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Summary 

Over the years, the manufacturing industry has seen constant growth and change. From one 

side, it has been affected by the fourth industrial revolution (Industry 4.0). From the other side, 

it has had to enhance its ability to meet higher customer expectations, such as more customized 

products in a shorter time. Those factors have led many manufacturing companies to produce 

new products faster than ever for two main reasons: achieving higher profits and meeting 

increasing demand from their customers. This phenomenon has imposed new rules on the 

manufacturing of products, such us producing in a shorter time and smaller batches, making 

strategies that had been successful in the past useless or not as efficient as required. In the 

contemporary competitive market of manufacturing, quality is a criterion of primary 

importance for winning market share. Quality improvement must be coupled with a 

performance point of view. One of the most promising concepts for quality control and 

improvement is called zero defect manufacturing (ZDM), which utilizes the benefits from 

Industry 4.0 technologies. ZDM imposes the rule that any event in the production should have 

a counter-action to mitigate it. Specifically, in this thesis, a systematic literature review was 

performed on the ZDM concept from 1987 to 2017 to summarize the state of the art and 

highlight shortcomings and further directions in research. Accordingly, the ZDM 

implementation methods were investigated and evaluated identifying the main research patterns 

in the sample by analyzing key factors. Based on the extensive review of the ZDM literature, 

we identified and highlighted four distinct strategies based on overarching themes for ZDM, 

namely detection, repair, prediction, and prevention. 

The goal of this research was twofold: first, it aimed to provide to manufacturers with a 

dynamic scheduling toοl that embraces the principles of ZDM, which would grant the 

opportunity to implement ZDM strategies in their production lines and simultaneously maintain 

the performance of the production system at an acceptable level. The integration of ZDM into 

the scheduling tool was achieved by creating a separate component for each one of the four 

ZDM strategies. The second goal was focused on creating a methodology for the manufacturer 

to correctly select the appropriate ZDM strategies to implement at each manufacturing stage. 

This methodology consists of several steps. The first step is to conduct several simulations 

using the developed scheduling tool with specific data sets. The data sets are created using the 

design of experiments methodology. Using the results of the experiments, a digital twin model 

is created for predicting the results of the developed scheduling tool without using said tool. 

Using the digital twin model, multiple ZDM parameter-combination sets are created and 

plugged into the model. The outcome of this process will generate a set of maps that show the 

performance of each ZDM strategy at each manufacturing stage. These maps are intended to 

provide information for comparing different ZDM-oriented equipment to reach a final decision 

for correct and efficient ZDM implementation. 

 

Keywords: Zero defect manufacturing (ZDM), Quality control, Quality improvement, 

Dynamic scheduling, Design, Digital twin, Design of experiments, Decision support system, 

Production mapping 
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Résumé 

Au fil des années, l'industrie manufacturière a connu une croissance et des changements 

constants. D'une part, elle a été affectée par la quatrième révolution industrielle (Industrie 4.0). 

D'autre part, elle a dû améliorer sa capacité à répondre aux attentes plus élevées des clients, 

comme des produits plus personnalisés dans un délai plus court. Ces facteurs ont conduit de 

nombreuses entreprises manufacturières à fabriquer de nouveaux produits plus rapidement que 

jamais, pour deux raisons principales : réaliser des bénéfices plus élevés et répondre à la 

demande croissante de leurs clients. Ce phénomène a imposé de nouvelles règles à la fabrication 

des produits, comme le fait de produire dans un délai plus court et en plus petits lots, rendant 

ainsi inutiles ou moins efficaces des stratégies qui avaient réussi dans le passé. Dans le marché 

concurrentiel actuel de la fabrication, la qualité est un critère de première importance pour 

gagner des parts de marché. L'amélioration de la qualité doit être associée à un point de vue de 

performance. L'un des concepts les plus prometteurs pour le contrôle et l'amélioration de la 

qualité est appelé fabrication zéro défaut (ZDM), qui utilise les avantages des technologies de 

l'industrie 4.0. La ZDM impose la règle selon laquelle tout événement de la production doit 

faire l'objet d'une contre-action pour l'atténuer. Dans cette thèse, nous réaliserons plus 

précisément une revue systématique de la littérature a été réalisée sur le concept ZDM de 1987 

à 2017 pour résumer les dernières avancées et mettre en évidence les lacunes et les nouvelles 

orientations de la recherche. En conséquence, les méthodes de mise en œuvre de la ZDM ont 

été étudiées et évaluées en identifiant les principaux modèles de recherche dans l'échantillon en 

analysant les facteurs clés. Sur la base de l'examen approfondi de la littérature de la ZDM, nous 

avons identifié et mis en évidence quatre stratégies distinctes basées sur les thèmes principaux 

de la ZDM, à savoir la détection, la réparation, la prédiction et la prévention. 

L'objectif de cette recherche était double : elle visait tout d’abord à fournir aux fabricants 

un outil d'ordonnancement dynamique qui adopte les principes de la ZDM, ce qui leur donnerait 

la possibilité de mettre en œuvre des stratégies ZDM dans leurs lignes de production et de 

maintenir simultanément les performances du système de production à un niveau acceptable. 

L'intégration de la ZDM dans l'outil de planification a été réalisée en créant un composant 

séparé pour chacune des quatre stratégies ZDM. Le second objectif était de créer une 

méthodologie permettant au fabricant de sélectionner correctement les stratégies ZDM 

appropriées à mettre en œuvre à chaque étape de la fabrication. Cette méthodologie comprend 

plusieurs étapes. La première étape consiste à effectuer plusieurs simulations en utilisant l'outil 

de planification développé avec des ensembles de données spécifiques. Les ensembles de 

données sont créés à l'aide de la méthodologie du plan d'expériences. En utilisant les résultats 

des expériences, un modèle numérique double est créé pour prédire les résultats de l'outil de 

planification développé sans utiliser ledit outil. En utilisant le modèle numérique double, 

plusieurs ensembles de combinaisons de paramètres ZDM sont créés et connectés au modèle. 

Le résultat de ce processus génère un ensemble de cartes qui montrent la performance de chaque 

stratégie ZDM à chaque étape de la fabrication. Ces cartes sont destinées à fournir des 

informations permettant de comparer différents équipements orientés ZDM afin de prendre une 

décision finale pour une mise en œuvre correcte et efficace de la ZDM. 

 

Mots-clés : Fabrication zéro défaut (ZDM), Contrôle de la qualité, Amélioration de la 

qualité, Planification dynamique, Conception, Jumelage numérique (Digital Twin), Plans 

d'expériences, Système d'aide à la décision, Cartographie de la production 
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1 Introduction 

Over the years, the manufacturing industry has seen constant growth and change. On one 

level, it has been affected by the fourth industrial revolution ( Industry 4.0) [1]. On another, it 

has had to enhance its ability to meet higher customer expectations, such as more customized 

products at a faster rate [2]. These factors have led many manufacturing companies to produce 

new products quicker than ever for two main reasons: to achieve higher profits and to meet the 

increasing demand from their customers. This phenomenon has imposed new rules on product 

manufacture, such as shorter production time and smaller batch output, making strategies, 

which had been successfully used in the past, obsolete or less efficient [3]. For example, during 

the previous century, most of the large industrial sectors, such as the automotive sector, 

essentially relied on the mass production paradigm. However today, with the rise of product 

customization, they have shifted to manufacturing methods based on lean [4][5] and customer 

demand [6]. Due to these changes in the industrial environment, most of the production systems 

have to perform jobs in highly dynamic and stochastic scenarios [7]. Under these 

circumstances, unexpected events may occur causing the initial schedule to be changed because 

it may not fit in this new scenario [8]. Therefore, it requires more adaptability from firms to 

match their clients’ increasing expectations. It also becomes much more challenging to apply 

systematic methodologies for monitoring and preventing defect occurrence within the 

manufacturing shop floors due to the increasing complexity of both products and production 

systems [9]. In addition, the time to optimize the production process lines has been significantly 

reduced, because companies are generally no longer mass producing but making smaller 

batches of customized products [10], and as a consequence, the rate of defected products has 

increased. With these factors taken into consideration, newer and more sophisticated strategies 

and tools are needed [11][12]. More specifically, better techniques of quality management are 

required to cope with the current needs [13][14][15][16]. 

To match the real-life industrial settings and respect today’s highly competitive 

environment, numerous realistic constraints have been incorporated into scheduling problems. 

Since production is not a standalone activity, this scheduling must take into account equipment 

unavailability due to breakdowns or maintenance operations. In this field, interactions between 

production and maintenance have been a challenge to researchers to balance resource 

availability and avoid conflictual situations. This problem is known in the literature as 

”production scheduling with availability constraints” [17].  

So far, there has been a considerable amount of literature on the scheduling problem 

integrating deterministic preventive maintenance, also known as time-based maintenance, 

where periods of unavailability are known and fixed in advance (deterministic unavailability). 

Y. Ma and C. Zuo 2010, provided a detailed review on this topic where works were featured 

with different production configurations and under various criteria using different optimization 

methods [18]. Furthermore, the current scheduling models work only under ideal conditions 

since they do not take into account external events [19]. Indeed, in real life, different 

unpredictable events could happen at shop floor level and bring inconsistencies into the ongoing 

schedule. Therefore, it is important to broaden the research area by analyzing existing 

rescheduling models and creating new ones to mitigate the consequences of unpredictable 

events [19]. 
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A proactive approach may not foresee all possible disruptive events, even if the original 

schedule is robust [8]. Thus, rescheduling has a central role for the robustness of production 

processes under uncertain conditions, since the process has to be the most reactive and flexible 

as possible in order not to interrupt the production flow [20]. According to J. Lindström et al. 

2019, the generic strategy to apply is the following: firstly, the scheduling solution has to be 

produced (predictive), then, when an unexpected event occurs, the rescheduling is done to 

generate a new feasible solution (reactive) [21].  

In the context of this globalized ultra-connected world, benchmarking leads to a large 

number of competitive solutions to address a need [22] [23]. For a company, increasing and 

even keeping its market share is tougher than ever. One of the main factors that drives a 

product’s commercial success is its quality [24]. The companies are paying particular attention 

to the product quality to assure that all of their customers are satisfied. Nevertheless, a need is 

not defined in a fixed manner. It evolves and so does the manufacturing to produce the items. 

This evolution places the organizations in a permanent state of questioning the quality of their 

products and processes, and binds them into a continuous improvement (CI) initiative to stay 

competitive [25][26]. 

CI is done using Quality Management Systems (QMS) which traditionally rely on 

methodologies such as Lean Manufacturing (LM), Six Sigma (SS), Theory of Constraints 

(TOC), Total Quality Management (TQM), and Lean Six Sigma (L6S) (Hutchins, 2016), which 

are well established in the production systems with the goal to improve product quality. These 

methods can be characterized as “corrective”, which means that they act after the creation of a 

problem abd they do not take advantage of modern data-driven technologies that offers predive 

capabilities. Furthermore, the traditional QMS methods do not learn from defects, they just 

remove them. These methodologies analyze the past to improve in the future. Therefore, there 

is a loss of potentially important information from the present. Not analyzing the present creates 

an inertia between the occurrence of an event and the identification of an improvement linked 

to this event [27].  

Modern technological advancements provided capabilities that were not possible at the past. 

These technological advancements initiated the emergence of another QMS method named 

Zero Defect Manufacturing (ZDM). One major change in ZDM is about the flow of 

information. Indeed, ZDM uses both historical and real-time data to prevent product from 

defect. Doing this, ZDM combines several quality control applications concerning production 

lines, machinery, automation applications, and supply chain processes [27]. This is possible 

thanks to the development of IT systems and Industry 4.0. The core concept of ZDM is “Make 

it right at first attempt”.  

ZDM can offer higher efficiency and quality in the process by eliminating the defected 

components, but implementing ZDM into a production system is not a straight forward process. 

Scheduling tools and rescheduling technics should be updated because scheduling is a critical 

component that can realize ZDM into production systems [21]. However, to apply ZDM in the 

rescheduling process, a new category of real-time events has to be added: the product-oriented 

unexpected events [28]. Therefore, it is imperative to integrate the ZDM concept and in general 

the product quality aspect to the regular scheduling problem, and solve the problem in unison 

and not separately in a series as it is performed now. This will allow to balance the productivity 

and quality of the production achieving higher efficiency. Therefore, the current research 

focuses on two main points:  

(i) The development of a dynamic scheduling tool that integrates ZDM principles and 

extends the product quality aspects.  

(ii) The development of a methodology for assisting manufacturers during the design 

phase of a quality assurance policy for achieving ZDM.  
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2 State of the Art 

2.1 Zero Defect Manufacturing 

ZDM is considered by many researchers and industries to be a viable replacement of the 

traditional QMS methods [29][30][28][31]. This strategy’s goal is to decrease and mitigate 

failures within manufacturing processes and “to do things right the first time” [3], or in other 

words, to eliminate defective parts during production. However, the idea of ZDM is not new; 

it was first mentioned during the Cold War in the U.S. Army regarding their defective weapon 

system [32]. ZDM is a disruptive concept that is able to entirely reshape current manufacturing 

paradigms. 

The core concept of ZDM is that 100% of the parts are inspected to assure that no defective 

product will be sent to the customers [33]. ZDM can be implemented through two different 

approaches: product-oriented ZDM and process-oriented ZDM [33]. The difference is that 

product-oriented ZDM studies defects in the actual parts and attempts to find a solution, 

whereas process-oriented ZDM studies defects in the manufacturing equipment, and based on 

this it can evaluate whether the manufactured products are good. Process-oriented ZDM lies 

within the predictive maintenance concept. In Figure 1, we illustrate these two approaches as 

one concept, namely the ZDM concept, which comprises two start points, one for each 

approach. 

 
Figure 1: Zero defect manufacturing concept [33] 

The reasons that ZDM thinking is attractive to companies are manifold. First, it can 

considerably reduce costs of the company’s resources related to the treatment of defective 

products [34]. The ZDM process essentially relies on the fact that no useless element is present 

within a process. Useless elements refer to anything that does not bring any added value to the 

product, such as defective machines and tools and inefficient employees. Significant reductions 
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in scrap production and therefore money savings can be realized with ZDM [35]. Beyond that, 

the overall production chain should be continuously improved. Any possibility of system 

enhancement must also be meticulously and extensively assessed. In this way, product 

manufacturing is getting increasingly closer to perfection [36]. This approach can also be 

motivated by increasing safety and customer satisfaction, which might strengthen customer 

loyalty and cause financial benefits of the company to soar [37]. 

This concept had been implemented only partially so far due to numerous technological 

limitations prohibiting its implementation. Currently, with the evolution of Industry 4.0, the 

ZDM concept is easier to implement due to the availability of the required amount of data for 

techniques such as machine learning to work properly [38][39][40][41]; however, much effort 

is still required to ensure more effective integration and coordination of the capabilities of each 

technology. Furthermore, the equipment required for such data recording used to be very 

expensive and companies did not invest in it [42]. However, the landscape has changed with 

increasing computing power and data storage and significantly dropping sensor prices, together 

with new technologies that make the implementation of the concept of ZDM possible.  

ZDM will be the new standard for companies toward eco-friendlier and more efficient 

production lines with zero defects. In this regard, Figure 2 illustrates how the ZDM concept can 

be implemented and also how ZDM strategies are interconnected among them. ZDM consists 

of four strategies: detection, repair, prediction, and prevention [33][43].  

 
Figure 2: Zero defect manufacturing implementation [33] 

These strategies are interconnected as follows (which applies to both product- and process-

oriented approaches): If a defect is detected then it can be repaired, and the data gathered by 

the defect-detection module are populated to specifically designed algorithms for predicting 

when a defect may occur, and can thus be prevented (Figure 2). Here, the phrase mentioned 

earlier fits, namely “to do things right the first time.”  
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Since ZDM is an emerging approach there is no significant literature to refer to. The 

literature that exists is focused mainly on developing technologies and methodologies which 

are related to individual ZDM strategies [33]. This is a step forward but there is a significant 

lack of tools such as scheduling tools or design methodologies for achieving ZDM. 

2.2 Scheduling 

Today, companies have several factories around the world. In this context of a globalized 

economy, all these factories must have their production as optimized as possible [44]. 

Companies that have multiple production sites have superior production quality, reduced 

manufacturing costs, and shorter delivery times [45][46]. The optimization of schedules is 

performed through the use of computer science because complexity and calculation times are 

critical. 

Many manufacturers use a flexible job shop architecture for their productions sites. In a job 

shop, each job has its own route. Flexible job shops are a generalization of the job shop where 

instead of “m machines in series there are c work centers with at each work center a number of 

identical machines in parallel. Each job has its own route to follow through the shop” [47]. 

The job shop problem is considered to be NP-hard [48], and therefore, nonanalytical methods 

are required for acquiring a solution. The most effective method for solving this type of problem 

is to combine heuristics and metaheuristics. Heuristics are used for generating a high-quality 

initial solution, and then metaheuristics are used to optimize that initial solution to reach a local 

optimum [49]. 

Some heuristic algorithms in the literature use the earliest competition time rule to create a 

solution that assigns a job to the schedule at each step; job j is put in each factory and in it is 

kept in the factory with the smallest makespan [50]. These rules have been adapted through the 

work of Nawaz, Enscore, and Ham [51], known as NEH, the abbreviation of their names. In 

recent years, these rules based on the makespan have often been used to feed metaheuristics. 

The NEH heuristic is known as the most effective heuristic for the permutation flow-shop 

scheduling problem with makespan minimization. The job set is sorted by descending order 

according to processing times. When one picks the two first jobs, the sequence that minimizes 

the makespan is given. Subsequently, one does not change the relative position of these two 

jobs. Then, each job is inserted into the sorted list, and the makespan is calculated each time 

for each possible sequence, and finally, the sequence with the smallest makespan is selected. 

In the literature, different metaheuristic algorithms have been described in the context of 

optimizing a scheduling problem. Some of the most commonly used metaheuristic algorithms 

are as follows: the hybrid genetic algorithm [52] [53], tabu-search algorithm [54] [55], 

electromagnetism-like mechanism algorithm [56], immune algorithm developed [57], chemical 

reaction optimization algorithm [58], iterated greedy algorithm [59] , simulated annealing [60], 

and Bat algorithm [61]. 

Several metaheuristic methods that aimed to solve the job-shop rescheduling problem were 

investigated and compared by M. T. Jensen, such as the right-shifting, neighborhood-based, 

and hill climbing methods. The findings indicated that the scheduling performance is heavily 

dependent on the rescheduling method, breakdown duration, and other details [62]. Other 

authors proposed the integration of a genetic algorithm into a simulation tool to solve flexible 

job-shop scheduling problems, aiming to minimize the expected mean makespan and expected 

mean tardiness [63]. 

In the literature, several cases remain general and take features of simple machines and 

simple jobs without constraints between them. In our case, we attempt to get as close as possible 

to a real case with machines fully defined in cost, properties, and jobs that have processing and 

setup times depending on the machine. In this paper, we first discuss how the problem is 
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defined, then describe the different heuristics used to generate initial schedules for the tabu 

search, and finally analyze the results of simulations. 

The scheduling/rescheduling of manufacturing systems has been a key focus in both 

research and industry for a long time. Studies on quantitative scheduling started back in the 

1950s [64][65] and abundant research efforts have been spent on this topic over the decades 

that followed. Although it has been commonly understood that scheduling/rescheduling is 

crucial for manufacturing systems and has been highlighted in many studies [66][67][68], a gap 

still exists between the theory and practice of manufacturing scheduling/rescheduling [65]. In 

practical applications, it is very difficult to follow the original schedule exactly due to 

unforeseen disturbances, such as the constant arrival of new orders, the importance of jobs’ 

priorities, and the possibility of disruptions related to manufacturing resources, such as 

breakdowns [65]. Rush orders were identified as one of the four production disturbance sources 

beside incorrect work, machine breakdowns, and rework due to quality problems [69]. The 

authors of [70] investigated the general reasons and corresponding solutions for rush orders. 

According to the study, the main causes of rush orders include implicit customer priorities; 

concern over extra returns, outlays, or usuries; special orders authorized by higher-ups; and 

production disturbances such as machinery breakdowns and lack of materials. 

Many studies have been conducted on the rescheduling problem caused by rush orders. A 

production rescheduling expert simulation system was developed in [71], which was enabled 

by a simulation technique, artificial neural network, expert knowledge, and dispatching rules. 

The impact of rush orders was analyzed. A rescheduling method was proposed in [72][73], 

which was based on the ant colony optimization algorithm enhanced by mutation operations, 

aiming to solve the multi-shop rescheduling problem under the condition of rush orders. The 

weighted mean flow time of both original jobs and rush orders were used as the objective 

function, in which the weight for rush orders is much higher than that of the original jobs, in 

such a way that the rush orders would be produced as early as possible in the new schedule.  

With the development of artificial intelligence, advanced data analysis techniques such as 

machine learning and multiagent-based systems have been widely used to optimize production 

schedules [74][75][76][77][78]. For example, a self-organized integration mechanism module 

based on supervised learning techniques was proposed in [79] with the aim of enhancing the 

scheduling of manufacturing orders in dynamic environments. This module enables scheduling 

systems to decide autonomously which integration mechanism will be used to incorporate new 

orders in the current scheduling plan. 

As a crucial topic of scheduling/rescheduling, the rush order insertion rescheduling problem 

(ROIRP) has also attracted much research attention, especially for enterprises that apply the 

make-to-order production mode [80]. For example, [80] analyzed the ROIRP with preventive 

maintenance in a two-machine flow shop, and [81] used an improved elitist non-dominated 

sorting genetic algorithm (NSGA-II) to solve the multi-objective ROIRP just in a single device 

system. The authors of [80] investigated the ROIRP in a hybrid flow shop with multiple stages 

and machines. They proposed a mathematical model that simultaneously considers constraints 

such as lots, sequence-dependent setup times, and transportation times. 

Despite abundant studies in past decades, the scheduling/rescheduling problem of 

manufacturing systems caused by real-time events such as rush orders remains a challenge for 

most make-to-order enterprises. 

2.3 Rescheduling for Zero-Defect Manufacturing  

In the literature, most models developed to face rescheduling problems are machine-oriented 

[82]. However, to adopt the ZDM philosophy, the rescheduling model must be product-

oriented. The first model that links rescheduling problems caused by unexpected product-

oriented events to ZDM was proposed by F. Psarommatis and D. Kiritsis [43]. The model 
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integrates a decision support system (DSS) into a dynamic scheduling tool to comply with ZDM 

principles as well as prevent and predict defects. When a disruptive event occurs, the DSS and 

dynamic scheduling tool interact together to produce a new schedule. The new solution is 

evaluated based on the product quality and other key performance indicators (KPIs). Through 

adopting this model, manufacturing companies are able to face new production challenges and 

produce highly customized products in small batches. H. Zörrer et al. [83] also applied a DSS 

linked to ZDM. Their proposed model was applied to a multi-stage manufacturing environment 

for the production of carbon fiber components for aircraft. The aim was to generate a tool for 

quality control that helps operators decide which parts need reworking. To achieve this result, 

an extensible hybrid DSS was applied that combined a software application for 3D visualization 

and a business analytics dashboard for supporting the rework decision. 

P. A. Dreyfus and D. Kyritsis [30] proposed a more generic model that links scheduling with 

ZDM. Their proposed model was based on the combination of three different strategies: ZDM, 

predictive maintenance, and scheduling algorithms. The aim of the model is to increase 

production capabilities without large investments. Automatic scheduling is considered the brain 

of the tool, which takes the uncertainty into account and decides whether it is required to launch 

and schedule a maintenance operation. To make this decision, the model calculates the 

probability of failures and the time required to repair them. 

2.4 Tackling Unexpected Product-Oriented Events  

Moreover, many researchers have addressed the issue of unexpected product-oriented events 

without linking to the ZDM philosophy. E. Kucharska et al. [84] proposed a model to solve 

unexpected defects in a flow-shop system with stochastic uncertainties. The model was 

developed around a hybrid algorithm based on the algebraic-logical meta-model, which is able 

to remove manufacturing defects detected during quality control. The approach distinguishes 

itself by adding the possibility of modeling the decision-making process. The results of the 

experiments were evaluated considering three factors: the cost of algebraic-logical models 

switching operation, the impact of the number of defect repairs for execution time, and the 

switching number between models. B. J. Joo et al. [85] proposed a model to solve scheduling 

problems in a three-stage dynamic flexible flow shop (DFFS). The model was mainly based on 

quality feedback linked to the defect rate; indeed, if the defect rate is over the limit, quality 

feedback would be generated. A dispatching rule-based scheduling algorithm was adopted to 

solve quality problems by maximizing the quality rate and minimizing job tardiness. G. Levitin 

et al. [86] proposed a tool based on the Poisson process of shocks, which may generate defects 

in a random environment. If defects are detected, an optimized reschedule is generated with the 

aim of maximizing and optimizing two performance indicators, namely mission success 

probability (MSP) and failure avoidance probability (FAP), respectively. Y. Xu et al. [87] 

presented a condition-based midterm maintenance scheduling (CBMMS) model that was able 

to reschedule preventive maintenance activities thanks to the use of a time-varying threshold 

decisions variable.  

2.5 Rescheduling Models  

More generally, rescheduling solutions have also been developed to address all types of 

unexpected scenarios. R. Barták and M. Vlk [88] proposed a back jumping heuristic algorithm 

to respond to the occurrence of unexpected events, such as resource breakdowns or hot orders. 

The aim was to reschedule the production system with the least amount of task change possible. 

The solution adopted was to replace activities present in the process with other new activities 

to react in the quickest way to disruptive events. Battaïa et al. [89] presented a rescheduling 

algorithm based on a constraint programming approach to handle the remaining tasks when 
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unexpected events disrupt a low-volume assembly line. A fast rescheduling decision support 

tool was implemented to reschedule all the uncompleted tasks when unexpected events occur. 

The performances of the tool were evaluated through numerical experiments to check the 

sustainability of the model. C. Pascal and D. Panescu [66] studied a holonic coordination 

mechanism to deal with rescheduling problems in response to unexpected events in 

manufacturing systems that appear at the resource level. G. Mejía and D. Lefebvre [90] 

proposed a model that uses timed Petri nets to address operation interruptions and unreliable 

resources of flexible manufacturing systems (FMSs) in an uncertain environment. M. T. Jensen 

[62] compared various rescheduling methods (such as right-shifting, neighborhood-based 

rescheduling, and hillclimbing rescheduling) to solve job shop problems, and concluded that 

the performance of robust scheduling is very much dependent on the rescheduling method, 

breakdown duration, and other details. M. Gholami and M. Zandieh [63] proposed the approach 

to integrate simulation with a genetic algorithm to solve flexible job-shop scheduling problems. 

They applied the method to minimize the expected mean makespan and expected mean 

tardiness, concluding that the breakdown level (Ag) and mean time-to-repair (MTTR) are 

highly impactful on minimizations of both. One critical reason for scheduling tools to struggle 

create optimal schedules is the fact of the presence of unexpected events, which are disrupting 

the normal production[91][92]. Unexpected events are a very common situation in 

manufacturing systems. Unexpected event is characterized an event that is unplanned, in other 

words its occurrence in time is not known and cannot be predicted [93][94]. 
  

2.5.1 Unexpected job and order arrival 

In the literature, many other researchers have addressed rescheduling problems that result 

from unexpected events from different points of view, namely various machine environments, 

processing characteristics, and objectives [47]. One of the main unexpected events studied in 

rescheduling is new job arrivals/new order events. D. Rahmani and R. Ramezanian [95] 

proposed a model that addresses the unexpected arrival of a new job in a dynamic flexible flow 

shop (FFS). This reactive model is based on total weighted tardiness, stability, and resistance 

to change. It aims to generate a stable reschedule against any unexpected job arrival, since it 

considers it more valuable to generate a stable solution rather than an optimal solution that 

neglects the disruptions. The rescheduling solutions are evaluated based on two parameters: 

systematic performance and deviation from the initial schedule. K. Z. Gao et al. [96] proposed 

a model to solve rescheduling problems caused by uncertainty of job arrivals in a flexible job 

shop. The model is based on a two-stage artificial bee colony (TABC) with the aim of 

minimizing the makespan. L. Liu [97] presented a model to solve two-machine flow-shop 

outsourcing and rescheduling problems (TFSORPs) upon the arrival of a new unexpected job. 

The goal was to optimize the makespan and outsourcing cost variables using a hybrid variable 

neighborhood search (HVNS) algorithm. In addition, an experimental design was implemented 

for optimizing and calibrating the settings of HVNS. N. C. O. Silva et al. [98] proposed a 

rescheduling model based on a mixed-integer formulation to address the arrival of new orders. 

The goal was to optimize both the makespan and tardiness. L. Liu and H. Zhou [99] addressed 

the parallel machine rescheduling problem caused by unexpected job rework. The model was 

based on two dependent factors: the number of disrupted jobs and the completion time. The 

problem was treated as a three bi-criteria scheduling problem through both lexicographical and 

simultaneous optimization approaches. S. K. Moghaddam and K. Saitou [100] proposed 

another rescheduling model for job arrivals/unplanned order arrivals. The tool developed was 

based on the concept of dynamic pegging in multi-level production and mixed-integer 

programming model, which link dynamic pegging with rescheduling. When unplanned orders 

arrive, the dynamic pegging reassigns the work-in-progress to the newly arrived orders by 

optimizing the rescheduling costs. 
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2.5.2 Unexpected machine breakdown 

Other researchers have proposed rescheduling solutions for machine breakdown events. R. 

Buddala and S.S. Mahapatra [101] proposed a model to solve flexible job-shop scheduling 

problems caused by machine failure, applying two-stage teaching-learning-based optimization 

(2S-TLBO). The target of this approach was to minimize the makespan to generate robust and 

sustainable schedules, which could mitigate the costs of unexpected machine breakdowns. The 

results obtained with 2S-TLBO were analyzed using a one-way analysis of variance (ANOVA) 

test. F. Qiao et al. [102] proposed a rescheduling model for machine failure in a dynamic 

semiconductor manufacturing system. The model was based on a novel machine group-oriented 

match-up rescheduling (NMUR) approach, which achieved better results compared with right-

shift rescheduling (RSR) in terms of rescheduling stability and efficiency. N. Al-Hinai and T.Y. 

ElMekkawy [103] considered four different types of machine breakdown in a flexible job shop. 

Their model implemented a two-stage hybrid genetic algorithm to minimize the makespan. Y. 

Yin et al. [104] considered a failure of two identical parallel machines. The aim of their model 

was to reschedule jobs by considering deviation costs and total completion time to not cause 

excessive schedule disruption. The tool was designed to generate a set of Pareto-optimal 

solutions based on the optimization of both the completion time of rescheduling and scheduling 

disruption factors.  

Moreover, S. Ferrer et al. [105], M. Nouiri et al. [106], and Z. Li [107] have proposed models 

that take environmental objectives into account without overlooking the production objectives. 

S. Ferrer et al. [105] proposed a model to solve unrelated parallel machine rescheduling 

problems in a dynamic environment through applying two different approaches: greedy-

heuristic and metaheuristic. The aim was to improve production management, in terms of 

rescheduling quality and computational time, by limiting energy consumption (the energy-

aware scheduling problem). M. Nouiri et al. [106] proposed a green rescheduling method 

(GRM), which generates a rescheduling solution for dynamic flexible job shops under machine 

breakdowns. The aim of the model is to optimize the makespan and energy consumption. Z. Li 

[107] proposed a model that addresses the rescheduling problem for unexpected machine 

breakdowns. The aim was to minimize rescheduling by considering the consumption of energy 

and lead time. 

As presented in this chapter, several frameworks and models for rescheduling solutions were 

analyzed and categorized. This investigation highlighted three main aspects. First, a huge gap 

between the theoretical and practical application of the models is evident. Second, very few 

papers have proposed a rescheduling model based on a product-oriented approach. Finally, the 

most important aspect is that none of the works have focused on the quality of the solution 

according to the different parameters and number of re-scheduling events. Therefore, in this 

study, a new rescheduling model was developed with the aim of paying more attention to the 

practical application and quality of the solution. 

2.6 Decision Support Systems 

This chapter addresses the industrial challenge and defines the key terminology associated 

with the current research work. The Industry 4.0 paradigm imposes the need for collaborative 

manufacturing systems. The Industrial Internet of things (IIoT) is used as the protocol for 

making heterogeneous distributed systems interact efficiently using an event-driven framework 

[108]. These types of collaborative systems heavily depend on data sharing, but the key 

components are autonomous or semiautonomous tools capable of taking decisions based on 

collected data [109] [110]. 



10 

2.6.1 Types of DSS systems 

DSSs can be clustered into six distinct categories: model-driven, data-driven, 

communication-driven, document-driven, knowledge-driven, and relative DSSs [111]. Model-

driven DSSs focus on the simplification of a particular activity and evaluate alternative actions 

that can be taken. While comparing different possible outcomes, each scenario is assigned a 

probability and an output performance [111]. Data-driven DSSs exploit external and 

companywide historical information and retrieve relevant data for a specific decision-making 

process [112]. Communication-driven DSSs leverage communication and information 

technologies to gather and share information [113]. This enables more efficient collaborations 

among different groups, both inside and outside the organization [114]. Document-driven DSSs 

are able to quickly and efficiently retrieve information from available documents such as text 

files, images, videos, and sound recordings and leverage these documents to support decision 

actions [115]. Knowledge-driven DSSs englobe data-mining systems and empower computer-

based decisions. Two main sub-categories are identified: the first type is rule-based systems, 

which are built according to the knowledge of experts and replicate their decisions process 

[116]. The second category implements machine-learning algorithms, neural networks, and 

artificial intelligence technologies [117]. These systems can conduct various experiments and 

compare results using evaluation functions. This allows autonomous and self-supported 

decision taking. 

2.6.2 Supplier–client agreements 

Supplier agreements play an essential role in defining the expectations of the client. When 

entering into an agreement, three essential objective functions are identified: the product price, 

quality, and lead time [118]. Depending on the nature of the supplier–client agreement, quality 

and delay penalties as well as rewards can be predefined. Delay costs are caused by the offset 

between promised and attained delivery time. Two cost models are identified: the first is defined 

as a fixed cost independent of the delay time [119] and the second is defined as a delay cost per 

unit time of delay resulting in a linear cost behavior [120]. Similarly, quality costs are caused 

by the offset between promised and attained quality of the order. The associated penalty is 

defined as the cost per unit of nonconforming product [121]. In addition, three types of defects 

can be defined individually in customer contracts, namely critical, main, and minor [122]. 

2.6.3 Actions types 

Under the goal of reducing defects, manufacturing companies can implement direct and 

indirect actions. The latter are a set of actions and decisions that do not directly impact the 

performance of the process. Their effects are either delayed or measured in auxiliary processes. 

The indirect actions can be preventive or predictive, namely the maintenance of equipment 

[123], training of operators [124], and inspection of raw materials [125]. On the other hand, 

direct actions have unambiguous effects on processes and can be in-process or post-process 

actions. In-process actions include process and wear monitoring with sensor systems [126], in-

line control, and the monitoring of complementary devices [127]. Post-process actions include 

post-compliance analysis and post-process tuning of equipment and production parameters. 

2.6.4 Relevant research works 

Quality control is an integrative aspect of manufacturing [128]. Hence, much research has 

been conducted to address the minimization of defects. The scientific investigation in this scope 

has revealed different decision and quality control systems. For the purposes of this research, 

the 14 most relevant research works were selected to be presented and are summarized in Table 

1 according to their scope. 
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Firstly, M. Farooq et al. investigated the cost of quality trade-offs by modeling the costs of 

inspection, scrap, warranty, rework, and loss of goodwill. Their results on the selected scenario 

had proven overall costs savings [129]. Moreover, Sarkar and Saren considered production 

inspection policies and the resulting costs by taking into account the warranty costs [130]. 

Similarly, G. Levitin et al. studied the cost-effective scheduling of inspections and developed 

probabilistic models for evaluating the performance of their system [131]. V. Hirsch et al. 

investigated a DSS based on data analytics that effectively helps operators in fault diagnosis 

and quality control [132]. Their research was specifically oriented toward a system in the end 

of line testing. More specifically, the system listed the faulty products and ranked them 

according to the likelihood of being defective. This helped the operators in their final inspection 

and quality control tasks. Moreover, D. Soban et al. explored the use of visual analytics for 

manufacturing process decision making [133]. This research was targeted for process 

optimization in high-pressure die casting. In the proposed configuration, operators and decision 

makers can work with large datasets through visual analytics and find the optimum set of 

parameters to minimize defects. Similarly, M. Gewohn et al. proposed a simple visualization 

of product quality to enable quality benchmarking [134]. Moreover, A. U. Haq and D. 

Djurdjanovic focused their research on predicting the defect level in semiconductor 

manufacturing using virtual metrology concepts [135]. Their concept leverages production and 

sensor data for feature extraction and predicts the defects in semiconductors. Furthermore, J. 

Lindström et al. investigated an intelligent system combining predictive maintenance and 

continuous quality control [136]. The integration of both systems allows not only the 

assessment of defect likelihood but also the evaluation of the equipment state of wear for 

evaluating the root cause of defects and prioritizing maintenance tasks. Furthermore, T. 

Vafeiadis et al. proposed an early stage DSS that facilitates the inspection and condition 

monitoring processes [109]. This enables defect likelihood classification and allows quick 

diagnostics. Teti published research on methods of signal processing and decision making in 

terms of suggesting the necessary corrective actions to optimize the process for ZDM in 

machining [137]. Another study was conducted to model a supply chain by taking into account 

the cost of quality [138]. This approach considered the error rate of inspection and the fraction 

of defects and computed the prevention, appraisal, and failure costs. Similar to the cost-

effective decision thinking applied in the present paper, the authors justified preventive and 

appraisal activities only if they generated financial benefits. In a similar manner, R. Lopes 

studied the integration of quality inspection with preventive maintenance and buffer stocks 

[139]. The objective was to minimize the total cost per item given the quality constraints and 

costs. This model considered that a fraction of the manufactured products were inspected and 

rework was performed if defects were identified. In addition, a buffer stock was established to 

respond to the demand during preventive maintenance. Jafari-Marandi et al. developed a cost-

based DSS to describe the cost of microstructural defects and suggested the necessary actions 

during the manufacturing process in additive manufacturing parts [140]. Furthermore, a cloud-

based, knowledge-enriched framework was proposed by Mourtzis et al. for improving 

machining efficiency using data from the monitoring of the corresponding machine tool [110]. 

Based on the investigation of relevant works, one can observe that previous research has 

mainly focused on quality control for verifying that the produced productions meet 

specifications; however, no attention has been paid to the defective products. Furthermore, only 

one research work identified combining the scheduling problem with cost models to have more 

cost-effective inspection strategies [131]. Additionally, the research work presented by Jafari-

Marandi et al. focused on repairing defective parts during the additive manufacturing process 

[140]. This approach is very close to the one followed in the current work; the difference is that 

the present work focused on the post-process repair of defective parts. 
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Table 1: Relevant decision and quality control systems 
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[129]  X  X      X   

[130]    X      X   

[131]    X      X X  
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[133] X X      X     

[134]   X X     X    

[135]   X  X        
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[109] X  X X     X    

[137] X       X     

[138]   X    X   X   

[139]   X X   X   X   

[140] X  X     X X X  X 

[110] X  X     X X    

2.7 Digital Twins (DTs) 

The precursor of DTs was NASA’s Apollo 13, where a mirrored physical system of the 

spacecraft on Earth was simulated to provide a solution to oxygen tank explosion [141]. 

NASA’s later work on DTs has been considered highly influential in the field of aerospace, 

where a DT is “an integrated multi-physics, multiscale, probabilistic simulation of an as-built 

vehicle or system that uses the best available physical models, sensor updates, fleet history, 

etc., to mirror the life of its corresponding flying twin” [142][143]. In manufacturing, the DT 

concept was first presented by Grieves on the topic of product lifecycle management, which 

defines DT as an informational construct about a physical system [144]. The concepts of DT 

were initially more advanced in the aerospace industry in providing and ensuring safer flights 

through prognostics and diagnostics. However, with the emergence of Industry 4.0, DTs gained 

great traction in the field of manufacturing driven by advances in related technologies [145]. 

Despite the numerous research efforts on DTs from both academia and industry, many 

scholars have expressed the view that no consensus exists on their definition and characteristics 

[145][146][147][148]. Therefore, differences exist in the understanding of the DT concept 

[149][150][151]. Kritzinger el al. proposed an interesting categorization of DTs based on their 

level of integration, namely digital models (DMs), digital shadows (DSs), and DTs. The main 

difference between DMs, DSs, and DTs lies in the data flow; a DT must satisfy the condition 

of bi-directional automatic data flow between the physical and digital systems. Under this 

categorization, despite the majority of the papers claiming to present DTs, only 18% of them 

are truly DTs [148]. Jones et al. conducted a thematic analysis to reach a common understanding 
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of DTs by consolidating the common themes and key concepts. The foundational 12 themes 

are presented in Table 2, and each is mapped to the papers supporting the themes [146]. 

Table 2: Twelve digital twin foundational themes [146] 

No. Theme  Description 

1 Physical Entity A “real-world” artefact; e.g., a vehicle, component, product, system, 

or model. 

2 Virtual Entity A computer-generated representation of the physical artefact; e.g., a 

vehicle, component, product, system, or model. 

3 Physical 

Environment 

The measurable “real-world” environment within which the physical 

entity exists. 

4 Virtual Environment Any number of virtual “worlds” or simulations that replicate the state 

of the physical environment and designed for specific use case(s); 

e.g., health monitoring and production schedule optimization. 

5 Fidelity The number of parameters transferred between the physical and 

virtual entities, their accuracy, and their level of abstraction. 

Examples found in literature include fully comprehensive, ultra-

realistic, high fidelity data from multiple sources, from the micro-

atomic level to the macro-geometrical level. 

6 State The current value of all parameters of either the physical or virtual 

entity/environment. 

7 Parameters The types of data, information, and process transferred between 

entities; e.g., temperature, production scores, and processes. 

8 Physical to Virtual 

Connection 

The connection from the physical to the virtual environment. 

Comprises physical metrology and virtual realization stages. 

9 Virtual to Physical 

Connection 

The connection from the virtual to the physical environment. 

Comprises virtual metrology and physical realization stages. 

10 Twinning and 

Twinning Rate 

The act of synchronization between the two entities and the rate at 

which synchronization occurs. 

11 Physical Processes The physical purposes and process within which the physical entity 

engages; e.g., a manufacturing production line. 

12 Virtual Processes The computational techniques employed within the virtual world; 

e.g., optimization, prediction, simulation, analysis, integrated multi-

physics, multi-scale, and probabilistic simulation. 

 

Simulation is another divisive topic among researchers; some believe that DT should place 

emphasis on simulations [152][153], whereas some argue that DT contains physical, virtual, 

and connection parts, and virtual space is mapped to physical space through connection parts 

[154][155]. Tao et al. further proposed a five-dimensional DT model, comprising physical 

parts, virtual parts, connection, data, and service [156]. Under this model, the theoretical 

foundations of DTs include the following [157]:  

• DT modeling, simulation, verification, validation, and accreditation (VV&A); 

• Data fusion; 

• Interaction and collaboration; 

• Service. 

Under this framework, a number of DT-driven applications have been developed, such as 

smart product design [158], job-shop scheduling [159], and virtual commissioning [160]. Negri 

et al. reviewed DT papers by categorizing them into possible uses, which are presented in Table 

3 [147]. 
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Table 3: Digital twin categories [147] 

Support of health analyses for improved maintenance and planning 

• Monitoring anomalies, fatigue, and crack paths in the physical systems. 

• Monitoring geometric and plastic deformation on the material of the physical systems and 

reliability of the physical systems. 

• Modeling reliability of the physical systems. 

Digital mirroring of the life of a physical entity 

• Studying and predicting the behavior and performance by accounting for environmental 

conditions. 

• Providing information continuity across different stages of lifecycle c. Virtual 

commissioning of the system. 

• Managing the lifecycle of IoT devices. 

Decision support through engineering and statistical analyses 

• Optimizing system behaviors during the design phase. 

• Optimizing product lifecycles, knowing the past and present states to predict future 

performances. 

 

With rapidly developing technologies to support DTs, semantic technologies have been 

playing increasingly important roles in ensuring the interoperability of DT systems and 

extracting full values of DTs across the entire lifecycle [161]. Semantic modeling is a promising 

method for integrating different technologies with different formats, protocols, and standards, 

which is challenging to address in DT modeling. Therefore, cognitive twins (CTs) emerged as 

an enhancement of DTs with the capability of managing model versions across lifecycles [162]. 

Lu et al. developed a knowledge graph-centric framework to support CT development [163]. 

As an emerging topic, CTs have much to offer for enhancing DT applications. 

2.8 Identified research gaps 

The implementation of ZDM is critically affecting the production scheduling. This is caused 

because the number of events that require the scheduling of a mitigation action is increased 

significantly. As said in chapter 2.1 in ZDM there are two strategies for identifying a quality 

issue: detection and prediction. The core concept of ZDM implies that a mitigation action 

should be scheduled for each of the events. Contemporary literature on scheduling tools is not 

considering the prediction of product defects. The ZDM events are considered as time sensitive 

which means that the counteractions need to be scheduled at a given point of time otherwise 

there is no point of implementing ZDM approach. Considering these facts enhanced 

rescheduling methods are required, designed specifically for ZDM. Those rescheduling 

methods should be flexible enough in order to be able to address also traditional events such as 

new orders, maintenance actions etc., as presented in [91]. Additionally, existing scheduling 

tools are rarely considering product quality as KPI. Furthermore, the introduction of product 

quality to production management systems has first happened in 2011 [164]. To add on this, a 

recent literature review on scheduling tools revealed that product or process quality is the least 

used KPI among the available in literature scheduling tools [165]. To this extent there is the 

need for scheduling tools that incorporate product and process quality as suggested in [166].  

On the other hand, setting up a production system based on ZDM approach is a complex 

task. Because of the scheduling-oriented problems that are arising the current methods and 

because of the fact ZDM is an emerging approach, there are no methods for assisting 

manufacturers on selecting the proper quality-oriented equipment and method for achieving 

efficient ZDM. Currently, manufacturers are struggling to cope with market needs. The product 

life cycle is shortened significantly and manufacturers are forced to produce new products faster 

than ever. This created the need for reconfiguring the production and re-designing quality 
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assurance plans more frequently. There is an urgent need for automated methods for assisting 

on the design or reconfiguring process in order to achieve efficient ZDM. 
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3 Research Questions & Research Plan 

In this chapter, the research questions are presented. These questions are the drivers for the 

developments that follow in the upcoming sud-chapters. The research questions are not 

independent; each relies on the results of the previous questions. In other words, the results of 

Q1 are used in Q2, and those of Q2 are required for answering Q3. Research Question 1 and 3 

are the outcome from the identified research gaps presented in chapter 2.8 

3.1 Research Question 1 

Q1: How can a scheduling tool satisfy the ZDM objectives? 

Production scheduling and production quality are two critical and challenging problems 

[167]. The rules and goals that scheduling systems must satisfy are constantly changing. The 

contemporary paradigm of ZDM, which implies that there must be no defective part during 

production, means that there will be less waste material and less energy consumed, and 

therefore, the production is eco-friendlier but simultaneously more efficient with higher 

production quality. The outcome of this research question would be a software scheduling tool 

that will have incorporated the ZDM objectives. The answer to the research question can be 

found in Chapter 4, and particularly in chapters 4.2, 4.3, 4.4, 4.5, and 4.8. 

3.2 Research Question 2 

Research Question 2 was not part of the initial plan of the current research work. It come up 

as a necessity to move forward and be able to answer Research Question 3. Once Research 

Question 1 was answered and the proposed ZDM dynamic scheduling tool was developed, 

initial experiments revealed that although the results were very promising in terms of simulation 

KPIs the computation time was significant, on average 54 minutes per simulation on a modern 

6 core computer. This computation time was prohibiting for the methodology conceptualized 

for answering Research Question 3. Therefore, the idea of creating a DT for the developed 

scheduling tool was a viable solution. 

Q2: How can a digital twin of the developed scheduling tool be created? 

Time, both in general and in particular for the manufacturing environment, is a critical aspect 

that may lead to success if properly managed or failure if not well managed. On the other hand, 

simulations are critical for designing a new manufacturing system or for redesigning and 

optimizing an existing one. In other words, the more simulation data that are available, the 

better the decisions that can be taken. Simulations, however, can be very time consuming and 

as well as very costly. Therefore, alternative solutions are required for the acquisition of 

simulation data without running simulations or by running only a small portion and then 

creating models for estimating–predicting the simulation results. This research question is 

focused on developing a method for creating a DT of the developed scheduling tool to assist in 

designing for ZDM and selecting the most appropriate ZDM strategy for each of the 

manufacturing processes. The answer to this research question can be found in Chapter 4.12. 
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3.3 Research Question 3 

Q3: How should the developed digital twin model be used to investigate the ZDM 

alternatives for a specific use case? 

Quality control in a manufacturing environment is another critical aspect and, depending on 

the design of the quality control strategy, can either be very efficient and competitive or not. 

The process of designing new production systems or reconfiguring existing ones can be highly 

complex and relies on the expertise of senior employees. To assist in this process, namely the 

design of a quality control strategy, the current research question was formulated to provide 

manufacturers with a systematic method for a DT to analyze their future production facility and 

conclude which quality control configuration is more suited to their case (using the results from 

Q2) quickly without the need for simulations. This will significantly reduce the time required 

for designing the quality control strategy and simultaneously improve the accuracy of the 

results. The answer to this research question can be found in Chapter 5. 

3.4 Research plan 

To answer the defined research questions, we followed the plan presented in Figure 3. The 

first step was to define the scheduling problem and clarify the types of objects that will be 

included into the proposed scheduling tool. Once the object types were defined the relations 

among the objects should be defined. Using the defined objects and relations the architecture 

of the proposed ZDM oriented scheduling tool was created to visualize all the modules that 

need to be developed and define their interactions. The architecture was used as roadmap for 

the development of the scheduling tool. The development process started by the core engine of 

a scheduling tool which was the tasks allocation to the available resources taking into 

consideration the capabilities of each resource and the preemptions that might exist, which was 

very important to make certain that the produced schedule was feasible. The rest of the 

identified components were built around the core component, adding a specific feature at each 

time. At each step the newly developed component was tested to verify that the results produced 

were correct. 

Furthermore, the performance of each individual component and the entire solution were 

examined to proceed to the simulations with the knowledge that the acquired results were of a 

certain specified quality. If not, redesign of the scheduling tool, or of a component would be 

required in order to assure high quality schedule solutions. When this procedure was finished 

successfully, the next steps were the collection of the industrial data to be used for 

demonstration purposes and the formulation of the data into the data model of the developed 

scheduling tool. In parallel, the design and development of the methodology for creating the 

DT model could take place. When the method was ready, the next step was the design of the 

experiments to create the DT model for a specific real industrial case. Using the collected data 

and the developed methodology, the use case of the DT model was created. Before the use of 

the created DT model its performance must be validated. The validation method used was to 

create a set of random sets of DT control parameters and plug each set to both the scheduling 

tool to perform an actual simulation and to the DT model and compare the results. The DT is a 

digital model of the scheduling tool. This means that the DT can predict what the result of the 

actual simulation would be. If the accuracy calculated was at acceptable level then the DT 

model could be used and move forward to the next and final step of the current research. This 

step corresponds to the mapping of the ZDM strategies for the specific industrial use case. Once 

this is done, the manufacturer can use those mappings to select the most suitable ZDM strategy 

and ZDM parameters. 
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Figure 3: Research plan and steps for conducting this study 

An important element of the current thesis is that the approach followed for all the 

developments was the data-driven approach and not an analytical one. Manufacturing 

environments have become very complex, volatile and require frequent changes to cope with 

market need, fact that makes analytical solutions impractical and difficult to use [168][169]. 

From predicting the future events to designing new products, computational models have 

played a crucial role in describing the behaviour of those complex natural processes and 

yielding valuable insights to guide decision-making. In many cases, computational models 

appear as a set of mathematical equations (e.g., partial differential equations). For quite a long 

time, however, those equations can only be simulated for a handful of simple academic 
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problems, thus possessing limited values to help people quantitatively understand reality. 

Starting from the mid-20th century, this situation has improved significantly, thanks to the rapid 

development of numerical algorithms and powerful computers. For that reason, the data-driven 

approach was used throughout the entire thesis. Currently, in the manufacturing domain data 

are generated from various sources. On the other hand, in the context of Industry4.0 concept 

many technologies have been developed for analyzing the manufacturing data and offering 

solutions that were not possible with analytical models [170]. Another reason that contributed 

to the decision of data-driven approaches is that industries have shown significant interest for 

data-driven approaches because of the capabilities that can offer compared to analytical 

approaches [171]. 
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4 Scheduling Tool Development 

This chapter is devoted to describing in detail the architecture, individual components, and 

functionalities of the developed scheduling tool. Initially, a standard scheduling tool was 

developed and tested, as described in [47], to be able to schedule simple tasks. Once this had 

been done, the individual components regarding the ZDM were developed and integrated into 

the scheduling tool to add functionalities step by step. At the end of each integration round, 

experiments were conducted to validate the results and performance.  

The design of the scheduling started from the definition of the specification that the desired 

scheduling should have. The specifications were divided into two categories: those related to 

the operation of the scheduling tool and those related to the implementation of the ZDM to the 

scheduling tool [43]. Regarding the operation of the scheduling tool, the main decision that was 

taken was what types of manufacturing systems the scheduling tool would be able to schedule. 

The decision was that discrete event manufacturing systems fit the ZDM concept better; 

therefore, the developed scheduling tool should be able to simulate any type of discrete event 

manufacturing system.  

The problem to solve is formulated as follows (notations at Table 4): a set of Order 

R={Rk|k=[1,r]}, each Order being composed of different operations Ok={Oj,k|j=[1,n]}, must be 

manufactured on a set of machines M={Mi|i=[1,m]}. Oj,k is the jth operations of the order Rk. Pij 

is the processing time of operation j on machine i. In the same way, the setup time of all 

operations on each machine is Sij. The machine setup time of each operation depends on the 

machine’s previous operation. Several assumptions were made, such as that once the operation 

has started the machine cannot be interrupted; that each machine can only handle one job at a 

time; and that all orders and machines are available at zero time. Each customer order has a due 

date Dk, which should be respected as much as possible. When an Order Rk is selected, all these 

operations are applied to the machines to complete Rk. Let π={π1,...,πm} represent a schedule 

and πi={Oi(1),…,Oi(n)} be the sequence of the operations on the machine Mi. Thus, Oi(n) 

represents the nth job assigned to the ith machine. Operations have precedence constraints, which 

means that some operations should be done before others for them to be feasible. Based on the 

Bill of Process (BoP), for each operation a number (task level) is assigned to designate the 

manufacturing sequence. Table 20 illustrates the task levels for the specific product analyzed. 

Table 4. Notation of problem definition 

Symbol Description 

R={Rk|k = [1,r]} Set of Order 

Ok={Oj,k|j=[1, n]} Set of Operation of order Rk 

M={Mi |i=[1,m])} Set of Machines 

π={π1, ..., πm} Schedule 

πi={Oi(1),…,Oi(n)} Schedule of machine i 

Pij Processing time of operation j on machine i 

Sij Setup time of operation j on machine i 

mp Number of possible machines for one operation 

Length Variable used to balance production 

M Machine  
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The current scheduling tool is formulated using the following objects: task, machine, order 

and customer. Each of the object holds its own attributes. The main and most important object 

is the task object. The tool should be able to support multiple tasks to schedule and to offer the 

possibility to add precedence constraints to be able to define any type of product structure. Each 

task is a job that must be fulfilled and is characterized by a number of attributes, such as taskID, 

order number, type, in which machines can be performed, the processing time required etc. 

Figure 4 presents the state diagram of the task object. Once a new order comes the 

corresponding task instances are created and waiting to be release to the shopfloor. When the 

precedence constrains of a task are fulfilled the task is unlocked and it is added to the tasks that 

can be released. Once the scheduling method decides that the task should be assigned and there 

is an available machine, the task is assigned. Once the task has finished and the quality is 

inspected, if the quality is acceptable the task is characterized as finished, if not there are two 

options, in case the task is repairable the task is repaired and then is characterized as finished 

or it is sent back as not released because it must be performed from the begging in order to 

mitigate the defect.  

 
Figure 4: Task object state transition diagram 

There are three types of task objects: normal, repairing and maintenance tasks. All the rest 

of the objects are surrounding the task objects. Other types of objects are machine objects where 

we have normal, inspection and repairing machines. The tool should be able to handle different 

orders with different order characteristics, such as order placement day, due date, and quantity. 

Each order is placed by a “customer” who must have some parameters to be able to rank them 

and create a system for serving good, loyal, or customers with high volume orders faster. The 

tool should be able to handle multiple machines and each machine should be able to perform 

one or more of the defined tasks. This way it would be possible to simulate any discrete event 

manufacturing system. The tool should be able to calculate multiple criteria and KPIs and have 

the flexibility of adding or eliminating criteria and KPIs to fulfill the needs of any manufacturer. 

Another important functionality that the tool should have is a system for deciding when to 

reschedule and which events should be included in each rescheduling round. The tool should 

be able to save the scheduling results for later use and also to load data from the predefined 

data structure file. Additionally, each simulation should require an acceptable amount of 

computation time, or otherwise the tool would be unusable. Finally, the tool should be able to 

solve the scheduling problem using different types of heuristic rules, and the operator should 

be able to select which heuristic rule he or she wants to use.  

The first ZDM-related specification that the scheduling tool should have is a function that 

generates defects according to a defined profile or randomly. This is the basis for the 

implementation of the ZDM into the simulation engine, because in ZDM, everything starts and 

ends with product defects. The tool should be able to generate defect predictions using the 
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generated defect list from the previous component. With these implemented, the ZDM 

triggering factors next in row are the actions that need to take place. Therefore, the tool should 

be able to decide whether to repair or discard a defective part. Furthermore, the tool should be 

able to generate preventive actions, which are either machine tuning or machine small 

maintenance to prevent future defects. The tool should also be able to suggest complete 

maintenance actions based on the generated defects and product quality levels.  

Based on those specifications, the scheduling tool was developed. Figure 5 illustrates the 

complete overall flowchart showing how the individual components are connected. The basic 

principle of the developed tool is that it acts as a simulation tool for a period defined by the 

demand profile the user has defined. This means that one simulation run consists of several 

scheduling iterations to complete all the orders and also until there are no more ZDM-triggering 

factors such as new product defects or new defect predictions. 

 
Figure 5: Scheduling tool – simulation engine overall flowchart 
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The whole process starts with the assignment of the first order in time t=0, and since there 

is only one order, no order ranking occurs. Next, the selected heuristic rule solves the 

scheduling problem and provides a specific sequence for the tasks that compose the first order. 

Based on this task sequence and the machine characteristics, the defect generation module 

calculates whether it will generate defects for the time period defined by the produced schedule. 

If no defects are generated, this branch is ended and no actions are required; if yes, the defects 

list is forwarded to the next modules for further analysis. At the same level, the tool checks if 

available orders are left for assignment. Again, if there are no remaining orders, the orders 

branch is ended. On the other hand, if yes, the list with the remaining orders list is forwarded 

to the events management module. In the event of defects, there are three options available that 

act in parallel: (1) the DSS tool for deciding whether to repair or discard the defective parts; (2) 

the generation of prevention actions because of the detected defects; and (3) the prediction of 

future defects based on the generated defects. The outcome of all three is a list with tasks that 

are required to counteract the effects of the detected defects or the effects that might have future 

defects.  

Furthermore, based on the generated defects and the generated predicted defects, 

maintenance might be required for the specific machine to regulate defect generation. If any of 

the four modules regarding orders, defect repair, prevention from detected defects, or defect 

prediction has generated action tasks, the process continues with all the action tasks to be 

forwarded to the events management module, where it is calculated which events are going to 

be considered in the upcoming scheduling iteration and which are not. Moreover, the events 

management module calculates the time the rescheduling should occur, and based on this time, 

all the tasks from the current schedule that start after the rescheduling time are added to the task 

list for rescheduling alongside the action tasks from the previous modules. At this point, once 

complete iterations of the simulation have been finished, the process starts again but with 

updated data to consider. The simulation is ended when there are no more new orders or action 

tasks. In that case, the final KPIs are calculated for each order separately. For the current 

simulation tool, many different KPIs were developed as the tool was evolving. At each step that 

simulations are performed, the used KPIs are explained in detail. Moreover, at the final 

simulation runs for the creation of the DT of the scheduling tool, the KPIs set are presented 

separately in chapter 4.10. The proposed scheduling tool was developed using MATLAB 

software. 

4.1 Uncertainty consideration 

Uncertainties in any manufacturing process lead to deviations between nominal result and 

their actual counterpart result. Differences from nominal values may cause variations to the 

final outcome of a process leading to undesired results [172]. Therefore, it is important to take 

uncertainty under consideration to the current problem because is a key factor for accurate 

simulations. In manufacturing environments uncertainty is everywhere and influences many 

different systems. In the current study uncertainty was introduced to many different 

components of the developed scheduling tool. The approach that was followed was using 

uncertain random variables. An uncertain random variable is a measurable function from a 

probability space to the set of uncertain variables. In other words, an uncertain random variable 

is a random element taking ‘‘uncertain variable’’ values [173]. This approach might be simple 

but at the same time is the worst-case scenario for a manufacturing system, because of the 

randomness. Usually in some cases patterns can be found that can reduce the uncertainty and 

be able to estimate or predict an event, but is not always the case. 

In the scope of the current study uncertainty was introduced to the following modules of the 

scheduling tool: defects generation module, defects prediction module, tasks processing time 

assignment, quality inspection successfulness, defected part repairability and prevention action 
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success. All the above-mentioned modules of the scheduling tool have the uncertainty 

incorporated in the form of random numbers. Further details about each component will be 

given at the corresponding chapters. 

4.2 Defect Generation Module 

A defect generation module is one of the most crucial components for the current simulation 

tool. This module is related to the ZDM implementation and has the goal of approximating the 

real defect generation in an industrial environment as closely as possible. Figure 6 illustrates 

the flowchart regarding the defect generation procedure.  

 
Figure 6: Defect generation module flowchart 
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The defect generation module relies on a generic curve regarding the defect probability 

versus the machine’s total operational time, which was extracted from the industrial case under 

investigation. For each machine, there is a mean time that the machine requires tuning (MTBT) 

or small maintenance to avoid a defect rate beyond the desired levels. Before each simulation 

run has started, the tool based on the generic defect generation curve calculates the machine-

specific defect generation curves based on the corresponding data of each machine. This 

procedure is performed only once at the beginning of the simulation, and then the models are 

saved for use throughout the entire simulation period. Those models are a function of the current 

total machine operation time, and the output is the preliminary task quality. The quality is 

measured in the form of a percentage, with 100% being the ultimate quality, and at lower 

thresholds below that the tasks is considered defective. 

In every rescheduling iteration, the defect generation module is run to generate the estimated 

defects, which will trigger the ZDM components and counteract the problems caused by the 

defective parts. For each task assigned to each machine, the defect generation module calculates 

the current machine operation time including the processing time for the current task, and this 

value and the defect generation fitted model for the current machine are used to calculate the 

preliminary quality. Those models can be created using specific data regarding the defect rate 

of a specific equipment. In Figure 7 are illustrated some examples of how those fitted to the 

real data curves can look like. On the x-axis there is the total operation time of the machine 

(TOT) counting from the last maintenance operation. Each time maintenance is performed the 

TOT is zeroed. If assumed that 100% quality is 1 then the y-axis shows how much quality is 

lost related to the TOT increase. The first and second plots in Figure 7 are illustrating an 

exponential and a linear behaviour to the quality loss as the TOT increases, which have a 

constant upwards trend. In the manufacturing environment it is not always possible to derive to 

such graphs and the situation looks like the third plot which illustrates a random behaviour of 

the quality loss compared to the TOT. In order to address this situation, the approach followed 

in the current thesis is a data-driven approach and use case specific, each machine has its own 

characteristics and, as a consequence, it is impossible to generalize or describe with analytical 

models [168][174]. Therefore, empirical formulas were used to describe the loss of quality 

compared to the TOT. 

   
Figure 7: Examples of data driven quality deterioration curves 

Because in the real-world defects do not occur in a deterministic way but in a stochastic 

way, the need exists in this case to add uncertainty to the calculated preliminary quality to refine 

it and approximate the reality more accurately. This is achieved using equation (2), which is an 

empirical formula, where from the preliminary quality (calculated by equation (1)) is subtracted 

the product of a random number 𝑄 ∈ [0,1] with a weight W ∈ . The weight W is responsible 

for fitting the result closer to a specific real case. The outcome is the final task quality.  

𝑃𝑟𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑟𝑦𝑄𝑢𝑎𝑙 = 1 − 𝑓(𝑇𝑂𝑇) (1) 

𝐹𝑖𝑛𝑎𝑙𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝑃𝑟𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑟𝑦𝑄𝑢𝑎𝑙 −𝑊 ∗ 𝑄 (2) 
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If the calculated final quality is below a threshold defined by the user, the task under 

investigation is considered a defect. At this point the algorithm examines the historical records 

of defects for that particular machine to verify that the total number of defects at the current 

stage are not exceeding the desired–defined defect level by +10%. If this condition is met, then 

the task under investigation is flagged as a defect for later modules to consider. If the total 

number of defects exceeds the defined threshold, then the defect is not considered and the tasks 

remain flagged as healthy. When all the tasks of a machine have been assigned quality, the tool 

moves to the next machine until all the tasks of all machines have been assigned qualities. 

4.3 Defect Prediction Generation Module 

Defect prediction is another important module for the success of the current tool. This 

module is also related to the ZDM concept and represents one of the most promising ZDM 

strategies. Defect prediction can be implemented with a variety of methods such as machine 

learning, artificial intelligence, or similar approaches. In the current research, the defect 

prediction module simulated only the outcome of the actual defect prediction algorithm and did 

not perform any predictions. In other words, the defect prediction module is considered a black 

box and the only concern is the input and output. The method for simulating the outcome of 

defect prediction is rather simple but efficient and successfully achieves the assigned task. The 

developed tool has the possibility of assigning defect prediction instances after each machine 

and with different prediction characteristics. Each defect prediction instance has two key 

control parameters: prediction accuracy, which denotes how accurate the implemented 

prediction algorithm is and is measured in the form of a percentage, and the prediction horizon, 

which denotes how far ahead in terms of time the theoretical prediction algorithm can predict 

with the defined accuracy. 

The defect prediction module process is illustrated in Figure 8, based on which the defect 

prediction module relies on the defect generation module described in chapter 4.2. Once the 

defect generation module has created the defects list, then this list is passed to the defect 

prediction module and each defect is examined separately. The generated defect list concerns 

all the defects that will occur until the end of the current schedule if no actions are taken. For 

each of the defects on the list, a random number is generated between [0,1], which denotes the 

temporary accuracy of the actual defect prediction algorithm when predicting the current defect. 

This number is then compared with the defined actual accuracy of the defect prediction module, 

and if the random number is lower than or equal to the actual accuracy, then the algorithm flags 

that defect that the prediction will be successful. If the prediction is flagged as non-successful, 

then the defect will occur and no measures will be taken to avoid it. The process ends when all 

of the defects on the provided list are flagged with the outcome of the hypothetical prediction 

algorithm. In the real world, these processes occur in real time and a few each time, whereas in 

the current work, the defect generation and defect prediction occur in batches until the end of 

the calculated schedule and based on the outcome of the event management algorithm (chapter 

4.8). Some of those events are considered for the next rescheduling iteration and all the others 

are deleted because from that moment the schedule is going to change from that point, and after 

the generated defects and predictions will not be aligned with the new schedule, and therefore 

they are deleted. When the new schedule is created, the process of defect generation and by 

extension that of defect prediction is performed all over again with new defects assigned 

without being influenced by the previous results. 
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Figure 8: Defect prediction flowchart 

4.4 Detect Repair DSS Cost Model 

The DSS is designed to automate the decision process when a defect has been detected in 

the production line, and its aim is to optimize costs, quality, and lead time. Figure 9 illustrates 

the flowchart of the proposed DSS tool, which describes the decision-making process for 

selecting one of the three potential solutions. The DSS tool is integrated into a dynamic 

scheduling tool [43], which is responsible for generating the production schedule. When the 

production schedule is realized, numerous defects are detected via an in-line inspection system. 

Those defects are listed from the earliest to the latest, and the developed DSS tool calculates 

the three alternative solutions costs (deferral, disposal, and repair). These costs are calculated 

using equations (3), (4), and (5), respectively. Then, all three calculated costs are compared and 

the alternative with the minimum cost is selected for the defect under investigation. If there are 

more defects in the defects list, the same procedure is applied until all the defects in the list 

have a decision. This means that the DSS will work in series for suggesting decisions, which is 

due to the fact that the decision of the next defect is affected by the decision of the previous 

one. The next step is to dispatch the actions needed, if any back to the scheduling tool to be 

scheduled into the next rescheduling procedure. It should be reminded that our model is built 

upon the consideration that all parts are inspected with automated systems. These cost functions 

are based on the three costs pillars: cost of deferral (A), disposal (B), and repair (C). All the 

parameter names and descriptions are summarized in Table 5.  
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Figure 9: Flowchart of the defect decision support system 

Table 5: Abbreviations list 

AD : Accepted Delay For Customer Order M : Order Number (Id) 
AIT : Average Inspection Time M : Total Number Of Orders 
AQL : Attained Quality Level MC : Material Cost  
AQT : Accepted Quality Threshold MOC : Machine Operational Cost 
ART : Average Repair Time N : Total Number Production Stages 
BS : Batch Size N : Number Of Production Stages  
C : Job Completion Time ND : Number Of Defective parts 

CODI : Cost Of Delay Due To Inspection OC : Order Criticality 
CODR : Cost Of Delay Due To Repair OV : Order Value 
CODS : Cost Of Delay Due To Scrap PD : Penalty Of Delay (Customer) 
COI : Cost Of Inspection PQ : Penalty Of Quality (Customer 
COQ : Cost Of Quality PC : Product Cost 
COR : Cost Of Repair PFIX : Fixed Penalty Sum 
COS : Cost Of Scrap PT : Process Time 

D : Disposal Cost Q : Order Size 
DAVG : Buyer’s Average Demand Rate R : Runtime Of Process 

DC : Delay Cost Per Unit Time RP : Cost Of Replacement Part  
DD : Due Date For Customer Order RT : Repair Time 
DR : Disposal Cost Of Sub-part RTD : Delay Caused By Repair Time  
FIP : Forecasted Inspected Parts (%/Year) SC : Buyer’s Critical Stock 
HR : Hourly Rate For Production Process SD : Delay Caused By Scraping 

I : Production Step SS : Buyer’s Safety Stock 
IEC : Inspection Equipment Cost  SUC : Setup Cost Per Unit Time 
IV : Annual Inspection Volume SUT : Setup Time Required  
J : Product Type W : Weight Factor 
K : K-Th Item In The Batch  TY : Current Year 

LC : Labor Cost Per Unit Time T* : Critical Delay Time  
LGW : Client's Loss Of Goodwill  TD : Delay Time 
LOR : Loss Of Reputation    

4.4.1 Decision A: Cost of deferral 

This decision, the so-called “Do nothing” approach, decides to proceed to the next step of 

production. In such a case, the product might still carry an uncertainty around its quality. This 

is because in automated quality assessment methods, the certainty about the quality of the 

product is not absolute and lies inside a confidence interval. Consequently, the cost that the 

product can carry is the cost of quality. 

A = 𝐂𝐎𝐐(i, j, k, m) (3) 
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There are two scenarios under this decision option: (a) after the quality assessment of the 

product, the estimated quality level of the customer order is above the promised quality level. 

The cost of quality is then null. As such, the cost of deferral is the cost-effective choice and the 

product can proceed to the next production step. (b) After the quality assessment of the product, 

the estimated quality level of the customer order is below the promised quality level. 

Consequently, the cost of quality is nonzero. However, after the comparison with the cost of 

disposal and cost of repair, the deferral option is chosen as the cost-effective scenario. 

4.4.2 Decision B: Disposing the product 

This model evaluates the cost of scrapping the product. This function includes the cost of 

product (PC), cost of scrap (COS), and cost of delay due to scrap (CODs). This delay is caused 

by remanufacturing the same product after scrapping.  

B = 𝐏𝐂(i, j) + 𝐂𝐎𝐒(i, j) + 𝐂𝐎𝐃𝐬(i, j) (4) 

4.4.3 Decision C: Inspecting and repairing the product 

The decision to repair is placed inside the same decision path as inspection. This is because 

the automated inspection system’s quality assessment carries a certain uncertainty. As such, 

prior to repairing the product the operator has to inspect whether the product is repairable. Thus, 

the common costs associated are the cost of product (PC), the cost of inspection (COI), and the 

cost of delay due to inspection (CODi). In addition, in the inspection process we obtain the 

following sub-decision trees: (a) after the inspection of the operator, the product appears to not 

have any defects. It is therefore reintroduced back to the production process. (b) After the 

inspection by the operator, the product is repaired and is reintroduced to the production process. 

Inside decision C, the ratio of products that are repaired is expressed by the ratio of repair. This 

value is obtained according to the previous production data. The associated costs in this case 

are the cost of repair (COR) and the cost of delay due to repair (CODr). (c) After the inspection 

by the operator, the product is deemed unrepairable and is therefore scrapped. A new production 

order is given to compensate the disposal. Inside decision C, the ratio of products which are 

scrapped is expressed by RS. This value is obtained according to the previous production data. 

The associated costs in this case are the product cost (PC), the COS, and the cost of delay due 

to scrap (CODs).  

C = {

𝐂𝐎𝐈(i, j, ty) + 𝐂𝐎𝐃i , if not a defect                 

𝐂𝐎𝐈(i, j, ty) + 𝐂𝐎𝐑(i, j, ty) + 𝐂𝐎𝐃i + 𝐂𝐎𝐃𝐫(i, j, m) , if repairable defect       

𝐂𝐎𝐈(i, j, ty) + 𝐏𝐂(i, j) + 𝐂𝐎𝐒(i, j) + 𝐂𝐎𝐃i + 𝐂𝐎𝐃𝐬(i, j) , if non repairable defect

 (5) 

4.4.4 Product cost (PC) 

The cost of producing a part in a given stage of production will include different cost 

functions. The cost of sub-products or cost of materials is given by the necessary raw material 

price, production equipment setup costs, labor cost, equipment investment cost, and overhead 

cost. The cost function is given in the formula below and adapted from the formula proposed 

by [175]. Additionally, equipment costs and overhead costs were introduced into the product 

cost function. 

𝐏𝐂(i, j) = {MC(i, j) +∑[
SUT(i, j) ∗ SUC(i, j)

BS(i, j)
+ [R(i, j) ∗ MOC(i, j)]]

n

i=1

} (6) 
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4.4.5 Cost of quality (COQ) 

Penalties related to the cost of quality are given if a mismatch exists between the promised 

product quality and delivered quality. These penalties include a financial sanction with a 

decrease in the agreed payment [176]; a reduction in price along with any additional 

compensation that can occur; a loss of goodwill resulting with a reduction in the future 

purchases by the customer; and a loss of reputation of the producer and propagation to other 

clients [177]. 

𝐂𝐎𝐐(i, j, k,m) = Pq(i, j, k, m) + LGW + LOR (7) 

Furthermore, a certain penalty limit that the supplier is willing to accept is defined. This 

threshold represents the break-even point of the supplier. Beyond this limit, the supplier suffers 

financial losses and is therefore unlikely to engage in a transaction. Further explanations 

regarding the penalty behaviors are given in the following sub-chapters. In all three quality 

agreements, there is an adjustment factor of 1+OC/10, which modifies the cost according to the 

order criticality (OC); in other words, the more important the order, the higher the cost penalty 

would be in the case of order quality lower than that agreed. The OC takes values between 0 

and 10, where 10 means a very critical order and 0 means an order of low importance. 

Fixed Quality 

Agreement 
𝐏𝐪 = {

0                                          if AQL > AQT

Pfix ∗ (1 +
OC

10
)                                          if AQL < AQT

 (8) 

Standard 

Quality 

Agreement 

𝑷𝒒 = {

0            if AQL > AQT

Pfix +W1(AQL − AQT) ∗ OV ∗ (1 +
OC

10
)             if AQL < AQT

 (9) 

Quality 

Sensitive 

Agreement 

𝐏𝐪 = {

0 if AQL > AQT

Pfix +W2(e
W9(AQT−AQL) − 1) ∗ OV ∗ (1 +

OC

10
) if AQL < AQT

 (10) 

Defining the financial loss suffered by the customer due to lower product quality is a 

complex and difficult process. Therefore, a suggestion is to include a fixed penalty per unit of 

defective product in the quality level agreement [177]. The fixed Quality Agreement consists 

only of the fixed penalty applied to the seller once a certain quality threshold is violated in a 

specific order. Standard Quality Agreements contain the fixed penalty but also have a linear 

behavior, which means that the penalty for not meeting the agreed quality increases 

proportionally to the quality of the order. Quality Sensitive Agreements have a nonlinear 

behavior in terms of sanctions that are applied. This penalty behavior was adapted from the 

insights of [178]. Their supply chain model under penalty policies exhibits an exponential 

sensitivity to the number of defective parts. Consequently, for the quality sensitive agreement 

model, an exponential penalty behavior was used for the description of the quality incompliance 

penalty cost. 

The penalties applied by the customers are based on the quality level of an order. Given that 

the DSS quality results are product-based, an order level quality is defined according to the 

number of defects of a certain order and product type. AQL is the Attained Quality Level and 

represents the percentage of healthy parts in that specific order. This is calculated from the ratio 

between the total number of defective parts and the order total parts. 

𝐀𝐐𝐋(j,m) = 1 −
1

Q(m)
∑ ND(j, k)

Q(m)

k=1
 (11) 

4.4.6 Cost of scrap (COS) 

The COS is determined by the cost of disposing of a product. It includes handling, storage, 

transportation, and recycling costs [179]. In our model we define a single parameter D for the 

disposal cost. As such, the COS is given by the cost of product and disposal costs.  
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𝐂𝐎𝐒(i, j) = PC(i, j) + D(n, j) (12) 

4.4.7 Cost of inspection (COI) 

The cost of inspection will depend on the equipment cost and variable costs [129] [180]. To 

define the inspection equipment, cost per product, we first must forecast the number of expected 

inspections for the current business year based on the inspection ratio of the previous activity 

year.  

𝐈𝐕(i, t) = FV(i, ty) ∗ FIP (13) 

𝐂𝐎𝐈(i, j, t) =
IEC(i)

IV(i, ty)
+ (AIT(i, j) ∗ LC) (14) 

4.4.8 Cost of repair/rework (COR)  

The COR consists of fixed and variable costs. The unit COR will depend on the repair time, 

equipment cost, replacement part cost, and disposal costs [181]. 

𝐂𝐎𝐑(i, j, 𝑡𝑦) = ART(i, j) ∗ LC + RP(i, j) + DR(i, j) (15) 

4.4.9 Cost of delay (COD)  

The COD depends on different variables such as delivery date, estimated manufacturing 

time, and accepted delay. The estimated manufacturing time itself can be divided into three 

distinct categories [182]: no additional COD for conforming products, COD due to repair work, 

and COD due to product scrapping. As the delay time differs for repairing and scrapping 

decisions, the penalty of delay Pd is dependent on the consequent actions. In the following sub-

chapters, the penalty types and time of delay are discussed. 

𝐂𝐎𝐃(i, j, k,m) = Pd(i, j, k,m, td) + LGW + LOR (16) 

In our analysis, the COD is defined as the rate per unit time per customer order. It is given 

by the penalty that the customer applies to the producers for the given order. Therefore, the 

delay of a single product affects the total order. For instance, if one product is delayed in an 

order of 1000 units, the total order is delayed. The order can only be shipped once the missing 

product is manufactured. In the scope of this paper, three different types of orders are defined: 

delay insensitive order, standard order, and delay-sensitive order. 

Delay insensitive orders are orders that are less sensitive to delays. Therefore, the agreement 

is based on a fixed penalty per delay unit time and the behavior of the cost with respect to time 

is chosen as a linear model. Standard orders are the most common policies used. From the 

customer perspective, the customers keep a certain safety stock to deal with demand variations 

and logistical perturbations. This safety stock sits above the minimum required inventory level, 

referred to as the critical stock level [183]. From the supplier’s side, this critical delay time also 

denotes the time after which the supplier suffers a more significant penalty. As such, an S-

function is derived for standard orders for the purpose of substantially penalizing the seller once 

a critical stock level is reached from the perspective of the buyer. 

Delay-sensitive orders are events that are urgent and therefore start carrying significant 

delay costs right from the beginning of the delay. As the delay time increases, the gradient of 

the slope starts to decrease. This is because the supplier is unlikely to engage in a transaction 

resulting in financial loss, meaning that penalties will hit a cap. Therefore, as delay time 

increases, the delay cost curve converges toward the zero-profit zone of the supplier. W8 

determines the curve of the function, meaning that for a small W8, the curve will have a more 
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linear behavior, whereas for a high W8, the steepness at t=0 will be accentuated. This concave 

delay cost function was derived from the pricing strategy according to the promised delivery 

lead time conducted by Yina Li, Qiang Lin, and Fei Ye [184]. Although their model focuses on 

the pricing strategy instead of delay costs, similar results can be interpolated. This assumption 

can be justified by the results of Baoshan Liu, Xu Guan, Haijun Wang, and Shihua M, in their 

comparison of the sensitivity function according to the delivery lead time [185]. 

Delay 

Insensitive order 
Pd(td) = Pfix (17) 

Standard order Pd(td) =

{
 
 

 
 W4 {(T

∗)
1
W5 − (−td + T

∗)
1
W5} OV ∗ OC   , td < T

∗ = 
Ss − Sc
Davg

W6 +W7(td − T
∗)

1
W5 ∗ OV ∗ OC               , td > T

∗ = 
Ss − Sc
Davg

 (18) 

Delay-sensitive 

order 
Pd(td) = W3 ln(1 +W8td) ∗ OV ∗ OC (19) 

4.4.9.1 Repair Time Delay (RTD) 

Deciding to repair a product will cause an increase in its production time. This increase can 

result in the violation of the promised delivery date, causing a COD. More specifically, the 

repair time delay (RTD) is estimated by summing the following terms: the repair time (RT) 

required, the total processing time for the product completion, if the defects are not detected at 

the final production stage, and the accepted order delay (AD). AD is a parameter that is set by 

the customer and defines the delivery tolerance where no delay penalty is charged. Therefore, 

the penalty applied by the customer will be obtained by plugging the repair delay time into the 

corresponding penalty function Pd(RTD*w). 

𝐑𝐓𝐃(i, j, m) = max {[RT(i, j) +∑PT(i, j)

N

t=n

+ AD(m) − DD(m)] ; 0} (20) 

4.4.9.2 Scraping Delay (SD): 

To determine the scrapping cost, we apply a similar logic to the cost of repair. If the product 

has to be discarded, the production time will be increased by the process time. Furthermore, 

due to the production schedule, the new product cannot immediately be introduced as the next 

production order scheduled. As such, the penalty applied will be obtained by plugging the 

scrapping delay (equation (21) into the penalty function Pd(SD*w). 

𝐒𝐃(i, j,m) = max {[∑PT(i, j)

N

i=1

+ AD(m) − DD(m)] ; 0} (21) 

4.4.10 Validation of the DSS 

The goal of using the proposed DSS tool is to improve production quality and minimize 

waste in terms of time and raw materials as well as move one step ahead toward ZDM. In regard 

to this goal, the developed DSS model was tested against two other scenarios. The first was the 

current manufacturing practice and the second was a scenario under ideal manufacturing 

conditions. As current manufacturing practice is defined a scenario that is as close as possible 

to the manufacturing policy that is followed to the selected industrial case. This means that 

when a defect is occurred the part is discarded automatically and there is no attempt of repairing 

the defected part. The ideal scenario denotes the ideal manufacturing conditions without defects 

or any other type of interruptions to the manufacturing process. In this way, it is feasible to 
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study how much better the proposed tool possibly behaves and simultaneously monitor how far 

from the ideal scenario the produced results are. 

Furthermore, it is important to study the developed DSS tool for different time periods. This 

is because currently the demand volume and frequency fluctuate a lot and are uncertain. 

Therefore, companies’ competitiveness and profitability rely on their ability to adapt quickly 

to customers’ needs [110]. Manufacturers try to mitigate this problem by producing demand 

forecasts and projections to take the right decisions at the right time [186]. Moreover, 

manufacturers are forced to develop tools and procedures to be able to react efficiently and 

optimize their production systems under this uncertain demand profile [187]. Investigating 

different time periods would validate that the decisions made by the proposed DSS have 

positive effects on the production both in the short and medium term. Therefore, the three 

scenarios (i.e., DSS, current situation, and ideal) were simulated in two different time periods, 

namely one short-term and one mid-term period.  

The simulation results were evaluated based on three KPIs. Each KPI was calculated for 

each individual customer order. Makespan was the first measured KPI and depicts the 

completion time of an order, equation (22). The next KPI was the maximum order tardiness, 

which shows the amount of time an order takes to be finished after the due date, equation (23); 

in cases where an order is finished before the due date, the tardiness is 0 [47]. This value is a 

relative value compared with the makespan, which is an absolute value. The final measured 

KPI was the production cost, which is a sum of the machines’ operational cost, the setup cost, 

raw material costs, and the cost due to delay penalties presented in chapter 4.4.9 in equations 

(16), (17), (18), and (19), equation (24). All the abbreviations used in equations (22), (23), and 

(24) can be found in Table 5. 

𝑴𝒂𝒌𝒆𝒔𝒑𝒂𝒏𝑚 = max (𝐶𝑚1, … , 𝐶𝑚𝑀) (22) 

𝑻𝒂𝒓𝒅𝒊𝒏𝒆𝒔𝒔𝑚 = max (𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑚 − 𝐷𝑢𝑒𝐷𝑎𝑡𝑒𝑚, 0) (23) 

𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏𝑪𝒐𝒔𝒕𝑚 = ∑𝑀𝐶𝑛 +𝑀𝑂𝐶𝑛 ∗ 𝑃𝑇𝑛 + 𝑆𝑈𝐶𝑛 ∗ 𝑆𝑈𝑇𝑛 + 𝐶𝑂𝐷𝑛

𝑁

𝑛=1

 (24) 

To validate the performance of the developed DSS system, a real-life industrial scenario was 

used, which came from the semiconductor domain and concerned the production of a specific 

printed circuit board (PCB) for use in a medical device. The manufacturing processes examined 

in the current scenario covered the final production stage of the product and were mostly “pick 

& place” and assembly operations. The selected production stage was configured in a flexible 

job shop layout [47], and more specifically it is composed of four work centers (WC). WC1 

and WC2 were responsible for the “pick & place” and assembly operations accordingly, with 

three identical machines in parallel. WC3 was the quality inspection station where two identical 

inspections were installed. WC4 was the repairing center, with three repairing stations. Each 

repairing station is composed out of multiple machines and equipment, but in the current study 

are grouped in one machine. Figure 10 and Figure 11 illustrates the shop-floor layout and 

connections and the bill of processes (BoP) of the product under investigation. This part of the 

production was selected because the highest defect ratio was mainly observed there of between 

5% and 6%. This defect ratio is relatively low, but the PCB under investigation is expensive at 

around €550 each.  
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Figure 10: Industrial use case shop-floor layout 

 
Figure 11: Bill of Processes (BoP) 

The current policy is to discard all defective PCBs spotted during manual inspection by an 

operator, which can be very costly for the organization. In the context of improving and 

automating the production, an automated optical system was installed to inspect the PCBs at 

certain points and have more accurate and repeatable results. Furthermore, repair protocols 

were developed to repair some defective PCBs, but the need existed for an automated DSS 

system that automatically decides the future of each individual defect based on the cost. 

Additionally, the orders regarding this particular component are considered delay-sensitive 

since they are meant to be inside a medical device with high and strict demands, meaning that 

the COD was increasing exponentially with the delay time. Three different simulation runs 

were performed for each of the defined scenarios: 

• The current situation where there was no DSS system to decide what will happen to 

each defect and all the defective parts were discarded and a new one was made for 

compensating the defective.  

• The proposed solution with the utilization of the developed DSS system. In this 

scenario the DSS decides whether to repair or discard the defective part 

• The ideal production scenario with no defects and no interruptions to the manufacturing 

process. This scenario is simulated in order to be used as a benchmark for comparing 

the other two scenarios. 

Table 6: Simulation scenarios’ demand profiles and order criticality 

Scenarios S1, S2 S1, S2 S1, S2 S1, S2 S1, S2 S1, S2 S1, S2 S1, S2 

Orders ID 9101 9102 9103 9104 9105 9106 9107 9108 

Date placed (days) 0 3 6 6 9 9 12 15 

Due date (days) 9 24 24 27 27 39 33 51 

Quantity 120 110 150 110 100 150 110 200 

Order Criticality 9 2 8 4 7 6 8 9 

Scenarios S2 S2 S2 S2 S2 S2 S2  

Orders ID 9109 9110 9111 9112 9113 9114 9115  

Date placed (days) 18 18 21 24 24 27 27  

Due date (days) 45 39 39 45 66 45 48  

Quantity 150 100 100 125 220 100 100  

Order Criticality 10 5 3 8 7 3 3  

 

In the upcoming part with the results demonstration, those scenarios are named “Discard or 

DRD,” “DSS,” and “Benchmark or B” accordingly. For the three scenarios, two simulation 

periods were defined, namely a short-term and a mid-term period as described in Table 6. The 

short-term (S1) period considered all the orders received for the product under investigation for 
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a period of 15 days (S1) and the mid-term period covered orders for a period of 27 days (S2). 

The mid-term period was an extension of the short-term period, which means that the first eight 

orders (9101 – 9108) of S2 were identical to S1, but S2 orders were from 9101-9115 because 

it covers a longer period of time. Table 6 contains some of the key information regarding the 

two simulation periods, such as the day that each order was placed along with the agreed due 

date. Additionally, the quantity and the criticality of each order can be found. 

Table 7 and Figure 12 present the average (avg.) and detailed results of the measured KPIs 

for the S1 scenario, respectively. In terms of tardiness (Figure 12, a), the DSS performed on 

average 50.40% and 697.98% better compared with the Benchmark and Discard scenarios, 

respectively. The same trend was observed in the makespan (Figure 12, b) results but with lower 

relative differences of 8.11% and 118.05%, respectively. 

Table 7: S1 scenario average KPIs results equations (22), (23) and (24)  

Solutions 

Avg. 

Tardiness 

(mins) 

Avg. 

Makespan 

(mins) 

Avg. 

Materials 

cost (€) 

Avg. 

Operationa

l cost (€) 

Avg. 

Delay 

penalty 

cost (€) 

Avg. 

Machine 

utilization 

(%) 

DSS 2,056.58 37,148.65 18,277.44 48,268.74 1,869.05 55.83% 

Discard (DRD) 16,411.14 81,003.44 20,081.04 52,804.86 6,386.67 33.57% 

Benchmark (B) 3,093.14 40,161.67 17,511.20 45,794.37 1,179.63 46.72% 

  

 

Figure 12: S1 scenario KPI results: (a) Tardiness, (b) Makespan, and (c) Total Cost 

Figure 12 (C) presents the total order cost broken down into three categories: the operational 

cost, the raw materials cost, and the cost due to delay penalties. It is clear that the DSS 

performed better than the Discard scenario, which is the current production situation, by 

15.87%. In addition, the DSS was on average 5.74% worse than the Benchmark scenario, 

showing the potential of this approach. Furthermore, the machine utilization was calculated for 
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each of the sub-scenarios with 55.83% for the case of the DSS, whereas in the Discard and 

Benchmark scenarios it was 33.57% and 46.72%, respectively.  

Table 8 and Figure 13 present the average and detailed results from the medium scenario 

(S2), respectively. The results followed the same trend as in the small scenario (S1). In terms 

of Tardiness, the DSS performed at 15.95% and 17.08% and in terms of makespan it was 4.60% 

and 7.75% compared with the Benchmark and Discard scenarios, respectively.  

Table 8: S2 scenario average KPIs results 

Solutions 

Avg. 

Tardiness 

(mins) 

Avg. 

Makespan 

(mins) 

Avg. 

Materials 

cost (€) 

Avg. 

Operational 

cost (€) 

Avg. Delay 

penalty 

cost (€) 

Avg. Machine 

utilization (%) 

DSS 14,903.90 98,541.71 20,177.97 53,709.09 5,392.21 61.25% 

Discard 17,449.31 106,177.93 21,797.62 57,499.90 6,211.84 56.62% 

Benchmark 17,281.47 103,070.21 19,242.53 50,472.02 2,905.40 49.24% 

  

 

Figure 13: S2 scenario KPIs results: (a)Tardiness, (b) Makespan, and (c) Total Cost 

In S2, the overall resource utilization of the DSS solution was 61.25%, whereas in the 

Benchmark and Discard cases it was 49.24% and 56.62%, respectively. Finally, comparing the 

overall performance of the DSS with the Benchmark and Disposal scenarios, taking into 

consideration all the measured KPIs, the DSS performed 4.05% and 10.90% better, 

respectively. Finally, the proposed DSS required 0.1458 seconds and with standard deviation 

of 0.0153 seconds for each decision cycle.  

The overall outcome from the conducted experiments was that the proposed DSS tool was 

on average 7.47% better compared with the current production policy for the manufacturing 

process of the specific PCB. Furthermore, the DSS produced significantly better results in the 

events of important orders compared with the less important ones in both scenarios (S1 and 

S2).  
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In some cases, in both S1 and S2 the DSS produced results better than or equal to the 

Benchmark scenario. The reason behind this behavior was the frequency of rescheduling the 

production. In the case of the Benchmark scenario, there were no defects; therefore, the only 

events happening in the production were the new orders coming in. In this regard, the 

production had to be rescheduled only 7 and 14 times in scenarios S1 and S2, respectively. On 

the other hand, the DSS scenario, besides the new order events, also had to deal with the defects 

as events. This created the need/opportunity to reschedule the production more times to 

consider the actions required for the defective products. The higher number of rescheduling 

times provided the ability to achieve more optimized schedules in terms of the measured KPIs. 

More specifically, the S1 scenario was rescheduled 26 times and the S2 scenario 41 times. 

Another fact that verifies this is the machine utilization rates. In the cases of the Benchmark 

and Discard scenarios, the machine utilization was consistently lower than the machine 

utilization using the DSS. 

The proposed DSS system is meant to be triggered in real time according to the events that 

occur during production. The simulations showed that the DSS tool requires on average only 

0.1458 seconds to make a decision for each defect, which is acceptable for in-line use. 

The simulation results revealed that the proposed DSS has positive effects on both 

simulation periods (short- and mid-term). Although the effect was positive, a huge difference 

between the two effects was observed. The overall performance of the proposed DSS was 

147.45% better in the short-term scenario, whereas in the mid-term scenario the DSS was 7.47% 

better. The reason behind this significant difference is that in the short-term scenario there were 

only a few orders, and therefore, any performance difference was amplified because of the small 

number of orders. On the other hand, in the mid-term scenario, the results were more smoothed 

with no such huge differences. 

The proposed DSS tool was developed to assist the decision-making process when a 

defective part is detected to decide whether to repair it, discard it, or do nothing. The simulation 

results revealed that in both simulation periods, the waste in terms of raw material costs was 

reduced by 4.702% and 3.858% for short- and mid-term periods, respectively. The 

implementation of the described system will contribute to moving one step closer toward ZDM. 

4.5 Prevention Action Generation & Maintenance Actions 

In ZDM, the most advanced strategy for avoiding defects is to perform some actions for 

preventing future defects. As the diagram in Figure 2 illustrates, the prevention strategy can 

work with both the detection and prediction strategies. Although the prevention works with 

both triggering strategies of ZDM, the prevention actions that are implemented in each case are 

different. This is because the triggering factors are different, as are the conditions for the 

prevention actions. The cause behind this is the information available at each stage. In the 

detection prevention strategy, significantly more information exists regarding the past defects, 

which can lead to more targeted and correct prevention actions. On the other hand, in the 

prediction prevention strategy, the produced defects had not yet been produced; therefore, the 

causes of the defect might not be clear and the prevention actions might not be as accurate as 

in the detection prevention strategy. Another difference between the two prevention 

implementations was the fact that in the detection prevention strategy, the operator has time to 

perform a short root cause analysis and consider alternative prevention actions; furthermore, 

the prevention actions can be combined with maintenance for even better results. Performing 

maintenance is possible because there is time for planning since there is no urge to act 

immediately. In the prediction prevention strategy, there is not much time for considering 

alternative actions because the time for acting is dependent on how far the prediction algorithm 

can look ahead, and from the moment the prediction algorithm has generated that in the near 

future a defect is going to occur, the only time for acting is from that moment until the time of 
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the predicted defect. The point in this case is to try to avoid the defect happening; therefore, the 

prevention action should be quick and efficient. Maintenance is difficult alongside those 

prevention actions since there is not much time for planning. 

The prevention actions for both cases have high priority compared with the normal 

production tasks. This means that the scheduling algorithm will be forced to assign those tasks 

first and then all the others. By doing this, it is assured that the results of the prevention actions 

will be the desired one and the future defects will be avoided.  

In the current research, the effect of the prevention actions or maintenance actions were 

implemented using a control parameter named “Machine Improvement State” (MIS) and its 

calculation formula is presented by equation (25). This parameter was used only in Detection – 

Prevention and Prediction – Prevention. In other words, it was used when prevention needed to 

take place. This parameter was created to quantify the benefits of the prevention actions, and it 

was also crucial for the accuracy and realism of the simulation tool. When prevention actions 

occur, the state of the machine is improved by a percentage. This improvement is translated 

into numbers by adjusting the total operation time of each machine and by extension the defect 

generation module. The total machine operation time is measured from the time the last 

maintenance action occurred at the particular machine. Furthermore, for the simulation tool to 

work and approximate the reality as close as possible, the assumption was made that after 

machine maintenance the machine returns to its original state. This improvement will move the 

main maintenance of the machine to later than normal. The amount of improvement is 

dependent on the amount of time for implementing the prevention actions and also on the cost 

of the prevention. Below, equation (25) was used for the calculation of the machine 

improvement state related to the prevention cost and time. This formula was based on 

experimental data and the assumption that a more time consuming and expensive prevention 

action would have more significant results than would shorter and less expensive prevention 

actions. The weights are defined in chapter 5.1.4 where the industrial case is presented. 

𝑀𝐼𝑆 =
(
𝑃𝐶𝑚𝑎𝑥 − 𝑃𝐶
𝑃𝐶𝑚𝑎𝑥 − 𝑃𝐶𝑚𝑖𝑛

∗ 0.5 +
𝑃𝑇𝑚𝑎𝑥 − 𝑃𝑇
𝑃𝑇𝑚𝑎𝑥 − 𝑃𝑇𝑚𝑖𝑛

∗ 0.5) ∗ 𝑊1 +𝑊2

100
 

(25) 

4.5.1 Detect – Prevent, prevention process 

The prevention actions in the detect – prevent ZDM strategy have a role not to diminish the 

defects but to keep the defect levels up to an acceptable level. The prevention actions are 

triggered by the detected defects, and the role of prevention is not to repair the defective parts 

but to ensure that the manufacturing process will be defect free in the upcoming future. Figure 

14 illustrates the process for creating and scheduling the prevention actions. The prevention 

assignment algorithm runs for each machine separately, starting with the retrieval of the last 

maintenance time and the past defects list. Then, this list is filtered using the last maintenance 

time to keep only the defects that have occurred since the last maintenance time. Subsequently, 

the filtered past defects list is combined with the current defects list, which contains the defects 

that will occur in the current schedule. The combined defects list is used for counting the total 

number of defects after the maintenance and checking whether the defect percentage is over the 

acceptable level. If defects do not exceed the defined threshold then no prevention action is 

created. In the event that the defects are over the threshold, the algorithm searches to find the 

defect that after that the defect level is over the threshold. This defect points to the limit, and 

after that point a prevention action is required. The time of the defect marks the time after which 

a prevention action is required to be scheduled.  
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Figure 14: Detect – Prevent, prevention process flowchart 

Finally, this algorithm also incorporates some uncertainty to be more realistic. The 

incorporated uncertainty concerns the successfulness of the prevention action. It is incorporated 

as a random number within the interval [0,1] which is used as a comparison value with the 

prevention successful rate. For example, if the random number is 0.754 and the prevention 

successful rate is set at 0.85 this would mean that the prevention was successful, if the random 

number was higher than the 0.8,5 then the prevention event would be characterized as non-

successful, with all the implications this might mean. In reality this means that when the 
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operator observes an increased number of defects, then he or she proposes a prevention action 

based on data available. However, there is a possibility that the cause of the defect is different 

and the prevention action that is suggested will not have an effect on the process. Additionally, 

another alternative possibility exists that the operator identifies the problem correctly but the 

implementation of the prevention action is not successful. In both described cases, there is a 

possibility that the prevention action is unsuccessful with the corresponding results. Therefore, 

to simulate this possibility, a random number is generated [0,1] for each prevention action 

generated to be compared with estimated prevention success rate (in the form of a percentage) 

that was defined. If the check is performed and the outcome is that the prevention was 

successful, the next step is to calculate the machine improvement factor and adjust the total 

operation time of that particular machine accordingly (the total operation time is reduced by the 

amount defined by the machine improvement factor). If the prevention is unsuccessful, then the 

prevention action is also assigned for scheduling but no improvement on the machine is applied. 

4.5.2 Predict – Prevent, prevention process 

The assignment of prevention actions in the event of defect prediction is simpler than in the 

case of the detect – prevent strategy, because most of the work is done in the defect prediction 

module. Here, the algorithm acquires the predicted defects list, based on which a prevention 

action is assigned for each of the predictions. The prevention action assigned due to defect 

predictions can be considerably more than that in the detect – prevent case. This means that the 

prevention actions should be shorter in terms of time, otherwise their incorporation into the 

schedule would be inefficient. As in the previous case, the prevention action might be 

successful or it might not, and the uncertainty is incorporated with the same approach described 

in chapter 4.5.1. The process for this is the same as in the detect – prevent case.  

 
Figure 15: Predict – Prevent, prevention process flowchart 

4.5.3 Maintenance actions 

Maintenance actions are similar to the detect – prevent actions but they are not directly 

related to the ZDM implementation. Their presence is required to depict reality because in a 

real environment, maintenance is a crucial part of the production, and also because of the 

Defined 
Prevention 

success rate

Assign a prevention 
action for each defect 

prediction

Prevention 
successful?

Adjustment of the 
Total operation time of 

the machine

End

End

No

Yes

Calculate the machine 
improvement factor

Start

Predicted 
defects list



42 

implementation of the prevention actions described in chapters 4.5.1 and 4.5.2. This is because 

the event of maintenance is used for “restarting” the health of each machine. Every time 

maintenance is performed, the total operation time used in the prevention actions sets to zero 

and counting starts from that point on. This is done based on the assumption that after 

maintenance the health of the machine returns to its initial state. In the current implementation, 

condition-based maintenance was the selected type of maintenance because it is widely used 

and is an efficient way to maintain manufacturing systems. Additionally, one could say that 

preventive maintenance is also implemented in the current tool (chapters 4.5.1 and 4.5.2), which 

is triggered by different factors. In the developed condition-based maintenance, there were two 

conditions developed. 

4.6 Heuristics Rules  

In ZDM, every abnormality requires a mitigation action [188]. This creates the need for 

more frequent re-scheduling, and therefore enhanced methods for producing high-quality 

schedules quickly. This is because the economic impact from a low-quality schedule is 

proportional to the rescheduling frequency. Therefore, in the current research, four different 

heuristic algorithms were developed and compared to find one that provides the best initial 

solution. Then, they were passed to the tabu search for further optimization. The heuristic 

algorithms presented in this chapter are tweaked versions of the algorithms described in 

[189][190][191][192]. 

Table 9. Notation of variables 

Symbol Description 

R={Rk|k = [1,r]} Set of Order 

Ok={Oj,k|j=[1, n]} Set of Operation of order Rk 

M={Mi |i=[1,m])} Set of Machines 

π={π1, ..., πm} Schedule 

πi={Oi(1),…,Oi(n)} Schedule of machine i 

Pij Processing time of operation j on machine i 

Sij Setup time of operation j on machine i 

Dk Due date of order k 

level(j) Precedence constraints 

mp Number of possible machines for one operation 

Length Variable used to balance production 

Mmin 
Machine with the least operation 

during one algorithm step 

M* Best machine during one algorithm step 

πc Schedule close to πk 

π* Best solution optimized 

L The tabu list 

G(πh) Optimization function to minimize  

 

The proposed heuristics algorithms are composed of two parts: order prioritization and 

operation allocation to the available machines. Two methods are used for the prioritization of 

the orders: the “First Come First Served” (FCFS) method and one that considers the importance 

of the orders based on the due date, order volume, and customer profile, namely 

“OrderSequence” (OS). The heuristic algorithms used for allocating the operations to the 

available machines are the Machine Cost (MC), Shortest Processing Time (SPT), Sum of 

Shortest Processing Time (SumSPT), and Earliest Completion Machine (ECM). Eight heuristic 

algorithms are produced using the two order prioritization and four operation allocation 

algorithms. The notation of those heuristics is composed of three parts: the rule used for order 
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prioritization, the heuristic algorithm, and in some cases the value of the parameter “Length,” 

which is defined in upcoming chapters. In addition, Table 9 contains all the notations used in 

the upcoming chapters. 

The evaluation of the produced schedules was performed using four KPIs: two cost-related 

and two time-related. The “production cost” includes the machine operational, setup, labor, and 

raw material costs, and the “COD” is a penalty fee that manufacturers pay in case of delaying 

the delivery of an order [73]. The next two time-oriented KPIs are tardiness and makespan 

[193][47]. To aggregate all KPIs into one value and compare the alternative schedules, the 

methodology presented in chapter 4.9 was utilized, using equation (31) for the normalization 

of the KPIs because all of them have cost behavior. Then, equation (33) was used for the 

calculation of the utility value. 

4.6.1 Initial solution generation – Machine cost 

This algorithm aims to identify the machine that costs the least to perform the operation Oj. 

For this, we multiply the processing time by the hourly cost of the machine, which gives a 

production cost. For each machine available for an operation, one calculates this cost and 

chooses the machine that minimizes the cost. In this algorithm, a limit is introduced named 

“Length.” Indeed, without this limit the algorithm would always have the same operations on 

the same machines, the ones with the lowest operational cost (Figure 16). 

Input:  M, R, Pij, the cost/hour for each machine. 

For k=1 to r 

     Classify the operations of Rk by level 

     For j=1 to size(level) 

          While level(j) is not empty 

               Select one operation Oj from level(j) 

               Get mp possible machines  for operations level(j) 

               For i=1 to mp 

                    Calculate cost/machine = Pij*cost/hour. 

               Find the machine M* which has the smallest cost. 

               Find the machine Mmin with the least operation 

               While size(M*)-size(Mmin)>Length : 

                    M* change for the next cheapest machine 

          M*(size(M*)+1) = Oj 

          Remove Oj from level(j) 

Output : π  (All the set of operations on each machine) 

Figure 16: Machine cost heuristic algorithm 

For example, for Length = 10, we grant a 10-step advance between the machine performing 

the most and the machine doing the least. Exceeding this limit, the operation will be put on the 

second cheapest machine, and if the second also has 10 operations in advance, then the 

operation is put on the third cheapest and so on. This limit makes it possible to both reduce the 

imbalance between the machines and to use them all. 

4.6.2 Initial solution generation – Shortest processing time 

Similarly, the algorithm described in this chapter takes all operations and sorts them from 

the smallest to largest processing time on the machine that makes it the fastest, respecting the 

precedence constraints. The variable Length is used in the same way as in the previous 

algorithm for reducing the imbalance between machines (Figure 17).  
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Input:  M, R, Pij. 

For k=1 to r 

     Classify the operations of Rk by level 

     For j=1 to size(level) 

     While level(j) is not empty 

          Select all operation Oj from level(j)  

          Get mp possible machines for all operations level(j) 

          For each operation Oj 

               Find Mj
* which has the smallest 

                Pij to do the operation Oj. 

          M* is the machine Mj
* with the smallest Pij 

          Find the machine Mmin with the least operation 

          While size(M*)-size(Mmin)>Length 

               M* change for the next fastest machine 

          M*(size(M*)+1) = Oj 

          Remove Oj from level(j) 

Output : π  (All the set of operations on each machine) 

Figure 17: Shortest processing time heuristic algorithm 

4.6.3 Initial solution generation – Sum of the shortest processing time  

In this chapter, we describe an adapted version of a heuristic algorithm developed originally 

by Naderi and Ruiz [192]. It calculates the sum of the machine processing times when a new 

operation is assigned. At each stage, the machine with the smallest sum receives the operation 

to be done (Figure 18).  

 

Input: M, R, Pij 

For k=1 to r 

Classify the operations of Rk by level 

For j=1 to size(level) 

     While level(j) is not empty 

     Select one operation Oj from level(j) 

     Get the mp possible machines for operations level(j) 

     For i=1 to mp 

          Calculate all sum of Pij on the possible machine. 

     Find M* which has the smallest sum of  Pij 

          M*(size(M*)+1) = Oj 

     Remove Oj from level(j) 

Output : π (All the set of operations on each machine) 

Figure 18: Sum of the shortest processing time heuristic algorithm 

4.6.4 Initial solution generation – Earliest completion machine 

The ECM algorithm is an adapted version of the earliest completion factory developed by 

Naderi and Ruiz [192] and taken over by Zhang et al. [190]. For the current problem, we adapt 

this algorithm to our case study: an order R that has several operations. Each operation (Oj) is 

tested for all possible machines (Mi) and the option with the smallest Makespan is selected 

(Figure 19).  
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Input: Set Machine M, set Order R with its operations, processing time Pij 

For k=1 to r 

Classify the operations of Rk by level 

For j=1 to size(level) 

     While level(j) is not empty 

          Select one operation Oj from level(j) 

          Get the mp possible machines for operations Oj 

          For i=1 to mp 

               Calculate all the sum of Pij for the possible 

               Machine as if they had the operation Oj to do. 

          Find M* which has the smallest sum of 

          Pij once it made the job Oj. 

          M*(size(M*)+1) = Oj 

          Remove Oj from level(j) 

Output: π  (All the set of operations on each machine) 

Figure 19: Earliest completion machine heuristic algorithm 

4.6.5 Optimization method 

In the current research work, the tabu search optimization algorithm was selected (Figure 

20). Where πh is the planned schedule at iteration h, π* is the best schedule we have found, πc 

is the schedule in the neighborhood of πh, and N the maximum number of iterations. G() is the 

function to be optimized, and L is the tabu list where all the recently considered schedules are 

stored. If the solution πc is not in the list L, then πc will systematically become πh + 1 even if πc 

is a worse schedule than πh (i.e., even if G (πc)> G (πh)).  

 

Input: Initial solution π1, N, G 

Set π* = π1 

For h = 1 to N 

Select a schedule πc from the neighbourhood of πh.  

If the move πh→πc is prohibited by L 

     Set πh+1 = πh  

If the move πh →πc is not prohibited by L,  

     Set πh+1=πc  

     Enter reverse mutation at the top of  L. 

Push all other entries in L one position down 

Delete the entry at the bottom of L. 

If G(πc) < G(π*) 

     Set π* = πc 

Output: π* 

Figure 20: Tabu search algorithm 

4.6.6 Validation of heuristic rules 

For the testing of the developed heuristic algorithm, a real-life industrial data set was used 

that came from the semiconductor domain. The conducted simulations considered the assembly 

stage of a customized PCB, which is composed of seven operations. In addition, the simulation 

period was 1 week; in that period, 10 orders were received. In total, the 10 orders were 

composed of 5180 operations to be scheduled. For the initial solution, each algorithm was 

executed 15 times, and in the end, the average KPIs were calculated for both the initial and 

optimized solutions. This was performed to improve the accuracy of the results and overcome 

the inherent randomness of creating alternatives. Furthermore, the parameters used for the tabu 

search were as follows: tabu-list length = 20, number of tweaks = 12, and number of runs = 
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1000. Additionally, in the process of calculating the overall quality of the solution, each KPI 

had the same importance – weight factor = 0.25. 

 
Figure 21: Overall solution quality diagram 

Figure 21 illustrates the aggregated KPIs into a single value; the higher it is, the better the 

solution. This diagram compares all the developed algorithms before and after optimization. As 

was expected, the tabu search method succeeded in improving the generated initial solutions 

by 7.481% on average. The maximum solution improvement observed was 21.463% in the 

OS_SPT50 method and the minimum was 2.08% in the FCFS_MC10 method. Another 

immediate observation was that the initial solutions generated using the OS rule for prioritizing 

the received orders produced better results than did the initial solutions produced using the 

FCFS. In particular, the pure FCFS rule, where everything is done optimally on the order arrival 

time, gave the worst solution. The same trend was observed for the optimized solutions, where 

the initial solutions produced by the OS were further optimized by 20.718%, whereas those 

produced by the FCFS were only optimized by 11.341%. Furthermore, the standard deviation 

of the optimization level for OS and FCFS were 11.103% and 3.915%, respectively. 

Moving forward, the Length parameter that was added to the heuristic algorithms for the 

initial solution generation (MC and SPT) had a significant impact on solution quality. In most 

cases, the higher the value of Length, the worse the produced solution. More specifically, all 

the solutions generated using Length = 10 produced results that were better by 7.267% and 

13.171% than those using Length = 50 and Length = 100, respectively. Only in the OS_MC 

algorithm were the results generated using Length = 100 better by 6.32% compared with those 

using Length = 50 and worse than those using Length = 10 by 2.46%. 

The algorithm SumSPT created solutions of high quality and in some cases better than the 

simple SPT method. In the simulation runs using the OS method, the SumSPT produced a 

solution almost equal to the OS_SPT10, only a 0.94% inferior solution. On the other hand, 

using the FCFS approach for order prioritization, the FCFS_SumSPT was better than 

FCFS_SPT100 by only 34.13%. More specifically, FCFS_SumSPT produced an inferior 

solution to FCFS_SPT10 and FCFS_SPT50 by 10.331% and 1.561%, respectively. 

The results presented in Table 10 are sorted from best to the worst for both the initial and 

optimized solutions. In the top two places and with a marginal difference of 0.369% are the 

OS_ECM and the OS_MC10 for both the initial and optimized solutions. As seen below second 

place, there is no such an alignment for the initial and optimized solutions. Furthermore, only 

the two best initial solution algorithms succeeded in generating a solution with quality above 

0.8, whereas for optimized solutions almost half were above that value. More specifically, the 

eight best-optimized solutions were very close to each other by 4.528% and with a standard 

deviation of 1.899%. 
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Finally, another important result was the computation time required to run each algorithm. 

As one would expect, the optimization algorithm, tabu search, required the most time of 4.638 

hours on average with a standard deviation of 0.16 hours. On the other hand, the initial solution 

algorithms required 35.47 seconds on average with a standard deviation of 11.48 seconds. 

Table 10. Initial and optimized solution ranking 

 Initial Solution Optimized Solutions 

Rank Method Sol. Quality Method Sol. Quality 

1 OS_ECM 0.804847 OS_ECM 0.89952 

2 OS_MC10 0.801892 OS_MC10 0.892662 

3 OS 0.766712 OS_SPT10 0.856925 

4 OS_MC100 0.763384 OS_SPT50 0.856893 

5 OS_SPT10 0.735322 OS_SumSPT 0.856502 

6 OS_SumSPT 0.728442 OS_MC100 0.854648 

7 OS_MC50 0.672561 OS 0.847155 

8 OS_SPT50 0.597566 OS_MC50 0.838956 

9 OS_SPT100 0.573064 OS_SPT100 0.736095 

10 FCFS_ECM 0.524242 FCFS_ECM 0.580186 

11 FCFS_SPT10 0.493547 FCFS_SPT10 0.555431 

12 FCFS_MC10 0.475711 FCFS_SPT50 0.528928 

13 FCFS_SPT50 0.454315 FCFS_MC10 0.500837 

14 FCFS_SumSPT 0.447332 FCFS_SumSPT 0.489369 

15 FCFS_MC50 0.423365 FCFS_MC50 0.454732 

16 FCFS_MC100 0.344279 FCFS_MC100 0.389603 

17 FCFS_SPT100 0.316916 FCFS_SPT100 0.367129 

18 FCFS 0.137178 FCFS 0.18221 

 

The simulation results revealed a clear relation between the initial and optimized solutions. 

More specifically, the better the initial solution, the higher the quality of the optimized solution. 

The algorithms SumSPT and ECM were developed to take the results from the previous 

assignments into account during the operation assignment, and therefore achieve better results. 

OS_ECM was found to be the best of the tested algorithms because produced schedules were 

more balanced than the others. Moreover, OS allows prioritization of the most important order 

made first, which increases the quality of the solution. The addition of Length allowed the 

balancing of the production schedule, thus achieving better initial solutions. The results showed 

that the best schedules were those for Length = 10, and as the Length parameter moved 

increasingly closer to the result of the corresponding algorithm without that parameter, the 

schedules became worse and more unbalanced.  

The optimization of the schedules required significantly more computation time than the 

initial solution algorithm. This was expected, but in many cases not much time was available 

in real production environments, and the need for a fast, high-quality solution arose. The 

developed algorithms showed that we could produce fast schedules of high quality taking into 

account the required time, especially OS_ECM. 

In the literature, the NEH algorithm demonstrated promising results [51]. In the context of 

the current research, work there was a development of an adapted version of the NEH. The 

results are not presented due to the computation time required by the NEH algorithm to generate 

an initial solution, which was 17 hours (due to the high number of operations to schedule 5180), 

something unrealistic for real production environments. 
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4.7 Multiple Order Evaluation 

The proposed methodology relies on two key points, namely the creation of a method for 

the automated ranking of different orders according to their criticality to give priority to those 

they require. Furthermore, a crucial step is the development of a method in the scheduling tool 

used for the evaluation of the criteria for each individual order combined with the OC factor 

and not for the total production. 

4.7.1 Order criticality ranking method 

The OC is a simple measure for ranking the different orders to schedule them accordingly. 

This will allow rush orders to be evaluated and when the rescheduling of the production takes 

place the scheduling of the remaining and new orders according to that value. This measure is 

a combination of four different factors: (1) the order volume (OV), in other words how many 

units the current customer has ordered; and (2) the available timeframe for completing the order, 

which is given by subtracting the order due date (DD) and the time of rescheduling (RST). The 

next two factors are related to the specific customer: (3) how frequently the customer orders 

(orders/year, OF); and (4) the importance of this customer, which takes a value between 0 and 

10 (CI). Equation (26) shows how the OC is calculated. The summation of all the weights (Wj) 

is equal to 1. Furthermore, the symbol “    ̂” denotes a normalized value. When rescheduling is 

required, the OV, DD, RST, OF, and CI are known for all the involved orders, and with the 

usage of equation (32) those values are normalized [26], where i: represents the order and j:1. 

In other words, the initial values are converted to a [0,1] range and without units. This procedure 

is performed for each parameter separately. Furthermore, the higher the value, the more critical 

the order is, and it will be scheduled accordingly. 

𝑂𝐶 = 𝑊1
𝑂𝑉 ∗ 𝑂𝑉̂ +𝑊2

𝐷𝐷 ∗ (𝐷𝐷 − 𝑅𝑆𝑇)̂ +𝑊3
𝑂𝐹 ∗ 𝑂𝐹̂ +𝑊4

𝐶𝐼 ∗ 𝐶𝐼̂ (26) 

At this point it should be mentioned that the OC value is a relative value and cannot be 

compared with previous ones. Every time rescheduling is required, OC is calculated as 

described. This happens because the involved orders might be different in each rescheduling 

the minimum and maximum values of each parameter (e.g., OV, OF) might be different, and 

therefore give a different normalized value for the same value. 

4.7.2 Two-layer criteria evaluation method 

The optimization of a production schedule is performed by producing a number of 

alternative schedule solutions, and then those alternatives are evaluated based on certain criteria 

to select the best among them. The contribution of the current research is the addition of one 

level prior to the main evaluation of the alternative solutions. This is added to capture the 

importance of each order and incorporated into the solution evaluation process. Figure 22 

illustrates the proposed approach. This procedure is activated every time rescheduling is 

required, such as when a new order comes in and needs to be incorporated into the current 

schedule. 

If rescheduling is required, then for all the unfinished and new orders the OC is calculated 

as described in chapter 4.7.1, equation (26). The next step is to convert the calculated OC into 

weights with sums equal to 1 using equation (52), simply by dividing each OC value by the 

total sum of all the OC. This is required for the final weighted summation procedure, equation 

(33). After the calculation of the “order” weight factors, the criteria values are normalized. This 

is performed using equation (31) because the criteria that will be used have “cost” behavior (the 

lower the better). The formula is used for each criteria separately and for all the involved orders. 

More specifically, in equation (31), i: represents the order and j: the corresponding criterion. At 

this point it should be mentioned that the minimum and maximum values for each criterion are 

the global max and min calculated from all alternative solutions. The final step of the pre-
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evaluation method is to multiply each normalized value by the corresponding weight factor and 

sum all the elements per row together (equation (33)). This will result in m values (m: number 

of criteria), each of which corresponds to a specific criterion and also contains all the 

information regarding the order’s criticality. This will allow a more precise and accurate 

evaluation of the different alternative solutions. 

 
Figure 22: Two layer evaluation methodology workflow 

In the second evaluation layer, the final evaluation is performed. First, for each column the 

criteria values are normalized once more using equation (32), since the values have “benefit” 

behavior (the higher the better) because of the pre-evaluation step. Then, equation (33) is used 

for each row, summing all the normalized values multiplied by the corresponding weight factor 

(criteria weight factor, user defined and sum equal to 1). The best alternative is the one with the 

highest utility value (Umax). 

4.7.3 Simulation tool and optimization criteria 

The simulations were performed using a dynamic scheduling tool [27], with the optimization 

criteria of makespan and tardiness as described in [28]. Furthermore, the total production cost 

was used for the optimization, and this value contains the operational cost of the machines, raw 

materials used, labor cost, setup cost, quality inspection cost, and penalty to pay in case the 

order is delayed. The COD is given by equation (27); [29] and estimates the cost incurred due 

to delay for sensitive-to-delay orders and is also linked to the OC factor presented in chapter 

4.7.1, where “d” is the delay time, wd1, wd2 are weights for adjusting the formula, and “OV” is 

order volume. 

𝐶𝑂𝐷(𝑑) = w𝑑1 ln(1 + w𝑑2 ∗ 𝑑) ∗ OV ∗ OC (27) 
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4.7.4 Industrial use case 

The proposed approach was validated using data from a European semiconductor 

manufacturer. More specifically, the infrastructure that was simulated was a semiautomated 

assembly line for producing complete PCBs for the medical domain. The production line is 

characterized as semi-automated because quality inspection and the transportation of trays with 

parts from one machine to the next is performed manually. In addition, this case was used 

because they have a high number of rush orders that disturb normal production and negatively 

affect the performance of the production. Furthermore, the orders received are sensitive to delay 

and financial penalties are incurred according to the delay time. 

The studied assembly process concerns a product that requires 27 tasks in the final assembly 

process. The final cost for this particular product is €1094.46. The assembly line is configured 

as a flexible job shop, where there are six work centers with two or three parallel identical 

machines. Figure 23 represents the demand profile for the specific period and the criticality for 

the 30 orders that are simulated, which cover a period of 74 days. The current demand profile 

was selected to be used because the volume of orders was fluctuating between 20 and 75 pieces 

per order. Furthermore, there are many rush orders in the selected demand profile, which is 

ideal for validating the proposed methodology. 

 
Figure 23: Demand profile and characteristics 

In normal production conditions, a new order is expected on average every 3.47 days and 

constitutes 56.66% of the total orders received. By contrast, rush orders arrive unexpectedly on 

average every 1.64 days and correspond to 46.69% of the total products ordered and with 

importance usually higher than normal orders. Because 46.69% of total orders arrive 

unexpectedly and in shorter periods of time compared with normal orders, the current demand 

profile is characterized by high rush orders. This also means that 43.33% of the total orders are 

not expected and create problems that the proposed methodology aims to solve. 

In all the simulation results, the OC was plotted as well to observe the behavior of the 

proposed methodology and also to compare the importance of all orders. Furthermore, the 

depicted OC was the absolute value for this specific experiment, which means that the values 

were calculated taking into account all orders considered in this experiment. This was 

mentioned because the OC values were dynamic values and depend on the current order to be 

rescheduled. 

For the simulations, a dynamic scheduling tool was employed using the proposed 

methodology and optimization criteria described in chapter 4.7.3, [26]. Two simulations were 

performed, one using the proposed methodology and one without the second evaluation layer, 

to compare it with the performance of the proposed methodology. Figure 24 illustrates the 

overall quality of the solutions (utility value) for the two simulation scenarios. The higher the 
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utility value, the better the quality of the solution. The simulation results showed that the 

proposed methodology in 70% of the simulated orders produced higher-quality solutions than 

the single level approach. 

 
Figure 24: Overall solution quality 

 
Figure 25: Performance improvement with the proposed method vs. orders 

Moving forward, the relative difference of each individual order’s utility value was 

calculated between the proposed approach and single level criteria evaluation approach. These 

relative values are plotted in Figure 25. The upper half (positive) of Figure 25 shows the orders 

in which the proposed two-level criteria evaluation method behaved better than the single level 

approach, and the lower half (negative) shows the orders for which the single level approach 

behaved better. The two-level evaluation method produced better results for 21 out of 30 orders. 

The solution quality improvement varied among the different orders from 0.114% up to 

28.57%. 

On the other hand, the observed fluctuation for the orders in the lower part of Figure 25 was 

lower compared with those in the upper half, from 0.19% up to 8.26%. On average, the 

proposed methodology achieved a 9.497% quality improvement for the 70% of orders in the 

current simulation period. Regarding the remaining 30%, the quality loss was on average 3.32% 

compared with the quality gain on the other 70% of orders. Furthermore, the proposed approach 

produced overall 5.615% on average better compared with the single solution approach. 
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Figure 26: Simulation results for the individual optimization criteria 

All the above considered the overall behavior of the proposed approach, which combined 

the four measured criteria described in chapter 4.7.3. Figure 26 presents the simulation results 

for each individual criterion. Regarding the makespan, 80% of the orders were finished earlier 

in the scenario using the proposed approach. In addition, the same behavior was observed for 

the tardiness of the orders, where 76.66% had less of a delay from the agreed order due date. 

The production cost and order delay cost for the simulated orders showed that 56.66% and 

53.33% had lower cost values using the proposed approach. 

Overall, the simulation results showed that in most of the cases, the orders that had high OC 

had better results than did those produced by the single level method. Some of the orders with 

high OC, however, had worse results, which is because it is not always possible when 

scheduling to optimize the criteria for all the involved orders. This is because the proposed 

approach is based on the ranking of orders, and therefore, when optimizing the most important 

order, there will be a loss. Furthermore, the proposed method produced significantly better 

results for the time criteria rather than for the cost criteria. On average, the order tardiness was 

3.63 days and 9.48 days for the two and single layer methods, respectively. 

Production cost had a small fluctuation because each product requires almost the same raw 

materials and processing time. The COD was more complicated because it is a function of many 

factors. It relies on the tardiness, volume, and criticality of the order, and therefore, it is difficult 

to draw a conclusion. Furthermore, it was observed that orders with a high OC factor tended to 

have higher COD, which is expected and shows that the order ranking approach produces the 

desired results. 

The simulation results showed that the proposed method was capable of efficiently 

scheduling rush orders, which was the goal of the present research. Notably, the proposed 

methodology produced slightly worse results for orders 7, 15, and 16 with a maximum loss of 

performance of 3.42% for order 15. This is for the reason explained at the beginning of the 

Discussion chapter, namely that priority had been given to other normal and rush orders that 

arrived earlier, and therefore, the optimization of those orders rendered the optimization of 

orders 7, 15, and 16 impossible. 
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Finally, the reason behind the achievement of more efficient schedules was derived from 

the proposed dynamic order ranking method. More specifically, every time that rescheduling 

was performed, the order ranking changed according to the orders involved as well as the time 

the rescheduling was performed, optimizing the importance of each order and to that extent the 

measured performance indicators. 

4.8 Event Management Methodology 

The aim of this research was to close the gap between the theory and practice of production 

rescheduling by proposing a real rescheduling solution for a semiconductor manufacturing 

company in the ZDM context. This company produces PCBs for the healthcare sector. A new 

model was developed to optimize rescheduling in a flexible job shop by analyzing the quality 

of the solution according to the Analysis of Mean (ANOM) methodology. The goal of the model 

is to provide a tool that guides manufacturers to obtain a more resilient and flexible production 

system to mitigate the risks of unexpected events. In this chapter, the methodology used to 

develop the framework was accurately described in four sub-chapters: “Description of factors,” 

“Simulation model,” “Performance indicators,” and “Design of experiments,” The 

abbreviations used in this chapter are listed in Table 11 and Table 12. 

Table 11: Factor Abbreviations 

NORDT(F1)  New Order Response Time 

NDRT(F3)  New Defect Response Time 

NPRT(F5)  New Prediction Response Time 

NORDT(F2)  New Order Delay Response Time 

NDDRT(F4)  New Defect Delay Response Time 

NPDRT(F6)  New Prediction Delay Response Time 

PH(F7)  Prediction Horizon 

Table 12: Equation Parameter Abbreviations 

Ev Current Events 

EvRT Current Events Releasing Time 

EvDRT Current Events Delay Realising Time 

RSC Production and Rescheduling Cost 

wc Specific Weight 

RMSCF Raw Materials Set Up Cost 

NT Number of Tasks 

Effectk,z Effect of Factor Level 

k Corresponding Factor 

z Level of kth Factor 

mk,z Number of Experiments for that Facto Level 

4.8.1 Description of factors 

In this research, different unexpected events were analyzed to mitigate their impact on the 

manufacturing process. Indeed, the aim was to reduce their negative effect so as not to disturb 

the normal flow of production and maintain an efficient system. The unexpected events that 

were analyzed are as follows: 

• New orders 

• Defective parts 

• Defect prediction  
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New orders are the most common unexpected event that can disrupt the production at shop 

level. Indeed, if the production system is not flexible enough, a new order could generate high 

manufacturing costs and increase lead time. The other two events come from the ZDM concept 

and they are also of primary importance. Defective parts are the most critical events in a 

production system in terms of costs. Indeed, if a defective part is detected too late in the process, 

the part has to be produced again. Moreover, a defective part or a low-quality one that is already 

launched on the market could result in loss of business for the company since it could damage 

its image and lead to a reduction in market share. 

Therefore, some actions must be pursued to mitigate the risks of those unpredictable events. 

First of all, in the case of a new order, the order itself is released to the production to satisfy the 

customer’s demand in the short term. In the case of a defective part, the action depends on the 

level of damage of the part; if it is worth it in terms of costs and time, the part is repaired, but 

otherwise the part is completely produced again. Finally, in the case of defect prediction, the 

action required is machine tuning or maintenance to prevent future disruption in the production 

flow. 

However, all those actions require a specific amount of time to be prepared before they can 

be released on the shop floor; this time is called the “response time.” It could be also defined 

as the amount of time needed to react to a new request. In the case of a new order, it would be 

the time needed to contact the supplier, wait for the raw material to arrive, control the 

specifications of the order, and check the capacity of the production system. Moreover, the 

action can be postponed for a certain time to reduce the number of times rescheduling is 

required; this time is called the “delay response time.” Theoretically, a shorter delay response 

time means more efficient production. However, it is important to link the delay response time 

to the number of rescheduling actions since the aim is to include most of the actions in one 

rescheduling to generate the lowest number of problems possible, such as a higher lead time, 

higher costs, and highly unbalanced station workloads. Therefore, the delay response time is 

fundamental to combine the different actions and reduce disruption in the production line.  

The prediction horizon factor was also considered in the analysis. It refers to how far 

machine learning or artificial intelligence looks for a defect accurately. 

To sum up, seven factors were defined to solve the problem in a statistical way and create 

an added-value tool that identifies the optimal settings of tuning parameters. Table 13 shows 

all the factor values per each factor level used in the simulation model. 

Table 13: Factor Levels 

Factors  LvL1 LvL2 

NORT(hours) 5 100 

NODRT(hours) 2 30 

NDRT(hours) 3 13 

NDDRT(hours) 1 20 

NPRT(hours) 0.2 1.2 

NPDRT(hours) 0.1 0.9 

PH(minutes) 5 50 

4.8.2 Events Management Algorithm 

Re-scheduling policy is a critical for the success of a manufacturing system. Figure 27 

presents an example of the proposed methodology, which is explained in details in Figure 28, 

and two examples of other re-scheduling policies, i.e. re-scheduling after every event and re-

scheduling at fixed time intervals. Re-scheduling after every event is not efficient at present 

and at the same time, it is impossible because it will cause great confusion within the production 
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line. If it was possible to coordinate something like this then it would be the ultimate solution 

but now it is impossible to be implemented. A widely used re-scheduling policy is to re-

schedule at fixed time intervals, which is not as effective as the proposed events management 

algorithm, because it does not capture the dynamic nature of the production and the schedule 

ends up to be inferior to the one produced by the proposed approach. In Figure 27, several 

unexpected events that occur at different times are represented. The first event (O1) is the new 

order. It occurs at time to and could be released to the shop floor at time t1. However, while 

event O1 is prepared to be released, the new defect event (D1) occurs with a releasing time t3. 

The main problem is that t3>t1; thus, the production has to be rescheduled twice in a short 

period, both at t3 and t1. This could cause inefficiency in the production flow and increase 

operation costs. Therefore, the release of the O1 event is delayed to manage both the O1 and 

D1 events in the same rescheduling and reduce the waste of time and resources.  

Before the rescheduling time S1, event P1 also occurs at t4. However, it cannot be released 

at S1 since t4 > S1. Therefore, both P1 and O2 are released together in the second rescheduling 

of the production at S2. The last event D2 cannot be released at S2 since t12 > S2; therefore, 

production has to be rescheduled again at S3. 

 

Figure 27: Re-scheduling policies 

Using the defined parameters EvRT and EvDRT an event management algorithm is 

designed to identify the optimal time to perform the re-scheduling in the most efficient way by 

reducing the number of rescheduling actions. Figure 28 illustrates in details the flowchart of 

the developed algorithm. The algorithm runs continuously in order to serve all the incoming 

events. Each event is accompanied by the time that occurred (ET), which is saved to a list with 

all the current events under investigation. For each event two times are calculated, i.e. the 

absolute EvRT and the absolute EvDRT. Then the algorithm finds the minimum EvRT from 

the current event list and use it as a comparison point. For each event saved in the event list its 

absEvRT is compared with the minimum absEvDRT and if it is smaller, then the current event 

will be included to the next re-scheduling and it is saved to the re-scheduling event list; 

otherwise the event is saved for future re-scheduling. This process continues until there are no 

other events in the event list. Once this procedure is finished then the maximum absEvRT from 

the re-scheduling events list is found and if the current time is equal to the maximum absEvRT 
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the production is rescheduled at max(absEvRT) + PrepTime. PrepTime is the time that the 

production needs for preparing for the re-scheduling. The records of the event times and re-

scheduling lists are deleted, and the event time list is filled with the events at the pending event 

list. 

 
Figure 28: Event management algorithm  

4.8.3 Performance indicators 

The quality of the solution of each simulation is measured based on five KPIs, which are 

considered the main ones for evaluating the production system, as already implemented in [63] 

[194] and [97]. More specifically, the solutions are measured based on (i) makespan, (ii) 

tardiness, (iii) number of production rescheduling actions, (iv) production cost, and (v) 

rescheduling cost. Makespan and tardiness are measures of schedule efficiency based on time 

and the equation reported [47]. The number of production rescheduling actions points out the 
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number of times the production has to be rescheduled in a precise interval due to the occurrence 

of unexpected events, as mentioned in chapter 2.5. 

However, time-based performance measures do not reflect the economic aspect of the 

production system. Therefore, it is important to evaluate scheduling decisions and strategy 

based on economic KPIs. In this research, the two economic performance indicators of 

production and re-scheduling cost (RSC) are implemented in equation (28) as follows: 

𝑅𝑆𝐶 = 𝑤𝑐 ∗ 𝑁𝑇 ∗ 𝑅𝑀𝑆𝐶𝐹 (28) 

However, the five performance indicators have different units. Therefore, they must be 

normalized to combine them in one value, using the methodology presented in chapter 4.9. The 

performance indicators are normalized according to equation (31) since they are all cost 

behaving indicators, which means they need to be minimized. As shown in Figure 32, the last 

step is to calculate the utility value according to equation (34). The normalized values (Ĉij) are 

multiplied by a certain weight factor (WFj) and added together into one single value, namely 

the utility value Ui [195]. The utility value can vary between 0 and 1, where 1 indicates the best 

result, while 0 indicates the worst. This framework enables the comparison among the different 

rescheduling solutions. 

4.8.4 Design of experiments  

At this stage, the solutions of the simulations and factors are analyzed through subparts of 

the Design of Experiments methodology to optimize the process [196]. The Design of 

Experiments (or Matrix Experiment) is a method developed by Taguchi. It is a statistical 

methodology that performs experiments in a structured way and not randomly. It is based on a 

matrix containing a set of experiments, where the settings of the parameters are changed to 

analyze the effect of those parameters. More specifically, the matrix comprises orthogonal 

arrays that allow the simultaneous analysis of the process parameters. It is considered one of 

the most important methods in robust design since it provides more accurate results of the effect 

of parameters compared with other traditional techniques. Indeed, it is possible to solve 

complex problems with a smaller number of experiments to be conducted. Therefore, it is 

possible to conduct this method in a faster and more cost-effective way [196]. 

In this chapter, the aim of conducting orthogonal experiments is twofold: 

• To identify the optimal factor combinations 

• To determine the impact of each factor on the solution 

The matrix selected for this analysis was the orthogonal array L32, which means that 32 

experiments had to be performed. The L32 orthogonal array can be found in Annex 4, chapter 

B and Table 50. As discussed previously in chapter 4.8.1, seven factors were analyzed and each 

had two factor levels. To achieve our aim, the results were analyzed using the ANOM and 

ANOVA methods. ANOM was used to determine the optimal level of each factor. The effect 

of a factor level is the deviation it generated from the overall mean and it is calculated according 

to equation (34) [196]. The different factor levels for each parameter are represented with linear 

graphs. Moreover, to dig deeper into the analysis, the relative difference was also calculated 

using equation (30). 

𝐸𝑓𝑓𝑒𝑐𝑡𝑘,𝑧 =
1

𝑚𝑘,𝑧
∗  ∑ 𝑄𝑘,𝑧

𝑚𝑘,𝑧

𝑧=1
 (29) 

Relative  Difference =  
[m𝑚𝑎𝑥 − mmin]

[mmin]
× 100 (30) 

ANOVA was used to establish the contribution of each factor to the objective function and 

to estimate the error variance. The larger the value, the higher the factor’s effect on the 
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production system. The ANOVA table was generated through the support of MATLAB and the 

contribution percentage was calculated with the sum of squares. Moreover, the ANOVA table 

helped us to identify the most statistically significant interactions based on the probability F. 

Furthermore, linear graphs were used to properly assign the individual interactions to the L32 

matrix to avoid confounding results and be able to extract the interactions. The linear graph 

used is presented in Figure 76 in Annex 4, chapter B. Furthermore, Table 52 (Annex 4, chapter 

B) shows the interactions studied as well as the columns of L32 orthogonal arrays that have been 

assigned. Therefore, ANOVA analyses only show much a factor impacts, while ANOM gives 

us the direction of the impact. 

4.8.5 Results and discussion  

The methodology described above was applied in an industry environment, and more 

specifically in a semiconductor manufacturing production system, to gain a deeper knowledge 

on the behavior of the defined factors. In this chapter, the results of the simulation model are 

presented and analyzed through the ANOM and ANOVA methodologies. 

Table 51 in Annex 4, chapter B shows the experimental matrix, where the seven factors with 

two levels each are combined through the use of the L32 orthogonal array. The solution quality 

values represent the results of each experiment and they range between 0 and 1. The solution 

quality values were calculated by combining equations (32) and (33). Overall in the 

experiments, the result average was 0.375 and the standard deviation was 0.151. The best result 

was obtained in experiment n° 10 where the solution quality value was 0.680. To increase the 

solution quality of the model, ANOM and ANOVA were performed with the aim of finding the 

optimal factor combination and observing the effect of each. 

Thanks to the orthogonal array, it was possible to apply the ANOM methodology, which is 

responsible for performing the experiment in a structured way and not randomly. It enables 

studying each factor separately in how they affect the results and estimate the impact of 

interactions between factors.  

The results are plotted in Figure 29, which shows how each factor (the direction) affects the 

quality of the solution. The aim was to find the right setting for those parameters to tune them 

in the most efficient way and develop the most effective production system. Therefore, the 

optimal factor level for each factor had to be selected to obtain the highest quality solution. 

 
Figure 29: Solution quality per each factor (ANOM) 

Overall, the main observation was based on the slope of the linear lines. As can be observed, 

the slope of most of the factors was negative, which indicates that the lowest are the timing 
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variables and the best would be the solution. However, the new prevention response time 

(NPRT) and NDRT factors had an opposite trend, which highlights an opposite impact on the 

solution quality. Moreover, it is possible to observe that the change in the values of the delay 

response time variables had an almost negligible effect on the solution quality; this type of 

variable contributes to making the model more robust. 

Digging deeper into the analysis, the effects of the main factors are described as follows. As 

shown in Figure 29, the factor with the highest relative difference is the NPRT factor at almost 

75%. From the ANOM graph, it can be observed that the higher the prediction time, the better 

the quality of the solution. Therefore, a slower response time to prevention action means better 

rescheduling. This result is expected because it could be linked to the number of rescheduling 

actions of production. Indeed, a higher reaction time means that it is possible to manage the 

rescheduling in a more efficient manner since the numbers of production rescheduling actions 

are reduced. Moreover, a slower response time could have a positive impact on the economic 

and production flow aspects. Indeed, using a low response time value means doing maintenance 

or machine tuning too many times in a short period, which would cause many interruptions in 

the production flow and increase the production costs per item. The optimal value refers to a 

response time of 1.2 hours, which is a reasonable value because it allows the prevention of most 

defects and ensures a more continuous flow. 

Another factor with a high relative difference is NORT. As the NPRT factor, it is a very 

reactive factor; changing its value would change the solution quality significantly. On the other 

hand, its trend (negative) is opposite to NPRT since the scheduling solution becomes worse 

through increasing the reaction time. New order events are one of the main causes of disorder 

at the shop floor level and could create huge costs if not managed correctly. Indeed, it is better 

to act immediately when new orders arrive so as not to accumulate them and be able to satisfy 

demand without incrementing supply chain costs (inventory cost for raw materials). Moreover, 

a quick reaction to new orders arriving indicates that the production is very flexible and has the 

capability to efficiently handle this type of unexpected event. It also has a positive impact on 

customers’ experience and satisfaction since they are able to have their demands and needs met 

in a short time. This feature would help the company to stand out in the market and become 

more resilient. For instance, during the COVID-19 pandemic, the demand for medical 

instruments has received an incredible boost, which has consequently led to the company 

receiving many new orders every day. Thanks to their resiliency, they would have been able to 

meet the demand and increase their market share. 

However, the huge gap between the two quality solutions could also be explained by the 

high difference between the factor levels (5 and 100). Indeed, considering a shift of 8 hours per 

day, a production line with factor level 1 could manage a new order per day. By contrast, by 

adopting factor level 2, it is possible to manage a new order in 12.5 days.  

The last factor with a relevant effect is PH since it had a relative difference of 46.1%. As 

the NORT factor, it had a negative trend, which means that the higher the reaction time, the 

better the solution quality. A lower response time to PH means a highly digitalized system, 

which can forecast accurately and the possible defects in a short time.  

The factors NORDT and NDRT had small effects on the solution since they had a relative 

difference of 8.2% and 9.4%, respectively. The NDDRT had a negligible effect on the solution 

quality since its relative difference was 1.7%.  

One of the main goals in conducting a matrix experiment is to optimize the process design. 

To achieve this goal, the optimum level per each factor has to be identified. In this case, the 

optimum level for a factor was the level that gave the highest value for solution quality. Overall, 

the quality of the solution increases if the factor level is 1, except for NPRT and NDDRT, which 

achieved higher solution quality with factor level 2. Therefore, it is possible to conclude that 

the best setting is NORT1 NORDT1 NDRT1 NDDRT2 NPRT2 NPDRT1 PH1. 
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It is important to precisely state that the predicted best setting could not be one of the rows 

in the orthogonal array, as in this case. In the second step, the impact of each factor on the 

solution was analyzed using the ANOVA table. The table provides important information that 

would help us to build a more robust model. Indeed, from the sum square values, it is possible 

to calculate the contribution of each factor on the solution. The results of the contributions are 

shown in Figure 30.  

Table 14: ANOVA Table 

Variable Coef. Sum Sq. DoF Mean Sq. F Prob>F 

Intercept 0.37463 0.00706 - - - - 

NORT -0.06382 0.13035 1 0.13035 81.63 0 

NORDT -0.01479 0.007 1 0.007 4.39 0.0492 

NDRT -0.01682 0.00905 1 0.00905 5.67 0.0273 

NDDRT 0.0032 0.00033 1 0.00033 0.2 0.6559 

NPRT 0.09117 0.26601 1 0.26601 166.59 0 

NPDRT -0.02805 0.02517 1 0.02517 15.77 0.0008 

Prediction horizon -0.07013 0.15737 1 0.15737 98.55 0 

NORT*NPRT -0.02052 0.01348 1 0.01348 8.44 0.0087 

NORDT*NPDRT 0.03423 0.03749 1 0.03749 23.48 0.0001 

NDRT*NPDRT -0.02295 0.01685 1 0.01685 10.55 0.004 

NDDRT*NPRT 0.01698 0.00923 1 0.00923 5.78 0.026 

Error - 0.03194 20 0.0016     

Total - 0.70427 31       

 

The highest contribution was given by the NPRT factor, which had a contribution of almost 

38%. Therefore, it is of primary importance for the company to initiate the rescheduling of the 

production examining the NPRT factor, since the success of the model mainly depends on it. 

The high impact of NPRT could derive from the fact that the production of PCBs is highly 

automized; thus, a defect in the system could cause high damage in terms of production rates. 

Therefore, the maintenance of the production system and defect prediction is one of the main 

goals for this kind of company. In addition, PH and NORT factors had a contribution of almost 

23% and 18%, respectively, while the impact of the remaining factors (NORDT, NDRT, 

NDDRT, and NPDRT) was almost negligible. In total, they only accounted for 5.90%. 

Furthermore, Design of Experiments is a powerful method for estimating any interaction 

effect. The interaction is the relation among two factors, where the change in value of one factor 

could affect the output of the other factor. In this research, all possible interactions were 

analyzed. However, the confounding effect limited the number of combinations to be studied 

since it was not possible to distinguish between the effect of the interactions and the factors 

[196]. Moreover, only the most statistically significant interactions have been discussed. The 

importance of interactions is based on the probability F of each factor, which is shown in Table 

4.1 (ANOVA Table); only the factors with a probability F (PF) lower than 5% can have 

statistically important results. 

Four main interactions were identified: 

• NORT*NPRT 

• NORDT*NPDRT 

• NDRT*NPDRT 

• NDDRT*NPRT 
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Figure 30: Impact of each factor on the solution 

As shown in Figure 30, the total contribution of the interactions accounted for 10.94%. This 

can be considered quite high since they are interactions and higher than the sum of four factors. 

The interaction with the highest contribution was NORDT*NPDRT, which accounted for 

5.32%. By contrast, the interaction with the lowest contribution was NDDRT*NPRT, which 

accounted for 1.31%. 

The four interactions are represented by linear graphs, which provide the possibility of 

illustrating the interactions in the most direct way. Each dot and line represent a specific column 

of the orthogonal array. Figure 31 illustrates the significant interactions that were revealed from 

the ANOVA analysis. 

  

  
Figure 31: Factor interaction diagrams 

NORT *NPRT, NDRT*NPDRT, and NDDRT*NPRT were synergistic interactions since 

the lines were not parallel and the direction of the solution quality did not change. By contrast, 



62 

NORDT*NPDRT was an antisynergistic interaction since the lines were not parallel and the 

solution quality direction changed.  

4.9 Aggregation of Multiple Values to Utility Value 

The quality of the produced scheduling is evaluated based on a set of KPIs. A detailed 

description of the final KPIs set developed in the current scheduling tool is presented in chapter 

4.10. But because the KPIs set is composed by more than one KPI it is almost impossible to 

compare alternative solutions comparing each KPI. For this reason, a method was selected to 

aggregate all the KPIs onto one single value and using that value be able to compare the 

alternative schedules. This value is named “utility value” taking values within the interval [0,1], 

where 0 is the worst solution and 1 the best. The selected method is not new, it is defined as 

multi-attribute decision-making (MADM) problem [197], this method might be old but it is 

used by many researchers [198][199][200]. Figure 32 presents the method at a glance for 

aggregating multiple values into one to reach a decision based on all the desired criteria. 

At this point it should be mentioned that each KPI might have different units of measure 

from each other. Furthermore, some KPIs need to be minimized while others need to be 

maximized. Thus, a normalization of the obtained criteria values is required to overcome their 

conflicting nature and their different units of measure [198][199][200]. There are two types of 

criteria, “cost” criteria which are those that must be minimized and on the other hand the 

“benefit” criteria which must be maximized. Each type of criteria must be normalized by a 

different formula, more specifically equation (31) and equation (32) are responsible for 

normalizing “cost” and “benefit” criteria accordingly and the normalization process is 

performed relatively to the minimum and maximum KPI values as described by the equations 

(31) and (32). In those formulas Cij corresponds to the jth KPI value of alternative solution i, 

whereas Ĉij represents the normalized value of Cij. 𝐶𝑗
𝑚𝑎𝑥and 𝐶𝑗

𝑚𝑖𝑛 is the global maximum and 

minimum values of jth KPI. 

The next step is to define the weight that each KPI will have. The weights illustrate the 

contribution to the utility value of each KPI. The KPI weight factors are user defined values 

according to the desired outcome. The cardinal rule of the selected method is that the following 

statement is satisfied ∑ 𝑊𝑗 = 1
𝑚
𝑗=1  , 𝑊𝑗 ∈ [0,1] where m the number of KPIs and Wc the 

weight factor for KPIc. The user can use different scale for the weights but before they are used, 

they must be converted to values between [0,1] and have a sum of 1, using equation (34).  

The final step for calculating the utility value of each alternative solution is to multiply each 

KPI normalized value with the corresponding KPI weight factors and then sum up all the 

products together for each alternative as denoted by equation (33) [197]. 

 
Figure 32: Aggregation of multiple values to one method 

Cost 𝑪̂𝒊𝒋 =
𝐶𝑗
𝑚𝑎𝑥 − 𝐶𝑖𝑗

𝐶𝑗
𝑚𝑎𝑥 − 𝐶𝑗

𝑚𝑖𝑛
 (31) 
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Benefit 𝑪̂𝒊𝒋 =
𝐶𝑖𝑗 − 𝐶𝑗

𝑚𝑖𝑛

𝐶𝑗
𝑚𝑎𝑥 − 𝐶𝑗

𝑚𝑖𝑛
 (32) 

Weighted Sum 𝑼𝒊 =∑ 𝑊𝑗𝐶̂𝑖𝑗
𝑚

𝑗=1
 (33) 

Weight Factors 

conversion to [0,1] 

range with sum of 1 

𝑊𝑗 =
𝑊̂𝑗

∑ 𝑊̂𝑗
𝑚
𝑗=1

  ,𝑊𝑗̂ > 0  (34) 

4.10 Key Performance Indicators (KPIs) 

The simulation performance (utility value) was evaluated based on seven main KPIs, which 

are shown in Table 15. Those KPIs were selected carefully to capture all the aspects that the 

ZDM concept might require. The implementation of ZDM requires the frequent rescheduling 

of the shop floor to incorporate all mitigation actions into the new schedule. Therefore, the first 

measured KPI was the rescheduling time, and more specifically the average rescheduling 

frequency. This KPI represents the average interval time for each rescheduling round. This 

measure simply shows on average how much time mediates between two rescheduling events. 

Equation (35) shows how it is calculated, the difference from every pair of successive 

rescheduling events is calculated, and then all the differences are summed and divided by the 

total number of rescheduling times in the given period of the simulation. This measure was 

selected as one of the main KPIs because it critical to study how the ZDM strategies affect it.  

The second KPI is heavily and directly related to ZDM, namely the defect ratio of a specific 

manufacturing stage. It was measured for each manufacturing stage separately using equation 

(36). The calculation is simple: the quotient of the number of defective parts divided by the 

total number of parts produced by the specific manufacturing stage. In other words this KPI 

measures the percentage of defects at each manufacturing stage. In the implementation of the 

ZDM concept, this measure is crucial since it shows the effect of the implementation of the 

ZDM concept. 

ZDM is implemented to improve the production quality and by extent reduce the amount of 

materials and energy required for manufacturing a specific quantity of products. Therefore, the 

third KPI was the energy consumption required for the manufacturing of the specific products. 

Equation (37) shows how it is calculated and what terms it includes. More specifically, this 

measure considers the energy required for the normal manufacturing of the products, the energy 

required for the repair of the repairable parts, and the energy required by the inspection 

equipment. 

Meeting due dates is a crucial aspect of staying competitive and reliable. Therefore, the next 

KPI was the total weighted tardiness. In the current research work, each individual order was 

treated as a separate event. This means that the tardiness is calculated for each of the orders, 

but some orders are more important than others. For that reason, the weighted tardiness was 

calculated and not the simple tardiness. The weight in equation (38) depicts the importance of 

the order, which in chapter 4.7.1 was referred as OC. 

The average order’s makespan is the next KPI used for the evaluation of the performance of 

different simulation runs. Equation (39) shows how it is calculated: first, all the individual order 

makespans are summed together, and then this sum is divided by the number of orders. 

Another important KPI that shows the efficiency of the production and quality of the 

schedule is the average machine utilization, equation (40). First, the individual machine 

utilization is calculated for each of the MFGs and then the average value of all MFGs is 
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calculated. It is important that the machines are constantly occupied but simultaneously that 

time is left for maintenance and other actions for the improvement of the production. 

The final—and probably the most important—KPI in the current study was the final PC 

(equation (41)). The KPI is not an outcome of one equation; it consists of many different factors. 

Table 16 contains all the terms that compose the final unit cost. This term is composed of 10 

individual terms. Briefly, the terms that compose the final unit cost are the rescheduling cost, 

raw materials cost, operational cost, losses due to poor quality, detection prevention cost, 

prediction prevention cost, repair cost, maintenance cost, and delay penalty cost. 

Table 15: Main KPIs 

𝑨𝒗𝒆𝒓𝒂𝒈𝒆𝑹𝒆𝑺𝒄𝒉𝒆𝒅𝒖𝒍𝒊𝒏𝒈𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚

=
∑ (𝑹𝑻𝒊𝒎𝒆𝒓 − 𝑹𝑻𝒊𝒎𝒆𝒓−𝟏)
𝑻𝒐𝒕𝒂𝒍𝑹𝒆𝒔𝒄𝒉𝒆𝒅𝒖𝒍𝒊𝒏𝒈𝑻𝒊𝒎𝒆𝒔
𝒓=𝟏

𝑻𝒐𝒕𝒂𝒍𝑹𝒆𝒔𝒄𝒉𝒆𝒅𝒖𝒍𝒊𝒏𝒈𝑻𝒊𝒎𝒆𝒔
 

(35) 

𝑫𝒆𝒇𝑹𝒂𝒕𝒊𝒐𝑴𝑭𝑮 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐷𝑒𝑓𝑒𝑐𝑡𝑒𝑑𝑃𝑎𝑟𝑡𝑠𝑀𝐹𝐺

𝑇𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑃𝑎𝑟𝑡𝑠𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑀𝐹𝐺
∗ 100% (36) 

𝑬𝒏𝒆𝒓𝒈𝒚𝑪𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏

= ∑(𝑇𝑜𝑡𝑎𝑙𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑖 ∗ 𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑖)

𝑀𝐹𝐺

𝑖=1

+ ∑ 𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑝𝑎𝑖𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑞

𝑛𝑅𝑒𝑝𝑎𝑖𝑟𝑇𝑎𝑠𝑘

𝑞=1

∗ 𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑞

+ ∑ (𝑇𝑜𝑡𝑎𝑙𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑓 ∗ 𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑓

𝑖𝑛𝑠𝑝𝑀

𝑓=1

 

(37) 

𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅𝑻𝒐𝒕𝒂𝒍𝑻𝒂𝒓𝒅𝒊𝒏𝒆𝒔𝒔

= ∑ (𝑂𝑟𝑑𝑒𝑟𝐹𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒𝑜 − 𝐷𝑢𝑒𝐷𝑎𝑡𝑒𝑜) ∗ 𝑊𝑜

𝑛𝑂𝑟𝑑𝑒𝑟𝑠

𝑜=1

 
(38) 

𝑨𝒗𝒆𝒓𝒂𝒈𝒆𝑴𝒂𝒌𝒆𝒔𝒑𝒂𝒏 =
∑ 𝑂𝑟𝑑𝑒𝑟𝐹𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒𝑜
𝑛𝑂𝑟𝑑𝑒𝑟𝑠
0=1

𝑛𝑂𝑟𝑑𝑒𝑟𝑠
 (39) 

𝑨𝒗𝒆𝒓𝒂𝒈𝒆𝑴𝒂𝒄𝒉𝒊𝒏𝒆𝑼𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 =
∑

𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑖
𝑇𝑜𝑡𝑎𝑙𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑇𝑖𝑚𝑒𝑖

𝑀𝐹𝐺
𝑖=1

𝑀𝐹𝐺
∗ 100% 

(40) 

𝑭𝒊𝒏𝒂𝒍𝑼𝒏𝒊𝒕𝑪𝒐𝒔𝒕

=
𝑹𝑺𝑪 + 𝑰𝑪 + 𝑹𝒆𝒑𝑪 + 𝑷𝑷𝑪 + 𝑫𝑷𝑪 + 𝑷𝑸𝑳 + 𝑶𝑪 +𝑴𝑪 +𝑴𝒂𝒊𝒏𝒕𝑪 + 𝑫𝑷𝒆𝒏𝑪

𝑶𝒓𝒅𝒆𝒓𝑺𝒊𝒛𝒆
 

(41) 
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The first KPI that the final unit cost is composed of is the rescheduling cost (RSC), which 

was explained in chapter 4.8.3. Next is the operational cost, which includes the cost for 

operating the machines and the labor cost of the operators (equation (44)). The machine 

operational cost (OpC) includes the cost for the operation of the machine, setup cost, and 

machine degradation. The terms totalProcessingTime and LabourTime have incorporated some 

uncertainty to simulate the real production environment, where unpredictable events might 

happen and disrupt the normal production. This is achieved by varying the processing time of 

each task by ±5% of the predetermined value. Moving forward, defects are an unavoidable 

event; therefore, the cost that arises from poor quality (PQL) should be included in the final PC 

in order to be closer to reality. The next three KPIs refer directly to the ZDM concept, and more 

specifically to the three ZDM strategies. Starting with the detection – prevention strategy, the 

cost that arises from the implementation of the prevention actions of that ZDM strategy are 

calculated and compose the fourth KPI (DPC, equation (47)). In the same concept for the 

prediction – prevention strategy, the cost that arises from the prevention actions required is the 

fifth KPI (PPC, equation (48)). The last ZDM strategy is detect – repair, and this KPI is 

composed of the cost for manually inspecting the defective part to establish a correct procedure 

for repairing it, followed by the raw materials required for performing the repair and the 

operational cost for the machine to be used for repair and labor costs for the operator that will 

operate the machine (RepC, equation (49)). Moving forward, the maintenance cost is also 

included in the final PC (MaintC, equation (50)). Maintenance is a critical factor for achieving 

ZDM. Finally, when the due dates are not met, there is a penalty cost the manufacturers pay to 

their customers to compensate the delay from the agreed delivery time (DPenC, equation (51)). 

Table 16: FinalUnitCost sub-KPIs 

𝑹𝑺𝑪 = 𝑹𝒆𝒔𝒄𝒉𝒆𝒅𝒖𝒍𝒊𝒏𝒈𝑪𝒐𝒔𝒕 = 2 ∗ 𝑅𝑀𝑆𝐶𝐹 ∗ 𝑁𝑇 −
𝑅𝑀𝑆𝐶𝐹

𝑁𝑇𝑡𝑜𝑡
∗ 𝑁𝑇2 (42) 

𝑴𝑪 = 𝑻𝒐𝒕𝒂𝒍𝑴𝒂𝒕𝒆𝒓𝒊𝒂𝒍𝑪𝒐𝒔𝒕 = ∑ 𝑅𝑎𝑤𝑀𝑎𝑡𝐶𝑜𝑠𝑡𝑟

𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑇𝑎𝑠𝑘𝑠

𝑟=1

 (43) 

𝑶𝒑𝑪 = 𝑻𝒐𝒕𝒂𝒍𝑶𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒂𝒍𝑪𝒐𝒔𝒕

= ∑(𝑇𝑜𝑡𝑎𝑙𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇𝑖𝑚𝑒𝑖 ∗ 𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑂𝑝𝐶𝑜𝑠𝑡𝑖)

𝑀𝐹𝐺

𝑖=1

+ ∑ (𝐿𝑎𝑏𝑜𝑢𝑟𝑇𝑖𝑚𝑒𝑤 ∗ 𝐿𝑎𝑏𝑜𝑢𝑟𝐶𝑜𝑠𝑡𝑤)

𝑛𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠

𝑤=1

 

(44) 

𝑷𝑸𝑳 = 𝑷𝒐𝒖𝒓𝑸𝒖𝒂𝒍𝒊𝒕𝒚𝑳𝒐𝒔𝒔𝒆𝒔
= 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐷𝑒𝑓𝑒𝑐𝑡𝑒𝑑𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 ∗ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 

(45) 

𝑰𝑪 = 𝑰𝒏𝒔𝒑𝒆𝒄𝒕𝒊𝒐𝒏𝑪𝒐𝒔𝒕 = ∑ ∑ 𝑰𝒏𝒔𝒑𝑴𝒂𝒄𝒉𝒊𝒏𝒆𝑶𝒑𝑪𝒐𝒔𝒕𝒊 ∗ 𝑰𝒏𝒔𝒑𝑻𝒊𝒎𝒆𝒇

𝒏𝑰𝒏𝒑𝒔𝑻𝒂𝒔𝒌𝒔

𝒇=𝟏

𝑀𝐹𝐺

𝒊=𝟏

 (46) 



66 

𝑫𝑷𝑪 = 𝑫𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏𝑷𝒓𝒆𝒗𝒆𝒏𝒕𝒊𝒐𝒏𝑪𝒐𝒔𝒕

= ∑ ∑ {𝑆𝑝𝑎𝑟𝑒𝑃𝑎𝑟𝑡𝑠𝐶𝑜𝑠𝑡𝑖𝑒 + 𝑃𝑟𝑒𝑣𝑇𝑖𝑚𝑒𝑖𝑒

𝑛𝑃𝑟𝑒𝑣𝐴𝑐𝑡𝑖𝑜𝑛𝑠

𝑒=1

𝑀𝐹𝐺

𝑖=1

∗ 𝐿𝑎𝑏𝑜𝑢𝑟𝐶𝑜𝑠𝑡𝑖𝑒} 

(47) 

𝑷𝑷𝑪 = 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝑷𝒓𝒆𝒗𝒆𝒏𝒕𝒊𝒐𝒏𝑪𝒐𝒔𝒕

= ∑ ∑ {𝑆𝑝𝑎𝑟𝑒𝑃𝑎𝑟𝑡𝑠𝐶𝑜𝑠𝑡𝑖𝑒 + 𝑃𝑟𝑒𝑣𝑇𝑖𝑚𝑒𝑖𝑒

𝑛𝑃𝑟𝑒𝑣𝐴𝑐𝑡𝑖𝑜𝑛𝑠

𝑒=1

𝑀𝐹𝐺

𝑖=1

∗ (𝐿𝑎𝑏𝑜𝑢𝑟𝐶𝑜𝑠𝑡𝑖𝑒 + 𝑃𝑟𝑜𝑑𝐿𝑜𝑠𝑠𝑒𝑠𝑖𝑒)} 

(48) 

𝑹𝒆𝒑𝑪 = 𝑹𝒆𝒑𝒂𝒊𝒓𝑪𝒐𝒔𝒕

= ∑ (𝑀𝑎𝑛𝑢𝑎𝑙𝐼𝑛𝑠𝑝𝑇𝑖𝑚𝑒𝑞 ∗ 𝑙𝑎𝑏𝑜𝑢𝑟𝐶𝑜𝑠𝑡

𝑛𝑅𝑒𝑝𝑎𝑖𝑟𝑇𝑎𝑠𝑘

𝑞=1

+ 𝑅𝑎𝑤𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠𝐶𝑜𝑠𝑡 + 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇𝑖𝑚𝑒𝑞
∗ 𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡 + 𝑙𝑎𝑏𝑜𝑢𝑟𝑇𝑖𝑚𝑒𝑞 ∗ 𝑙𝑎𝑏𝑜𝑢𝑟𝐶𝑜𝑠𝑡) 

(49) 

𝑴𝒂𝒊𝒏𝒕𝑪 = 𝑴𝒂𝒊𝒏𝒕𝒆𝒏𝒂𝒏𝒄𝒆𝑪𝒐𝒔𝒕

= ∑ ∑ {𝑆𝑝𝑎𝑟𝑒𝑃𝑎𝑟𝑡𝑠𝐶𝑜𝑠𝑡𝑖𝑗 +𝑀𝑎𝑖𝑛𝑡𝑇𝑖𝑚𝑒𝑖𝑗

𝑛𝑀𝑎𝑖𝑛𝑡

𝑗=1

𝑀𝐹𝐺

𝑖=1

∗ (𝐿𝑎𝑏𝑜𝑢𝑟𝐶𝑜𝑠𝑡𝑖𝑗 + 𝑃𝑟𝑜𝑑𝐿𝑜𝑠𝑠𝑒𝑠𝑖𝑗)} 

(50) 

𝑫𝑷𝒆𝒏𝑪 = 𝑫𝒆𝒍𝒂𝒚𝑷𝒆𝒏𝒂𝒍𝒕𝒚𝑪𝒐𝒔𝒕

= ∑ 𝑊3 𝑙𝑛(1 +𝑊8(𝑂𝑟𝑑𝑒𝑟𝐹𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒𝑜 − 𝐷𝑢𝑒𝐷𝑎𝑡𝑒𝑜))

𝑛𝑂𝑟𝑑𝑒𝑟𝑠

𝒐=𝟏

∗ 𝑂𝑉𝑜 ∗ 𝑂𝐶𝑜    

(51) 

4.11 ZDM control Parameters definition 

To answer Research Question 3 it is required to define which are the critical ZDM 

parameters that describe the equipment or the software that implements each of the four ZDM 

strategies Figure 2. The generic category types for the ZDM parameters are cost and time 

required for the implementation of the ZDM strategy as well as the accuracy and effectiveness. 

For each ZDM strategy three parameters are defined, Table 17, Table 18 and Table 19 present 

the selected parameters. These parameters were selected because they are the most important 

when selecting equipment for ZDM and most importantly they are generic and common across 

all the types of equipment and software. The parameters marked with “R” are relative values. 

The current methodology aims to assist manufacturers in the process of designing, re-designing, 

or adjusting manufacturing systems for new products to determine the optimal specifications 

for the equipment in need for quality improvement. The method is quite simple but the outcome 

has a significant impact on the achievement of ZDM.  

Each product has some nominal characteristics, which are considered those that are 

calculated under ideal manufacturing conditions, which means that there are no defects, no 
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delays and in general there is no interruptions to the manufacturing process. In other words, 

they are the theoretical characteristic values. In this case, the total production cost and time 

were calculated and used for converting the absolute use-case specific values to relative values. 

This was achieved using equation (52), which is simply the absolute value of the ZDM 

parameter divided by the corresponding total estimated product value. The ratio approach 

selected provided a relative indicator that shows how much extra time or cost is required for 

the inspection having the nominal values as a reference. The reason behind this simple idea is 

to unlink the results from a specific case and be able to reuse them for other cases where the 

product is different but the ratios remain the same. For example, there are currently numerous 

different inspection technologies, each with different characteristics, and the implementation 

of inspection points in every manufacturing stage is not possible due to cost and time 

constraints. Therefore, manufacturers require a tool that can indicate the acceptable 

combinations between inspection time and inspection cost based on the total processing time 

and total PC [193]. 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝑉𝑎𝑙𝑢𝑒 =
𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑍𝐷𝑀 𝑉𝑎𝑙𝑢𝑒

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑙𝑢𝑒
 

(52) 

Table 17: Detection – Repair control parameters 

Parameter Name Parameter 

short Name 

Parameter Description 

Inspection Cost (R) F1/IC 
The cost related to the operation of the inspection machine per 

item inspected 

Inspection Time(R) F2/IT 
The time that the inspection equipment requires in order to 

inspect one part 

Detection Accuracy F3/DA 
The accuracy that the inspection equipment has. Measured in 

percentage. 

Repairing Cost (R) F4/RC 

The average repairing cost. This cost includes the extra raw 

materials needed for the repair and the labor and machine 

operational cost for performing the repair 

Repairing Time (R) F5/RT The time that is required in order to perform the repair 

Reparability F6/Rep 
Reparability represents a percentage that shows how many 

parts are reparable out of the total. 

Table 18: Detection – Prevention control parameters 

Parameter Name Parameter 

short Name 

Parameter Description 

Inspection Cost (R) F1/IC 
The cost related to the operation of the inspection machine per 

item inspected 

Inspection Time 

(R) 
F2/IT 

The time that the inspection equipment requires in order to 

inspect one part 

Detection 

Accuracy 
F3/DA 

The accuracy that the inspection equipment has. Measured in 

percentage. 

Prevention Cost 

(R) 
F4/PvC 

The related cost for the raw materials and operator time cost 

that are required for the implementation of the prevention 

actions. 

Prevention Time 

(R) 
F5/PvT 

The time that is required in order for the operator to implement 

the prevention actions. Those prevention actions could be 

either small maintenance or machine tuning 

Prevention success 

Rate 
F6/PvSR 

It is a percentage that indicates the probability of the 

prevention actions to have real effect to the production line. In 
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other words, if the prevention actions are successful or there 

was a miss-diagnose. 

Table 19: Prediction – Prevention control parameters 

Parameter 

Name 

Parameter 

short Name 

Parameter Description 

Prediction 

Horizon 
F1/PdH 

Is the timeframe that the prediction algorithm looks ahead 

Prediction 

Accuracy 
F2/PdA 

Is the probability of successfully predicting a defect in the given 

prediction horizon 

Prevention 

Reaction Time 
F3/PdReaT 

Is the time that is required for implementing the prevention actions.  

Prevention 

Cost (R) 
F4/PvC 

The related cost for the raw materials and operator time cost that are 

required for the implementation of the prevention actions. 

Prevention 

Time (R) 
F5/PvT 

The time that is required in order for the operator to implement the 

prevention actions. Those prevention actions could be either small 

maintenance or machine tuning 

Prevention 

success Rate 
F6/PvSR 

It is a percentage that indicates the probability of the prevention 

actions to have real effect to the production line. In other words if the 

prevention actions are successful or there was a miss-diagnose. 

4.12 Digital Twin methodology 

As explained briefly in the definition of Research Question 2 the creation of a DT for 

describing the developed scheduling tool was not part of the initial research plan. Once the 

development and the validation of the scheduling tool were finished it was observed that the 

simulation takes a significant amount of time, which is a prohibiting factor for running a 

significant number of simulations. To solve this problem the use of DT approach was 

introduced in order to create a DT for the scheduling tool developed to avoid the actual 

simulation will give the same results as if the simulation was run. The methodology for the 

creation of the DT that will be presented will be capable to make a model of the scheduling for 

a specific use case. If the case changes the same methodology should followed again. The goal 

of Research Question 3 is to be able to map the performance of each ZDM pair of strategies 

under different parameter sets. Therefore, the control parameters of the DT model would be the 

ZDM control parameters defined in chapter 4.11. Therefore, for each ZDM pair strategy a 

different DT model will be created because each ZDM pair strategy has different control 

parameters. 

The creation of the DT model is based on a statistical method called Design of Experiments 

(DoE). More specifically the Taguchi approach was used as the basis of the developed DT 

method [196][201]. The DoE approach was selected because it provides a methodological 

approach to capture the individual effects of each of the control parameters. Furthermore, the 

Taguchi method also provides the methodology for performing the minimum number of 

experiments that can produce statistically significant results and more importantly defines the 

experiments that must be performed.  

To capture the effect of each control parameter – factor, a high resolution is required for the 

factor values. To this extend the L25 orthogonal array was selected as it fits exactly to the current 

problem. More specifically L25 can host up to six factors with five levels each. Furthermore, 

L25 does not consider interactions between the factors and therefore the results will contain the 

factors main effects unconfounded. L25 orthogonal array imposes that 25 experiments should 

be performed using the factor levels that are denoted by the experiment line in L25. The selected 

orthogonal array can be found in Annex 4A. 
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Once the experiments denoted by L25 are performed, they are analyzed using the Analysis 

of Means (ANOM) method. This method captures the effect of each factor level has to the 

observed value, in this case the utility value (U). Using equation (53) the average S/N ratio of 

each factor level is calculated. Where R and z are the number of levels and the actual level of 

factor k. The effect of a factor level is defined as the deviation it causes from the overall mean, 

equation (54). Equation (55) calculates the overall mean of the results, where Ne is the total 

number of experiments imposed by L25. 

𝑀𝑘,𝑧 =
1

𝑅𝑘
∗  ∑ 𝑈𝑘,𝑧

𝑅𝑘

𝑧=1
 

(53) 

𝑒𝑓𝑓𝑒𝑐𝑡𝑘,𝑧 = (𝑀𝑘,𝑧 − 𝜇) (54) 

𝜇 =
1

𝑁𝑒
∗ ∑ 𝑈𝑧

𝑁𝑒

𝑧=1
 

(55) 

At this point it should be reminded that the goal is to create a mathematical model that when 

we enter a set of ZDM control parameters, it will give as an output the predicted utility value 

that would be the outcome of the scheduling tool. So far, the individual effects and average S/N 

ratios of each factor have been calculated. To integrate all those data together into one equation 

the method of the additive model was used as described in [196].  

The additive model requires the ANOM results for calculating the corresponding factor 

coefficients for each level. For the current design of experiments (L25, and six factors), the 

additive model has the following form (equation (56)). The letters A, B, C, D, E, and G 

represent each factor and the subscripts denote the level of each factor. The observed value is 

marked with “𝑈̂” and it is the predicted utility value calculated by DT model. The lowercase 

letters of the factors represent the coefficients that correspond to each factor level. Furthermore, 

“μ” represents the overall mean and σe the error variance. In the current research, the error 

variance was considered near zero and therefore it was not taken into account. 𝑀𝑘,𝑧 represents 

the ANOM results for each factor for each level. Using equation (57), the additive model 

coefficients could be calculated, considering that σe=0 [196], which simplifies the equation (57) 

to equation (54). 

𝑈̂(𝐴𝑖 , 𝐵𝑗 , 𝐶𝑘 , 𝐷𝑙 , 𝐸𝑞 , 𝐺ℎ) = 𝜇 + 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘 + 𝑑𝑙 + 𝑒𝑞 + 𝑔ℎ + 𝜎𝑒 (56) 

𝑀𝑘,𝑧 = 𝜇 +𝑚𝑘,𝑧 +
1

3
𝜎𝑒
2 (57) 

The result from the additive model would be a set of five coefficients for each factor, which 

represent the coefficients for each level. In that way, the observed value can be estimated for 

all possible combinations of factor levels. This is very helpful because with only 25 experiments 

that occur from the L25 orthogonal array, we can calculate the results of 56 = 15625 combinations 

without the need for extra simulations, saving valuable time. The prediction model created is 

capable only of estimating the result for the specific factor levels defined in the L25 orthogonal 

array. This is limiting since the prediction models are not flexible because they cannot estimate 

the observed value for any value of a factor within the defined range. 

Up to this point the methods presented were not new, but taken from the literature. The 

addition that was made to this method was to convert the discrete coefficient values to a 

continuous model. This idea came up as an answer to the question that was raised, “what is 
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happening to the internal points between two factor levels?”. The question was raised because 

the goal of Research Question 3 is to examine as many as possible combination of ZDM 

parameters to map the performance of each ZDM pair strategy. The result of the additive model 

is the matrix presented in equation (58), which contains the coefficients for each factor level 

(mk,z, e.g. m1,1=α1, m2,2=b2). Additionally, from the initial data the matrix on equation (59) is 

formed which contains the levels values for each factor.  

𝐹𝑐𝑜𝑒𝑓 =

[
 
 
 
 
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3

𝑑1 𝑒1 𝑔1
𝑑2 𝑒2 𝑔2
𝑑3 𝑒3 𝑔3

𝑎4 𝑏4 𝑐4
𝑎5 𝑏5 𝑐5

𝑑4 𝑒4 𝑔4
𝑑5 𝑒5 𝑔5]

 
 
 
 

 (58) 

𝐹𝑙𝑒𝑣 =

[
 
 
 
 
𝐴1 𝐵1 𝐶1
𝐴2 𝐵2 𝐶2
𝐴3 𝐵3 𝐶3

𝐷1 𝐸 𝐺1
𝐷2 𝐸2 𝐺2
𝐷3 𝐸3 𝐺3

𝐴4 𝐵4 𝐶4
𝐴5 𝐵5 𝐶5

𝐷4 𝐸4 𝐺4
𝐷5 𝐸5 𝐺5]

 
 
 
 

 (59) 

To achieve the conversion from discrete values to continue values the two matrices Fcoef 

and Flev were combined and formed cartesian points. As x-coordinate was set the Flev value 

and as y-coordinate the Fcoef value, leading to the set of cartesian points V, equation (60) which 

is one step before the desired result. As a last step, a piecewise quadratic interpolation is 

performed for each of the columns of V, leading to the creation of a set of quadratic equations 

that pass through the defined points. An example of that process is presented in equation (61) 

where the four quadratic equations for factor 1 are presented. Equation (62) illustrates the 

generic form of the quadratic equations for describing all the factors. Finally, equation (63) 

illustrates the final form of the DT which is responsible for estimating the utility value for a 

given set of parameter values within the specified range. Where K is the number of factors, 

which in the current case is 6. 

𝑉 =

[
 
 
 
 
(𝐴1, 𝑎1) (𝐵1, 𝑏1) (𝐶1, 𝑐1)
(𝐴2, 𝑎2) (𝐵2, 𝑏2) (𝐶2, 𝑐2)
(𝐴3, 𝑎3) (𝐵3, 𝑏3) (𝐶3, 𝑐3)

(𝐷1, 𝑑1) (𝐸1, 𝑒1) (𝐺1, 𝑔1)
(𝐷2, 𝑑2) (𝐸2, 𝑒2) (𝐺2, 𝑔2)
(𝐷3, 𝑑3) (𝐸3, 𝑒3) (𝐺3, 𝑔3)

(𝐴4, 𝑎4) (𝐵4, 𝑏4) (𝐶4, 𝑐4)

(𝐴5, 𝑎5) (𝐵5, 𝑏5) (𝐶5, 𝑐5)

(𝐷4, 𝑑4) (𝐸4, 𝑒4) (𝐺4, 𝑔4)

(𝐷5, 𝑑5) (𝐸5, 𝑒5) (𝐺5, 𝑔5)]
 
 
 
 

 (60) 

[
 
 
 
 
(𝐴1, 𝑎1)
(𝐴2, 𝑎2)
(𝐴3, 𝑎3)
(𝐴4, 𝑎4)

(𝐴5, 𝑎5)]
 
 
 
 

     =>   𝛼(𝑥) =  

[
 
 
 
 
𝑞11 ∗ 𝑥

2 + 𝑠11 ∗ 𝑥 + 𝑡11 , 𝐴1 ≤ 𝑥 < 𝐴2
𝑞12 ∗ 𝑥

2 + 𝑠12 ∗ 𝑥 + 𝑡12 , 𝐴2 ≤ 𝑥 < 𝐴3
𝑞13 ∗ 𝑥

2 + 𝑠13 ∗ 𝑥 + 𝑡13 , 𝐴3 ≤ 𝑥 < 𝐴4
𝑞14 ∗ 𝑥

2 + 𝑠14 ∗ 𝑥 + 𝑡14 , 𝐴4 ≤ 𝑥 ≤ 𝐴5]
 
 
 
 

 (61) 

𝐹𝑐𝑜𝑒𝑓𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒𝑠(𝑥)𝑘 =

[
 
 
 
 
𝑞𝑘1 ∗ 𝑥

2 + 𝑠𝑘1 ∗ 𝑥 + 𝑡𝑘1 , 𝐹𝑙𝑒𝑣1𝑘 ≤ 𝑥 < 𝐹𝑙𝑒𝑣2𝑘
𝑞𝑘2 ∗ 𝑥

2 + 𝑠𝑘2 ∗ 𝑥 + 𝑡𝑘2 , 𝐹𝑙𝑒𝑣2𝑘 ≤ 𝑥 < 𝐹𝑙𝑒𝑣3𝑘
𝑞𝑘3 ∗ 𝑥

2 + 𝑠𝑘3 ∗ 𝑥 + 𝑡𝑘3 , 𝐹𝑙𝑒𝑣3𝑘 ≤ 𝑥 < 𝐹𝑙𝑒𝑣4𝑘
𝑞𝑘4 ∗ 𝑥

2 + 𝑠𝑘4 ∗ 𝑥 + 𝑡𝑘4 , 𝐹𝑙𝑒𝑣4𝑘 ≤ 𝑥 < 𝐹𝑙𝑒𝑣5𝑘]
 
 
 
 

 (62) 
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𝑈̂ = 𝜇 +∑𝐹𝑐𝑜𝑒𝑓𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒𝑠(𝑥)𝑟

𝐾

𝑟=1

 (63) 
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5 Industrial Application 

For the testing and validation of the proposed tools and methodologies, a real-life industrial 

use case was used. The results that will be presented are created using the industrial data and 

the developed scheduling tool and the DT methodology. The chapter is organized as follows: 

chapter 5.1 will present the details and some analytics about the industrial use case, chapter 5.2 

will present the DT models and the results for the validation of the accuracy of the DT models. 

Finally chapter 5.3 will present the results from the simulations regarding the current industrial 

case, whereas those results are used to answer Research Question 3. 

5.1 Industrial use case definition 

The industrial use case is in the semiconductor domain, and more specifically in the 

manufacturing of PCBs for medical equipment. Moreover, the product under investigation can 

be considered expensive since its manufacturing cost is within the range of €3800–6000. 

Therefore, it is essential for that production system to have a correct and balanced quality 

control system to minimize defective parts and stay competitive.  

 
Figure 33: Product Bill of Processes (BoP) 

Figure 33 presents the BoP of the product under investigation. In total, it is composed of 15 

tasks to be manufactured. Those tasks represent only the manufacturing operations with no 

quality control tasks included. In other words, this is the BoP in an ideal world without defects. 

This BoP is modified at each simulation run to add all the required inspection tasks that are 

imposed by the corresponding ZDM strategy. In the detect – repair strategy, a small 

complication exists compared with the other two ZDM strategies in that it cannot be applied to 

all of the tasks. This is because after some processes, repair is not possible and the defective 

part must be discarded. The tasks that are repairable are marked in orange. The repairable tasks 
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concern some assembly operations which are easy to repair. The rest of the tasks concern 

manufacturing operations which due to the size of the components are difficult and time 

consuming to repair. Furthermore, those repairable assembly operations have high defect rate 

and therefore repairing is crucial. 

Each of the tasks has its own characteristics, such as the cost of the raw materials that are 

required for the completion of the task and the average processing time. Those tasks’ 

characteristics are depicted in Table 20. Moving forward, the current industrial use case is 

composed of 15 main machines that are capable of performing the main tasks shown in Figure 

33. The characteristics and capabilities of those machines are shown in Table 20 and Table 21. 

Those machines are configured as a flow-shop, where they are in series and with the layout as 

in Figure 33. Each machine can perform only one task, but the tasks that are assigned to each 

machine might be from a different order, and therefore they are considered as a different task 

by the machine. In the cases where there are repair tasks, the flow-shop configuration is changed 

to a hybrid layout between a flow-shop and an open-shop.  

Depending on the ZDM strategy under investigation, extra machines are added to those 15 

basic ones responsible for the inspection or repair of products. Those machines have variable 

characteristics that are controlled by the control parameters described in chapter 4.11. As 

described in chapter 4.11, the ZDM control parameters are relative to the products estimated – 

ideal manufacturing cost and time. Based on the data provided in Table 20 and Table 21, the 

product cost (PC) is €3760.57 and the manufacturing time is 267.04 minutes. Once again, those 

values represent the ideal scenario where there are no defects, no delays in the production, and 

no uncertainty. Those values will be the drivers for the conduction of the required experiments 

to develop the DT model and be able to properly design the production for ZDM.  

Table 20: Task characteristics 

Task 
Name 

Task Reparable 
(0:No,1:Yes) 

Raw Materials 
Cost (€) 

Average Processing 
Time (Mins) 

Task level 

101 0 77.6261 17.5335 1 

102 0 75.4928 15.5738 2 

103 0 55.5688 17.2173 2 

104 1 77.0744 25.6327 3 

105 0 40.8960 15.9950 4 

106 1 58.0152 15.3506 4 

107 0 44.4479 28.8266 5 

108 0 30.3497 6.5480 5 

109 0 98.9972 23.3134 5 

110 1 82.7139 27.1681 4 

111 0 81.2628 3.1026 5 

112 0 92.9253 12.8309 5 

113 0 206.5667 26.2677 3 

114 0 218.9517 20.6340 3 

115 0 158.8546 11.0477 2 
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Table 21: Machine capabilities and characteristics 

Machine 
Name 

Operational 
Cost Of 
Machine 
€/Minute 

Estimated 
Healthy Parts 

Rate 

Mean Time 
Between 

Tuning Need 
(Mins) 

Energy 
Consumption 

Kw/Min 

Taks 
Capabilities 

201 7.5338 0.97 10500.00 0.1815 101 

202 7.9520 0.95 13500.00 0.3490 102 

203 9.2543 0.94 19500.00 0.3044 103 

204 14.2082 0.96 30000.00 0.3256 104 

205 6.4285 0.96 14642.85 0.2081 105 

206 8.0408 0.97 11388.88 0.3866 106 

207 8.7004 0.99 7884.61 0.3754 107 

208 12.3080 0.99 5125.00 0.3455 108 

209 7.7119 0.99 7875.00 0.2118 109 

210 8.1136 0.94 10125.00 0.2415 110 

211 8.4941 0.99 14625.00 0.4226 111 

212 12.7684 0.99 22500.00 0.2499 112 

213 6.3794 0.99 10357.14 0.2387 113 

214 7.8707 0.98 8055.55 0.3195 114 

215 9.3534 0.95 5576.92 0.3897 115 

5.1.1 Product characteristics analysis 

Based on the data from the industrial case presented in Table 20 and, the following analysis 

was performed and the results are shown in Figure 34, Figure 35, and Figure 36. This analysis 

had the goal of decoding the key characteristics of the product under investigation. The key 

characteristics are related to the theoretical – ideal cost at each manufacturing stage (top left of 

Figure 34). This cost includes all the costs required for each task to be manufactured. Those 

include the raw materials and the machine operational cost. Therefore, it is the cost for each 

task separately at a glance. Moving forward, the top right illustration of Figure 34 shows the 

manufacturing time that each task required on average to be made.  

 
Figure 34: Product characteristics at each MFG 
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The bottom illustration of Figure 34 demonstrates the value of the product in terms of cost 

and time, taking into consideration the previous manufacturing steps required for the task under 

investigation to be possible. Figure 35 depicts the cost and time percentage out of the total. It 

is a result generated by dividing the results presented in top left and right Figure 34 with the 

total estimated PC and time accordingly. This was done to illustrate the requirements in terms 

of cost and time.  

The last result from the product analysis is presented in Figure 36. It illustrates an indication 

factor that shows the magnitude of the potential losses from poor quality. The higher the value 

of the quality control index, the higher the losses due to poor quality. The quality control index 

is calculated as follows: both the cost and time percentages of each task (Figure 35) are 

multiplied by the estimated defect rate, and then those two values are summed together. All 

those preliminary product results will be used for reaching conclusions regarding the different 

ZDM strategies. 

 
Figure 35: Cost and time ratio for each task 

from the total 

 
Figure 36: Quality control index for each 

task 

Table 22: Product utility value 

Task 

Name 

Product Utility value Product utility value with 

defect rate 

Relative difference 

101 0.7062 0.6850 -3.05% 

102 0.6846 0.5877 -15.23% 

103 0.5931 0.4745 -22.22% 

104 0.2191 0.2553 15.26% 

105 0.7635 0.6908 -10.00% 

106 0.7283 0.7026 -3.59% 

107 0.6295 0.7036 11.12% 

108 0.7772 0.8218 5.58% 

109 0.6424 0.7139 10.54% 

110 0.5911 0.4729 -22.22% 

111 0.7695 0.8156 5.82% 

112 0.4439 0.5551 22.26% 

113 0.4887 0.5910 18.95% 

114 0.5025 0.5620 11.18% 

115 0.6529 0.5623 -14.91% 

 

Table 22 presents another analysis of the current product, namely the product utility value, 

which is a value based on the aggregation of the raw materials, machine operational cost, 

average processing time, and mean time between tuning. All four factors have the same weight 
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(0.25) for the weighted sum formula, which means that all four have equal importance to the 

final product utility value. Furthermore, in this utility value, the estimated defect rate of each 

MFG was incorporated and the (product utility value with defect rate) column of Table 22 was 

calculated. The last column of Table 22 shows the relative difference between the product utility 

value with and without the estimated defect rate. In this relative difference, the direction that 

the addition of the defect rate moves the product utility value is also shown. The relative 

differences that have a negative value mean the state for that task is deteriorating and potentially 

requires more attention. An exception is task 104, where there is an improvement of the product 

utility value by 15.26%, but by considering the absolute utility value in both cases (with and 

without defect rate), it is in the worst possible state, and potentially the use of any ZDM strategy 

is mandatory. 

5.1.2 Demand profile 

In this chapter, the demand profile used for the simulations is presented. As with the product 

and machine data, the demand profile also came from the same industry. This demand profile 

represents the orders per month (Figure 37) and the values are the average order size for a 

period of 5 years. Based on this demand profile, an average of 337 products are ordered per 

month with the minimum order size per month being 240 and the maximum being 400. More 

specifically, the current demand profile is composed of 56 orders for the period of 12 months. 

Table 23 shows the detailed demand profile with the order arrival time, due date, and quantity. 

Furthermore, the average order interval time is 6.49 days and the average time for completing 

an order is 5.54 days.  

 
Figure 37: Overall demand profile for one year 

Table 23: Demand profile details 

Order 
Name 

Order 
Arrival 
Time 
(days) 

Order 
Due 
Date 

(days) 

Order 
Quantity 

Order 
Name 

Order 
Arrival 
Time 
(days) 

Order 
Due 
Date 

(days) 

Order 
Quantity 

9101 0.00 4.18 51 9129 158.17 163.22 72 

9102 4.17 8.35 51 9130 164.25 169.31 72 

9103 8.33 12.51 51 9131 170.33 175.39 72 

9104 12.50 16.68 51 9132 176.42 181.47 72 

9105 16.67 20.85 51 9133 182.50 191.74 125 

9106 20.83 25.01 51 9134 192.64 201.88 125 

9107 25.00 29.18 51 9135 202.78 212.01 125 

9108 30.42 35.28 70 9136 212.92 221.96 125 
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9109 36.50 41.36 70 9137 220.52 229.56 100 

9110 42.58 47.44 70 9138 228.13 237.17 100 

9111 48.67 53.53 70 9139 235.73 244.77 100 

9112 54.75 59.61 70 9140 243.33 250.24 60 

9113 60.83 63.75 60 9141 250.94 257.84 60 

9114 66.92 69.83 60 9142 258.54 265.44 60 

9115 73.00 75.92 60 9143 266.15 273.05 60 

9116 79.08 82.00 60 9144 273.75 280.26 97 

9117 85.17 88.08 60 9145 281.35 287.87 97 

9118 91.25 94.26 40 9146 288.96 295.47 97 

9119 95.60 98.61 40 9147 296.56 303.08 97 

9120 99.94 102.95 40 9148 304.17 308.15 61 

9121 104.29 107.30 40 9149 310.25 314.24 61 

9122 108.63 111.64 40 9150 316.33 320.32 61 

9123 112.98 115.99 40 9151 322.42 326.40 61 

9124 117.32 120.33 40 9152 328.50 332.49 61 

9125 121.67 129.74 110 9153 334.58 340.42 90 

9126 131.81 139.88 110 9154 342.19 348.02 90 

9127 141.94 150.01 110 9155 349.79 355.63 90 

9128 152.08 157.14 72 9156 357.40 363.23 90 

5.1.3 Defect generation generic model 

Based on the provided data regarding the occurrence of defects in the machines under 

investigation, Figure 38 was created for modeling the defect occurrence. This graph presents 

the generic defect occurrence mentioned in chapter 4.2. The created model shows that when the 

machine operation time reaches the mean time between tuning, which is calculated based on 

experience for each machine, the defects level reaches 80% of the acceptable defect rate for the 

specific machine. This occurs because of the stochasticity that was incorporated, and this 

randomness increases the defect level to reach 100% of the acceptable level. If the model below 

was used as it is, then the defect generation would be deterministic and therefore not be 

representative of the real word. 

 
Figure 38: Defect generation generic curve 
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5.1.4 Machine improvement state 

In equation (25), W1 and W2 represent the calibrating values of the formula, and in the 

current research, W1=10 and W2=3 in the case of detection – prevention and W1=5 and W2=2 

in the case of prediction – prevention. The difference between the two ZDM strategies is that 

in detection – prevention, the machine improvement state is higher than in prediction – 

prevention. This is because when predicting a defect, there are less data for the root of the 

problem, simply because the problem has not yet occurred. Therefore, the machine 

improvement state can potentially be higher in detection – prevention because it has the time 

and date for better prevention actions. 

5.2 Digital Twin Model Creation 

In the current chapter the data from the industrial use case presented in chapter 5.1 are used 

for the creation of the DT model. The data will be the input to the developed scheduling tool 

presented in chapter 4. The experiments will be performed as described by the L25 orthogonal 

array (chapter 4.12). It is important to mention again that each DT model will describe the 

results of the scheduling tool for the current industrial case with ZDM applied to only one 

machine at each time. Therefore, for each of the 15 machines that the current scenario has three 

DTs will be created, one for each ZDM pair of strategy. This will lead to a set of 75 DT models 

(3xZDM*15xMFG). The overall procedure that was followed for the experiments and the 

elaboration of the results are summarized in Figure 39. Because the DT method proposed in 

chapter 4.12 is not in the literature the results acquired from the DT models must be validated. 

The plan to validate the results and measure the accuracy of the created DT models is to create 

sets of random ZDM parameters for each ZDM pair strategy and simulate those sets using the 

scheduling tool and, also, using the DT. This will lead to the actual and predicted values 

accordingly and by calculating the relative difference the error of each DT can be calculated.  

This being said, there are two sets of experiments that should be simulated with the 

scheduling tool, the set that is generated by the L25 orthogonal array and the set with the random 

ZDM parameters. Those experiments must be simulated before any other calculation. This is 

due to the KPI aggregation method described in chapter 4.9. The aggregation method requires 

the global minimum and maximum KPI values in order to perform the normalization. 

Therefore, the minimum and maximum KPI values are common for all the utility values 

calculations illustrated in Figure 39. Once the utility values are calculated, the DT models can 

be created using the methodology described in chapter 4.12 and the accuracy of the DT models 

can be calculated. If the accuracy is at acceptable range, higher than 95%, then the DT will be 

used for answering of Research Question 3. Otherwise, the DT method should be revised 

alongside the ZDM parameters. 

A crucial step for the conduction of the two aforementioned experiment sets is to define the 

factor levels, meaning to define the values that each factor should have at each level. The 

definition of the factor values will be performed in the chapter 5.2.1. Once this step is done the 

minimum and maximum values from each factor will be used as the limits for generating the 

random values, which must be within the min-max range defined. 

Besides the creation of the DT models, the results from the experiments performed based 

on the L25 orthogonal array will be used also for extracting more insights regarding the current 

industrial used case and the implementation of the ZDM to the production. Those results will 

be presented in chapters 5.3.1 and 5.3.2. 

At this point, it should be mentioned that the computer system used to run the experiments 

so that the reader has a reference for the computational times that will be presented at the results 

chapter (5.3). The specifications of the computer used were: CPU i7-8700K, 6 cores 

@3.70GHz, 32GB of DDR4 RAM @ 3400MHz, running Windows 10 professional and using 

Matlab 2019. 
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Figure 39: Experiments and results of the overall procedure for each MFG and each ZDM 

5.2.1 ZDM control parameters values definition 

To create a DT model with a high level of accuracy, each parameter needs to take more than 

two values during the simulations for the creation of the DT model. This is required in order to 

avoid the DT model to be a linear model, but described by quadratic equations. In light of this, 

the L25 orthogonal array was selected. The L25 orthogonal array is presented in Annex 4, chapter 

A. This orthogonal array fits the current problem exactly because it can host up to six 

parameters and each parameter is a five-level parameter. Furthermore, L25 orthogonal array sets 

the number of experiments to 25, which for the selected number of parameters and levels is the 

minimum number of experiments for conducting the required analysis [196]. Table 24, Table 

25, and Table 26 present the values for each level for each parameter. Those values were set, 

based on the results of a survey conducted to various manufacturing companies. These values 

represent the reality and include the extreme values both in upper and lower limits. The values 
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in between were assigned in a way to capture the effect of each factor. Using the try and error 

method, many iterations for adjusting the factor levels were performed to end up to the values 

in the tables below. During those explorative simulations, the limits were defined from where 

there was no significant alteration of the results. The values of the parameters with “R” on the 

side represent the ratio that was defined by equation (52). This ratio represents how much from 

the nominal value the ZDM strategy is performed. This applies to cost and time parameters, 

with €3760.57 and 267.04 minutes used as nominal values, as defined in chapter 5.1. Using the 

ratios defined in the tables and with equation (52) the absolute values were calculated and fed 

into the scheduling tool. 

Table 24: Detection – Repair factor levels 

factors/levels 1 2 3 4 5 

Inspection Cost R 0.01 0.1 0.25 0.35 0.5 

Inspection Time R 0.01 0.04 0.11 0.18 0.25 

Detection Accuracy % 0.7 0.85 0.9 0.93 0.99 

Repairing Cost R 0.05 0.3 0.8 1.3 2.5 

Repairing Time R 0.05 0.4 0.8 1.3 2 

reparabilty % 0.1 0.45 0.55 0.75 0.95 

Table 25: Detection – Prevention factor levels 

factors/levels 1 2 3 4 5 

Inspection Cost R 0.01 0.1 0.25 0.35 0.5 

Inspection Time R 0.01 0.04 0.11 0.18 0.25 

Detection Accuracy % 0.7 0.85 0.9 0.93 0.99 

Prevention Cost R 0.05 0.4 1.5 3 5 

Prevention Time R 0.3 0.8 3 5 7 

Prevention success rate % 0.6 0.7 0.8 0.9 0.95 

Table 26: Prediction – Prevention factor levels 

factors/levels 1 2 3 4 5 

Prediction Horizon (mins) 0.0187 0.0749 0.2247 0.3745 1.1234 

Prediction Accuracy % 0.7 0.85 0.9 0.93 0.99 

Prevention Reaction Time R (mins) 0.1123 0.2247 0.5617 1.3107 2.2468 

Prevention Cost R 0.05 0.4 1.5 3 5 

Prevention Time R 0.3 0.8 3 5 7 

Prevention success rate % 0.6 0.7 0.8 0.9 0.95 

 

5.2.2 DT models creation and validation 

This chapter presents the creation of the 75 DT models, three for each MFG (one for each 

ZDM pair strategy). The simulations performed based on the L25 orthogonal array and the ZDM 

parameters values defined in chapter 5.2.1. In total 1125 simulation runs were performed using 

the developed scheduling tool, using the computer system presented earlier in this chapter. Each 

simulation required between 35-78 minutes to run and produce the results. The utility values 

were calculated for the KPIs defined in chapter 4.10 and for the current experiments all the 

KPIs had equal weight factors. Using the method described in chapter 4.12 the DT models were 

created, to show the behavior of the coefficients of each DT model the resulted equations from 

equation (62) were plotted and the detailed plots can be found in Annex 2, because they are 
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lengthy. Figure 40 is one out of the 15 plots illustrating the DT coefficients for all three ZDM 

pair strategies, in order to show to the reader, the form of those coefficients and justify the 

reason for selecting a piecewise quadratic interpolation. On those graphs on the x-axis are the 

values of the ZDM control parameters and on the y-axis is the contribution of each factor to the 

predicted utility value. The results from the 1125 experiments can be found in Annex 1, where 

the utility values for each experiment set are presented.  

 
Figure 40: Example DT models MFG1 plots, equation (62) 

5.2.2.1 Utility value digital twin model accuracy 

Before using the developed DT model, the accuracy of the models had to be tested and 

validated, otherwise the results would not be trustworthy. For the calculation of the accuracy 

for the developed DT model, the following procedure was followed. For each manufacturing 

stage, 50 random scenarios were generated and simulated for each ZDM strategy. All the 

random scenarios had all the same parameters except the six control parameters under 

investigation. The values of the six parameters per ZDM strategy took completely random 

values within the designated range in which the DT models were created. In total, 2250 extra 

random simulations were performed to test the accuracy of the produced DT model. Using the 

results from those experiments, all the developed models were validated by comparing the 

estimated value with the actual value from the scheduling tool. 

Using the actual results of the KPIs, taken from simulating the random set of experiments 

with the scheduling tool, the actual utility value was produced for each of the scenarios. At the 

same time, the exact same factor values for each of the random scenarios were fed into the 

developed DT model and the estimated utility value was produced. The next step was to 

calculate the relative difference between the theoretical and actual utility value. The average 

relative differences for each MFG and each ZDM are presented in Table 27. The global average 

relative difference for all the MFGs and ZDM strategies was 1.066% of the deviation from the 

actual utility value. In other words, the developed DT model regarding the utility value had an 

accuracy of 98.934% on average. 

Moving in greater depth to the results regarding the error of the DT model, the maximum 

error noticed was 4.3108% at MFG3 and the predict – prevent ZDM strategy. Furthermore, the 

lowest error noticed was 0.2493% at MFG 9 and the predict – prevent ZDM strategy. Another 

observation was that the average error for each ZDM strategy was different to the others. The 

detect – repair strategy had the lowest average error with 0.5639% of error among the three 

ZDM strategies. This was followed by the detect – prevent strategy with 1.0810% and predict 

– prevent with 1.5533%. 
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Table 27: Utility value prediction model error 
 Detect – Repair  Detect – Prevent  Predict – Prevent  

MFG1 0.4940 % 0.7841 % 1.6245 % 

MFG2 0.5481 % 1.4620 % 2.3254 % 

MFG3 0.7320 % 2.0638 % 4.3108 % 

MFG4 1.7189 % 3.5686 % 1.9362 % 

MFG5 0.5590 %  0.9489 % 3.8798 % 

MFG6 0.5675 % 0.9334 % 1.7139 % 

MFG7 0.2978 % 0.4543 % 0.3299 % 

MFG8 0.3217 % 0.4893 % 0.3746 % 

MFG9 0.3883 % 0.3435 % 0.2493 % 

MFG10 0.7282 % 2.6136 % 2.0202 % 

MFG11 0.3731 % 0.3467 % 1.0939 % 

MFG12 0.4077 % 0.6028 % 0.4782 % 

MFG13 0.2766 % 0.4004 % 0.4118 % 

MFG14 0.3523 % 0.4015 % 0.5683 % 

MFG15 0.6931 % 0.8015 % 1.9828 % 

Average 0.5639% 1.0810% 1.5533% 

5.2.2.2 KPI prediction model error 

To test the capabilities of the DT methodology the DT models for each individual KPI were 

created. The results were mixed but not discouraging. On average, all the KPIs DT models had 

an error of 6.223%. More specifically, 12 of the 18 KPIs had an error less than 5%, two had an 

error between 5% and 10%, and four had an error between 10% and 20%. The factors that had 

the highest error were weighted tardiness, detection prevention cost, prediction prevention cost, 

and rescheduling cost. Taking into account how the KPIs were defined, the cost KPIs with high 

levels of error were not much of a problem since all the cost KPIs are used for the calculation 

of the final unit cost, which the corresponding DT model achieved an error of 2.34%. Regarding 

the weighted tardiness, the model had the lowest accuracy of 81.54%. 

 
Figure 41: Digital twin KPIs error 
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5.3 Results 

This chapter presents the results acquired from the experiments conducted for the creation 

of the DT models. Using those results the ANOM and ANOVA analysis can be performed and 

their results are presented in their corresponding chapters 5.3.1 and 5.3.2 respectively. 

Furthermore, in chapter 5.3.3 the ZDM performance maps are going to be presented, illustrating 

the performance of each ZDM pair strategy with different ZDM control parameters values. In 

those experiments all three ZDM strategies were simulated for each of the MFGs. This is 

mentioned because someone could ask, “Why simulate the detect – repair strategy for MFGs 

for which repair is not possible?” as indicated in Table 20. Only tasks 104, 106, and 110 have 

the possibility of repair. The detect – repair strategy can work in two different ways. In cases 

where repair is possible, the developed DSS (explained in chapter 4.4) decides whether to repair 

it or discard it and produce a completely new product. On the other hand, in the case that repair 

is not possible, the DSS algorithm (chapter 4.4) automatically discards the part and produces a 

completely new one. Therefore, there is meaning in simulating such MFGs for the detect – 

repair strategy.  

To analyze the results from the experiments were used the KPIs defined in chapter 4.10, but 

those KPIs are studied all together using the aggregation method presented in chapter 4.9. This 

means that all the observations and conclusions are made based on the utility value and there is 

no analysis of each single KPI. This was decided because some of the KPIs are conflicting and 

in general the relations between each other as a whole are not known. Analyzing each KPI 

individually will produce wrong conclusions. The purpose of the KPIs aggregation method is 

to solve this problem of conflicting KPIs and incorporate the impact of each KPI to the final 

solution. The current problem is a multi-dimensional problem and therefore, it should be 

studied as multi-dimensional. The aggregation method with the KPIs weight factors can change 

the influence of each KPI to the final solution. In the current study all the KPIs had the same 

weight factors. 

5.3.1 Utility value ANOM diagrams 

Using the results of the simulations presented in the Annex, the utility value ANOM 

diagrams can be calculated using the L25 orthogonal array presented in Annex 4 A and the 

ANOM analysis [196], equation (29). The ANOM diagrams demonstrate the effect of each of 

the defined parameters on the final quality of the solution. Figure 42 to Figure 56 illustrate the 

ANOM diagrams for each MFG as well as for each ZDM. Each diagram is an outcome of a 

separate simulation set, but as explained in Figure 39, all utility values were calculated using 

the global minimum and maximum KPI values for the results to be comparable. Furthermore, 

all the ANOM diagrams have the same scale on both the x-axis and y-axis for easier comparison 

between the MFGs and ZDM strategies. Table 28 presents the calculated average effect that 

each factor at each ZDM has on the final quality of the solution. Another interesting observation 

is that each set of graphs for each MFG is different, demonstrating the unique characteristics of 

each MFG. Furthermore, a common observed behavior was that the higher the defect rate, the 

higher the effect of the factors on the quality of the solution. Based on those preliminary results, 

someone can have an understanding of which ZDM strategy is better suited for each MFG. This 

is analyzed in depth later in chapter 5.3.3. 

Viewing the overall results, it is obvious that certain factors such as the inspection cost or 

inspection time had the most significant impact on the solution quality with average effects of 

8.91% and 4.56% in detect – repair and 9.93% and 3.28% in detection – prevention accordingly. 

On average, it seems that the inspection cost had more effect in the detection – prevention 

strategy, whereas the inspection cost had more impact in the detection – repair strategy. 

Regarding the inspection cost in all MFGs, the increase of the inspection cost negatively 

affected the quality of the solution, something that was not the case with the inspection time. 
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Moreover, the prediction – prevention ZDM strategy seemed to be influenced less by the 

selected factors compared with the other two ZDM strategies. Furthermore, the detection – 

repair and detection – prevention strategies had similar results in the common parameters in 

most cases but not identical. The detection accuracy also had a common positive effect on the 

quality of the solution as the levels increased in all MFGs except MFG4 for the detection – 

repair strategy, where the optimal level for detection accuracy was level 4 and the quality 

subsequently dropped. 

Table 28: Average (Avg.) effect of factors for all MFGs (ANOM) 

Detect - Repair Detect - Prevent Predict – Prevent 

Factors Avg. factor 

effect 

Factors Avg. factor 

effect 

Factors Avg. factor 

effect 

Inspection 

Cost 
8.91% 

Inspection 

Cost 
9.93% 

Prediction 

Horizon 
1.70% 

Inspection 

Time 
4.56% 

Inspection 

Time 
3.28% 

Prediction 

Accuracy 
2.04% 

Detection 

accuracy 
2.91% 

Detection 

accuracy 
2.05% 

Prediction 

reaction time 
2.05% 

Repair Cost 1.08% 
Prevention 

Cost 
1.28% 

Prevention 

Cost 
1.65% 

Repair Time 0.91% 
Prevention 

Time 
1.57% 

Prevention 

Time 
2.43% 

Reparability 0.78% 
Prevention 

Success rate 
1.01% 

Prevention 

Success rate 
2.11% 

 

Additionally, as was expected, the parameters regarding the repair of a defective part had 

almost no effect in the cases where the part was not repairable and a higher impact on the MFGs 

(104, 106, and 110) for which repair is possible. More specifically, the more the repair cost and 

time increased, the more the quality of the solution decreased except for MFG 104 again. In 

general, MFG 4 was the most complicated MFG based on the results with the highest variation 

in quality of the solution from all the factors, compared with the rest of the MFGs. Furthermore, 

in MFG 104, the ANOM results had completely different forms compared with all other MFGs. 

In the prediction – prevention strategy, some common behaviors were also observed in all 

of the MFGs. As the prediction horizon increased, the quality of the solution increased, and as 

indicated before, the higher the defect rate, the more the solution quality improved as the 

prediction horizon value increased. Prediction accuracy exhibited different behavior; it had a 

bell shape in most of the MFGs expect MFG15. This means that the optimal solution qualities 

were observed in the middle levels, and at levels 1 and 5 the solution quality had the lowest 

values. Prediction reaction time had no uniform behavior across the different MFGs. In some 

MFGs the effect was constant, whereas in some others it had a bell or “U” shape. The prevention 

cost and time had almost uniform behavior across all the MFGs (except MFG15), namely that 

the higher they were, the higher the quality of the solution. In MFG15, the optimal solution 

quality was produced by level 1 for both prevention cost and time. The prevention success rate 

also had non-uniform behavior. 
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Figure 42: MFG 1 ANOM diagrams for each ZDM (defect rate 3%) 

Table 29: ANOM minimum, maximum, & relative difference MFG 1 

 Detect – Repair Detect – Prevent Predict – Prevent 

Factors Min Max Rel. Dif. Min Max Rel. Dif. Min Max Rel. Dif. 

F1 0.6159 0.6738 8.99% 0.6073 0.6718 10.07% 0.6471 0.6628 2.38% 

F2 0.6314 0.6641 5.04% 0.6246 0.6623 5.86% 0.6521 0.6554 0.51% 

F3 0.6371 0.6523 2.34% 0.6328 0.6444 1.81% 0.6501 0.6581 1.22% 

F4 0.6453 0.6472 0.29% 0.6386 0.6436 0.78% 0.6497 0.6581 1.29% 

F5 0.6455 0.6468 0.20% 0.6382 0.6417 0.54% 0.6449 0.6654 3.11% 

F6 0.6449 0.6473 0.37% 0.6388 0.6446 0.88% 0.6492 0.6579 1.32% 

 
Figure 43: MFG 2 ANOM diagrams for each ZDM (defect rate 5%) 

Table 30: ANOM minimum, maximum, & relative difference MFG 2 

 Detect – Repair Detect – Prevent Predict – Prevent 

Factors Min Max Rel. Dif. Min Max Rel. Dif. Min Max Rel. Dif. 

F1 0.6000 0.6620 9.83% 0.5909 0.6598 11.02% 0.6077 0.6230 2.49% 

F2 0.6214 0.6431 3.43% 0.6218 0.6285 1.07% 0.6060 0.6316 4.14% 

F3 0.6148 0.6436 4.58% 0.6129 0.6320 3.08% 0.6086 0.6221 2.19% 

F4 0.6302 0.6319 0.27% 0.6183 0.6316 2.12% 0.6131 0.6214 1.34% 

F5 0.6299 0.6326 0.43% 0.6161 0.6336 2.79% 0.5993 0.6365 6.02% 

F6 0.6306 0.6318 0.20% 0.6190 0.6350 2.55% 0.6032 0.6308 4.48% 
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Figure 44: MFG 3 ANOM diagrams for each ZDM (defect rate 6%) 

Table 31: ANOM minimum, maximum, & relative difference MFG 3 

 Detect – Repair Detect – Prevent Predict – Prevent 

Factors Min Max Rel. Dif. Min Max Rel. Dif. Min Max Rel. Dif. 

F1 0.6083 0.6639 8.73% 0.6057 0.6684 9.84% 0.5930 0.6204 4.51% 

F2 0.6291 0.6481 2.97% 0.6321 0.6404 1.30% 0.5852 0.6261 6.75% 

F3 0.6146 0.6525 5.97% 0.6274 0.6480 3.24% 0.5888 0.6420 8.65% 

F4 0.6362 0.6377 0.24% 0.6301 0.6451 2.37% 0.5958 0.6291 5.44% 

F5 0.6356 0.6394 0.61% 0.6205 0.6452 3.90% 0.6000 0.6291 4.73% 

F6 0.6350 0.6389 0.61% 0.6284 0.6409 1.98% 0.5981 0.6201 3.62% 

 
Figure 45: MFG 4 ANOM diagrams for each ZDM (defect rate 4%) 

Table 32: ANOM minimum, maximum, & relative difference MFG 4 

 Detect – Repair Detect – Prevent Predict – Prevent 

Factors Min Max Rel. Dif. Min Max Rel. Dif. Min Max Rel. Dif. 

F1 0.5347 0.5910 10.01% 0.4856 0.5465 11.82% 0.6351 0.6542 2.96% 

F2 0.5198 0.5901 12.68% 0.4989 0.5291 5.88% 0.6231 0.6562 5.16% 

F3 0.5513 0.5764 4.44% 0.5095 0.5254 3.07% 0.6300 0.6569 4.18% 

F4 0.5367 0.5822 8.13% 0.5025 0.5306 5.44% 0.6372 0.6544 2.67% 

F5 0.5437 0.5778 6.08% 0.5057 0.5245 3.66% 0.6270 0.6740 7.23% 

F6 0.5531 0.5764 4.12% 0.5108 0.5224 2.24% 0.6261 0.6571 4.83% 
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Figure 46: MFG 5 ANOM diagrams for each ZDM (defect rate 4%) 

Table 33: ANOM minimum, maximum, & relative difference MFG 5 

 Detect – Repair Detect – Prevent Predict – Prevent 

Factors Min Max Rel. Dif. Min Max Rel. Dif. Min Max Rel. Dif. 

F1 0.6213 0.6754 8.34% 0.6045 0.6685 10.06% 0.6294 0.6489 3.04% 

F2 0.6365 0.6648 4.36% 0.6327 0.6439 1.75% 0.6319 0.6486 2.61% 

F3 0.6346 0.6596 3.86% 0.6255 0.6443 2.96% 0.6310 0.6521 3.28% 

F4 0.6441 0.6538 1.49% 0.6331 0.6409 1.21% 0.6282 0.6477 3.06% 

F5 0.6472 0.6534 0.94% 0.6322 0.6423 1.59% 0.6342 0.6475 2.09% 

F6 0.6459 0.6556 1.48% 0.6358 0.6428 1.10% 0.6327 0.6477 2.34% 

 
Figure 47: MFG 6 ANOM diagrams for each ZDM (defect rate 3%) 

Table 34: ANOM minimum, maximum, & relative difference MFG 6 

 Detect – Repair Detect – Prevent Predict – Prevent 

Factors Min Max Rel. Dif. Min Max Rel. Dif. Min Max Rel. Dif. 

F1 0.6235 0.6770 8.23% 0.6046 0.6679 9.94% 0.6511 0.6638 1.93% 

F2 0.6415 0.6655 3.66% 0.6290 0.6454 2.57% 0.6480 0.6646 2.54% 

F3 0.6420 0.6594 2.67% 0.6270 0.6440 2.69% 0.6516 0.6630 1.74% 

F4 0.6478 0.6571 1.41% 0.6351 0.6400 0.77% 0.6508 0.6623 1.76% 

F5 0.6495 0.6577 1.26% 0.6364 0.6387 0.37% 0.6493 0.6684 2.89% 

F6 0.6506 0.6564 0.89% 0.6351 0.6390 0.62% 0.6485 0.6717 3.52% 
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Figure 48: MFG 7 ANOM diagrams for each ZDM (defect rate 1%) 

Table 35: ANOM minimum, maximum, & relative difference MFG 7 

 Detect – Repair Detect – Prevent Predict – Prevent 

Factors Min Max Rel. Dif. Min Max Rel. Dif. Min Max Rel. Dif. 

F1 0.6259 0.6823 8.62% 0.6220 0.6817 9.16% 0.6847 0.6876 0.42% 

F2 0.6432 0.6717 4.34% 0.6442 0.6670 3.48% 0.6852 0.6872 0.29% 

F3 0.6498 0.6588 1.37% 0.6480 0.6559 1.22% 0.6847 0.6876 0.43% 

F4 0.6548 0.6558 0.15% 0.6519 0.6535 0.24% 0.6846 0.6871 0.35% 

F5 0.6545 0.6559 0.21% 0.6508 0.6541 0.51% 0.6850 0.6869 0.28% 

F6 0.6546 0.6566 0.30% 0.6514 0.6537 0.35% 0.6848 0.6874 0.37% 

 
Figure 49: MFG 8 ANOM diagrams for each ZDM (defect rate 1%) 

Table 36: ANOM minimum, maximum, & relative difference MFG 8 

 Detect – Repair Detect – Prevent Predict – Prevent 

Factors Min Max Rel. Dif. Min Max Rel. Dif. Min Max Rel. Dif. 

F1 0.6252 0.6839 8.96% 0.6242 0.6816 8.80% 0.6873 0.6900 0.39% 

F2 0.6452 0.6714 3.98% 0.6432 0.6668 3.61% 0.6858 0.6917 0.86% 

F3 0.6519 0.6585 1.02% 0.6506 0.6570 0.98% 0.6861 0.6914 0.76% 

F4 0.6553 0.6563 0.15% 0.6527 0.6554 0.41% 0.6874 0.6913 0.56% 

F5 0.6556 0.6562 0.10% 0.6537 0.6547 0.16% 0.6858 0.6910 0.76% 

F6 0.6548 0.6568 0.30% 0.6528 0.6550 0.34% 0.6873 0.6921 0.69% 
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Figure 50: MFG 9 ANOM diagrams for each ZDM (defect rate 1%) 

Table 37: ANOM minimum, maximum, & relative difference MFG 9 

 Detect – Repair Detect – Prevent Predict – Prevent 

Factors Min Max Rel. Dif. Min Max Rel. Dif. Min Max Rel. Dif. 

F1 0.6255 0.6840 8.94% 0.6230 0.6826 9.13% 0.6854 0.6884 0.44% 

F2 0.6446 0.6719 4.15% 0.6454 0.6678 3.42% 0.6847 0.6880 0.48% 

F3 0.6530 0.6599 1.05% 0.6510 0.6568 0.90% 0.6857 0.6877 0.30% 

F4 0.6556 0.6569 0.21% 0.6526 0.6553 0.42% 0.6856 0.6882 0.39% 

F5 0.6553 0.6579 0.39% 0.6533 0.6561 0.43% 0.6862 0.6873 0.15% 

F6 0.6553 0.6570 0.26% 0.6542 0.6546 0.07% 0.6850 0.6875 0.37% 

 
Figure 51: MFG 10 ANOM diagrams for each ZDM (defect rate 6%) 

Table 38: ANOM minimum, maximum, & relative difference MFG 10 

 Detect – Repair Detect – Prevent Predict – Prevent 

Factors Min Max Rel. Dif. Min Max Rel. Dif. Min Max Rel. Dif. 

F1 0.6100 0.6655 8.70% 0.5703 0.6477 12.71% 0.5786 0.5877 1.56% 

F2 0.6310 0.6519 3.26% 0.5974 0.6209 3.87% 0.5759 0.5932 2.95% 

F3 0.6172 0.6535 5.72% 0.6015 0.6180 2.71% 0.5782 0.5927 2.48% 

F4 0.6318 0.6464 2.28% 0.5982 0.6171 3.10% 0.5790 0.5875 1.45% 

F5 0.6365 0.6460 1.48% 0.5917 0.6287 6.07% 0.5774 0.5904 2.23% 

F6 0.6357 0.6472 1.80% 0.6026 0.6204 2.91% 0.5773 0.5923 2.56% 
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Figure 52: MFG 11 ANOM diagrams for each ZDM (defect rate 1%) 

Table 39: ANOM minimum, maximum, & relative difference MFG 11 

 Detect – Repair Detect – Prevent Predict – Prevent 

Factors Min Max Rel. Dif. Min Max Rel. Dif. Min Max Rel. Dif. 

F1 0.6262 0.6839 8.81% 0.6269 0.6852 8.88% 0.7051 0.7106 0.78% 

F2 0.6440 0.6738 4.52% 0.6448 0.6746 4.52% 0.7039 0.7102 0.89% 

F3 0.6553 0.6583 0.46% 0.6566 0.6584 0.27% 0.7014 0.7091 1.10% 

F4 0.6554 0.6577 0.36% 0.6566 0.6584 0.27% 0.7027 0.7097 0.99% 

F5 0.6552 0.6579 0.40% 0.6562 0.6585 0.36% 0.6996 0.7102 1.51% 

F6 0.6560 0.6574 0.20% 0.6561 0.6587 0.40% 0.7035 0.7090 0.78% 

 
Figure 53: MFG 12 ANOM diagrams for each ZDM (defect rate 1%) 

Table 40: ANOM minimum, maximum, & relative difference MFG 12 

 Detect – Repair Detect – Prevent Predict – Prevent 

Factors Min Max Rel. Dif. Min Max Rel. Dif. Min Max Rel. Dif. 

F1 0.6256 0.6825 8.71% 0.6243 0.6838 9.10% 0.6878 0.6969 1.31% 

F2 0.6423 0.6719 4.51% 0.6420 0.6691 4.13% 0.6916 0.6978 0.89% 

F3 0.6515 0.6581 1.00% 0.6510 0.6580 1.07% 0.6913 0.6985 1.03% 

F4 0.6549 0.6557 0.13% 0.6537 0.6555 0.28% 0.6914 0.7008 1.36% 

F5 0.6549 0.6558 0.13% 0.6531 0.6553 0.34% 0.6888 0.6975 1.24% 

F6 0.6548 0.6560 0.18% 0.6537 0.6547 0.15% 0.6905 0.6980 1.08% 
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Figure 54: MFG 13 ANOM diagrams for each ZDM (defect rate 1%) 

Table 41: ANOM minimum, maximum, & relative difference MFG 13 

 Detect – Repair Detect – Prevent Predict – Prevent 

Factors Min Max Rel. Dif. Min Max Rel. Dif. Min Max Rel. Dif. 

F1 0.6269 0.6837 8.66% 0.6251 0.6823 8.74% 0.6866 0.6906 0.59% 

F2 0.6448 0.6710 3.98% 0.6470 0.6677 3.14% 0.6862 0.6903 0.59% 

F3 0.6516 0.6594 1.19% 0.6526 0.6579 0.80% 0.6873 0.6897 0.36% 

F4 0.6553 0.6575 0.35% 0.6543 0.6562 0.28% 0.6861 0.6904 0.63% 

F5 0.6552 0.6565 0.19% 0.6541 0.6563 0.34% 0.6870 0.6913 0.62% 

F6 0.6551 0.6570 0.29% 0.6544 0.6558 0.22% 0.6868 0.6899 0.45% 

 
Figure 55: MFG 14 ANOM diagrams for each ZDM (defect rate 2%) 

Table 42: ANOM minimum, maximum, & relative difference MFG 14 

 Detect – Repair Detect – Prevent Predict – Prevent 

Factors Min Max Rel. Dif. Min Max Rel. Dif. Min Max Rel. Dif. 

F1 0.6215 0.6800 8.98% 0.6173 0.6785 9.45% 0.6662 0.6741 1.19% 

F2 0.6431 0.6691 3.96% 0.6427 0.6584 2.41% 0.6681 0.6715 0.51% 

F3 0.6432 0.6587 2.38% 0.6420 0.6546 1.94% 0.6667 0.6747 1.18% 

F4 0.6525 0.6538 0.19% 0.6470 0.6504 0.51% 0.6648 0.6741 1.39% 

F5 0.6517 0.6551 0.52% 0.6466 0.6512 0.71% 0.6671 0.6740 1.04% 

F6 0.6524 0.6539 0.22% 0.6477 0.6502 0.38% 0.6669 0.6731 0.93% 
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Figure 56: MFG 15 ANOM diagrams for each ZDM (defect rate 5%) 

Table 43: ANOM minimum, maximum, & relative difference MFG 15 

 Detect – Repair Detect – Prevent Predict – Prevent 

Factors Min Max Rel. Dif. Min Max Rel. Dif. Min Max Rel. Dif. 

F1 0.6149 0.6740 9.17% 0.6069 0.6723 10.22% 0.6017 0.6112 1.56% 

F2 0.6359 0.6590 3.56% 0.6302 0.6443 2.20% 0.6023 0.6109 1.42% 

F3 0.6231 0.6586 5.53% 0.6240 0.6495 4.01% 0.6005 0.6115 1.83% 

F4 0.6428 0.6463 0.54% 0.6344 0.6410 1.03% 0.6001 0.6124 2.03% 

F5 0.6416 0.6458 0.65% 0.6313 0.6430 1.85% 0.6028 0.6184 2.54% 

F6 0.6429 0.6457 0.44% 0.6344 0.6407 0.99% 0.5957 0.6217 4.27% 

5.3.2 Analysis of variance (ANOVA) 

The ANOVA was performed to study how much each factor contributes to the final solution 

quality. Table 44 contains the average values of the ANOVA for each factor and for each ZDM 

strategy. Immediately one can distinguish that the inspection cost has the higher contribution 

to the result by 68.44% and 77.95% for the detect –repair and detect – prevent strategies, 

respectively. To better explain the meaning of the ANOVA results, the detect – repair strategy 

was used. For this case, 68.44% of the result (100%) came from the inspection cost, and 

similarly 19.66% came from the inspection time and so on. In the detect –repair and detect – 

prevent strategies, it was clear which were the dominant factors contributing to the final result. 

This was not the case in the predict – prevent strategy where a near uniform influence of each 

factor existed around 15%. Only prevention time was at 22% but it was not a great deviation as 

it was in the other two ZDM strategies. 

Table 44: ANOVA average (Avg.) factor influence 

Detect - Repair Detect - Prevent Predict – Prevent 

Factors Avg. % Factor 

influence 

Factors Avg. % factor 

influence 

Factors Avg. % factor 

influence 

Inspection 

Cost 
68.44% 

Inspection 

Cost 
77.95% 

Prediction 

Horizon 
15.01% 

Inspection 

Time 
19.66% 

Inspection 

Time 
11.57% 

Prediction 

Accuracy 
15.42% 

Detection 

accuracy 
8.45% 

Detection 

accuracy 
4.00% 

Prediction 

reaction 

time 

15.69% 

Repair Cost 1.66% 
Prevention 

Cost 
1.79% 

Prevention 

Cost 
13.86% 

Repair Time 1.07% 
Prevention 

Time 
3.55% 

Prevention 

Time 
22.00% 
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Reparability 0.71% 
Prevention 

Success rate 
1.14% 

Prevention 

Success rate 
18.02% 

Total % sum 100%  100%  100% 

 

Figure 57 illustrates the ANOVA analysis for the detect – repair strategy for each of the 15 

MFGs. As was also noticed in the total average results, the dominant factor was inspection cost 

with 68.44% on average. This applied to all MFGs except MFG 4. In MFG4, the factor with 

the highest contribution to the final result was inspection time with 56%. Moreover, it was 

noticed that in the MFGs with higher defect rates, the detection accuracy factor had a 

significantly higher influence on the final result. Furthermore, the repair factors contributed 

more to the MFGs for which repair was possible. 

 
Figure 57: ANOVA diagram for detect – repair strategy 

Similarly, Figure 58 presents the ANOVA results for the detect – prevent strategy. In this 

case, for all MFGs the dominant factor contributing to the final result was inspection cost with 

77.95% on average. Furthermore, as noticed in the detect – repair strategy, the MFGs with the 

highest defect rate had the other factors that contributed more compared with the MFGs with a 

low defect rate. In the case of MFG10, prevention time was the second factor with the highest 

impact with 23%. This is noted because in most MFGs, the second factor was inspection time, 

with some exceptions (MFGs 2, 3, 5, and 15). 

 
Figure 58: ANOVA diagram for detect – prevent strategy 

In the presentation of the average ANOVA results in the predict – prevent ZDM strategy, a 

more uniform influence of each factor existed on the result. This can be seen in Figure 59. All 

factors contributed significantly to the final result. The greatest difference between this case 

and the two previous ones is the fact that no clear dominant factor influenced the final result. 

Furthermore, Figure 59 is a good example for demonstrating that each of the MFGs has its own 

almost unique characteristics and each factor affects each MFG differently. There are three 

MFGs (1, 2, and 15) for which one factor exceeded the 40% of influence. On MFGs 1 and 2, 



95 

prevention time was the dominant factor, whereas on MFG 15 prevention success rate was 

dominant. Furthermore, on MFG 4 the prevention time had almost 40% of the influence, similar 

to MFGs 1 and 2. 

 
Figure 59: ANOVA diagram for predict – prevent strategy 

5.3.3 MFGs’ ZDM solution maps (combinations) 

The final step of the present research work was to illustrate the performance of each ZDM strategy 

for each MFG for different factor combinations. To achieve this, a higher resolution of factor levels 

was required. In light of the tables, Table 45, Table 46, and  

Table 47 were created with nine levels for each factor. Both the upper and lower limits were 

the same as in the experiment series for creating the DT model (chapter 5.2.1). Those tables 

refer to the three ZDM strategies. After the performance and accuracy of the utility value DT 

model were validated, the model could be used to estimate the utility values without running 

the simulator, allowing the “simulation” of a much higher number of experiments in a fraction 

of the actual simulation time. 

Table 45: Expanded factor levels for detect – repair  

Detect – Repair 

Levels 1 2 3 4 5 6 7 8 9 

F1 0.0100 0.0713 0.1325 0.1938 0.2550 0.3163 0.3775 0.4388 0.5000 

F2 0.0100 0.0400 0.0700 0.1000 0.1300 0.1600 0.1900 0.2200 0.2500 

F3 0.7000 0.7363 0.7725 0.8088 0.8450 0.8813 0.9175 0.9538 0.9900 

F4 0.0500 0.3563 0.6625 0.9688 1.2750 1.5813 1.8875 2.1938 2.5000 

F5 0.0500 0.2938 0.5375 0.7813 1.0250 1.2688 1.5125 1.7563 2.0000 

F6 0.1000 0.2063 0.3125 0.4188 0.5250 0.6313 0.7375 0.8438 0.9500 

Table 46: Expanded factors for detect – prevent 

Detect – Prevent 

Levels 1 2 3 4 5 6 7 8 9 

F1 0.0100 0.0713 0.1325 0.1938 0.2550 0.3163 0.3775 0.4388 0.5000 

F2 0.0100 0.0400 0.0700 0.1000 0.1300 0.1600 0.1900 0.2200 0.2500 

F3 0.7000 0.7363 0.7725 0.8088 0.8450 0.8813 0.9175 0.9538 0.9900 

F4 0.0500 0.6688 1.2875 1.9063 2.5250 3.1438 3.7625 4.3813 5.0000 

F5 0.3000 1.1375 1.9750 2.8125 3.6500 4.4875 5.3250 6.1625 7.0000 

F6 0.6000 0.6438 0.6875 0.7313 0.7750 0.8188 0.8625 0.9063 0.9500 

 



96 

Table 47: Expanded factors for predict – prevent 

Predict – Prevent 

Levels 1 2 3 4 5 6 7 8 9 

F1 0.0187 0.1568 0.2949 0.4330 0.5711 0.7092 0.8472 0.9853 1.1234 

F2 0.7000 0.7363 0.7725 0.8088 0.8450 0.8813 0.9175 0.9538 0.9900 

F3 0.1123 0.3792 0.6460 0.9128 1.1796 1.4464 1.7132 1.9800 2.2468 

F4 0.0500 0.6688 1.2875 1.9063 2.5250 3.1438 3.7625 4.3813 5.0000 

F5 0.3000 1.1375 1.9750 2.8125 3.6500 4.4875 5.3250 6.1625 7.0000 

F6 0.6000 0.6438 0.6875 0.7313 0.7750 0.8188 0.8625 0.9063 0.9500 

 

Therefore, for each ZDM table with the expanded factor levels, all possible combinations 

were considered and the utility values were calculated with the use of the developed DT model. 

In total, 531,441 (96) factor combinations were calculated for each ZDM strategy. To have a 

value to compare with the produced utility values, a benchmark scenario representing the ideal 

scenario without defects was simulated. The utility value for the ideal scenario was 0.6905, 

which means that the highest possible utility value for the current problem and KPIs is 0.6905. 

Using the predicted utility values and the acquired utility value from the ideal scenario, the 

relative difference was calculated between the optimal utility value and each estimated utility 

value. Those relative differences were sorted from lowest to highest (worst to best) and plotted, 

and those plots can be found in Figure 61 to Figure 75. The plots refer to each MFG, and each 

plot illustrates the performance of each of the ZDM strategies with the different ZDM factor 

sets. 

Figure 60 illustrates an example of MFG 1 regarding detect repair with un-sorted values. 

The graph is difficult to read and if the graphs of other two ZDM pairs strategies are added it 

will be confusing. Furthermore, from the shape of Figure 60 it is difficult to make conclusions. 

For these reasons it was decided to sort the values. At this point it should be mentioned that on 

the x-axis the ZDM parameters sets are in the order that the algorithm created. In the sorted 

version of the graphs the order is changing because each utility value is accompanied by the 

corresponding set of ZDM parameters values. 

 
Figure 60: Example for un-sorted ZDM map for MFG1 and Detect – Repair 

Table 48 presents a summary of the results produced using the DT model and the expanded 

factor levels. This table illustrates the minimum and maximum utility values from each of the 

MFGs and for each ZDM strategy. Furthermore, the average utility value is shown to 

demonstrate the average performance of each of the ZDM strategies. Once again, the results 

from MFG 4 draw attention immediately because MFG 4 holds both the highest and lowest 

utility value scores. The lowest utility value is for the detect – repair strategy and the highest is 

for the predict – prevent strategy. At this point it should be mentioned that the highest score is 
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0.61% worse than the ideal scenario. Furthermore, in most of the MFGs, the implementation of 

the ZDM strategies starts from an approximately 6% inferior total performance compared with 

the ideal scenario. 

Table 48: Global minimum, maximum, and average utility values per MFG 
 Detect Repair Detect Prevent Predict Prevent 

 Min Max Avg. Min Max Avg. Min Max Avg. 

MFG 1 0.5554 0.6505 0.5992 0.5469 0.6535 0.5938 0.5878 0.6359 0.6125 

MFG 2 0.5423 0.6447 0.5874 0.5281 0.6424 0.5808 0.5342 0.6241 0.5772 

MFG 3 0.5446 0.6515 0.5947 0.5463 0.6648 0.5929 0.4896 0.6555 0.5697 

MFG 4 0.3609 0.6159 0.5178 0.3974 0.5613 0.4827 0.5317 0.6863 0.6102 

MFG 5 0.5447 0.6657 0.6037 0.5447 0.6458 0.5921 0.5489 0.6383 0.5889 

MFG 6 0.5506 0.6576 0.6071 0.5494 0.6429 0.5917 0.5783 0.6556 0.6167 

MFG 7 0.5675 0.6541 0.6056 0.5670 0.6512 0.6042 0.6314 0.6420 0.6366 

MFG 8 0.5664 0.6552 0.6061 0.5680 0.6490 0.6056 0.6279 0.6518 0.6395 

MFG 9 0.5659 0.6570 0.6065 0.5654 0.6508 0.6058 0.6308 0.6444 0.6377 

MFG 10 0.5269 0.6643 0.5978 0.4959 0.6534 0.5686 0.5238 0.5715 0.5451 

MFG 11 0.5680 0.6532 0.6067 0.5693 0.6536 0.6078 0.6378 0.6694 0.6544 

MFG 12 0.5660 0.6531 0.6061 0.5644 0.6557 0.6041 0.6259 0.6601 0.6416 

MFG 13 0.5704 0.6537 0.6067 0.5707 0.6504 0.6054 0.6315 0.6481 0.6391 

MFG 14 0.5602 0.6550 0.6043 0.5628 0.6498 0.6009 0.6045 0.6372 0.6195 

MFG 15 0.5478 0.6619 0.5995 0.5448 0.6547 0.5952 0.5391 0.6084 0.5670 

 

The MFG’s ZDM mapping plots reveal three different behaviors of the interaction of the 

ZDM strategies. First, the ZDM strategy performances are clearly distinguished and there is a 

clear overview of the most suitable ZDM for a specific ZDM. This means that the lines do not 

intersect at any point. In other MFGs, the ZDM lines do intersect, meaning that from that point 

on the most suitable ZDM strategy changes. Another behavior is that all three ZDM strategies 

converge to almost the same point, which applies to both the best and worst point. In the MFGs 

for which repair of the defective part is not possible, the ZDM strategies of detect – repair and 

detect – predict have almost equal performance with some variations. Furthermore, in many 

cases where the ZDM factors were becoming more resource-demanding, the dominant and most 

efficient ZDM strategy was prediction – prevention. This applies to the following MFGs: 1, 4, 

7, 8, 9, 11, 12, 13, and 14. Additionally, in the MFGs with a small defect rate, the prediction – 

prevention strategy seemed to have constant performance with a very small variation. In the 

MFGs where repair was possible (104, 106, and 110), no clear strategy prevailed. In MFG 104, 

the best-performing ZDM strategy was prediction – prevention and the second best-performing 

was detect – repair. In MFG 106, the detect – repair and predict – prevent strategies had almost 

the same performance up to a 10% deviation from the ideal condition. After that point, the 

predict – prevent strategy behaved better as the factor values increased. In the case of MFG 

110, the best-performing ZDM strategy was detect – repair followed by detect – prevent with 

an average margin of a 6% difference. Predict – prevent was constantly worse than the others 

except in the solutions with the highest ZDM factor values, where it became better than detect 

– prevent. Moreover, predict – prevent had very small performance variations. 
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Figure 61: Final MFG 1 ZDM strategies 

mapping 

 
Figure 62: Final MFG 2 ZDM strategies 

mapping 

 

 

 
Figure 63: Final MFG 3 ZDM strategies 

mapping 

 
Figure 64: Final MFG 4 ZDM strategies 

mapping 

 

 
Figure 65: Final MFG 5 ZDM strategies 

mapping 

 
Figure 66: Final MFG 6 ZDM strategies 

mapping 
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Figure 67: Final MFG 7 ZDM strategies 

mapping 

 
Figure 68: Final MFG 8 ZDM strategies 

mapping 

 
Figure 69: Final MFG 9 ZDM strategies 

mapping 

 
Figure 70: Final MFG 10 ZDM strategies 

mapping 

 

 
Figure 71: Final MFG 11 ZDM strategies 

mapping 

 
Figure 72: Final MFG 12 ZDM strategies 

mapping 
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Figure 73: Final MFG 13 ZDM strategies 

mapping 

 
Figure 74: Final MFG 14 ZDM strategies 

mapping 

 
Figure 75: Final MFG 15 ZDM strategies mapping 
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6 Discussion 

This chapter is devoted to the discussion of the results acquired from each component of the 

developed scheduling tool as well as the discussion of the results of the DT methodology and 

the DT model itself. The structure of this chapter follows a similar structure to previous 

chapters, explaining the individual components. 

6.1 ZDM-Triggering Factor Modeling Discussion 

As explained in chapter 2.1, there are two different types of triggering events in ZDM: the 

detection of a defect and the prediction of a defect that might occur in the near future. Chapter 

4.2 presented the defect generation module, one of the most crucial components of the 

developed scheduling tool. This is because the entire ZDM implementation is based on the 

defects generated by this component. The developed method proved to be flexible and easily 

adaptable to the different machine characteristics. Furthermore, the generated defects were 

realistic and very close to the actual defect generation patterns of the real production. At this 

point it should be mentioned that the developed method can describe only defect generation 

patterns that follow exponential forms as the operation time of the machine increases. The 

added stochasticity brought the results generated by the defect generation module even closer 

to reality. The second ZDM-triggering factor is the prediction of defects, and chapter 4.3 

presented the developed method. This component depends on the outcome of the defect 

generation to produce results. The selected approach for modeling the defect prediction module 

performed very well and simulated the concept of defect prediction very accurately. The 

additional stochasticity was also a crucial addition to accurately simulate the prediction of 

defects. Outcomes of chapter 4.2 and 4.3 contributed to answering Research Question 1. 

6.2 DSS Component Results Discussion 

The proposed DSS tool was developed to assist to the decision-making process when a 

defective part is detected to decide whether to repair it, discard it, or do nothing (chapter 4.4). 

The simulation results showed that in both simulation periods, the waste in terms of raw 

materials cost reduced by 4.702% and 3.858% for short- and mid-term periods, respectively. 

The implementation of the described system will contribute to moving one step closer toward 

ZDM. The developed DSS, presented in chapter 4.4, is a subpart of the answer to Research 

Question 1. 

The overall outcome of the conducted experiments was that the proposed DSS tool was on 

average 7.47% better compared with the current production policy of the manufacturing process 

of the specific PCB. Furthermore, the DSS produced significantly superior results in the event 

of important orders compared with less important ones in both scenarios (S1 and S2).  

In some cases, in both S1 and S2 the DSS produced better or equal results to the benchmark 

scenario. The reason behind this behavior is the frequency of rescheduling the production. In 

the case of the benchmark scenario, there were no defects; therefore, the only events happening 

in the production were new orders coming in. In this regard, the production had to be 

rescheduled only 7 and 14 times in scenarios S1 and S2, respectively. On the other hand, the 

DSS scenario, besides the new order evets, had to also deal with the defects as events. This 
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created the need/opportunity to reschedule the production more times to consider the actions 

required for the defective products. More rescheduling actions enabled achieving a more 

optimized schedule in terms of the measured KPIs. More specifically, the S1 scenario was 

rescheduled 26 times and the S2 scenario 41 times. Another fact that verified this is the machine 

utilization rates. In the case of the benchmark and discard scenarios, the machine utilization 

was consistently lower than that using the DSS. 

The proposed DSS system is meant to be triggered in real time according to the events that 

occur during production. The simulations showed that the DSS tool requires on average only 

0.1458 seconds for making a decision for each defect, which is acceptable for in-line use. 

The simulation results showed that the proposed DSS had a positive effect on both 

simulation periods (short- and mid-term). Although the effect was positive, a huge difference 

between the two effects was observed. The overall performance of the proposed DSS was 

147.45% better in the short-term scenario, whereas in the mid-term scenario the DSS was 7.47% 

better. The reason behind this significant difference is that in the short term there were only a 

few orders, and therefore, any performance difference was amplified because of the small 

number of orders. On the other hand, in the mid-term scenario, the results were smoother with 

no such huge differences.  

Despite the promising results, there were a few limitations. For this DSS to be able to 

improve the performance of a production system, it is compulsory that the production facility 

has a certain level of flexibility to adapt to more frequent shop floor rescheduling. Another 

dimension that was not taken into account in the current research is the estimation of the cost 

that arises due to higher numbers of rescheduling rounds. In addition, the increased frequency 

of rescheduling can create great confusion among workers on the production line, which can 

result in extra costs due to mistakes. The developed DSS was tested in a production system 

configured as a flexible job shop; therefore the measured performance of the DSS might not be 

the same for other production system configurations. Finally, the simulations considered only 

a part of the production and not the entire shop floor. 

6.3 Heuristic Rule Results Discussion 

Heuristics are the most widely used method for solving scheduling problems and in general 

NP-Hard problems. Chapter 4.6 presented a series of modified heuristic rules for identifying 

the best rule among the defined ones to be used for the simulations that were required. The 

simulation results showed a clear relation between the initial and optimized solution. More 

specifically, the better the initial solution, the higher the quality of the optimized solution. The 

algorithms SumSPT and ECM were developed to take into account the results from the previous 

assignments during the operation assignment, and therefore achieve better results. OS_ECM 

was found to be the best of the tested algorithms because produced schedules were more 

balanced than the others. Moreover, OS allowed the most important orders to be prioritized and 

made first, which increased the quality of the solution. The addition of the “Length” parameter 

allowed the balancing of the production schedule, thus achieving better initial solutions. The 

results showed that the best schedules were those for Length = 10 and the “Length” parameter 

moved increasingly closer to the result of the corresponding algorithm; without that parameter, 

the schedules were worse and more unbalanced. 

The optimization of the schedules required significantly more computation time than the 

initial solution algorithm. This was expected but in many cases there is not much time available 

in real production environments and the need for a fast high-quality solution arises. The 

developed algorithms showed that fast schedules of high quality can be produced fast, 

especially OS_ECM. 

The NEH algorithm has demonstrated promising results in the literature [51]. In the context 

of the current research work, an adapted version of the NEH was developed. The results were 
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not presented due to the computation time required by the NEH algorithm to generate an initial 

solution, which was 17 hours (due to the high number of operations to schedule 5180), 

something not realistic for real production environments. 

6.4 Multi-Order Evaluation Results Discussion 

In the era of mass customization and personalization, manufacturers are forced to change 

their mass production standards and implement a more customized manufacturing plan. Those 

changes have had the effect of rapidly increasing the number of orders that manufacturers 

should deal with at the same time. Furthermore, ZDM requires more frequent rescheduling of 

production due to the need for implementation of mitigation actions required for avoiding 

defects. Therefore, the developed method for ranking the different orders is very useful and 

mandatory in such implementations (chapter 4.7). The results of this method contributed to 

answering Research Question 1. Overall, the simulation results showed that in most of the 

cases, the orders that had high OC had better results than those produced by the single-level 

method. Some of the orders with high OC, though, had worse results, and this is because it is 

not always possible when scheduling to optimize the criteria for all the involved orders. This is 

because the proposed approach is based on the ranking of orders, and therefore, when 

optimizing the most important order there will be a loss. Furthermore, the proposed method 

produced significantly better results for the time criteria compared with those for the cost 

criteria. On average, the order tardiness was 3.63 days and 9.48 days for the two- and single-

layer methods, respectively. 

Production cost had a small fluctuation because each product requires almost the same raw 

materials and processing time. The COD is more complicated because it is a function of many 

factors. It relies on the tardiness, volume, and criticality of the order, and therefore, it is difficult 

to draw a conclusion. Furthermore, it was observed that orders with a high OC factor tend to 

have higher COD, which was expected and shows that the order-ranking approach produced 

the desired results. 

The simulation results showed that the proposed method was capable of efficiently 

scheduling rush orders, which was the goal of the present research. It is worth mentioning that 

the proposed methodology produced slightly worse results for orders 7, 15, and 16 with a 

maximum loss of performance of 3.42% in order 15. This was due to the reason explained at 

the beginning of the Discussion chapter, namely that priority was given to other normal and 

rush orders that arrived earlier, and therefore, the optimization of those orders rendered the 

optimization of orders 7, 15, and 16 impossible.  

Finally, the reason behind the achievement of more efficient schedules is derived from the 

proposed dynamic order-ranking method. More specifically, every time that rescheduling was 

performed, the order ranking changed according to the orders involved as well as the time that 

the rescheduling was performed, optimizing the importance of each order and to that extent the 

measured performance indicators. 

6.5 Events Management Methodology Results Discussion 

The events management component is one of the most important modules of the developed 

scheduling tool. Because of it, it is possible to implement the ZDM concept efficiently with a 

balanced number of rescheduling iterations without losing performance. It has the ability to 

evaluate all the events that arise and suggest which are going to be included in the next 

rescheduling iteration. This was possible using the defined “time” parameters, which proved to 

be very helpful and close to reality. The results of this component also contributed to answering 

Research Question 1.  
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More specifically, the experimental results for this component indicated that the developed 

methodology can assist in balancing the number of rescheduling iterations versus the number 

of unexpected events. The ANOVA revealed that NORT*NPRT is one of the interactions with 

the highest effect. This interaction had a positive trend when both the values increased. More 

specifically, the most positive effect was when the NPRT was at factor level 2 and NORT was 

at factor level 1. In this way, the company is able to quickly react to defect predictions and have 

enough time to manage all orders. Similar to the NORT*NPRT interaction, the interaction 

between NDDRT and NPRT also had a positive trend when both values increased. More 

specifically, the most positive effect was achieved when both factors were at factor level 2. This 

means that the company prefers to delay the action for the defect and prevention to manage 

both in the same rescheduling action. In this way, they can reduce the number of rescheduling 

actions. Another significant interaction was that between NDRT and NPDRT. In contrast to the 

other two interactions, NDRT*NPDRT had a negative trend. More specifically, when the 

factors’ values increased, the effect of the interaction became more negative. Therefore, the 

company has a short delay time to postpone the prevention action and must quickly react when 

a new defect occurs. Finally, NORDT*NPDRT was the only antisynergistic interaction. Indeed, 

the effect was positive when one factor increased and the other decreased. In this way, the 

company can have a shorter delay time to manage prevention actions, which is balanced with a 

longer delay time to manage new orders. 

6.6 Digital Twin Methodology & Model Discussion 

In chapter 4.12, a methodology for creating a DT model of the developed scheduling tool 

was presented. Furthermore, the creation and validation of the DT model was presented in 

chapter 0. Both chapters contributed to answering Research Question 2. The developed 

methodology for creating a DT model of the developed scheduling tool proved to be lean, 

efficient, and highly accurate. On average, the error of the developed DT model was 1.066%, 

which is very low, making the model highly accurate and reliable since the standard deviation 

was only 0.9929%. Furthermore, it was noticed that for the predict – prevent strategy, the 

corresponding errors for each MFG were slightly higher than those calculated for the other 

ZDM strategies. This is due to the fact that the predict – prevent strategy has more stochasticity 

implemented compared with the other ZDM strategies, and therefore, the DT model produced 

results with slightly higher errors but at acceptable levels. The maximum error observed for the 

utility value DT model was 4.3108%. 

The same observation was also noticed for the KPI DT model error. The higher the 

stochasticity and variation of a KPI, the higher the error that the DT model produced. This was 

noticed in the weighted tardiness and rescheduling cost. Both KPIs had high errors, reaching 

almost 20% in the case of weighted tardiness. Rescheduling cost relied on the rescheduling 

frequency as well as the number of tasks to be rescheduled. This process is quite complex and 

characterized by high levels of unpredictability. This is because those KPIs are unpredictable 

and rely on other factors, and therefore, it is difficult to obtain accurate value estimations. This 

was also proved by the high accuracy of the DT model for the KPIs with smaller variations than 

the aforementioned KPIs.  

Moreover, the developed DT methodology proved to be flexible and easy to use. The same 

methodology can be applied in a different case. The only part that must be altered is the 

definition of control parameters. In the current case, six factors were used. A limitation that 

arises with the method is that the experiments that must be conducted have to be performed 

based on an orthogonal array. This poses some limitations because standard orthogonal arrays 

are limited and might not fit other cases. For that reason, the construction of an orthogonal array 

is mandatory, which makes the process more complex.  
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The level of accuracy of the DT model is heavily dependent on the number of levels that 

each factor has. For that reason, five-level factors were selected to capture the behavior of each 

factor level. This was also proven by the DT coefficient graphs presented in Annex 2. The 

graphs show that the influence of each factor was not linear but a mode complex curve, 

requiring more than three points to be defined. The graphs in Annex 2 were produced by fitting 

a mathematical model between the calculated points from the DT methodology presented in 

chapters 4.12. The selected fitting method was a piecewise smoothed spline. After 

experimentation, this method produced the optimal results compared with other fitting methods.  

Furthermore, the absolute values were converted to relative values based on the estimated 

total cost and time for a product to be able to use the same results for other cases. The absolute 

values of PC and time can vary greatly and it is impossible to run simulations for all the 

combinations. However, if two products have different absolute values but the ratios are the 

same, the performance results from one product can be used for the other as well. 

6.7 ZDM Mapping Results Discussion 

Using the results from Research Question 1 and Research Question 2, the ZDM maps for 

the presented industrial use case (chapter 5) were produced and presented in chapter 5.3.3, and 

the results answered Research Question 3. 

The ZDM mapping results revealed that the smaller the defect rate in a station, the greater 

advantage of the predict – prevent strategy. This is because in cases where the defect rate is 

high, the frequent “small” prevention actions that the predict – prevent strategy imposes have 

a negative impact on the performance of the manufacturing system. Therefore, in cases with a 

defect rate lower than 3%, predict – prevent is the dominant ZDM strategy and the most 

efficient.  

Furthermore, a pattern was observed regarding the manufacturing process and ZDM 

performance. In more detail, in the current industrial case there were three manufacturing 

process categories being used: assembly, manufacturing of the primary components, and 

processes for adding features to the existing components. MFGs 202 and 205 performed the 

process of adding features to the existing components and both showed a common ZDM 

behavior. In both cases, detect – repair was the best-performing ZDM strategy followed by 

detect – prevent up to a certain point where predict – prevent overlapped and became the second 

ZDM strategy. In addition, a crucial point is that all three ZDM strategies were very close 

together, something not observed in the other MFGs performing different manufacturing 

processes. Additionally, a common trend in the performance of the ZDM strategies was 

observed for MFGs performing the manufacturing of primary components (207, 208, 209, 211, 

212, 213, and 214). In all those MFGs, the dominant ZDM strategy was predict – prevent, 

showing an almost-constant performance drop regardless of the values of the ZDM parameters. 

In both manufacturing processes, the ZDM behavior demonstrated similar trends in each case, 

which is due to the fact that those manufacturing processes were not dependent on other 

processes (manufacturing of primary components) or they only depended on the previous one 

(the addition of features to existing components). On the other hand, for the assembly operation, 

the results were not following a common trend as observed with the other two manufacturing 

processes. This was also due to the fact that the assembly operation was heavily dependent on 

the dynamics of the MFGs providing the components for the assembly. Therefore, the more 

uncertainty and complexity is introduced to an MFG, the more complex the ZDM strategies’ 

behavior becomes, and tools such as the proposed one are critical for the correct design of the 

implementation of the ZDM concept. 

Based on the results of the experiments, MFG 204 where task 104 was performed exhibited 

unique characteristics compared with the other MFGs. This is because at that stage an assembly 

operation is performed combining three subcomponents into one (BoP, Figure 33). This makes 
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the MFG critical and susceptible to quality issues. Furthermore, the implementation or an 

unsuitable ZDM strategy may cause great losses (Figure 64) and up to 63% decreased 

performance.  

Combining the ZDM mapping results presented in chapter 5.3.3 and the preliminary product 

analysis presented in chapter 5.1.1, the following can be concluded. In Table 22, the higher the 

negative value of the difference, the higher the impact of the incorporation of the estimated 

defect rate on the solution, and predict – prevent was not as efficient as detect – repair or detect 

– prevent. This is because in cases with more defects and higher impact, frequent prevention 

actions reduced the performance of the system. Furthermore, from the same product analysis it 

could be concluded that when the relative difference between the product utility value with and 

without the defect rate is positive, then the most effective ZDM strategies are detect – repair 

and detect – prevent. Moreover, as was mentioned before, if this relative difference is negative 

then predict – prevent is the most suitable ZDM approach to select. 

6.7.1 ZDM mapping results utilization 

The use of the developed DT model helped to map the performance of each ZDM strategy 

for each of the MFGs. This is extremely helpful for manufacturers because they can select the 

best ZDM configuration for their case. At this point it should be mentioned that some of the 

factor combination sets may have nonrealistic values and might be impossible to implement 

with current technologies. Therefore, the produced graphs should be used in a specific way and 

not simply by selecting the best-performing strategy with the factor set with the best result. 

Instead, there are two different ways that manufacturers can utilize those results. The first is 

when a manufacturer wants to establish a product quality improvement process at certain 

manufacturing stages and asks several third parties to provide a solution for the problem that 

the manufacturer faces or when the manufacturer estimates that will phase quality issues, if the 

production is at the design stage. When the manufacturer has all potential solutions, they can 

evaluate them using the graphs presented in chapter 5.3.3. Simply by giving the ZDM 

parameters of each of the provided solutions as an input, the manufacturer will be able to 

visualize where each solution is in the ZDM mapping graph, and that way, the best solution can 

be selected. The second way to use the results works the other way around. Based on the 

produced graphs, the manufacturer selects a range of ZDM parameter combinations, where the 

performance of the manufacturing systems is at an acceptable level, and then asks a third party 

to provide a solution with those specifications. This approach entails the danger that the 

manufacturer might select parameter ranges that are impossible to implement. By using those 

graphs, manufacturers can easily evaluate and rank alternative solutions for implementing ZDM 

into their manufacturing systems. Furthermore, the evaluation process is significantly faster and 

the results are repeatable and independent of the expertise of a single expert worker. 
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7 Conclusion 

The current research work focused on an emerging concept in quality control and 

improvement domains named ZDM. The goal of this study was to provide a tool for operating 

and designing a manufacturing system taking into consideration the principles that ZDM 

imposes. The study was structured around three Research Questions, presented in chapter 3. 

All of the Research Questions have been successfully answered in various chapter of the current 

thesis. More specifically, answers for Research Question 1 can be found in chapters 4.2, 4.3, 

4.4, 4.5, 4.7, and 4.8. Answers for Research Question 2 are found in chapters 4.12 and 5.2, and 

those for Research Question 3 are found in chapter 5.3.3. 

7.1 Scheduling Tool: Concluding Remarks 

The developed ZDM-oriented scheduling tool was described in chapter 4. All key 

components of the tool were presented separately, and furthermore, validation and performance 

evaluation were performed for each component before being used for the main experiments. In 

general, the results from chapter 4 answered Research Question 1 completely. More 

specifically, chapters 4.2, 4.3, 4.4, 4.5, 4.7, and 4.8 are the chapters related to ZDM 

implementation of the scheduling tool. 

The cost-based DSS was developed to automate the decision-making process in the face of 

detected defects during the production process for minimizing costs due to poor quality. This 

DSS was integrated with a dynamic scheduling system to simulate the manufacturing process 

and measure the performance of the developed cost-based DSS. Upon the assessment of these 

principal cost functions, the system was able to make autonomous cost-effective decisions 

between deferral, repair, and scrapping the products when the autonomous quality assessment 

device detected a defective product. For the evaluation of the performance of the developed 

DSS tool, a real-life industrial use case was employed from the semiconductor domain. The 

results from the simulation showed improvement in the production system overall by 7.47%, 

which is a significant improvement. This performance improvement was measured with three 

main KPIs: overall tardiness, makespan, and total production cost, which included the machine 

operational cost, setup cost, raw material cost, and cost regarding delay penalties. In the current 

industrial case, the orders were delay-sensitive and the penalty was proportional to the OC and 

tardiness. The DSS solution was outperformed in terms tardiness and makespan in both the 

discard and benchmark cases, where in terms of total cost the DSS solution was very close to 

the ideal cost by 7.07%. 

Four heuristic algorithms were developed and tweaked to enhance their performance and 

achieve high-quality schedules quickly. The alteration was the addition of an extra parameter, 

“Length,” for creating schedules that are more balanced. In addition, each customer’s order was 

prioritized for use during the optimization problem. The orders were sorted based on their due 

date, OV, and customer profile. The four developed heuristic algorithms were MC, which is 

based on the price of the operations on each machine; SPT, which places the operation on the 

machine that performs the fastest; sum of the SPT (SumSPT), which looks for the smallest sum 

of processing time at each operation assignment to a machine; and ECM, which places the 

operation on the machine with the smallest sum, but takes into account the processing time of 

the operation to be placed. The developed algorithms were tested under a real-life scenario with 
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promising results. In general, the addition of the prioritization level to the existing heuristic 

showed that it can improve the resulting schedule. In addition, the best algorithm was the ECM, 

which considered the result of the previous assignments, and therefore produced better and 

more balanced schedules. Tabu search improved the initial solution on average by 7.481%. On 

the other hand, a significant difference existed between the computation time of the tabu search 

and the developed heuristic algorithms, with a relative difference of 199.152%. Therefore, the 

ECM algorithm can be used without optimization in cases where the rescheduling of production 

is required very often for counteracting unexpected events, thereby achieving ZDM. 

The multi-order evaluation component had two parts: the first was the ranking of the 

individual orders for following that sequence in the scheduling process and not “first come first 

served.” This order ranking approach took the OV into consideration, the specific customer 

importance and ordering frequency, and the available timeframe for finishing the specific order. 

The second part of the proposed methodology was a two-level criteria evaluation approach 

during the rescheduling process. The additional extra level allowed the incorporation of the OC 

into the measured criteria used by the scheduling tool. The criteria used were the order 

makespan, tardiness, production cost, and delay cost. The proposed method was tested through 

a real-life industrial scenario from the semiconductor domain utilizing a semi-automated 

assembly line. Two scenarios were simulated, one using single-level criteria evaluation and one 

using the current proposal. The simulation results showed that the proposed method could 

efficiently handle rush orders and in general the rescheduling of the production under 

investigation. The current method created 5.615% better schedules for the given demand profile 

compared with the single-level approach. 

The events management algorithm allows companies to cope with contemporary production 

while maintaining very high-quality standards. Indeed, most of the factors analyzed are from 

the ZDM concept, which has the aim of achieving higher quality by eliminating defective parts. 

The model developed is based on the Design of Experiments method, which allows the 

identification of the optimal setting for tuning parameters and the contribution of each 

parameter to the solution. The ANOM method has outlined that the changes in the values of the 

factors could significantly affect the solution quality. The factors with the highest effect were 

NORT, NPRT, and PH. The ANOVA method highlighted that the factors with the highest 

contribution are NORT, NPRT, and PH; they accounted for almost 79%. Moreover, thanks to 

the support of linear graphs, the most significant interactions were analyzed to understand the 

effect of combinations of factors on solution quality. In this way, it was possible to develop a 

tool that will guide companies to react to unexpected events in the most effective way by 

identifying the exact action time. 

7.2 Digital Twin & Results: Concluding Remarks 

The proposed methodology for creating a DT model for describing the results of the 

developed scheduling tool without running the simulation proved to be easy to use and very 

efficient, successfully answering Research Question 2. The DT model had six control 

parameters that were defined from the ZDM concept. The same methodology can be used with 

different numbers of parameters and levels according to the needs of the modeler. A series of 

2250 random experiments were performed to calculate the accuracy of the created DT model. 

Those experiments were simulated using the developed scheduling tool and the utility values 

were calculated. Using the same random experiments and the DT model the predicted utility 

values were calculated. Therefore, the accuracy is the relative difference between the actual and 

the predicted utility values. The average accuracy of the utility value DT model was 98.934%, 

which was considered very accurate. Using the same results, from the random experiments, 

individual DT models were developed for each KPI. On average, the accuracy of all KPI models 

was 93.2%, which is also acceptable. More specifically, 12 out of 18 KPIs had very high 
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accuracy, more than 95%, and the rest of the KPIs had an accuracy between 80% and 95%. 

Those KPIs were those with the highest fluctuation, and therefore, the model was unable to 

predict the value with high accuracy. Each simulation (a total of 1125 simulations were 

performed), for the creation of the DT model, required on average 2.5 hours of computation 

time to solve the given ZDM scenario, which in a real manufacturing environment is 

prohibitive. On the other hand, the produced model could estimate the output of the scheduling 

tool for different ZDM parameter values in less than a second, making the calculation of the 

results presented in chapter 5.3.3 possible. 

Before the creation of the DT model, a preliminary analysis on the product under 

investigation was performed with the goal of identifying the criticality of each MFG in terms 

of implementing a ZDM strategy. The results from the preliminary product characteristics 

analysis indicated the findings are in line with the results of the use of the DT model, and some 

behavioral patterns could be identified. 

The produced DT model was used to map the ZDM strategies’ performance for each MFG, 

to provide manufacturers with the ability to select the best-performing ZDM strategy for their 

case (answering Research Question 3). Those maps can be very helpful to manufacturers in 

cases were a decision is required for the selection of equipment and strategies for implementing 

ZDM. Furthermore, they are meant to provide repeatable decisions and standardization for 

quality improvement design. One other advantage that the current methodology provides is user 

friendliness; the model is controlled only by six key ZDM parameters and therefore the only 

change that the manufacturers need to make is to plug in the ZDM parameters they desire to 

visualize where on the curve their selections lead, thus comparing and viewing the performance 

of their choices. The flexibility of the proposed methodology and tool can also be very useful 

and handy in cases where a quick reconfiguration of the production is required to adapt to 

market needs, as was required during the COVID-19 pandemic. A limitation of the current 

approach is that the presented methodology is use-case-specific, and therefore, if the use case 

changes, then the experiments and the analysis should be performed again. In chapter 7.3, some 

future steps are analyzed to solve this problem in the future. 

7.3 Future Research Steps 

Future research steps should focus mainly on the generalization of the developed tools and 

methodologies. More specifically, the current ZDM analysis was performed based on a specific 

use case. A detailed study is required to demonstrate if the concept presented in chapter 4.11, 

with the conversion of the absolute values to relative ones, can be generalized. This is required 

to be able to apply ZDM strategy trends from different industrial cases to others because the 

defined ratios are the same or similar. Additionally, a study is required to examine whether the 

ZDM trends for each MFG can be obtained by simulating only the desired MFG and not the 

entire production. This is considered for saving valuable time from simulating MFG nodes that 

are not necessary. Moreover, this will push toward the generalization of the method even 

further. Furthermore, the presented methodology regarding the creation of the DT method 

requires some enhancement to make it flexible enough to fit most cases. Currently the presented 

methodology is limited by the standard orthogonal arrays, which are themselves limited. The 

generalization of the method means that a method must be developed for the construction of 

orthogonal arrays to meet requirements and not be limited by the specifications of standard 

orthogonal arrays. 
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Annex 1 (simulation results, Utility Values) 

• ZDM1: Detect – Repair  

• ZDM2: Detect – Prevent 

• ZDM3: Predict – Prevent 

MFG 1 

ZDM1 ZDM2 ZDM3 

0.6698 0.6665 0.6428 

0.6706 0.6665 0.6528 

0.6623 0.6517 0.6441 

0.6688 0.6766 0.6514 

0.6978 0.6974 0.6586 

0.6683 0.6500 0.6436 

0.6646 0.6456 0.6502 

0.6503 0.6388 0.6471 

0.6636 0.6600 0.6455 

0.6698 0.6701 0.6493 

0.6483 0.6429 0.6535 

0.6483 0.6394 0.6540 

0.6350 0.6273 0.6506 

0.6295 0.6335 0.6640 

0.6613 0.6615 0.6451 

0.6426 0.6309 0.6662 

0.6378 0.6319 0.6474 

0.6100 0.6040 0.6475 

0.6233 0.6245 0.6610 

0.6546 0.6511 0.6603 

0.6273 0.6055 0.6541 

0.6067 0.5901 0.6658 

0.5997 0.6012 0.6879 

0.6086 0.6082 0.6423 

0.6370 0.6315 0.6637 
 

MFG 2 

ZDM1 ZDM2 ZDM3 

0.6601 0.6572 0.6160 

0.6657 0.6642 0.6076 

0.6524 0.6493 0.6183 

0.6627 0.6638 0.5936 

0.6691 0.6644 0.6032 

0.6533 0.6161 0.6014 

0.6557 0.6398 0.6627 

0.6436 0.6529 0.6302 

0.6582 0.6561 0.6121 

0.6223 0.6257 0.5947 

0.6449 0.6524 0.6061 

0.6390 0.6199 0.5978 

0.6322 0.6281 0.6609 

0.6120 0.6107 0.6379 

0.6230 0.6198 0.6125 

0.6335 0.6079 0.6456 

0.6349 0.6360 0.5966 

0.5907 0.5928 0.6153 

0.6129 0.6102 0.5882 

0.6124 0.6140 0.6252 

0.6235 0.5755 0.5975 

0.5888 0.5780 0.6377 

0.5880 0.5973 0.6332 

0.6012 0.6020 0.5981 

0.5983 0.6016 0.6261 
 

MFG 3 

ZDM1 ZDM2 ZDM3 

0.6489 0.6766 0.6016 

0.6681 0.6698 0.5947 

0.6585 0.6539 0.5916 

0.6664 0.6695 0.6034 

0.6772 0.6723 0.5737 

0.6643 0.6288 0.5671 

0.6577 0.6234 0.6764 

0.6525 0.6662 0.6082 

0.6656 0.6621 0.6066 

0.6254 0.6362 0.6073 

0.6508 0.6641 0.5740 

0.6487 0.6202 0.5978 

0.6412 0.6355 0.5996 

0.6052 0.6099 0.6701 

0.6323 0.6273 0.6268 

0.6432 0.6081 0.5948 

0.6450 0.6460 0.5753 

0.5989 0.6181 0.6501 

0.6136 0.6220 0.6227 

0.6233 0.6213 0.6065 

0.6332 0.6242 0.5886 

0.5946 0.6011 0.6806 

0.5945 0.5889 0.6304 

0.6055 0.6024 0.6278 

0.6137 0.6117 0.5747 
 

MFG 4 

ZDM1 ZDM2 ZDM3 

0.5972 0.5441 0.6251 

0.6238 0.5533 0.6304 

0.6147 0.5465 0.6539 

0.5936 0.5540 0.6312 

0.4876 0.5348 0.6349 

0.6283 0.5329 0.6376 

0.5826 0.5559 0.6831 

0.5753 0.5608 0.6686 

0.6135 0.5475 0.6379 

0.5555 0.5049 0.5792 

MFG 5 

ZDM1 ZDM2 ZDM3 

0.6853 0.6679 0.6656 

0.6878 0.6714 0.6471 

0.6736 0.6583 0.6389 

0.6737 0.6671 0.6257 

0.6565 0.6777 0.6586 

0.6761 0.6540 0.6212 

0.6810 0.6612 0.6225 

0.6664 0.6577 0.6408 

0.6773 0.6602 0.6415 

0.6400 0.6418 0.6212 

MFG 6 

ZDM1 ZDM2 ZDM3 

0.6845 0.6710 0.6521 

0.6930 0.6665 0.6586 

0.6761 0.6621 0.6475 

0.6751 0.6706 0.6582 

0.6565 0.6690 0.6555 

0.6793 0.6558 0.6491 

0.6842 0.6648 0.6810 

0.6702 0.6451 0.6660 

0.6763 0.6624 0.6469 

0.6509 0.6418 0.6482 
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0.5802 0.5525 0.6178 

0.6277 0.5036 0.6330 

0.5649 0.5018 0.6334 

0.5274 0.4983 0.6895 

0.5384 0.4961 0.6222 

0.5896 0.4726 0.6805 

0.6011 0.5260 0.6203 

0.5612 0.5027 0.6367 

0.5250 0.4984 0.6598 

0.5218 0.4921 0.6675 

0.5541 0.5075 0.6237 

0.5154 0.5068 0.6911 

0.5313 0.4669 0.6820 

0.5771 0.4801 0.6623 

0.4957 0.4666 0.6119 
 

0.6636 0.6536 0.6315 

0.6635 0.6427 0.6297 

0.6587 0.6365 0.6716 

0.6292 0.6243 0.6686 

0.6339 0.6304 0.6139 

0.6551 0.6382 0.6287 

0.6615 0.6414 0.6258 

0.6139 0.6012 0.6324 

0.6293 0.6123 0.6348 

0.6285 0.6236 0.6356 

0.6441 0.6058 0.6463 

0.6048 0.5924 0.6727 

0.6144 0.6100 0.6593 

0.6198 0.6032 0.6357 

0.6236 0.6110 0.6302 
 

0.6617 0.6457 0.6390 

0.6667 0.6431 0.6433 

0.6581 0.6352 0.6846 

0.6362 0.6226 0.6459 

0.6463 0.6345 0.6429 

0.6570 0.6376 0.6521 

0.6612 0.6368 0.6545 

0.6242 0.6033 0.6450 

0.6365 0.6198 0.6842 

0.6354 0.6242 0.6832 

0.6449 0.6169 0.6475 

0.6143 0.5960 0.6668 

0.6134 0.5995 0.6801 

0.6263 0.6062 0.6495 

0.6186 0.6045 0.6569 
 

MFG 7 

ZDM1 ZDM2 ZDM3 

0.6929 0.6937 0.6862 

0.6919 0.6906 0.6871 

0.6761 0.6751 0.6875 

0.6746 0.6747 0.6859 

0.6760 0.6741 0.6871 

0.6892 0.6851 0.6814 

0.6819 0.6738 0.6834 

0.6692 0.6637 0.6882 

0.6644 0.6659 0.6863 

0.6535 0.6573 0.6843 

0.6708 0.6658 0.6844 

0.6669 0.6622 0.6866 

0.6534 0.6486 0.6878 

0.6383 0.6364 0.6878 

0.6401 0.6445 0.6825 

0.6609 0.6527 0.6866 

0.6553 0.6534 0.6865 

0.6329 0.6297 0.6840 

0.6311 0.6328 0.6889 

0.6305 0.6284 0.6831 

0.6448 0.6378 0.6873 

0.6317 0.6228 0.6868 

0.6191 0.6171 0.6883 

0.6179 0.6154 0.6850 

0.6160 0.6167 0.6907 
 

MFG 8 

ZDM1 ZDM2 ZDM3 

0.6959 0.6915 0.6832 

0.6937 0.6910 0.6948 

0.6796 0.6790 0.6860 

0.6744 0.6732 0.6866 

0.6758 0.6735 0.6860 

0.6870 0.6836 0.6882 

0.6832 0.6798 0.6903 

0.6692 0.6702 0.6862 

0.6630 0.6633 0.6901 

0.6570 0.6564 0.6887 

0.6697 0.6652 0.6832 

0.6673 0.6633 0.6902 

0.6538 0.6535 0.7016 

0.6408 0.6430 0.6909 

0.6427 0.6382 0.6838 

0.6593 0.6551 0.6852 

0.6549 0.6558 0.6898 

0.6359 0.6333 0.6869 

0.6321 0.6311 0.6941 

0.6350 0.6323 0.6852 

0.6452 0.6387 0.6894 

0.6296 0.6284 0.6937 

0.6198 0.6220 0.6883 

0.6158 0.6164 0.6860 

0.6157 0.6154 0.6913 
 

MFG 9 

ZDM1 ZDM2 ZDM3 

0.6956 0.6956 0.6851 

0.6919 0.6914 0.6853 

0.6786 0.6782 0.6851 

0.6750 0.6739 0.6877 

0.6790 0.6741 0.6872 

0.6874 0.6849 0.6834 

0.6831 0.6771 0.6844 

0.6695 0.6673 0.6881 

0.6667 0.6655 0.6870 

0.6593 0.6589 0.6842 

0.6716 0.6650 0.6831 

0.6678 0.6617 0.6882 

0.6533 0.6510 0.6880 

0.6438 0.6404 0.6880 

0.6421 0.6490 0.6813 

0.6609 0.6543 0.6850 

0.6567 0.6544 0.6896 

0.6336 0.6358 0.6873 

0.6319 0.6326 0.6866 

0.6298 0.6329 0.6890 

0.6440 0.6392 0.6870 

0.6327 0.6240 0.6864 

0.6226 0.6209 0.6917 

0.6153 0.6144 0.6886 

0.6128 0.6167 0.6884 
 

MFG 10 

ZDM1 ZDM2 ZDM3 

0.6674 0.6588 0.5838 

0.6829 0.6446 0.5954 

MFG 11 

ZDM1 ZDM2 ZDM3 

0.6984 0.7011 0.7061 

0.6935 0.6956 0.7101 

MFG 12 

ZDM1 ZDM2 ZDM3 

0.6946 0.6971 0.6999 

0.6926 0.6926 0.6828 
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0.6642 0.6300 0.5764 

0.6650 0.6556 0.5718 

0.6479 0.6496 0.5655 

0.6585 0.6111 0.5855 

0.6734 0.5785 0.5853 

0.6537 0.6381 0.5802 

0.6755 0.6562 0.5898 

0.6305 0.6150 0.5750 

0.6488 0.6305 0.5700 

0.6621 0.5893 0.5938 

0.6522 0.6093 0.5835 

0.6140 0.5969 0.6120 

0.6350 0.6197 0.5793 

0.6487 0.5637 0.5760 

0.6562 0.6312 0.5808 

0.5924 0.5936 0.5727 

0.6270 0.6001 0.6143 

0.6251 0.6114 0.5812 

0.6359 0.5438 0.5926 

0.5816 0.5431 0.5650 

0.5985 0.5697 0.5888 

0.6176 0.5960 0.5779 

0.6163 0.5989 0.5786 
 

0.6798 0.6814 0.6926 

0.6733 0.6737 0.7106 

0.6745 0.6738 0.7060 

0.6893 0.6905 0.6900 

0.6851 0.6846 0.7102 

0.6696 0.6709 0.7104 

0.6622 0.6633 0.7090 

0.6601 0.6646 0.7058 

0.6736 0.6735 0.7075 

0.6659 0.6677 0.7024 

0.6538 0.6530 0.6990 

0.6429 0.6466 0.7115 

0.6426 0.6445 0.7095 

0.6629 0.6623 0.7110 

0.6559 0.6563 0.7086 

0.6377 0.6400 0.7100 

0.6338 0.6331 0.7104 

0.6338 0.6326 0.6871 

0.6448 0.6457 0.7083 

0.6371 0.6386 0.7115 

0.6238 0.6253 0.7126 

0.6163 0.6165 0.7094 

0.6090 0.6084 0.7110 
 

0.6802 0.6794 0.6809 

0.6738 0.6728 0.6869 

0.6715 0.6771 0.6884 

0.6874 0.6802 0.6921 

0.6825 0.6791 0.6955 

0.6680 0.6696 0.6887 

0.6647 0.6634 0.7095 

0.6543 0.6509 0.6875 

0.6713 0.6710 0.6892 

0.6661 0.6652 0.6957 

0.6529 0.6535 0.6983 

0.6392 0.6402 0.7065 

0.6410 0.6399 0.6947 

0.6612 0.6561 0.6978 

0.6564 0.6545 0.6897 

0.6365 0.6353 0.6918 

0.6304 0.6285 0.6911 

0.6308 0.6280 0.6998 

0.6448 0.6413 0.6889 

0.6330 0.6313 0.7068 

0.6218 0.6191 0.6991 

0.6145 0.6155 0.6950 

0.6137 0.6142 0.6875 
 

MFG 13 

ZDM1 ZDM2 ZDM3 

0.6934 0.6949 0.6926 

0.6913 0.6904 0.6830 

0.6800 0.6753 0.6885 

0.6766 0.6733 0.6863 

0.6773 0.6775 0.6892 

0.6857 0.6812 0.6859 

0.6836 0.6782 0.6905 

0.6686 0.6677 0.6874 

0.6650 0.6671 0.6885 

0.6585 0.6607 0.6832 

0.6701 0.6667 0.6846 

0.6649 0.6636 0.6875 

0.6536 0.6511 0.6882 

0.6374 0.6440 0.6899 

0.6464 0.6455 0.6827 

0.6604 0.6557 0.6898 

0.6555 0.6539 0.6866 

0.6356 0.6351 0.6902 

0.6273 0.6312 0.6887 

0.6334 0.6373 0.6865 

0.6454 0.6399 0.6873 

MFG 14 

ZDM1 ZDM2 ZDM3 

0.6890 0.6877 0.6721 

0.6866 0.6805 0.6730 

0.6767 0.6706 0.6730 

0.6730 0.6754 0.6656 

0.6745 0.6784 0.6687 

0.6841 0.6716 0.6647 

0.6791 0.6696 0.6657 

0.6685 0.6617 0.6662 

0.6655 0.6666 0.6670 

0.6502 0.6510 0.6687 

0.6688 0.6561 0.6732 

0.6656 0.6525 0.6669 

0.6532 0.6481 0.6740 

0.6321 0.6375 0.6919 

0.6466 0.6451 0.6647 

0.6596 0.6448 0.6656 

0.6563 0.6479 0.6711 

0.6237 0.6223 0.6629 

0.6299 0.6272 0.6620 

0.6350 0.6341 0.6694 

0.6439 0.6319 0.6649 

MFG 15 

ZDM1 ZDM2 ZDM3 

0.6673 0.6711 0.6515 

0.6789 0.6771 0.6008 

0.6689 0.6589 0.5994 

0.6736 0.6736 0.6025 

0.6814 0.6808 0.6017 

0.6713 0.6529 0.5914 

0.6660 0.6495 0.6035 

0.6584 0.6542 0.6166 

0.6680 0.6683 0.6001 

0.6368 0.6349 0.5971 

0.6634 0.6473 0.6013 

0.6583 0.6331 0.5908 

0.6500 0.6381 0.6081 

0.6067 0.6220 0.5989 

0.6352 0.6366 0.6215 

0.6521 0.6349 0.5982 

0.6528 0.6452 0.6058 

0.6005 0.5974 0.5983 

0.6176 0.6143 0.6320 

0.6298 0.6297 0.6017 

0.6406 0.6150 0.6119 
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0.6330 0.6284 0.6928 

0.6213 0.6181 0.6970 

0.6175 0.6196 0.6864 

0.6176 0.6197 0.6895 
 

0.6210 0.6117 0.6779 

0.6138 0.6109 0.6784 

0.6151 0.6138 0.6711 

0.6140 0.6182 0.6695 
 

0.6043 0.5943 0.6104 

0.6017 0.6026 0.6119 

0.6136 0.6080 0.5964 

0.6143 0.6149 0.6136 
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Annex 2 (Utility Value digital twin model coefficients plots) 
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Annex 3 (KPIs ANOM diagrams) 

A. Detection Repair ANOM KPIs results 
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B. Detection Prevention ANOM KPIs results 
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C. Prediction Prevention ANOM KPIs results 
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Annex 4 (Orthogonal Arrays used in experiments) 

A. L25 Orthogonal Array  

Table 49: L25 Orthogonal Array 

 Factors 

Exp. No. X1 X2 X3 X4 X5 X6 

1 1 1 1 1 1 1 

2 1 2 2 2 2 2 

3 1 3 3 3 3 3 

4 1 4 4 4 4 4 

5 1 5 5 5 5 5 

6 2 1 2 3 4 5 

7 2 2 3 4 5 1 

8 2 3 4 5 1 2 

9 2 4 5 1 2 3 

10 2 5 1 2 3 4 

11 3 1 3 5 2 4 

12 3 2 4 1 3 5 

13 3 3 5 2 4 1 

14 3 4 1 3 5 2 

15 3 5 2 4 1 3 

16 4 1 4 2 5 3 

17 4 2 5 3 1 4 

18 4 3 1 4 2 5 

19 4 4 2 5 3 1 

20 4 5 3 1 4 2 

21 5 1 5 4 3 2 

22 5 2 1 5 4 3 

23 5 3 2 1 5 4 

24 5 4 3 2 1 5 

25 5 5 4 3 2 1 
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B. L32 Orthogonal Array and primary results of chapter 4.8 

• f1: NORT 

• f2: NORDT 

• f3: NDRT 

• f4: NDDRT 

• f5: NPRT 

• f6: NPDRT 

• f7: Prediction horizon 

Table 50: L32 orthogonal Array  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 23 24 31 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 

3 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 

4 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 

5 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 2 2 2 1 2 

6 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 2 1 

7 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 1 

8 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 

9 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 2 1 2 

10 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 2 1 2 1 1 2 1 

11 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 1 2 2 2 1 

12 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 2 2 1 2 1 1 1 2 

13 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 1 1 1 1 

14 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 2 2 1 1 2 2 2 2 

15 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2 1 1 2 2 

16 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 2 2 1 1 2 2 1 1 

17 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 2 

18 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 2 1 2 1 

19 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 1 1 2 2 1 

20 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 2 2 1 1 2 

21 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 1 1 

22 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 2 1 2 1 1 2 2 2 

23 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 2 1 2 2 

24 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 1 

25 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 1 1 1 

26 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 1 1 2 1 2 2 2 

27 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 2 2 

28 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 1 2 1 2 1 1 

29 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 2 1 2 1 2 

30 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 2 1 1 1 2 1 2 1 

31 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 2 1 2 2 1 

32 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 1 1 2 1 1 2 

 

 
Figure 76: L32 interaction linear graph with experiment factors mapped 
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Table 51: L32 Orthogonal array with factors and utility value 
L32 Column  1 4 8 15 2 16 22  

Exp. No F1 F2 F3 F4 F5 F6 F7 Utility Value  

1 1 1 1 1 1 1 1 0.5143 

2 1 1 1 1 1 2 2 0.2820 

3 1 1 2 2 1 1 1 0.4661 

4 1 1 2 2 1 2 2 0.0798 

5 1 2 1 2 1 1 2 0.2366 

6 1 2 1 2 1 2 1 0.3729 

7 1 2 2 1 1 1 2 0.2881 

8 1 2 2 1 1 2 1 0.3739 

9 1 1 1 2 2 1 2 0.5315 

10 1 1 1 2 2 2 1 0.6800 

11 1 1 2 1 2 1 2 0.5492 

12 1 1 2 1 2 2 1 0.5280 

13 1 2 1 1 2 1 1 0.5747 

14 1 2 1 1 2 2 2 0.4722 

15 1 2 2 2 2 1 1 0.583 

16 1 2 2 2 2 2 2 0.4818 

17 2 1 1 2 1 1 1 0.3509 

18 2 1 1 2 1 2 2 0.1684 

19 2 1 2 1 1 1 1 0.3975 

20 2 1 2 1 1 2 2 0.0710 

21 2 2 1 1 1 1 2 0.1136 

22 2 2 1 1 1 2 1 0.3371 

23 2 2 2 2 1 1 2 0.1930 

24 2 2 2 2 1 2 1 0.2893 

25 2 1 1 1 2 1 2 0.3725 

26 2 1 1 1 2 2 1 0.4418 

27 2 1 2 2 2 1 2 0.4311 

28 2 1 2 2 2 2 1 0.3658 

29 2 2 1 2 2 1 1 0.4778 

30 2 2 1 2 2 2 2 0.3360 

31 2 2 2 1 2 1 1 0.3617 

32 2 2 2 1 2 2 2 0.2645 

 

Table 52: Interactions mapped to the L32 columns  

Factor Interactions L32 columns 

f1xf2 5 

f1xf3 9 

f1xf4 14 

f1xf5 3 

f1xf6 17 

f1xf7 23 

f2xf3 12 

f2xf4 11 

f2xf5 6 

f2xf6 20 

f3xf4 7 

f3xf5 10 

f3xf6 24 

f4xf5 13 

f4xf6 31 

f5xf6 18 
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Thesis: A dynamic scheduling tool and a methodology for creating digital twin of 

manufacturing systems for achieving Zero Defect Manufacturing, Thesis Advisor: Prof. 

Dimitris Kiritsis 

Jun 2017 – Jul 2017 Summer school University of Vienna  

“Next-Generation Enterprise Modelling in the Age of Internet of Things”  

(http://nemo.omilab.org/nemo/) 

Oct 2015 – Nov 2016  MSc Automation Systems (8.44/10) National Technical University of Athens (NTUA) 

Inter-Departmental course (direction “Manufacturing and Production Systems”) 

Master Thesis: “Design and build a powder management system for a prototype SLS machine 

and use robust techniques for the calibration of the machine” 

(http://www.mech.ntua.gr/en/sections/ttk) 

Sep 2008 – Jun 2014 BSc and MSc Mechanical Engineering (7.71/10) University of Patras 

Department of Mechanical Engineering and Aeronautics 

Master Thesis: “A platform for supporting decentralized manufacturing networks in the era 

of personalization” 

mailto:foivospsar@gmail.com
https://www.linkedin.com/in/foivos-psarommatis-b0a72893/
https://www.rosey.ch/
http://www.mech.ntua.gr/en/sections/ttk
http://dlautomation.gr/
http://lms.mech.upatras.gr/
http://nemo.omilab.org/nemo/
http://www.mech.ntua.gr/en/sections/ttk
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Awards & Accomplishments_______________________________________________ 

• Invited to participate to a project (ZDMterm) for the standardization of Zero Defect Manufacturing terminology lead by 

CEN-CENELEC and DIN standardization organizations (Kick off, of the ZDMP project October 2020). 

• Clinton Global Initiative University Fellowship 2016 (the concept of the proposed project was to improve health care 

services and quality of treatment (dental sector as use case), by developing a device which will allow doctors to manufacture 

personalized surgical implants on site in order to provide highly personalised treatment). The project funded from 

Angelopoulos foundation fellowship. 

• Patent 2016, “Methodology and structure for the manufacturing of customized dental implants at the operating room”, 

patent No. 20160100426 

• Best Paper Award (Burbidge Award ) (http://www.mckn.eu/2012/10/s-mc-s-at-the-apms-2012/) “Simulation-based design 

of production networks for manufacturing of personalised products” 

(http://www.springer.com/computer/information+systems+and+applications/book/978-3-642-40351-4)  

• The research project e-CUSTOM (A web based collaboration system for mass customisation), in which was one of the 

researchers, was evaluated together with 98 other FP7 FoF research projects and was selected as a Success Story. It was 

presented at the FoF Impact Workshop (11 and 12-03-2013, Brussels). 

(http://ec.europa.eu/research/industrial_technologies/events-fp7-draft-programme-2010_en.html & 

http://ec.europa.eu/research/industrial_technologies/pdf/fof-impact-workshop-11-12032013- agenda_en.pdf) 

Conference Attendance (With Paper Presentation)____________________________ 

• 53rd CIRP Conference on Manufacturing Systems (CIRP CMS, 2020). 

• 8th CIRP Conference on Assembly Technologies and Systems (CIRP CATS, 2020) 

• AMPS 2020 Conference in Advances in Production and Management systems 

• AMPS 2019 Conference in Advances in Production and Management systems  

• 52nd CIRP Conference on Manufacturing Systems (CIRP CMS, 2019). 

• APMS 2018 Conference in Advances in Production and Management systems. 

• PALM 2018 Conference on Product and Asset Lifecycle Management 

• 9th annual Clinton Global Initiative University meeting from April 1-3, 2016 at the University of California, Berkeley, US 

• 45th CIRP Conference on Manufacturing Systems (CIRP CMS, 2012). 

Computer Knowledge_____________________________________________________ 

Microsoft Office  Lanner WITNESS  
INTERNET  KiCAD  

MATLAB  Programming (VB, C, C++, 

Arduino, Python) 
 

Dassault Systems 

CATIA V5 
 Microsoft VISUAL STUDIO  

Autodesk AUTOCAD & 

360 
 Atmel STUDIO  

Other Interests & Skills___________________________________________________ 

• Technology, Computers, Engineering projects (designed and fabrication of engineering devices).Design and development 

of Smart home automations. Repair and maintain my family cars. 

• Sports (Mountain bike, Sailing, Ski, Table tennis, hiking, Scuba Diving, Model Race cars) 

• Traveling, music, table games, cinema, theatre and cultural events 

• First aid certified 

 

http://www.mckn.eu/2012/10/s-mc-s-at-the-apms-2012/
http://www.springer.com/computer/information+systems+and+applications/book/978-3-642-40351-4
http://ec.europa.eu/research/industrial_technologies/events-fp7-draft-programme-2010_en.html
http://ec.europa.eu/research/industrial_technologies/pdf/fof-impact-workshop-11-12032013-%20agenda_en.pdf



