i n t e r f a c e v e r t i c e s to be apply vertex re po si t io n .

127 ’ ’ ’

128 def i n t e r f a c e _ p a r t i t i o n (s e l f) :

129

130 qual i ty = s e l f . qual i ty ()

131 vertex_qual i ty = np . zeros (s e l f . i n t e r f a c e _ v e r t i c e s . shape)

132 for v , vertex in enumerate (s e l f . i n t e r f a c e _ v e r t i c e s) :

133 objects = objects_boundary_includes (s e l f . g e t _ t r i a n g l e s () , vertex)

134 vertex_qual i ty [v] = np . min(qual i ty [objects])

135 p a r t i t i o n = s e l f . i n t e r f a c e _ v e r t i c e s [vertex_qual i ty < 0 . 9] #np .mean(quality)

136 vertex_qual i ty = vertex_qual i ty [vertex_qual i ty < 0 . 9]

183

Appendix B. Code

137 i f len (vertex_qual i ty) > 0 :

138 p a r t i t i o n = p a r t i t i o n [np . argsort (vertex_qual i ty)]

139 return p a r t i t i o n

140

141

142

143 ’ ’ ’

144 Apply vertex reposit ioning to a i n t e r f a c e vertex .

145 ’ ’ ’

146

147 def smooth_interface_vertex (s e l f , vertex) :

148

149 objects = s e l f . get_neighbourhood (vertex)

150 i f np . count_nonzero (objects) == 1 :

151 return False

152 old_point = np . copy (s e l f . points [vertex])

153

154 try :

155 contour , index , _ = s e l f . get_contour (objects)

156 except :

157 s e l f . points [vertex] = old_point

158 accepted = False

159 return accepted

160

161 contour = contour [: , : 2] # 2D only !

162

163 qual i ty = np . apply_along_axis (s e l f . t r i a n g l e _ q u a l i t y , 1 , s e l f . g e t _ t r i a n g l e s () [

objects])

164 q = np . min(qual i ty)

165

166 i n t e r f a c e = np . intersect1d (index , np . union1d (s e l f . i n t e r f a c e _ v e r t i c e s , s e l f .

f i x e d _ v e r t i c e s))

167

168 try :

169 spline , d e r i v a t i v e = s e l f . get_spline ([i n t e r f a c e [0] , vertex , i n t e r f a c e [− 1]])

170 except :

171 s e l f . points [vertex] = old_point

172 accepted=False

173 return accepted

174

175 tangents = d e r i v a t i v e (np . array ([0 , 1]))

176 tangents /= np . l i n a l g .norm(tangents , axi s =1) [: , None]

177

178 try :

179 new_point = smooth_interface_point (contour , s e l f . points [interface , : 2] , tangents

)

180 except :

181 s e l f . points [vertex] = old_point

182 accepted=False

183 return accepted

184

185 fun = lambda s : np . dot (new_point − spline (s) , d e r i v a t i v e (s))

184

B.2. Mesh Improvement

186 try :

187 s0 = brentq (fun , 0 , 1)

188 new_point = spline (s0)

189 s e l f . points [vertex] [: 2] = new_point # 2D only !

190 qual i ty = np . apply_along_axis (s e l f . t r i a n g l e _ q u a l i t y , 1 , s e l f . g e t _ t r i a n g l e s () [

objects])

191 accepted = np . min(qual i ty) > q

192 except ValueError :

193 accepted = False

194

195 i f not accepted :

196 s e l f . points [vertex] = old_point

197

198 return accepted

199

200

201

202 ’ ’ ’

203 Apply vertex reposit ioning to the i n t e r f a c e v e r t i c e s of a mesh using neural networks .

I t e r a t e s unti l no further improvement i s made.

204 ’ ’ ’

205 def smooth_interface (s e l f , maxiter =10) :

206

207 accepted = 1

208 i t e r = 1

209 while accepted > 0 and i t e r <= maxiter :

210 p a r t i t i o n = s e l f . i n t e r f a c e _ p a r t i t i o n ()

211 i f len (p a r t i t i o n) > 0 :

212 accepted = 0

213 for vertex in p a r t i t i o n :

214 i f s e l f . smooth_interface_vertex (vertex) :

215 accepted += 1

216 print (’ Quality a f t e r { } i n t e r f a c e smoothing i t e r a t i o n s : { } ’ . format (i t e r , np

. min(s e l f . qual i ty ())))

217 i t e r += 1

218 else :

219 accepted = 0

B.2.5 Edge Length control

1

2 ’ ’ ’ Triangulate a c a v i t y with inner points using NNs ’ ’ ’

3

4 @torch . no_grad ()

5 def r e t r i a n g u l a t e _ w i t h _ i n t e r i o r (contour , * args) :

6 try :

7 net = get_connectivity_network (contour . shape [0] , len (args))

8 except FileNotFoundError :

9 i f len (args) == 1 :

10 return simple_retriangulate (contour , * args)

11 else :

185

Appendix B. Code

12 raise ValueError (’ Network for { } edges and { } i n t e r i o r points not trained ’ .

format (contour . shape [0] , len (args)))

13

14 procrustes_transform , _ , _ = get_procrustes_transform (contour)

15 procrustes = procrustes_transform (contour)

16 inner = procrustes_transform (np . array (args))

17 input = torch . tensor (np . concatenate ([np . asarray (np . append(procrustes , procrustes

[0] [None , :] , ax is =0) , dtype=np . f l o a t 3 2) , np . asarray (inner , dtype=np . f l o a t 3 2)] ,

ax is =0) [None, None , : , :])

18

19

20 table = net (input)

21 table = table [0] .numpy() . reshape ([contour . shape [0] , contour . shape [0]+ len (args)])

22

23

24 ordered_matrix = order_quality_matrix (table , procrustes , np . vstack ([procrustes ,

inner]) , check_for_equal=False)

25 new_elements , sub_elements = t r i a n g u l a t e (procrustes , inner , ordered_matrix ,

recursive=True , plot_mesh=False)

26

27

28

29 new_elements = l i s t (new_elements)

30

31

32 return np . array (new_elements + sub_elements , dtype=np . int)

33

34

35

36

37 ’ ’ ’

38 Refine a c a v i t y given by o b j e c t s using a neural network .

39 ’ ’ ’

40 def ref ine_objects (s e l f , objects , new_points) :

41

42 new_index = np . arange (len (s e l f . points) , len (s e l f . points) + len (new_points))

43 s e l f . points = np . append(s e l f . points , new_points , axis =0)

44 s e l f . i n t e r i o r _ v e r t i c e s = np . append(s e l f . i n t e r i o r _ v e r t i c e s , new_index)

45

46

47 try :

48 contour , index , i n t e r i o r = s e l f . get_contour (objects)

49 except ValueError :

50 print (’ Inval id contour ’)

51 return False , None, None

52

53 contour = contour [: − 1 , : 2] # 2D only !

54 index = index [: − 1]

55 r o l l e d = np . r o l l (contour , 1 , axis =0)

56 contour_direction = np . sign (np .sum(contour [: , 1] * r o l l e d [: , 0] − contour [: , 0] * r o l l e d

[: , 1]))

57 i f contour_direction < 0 :

186

B.2. Mesh Improvement

58 contour = contour [: : − 1]

59 index = index [: : − 1]

60 index = np . append(index , new_index)

61

62 new = r e t r i a n g u l a t e _ w i t h _ i n t e r i o r (contour , * new_points [: , : 2])

63 new_elements = np . take (index , new)

64

65 new_quality = np . apply_along_axis (s e l f . t r i a n g l e _ q u a l i t y , 1 , new_elements)

66 i f np . min(new_quality) > 0 :

67 accepted = True

68 else :

69 accepted = False

70 s e l f . points = s e l f . points [: − len (new_points)]

71 s e l f . i n t e r i o r _ v e r t i c e s = s e l f . i n t e r i o r _ v e r t i c e s [: − len (new_points)]

72

73 return accepted , new_elements , i n t e r i o r

74

75

76

77

78 ’ ’ ’

79 Part i t ion the mesh into c a v i t i e s to be ref ined .

80 ’ ’ ’

81 def refinement_partition (s e l f) :

82

83 p a r t i t i o n = np . arange (len (s e l f . g e t _ t r i a n g l e s ()))

84

85 elements = s e l f . g e t _ t r i a n g l e s ()

86 all_edges = [np . sort (np . r o l l (e , r) [: 2]) for r in range (3) for e in elements]

87 edges , counts = np . unique (all_edges , axi s =0 , return_counts=True)

88

89 i s _ i n t e r i o r = counts > 1

90 edges = edges [i s _ i n t e r i o r]

91

92 i f len (s e l f . i n t e r f a c e _ v e r t i c e s > 0) :

93 i s _ i n t e r f a c e = objects_boundary_includes_some (edges , 2 , * s e l f .

i n t e r f a c e _ v e r t i c e s)

94 edges = edges [~ i s _ i n t e r f a c e]

95

96 length = np . l i n a l g .norm(s e l f . points [edges [: , 0]] − s e l f . points [edges [: , 1]] , ax is =1)

97 long = length > s e l f . target_edgelengths (edges) * s e l f . refinement_threshold

98 edges = edges [long]

99 edges = edges [np . argsort (− length [long])]

100

101 new_points = { }

102 not_accepted = []

103 for edge in edges :

104 t r i a n g l e _ p a i r = s e l f . find_triangles_with_common_edge (edge)

105 group = np . min(p a r t i t i o n [t r i a n g l e _ p a i r])

106 other_group = np .max(p a r t i t i o n [t r i a n g l e _ p a i r])

107

108 f i r s t = p a r t i t i o n == group

187

Appendix B. Code

109 second = p a r t i t i o n == other_group

110 p a r t i t i o n [np . l o g i c a l _ o r (f i r s t , second)] = group

111

112 accept_group = True

113 i f group not in new_points and other_group not in new_points :

114 new_points [group] = np . array ([(s e l f . points [edge [0]] + s e l f . points [edge [1]])

/ 2])

115 else :

116 new_polygon_objects = p a r t i t i o n == group

117 contour , _ , i n t e r i o r = s e l f . get_contour (new_polygon_objects)

118 nodes = [new_points [g] for g in [group , other_group] i f g in new_points]

119 new = sum([len (n) for n in nodes])

120 i f len (contour) > 8 or len (i n t e r i o r) + new > len (contour) − 4 :

121 accept_group = False

122 else :

123 new_points [group] = np . concatenate (nodes + [np . array ([(s e l f . points [edge

[0]] + s e l f . points [edge [1]]) / 2])] , ax is =0)

124 i f other_group in new_points :

125 del new_points [other_group]

126

127 i f not accept_group :

128 p a r t i t i o n [second] = other_group

129

130 p a r t i t i o n [np . i s i n (part i t ion , l i s t (new_points . keys ()) , invert =True)] = −1

131

132 return part i t ion , new_points

133

134

135

136

137

138

139 ’ ’ ’

140 Refine (regulate long edges) the mesh using neural networks . I t e r a t e d unti l no further

improvement i s made.

141 ’ ’ ’

142 def r e f i n e (s e l f , maxiter =10) :

143

144 accepted = 1

145 i t e r = 1

146 while accepted > 0 and i t e r <= maxiter :

147 part i t ion , new_points = s e l f . refinement_partition ()

148 groups = new_points . keys ()

149 i f len (groups) > 1 :

150 keep_elements = np . ones (len (s e l f . g e t _ t r i a n g l e s ()) , dtype=np . bool)

151 new_elements = []

152 accepted = 0

153 for g in groups :

154 i f g >= 0 :

155 objects = p a r t i t i o n == g

156 i f np . count_nonzero (objects) > 1 :

157 accept , new, i n t e r i o r = s e l f . ref ine_objects (objects , new_points [g])

188

B.2. Mesh Improvement

158 i f len (i n t e r i o r) > 0 :

159 raise ValueError (’ Points to be deleted during refinement ’)

160 i f accept :

161 keep_elements = keep_elements & ~objects

162 try :

163 new_elements = np . append(new_elements , new, axi s =0)

164 except :

165 new_elements = new

166 accepted += 1

167

168 i f len (new_elements) > 0 :

169 elements = s e l f . g e t _ t r i a n g l e s () [keep_elements]

170 elements = np . append(elements , new_elements , axis =0)

171 s e l f . s e t _ t r i a n g l e s (elements)

172 print (’ Quality a f t e r { } refinement i t e r a t i o n s : { } ’ . format (i t e r , np . min(

s e l f . qual i ty ())))

173 i t e r += 1

174 else :

175 accepted = 0

176 else :

177 accepted = 0

178

179

180 ’ ’ ’

181 Part i t ion the mesh into c a v i t i e s to be coarsened .

182 ’ ’ ’

183 def coarsen_partition (s e l f) :

184

185 p a r t i t i o n = np . arange (len (s e l f . g e t _ t r i a n g l e s ()))

186

187 elements = s e l f . g e t _ t r i a n g l e s ()

188 all_edges = [np . sort (np . r o l l (e , r) [: 2]) for r in range (3) for e in elements]

189 edges = np . unique (all_edges , axis =0)

190

191 boundary_or_interface = np . concatenate ([s e l f . boundary_vertices , s e l f .

i n t e r f a c e _ v e r t i c e s])

192 includes_boundary = objects_boundary_includes_some (edges , 1 , * boundary_or_interface

)

193 edges = edges [~ includes_boundary]

194

195

196 length = np . l i n a l g .norm(s e l f . points [edges [: , 0]] − s e l f . points [edges [: , 1]] , ax is =1)

197 short = length < s e l f . target_edgelengths (edges) * s e l f . coarsen_threshold

198 edges = edges [short]

199 edges = edges [np . argsort (length [short])]

200

201 new_points = { }

202 not_accepted = []

203 for edge in edges :

204 potential = objects_boundary_includes_some (s e l f . g e t _ t r i a n g l e s () , 1 , *edge)

205 group = np . min(p a r t i t i o n [potential])

206 all_groups = np . unique (p a r t i t i o n [potential])

189

Appendix B. Code

207 selected = np . i s i n (part i t ion , all_groups)

208

209 i f np . a l l (np . i s i n (all_groups , l i s t (new_points . keys ()) , invert =True)) :

210 p a r t i t i o n [selected] = group

211 new_points [group] = np . array ([(s e l f . points [edge [0]] + s e l f . points [edge [1]])

/ 2])

212 else :

213 try :

214 contour , _ , i n t e r i o r = s e l f . get_contour (selected)

215 except :

216 continue

217 i n t e r i o r = i n t e r i o r [np . i s i n (i n t e r i o r , edge , i nvert =True)]

218 nodes = [new_points [g] for g in all_groups i f g in new_points]

219 new = sum([len (n) for n in nodes])

220 i f len (contour) < 10 and len (i n t e r i o r) + new < len (contour) − 3 :

221 p a r t i t i o n [selected] = group

222 new_points [group] = np . concatenate (nodes + [np . array ([(s e l f . points [edge

[0]] + s e l f . points [edge [1]]) / 2])] , ax is =0)

223 for g in all_groups :

224 i f g != group and g in new_points :

225 del new_points [g]

226

227 p a r t i t i o n [np . i s i n (part i t ion , l i s t (new_points . keys ()) , invert =True)] = −1

228

229 return part i t ion , new_points

230

231

232

233 ’ ’ ’

234 Coarsen the mesh using neural networks . I t e r a t e d unti l no further improvement i s made.

235 ’ ’ ’

236 def coarsen (s e l f , maxiter =10) :

237

238 accepted = 1

239 i t e r = 1

240 while accepted > 0 and i t e r <= maxiter :

241 s e l f . coarsen_near_boundary_or_interface ()

242 part i t ion , new_points = s e l f . coarsen_partition ()

243 groups = new_points . keys ()

244 i f len (groups) > 1 :

245 keep_elements = np . ones (len (s e l f . g e t _ t r i a n g l e s ()) , dtype=np . bool)

246 new_elements = []

247 accepted = 0

248 for g in groups :

249 i f g >= 0 :

250 objects = p a r t i t i o n == g

251 i f np . count_nonzero (objects) > 1 :

252 accept , new, remove = s e l f . ref ine_objects (objects , new_points [g])

253 i f accept :

254 keep_elements = np . logical_and (~ objects , keep_elements)

255 try :

256 new_elements = np . append(new_elements , new, axis =0)

190

B.3. Large Mesh generation

257 except :

258 new_elements = new

259 s e l f . points = np . delete (s e l f . points , remove , axi s =0)

260 remains = np . i s i n (s e l f . i n t e r i o r _ v e r t i c e s , remove , invert =True)

261 s e l f . i n t e r i o r _ v e r t i c e s = s e l f . i n t e r i o r _ v e r t i c e s [remains]

262 for old in remove :

263 remove [remove > old] −= 1

264 new_elements [new_elements > old] −= 1

265 s e l f . i n t e r i o r _ v e r t i c e s [s e l f . i n t e r i o r _ v e r t i c e s > old] −= 1

266 s e l f . i n t e r f a c e _ v e r t i c e s [s e l f . i n t e r f a c e _ v e r t i c e s > old] −= 1

267 s e l f . boundary_vertices [s e l f . boundary_vertices > old] −= 1

268 s e l f . f i x e d _ v e r t i c e s [s e l f . f i x e d _ v e r t i c e s > old] −= 1

269 for c e l l in s e l f . c e l l s :

270 c e l l . data [c e l l . data > old] −= 1

271 accepted += 1

272

273 i f len (new_elements) > 0 :

274 elements = s e l f . g e t _ t r i a n g l e s () [keep_elements]

275 elements = np . append(elements , new_elements , axis =0)

276 s e l f . s e t _ t r i a n g l e s (elements)

277 print (’ Quality a f t e r { } coarsening i t e r a t i o n s : { } ’ . format (i t e r , np . min(s e l f

. qual i ty ())))

278 i t e r += 1

279 else :

280 accepted = 0

281 else :

282 accepted = 0

B.3 Large Mesh generation
1 ’ ’ ’ shapely module i s used f o r projec t ing point of the low resolution contour to the

high resolution contour ’ ’ ’

2 import shapely

3 import shapely . geometry as geom

4 from shapely . geometry import MultiPoint

5 from shapely . ops import nearest_points

6 import torch

7

8 ’ ’ ’ Function i n s e r t i n g equidistance points to an edge according to a uniform

9 t a r g e t edge length . ’ ’ ’

10

11 def insert_point_edges_uniform (edge , target_length) :

12 edge=edge . astype (’ f l o a t 6 4 ’)

13 edge_length=np . l i n a l g .norm(edge [0] − edge [−1] ,2)

14

15 r a t i o = int (edge_length / target_length)

16 k= r a t i o

17 x1 , x2=edge [0] [0] , edge [1] [0]

18 k=1

19

191

Appendix B. Code

20 i f rat io >4:

21 k=5

22 i f rat io <=1:

23 return edge

24

25 x1 , y1=edge [0] [0] , edge [0] [1]

26 x2 , y2=edge [1] [0] , edge [1] [1]

27 for i in range (1 , k) :

28 point=np . array ([[x1 +(i /k) * (x2−x1) , y1 +(i /k) * (y2−y1)]])

29 edge=np . i n s e r t (edge , −1 , point , axis =0)

30 return edge

31

32

33 ’ ’ ’ Function i n s e r t i n g equidistance points to an edge according to a s i z e function . ’ ’ ’

34 def insert_point_edges_adaptive (edge , size_function) :

35 epsilon=1e−1

36 original_edge=edge . astype (’ f l o a t 6 4 ’)

37 k=1

38 continue_dividing=True

39 x1 , y1=edge [0] [0] , edge [0] [1]

40 x2 , y2=edge [1] [0] , edge [1] [1]

41 x3 , y3 =0 .5 *(x1+x2) , 0 . 5 * (y1+y2)

42 edge_length=np . l i n a l g .norm(edge [0] − edge [1] , 2)

43 r at i o 1 = int (edge_length / size_function (x1 , y1))

44 r at i o 2 = int (edge_length / size_function (x2 , y2))

45 i f ratio1 <=1 and ratio2 <=1:

46 return edge

47 while (continue_dividing) :

48 k+=1

49 edge=original_edge

50

51 for i in range (1 , k) :

52 point=np . array ([[x1 +(i /k) * (x2−x1) , y1 +(i /k) * (y2−y1)]])

53 edge=np . i n s e r t (edge , −1 , point , axis =0)

54 edge_length=np . l i n a l g .norm(edge [0] − edge [1] , 2)

55 i f k==5 or np . l i n a l g .norm(edge_length −size_function (edge [1] [0] , edge [1] [1])) <

epsilon :

56 continue_dividing=False

57

58 return edge

59

60

61

62 ’ ’ ’ Function determining i f point of the low resolution i s a point of the high

resolution contour . ’ ’ ’

63 def is_on_surface (point , surface_points) :

64 point=geom. Point (point [0] , point [1])

65 return surface_points . contains (point)

66

67

68 ’ ’ ’ Function returning edge lengths of a contour . ’ ’ ’

69 def get_edge_lengths (polygon) :

192

B.3. Large Mesh generation

70 polygon_edge_lengths=np . empty ([polygon . shape [0]])

71 for index , _ in enumerate (polygon) :

72 polygon_edge_lengths [index]=np . l i n a l g .norm(polygon [(index +1)%(polygon . shape [0])

] −polygon [index])

73 return polygon_edge_lengths

74

75

76

77 ’ ’ ’ Function performing procrustes transformation (includes inverse transformation) ’ ’ ’

78 def get_procrustes_transform (polygon) :

79 centralised_ref_polygon , norm_ss_ref_polygon = get_reference_data (polygon . shape [0])

80

81 mu_polygon = polygon .mean(0)

82 centralised_polygon = polygon − mu_polygon

83 ss_polygon = (centralised_polygon * * 2) .sum()

84 norm_ss_polygon = np . sqrt (ss_polygon)

85 centralised_polygon /= norm_ss_polygon

86

87

88

89 A = np . dot (centralised_ref_polygon . T , centralised_polygon)

90 U, s , Vt = np . l i n a l g . svd (A , ful l_matr ices =False)

91 V= Vt . T

92 R = np . dot (V , U. T)

93 traceTA = s .sum()

94 Rinv = R . T

95

96 s c a l i n g _ f a c t o r = norm_ss_ref_polygon * traceTA

97

98

99 def procrustes_transform (polygon) :

100 return norm_ss_ref_polygon * traceTA * np . dot ((polygon − mu_polygon) /

norm_ss_polygon , R)

101

102 def inverse_transform (polygon) :

103 return np . dot (polygon , Rinv) / (norm_ss_ref_polygon * traceTA) *
norm_ss_polygon + mu_polygon

104

105 def tangent_transform (tangents) :

106 return np . dot (tangents , R)

107

108 return procrustes_transform , inverse_transform , tangent_transform , s c a l i n g _ f a c t o r

109

110

111 ’ ’ ’ Function c a l l i n g NN1 to predict number of inner points ’ ’ ’

112 @torch . no_grad ()

113 def get_nb_of_points (polygon , target_edge_length) :

114

115 nb_of_edges=len (polygon)

116

117 # Load trained network f o r prediction of number of points

193

Appendix B. Code

118 with open(’ . . / network_datasets /number_of_points_NN/ ’+ s t r (nb_of_edges) + ’

_NN_nb_of_points . pkl ’ , ’ rb ’) as f :

119 NN1=pickle . load (f)

120

121 procrustes , _ , _ , s c a l i n g _ f a c t o r = get_procrustes_transform (polygon)

122

123 target_edge_length *= s c a l i n g _ f a c t o r

124

125 input = torch . tensor (np . concatenate ([np . asarray ((procrustes (polygon) , axis =0) ,

dtype=np . f l o a t 3 2) ,np . asarray ((target_edge_length , axi s =0) , dtype=np . f l o a t 3 2)]))

126 nb_of_points= NN1(input)

127 nb_of_points= int (np . round (nb_of_points))

128

129 return nb_of_points

130

131

132 ’ ’ ’ Function c a l l i n g NN2 to predict number of inner points ’ ’ ’

133 def get_inner_vert ices (polygon , target_edge_length , nb_of_points) :

134

135 # Define the grid

136 nb_of_grid_points=20

137

138 X=np . linspace (− 1 . 2 , 1 . 2 , nb_of_grid_points)

139 Y=np . linspace (− 1 . 2 , 1 . 2 , nb_of_grid_points)

140 XX, YY=np . meshgrid (X , Y)

141 grid_points=np . array ([[x , y] for x in X for y in Y])

142

143 nb_sectors= int (nb_of_grid_points /2)

144 sectors , indices=seperate_to_sectors (grid_points , nb_sectors , nb_of_grid_points)

145 grid_step_size= int (nb_of_grid_points / nb_sectors)

146

147 network_filepath= s t r (nb_of_edges) + ’ _polygons/ ’+ s t r (nb_of_edges) + ’ _ ’+ s t r (

nb_of_points) + ’ _polygons/networks/ ’+ s t r (nb_of_edges) + ’ _ ’+ s t r (nb_of_points) + ’ _ ’+

s t r (nb_of_grid_points) + ’ _grid_NN ’

148

149

150 # load network

151 with open(network_filepath , ’ rb ’) as f :

152 NN2=pickle . load (f)

153

154

155 procrustes , inverse , _ , s c a l i n g _ f a c t o r = get_procrustes_transform (polygon)

156

157 polygon=procrustes (polygon)

158

159 target_edge_length *= s c a l i n g _ f a c t o r

160

161 # use network to e x t r a c t predicted points

162 polygon_with_target_edge_length=np . hstack ([polygon . reshape (2 * (len (polygon))) ,np .

array (target_edge_length) . reshape (1)])

163

164 # Adding grid points of each patch f o r the input of the NN

194

B.3. Large Mesh generation

165 polygon_with_grid_points = []

166 for sector in sectors :

167 polygon_with_sector_points=np . hstack ([polygon_with_target_edge_length . reshape

(1 , len (polygon_with_target_edge_length)) , sector . reshape (1 ,2* len (sector))])

168 polygon_with_sector_points=Variable (torch . from_numpy(polygon_with_sector_points

))

169 polygon_with_sector_points=polygon_with_sector_points . expand (1 ,

polygon_with_sector_points . shape [1]) . type (torch . FloatTensor)

170 polygon_with_grid_points . append(polygon_with_sector_points)

171

172

173

174 # I n f e r grid s c o r e s ftom NN

175 s e c t o r _ q u a l i t i e s = []

176 for polygon_with_sector_points in polygon_with_grid_points :

177 sector_qual i ty=NN2(polygon_with_sector_points)

178 s e c t o r _ q u a l i t i e s . append(sector_qual i ty . data [0] .numpy())

179

180 s e c t o r _ q u a l i t i e s =np . array (s e c t o r _ q u a l i t i e s)

181

182

183 g r i d _ q u a l i t i e s =np . empty ((gr id_step_size * * 2) * (nb_sectors * * 2))

184 for index , point_index in enumerate (indices) :

185 g r i d _ q u a l i t i e s [point_index]= s e c t o r _ q u a l i t i e s . f l a t t e n () [index]

186

187

188 # Point s e l e c t i o n

189 predicted_points , surrounding_points_list , grid_qualit ies_surrounding=select_points (

polygon , grid_points , g r i d _ q u a l i t i e s , nb_of_points , nb_of_grid_points ,

target_edge_length)

190

191

192 # I n t e r p o l a t e

193 predicted_points =[point for i in range (nb_of_points) for point in

b i l i n e a i r e _ i n t e r p o l a t i o n (surrounding_points_list [i] , grid_qualities_surrounding [i

] , predicted_points [i])]

194 predicted_points=np . array (predicted_points) . reshape (nb_of_points , 2)

195 predicted_points=np . unique (predicted_points , axis =0)

196

197

198 predicted_points=inverse (predicted_points)

199

200 return predicted_points

201

202

203 ’ ’ ’ Function c a l l i n g NN3 to mesh a subcontour with inner i n s e r t e d points ’ ’ ’

204 @torch . no_grad ()

205 def triangulate_NN (polygon , inner_points) :

206

207 # Load trained c o n n e c t i v i t y network

208 with open(’ . . / network_datasets / connectivity_NN / ’+ s t r (len (polygon)) + ’ _ ’+ s t r (len (

inner_points)) + ’ _NN_qualities . pkl ’ , ’ rb ’) as f :

195

Appendix B. Code

209 NN3=pickle . load (f)

210

211

212

213 procrustes_transform , _ , _ = get_procrustes_transform (polygon)

214 procrustes = procrustes_transform (polygon)

215 inner_points = procrustes_transform (np . array (inner_points))

216 input = torch . tensor (np . concatenate ([np . asarray (np . append(procrustes , procrustes

[0] [None , :] , ax is =0) , dtype=np . f l o a t 3 2) , np . asarray (inner_points , dtype=np .

f l o a t 3 2)] , ax i s =0) [None, None , : , :])

217

218 table = NN3(input)

219

220 table = table [0] .numpy() . reshape ([polygon . shape [0] , polygon . shape [0]+ len (args)])

221

222

223 ordered_matrix = order_quality_matrix (table , procrustes , np . concatenate ([procrustes

, inner] , axi s =0))

224 try :

225 new_elements , sub_elements = t r i a n g u l a t e (procrustes , inner , ordered_matrix ,

recursive=True)

226 except RuntimeError :

227 return np . array ([])

228

229 return np . array (l i s t (new_elements) + sub_elements , dtype=np . int)

230

231

232 ’ ’ ’ Function that c a l l s vertex reposi t ioning (smooth) during large mesh generation ’ ’ ’

233 def smooth_recursive (sub_contours , elements_l ists) :

234 sub_contours=np . array (sub_contours)

235 sub_contours_reshaped=sub_contours . reshape (−1 ,2)

236 points_in_mesh , inverse_indices=np . unique (sub_contours_reshaped , axis =0 ,

return_inverse=True)

237

238

239 elements_indices = []

240 for sub_contour , elements_l ist in zip (sub_contours , elements_l ists) :

241

242 for element in elements_l ist :

243 element_global_index = []

244

245 element_coordinates=sub_contour [element]

246 signed_area=compute_triangle_area (element_coordinates)

247 i f signed_area ==0:

248 element_coordinates [1] , element_coordinates [2]= element_coordinates [2] ,

element_coordinates [1]

249 print ("FOUND NEGATIVE")

250

251

252 for coordinate in element_coordinates :

253 for index , point in enumerate (points_in_mesh) :

254 i f np . a l l c l o s e (coordinate , point) :

196

B.3. Large Mesh generation

255 element_global_index . append(index)

256 i f len (element_global_index) ==len (set (element_global_index)) :

257 elements_indices . append(element_global_index)

258 elements_indices=np . array (elements_indices)

259 c e l l s =dict ({ " t r i a n g l e " : elements_indices })

260 mesh=meshio . Mesh(points_in_mesh , c e l l s)

261 meshio . write (’ o r i g i n a l . vtk ’ ,mesh)

262 mesh = mymesh. read (’ o r i g i n a l . vtk ’)

263 mesh . smooth ()

264 new_points=mesh . points [: , : 2]

265 new_subcontours=new_points [inverse_indices] . reshape (len (sub_contours) , 6 , 2)

266 return new_subcontours

267

268

269

270

271

272 ’ ’ ’ S tart ing from a low resolut ion contour (low_res_contour) that has been i n i t i a l l y

triangulated (i n i t i a l _ e l e m e n t s) the function returns a large s c a l e uniform or

adaptive mesh . The variable s i z e i s e i t h e r a constant number that r e p r e s e n t s the

t a r g e t s i z e of the elements in the case of uniform mesh generation or a s i z i n g

function in case of adaptive mesh generation . The variable surface_points r e p r e s e n t s

the points of the high resolution contour upon points are projected during the

refinement process . ’ ’ ’

273

274 def large_mesh_generation (low_res_contour , surface_points , surface , init ia l_elements , scale

= ’ uniform ’ , s i z e) :

275 contour_polygon=geom. Polygon (low_res_contour)

276 surface_polygon=geom. Polygon (surface_points)

277

278 call_counter =0

279 edges_dict=dict ()

280 e d g e _ l i s t = []

281 elements_l ist = []

282 sub_contour_polygons = []

283

284 sub_contour_polygons . append(low_res_contour)

285 elements_l ist . append(ini t i a l _e lements)

286

287 r e f i n e =True

288

289 # C o l l e c t edges of i n i t i a l elements

290 e d g e _ l i s t = []

291 e d g e s _ d i c t _ l i s t = l i s t ()

292 sub_contours = []

293 while r e f i n e :

294 sub_contours = []

295 e d g e _ l i s t = l i s t ()

296 e d g e s _ d i c t _ l i s t = l i s t ()

297 for index , low_res_contour in enumerate (sub_contour_polygons) :

298 refined_edge_set=set ()

299

197

Appendix B. Code

300 for element in elements_l ist [index] :

301 edges_dict=dict ()

302

303 element_contour=low_res_contour [[element [0] , element [1] , element [2]]]

304 element_contour_edges =[i for i in combinations (element , 2)]

305 e d g e _ l i s t . append(element_contour_edges)

306

307 for edge in element_contour_edges :

308 edge_coords=np . array ([low_res_contour [edge [0]] , low_res_contour [edge

[1]]])

309 edges_dict . update ({ s t r (edge) : edge_coords })

310

311 i f scale== ’ uniform ’ :

312 inserted_points=insert_point_edges_uniform (edge_coords ,

target_edge_length)

313 e l i f scale== ’ adaptive ’ :

314 inserted_points=insert_point_edges_adaptive (edge_coords ,

size_function)

315

316 edges_dict . update ({ s t r (edge) : inserted_points })

317 i f len (edges_dict [s t r (edge)]) >2:

318 refined_edge_set . add (edge)

319 edge_points=edges_dict [s t r (edge)]

320

321 # i f an edge i s part of the high r e s contour , p r o j e c t i n s e r t e d v e r t i c e s

to i t

322 for index , point in enumerate (edge_points) :

323 i f index !=0 or index ! = len (edge_points) −1:

324 is_near=contour_polygon . boundary . distance (convert_to_Point (

point)) <1e−8

325

326 i f is_on_surface (point , surface_points) and is_on_surface (point ,

surface_points) and is_near :

327 point=convert_to_numpy (project_to_surface_point (point ,

surface_points , surface))

328 edges_dict [s t r (edge)] [index]= point

329 e d g e s _ d i c t _ l i s t . append(edges_dict)

330

331 # Check i f there are edges with i n s e r t e d points

332 i f len (refined_edge_set) ! = 0 :

333 counter=−1

334 for elements_index , i ni t i a l _elements in enumerate (elements_l ist) :

335 for index , element in enumerate (ini t ia l_elements) :

336 subcontour_points = []

337

338 counter+=1

339 edges= e d g e _ l i s t [counter]

340

341

342 # Form sub_contours

343 for edge in edges :

344 edge_points= e d g e s _ d i c t _ l i s t [counter] [s t r (edge)]

198

B.3. Large Mesh generation

345 for index , point in enumerate (edge_points) :

346 for point in edge_points :

347 subcontour_points . append(point)

348

349 subcontour_points=np . array (subcontour_points)

350 subcontour_points=np . unique (subcontour_points , axis =0)

351 sub_contour_reshaped=subcontour_points . reshape (1 ,

subcontour_points . shape [0] , 2)

352 sub_contour= sort_points (sub_contour_reshaped ,

subcontour_points . shape [0]) . reshape (subcontour_points .

shape [0] , 2)

353 i f not is_counterclockwise (sub_contour) :

354 sub_contour=sub_contour [: : − 1]

355 sub_contours . append(sub_contour)

356

357

358

359 elements_l ists = []

360 sub_contours_with_inner_points = []

361 i n n e r _ p o i n t s _ l i s t = []

362

363 # Triangulate sub contours

364 for subcontour in sub_contours :

365 print (subcontour)

366

367 # Triangulate sub−contour f o r the mean of i t s edge lengths

368 target_edge_length=np .mean(get_edge_lengths (subcontour))

369

370 # Call NN1 f o r prediction of number of inner points

371 nb_of_points= get_nb_of_points (subcontour , target_edge_length)

372

373 # Call NN2 f o r prediction of location of inner points

374 inner_points= get_inner_vert ices (subcontour , target_edge_length ,

nb_of_points)

375

376 subcontour_with_inner_points=np . vstack ([subcontour , inner_points])

377

378 # Call NN3 f o r prediction of c o n n e c t i v i t y

379 element_l ist=triangulate_NN (subcontour , inner_points)

380

381

382

383

384 elements_l ists . append(element_l ist)

385 sub_contours_with_inner_points . append(subcontour_with_inner_points)

386

387 # Smooth r e s u l t i n g mesh

388 sub_contours_with_inner_points=smooth_recursive (

sub_contours_with_inner_points , e lements_l ists)

389

390 sub_contour_polygons=sub_contours_with_inner_points

391 elements_l ist=elements_l ists

199

Appendix B. Code

392 else :

393 # I f no edges with i n s e r t e d points are found end further refinement

394 r e f i n e =False

395 return sub_contours , inner_points_l is t , sub_contours_with_inner_points , e lements_l ists

200

• 7 years working in institutions for research

• 6 years experience in mathematical modelling and software

development

• Fast learning, analytical thinking, and pragmatic

• Trilingual: Greek, English and French

Strengths

Experience

Alexis

PAPAGIANNOPOULOS

Page 1/2 A. Papagiannopoulos / alexis.papagiannopoulos@epfl.ch

• Doctoral Research Associate

Former Laboratory of Hydraulic Machines Group (LMH) from École Polytechnique Fédéral de Lausanne (EPFL), Lausanne Switzerland

2016-2020

Laboratory of Fluid Mechanics and Instabilities (LFMI) from École Polytechnique Fédéral de Lausanne (EPFL), Lausanne Switzerland

2020

- Main researcher in the investigative work of application of Neural Networks for mesh generation and improvement

- Development of algorithms using Python and C++ with the use of machine learning and mesh libraries.

- Guidance and supervision of research work for the development of mesh improvement application using my preset code.

• Research Assistant
National Institute for Research in Computer Science and Control (INRIA) within the GALAAD Team, Nice, France

2015

- Development of a plugin for AXEL (a CAD/CAE) using libraries such as Qt, Eigen and Axel for the extraction of mesh by parametrizing

surfaces

• Research Assistant
National Technical University of Athens, School of Naval Architecture and Naval engineering, Division of Ship Design and Maritime Transport, Athens, Greece

2012 - 2015

- Main researcher around the applications of iso-geometric analysis on ship design

- CAD/CAE – oriented research. Continuation of the study of the isogeometric computational method focusing on the optimization of geometry

for bodies (airfoils, ship hulls etc.) subjected to physical problems (flow problems).

- Use of C++ with mathematical and geometrical libraries, Software development using Matlab for the construction of a solver (finite elements,

boundary elements), software development using Python for scripts which initialized an optimization loop and call for applications.

• Mathematics and Physics Tutoring

Municipality of Zografou

2013 - 2014

- Highschool level of Mathematics and Physics tutoring to the students of the Municipality

• IT Internship

Hospitality Integrated Technologies A.E., Athens, Greece

2008 - 2009

- Hands on work in applications using HTML and SQL

Av. De la Gare 29,

1003 Lausanne –Switzerland

+41 77 452 52 18

alexis.papagiannopoulos@epfl.ch

Greek / French

B permit (CH)

Skype: alexis.papayannopoulos

Applied Mathematician specialized on computational

geometry and machine learning. Passionate for programming

languages and the certainty of Mathematics and Physical

Sciences.

Profile

201

English

Fluent spoken and written

French

Upper Intermediate level spoken and written (B2)

Greek

Native Language

Personal interests

Concerts, Puzzles, Cinema, Programming

Languages

Page 1/2 A. Papagiannopoulos / alexis.papagiannopoulos@epfl.ch

• “How to teach neural networks to mesh: Application on 2-D simplicial contours” Submitted to Journal of Neural Networks

(Elsevier). Authors: A. Papagiannopoulos, P. Clausen, F. Avellan

• “Local mesh improvement with the application of Neural Networks” (under preparation). Authors: A. Papagiannopoulos, A.

Flynn, P. Clausen, F. Avellan

• “An isogeometric BEM solver for exterior potential flow problems around lifting bodies”. 11th World Congress on

Computational mechanics. Authors: : C.G. Politis, A. Papagiannopoulos,K.A. Belibassakis, P.D. Kaklis, K.V Kostas, A.I.Ginnis,

T.P.Gerostathis

Publications

M.Sc. Mathematical Modeling in Economy and Cutting-

Edge Technologies
2009-2011

National University of Athens (NTUA), School of Applied

Mathematics and Physical Sciences, Athens, Greece

GPA: 7.9 / 10

Thesis: Solving Partial Differential Equations using the

method of Isogeometric Analysis

Engineering Degree of Applied Mathematics
2003-2009

National University of Athens (NTUA), Athens, Greece

GPA: 7..5 / 10

Specialization: School of Applied Mathematics and

Physical Sciences

Studies Description: Main focus on theoretical math and

the applications of mathematics in statistics; specially in the

use of statistical package R, and information technology

(Java applications, data structures, cryptography, algorithms

and complexity)

Thesis: Unbounded Operators and Application

Description: Work covering the field of theoretical math and

functional analysis, particularly analyzing the Unbound

operators as the differential Operator.

Advisor: Assoc. Prof. Sotiris Karanasios

Education

Programing Skills: Python, C++, MATLAB, HTML, SQL

Libraries: Scipy, Pytorch, Tensorflow, Panda, CGal

Technical Skills

202

	Acknowledgements
	Abstract (English/Français/Deutsch)
	Contents
	Introduction
	Introduction
	Motivation
	Meshes
	Mesh Generation algorithms
	Quadtree/Octree
	Advancing front
	Delaunay methods
	Hybrid methods

	Mesh improvement
	Artificial Neural Networks
	Training process
	Hyperparameters
	Convolution

	State of the art
	Automatic mesh generation
	Mesh Improvement algorithms
	Machine learning and meshes

	Research Objective
	Outline

	Meshing of 2-D simplicial contours using Neural Networks
	Problem Statement
	Algorithm overview
	Feature transformation and training data acquisition
	Prediction of the number of inner vertices
	Prediction of the inner vertices positions
	Prediction of the connectivity
	Triangulation algorithm
	Grid sampling augmentation of the inner vertices
	Adaptive sampling strategy

	Results and validation of 2-D simplicial contour Meshing using Neural Networks
	Experimental Conditions
	Error metrics
	Training dataset populations
	NNi hyperparameters

	Results
	Predictions of the number of inner vertices
	Prediction of the inner vertices positions
	Prediction of the connectivity
	Efficiency of adaptive sampling
	Overall prediction of the meshing scheme

	Conclusions

	2-D Local Mesh Improvement using Neural Networks
	Local Mesh Improvement Operations
	Reconnection
	Vertex Repositioning
	Surface control
	Size control

	Results and validation of 2-D Local Mesh Improvement using Neural Networks
	Experimental parameters and results
	NN hyperparameters and training populations
	Experiments
	Static Mesh Improvement
	Dynamic Mesh Improvement

	Conclusions

	Meshing large meshes
	Scheme for large mesh generation with uniform element size
	Scheme for large mesh generation with adaptive element size

	Conclusion and outlook
	Conclusion
	Outlook

	Bibliography
	Bibliography
	Supplementary material
	Back propagation
	Gmsh© mesh generation
	Contour mesh generation
	Test cases mesh generation

	Triangulation algorithm
	Locking mechanism
	Sub-contour detection

	Code
	Mesh generation
	Feature Transformation
	Approximation of inner vertices location
	Point selection
	Interpolation

	Triangulation algorithm
	Vertex locking mechanism
	Spotting sub-contours
	Triangulation

	Mesh Improvement
	Mesh class
	Reconnection
	Vertex repositioning
	Boundary/interface vertex repositioning
	Edge Length control

	Large Mesh generation

	Curriculum Vitae

