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Abstract
Structured light generation having broad applications in different optical fields, is the topic of

this thesis. Our structured light generation strategy is based on applying periodic microoptical

elements at the refraction-diffraction limit, under a focused diverging source instead of a plane

wave. The high contrast pattern in the far-field is achieved for certain distances between the

source and periodic structure, where the self-imaging condition is satisfied. This phenomenon

is the basis of our strategy to obtain a high-contrast far-field distribution. Throughout this

thesis, we analytically, numerically, and experimentally examine the self-imaging condition

for our light generators. We engineer the structured light using two main strategies; modifying

the periodic microoptical element surface profile and modulate the source by applying an

optical element in its near-field.

For surface profile modulation, we apply a sinusoidal phase grating instead of conventional

periodic optical elements such as microlenses under a Gaussian beam illumination to increase

the number of points in the far-field distribution. We study the far-field distribution for thin

and thick sinusoidal phase gratings by comparing vectorial and scalar simulation tools for

paraxial and non-paraxial diffraction angles. By properly choosing the sinusoidal phase grat-

ing thickness, large numbers of peaks with a high field of view and uniform distribution in the

far-field can be achieved. We use the Two-photon Polymerization (2PP) as a rapid technique

to fabricate the sinusoidal phase grating and compare the measurement results with simula-

tions. This part of the thesis demonstrates that by properly defining the refractive-diffractive

microoptical element surface profile, we can achieve even more points in far-field compared

to other optical elements such as lens arrays.

In the next part, we engineer the structured light in the far-field by modifying the source

near-field. By bringing a dielectric microstructure in the source near-field, a source with

new optical characteristics is produced. For a dielectric microparticle, for example, a hot

spot i.e a photonic nanojet (PNJ) is generated in the shadow side surface of the structure

that can redistribute the dots in the far-field. We first numerically investigate the PNJ optical

characteristics by changing the microsphere diameter for diverging and converging sources of

low and high wavefront curvatures and compare with plane wave illumination. The PNJ shows

completely different behaviors under converging and diverging illuminations when changing

the particle size. In some cases, no hot spot is generated in the microparticle near-field. In

this way, we can generate different sources from low to high numerical apertures.

For the experimental evaluation, we employ a high-resolution interference microscopy (HRIM)

setup which is based on a Mach-Zehnder interferometer to record both the amplitude and
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Abstract

phase. Our setup has the flexibility to work with different illumination conditions from plane

wave to the Gaussian beam and also to observe both near-field and far-field distributions. We

study the far-field distribution for a microlens array under a focused diverging source that is

modulated by applying a microparticle in its near-field. With the microparticle in the source

near-field, a PNJ is generated and for this reason, the pattern field of view in the far-field is

modified. We record both the phase and amplitude in different planes and compare them

with simulation results. Finally, we numerically and experimentally study engineering the

distribution in the far-field under multiple coherently illuminating PNJs. Depending on the

PNJs arrangement in the near-field, different arbitrary distribution of points in the far-field is

achieved.

In summary, in this thesis, we studied various strategies to manipulate structured light charac-

teristics. The main characteristics include the contrast, field of view, and points distribution

uniformity. Our purpose is to generate large numbers of points and increase the field of view.

KEYWORDS: Diffraction, refraction, Gaussian beam, sinusoidal phase grating, microlens

array, high-resolution interference microscopy, photonic nanojet

vi



Zusammenfassung
Erzeugung strukturierter Lichtermuster haben breite Anwendungen in verschiedenen Be-

reichen der Optik und Sensorik. Unsere Strategie zur Erzeugung von strukturiertem Licht

basiert auf der Anwendung periodischer mikrooptischer Elemente an der Grenze zwischen

Brechung (geometrischer Optik) und Beugung (physikalischer Optik) sowie durch Benutzung

einer divergierenden Quelle anstatt einer ebenen Welle. Das kontrastreiche Lichtmuster im

Fernfeld wird bei bestimmten Abständen zwischen der Quelle und der periodischen Struk-

tur erreicht, bei welcher die Bedingung der Selbstabbildung erfüllt ist. Das Phänomen der

Selbstabbildung ist die Grundlage unserer Strategie zur Erzeugung spezieller, kontrastreicher

Fernfeldverteilungen. In dieser Arbeit untersuchen wir analytisch, numerisch und experimen-

tell die Selbstabbildungsbedingung für miniaturisierte Lichtgeneratoren. Wir verwenden zwei

Hauptstrategien: Modifizierung des Oberflächenprofils eines periodischen mikrooptischen

Elements und Modulation der Quelle durch Anwendung eines optischen Elements im Nahfeld

der Quelle.

Als Beispiel für die Modulation des Oberflächenprofils verwenden wir ein sinusförmiges

Phasengitter als periodischer mikrooptischer Elemente unter einer Beleuchtung mit einem

Gauß’schen Strahl. Wir zeigen das damit die Anzahl der Strukturen in der Fernfeldverteilung er-

höht werden kann. Wir vergleichen die Fernfeldverteilung für dünne und dicke Sinusphasengit-

ter, indem wir vektorielle und skalare Simulationswerkzeuge für paraxiale und nicht-paraxiale

Beugungswinkel einsetzen. Durch die richtige Wahl der Dicke des Sinus-Phasengitters können

im Fernfeld eine große Anzahl von Intensitätsmaxima bei gleichzeitigen hohen Sichtfeld und

gleichmäßiger Verteilung erreicht werden. Zur Realisierung verwenden wir die Zwei-Photonen-

Polymerisation (2PP) zur Herstellung verschiedener Sinus-Phasengitters und vergleichen die

Messergebnisse mit Simulationen. Dieser Teil der Arbeit zeigt, dass wir durch die richtige

Definition des Oberflächenprofils des refraktiv-beugenden mikrooptischen Elements noch

mehr Punkte im Fernfeld erreichen können als mit den willkürlich verwendeten optischen

Elementen wie z.B. Linsenarrays.

Im nächsten Teil der Arbeit erzeugen wir das strukturierte Licht im Fernfeld durch Modi-

fizieren des Quellen-Nahfeldes. Durch Aufbringen einer dielektrischen Mikrostruktur im

Quellennahfeld wird eine Quelle mit neuen optischen Eigenschaften erzeugt. Für ein dielektri-

sches Mikroteilchen wird zum Beispiel ein Intensitätsbündelung (Hot Spot) durch das Prinzip

des photonischer Nanojet (PNJ), auf der schattenseitigen Oberfläche der Struktur erzeugt.

Dieser Effekt ändert die Lichtverteilung im Fernfeld. Wir untersuchen zunächst numerisch

die optischen Eigenschaften des PNJ bei Änderung des Durchmessers einer Mikrokugel für
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Zusammenfassung

divergierende und konvergierende Quellen mit niedrigen und hohen Wellenfrontkrümmun-

gen. Der photonischer Nanojet PNJ zeigt bei konvergierender und divergierender Beleuchtung

durch Änderung der Partikelgröße ein völlig unterschiedliches Verhalten; in einigen Fällen

wird kein Hot Spot im Mikrokugel-Nahfeld erzeugt. Auf diese Weise können wir in einer ebene

verschiedene Quellen von niedriger bis hoher numerischer Apertur erzeugen, indem wir meh-

rere Mikrostrukturen in das Quellen-Nahfeld bringen.

Für die experimentelle Untersuchung verwenden wir einen neu entwickelten Interferenzauf-

bau mit hochauflösender Mikroskopie, der auf einem Mach-Zehnder-Interferometer basiert.

Damit können wir sowohl die Amplitude als auch die Phase im Nahfeld- als auch die Fern-

feldverteilung erfassen. Unser Aufbau hat die Flexibilität, mit verschiedenen Beleuchtungs-

bedingungen von der ebenen Welle bis zum Gaußschen Strahl zu arbeiten und ein präzises

Ausrichten aller Komponenten vornehmen. Wir untersuchen die Fernfeldverteilung für ein

Mikrolinsenarray unter einer fokussierten, divergierenden Quelle, die durch Aufbringen eines

Mikropartikels in ihrem Nahfeld moduliert wird. Mit dem Mikropartikel an der Quelle im Nah-

feld wird ein photonischer Nanojet PNJ erzeugt und aus diesem Grund wird das Lichtmuster

im Fernfeld ausgeweitet. Wir messen sowohl die Phase als auch die Amplitude in verschiede-

nen Ebenen auf und vergleichen sie mit den Simulationsergebnissen. Schließlich untersuchen

wir numerisch und experimentell die exakte Verteilung der Punkte im Fernfeld wenn mehrere

kohärent leuchtenden photonischer Nanojet PNJ vor der Quelle platziert werden. Abhängig

von der Anordnung der photonischer Nanojet PNJs im Nahfeld wird eine unterschiedliche

willkürliche Verteilung der Punkte im Fernfeld erreicht.

Zusammenfassend lässt sich sagen, dass wir in dieser Arbeit verschiedene Strategien zur

Manipulation der strukturierten Lichtcharakteristika untersucht haben. Als Kriterien haben

wir den Kontrasts, das Sichtfeld und die Gleichmäßigkeit der Punktverteilung herangezogen.

Wir haben dabei erfolgreich neue Strategien zur Erzeugung kontrastreicherer Verteilung von

Punkten mit vergrößerten Sichtfeld gefunden.

Schlüsselwörter: Beugung, Brechung, Gaußscher Strahl, Sinus-Phasengitter, Mikrolinsenar-

ray, hochauflösende Interferenzmikroskopie, photonischer Nanojet
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1 Introduction

The physical world around us is three-dimensional (3D); traditional optical sensors and cam-

eras can only record two-dimensional (2D) images and not the depth information [1]. In

recent decades, great advances have been achieved in research and industrialization of 3D

surface imaging technologies because of its comprehensive application in different fields.

Three dimensional surface imaging and sensing is referred to the measurement of coordinate

(x, y, z) of points on the surface of an object; the surface which is normally non-planar. Struc-

tured light generation is a principle technique for 3D surface imaging. As seen in Fig. 1.1,

structured light is illuminated and a 2D image is acquired from the pattern distribution in the

scene by making use of a camera. By analyzing the intensity distribution in the 2D image, the

dept information is extracted. The structured light 3D surface imaging is based on the field

distortion of the projected pattern in the scene.

Structured Light ProjectorCamera

Figure 1.1: Structured light for 3D surface imaging.

This technique has various applications including imaging, microscopy, and sensing [1–3].

Figure 1.2 illustrates some practical daily life applications of structured light generation in

smartphones, body position and dept recognition in Microsoft Kinect, Lidar systems, driver
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Chapter 1. Introduction

monitoring, and health care such as 3D surface imaging for dental applications.

Microsoft Kinect

Face 3D reconstruction in cellphone

Driver monitoring

Dental imaging

https://ams.com/

https://leddartech.com/

Figure 1.2: Example applications of 3D surface imaging in different fields, including smart-
phones, entertainment, automotive, and health care such as dental imaging [1].

On the other hand, optics is the area of studying the electromagnetic fields and their behavior

in interaction with matter. Many of the optical phenomena can be explained by classical

optics [2]. In the geometrical or refractive optics, the fields are treated as a package of straight

rays that refract and reflect at the interface between two mediums. Physical optics is a more

comprehensive study in which the electromagnetic fields are considered as waves, showing

diffraction, and interference effect. In this thesis, we will focus on structured light generation

based on physical optics. Here we first review two main categories of structured light genera-

tion strategies and then we will introduce our approach by giving an introduction to its basic

theory.

1.1 Structured light generation strategies

For some sensing applications such as face and body 3D reconstruction, generating large

numbers of dots with a wide field of view and equal intensity peaks in the far-field is essential

and also challenging to do. For this purpose, using micro-optical and diffractive optical

elements with different aspect ratios from low to high is a practical method especially in

terms of pattern field of view [4–7]. Figure 1.3 demonstrates the two concepts. Using binary

2



1.1. Structured light generation strategies

diffractive optical elements which are designed using optimization techniques produce a

defined functionality for structured pattern generation [8–10]. Using binary diffractive optical

elements, a uniform distribution of spots is designed in the far-field, as seen in Fig. 1.3(a).

However, using this method is limited by some effects: First, the design is monochromatic.

Second, there can be unwanted intensity in zero-order and outside the field of view due to

fabrication errors [11]. Not all diffraction orders are addressed and it is quite challenging to

design very high angle pattern distributions using this technique due to the very small feature

size [12].

(a) (b)

Figure 1.3: (a) Dot pattern generation for a binary diffractive optical element. A series of
well-defined dot positions are designed and dots are optimized for intensity. (b) Dot pattern
generation for a periodic refractive-diffractive optical element. Dots appear by diffraction and
the intensity distribution is designed by the surface profile of the micro-optical components.

Using small period refractive optical elements that combine refraction and diffraction is

another method for spot array generation in which the pattern distribution very much depends

on the surface profile of the optical element [8, 13–15]. In this case, as sketched in Fig. 1.3(b),

all diffraction orders can be used and the intensity distribution is managed by the form of

the structure. There is no very small feature but the precision of the surface profile needs

to be high. In this thesis, we will employ this strategy that is based on designing refractive-

diffractive optical elements such as microlenses and phase gratings. We investigate micro-

optical elements with a period of 50λ to 75λ which allows us to control both diffractive and

refractive effects [8]. As we explained, physical optics is a more precise investigation than

refractive optics in the refractive-diffractive regime. Many approximations still can be made in

physical optics, the waves can be treated as scalar electric fields for instance. Fourier optics is

a scalar approach in which the wavefronts are considered to be the superposition of plane

waves and the field distribution can be expressed by a Fourier transform. To further introduce

the topic, here we review two concepts based on the Fourier optics analysis.

3



Chapter 1. Introduction

1.1.1 Talbot effect Theory

The Talbot effect as a self-imaging concept was first observed by Henry Fox Talbot in 1835 [16].

For a diffraction grating under plane wave illumination, the image of the grating is repeated

at regular distances from the grating plane which is a multiple of so-called Talbot distance,

as seen in Fig. 1.4. Lord Rayleigh demonstrated that the Talbot distance is calculated by the

following formula [17]:

zT = 2P 2

λ
(1.1)

Where P is the period of diffraction grating and λ is the source wavelength. Talbot carpet is

observable in the grating near-field. Near-field here is referred to Fresnel region in the Fourier

optics.

Figure 1.4: The optical Talbot effect for monochromatic light, shown as a Talbot carpet. The
plane wave is illuminated from the left side on a grating, and the pattern is reproduced at
certain distances from the grating [18].

1.1.2 Lau effect Theory

Considering the so-called Lau effect for a periodic grating under a point source illumination,

the intensity distribution in the far-field varies according to the distance between the source

and the grating. As seen in the configuration in Fig. 1.5, a point source illuminates a lens

array at a certain distance. The image of the periodic structure is reproduced in the far-field at

specific distances of zT that is expressed by,

zT = M × P 2

2λ
× 1

N
(1.2)

Where P is the optical element period, λ is the source wavelength, M and N are integer values.

4
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P

𝒛𝑻

𝒛𝑻

(𝝀)
Point source

F
a

r-
fi

el
d

𝒛𝑻

M=1, N=1

Figure 1.5: The optical Lau effect for a point source monochromatic light. The point source
illuminates the periodic optical element at the certain distances of zT from MLA and the
pattern is reproduced in the far-field.

1.2 Objective and thesis outline

Light pattern generation is a practical strategy in different industrial fields. In this thesis,

our focus is on pattern generation for sensing and imaging system in smartphones. The

state of art 3D light projectors for mobile application has greatly advanced in recent years. A

highly compact point generator (3.5mm x 3.5mm x 3.5mm) with a large field of view of 71◦ x

51◦ (considering the Full width at half maximum definition) and 6k number of points have

been introduced as standard in the industry [19]. The number of points can even be further

increased up to 10k. In another well-known point generator technology which is already been

used in iPhone, the number of points can reach 30k [20]. Considering the great advances

in the design of light generators, our purpose is to introduce strategies to obtain a high FOV

and increase the number of points in the pattern. On the other side, the module should be

kept very compact and slim; a criterion that is important in industrial applications. For a

better understanding, we separately study the FOV and number of points as the figure of merit.

Initially, we investigate strategies to increase the number of points. Then, we will draw our

attention to enlarging the FOV. Finally, we introduce a scenario in which we can increase both

the number of points and FOV, simultaneously. Overall, we are mostly focused on increasing

the number of points in the pattern as it is a more difficult task to perform.

As we introduced our strategy, we apply a refractive-diffractive optical element for structured

light generation. More specifically, as it is seen in Fig. 1.6, the configuration which will be

studied in this thesis is a periodic microoptical element under a point source illumination; the

pattern distribution will be recorded in the far-field. As we explained earlier, the period of the

structure is between 50λ to 75λ. The periodic optical element can be a phase grating ( here,

we investigate a sinusoidal phase grating) or a microlens array with a square or hexagonal

lattice. The distance between the point source and the optical element is required to be the
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Lau distance zT to observe a high contrast image in the far-field.

Point source

Periodic optical element

Far-field Observation Plane

zT

Figure 1.6: Our structured light generation strategy.

The pattern distribution in the far-field is engineered by many parameters including the

source optical characteristics, periodic optical element geometry, the distance between the

source and optical element, etc. Our figure of merit is the pattern field of view (FOV) and the

pattern uniformity distribution. We aim to generate a high contrast pattern with a high FOV

and uniform distribution.

In chapter 2, we will review the scalar and vectorial tools for simulating our problem. Then,

we will analytically study the interdependence of parameters and introduce our strategies for

improving the figure of merit.

In chapter 3, we will demonstrate a 1D dot pattern generator for a sinusoidal phase grating

and compare different simulation tools for low and high structures. We will then compare the

simulations with experiments.

In chapter 4, a high-resolution optical microscopy system is presented and designed for record-

ing the phase and intensity in different planes.

In chapter 5, we numerically and experimentally record the near-field and far-field for a micro-

lens array under the green Gaussian beam illumination.

In chapter 6, the photonic nanojet (PNJ) phenomenon is introduced and theoretically inves-

tigated under different sources from low to high diverging and converging curvatures. This

chapter is a theoretical introduction to applying the PNJ as a tool for the source near-field

modulation.

In chapter 7, a pattern generator for a micro-lens array under the Gaussian beam which is

modified using the photonic nanojet (PNJ) phenomenon, is studied theoretically, and experi-

mentally by making use of the high-resolution microscopy setup.

In chapter 8, a pattern generator for a micro-lens array by applying a coherent array of sources

instead of one single source will be realized, theoretically, and experimentally.
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2 Simulation tools

In this chapter, we discuss different field propagators and diffraction models for simulating

our configuration. Also, the validity and computational constraints of vectorial and scalar

propagators will be investigated. According to classical optics, electromagnetic waves are

presented by Maxwell’s equations. The homogeneous Maxwell equation (Without charge and

current source, in isotropic non-dispersive medium) is described by:

~∇×~E =−µ∂
−→
H

∂t
(2.1)

~∇× ~H = ε
∂~E

∂t
(2.2)

~∇· (ε~E) = 0, D = εE (2.3)

~∇· (µ~H) = 0, B =µH (2.4)

Where, E and H are electric and magnetic field vectors, respectively as a function of position

and time. The × and · are the vectorial cross-product and vectorial dot product, respectively.

Also,~∇= ∂
∂x~x+ ∂

∂y~y + ∂
∂z~z , where~x,~y and~z are unit vectors along x, y, and z, respectively. Also,

µ and ε are the permeability and permittivity of the medium in which the field is propagated.

Solving Maxwell’s equations often needs numerical effort and different numerical approaches

such as finite difference time domain (FDTD), Rigorous Coupled Wave Analysis (RCWA), finite

element approach(FEM), etc. have been realized to calculate the electromagnetic fields. Since

we implement the FDTD technique for the rigorous simulation part, here we briefly introduce

the numerical procedure for calculating the electromagnetic fields. More details of FDTD and

RCWA can be found in [1, 2]. In the rigorous simulation part, we use the Lumerical FDTD [3]

and the VirtualLab fusion RCWA [4] packages. The RCWA has been used for comparison with
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Chapter 2. Simulation tools

FDTD, although we present the final simulation results using the FDTD in the thesis content.

2.1 Vectorial Theory

The FDTD technique was first proposed by Kane S. Yee in 1966 [5]. In this method, the curl

operators in time-varying Maxwell’s Eq.2.1 and Eq.2.2, are rewritten as the following partial

derivatives:

−∂Bx

∂t
= ∂Ez

∂y
− ∂Ey

∂z
,

∂Dx

∂t
= ∂Hz

∂y
− ∂Hy

∂z
(2.5)

−∂By

∂t
= ∂Ex

∂z
− ∂Ez

∂x
,

∂D y

∂t
= ∂Hx

∂z
− ∂Hz

∂x
(2.6)

∂Bz

∂t
= ∂Ex

∂y
− ∂Ey

∂x
,

∂Dz

∂t
= ∂Hy

∂x
− ∂Hx

∂y
(2.7)

Then, the equations are solved by applying the central difference approximation to the partial

derivatives. Using this approximation, both the temporal and spatial derivatives of arbitrary

function f (represents electric or magnetic field) are defined by

∂ f (r )

∂r
|r=r0 ≈

f (r0 +∆r )− f (r0 −∆r )

2∆r
(2.8)

where ∆r is the symbol of temporal or spatial sampling. Solving Maxwell’s equations by

applying the FDTD method is summarized as follows: The electric field vectors are calculated

in a volume in an instant in time. Then, all the magnetic field components are obtained in

the same volume but in the next instant of time. The procedure is repeated until a desired

steady-state electromagnetic field is realized. The smaller the spatial sampling step, the higher

the accuracy. However, for computational stability, the spatial step of ∆x, ∆y , and ∆z and

temporal step of ∆t are required to fulfill the following unequal:√
∆x2 +∆y2 +∆z2 > c.∆t (2.9)

Where c is the speed of light in the medium. This stability unequal demonstrates that the

temporal step should be smaller than the time needed for the electromagnetic beam to

propagate to the neighboring spatial position.

To implement the FDTD method, we first introduce a computational domain, the physical

volume in which the simulation will be performed. According to our desired configuration,

an appropriate boundary condition is implemented along the x, y, and z axis. As an example,

the perfectly matched layer (PML) is an absorbing boundary condition, assuming the fields to
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2.2. Scalar approaches in free-space

propagate in space without any reflection from the boundaries. In our work, we consider PML

boundary conditions for calculating the diffraction or scattering from dielectric geometries.

As we discussed, RCWA is another vectorial method for calculating electromagnetic fields

although this technique is only suitable for infinitely periodic structures. By implementing

the FDTD, we can simulate various configurations from periodic to non-periodic structures

and also different source configurations for example the focused Gaussian beam instead of

plane wave illumination. Employing a rigorous vectorial approach gives the highest accurate

simulation results although still needs a lot of computational effort and in some cases, it is

impossible to numerically calculate the fields. Instead, we introduce scalar propagators that

are less computationally extensive and can be implemented in the optical element region as

well as for the field propagation in air, depending on our configuration.

2.2 Scalar approaches in free-space

Considering the vector identity curl of ∇×(∇×E ) =∇(∇.E )−∇2E and applying the ∇× operator

to Eq. 2.1, the Maxwell’s equations are simplified to the following wave equation[6]:

∇2u − n2

c0
2

∂2u

∂t 2 = 0, (2.10)

Where n is the refractive index of the medium in which the fields are propagated and c0 is the

speed of light in air. Considering a monochromatic electromagnetic beam, all the electric and

magnetic fields oscillate with the same frequency of ν and corresponding angular frequency

of ω= 2πν. In such a situation, the scalar field u can be represented by:

u = Re{U .exp( jωt )} (2.11)

Where U is the complex scalar electric or magnetic field. Substituting the scalar field u in the

wave Eq. 2.10, we obtain the following time-independent scalar so-called Helmholtz equation

∇2U +k2U = 0, k = nk0 =ω
p
εµ (2.12)

Where k is the wavenumber and λ = c◦/nν. The Helmholtz equation is the basis of many

scalar propagators in free space. Here, we introduce several useful scalar propagators that can

be applied for the propagation of the field in free space.

2.2.1 Angular Spectrum of Plane waves

As seen in Fig. 2.1, consider a complex field across the z = 0 plane, that is represented by

U (x1, y1,0). Our purpose is to calculate the complex field U (x2, y2, z) across the second plane

that is parallel with the first plane. Considering the angular spectrum of plane waves (ASP)

method, the electric field in the z = 0 plane is decomposed into a spectrum of plane waves,

propagating in different directions away from that plane. The angular spectrum of fields in
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the observation plane can be represented by a Fourier transform,

A

(
α

λ
,
β

λ
; z

)
=

Ï +∞

−∞
U (x2, y2, z) exp

[
− j 2π

(
α

λ
x + β

λ
y

)]
d xd y (2.13)

Taking an inverse Fourier transform of A
(
α
λ , βλ ; z

)
, the field distribution U (x2, y2, z) is obtained

as follows

U (x2, y2, z) =
Ï +∞

−∞
A

(
α

λ
,
β

λ
; z

)
exp

[
j 2π

(
α

λ
x + β

λ
y

)]
dα/λdβ/λ (2.14)

z

z = 0

𝒙𝟏

𝒚𝟏

𝒙𝟐

𝒚𝟐

Figure 2.1: The angular spectrum of plane waves (ASP) method. The fields in the plane of z = 0
are decomposed into plane waves, and propagated to the observation plane.

On the other side, the complex field U satisfies the Helmholtz equation,

∇2U +k2U = 0, (2.15)

By substituting Eq. 2.14 in Helmholtz formula, and solving a second-order differential equa-

tion, the following elementary solution is realized,

A

(
α

λ
,
β

λ
; z

)
= A

(
α

λ
,
β

λ
;0

)
exp

[
j

2π

λ
z
√

1−α2 −β2

]
(2.16)

Where A
(
α
λ , βλ ;0

)
is the Fourier transform of the complex field in the source plane. In the other

words, A
(
α
λ , βλ ;0

)
demonstrates the field in the source plane as the spectrum of plane waves

propagating in different directions. The exponential term in Eq. 2.16 is interpreted as the

phase delay that each of the plane waves encompasses by traveling between the source and

the observation plane, by considering the following criterion for α and β

α2 +β2 < 1 (2.17)

It means that the square root in Eq. 2.16 is required to be real, resulting in an exponential term
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2.2. Scalar approaches in free-space

that expresses a traveling plane wave. However, if (α,β) satisfy

α2 +β2 > 1 (2.18)

The square root in the exponential term is imaginary; meaning that for such a pair of (α,β),

the beams are evanescent and are rapidly attenuated. Finally, the fields in the observation

plane are written as

U (x2, y2, z) =
Ï +∞

−∞
A

(
α

λ
,
β

λ
;0

)
exp

[
j

2π

λ
z
√

1−α2 −β2 × ci r c(
√
α2 +β2)

]
exp

[
j 2π

(
α

λ
x + β

λ
y

)]
dα/λdβ/λ

(2.19)

This equation can be simplified to the following inverse Fourier transform that will be em-

ployed in simulations,

U (x2, y2, z) = I F T

{
A( fx , fy ;0) exp

[
j

2π

λ
z
√

1−α2 −β2 × ci r c(λ
√

f 2
x + f 2

y )

]}
(2.20)

Wheare fx = α/λ and fy = β/λ. The ci r c function is embedded in the equation to skip the

evanescent beams that satisfy α2 +β2 > 1. Therefore, the evanescent beams do not contribute

to the resulting field in the observation plane. Using this simulation tool, the sampling

distance in the source plane and the observation plane is the same, applying constraints to

the applicability of this propagator. The phase term in the equation also imposes additional

constraints to be properly sampled in simulations. This condition for a 1D function is as

follows,

∆ f

∣∣∣∣∂φH

∂ f

∣∣∣∣
max

≤π for φH = 2πz

√
1

λ2 − f 2 (2.21)

Where ∆ f is the sampling distance in the observation plane. ∂φH

∂ f has a positive gradient,

meaning that
∣∣∣∂φH

∂ f

∣∣∣
max

is realized for f = fmax and fmax = 1
2∆x in which ∆x is the sampling

distance in the source plane. Replacing fmax in Eq. 2.21, results in the following constraint for

N number of sampled points,

z < N∆x2

√
1

λ2 − 1

4∆x2 for ∆x ≥λ/2 (2.22)

It implies that this propagator is only valid for short distances of z. In our problem of interest,

if we consider for example for a wavelength of λ= 600nm and the sampling parameters of

∆x = 1µm and N = 1000, in the source plane; the ASP is valid for z < 1.6mm. For this reason,

we will only apply ASP for the field propagation between the diverging source and the optical

element plane in which the distance z is in the range of 2 to 3mm, in our problems. Also, as it

is seen from the ∆x ≥λ/2 constraint, this propagator cannot be applied to diffractive optical

elements with very small features sizes of less than λ/2 in the source plane. The feature size in

13



Chapter 2. Simulation tools

the source plane in our problems is larger than λ/2 and for this reason, ASP is suited for field

propagation from source to the optical element plane.

2.2.2 Huygens-Fresnel principle and Rayleigh-Sommerfeld diffraction formula

Here, we first briefly introduce the Rayleigh-Sommerfeld formula which is the basis of many

scalar propagators. According to the Huygens-Fresnel principle, the field in the observation

plane can be expressed as a superposition of spherical diverging beams that originate from

secondary point sources in the source plane, as it is observed in Fig. 2.2. In this way, the

complex field in the observation plane can be mathematically expressed by the following

Rayleigh-Sommerfeld equation [7]

U (x2, y2; z) = 1

jλ

Ï +∞

−∞
U (x1, y1;0)

exp( j kr )

r 2 cos θ d x1d y1 (2.23)

Where θ is the angle between the normal vector ~n and the vector r pointing from P1 to P2.

Also, r can be explicitly given by the following formula,

r =
√

z2 + (x2 −x1)2 + (y2 − y1)2 (2.24)

z

z = 0

𝒙𝟏

𝒚𝟏

𝒙𝟐

𝒚𝟐

𝑷𝟏

𝑷𝟐

𝜽
𝒏

𝒓

Figure 2.2: Huygens-Fresnel principle. The field in the source plane is considered to be the
superposition of secondary point sources that propagate to the observation plane.

To this point, two approximations are considered in the Rayleigh-Sommerfeld Eq. 2.23; first,

it is based on the scalar theory, and second the distance is much larger than the wavelength

(r Àλ). As it will be explained in the following sections, assuming more approximations, one

obtains even more simplified propagators than the Rayleigh-Sommerfeld equation.
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2.2.3 Fresnel approximation

To simplify the Huygens-Fresnel Eq. 2.23, we introduce an approximation to r which is the

distance betweenP1 and P2. Assuming the paraxial approximation, the diffraction angle is

small, resulting in θ ≈ sinθ and cosθ ≈ 1. By applying the binomial expansion to the square

root formula in Eq. 2.24 and considering only the first two terms in the expansion (because of

the paraxial approximation), r can be given by

r ≈ z

[
1+ 1

2

( x2 −x1

z

)2
+ 1

2

( y2 − y1

z

)2
]

(2.25)

As seen in Rayleigh-Sommerfeld Eq. 2.23, r appears in the denominator as well as in the

exponential term. We apply the r ≈ z in the denominator as the resulting error for this

approximation is negligible. For the exponential term, the binomial expansion in Eq. 2.25 is

applied, as more accuracy is required in the phase term. Considering these approximations,

the complex field in Eq. 2.23 is simplified to

U (x2, y2; z) = e j kz

jλz

Ï +∞

−∞
U (x1, y1;0)e j k

2z [(x2−x1)2+(y2−y1)2] d x1d y1 (2.26)

The Fresnel equation can also be represented by the following Fourier transform,

U (x2, y2; z) = e j kz

jλz
e j k

2z (x2
2+y2

2 ) F T {U (x1, y1;0)e j k
2z (x2

1+y2
1 )} (2.27)

Eq. 2.26 can be expressed in two following forms; the formulas that we will apply in our

simulations,

U (x2, y2; z) = I F T {F T [U (x1, y1;0)].H( fx , fy )} where H( fx , fy ) = e j kz e− jπλz( f 2
x + f 2

y ) (2.28)

Or

U (x2, y2; z) = I F T {F T [U (x1, y1;0)].F T [h(x1, y1)]} where h(x1, y1) = e j kz

jλz
e+ j k

2z

(
x2

1+y2
1

)
(2.29)

The spatial frequencies in the observation plane are fx = x2
λz and fy = y2

λz . Supposing N to

be the number of points in the source plane with a sampling distance of ∆x, ∆x2 in the

observation plane is obtained to be λz
N∆x . On the other side, the exponential terms in Eq. 2.28

and Eq. 2.29 impose additional constraints in the sampling interval and z distance validity

range. If we apply Eq. 2.28 in simulations, the following condition should be satisfied for a 1D

phase function,

∆ f

∣∣∣∣∂φH

∂ f

∣∣∣∣
max

≤π for φH =πλz f 2 (2.30)

15



Chapter 2. Simulation tools

∂φH

∂ f has a positive gradient; resulting in
∣∣∣∂φH

∂ f

∣∣∣
max

= πλz
∆x and the validity region for z is obtained

to be z ≤ N∆x2

λ . On the other side, if we employ the Eq. 2.29 in simulations, the following

criterion is required be considered for sampling (assuming a 1D phase function),

∆x

∣∣∣∣∂φh

∂x

∣∣∣∣
max

≤π for φh = k

2z
x2 (2.31)

∂φh

∂x has a positive gradient. As a result, the
∣∣∣∂φh

∂x

∣∣∣
max

is obtained to be k
2

N∆x
z . In such a

condition, the validity region for z is calculated to be z ≥ N∆x2

λ . We observe that Eqs. 2.28 and

2.29 demonstrate opposite validity conditions. Although, applying both equations is valid in

the so-called critical sampling condition in which

z = N∆x2

λ
(2.32)

More details and simulated examples are presented in Ref. [8] that compares the sampling

criterion by applying Eqs. 2.28 and 2.29.

2.2.4 Fraunhofer approximation

For the long propagation distance of z, the Fresnel approximation can be further simplified.

Assuming z →∞, the complex field in the observation plane in Eq. 2.27 is found by

U (x2, y2; z) = e j kz

jλz
e j k

2z (x2
2+y2

2 ) F T {U (x1, y1;0)} (2.33)

Which is the Fourier transform of the complex field in the source plane. This simplified

diffraction model is called the Fraunhofer approximation and it is known as the field calculator

for the far-field observation plane. The spatial frequencies in the observation plane are fx = x2
λz

and fy = y2

λz ; the same as Fresnel approximation. It means that the spatial mapping between

the source and the observation plane is the same as the Fresnel approximation. The following

condition is assumed to drop the exponential term in the Fourier transform formula in Eq.

2.27,

k

2z
(x2

1 + y2
1) ¿ 1 (2.34)

However, instead, we can apply a less strict condition which is known as antenna designer’s

formula[8]; if D is the source aperture diameter, the Fraunhofer approximation is valid for

z > 2D2

λ
(2.35)

In our problem, we apply the Fraunhofer approximation to calculate the far-field, by taking

the Fourier transform of near-field directly after the optical element. Assuming D to be 1mm

and λ = 600nm, the validity range is z > 3m for a Plane wave illumination. However, the
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2.3. Scalar methods for optical element modeling

Fraunhofer approximation validity region is extended to smaller distances of z for a Gaussian

beam illumination [8]. In our configuration, the source is a Gaussian beam instead of a Plane

wave and for this reason, the far-field approximation is valid for a z distance of less than 3m.

On other hand, the Fraunhofer propagator is a proper choice to obtain the low diffraction

angle far-field patterns in which the paraxial approximation is valid. Otherwise, for high

diffraction angle far-field patterns, the high numerical aperture far-field propagator is applied

as it is explained below.

2.2.5 High numerical aperture far-field propagator

For the high diverging light pattern generation in the far-field, the paraxial approximation

is not valid in the observation plane and a fast and more accurate method is required. To

obtain the far-field for a high diverging beam, we use the high NA propagator as proposed by

Engelberg [8]. It is defined by the following formula assuming that the paraxial approximation

is lifted in the observation plane.

U (x2, y2; z) = z
e j kR2

jλR2
2

F T {U (x1, y1;0)} (2.36)

with fx = x2
λR2

and fy = y2

λR2
for R2 =

√
z2 +x2

2 + y2
2 . Applying the high NA method, the coor-

dinate mapping between the source plane and the observation plane is not linear anymore.

This is the major difference in comparison with the Fresnel and Fraunhofer approximation for

which the mapping between the source plane and the observation plane is linear. It means

that a uniform grid of points in the source plane is mapped to a non-uniform grid of points in

the observation plane. Also, the electric field is proportional to z/R2
2 which may significantly

change the pattern envelope in comparison to the Fraunhofer propagator if the paraxial ap-

proximation is not valid in the observation plane x2. The x2 and y2 in the observation plane,

can be rewritten as a function of spatial frequencies fx and fy ,

x2 = λz fx√
1−λ2( f 2

x + f 2
y )

and y2 =
λz fy√

1−λ2( f 2
x + f 2

y )
(2.37)

x2 and y2 non-linearly depends on spatial frequencies fx and fy . Also, the condition 1−
λ2( f 2

x + f 2
y ) > 0 should be satisfied in the simulations by removing the negative or zero values

of 1−λ2( f 2
x + f 2

y ) under the square root in the denominator.

2.3 Scalar methods for optical element modeling

2.3.1 Thin element approximation (TEA)

A phase element is considered to be thin if the incoming beam passes through the optical

element with negligible deflection along the propagation direction [7]. Considering the thin
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Chapter 2. Simulation tools

element approximation (TEA), the incoming beam U1 in Fig. 2.3 only experiences a phase

delay that is proportional to the optical element thickness f (x, y ;0) in each point. The phase

delay is expressed by,

φ(x, y ;0) = kn f (x, y ;0)+k[∆− f (x, y ;0)] (2.38)

Where n is the optical element refractive index. kn f (x, y ;0) is the resulting phase delay

because of the optical element and k[∆− f (x, y ;0)] is the introduced phase delay in the

remaining area in the air. As a result, the field U2 immediately behind the optical element, can

be calculated by multiplying the incoming beam U1 with a transmission function t (x, y),

U2 = t (x, y).U1 (2.39)

Where the transmission function t (x, y) describes the resulting phase transformation,

t (x, y) = exp(iφ) (2.40)

∆

𝑼𝟏(𝒙, 𝒚; 𝟎) 𝑼𝟐(𝒙, 𝒚; 𝒛)
f (𝒙, 𝒚; 𝟎)

n

Figure 2.3: Thin element approximation (TEA). The incoming beam is considered to pass
through the thin optical element without any deflection along the propagation direction.

In many design strategies for diffractive optics, TEA is used to specify the basic parameters of

a configuration. Applying the TEA in simulations, the effect of diffraction inside the optical

element is not included although, the method is not computationally costly. Instead, we can

apply, scalar, or vectorial approaches for modeling the passage of the beam through the optical

element. Here we introduce the scalar Fourier transform beam propagation method, in which

the beam propagation inside the optical element is modeled, considering approximations.

2.3.2 Fourier transform Beam propagation method (FFT-BPM)

The Fourier transform beam propagation method (FFT-BPM) is a scalar numerical technique

that applies the Fourier transform to solve the Helmholtz equation [9, 10]. As seen in Fig. 2.4,

in this method the structure is divided into sub-sections along the propagation direction z.

The spatial distribution of the refractive index n along the x and y axis in each sub-section is

non-uniform; the non-uniform refractive index in each sub-section is described by n(x, y) =
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2.3. Scalar methods for optical element modeling

n̄±∆n(x, y), where n̄ is an averaged refractive index and∆n(x, y) is referred to a local refractive

index change. Considering these assumptions, the beam propagation in each sub-section for

a distance of ∆z is expressed by

U (x, y, z +∆z) = F F T −1
[

F F T
{
U (x, y, z)

}
.e

i∆z
√

n̄2k2
0−(k2

x+k2
y )

]
.e i∆z.∆n(x,y).k0 (2.41)

Where k0 is the wavenumber in air,kx and ky are the spatial frequencies along x and y axis.

The expression in Eq. 2.41 splits into two propagators. The field is first propagated in a

homogenous medium with a refractive index n̄ and a propagation distance ∆z by applying the

ASPW method. Then, a thin element approximation is performed to consider the phase delay

due to the refractive index changes ∆n along the x and y axis. Next, the fields are extracted

and propagated in the subsequent layer. The process is done until the field is calculated in all

the sub-sections of the optical element.

z = 0 ∆𝒛 2∆𝒛

ASPW ASPW ASPW

∆𝒛/2 ∆𝒛 ∆𝒛 ∆𝒛/2

Figure 2.4: Fourier transform beam propagation method (FFT-BPM). The structure is divided
into sub-sections; the field is propagated in each section by applying the ASP, and considering
the local refractive index changes by applying the TEA.

The scalar FFT-BPM approach gives higher computational speed in comparison with the

rigorous approaches such as FDTD and RCWA. However, this propagator is limited by some

approximations. First, it is based on the paraxial approximation where k2
z À k2

x +k2
y [11]. Also,

the effect of reflection between the subsequent layers is considered to be negligible. Moreover,

the applicability of this method is limited to polarization independent structures. And finally,

the refractive index modulation is considered to be small; meaning that δn ¿ n. In this thesis,

our structures are polarization-independent and are made of glass with a refractive index of

1.5. For this reason, applying FFT-BPM is practical for the configurations in which the effect

of reflection is negligible. To perform FFT-BPM simulations, we use the VirtualLab fusion

package [4]. In chapter 3, we will compare this technique with the rigorous FDTD method for

thin and thick structures, by presenting simulated examples.
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Chapter 2. Simulation tools

2.4 Discussions around the thesis problem

Here, we analytically calculate the diffraction pattern for the thesis configuration by applying

scalar approximations. Our purpose in this part is to obtain an initial understanding of the

interdependence of parameters. The calculations here are performed for 2D configurations

and can be easily extended to 3D scenarios. As we earlier introduced the problem, the configu-

ration is a refractive-diffractive optical element under a point source illumination. In our work,

the point source is modeled by a single-mode Gaussian beam for low numerical aperture

sources (NA ≈ 0.1 to 0.15). For high NA sources, another model will be considered in chapter 6.

The single-mode Gaussian beam complex amplitude at the focus is defined by:

u(x, z = 0) = exp

[
− x2

w2
0

]
.exp(− j kz) (2.42)

Where w0 is the beam waist of the Gaussian field at the focus. The problem under study is

a single-mode Gaussian beam with a finite spatial dimension that illuminates a micro-lens

array (MLA) of period p, as shown in Fig. 2.5. The observation plane is in the far-field. The

distance between the source and the MLA is considered to be D. The Gaussian beam field

distribution at z = D immediately before the MLA can be calculated by solving the paraxial

Helmholtz equation,

u(x, z) = w0

w(z)
exp

[
− x2

w(z)2

]
.exp

[
− j kz − j k

x2

2R(z)

]
(2.43)

Where w(z) is the beam radius, R(z) is the radius of curvature in the transverse coordinate x

and R(z) = z[1+ (kw 2
0/2z)

2
].

Single-mode 

Gaussian Beam 

Irradiance Pattern

D z

P

MLA

Figure 2.5: The configuration under study. An MLA with the period of P under a Gaussian
beam illumination.
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2.4. Discussions around the thesis problem

2.4.1 Analytical evaluation

According to the configuration in Fig. 2.5, the simulation has three steps. The first step is

the Gaussian beam propagation for the distance D from the source to the plane immediately

before the MLA. The second step is the propagation inside the MLA. And the third step is the

field propagation from MLA to the far-field observation plane. Here, we calculate the far-field

distribution analytically by applying the TEA in the MLA region. Figure 2.6 demonstrates a

diagram of the source propagating to the far-field observation plane. The Gaussian beam

complex field at z = D− is calculated according to Eq. 2.43. The field at z = D+ is the complex

field at z = D− multiplied by the phase shift generated by the MLA using the TEA. The far-field

distribution at z = D +Z is determined by taking the Fourier transform from the near-field at

z = D+ , assuming the Fraunhofer approximation.

z = 0 z = D z = D+Z

z

MLA plane Far-field planeSource plane

Analytical propagation

Multiplied by grating 

transmission (TEA) Fraunhofer Far-field Propagation

ufar−fielduGaussian(x,z=0)

z=D− z=D+

Figure 2.6: A Diagram of propagators that are applied to calculate the field in the observation
plane for configuration in Fig. 2.5.

Using the TEA, the complex field at z = D+ is described by

E(x, z = D+) = EGaussianBeam(x, z = D−).exp[− j k(n −1)H ], (2.44)

Where n is the MLA refractive index which is assumed to be 1.5 for glass and H is the height

profile of the MLA versus x. The phase delay generated by MLA can be described by

exp[− j k(n −1)H ] =
[

t (x).r ect
( x

P

)]
∗ comb

( x

P

)
, (2.45)

where t(x) is the phase delay generated for one period of MLA by applying the TEA. By

substituting Eq. 2.45 in Eq. 2.44, the field in the observation plane is calculated by

Efar−field(x, z = Z +D) = exp(− j kz)

jλz
.exp

(
− j kx2

2z

)
×F F T

[
EGaussianBeam(x, z = D−).

{(
t (x).r ect

( x

P

))
∗ comb

( x

P

)}] (2.46)
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By rewriting the Fourier transform in convolution form,

Efar−field(x, z = Z +D) = exp(− j kz)

jλz
.exp

(
− j kx2

2z

)
.

[
EGaussianBeam

(
x,

z

λZ

)
∗F F T

[{
t (x).r ect

( x

P

)}
∗ comb

( x

P

)]] (2.47)

The FFT in this equation represents the diffracted field if the source is a plane wave illumina-

tion. By simplifying the FFT in Eq. 2.47, the complex field is obtained as follows,

Efar−field(x, z = Z +D) = exp(− j kz)

jλz
.exp

(
− j kx2

2z

)
.

[
EGaussianBeam

(
x,

z

λZ

)
∗

[{
F F T (t )

( x

λZ

)
∗ si nc

(
P x

λZ

)}
× comb

(
P x

λZ

)]] (2.48)

Considering the comb(P x/λZ ), the pattern period isλz/P that confirms the diffraction theory.

Moreover, under paraxial approximation, the convolution between the comb function and the

scaled Gaussian beam in the observation plane is physically interpreted as a periodical imaging

of the source near-field in the observation plane via the MLA. Also, the F F T (t )
( x
λZ

)∗si nc
( P x
λZ

)
is slowly varying compared to the comb function. It means that the pattern envelope is con-

trolled by the lens curvature. In summary, analytical Eq. 2.48 demonstrates that

1. The period of pattern distribution in the far-field is controlled by the source wavelength

λ, as well as MLA period P .

2. The pattern envelope is controlled by the lens curvature.

3. The dots size in the observation plane is dependent on the source near-field distribution

and also the size of the illumination spot on MLA.

Also, to obtain a high-contrast pattern, the distance D between the source and the MLA is

required to be Lau distance, as we explained in the introduction chapter.

Although our analytical calculations are based on paraxial approximation, it gives us an insight

into interdependence among the parameters and is a good starting point for applying new

ideas. In this work, we will study two strategies for modifying the diffracted pattern in the

far-field: changing the periodic optical element curvature and modulating the source near-

field. We first evaluate the contrast of pattern by changing the distance D and choose the

distance in which we obtain a high contrast pattern in the far-field. Next, we will focus on the

effect of periodic optical element curvature especially for modifying the pattern envelope and

increasing the number of dots in the pattern. We consider a sinusoidal phase grating instead

of a lens array, in this case. In the last part of the thesis, we will study the effect of source

near-field modulation by applying an optical element such as a dielectric microsphere around
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the source near-field and compare the pattern distributions that are generated under different

illumination conditions.
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3 Structured pattern generation for 1D
sinusoidal phase grating

We investigate here micro-optical elements with a period of 75λ which allows us to control

both diffractive and refractive effects [1]. Using a regular micro-optical element such as a lens

array under plane wave illumination, one obtains a periodic pattern in the far-field with the

period of ∼λ/P according to the diffraction theory. To increase the numbers of diffraction

orders, one solution is to increase the lens array period P . By increasing the period P , the

refraction becomes predominant and the effect of diffraction is reduced which is not desirable.

Alternatively, introducing a point source instead of plane wave, the periodic element field

distribution would reproduce in the far-field including a magnification factor for certain

distances between the source and the periodic element based on the known self-imaging

phenomenon [2, 3], as it is mentioned in the introduction chapter. Numbers of publications

are devoted to using this phenomenon for pattern generation using a lens array in which the

point source is modeled by a single-mode Gaussian beam [4, 5].

3.1 Configuration

In this chapter, we make use of the self-imaging phenomenon under point source illumination

for a sinusoidal phase grating. We investigate the pattern generation using a 1D sinusoidal

phase grating . The configuration is a sinusoidal phase grating with ap period of P and a

thickness of h under a single mode TEM Gaussian beam illumination, as shown in Fig. 3.1(a).

The phase grating thickness h is much higher than the wavelength (h Àλ).All the simulations

in this chapter are 2D.
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x2

z

P

h

Gaussian Beam

D

wo

x1

z

Near-field simulation area

x

(a) (b)

Figure 3.1: (a) Configuration under study, (b) Ray tracing for one period of a sinusoidal phase
grating which shows two different focal points in one period

3.2 Why the sinusoidal shape?

In this section, we compare the far-field distribution when a sinusoidal phase grating is

illuminated by a point source and a plane wave[6] analytically using self-imaging theory to

show the reason behind choosing the sinusoidal curvature. We use TEA for a principle design

and show how more numbers of points in the far field can be generated for point source. The

effect is based on self-imaging[2, 4]. Figure 3.2 gives a diagram of the point source propagating

to the far-field observation plane. For a clear understanding of the self-imaging phenomenon

for point source illumination, we use the notation and formulas as found in [2].

D

Phase Grating plane

x1

Far-field/observation plane

x2

Point Source plane

x

Z

z

Figure 3.2: Schematic of analytical calculation propagators for point source illumination.

The far-field is given by the following integral

E f ar− f i el d (x2, z = Z +D) =C1

[
E(x1, z = D+)∗exp

(
iπ

λz
x2

1

)]
(3.1)
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3.2. Why the sinusoidal shape?

C1 is a constant complex value.

Using the TEA, the complex field at z = D+ is described by

E(x1, z = D+) = Esour ce (x1,D−).exp[−i k(n −1)H ] (3.2)

and

Esour ce (x1, z = D−) = Esour ce (x1, z = 0)∗exp

(
iπ

λD
x2

1

)
(3.3)

n is the refractive index of the phase grating which is assumed to be 1.5. H is the height profile

of the phase grating and a function of position in x. The height profile H for the sinusoidal

surface is defined as

H = h

2
×

(
sin

2πx

P

)
+ h

2
(3.4)

Where P is the phase grating period and h is the phase grating thickness. The exponential term

in Eq. (3.2) can be written in the following Fourier series

exp

[
−0.5i k

h

2
sin

(
2π

P
x

)]
=

+∞∑
q=−∞

Jq

(
−0.5k

h

2

)
×exp

(
2πi q

x

P

)
(3.5)

Based on [2], the far-field for a point source meaning Esour ce (x, z = 0) = δ(x) can reproduce

the object phase modulation for certain values of D. For D =
P 2

λ
, the far-field can be written as

the following summation

E f ar− f i el d (x2, z = Z +D) =C2 exp

(
iπ

λz
x2

2

) +∞∑
q=−∞

Jq

(
−0.5k

h

2

)
exp

(
2πi q

Dx2

zP

)
(−1)q2

(3.6)

According to this equation, the phase modulation which is generated by a sinusoidal phase

grating is reconstructed although they are not exactly the same. To clarify more, we expand

the equation in the following form

+∞∑
q=−∞

Jq

(
−0.5k

h

2

)
exp

(
2πi q

Dx2

zP

)
(−1)q2 = J0 −2i

[
J1 sin

(
2πD

zP
x

)
+ J3 sin

(
6πD

zP
x

)
+J5 sin

(
10πD

zP
x

)
+ ...

]
+2

[
J2 cos

(
4πD

zP

)
+ J4 cos

(
8πD

zP

)
+ J6 cos

(
12πD

zP

)
+ ...

] (3.7)

This equation demonstrates that the real and imaginary parts of the summation are recon-

structed in the far-field using cosine and sine functions, respectively. We calculate this approx-

imation series for λ = 650 nm, P = 50 µm, z = 1 m and h = 12 µm. Now we can compare the

phase modulation generated by a sinusoidal phase grating using TEA with the series in Eq.

(3.7). The result is shown in Fig. 3.3. As seen, the phase modulations are comparable except

27



Chapter 3. Structured pattern generation for 1D sinusoidal phase grating

that one graph is flipped around x axis and the scale in x has changed. The sinusoidal phase

grating modulation is imaged in the far-field. Interestingly this leads to the appearance of two

peaks in one period of the far-field pattern. We will investigate this effect in more detail in the

simulation part.

(a)

(b)

Figure 3.3: (a) Phase modulation generated by the sinusoidal phase grating using TEA, (b) The
retrieved phase in the far-field according to eq. (3.7).

Now, we consider the sinusoidal phase grating under the plane wave illumination. For the

plane wave illumination, the far-field pattern is simply the Fourier transform of the sinusoidal

phase modulation based on TEA

E f ar− f i el d = F T

{
exp

[
−0.5i k

(
h

2
× sin

(
2πx

P

)
+ h

2

)]}
(3.8)

Writing the exponential term in the summation form of Eq.(3.5) and taking the Fourier trans-

form, the far-field is

E f ar− f i el d =
+∞∑

q=−∞
Jq

(
−0.5k

h

2

)
δ

(
x

λz
− q

p

)
= ...+ J−1

(
−0.5k

h

2

)
δ

(
x + λz

P

)
+J0

(
−0.5k

h

2

)
δ(x)+ J1

(
−0.5k

h

2

)
δ

(
x − λz

P

)
+ ...

(3.9)

This equation is the summation of delta functions with the period of λz/P , which is the

diffraction angle. It demonstrates that there is one peak in each diffraction angle period of
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3.3. Diffractive/refractive element simulations

λz/P under the plane wave illumination. For a point source by making use of the self-imaging,

the sinusoidal phase grating modulation is imaged to the far-field and generates two peaks

within the same period. It is worth to note that the pattern envelope highly depends on the

phase grating thickness h because of the Bessel function of Jq (−0.5k
h

2
) in equations (3.7) and

(3.9). Furthermore, it becomes clear that the source characteristics are of great importance.

To approach a real case scenario we replace the point source with a single-mode Gaussian

beam in our following models. In the rest of this chapter, we investigate the effect of the size

of the Gaussian beam waist and the phase grating thickness h, which are the key factors that

influence the far field irradiance pattern. In all the simulations we keep the period of phase

grating P fixed.

3.3 Diffractive/refractive element simulations

Consider a Gaussian beam with a finite spatial dimension that illuminates a sinusoidal phase

grating of period P, as shown in Fig. 3.1(a). The observation plane is in the far-field and we

aim to generate high contrast patterns. As we discussed in the previous section, for particular

values of the distance D, high contrast intensity peaks are observed because of interference

effects of the curved wavefront and the grating [2, 5]. We choose D to fulfill the self-imaging

condition to be 3.84 mm for a period P = 50 µm in all simulations. As a source, a single-mode

Gaussian beam with λ = 650 nm is chosen.

According to our configuration in Fig. 3.1(a), the simulation is approached in three steps. The

first step is the Gaussian beam propagation for the distance D from the source to the phase

grating. Immediately before the phase grating, one finds an amplitude and phase distribution

which can be calculated using the single mode Gaussian beam formula. The second step is the

propagation inside the phase grating. There are different means depending on the complexity

and dimensions of the structure. We use three methods: thin element approach TEA, beam

propagation method FFT-BPM and the rigorous FDTD method. In the thin element approach

TEA, phase profiles are used that are calculated from the local phase difference a structure will

produce. In our case, there is no amplitude variation as we consider a pure phase grating. The

thin element approach is known to deliver false results for high spatial frequency diffractive

optical elements or thick elements but is useful to obtain basic specifications of the systems.

3.3.1 Variable source beam waist

In this section, we explore the dot pattern generation in the far field under the diverging

Gaussian beam in comparison with the plane wave illumination. We investigate the effect

of the source divergence angle on the irradiance pattern and compare TEA, FFT-BPM for

modeling the passage of the beam through the thin phase grating of 12 µm. The Fraunhofer

approximation is applied for the far-field calculation of this thin periodic phase grating. For

the plane wave illumination, the simulation dimension along the x-axis is 3 mm.
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Chapter 3. Structured pattern generation for 1D sinusoidal phase grating

Thin element approach (TEA) calculations

In Fig. 3.4(a) and (b), the irradiance patterns for a plane wave in comparison to the Gaussian

beam with the beam waist of 2 µm are given. The pattern period matches in both cases the

diffraction theory: a period of 50 µm forλ = 650nm delivers 0.74◦ diffraction angle. Under

plane wave illumination, the energy is not uniformly distributed over the diffraction orders.

When comparing the inset of Fig. 3.4(a), a number of peaks have almost zero intensity and

the field of view is small in comparison to the Gaussian beam illumination in Fig. 3.4(b).

However, as we discussed in the analytical part for the Gaussian beam, two non-equal peaks

with a period of 0.74◦ are repeated in the pattern as it is seen in the inset figure of 3.4(b).

The two series of peaks have different intensities and diameters. They are caused by the

convex-concave curvature form of the sinusoidal phase grating which can be interpreted as

a combination of concave and convex lenses, as it was shown in Fig. 3.1(b). Assuming the

Gaussian beam as a spectrum of plane waves with different incident angles allows interpreting

the increase of the field of view when compared to the plane wave illumination.

Figure 3.4: Irradiance pattern using TEA for (a) plane wave illumination and (b) Gaussian
beam with the beam waist of 2 µm.

In Fig. 3.5 the irradiance patterns are illustrated for the Gaussian beam waists w◦ = 1, 2 and

3 µm in comparison to plane wave illumination using the TEA. The pattern field of view

increases by decreasing the source beam waist down to 1 µm. Enlarging the pattern field of

view is more pronounced from 2 to 1 µm beam waist in comparison with 3 to 2 µm beam

waist. The reason is that the Gaussian beam divergence angle is proportional with 1/w◦ and it

indicates that the divergence angle increment is higher from 2 to 1 µm in comparison with 3 to

2 µm beam waist which results in a more pronounced enlargement in the pattern field of view.
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3.3. Diffractive/refractive element simulations

Figure 3.5: Irradiance pattern using TEA for (a) Plane wave and the Gaussian beam with the
beam waist of (b) 3 µm, (c) 2 µm and (d) 1 µm.

To explore the effect of the Gaussian beam waist w◦ on the irradiance pattern in more detail,

we calculate the pattern envelope in the far field which is the Fourier transform of one single

period of the phase grating near field. Our configuration is sketched in Fig. 3.6 (a) and we

illuminate only one single period of the phase grating with a Gaussian beam with 1 µm beam

waist. If the element is centered the result is a symmetric distribution of peaks as visible in

Fig. 3.6(b). Next, we move the element along x-axis to probe the influence of the tilted local

phase and compare the pattern envelope for different positions at -400 µm and -800 µm. As

seen in Fig. 3.6 (b), the pattern envelope moves in the observation plane by moving the optical

element along x-axis because of the tilted source phase profile. This clearly shows the reason

for an increased field of view: the different illumination angles that are present in the Gaussian

beam.

w0= 1 um

-800

x (um)

0

-400

(a)

Figure 3.6: (a) Moving one single period of the phase grating along the x-axis and (b) taking
the Fourier transform from near field to obtain the pattern envelope for x = 0, -400 and -800
µm.
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TEA versus FFT-BPM

For the thin phase grating of 12 µm thick, using a rigorous method is not required but using a

propagator like FFT-BPM which includes the beam propagation inside the structure including

some approximations is necessary for evaluating the TEA results. In Fig. 3.7, we compare the

irradiance patterns using TEA and FFT-BPM for the Gaussian source beam waists w◦ = 1, 2

and 3 µm and a plane wave. The major difference for FFT-BPM is that the effects that arise

because of the propagation through a certain thickness of the structure are now considered. As

seen, for the plane wave illumination, FFT-BPM predicts a wider field of view in comparison

with the TEA although the pattern envelope is still similar. For the Gaussian beam illumination

using the FFT-BPM method, both the pattern field of view and the pattern envelope differ

significantly from the TEA. It demonstrates that the TEA is not accurate even for a rather

shallow surface profile of 12 µm thickness and the field of view calculated with FFT-BPM is

about 20% wider.

Figure 3.7: Normalized far-field irradiance using TEA and FFT-BPM under (a) plane wave and
Gaussian beam with the beam waist of (b) 3 µm, (c) 2 µm and (d) 1 µm.

Transmission

One important practical criterion is the total transmission of the phase grating. We define

the transmission as the normalized transmitted power immediately after the phase grating

with respect to the source power immediately before the phase grating. As mentioned in the

beginning, different effects influence transmission such as total internal reflection. Figure

3.8 shows the transmission versus the source beam waist w0 using the FDTD simulation. As

seen, by increasing the source beam waist w0 the transmission increases until it reaches a

constant value which is identical with the transmission for the Plane-wave illumination. As
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3.3. Diffractive/refractive element simulations

the Gaussian beam divergence angle is proportional to 1/w0, small changes in w0 for w0 → 0

correspond to big changes in divergence angle and as a result large changes in transmission.

Thus for w0 < 3µm, the smaller the beam waist the lower the transmission (maximum 4%

reduction in transmission). On the other side according to Fig. 3.7, the smaller the beam waist

the higher the field of view. It demonstrates a trade-off between obtaining higher transmission

and higher field of view for small source beam waist w0 .

Figure 3.8: Transmission versus source beam waist.

3.3.2 Variable Phase profile thickness h

In the previous section, we have shown that even for the small height of the sinusoidal phase

grating, one obtains large numbers of peaks with a uniform distribution. The thickness of the

structure also plays an important role in the design and may generate a bigger field of view.

In this section, we, therefore, compare the irradiance pattern for different structure heights

and three aspect ratios of h/P = 0.24, 0.5 and 1 for P = 50 µm that represents the transition

between thin to thick gratings. For thick structures, a careful analysis needs to be done as the

non-uniform illumination condition modifies the angular spectrum of the arriving wavefront

and hence influences the far-field pattern. As we discussed in the previous section, TEA is

not enough accurate even for thin phase gratings and we concentrate here on comparing the

FFT-BPM and FDTD and discuss their accuracies for different thicknesses. The source beam

waist is fixed at w0 = 2 µm for all the simulations.

Near field simulations, FFT-BPM versus FDTD

In Figure 3.9, the field amplitude is shown around the structure for different h/P = 0.24, 0.5

and 1 ratios. As one can see heavy amplitude modulations can be noticed and two hot spots

are observed behind the structure. The structure seems to behave like lenses and the hotspots

move toward the phase grating surface by increasing the thickness h. For thin height h = 12 µm,
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Chapter 3. Structured pattern generation for 1D sinusoidal phase grating

the near field is the same using the FFT-BPM and FDTD as the effect of reflection is negligible.

As seen in Fig 3.9 (b) and (c) by increasing h, near field distribution is more complicated due

to the effect of reflections. Especially for the height of 25 µm, we observe that some of the

beams that are transmitted using FFT-BPM, are reflected back using FDTD and it significantly

changes the near-field distribution.

FFT-BPM

(a) h= 12 µm

FDTD

FFT-BPM

(b) h= 25 µm

FDTD

FFT-BPM

(c) h= 50 µm

FDTD

Figure 3.9: Near-field simulation using FFT-BPM and FDTD for (a) h/P = 0.24, (b) 0.5 and (c) 1.

The near-field simulations demonstrate that both the phase grating thickness and surface

profile remarkably influence the near field distribution for thick sinusoidal phase gratings.

The near field simulation done by FFT-BPM is not enough accurate for thick sinusoidal phase

gratings as it is still based on some approximations and does not take into account the effect

of reflection. In the following section, we will determine the limits of using FFT-BPM by

comparing it with FDTD.

Far-field simulations, Fraunhofer versus High NA propagator

One of the problems in determining the correct field of view of a diffractive structure is the

validity of the far-field propagator. For large fields, a simple Fourier transform might not be

valid anymore to describe the situation correctly. In this section, we investigate the validity

of using the Fraunhofer approximation in comparison with the high NA propagator for thin

and thick sinusoidal phase gratings. We start by showing in Figure 3.10 the near field and

far field simulations for a grating height of h = 12 µm. As seen, the near field amplitude and

phase distributions are the same using FFT-BPM and FDTD. The far-field patterns are similar

using Fraunhofer and high NA approximations because the pattern field of view does not

go far beyond the paraxial approximation and most of the energy is distributed in +/−25◦
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3.3. Diffractive/refractive element simulations

angles which si n(θ) ∼= θ with less than 5% error. Nevertheless, the pattern field of view is

slightly bigger using the high NA propagator. The pattern envelope is also calculated by taking

the Fourier transform from one single period of phase grating near-field at x = 0 which is

basically the pattern envelope under the plane wave. By comparing the pattern envelope and

the irradiance pattern, we can observe how the Gaussian beam modifies and smoothens the

energy distribution over the peaks.

Figure 3.10: Near field and far field for h = 12 µm. (a) Near field distribution using FFT-BPM
and FDTD and near field line plot of the amplitude and phase distribution. The corresponding
far-field distributions and pattern envelopes using (b) Fraunhofer approximation and (c) high
NA approximation.

In Fig.3.11, the far-field patterns are compared using the Fraunhofer approximation and

high NA propagator for both the FFT-BPM and FDTD near field simulations for h = 25 µm.

As seen in Fig 3.11 (a), the amplitude and phase near field distributions are different using

FFT-BPM and FDTD. According to Fig 3.11 (b), the far-field distributions using Fraunhofer

approximation for FFT-BPM and FDTD are similar although their near-field distributions are

different. In Fig 3.11 (c) the far-field pattern using the high NA propagator is totally different

for the FDTD near-field simulation in comparison with the FFT-BPM. Especially the peaks

in the far-field pattern at around ±45◦ vanish for the FDTD calculations using the high NA

propagator.
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Chapter 3. Structured pattern generation for 1D sinusoidal phase grating

Figure 3.11: Near field and far field for h = 25 µm. (a) Near field distribution using FFT-BPM
and FDTD and near field line plot of the amplitude and phase distribution. The corresponding
far-field distributions and pattern envelopes using (b) Fraunhofer approximation and (c) high
NA approximation.

The far-field distributions for the grating height of h = 25 µm indicate that the Fraunhofer

propagator is not valid because the pattern field of view goes beyond the paraxial approxima-

tion and using a non-paraxial far-field propagator is necessary to obtain the correct field of

view. Also, it is demonstrated that obtaining the same far-field distribution for the FFT-BPM

and FDTD near field simulations (as shown in Fig 3.11 (b) does not guarantee the validity of

the used near field and far-field approximations.

In Fig.3.12, the near field and far-field patterns are compared for h = 50 µm. As seen in Fig 3.12

(a), the near field phase distribution is different using the FFT-BPM and FDTD. According to

Fig. 3.12 (b) for the Fraunhofer approximation, the null in the center of the pattern is deeper

using the FDTD in comparison with the FFT-BPM. In Fig 3.12 (c) using the high NA propagator,

the null in the center of the pattern is much wider using the FDTD in comparison with the

FFT-BPM. Finally, Fig. 3.11 and 3.12 demonstrate that both the amplitude and phase near

field modulations determine the far-field distribution. Also, a rigorous method (eg. FDTD)

should be used to find the correct near-field distribution for thick sinusoidal phase grating

and FFT-BPM is not valid for thick phase gratings of more than 0.5 aspect ratio. Besides, the

paraxial approximation is not valid in the far-field observation plane for thick sinusoidal phase

gratings.
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3.3. Diffractive/refractive element simulations

Figure 3.12: Near field and far field for h = 50 µm. (a) Near field distribution using FFT-BPM
and FDTD and near field line plot of the amplitude and phase distribution. The corresponding
far-field distributions and pattern envelopes using (b) Fraunhofer approximation and (c) high
NA approximation.

Evaluation of the spot generators

In this section, we compare the performance of our gratings of different heights (12, 25 and 50

µm) as spot generators. The distribution for 50 µm thickness is very non-uniform and not a

practical point generator. To compare the 12 and 25 µm height, the pattern uniformity and

the number of peaks are applied, as the criterion. We calculate three critical parameters for

the patterns. The first parameter is the pattern intensity standard deviation which measures

uniformity. The second and the third parameters are the number of points in the pattern

and the pattern field of view (FOV). We consider only dots intensities higher than 13% of the

maximum intensity. Table 3.1 summarizes the findings. As seen, for 25 µm thick phase grating,

165 numbers of points in a ±30◦ FOV is realized which is a better point generator compared to

a 12 µm thick phase grating.

Table 3.1: Pattern standard deviation and numbers of points for 12 and 25 µm thicknesses .

h(µm) Standard deviation Number of points in the pattern FOV
12 0.008 142 ±26◦

25 0.0038 165 ±30◦

3.3.3 Transmission versus phase grating thickness using FDTD

Reflection from phase grating influences on both the amount of power transmitted to the

observation plane and the pattern envelope. Figure 3.13 demonstrates the transmission with

respect to grating thickness h. For a sinusoidal function sin(x), the reflection starts to happen
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around points with max(
d sin x

d x
).The reflection area start to enlarge around these points. The

first reflected beam may be reflected or transmitted from the front surface depending on the

grating height. So, the transmission analysis becomes more complex for thick phase gratings.

As seen in Fig.3.13, the transmission curve does not change linearly with respect to height h

and has two deeps at around 18 and 22 µm. For the height of 18 and 22 µm, the first reflected

beam from sinusoidal curvature is reflected back to the source from its front surface and for

this reason, the transmission drops for these thicknesses.

Figure 3.13: Transmission versus the grating thickness h.

Analysis of the problem using different approximations demonstrates that TEA is only valid

for thin phase gratings and low Gaussian beam divergence angles. By increasing the phase

grating thickness and source divergence angle, the problem becomes more complex to analyze.

Especially, increasing the reflection influences on the near field distribution and far field

pattern which necessitates using rigorous FDTD method.

3.4 Experimental Evaluation

3.4.1 Sample Fabrication using two photon absorption

The Nanoscribe Photonic Professional GT is a 3D printer that uses an infrared (780 nm)

femtosecond laser to expose and polymerize UV-sensitive photoresists (IP-S, Nanoscribe

GmbH, Germany)[7–9]. The laser is focused through an objective and the light intensity at the

focal point is sufficient to initiate the two photon absorption and photo-polymerization. The

two photon absorption is only triggered at the focus spot of the objective where the intensity

is high enough to absorb two photons, simultaneously. In contrast, one photon absorption

can occur along the light propagation in a bigger area and for this reason, a high resolution

polymerization is not achieved for one photon absorption. Figure 3.14 shows the difference

between the imaging fluoresce of two photon and one photon absorption.
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(a) (b)

Figure 3.14: Imaging florescence of (a) One photon absorption in which the laser excites a
large cone area of sample and (b) Two photon absorption in which the laser excites only a
small area of sample.(courtesy of S. Ruzin and H. Aaron, UC Berkeley)

The smallest printable volume is called a voxel. The voxel dimensions determine the fab-

rication resolution and depend on the objective that we use for writing the structure. By

moving the laser focus along our desirable trajectory in space, we can print 2D and 3D struc-

tures. Figure 3.15 shows the printing process for an arbitrary shape[10]. After developing the

sample, the unpolymerized parts remove and our desirable structure remains on the substrate.

Figure 3.15: The printing process for an arbitrary shape using two photon absorption polymer-
ization

The Nanoscribe machine that we use is shown in Figure 3.16(a). The machine is in commu-

nication with a software called Describe that converts our CAD generated structure in STL.

format to a language that is understandable for the machine to write the structure. We use the

open-access Blender software to generate the CAD generated structure in STL. format. The

machine comes with different objectives with different magnifications, 20x (in the air), 10x

(immersion), 25x (immersion), 63x (immersion) according to our desirable printing resolution

and speed. Different objectives come with different types of photoresists and substrates in

immersion mode. For our sinusoidal phase grating fabrication, we use the 25x (immersion)

objective with an ITO coated glass substrate and IP-S photoresist for polymerization as shown

in Figure 3.16(b).

Different parameters such as the laser power, laser scanning speed, and the exposure time of

laser influence the fabrication quality. For example, if the laser power is too high for a voxel

dimension, the material is over-exposed and bubbles are created in sample meaning that the
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(a) (b)

ITO coated substrate

25x
objective

IP-S photoresist

Z axis, voxel height

X/Y axis, 

voxel width

https://www.epfl.ch/research/facilities/cmi/

Figure 3.16: (a) A picture from the Nanoscribe machine that is used for fabrication and (b) A
schematic of the objective, photoresist, substrate and voxel dimensions of focused beam. The
voxel has an elliptic shape

sample temperature increases and the sample is destroyed. If the laser power is too low for

a voxel dimension, the energy is not enough to initiate the photo-polymerization and the

structure is not written. For optimization purpose, we fabricate several samples with different

laser powers and voxel dimensions. Then, we choose the optimum parameters for the final

sample fabrication.

We fabricated the sinusoidal phase grating for h = 12 and 25 µm.The laser is focused through a

25x immersion objective and the light intensity is optimized to be sufficient at the focal point

to initiate the photo-polymerization. The polymerization is done layer by layer by focusing

the objective in different planes. The distance between planes is 100 nm and 200 nm for 12

and 25 µm thickness, respectively and the solid laser power intensity is optimized to be 40 in

both cases. The piezo actuator moves the sample in the axial direction after fabricating each

layer. For the lateral movement of the sample, the Galva actuator is used. As we explained

earlier, the glass substrate is coated with ITO to obtain a refractive index contrast of more than

0.1 between IP-S and the substrate. After the writing process, the sample is developed in a

bath of PGMEA for 10 min to remove the non-polymerized photoresists. Afterward, rinsing in

the bath of Isopropanol for 2 mi n is done.

The photograph of one of the samples is shown in Fig. 3.17(a). Figure 3.17(b) demonstrates

the scanning electron microscopy (SEM) of the sample. There are small gaps between the

stitched areas [9]. It is due to the lateral movement of the sample during the exposure using the

Galvano actuator which is not as accurate as piezo-actuators. Using the piezo is not practical

as the writing time dramatically increases for the big lateral dimension of 0.5 mm x 1.2 mm

needed in the experiment. In Fig. 3.17(c), the zoom-in SEM image of the structure illustrates

the surface roughness for this sample.
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(a) (b)

Sample

x

y

(c)

Figure 3.17: (a) Photograph from one of the fabricated samples. (b) Scanning electron mi-
croscopy (SEM) of the sample, showing a small gap between the stitched areas. (c) Zoom at a
small area demonstrating the surface roughness.

3.4.2 Comparison of simulation and experiment

The schematic of the measurement setup is given in Fig. 3.18. A laser at 660 nm wavelength

is coupled into an optical monomode fiber (P1-630Y-FC Thorlabs) with an NA between 0.1

and 0.14. Using the subsequent 1:1 aspheric pair lenses (Thorlabs, C110M-B, mounted match

pair), the beam coming out of the fiber is imaged 8 mm away from the second lens flat front

and a Gaussian beam source is created in very good approximation. In such a way, the setup is

very versatile even for sample substrate of 700 µm thick and avoids small distance to phase

gratings surface. Distance between Gaussian beam waist and grating surface D is chosen to

be 3.8 mm, the same as the value for simulations. The pattern is projected on a screen 24 cm

away from the sample and the image of the far-field distribution on the screen is captured by

a camera (IDS CMOS camera) using an objective (JC10M Kowa lens series) with a big field of

view of 80 degrees along the x-axis. The 24 cm distance between the sample and the screen

is not in the far-field region under plane wave illumination but for the Gaussian beam, the

far-field region is at smaller distances from the sample [11] and for this reason, we are able to

observe the far-field already at 24 cm.

D

C
C

D

fiber

Aspheric pair lenses

Sample 

Screen

λ=660nm

8 mm

Figure 3.18: The schematic of the optical setup.
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In Fig. 3.19 (a) and (b), the experimental far-field pattern is compared with the simulation

result for h = 12 and 25 µm, respectively. All the simulations are done using FDTD and

high NA propagator. The measurements verify the simulation results especially the pattern

distributions match very well for 25 µm thick sample. For 12 µm thick configuration, the

experiment pattern envelope is not exactly the same as simulation although the number of

peaks clearly matches with simulation. Also, the measurement verifies that more numbers of

peaks are generated for 25 µm in comparison to 12 µm thick phase grating. The quality of the

experimental result is limited by two constraints: First, the fabrication of high quality micro-

optical periodic structures is challenging with a period of 50 µm and a big lateral dimension

of 0.5 mm x 1.2 mm. As we discussed in the fabrication part, there are small gaps between

the stitched areas which may influence the pattern quality although we have optimized the

fabrication parameters for a high-quality sample. The second and most important limitation

is the limited resolution (1280 x 1024) and dynamical range of the camera which lowers the

contrast in measurements and the lines are not resolved with high quality in the picture.

(a)
Experiment

Simulation

(b)

Experiment

Simulation

Figure 3.19: Experimental versus simulation far-field pattern for (a) h = 12 and (b) 25 µm,
respectively.

The measurements for 12 and 25 µm thick sinusoidal phase grating confirm the high accuracy

simulation results. It demonstrates that choosing accurate near-field and far-field simulation

tools is essential to find the correct pattern distribution. The accurate simulation tool is defined

according to the phase grating thickness and surface curvature as well as the generated pattern
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field of view in the far-field. Especially in the thick case of 25µm, only the high precision

FDTD simulation tool leads to the correct pattern distribution. To calculate the far-field

for high diverging patterns in which the paraxial approximation is not valid, but the high

NA propagator is enough accurate[12]. Also, the measurements confirm that 25 µm thick

phase grating generates the most number of points with uniform distribution as a dot pattern

generator.

3.5 Far-field pattern contrast evaluation versus D

As we discussed, for particular values of the distance D between the source and the phase

grating in Fig. 3.18, high contrast pattern in the far-field is achieved as a result of interfer-

ence effects of the curved wavefront and the grating. In this part, we evaluate the contrast

by changing D for 12 µm thick sinusoidal phase grating by comparing the simulation and

experiment. The phase grating near-field is calculated using the rigorous FDTD simulation

tool. As we explained earlier, for a period of 50 µm and the source wavelength of 650 nm, the

high contrast peaks are observable for D = 3.8 mm. We are most interested in the contrast

variation by changing D around high contrast pattern distance. The contrast is defined by the

following formula,

contrast = patternstandarddeviation

patternmeanvalue
(3.10)

The 1D sinusoidal phase grating is fabricated using the introduced direct laser writing system

(Photonic Professional GT, Nanoscribe machine). The sample dimensions are 0.5 mm x 1.2

mm. The scanning electron microscopy (SEM) images of the sample are shown in Fig. 3.20. As

seen in Fig. 3.20(a), the dark vertical and horizontal lines show a gap between the stitched areas.

Also, the resolution of sample fabrication is three times lower than the fabricated samples in

the previous section, reducing the quality of the experimental results. Although, the recorded

irradiance pattern quality is good enough for demonstrating the contrast variation versus the

distance D .

1.2 mm

0
.5

 m
m

(a) (b)

x

y

Figure 3.20: ((a) Scanning electron microscopy (SEM) of the sample, showing horizontal and
vertical small gap between the stitched areas. (c) Zoom at a small area demonstrating the
surface roughness.
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The calculated contrast using simulation is shown in Fig. 3.21(a). There is one peak in the

contrast curve, which is almost symmetric around D = 3.8 mm. In the experiment evaluation,

the far-field irradiance pattern is recorded by changing D around 3.8 mm and the contrast is

calculated for each measurement. We plot the experimentally obtained pattern contrast versus

D in Fig. 3.21. The simulated and experimental contrast curves match very well except that the

contrast variation around its peak is higher using the rigorous simulation tool in comparison

with experiments because the sample quality is not high. Figure 3.21(c) demonstrates the

experimental far-field patterns for points A, B, and C which are determined in Fig. 3.21(b). As

seen in the line plots, the pattern has a higher contrast in point B in comparison to points

A and C. Also, the far-field patterns are horizontally divided into three sections. It is due

to the space between stitched areas in the fabricated sample. Here, we experimentally and

numerically demonstrated that the high-contrast pattern in the far-field is achieved for the

particular distances of D in which the self-imaging condition is satisfied.

(a)

(b)

(c)

A

B

C

A

B

C

Figure 3.21: (a) Calculated contrast versus D using near-field FDTD simulations (b) Calculated
contrast for experimental irradiance patterns versus D and (c) Experimental irradiance pattern
for points A, B and C which correspond to D = 3.4, 3.8 and 4.1 mm, respectively.

3.6 Surface profile optimization

In this chapter, we demonstrated that for double curvatures in one period of a phase grating,

we can double the number of points in the far-field compared with a regular lens array that

would only contain a single radius of curvature as a parameter. In this part, we would like to

optimize the curvature to achieve a high pattern uniformity in the far-field. The aspherical
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surface profile of a conic lens (without considering the polynomial coefficient) is shown by

f (x) = cx2

1+
√

1− (1+k)c2x2
(3.11)

Where c = 1/R is the curvature (R Radius of curvature) and k is the conic constant of the lens.

For k = 0, the surface is spherical and for k =−1, the lens surface is paraboloidal. To perform

lens surface optimization for the double lens geometry, we consider the configuration in Fig.

3.22. A concave and a convex lens are illuminated by a plane wave. By taking the Fourier

transform of two lenses near-field, the pattern envelope for periodic lens array under Gaussian

beam is obtained. The figure of merit for optimization is defined by

u = Pattern envelope standard deviation

Pattern envelope mean
(3.12)

u is a criterion for evaluating the uniformity of pattern distribution. One more important

parameter in practical applications is the amount of reflection (r ) from the surface profile,

demonstrating the amount of loss by passing through the lens. For this purpose, we evaluate

the amount of reflection from the lens’s surface profile. All the simulations inside the lens

area have been performed using the FDTD method. We calculate u and r for −1 ≤ k ≤ 0 and

12.5µm ≤ R ≤ 25µm (for a 25 x 25 matrix). Performing 625 simulations is time-consuming for

Gaussian beam illumination. For this reason, u and r are calculated for only one single period

under plane wave illumination.
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Figure 3.22: The configuration is a concave and convex lens under plane wave illumination.
We study the effect of lens curvature on reflection (r ) from lenses and pattern envelope which
is the Fourier transform of the two lenses near-field.

As shown in Fig. 3.23(a), for the small conic constant k and radius of curvature R, a pattern

with better uniformity and larger FOV is obtained. It means that the lens curvatures close to

the paraboloid are a better choice in terms of pattern uniformity and FOV. On the other side,

as seen in Fig. 3.23(b), the higher the lens curvature, the larger the amount of reflection from

the surface. For spherical lens curvatures (k = 0), the effect of reflection is more pronounced
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however, by going to paraboloidal shape (k =−1), the amount of reflection becomes negligible

for most of the lens curvatures. Considering the colormap graphs in Fig. 3.23., our purpose

is to choose a region in which the highest uniformity and the least amount of reflection are

realized in the 2D plots. This area is determined with a dashed line square in Fig. 3.23(a); it

means that the best point generators with respect to uniformity and reflection are obtained

for −1 ≤ k ≤−0.7 and 15µm ≤ R ≤ 17.5µm.

Figure 3.23: (a) u is calculated with respect to lens conic constant k and radius R . (b) Reflection
from the surface is shown with respect to lens conic constant k and radius R.

Next, we compare the pattern distribution under Gaussian beam illumination for three cur-

vatures, inside and outside the optimized area, as seen in Fig. 3.24. For R = 12.5µm, a high

FOV as large as ±33.8◦ is achieved however, the amount of reflection is higher in this case

compared to the radius of 16 and 25 µm. For 16 µm radius of curvature, a high FOV ( ±32◦)

and low reflection (11.3%) is achieved. Finally, for the radius of 25 µm, a pattern with low FOV

( ±19.7◦) is generated. In this case, the amount of reflection is negligible however, it is not a

good point generator.

46



3.6. Surface profile optimization

FOV = ±33.8°

r = 27.8 %

FOV = ±32°

r = 11.3 %

FOV = ±19.7°

r = 10.3 %

Figure 3.24: Far-field distribution under Gaussian beam for k =−1, and (a) R = 12.5µm, (b)
R = 16µm, and (c) R = 25µm.

Now, we briefly compare the optimized point generator (K =−1, R = 16µm) that is shown in

Fig. 3.24(b) with the point generators of sinusoidal curvature in the previous section. For the

sinusoidal curvature, we obtained a pattern with ±30◦ FOV and reflection of 35.15% however

with the optimized curvature, we can obtain a high FOV ( ±32◦) and low reflection of 11.3%.

Next, we examine the pattern uniformity and reflection for inverted lens configuration. The

configuration is shown in Fig. 3.25(a). As seen from Fig. 3.25(b), u is obtained to be small for

high surface curvatures(R = 12.5µm), especially for spherical geometries (k = 0). According

to Fig. 3.25(c), the amount of reflection for all the curvatures is negligible (less than 11%).

For this reason, there are no constraints concerning the reflection from curvature for such

configuration. Figure 3.25(d) shows the field distribution for two of these geometries under the

Gaussian beam illumination. As seen, the pattern FOV can be as large as ±40◦ for k = 0 and R =
12.5µm. Also, for lens paraboloidal curvature (k =−1) and R = 12.5µm a pattern distribution

with a very different envelope is generated. By further increasing this paraboloidal lens

curvature (R = 7.5µm), the FOV can reach ±40.6◦. Compared with the sinusoidal curvature in
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the previous part, both the FOV and the number of points in the pattern are increased (FOV:

±30◦ to ±40.6◦; the number of points: 165 to 170). The simulations show that the inverted

lens configuration is a better candidate in terms of the amount of reflection, pattern FOV, and

the number of points in the pattern. A more comprehensive study can be done by applying

the optimization algorithms and including non-zero polynomial coefficients to have more

freedom for surface optimization.

FOV = ±40°

FOV = ±30°

R

P
la

n
e
 w
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v
e

FFT

k = 0, R = 12.5 μm

k = -1, R = 12.5 μm
(a)

(b)

(c)

(d)

FOV = ±40.6°
k = -1, R = 7.5 μm

Figure 3.25: (a) Configuration is the inverted lens in which the incoming beam first hits the
lens curvature. (b) u is calculated with respect to lens conic constant k and radius R. (c)
Reflection from the surface is shown with respect to lens conic constant k and radius R. (d)
Far-field distribution under Gaussian beam for k = 0, R = 12.5µm, k =−1, R = 12.5µm and
k =−1, R = 7.5µm.

3.7 Summary

In this chapter, structured dot pattern generation under diverging Gaussian beam illumination

for sinusoidal phase grating is investigated using the self-imaging phenomenon. Under the

Gaussian beam illumination, large numbers of peaks with a wider field of view are generated

in the far-field for sinusoidal curvature in comparison to the plane wave illumination. The

influence of the source beam waist and the sinusoidal phase grating thickness on the far-field

pattern is studied. We compared using TEA, FFT-BPM and the rigorous FDTD method for

the near field simulations. TEA is not accurate for the simulation of shallow phase gratings

for different source beam waists, especially in terms of far-field pattern envelope and field

of view. According to the rigorous FDTD simulations, the reflection from sinusoidal phase

grating increases by 4% for the smallest source beam waist in comparison with the plane wave
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illumination due to the source wave-front curvature.

We studied the effect of changing the sinusoidal phase grating thickness on the far-field pattern

using the FFT-BPM in comparison with the FDTD for near field simulation and Fraunhofer

approximation compared with the high NA propagator for far-field simulation. The far-field

intensity distribution is very sensitive to the phase grating thickness and completely different

pattern distributions are obtained for different thicknesses. As a result of the FDTD simula-

tions, we found that the total internal reflections inside the thick phase grating due to both the

thickness and also the sinusoidal curvature of phase grating influence the near field distribu-

tion considerably. Consequently, using the scalar approach of FFT-BPM is not valid for thick

sinusoidal phase gratings with more than 0.5 aspect ratio. Moreover, we demonstrated that the

far-field Fraunhofer approximation cannot be used for thick sinusoidal phase gratings as the

pattern field of view is large and using the high NA far-field propagator is obligatory. On the

other hand, the comparison between thick and thin sinusoidal phase gratings demonstrates

that very high structures with the unity aspect ratio generate non-uniform pattern distribution

which is not suitable for point pattern generation. The 0.24 and 0.5 phase grating aspect ratios

generate large numbers of peaks with uniform distribution which makes them suitable as

point pattern generators. Finally, we demonstrated that the experimental results confirm the

FDTD and high NA propagator simulations.

We experimentally and numerically showed that the high-contrast pattern for sinusoidal phase

grating is achieved for particular distances between the source and the phase grating, in which

the self-imaging condition is satisfied.

Finally, we optimized the surface profile of the phase grating to further improve the point

generator in terms of pattern FOV and the number of generated points.
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4 Interferometry setup

Interference is the superposition of traveling beams in space. For two or more coherently

illuminating beams, the resulting interference can be constructive or destructive depending

on the phase difference between the traveling fields. Two beams are temporally coherent with

each other if they travel with the same frequency, and a constant phase difference between

them. If the beams are in phase, the interference is constructive meaning that the resulting

wave amplitude increases; for out of phase traveling beams, the interference is destructive

meaning that the two waves cancel out each other.

Consider two coherently traveling beams along the same direction with the same frequency

and wavelength. Two-beam interference is the superposition of the fields; the resulting

irradiance I, is described by [1],

I = A2
1 + A2

2 +2A1 A2 cos(φ1 −φ2) (4.1)

Where A1, A2 are the amplitude and φ1, φ2 are the phase of the two traveling beams. In

practice, detectors can only distinguish the intensity I which is proportional with the square

of beam amplitude A2. Rewriting Eq. 4.1,

I = I1 + I2 +2
√

I1

√
I2 cos(φ1 −φ2) (4.2)

Where I1 and I2 are the irradiance of two superposing beams. The working principle of an

interferometer setup is to extract the phase difference∆φ=φ1−φ2 by recording the irradiance

of two superposing reference beams and object beam. As it is seen in Eq. 4.2, we extract

the relative phase difference between the beams and not the pure phase of each incoming

beam [2]. In summary, to observe the interference between the two beams, the first beam

must be temporally and spatially coherent to the second beam. Also, the two beams must

be compatible in terms of polarization properties. As an example, if the first beam is linearly

polarized along x and the second beam is linearly polarized along y , the beams do not interfere

[1].
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Chapter 4. Interferometry setup

4.1 Interferometer setup

The interferometer working principle is to split a beam into two arms, reference and object

arm. The beams travel in two different paths and experience different phase delays. The

beams are then recombined and the resulting interference pattern is recorded on the detector.

For optical interferometry, two common configurations can be applied. As it is seen in Fig.

4.1(a), the Michelson interferometer is one of the setups that was first presented by Albert

Abraham Michelson [3]. The beam is split into two arms using a beam splitter. The beam

in each arm is then reflected from a mirror. The reflected beams are superposed in a beam

splitter and collected on the detector.

source

Beam splitter

M1

M2

Detector

(a)

source

Beam splitter 1

M1

M2
Detector

Beam splitter 2

(b)

Figure 4.1: (a) Michelson interferometer, and (b) Mach-Zehnder interferometer.

In another configuration in Fig. 4.1(b), a Mach-Zehnder interferometer is adopted that was

first proposed by Ludwig Zehnder in Ref. [4] and was refined by Ernst Mach in another work [5].

As seen, the beam is split into reference and object arms by applying the first beam splitter. In

the reference arm, the wave properties are preserved; the beam is considered as a reference for

extracting the phase difference. In the object arm, the beam can be modulated by introducing

an optical element or changing the optical length. The reflected beams from the first and

second mirrors are then collected by the second beam splitter and displayed on the detector.

Finally, the generated phase difference by introducing a disturbance in the object arm is

extracted from the interference pattern on the detector. In this thesis, we will adopt a high-

resolution interference microscopy system that is based on a Mach-Zehnder interferometer to

extract the phase disturbance as a result of introducing micro-optical elements in the object

arm.

4.2 Phase-shifting interferometry technique

As we discussed, the phase difference is extracted based on the two-beam interference Eq. 4.2.

Rewriting Eq. 4.2 in the following simplified form,

I = I
′ + I

′′
cos[φ(x, y)+δ(t )] (4.3)
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4.3. High-resolution interference microscopy

Where φ(x, y) is the introduced unknown phase delay in the object arm and δ(t ) is a known

phase shift that we apply to solve the equation. As seen, Eq. 4.3 has three unknown variables

of I
′
, I

′′
and φ(x, y), and at least three interference patterns should be recorded in the detector

to solve the problem. To produce the phase shift δ(t ), we apply a piezo-electric driven mirror

in the reference or object arm to precisely change the optical path in the nanometer range. A

common phase shift of δ(t ) is π/2 that is equivalent to the optical path difference of λ/4. As an

example, considering δ1 = 0, δ2 =π/2 , δ3 =π, δ4 = 3π/2, and δ4 = 2π, the recorded intensities

are as follows

I1 = I
′ + I

′′
cos(φ)

I2 = I
′ − I

′′
sin(φ)

I3 = I
′ − I

′′
cos(φ)

I4 = I
′ + I

′′
sin(φ)

I5 = I
′ + I

′′
cos(φ)

(4.4)

Although three equations are enough to derive the phase profile, by increasing the number

of equations, the resulting errors of the experimentally obtained phase shift are reduced.

Extracting the phase by recording 5 images is called the Schwider-Hariharran or five-steps

phase-shifting interferometry [6]. The extracted phase is calculated by the following equation,

φ= tan−1
[

2(I2 − I4)

2I3 − I5 − I1

]
(4.5)

The error can be further reduced by increasing the number of recorded images. In the last

section of this chapter, we will study the effect of increasing the number of recorded images

on measurement error, in more detail. Here in this thesis, we apply the 8-steps algorithm

to extract the phase and further reduce the errors in comparison with the five-steps phase-

shifting algorithm, where the phase is extracted by

φ= tan−1

[
1
2 (I4 + I8)− 1

2 (I2 + I6)
1
2 (I1 + I5)− 1

2 (I3 + I7)

]
(4.6)

4.3 High-resolution interference microscopy

We employ high-resolution interference microscopy (HRIM) which is a special type of mi-

croscopy technique to be able to extract both the phase and intensity of electromagnetic fields.

In the following, we first demonstrate the schematic of our HRIM setup under plane wave illu-

mination and briefly explain the working mechanism. Then, we introduce the modified setup

for different illumination conditions. Finally, we explicitly explain the optical components

and their functionality in the setup.
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Chapter 4. Interferometry setup

4.3.1 High-resolution interferometry setup under plane wave

A schematics of the initial interferometry setup is shown in Fig. 4.2. Based on the two-beam

interference phenomenon, a Mach-Zehnder interferometer is utilized to retrieve the phase

profile. The beam is split into two arms using a fibred beam splitter. In the object arm, a

Plane-wave illumination is generated by applying a collimating lens with a focal length of 4.6

mm (CFC-5X-A, Thorlabs), as it is seen in the inset Fig. 4.2. The collimated beam is collected

using a microscope objective and reflected from a piezo-driven mirror. The reflected beam is

then interfered with the collimated beam from the reference arm, in a second beam splitter,

and displayed on the CCD camera. Before starting the actual measurements under a modified

source, the objective position should be optimized for further measurements. To do so, we

optimize the objective and tube lens position as well as the piezo-driven mirror tilting angle to

observe a flat interference pattern having a single fringe on the CCD camera. The flat intensity

distribution on the CCD camera assures that the plane wave illuminations in the object arm

and the reference arm travel the same optical path length. The microscope objective and

the tube lens positions are now fixed and the setup is ready for replacing the plane wave

with a focused beam source and inserting microoptical elements in the object arm for real

measurements.
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Beam splitter
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CCD

objective tube lens

8 step phase shift

by piezo moving mirror

Figure 4.2: Setup schematics for adjusting the objective, tube lens position, and tilt of the
mirror.

In the object arm in Fig. 4.2, the fiber NA is between 0.1 and 0.12. The collimated beam by

applying the lens has a diameter of 1 mm for a lens focal length of 4.6 mm. The beam diameter

of 1 mm is collected by 50x or 20x magnification objectives. The captured field diameter on

the CCD camera by the objectives is 0.14 mm and 0.4 mm for 50x and 20x magnifications,

respectively. It demonstrates that the collimated beam is efficiently collected by the objectives.
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4.3. High-resolution interference microscopy

4.3.2 High-resolution interferometry setup under focused beam

The standard configuration for setup calibration is under plane wave illumination, as it was

shown in Fig. 4.2. To apply this standard interferometry setup for our problem in which

the source is a focused beam instead of a plane wave, we consider two configurations as

shown in Fig. 4.3 (a) to modify the source in the object arm. The first configuration is an MLA

under a focused Gaussian beam at a certain distance D. The second geometry is an MLA

under a focused Gaussian beam in which the source near-field is modulated by applying a

microstructure for instance a microsphere. The schematic of the modified setup is shown in

Fig. 4.3 (b) for these configurations. The setup works in the transmission mode and the fields

propagate in free-space.

(b)
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Figure 4.3: (a) The schematic of configurations for different source illumination conditions and
(b) The corresponding schematic of high-resolution interference microscopy setup (HRIM)
which is based on a Mach-Zehnder interferometer.

As it is seen in Fig. 4.3 (b) for configuration number 2, a single-mode linearly polarized laser

diode is utilized as the source. A beam splitter divides the intensity into the reference and

object arm. In the object arm, the beam out of the fiber is imaged using an aspheric pair lenses.

This imaged focused beam corresponds to the focused Gaussian beam in configuration 1 and 2

in Fig. 4.3 (a). The aspheric pair lenses can freely move together along z axis to precisely focus

the beam on the micro-particle which is attached to the sample holder 1. Sample holder 1 can

freely move along x and y axis to precisely focus the beam at the center of the micro-particle.

The aspheric pair lenses and the sample holder 1 are mounted on a precision piezo stage to

translate along the z axis. This allows us to record the micro-particle near-field amplitude and

phase distribution with high precision by moving the sample and illumination part together

along the z axis. Sample holder 2 retains the MLA and can freely move along x, y , and z axis.
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The beam is then collected by the objective. The MLA and the objective are mounted on a

translation stage to freely move along x, y , and z axis, especially for adjusting D which is the

distance between the MLA and the micro-particle. The incoming beams from the reference

arm and object arm are collected on the CCD camera. By moving the piezo-electrically driven

mirror, an optical path length shift is generated in the object arm. Eight interference patterns

are recorded by adding an optical path length of λ/4 and the phase profile is extracted by

employing the 8-step phase-shifting interferometry technique.

To apply the geometry number 1 (shown in Fig. 4.3 (a)) in setup, the components that are

determined in the dashed line box 2, will be replaced by the configuration in dashed line box

1 in the inset Fig. 4.3 (b) which is a fiber exit. The fiber output is used to model the focused

Gaussian beam. The tested micro-optical elements include MLAs with a period of 30 and 50

µm; the microspheres and spheroids to modify the source near-field are in the range of 10 to

20 µm diameter.

4.3.3 Setup optical components and their functionality

In this section, we illustrate the used optical components in our setup, with more details. An

image of our high-resolution microscopy optical setup is shown in Fig. 4.4.
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Figure 4.4: High-resolution interference microscopy optical setup.

Optical source

Here, we start by explaining the laser source specifications. The light sources are two single-

mode polarized laser diodes with different powers and wavelengths (CrystaLaser, 642 nm:

DL640-050-3, 405 nm: BCL-040-405-S), to investigate the structured light generation for

different wavelengths. The beam diameter of laser sources is approximately 1 mm (1/e2

intensity). As it is seen in Fig. 4.5 (a), the beam out of the laser source is coupled into a fiber by

making use of a focusing lens. The incoming beam out of the fiber is split into two arms by

applying a beam splitter (TW630R2F2, Thorlabs) with the 90/10 aspect ratio, as it is shown in

Fig. 4.5 (b). The 90% of power is transmitted to the object arm to compensate for the losses

because of the field propagation through the optical components including lenses and also the

samples. To observe high contrast fringes on the detector due to the interference between the

object arm and reference arm beams, we have to more precisely equalize the beam intensities

in the two arms. For this purpose, we apply Neutral density filters with different transmission
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efficiencies, as is seen in Fig. 4.5 (c). Depending on the number of samples in the object arm,

we apply those filters in the reference arm or/and object arm.

Laser source

Focusing lens

fiber

to the reference arm

(a) (b) (c)

Figure 4.5: (a) Laser source output is coupled into the fiber by using a focusing lens and (b)
the beam out of the fiber is split into the object arm and the reference arm. (c) Neutral density
filters with different transmission efficiencies to adjust the intensity in reference or object arm.

Illumination part in the object arm

Here, we focus on the illumination part number 2 in Fig. 4.3 (b) in which the focused source

near-field is modulated by a micro-particle. In Fig. 4.6, the schematic of the illumination part

as well as the corresponding used optical components are shown. As seen in Fig. 4.6 (b), the

actual setup includes the piezo stage along z, translation stage along z, aspheric pair lenses,

and translation stage along x and y . Figures 4.6 (c) to 4.6 (f) more specifically show each of

the optical parts in Fig. 4.6 (b). The optical cage and the translation stages are mounted on

a precision piezo stage with a z scan range of 100 µm (MadCityLabs, Nano-F100S), as seen

in Fig. 4.6 (c). This allows us to record the micro-particle near-field amplitude and phase

distribution with high precision by moving the sample and illumination part together along

the z axis. By applying the z-axis translation mount (SM1Z, Thorlabs) in Fig. 4.6 (d), the tube

lens containing the aspheric lens pair (C220MP-B, Thorlabs), and the polarizer can freely

move together along z axis to precisely focus the beam on the micro-particle. The z-axis

translation mount travel range is 2 mm with 1 µm increment which is sufficiently accurate

in our application. According to Fig. 4.6 (e), we use a 1/2 inch tube lens whose diameter is

small enough to freely move in our 30 mm cage system. As seen in Fig. 4.6 (f), the sample is

attached under the x − y translation mount (which is called sample holder 1 in schematics).

The x − y translation mount (ST1XY-D/M XY, Thorlabs) translates with differential drivers

in a +/− 3 mm travel range and 0.5 µm increment step. With the increment step of 0.5 µm,

precisely focusing the beam to the center of a micro-particle with a diameter of around 10 µm,

is challenging to do in comparison with using a piezo-driven stage. On the other side, for our

two-level configuration in which the distance between the micro-particle and MLA is in the

range of 2 to 3 mm, the differential translation mount has the advantage of being compact

and having enough space to position the MLA very close to the micro-particle.
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Figure 4.6: (a) The schematic of the illumination part in the object arm for an MLA under a
focused Gaussian beam which is modulated by a micro-particle (b) The actual illumination
part. (c) to (f) separate pictures of optical components that are shown in (b).

For configuration number 1 in Fig. 4.3 (b) in which there is no micro-particle, the illumination

part is simply replaced by a fiber exit, or sample 1 moves along the x and y axis to focus the

beam on the glass substrate parts where there is no structure. Although both configurations

give similar results, in the letter case, the Gaussian beam propagates in a glass substrate of 700

µm thick before passing through the MLA.

Objective and MLA parts in the object arm

Sample holder 2 in Fig. 4.3 (b) retains the MLA and can freely move along x, y and z axis.

An image of the actual setup is shown in Fig. 4.7 (a). The stage is equipped with a digital

micrometer along z axis with 1 µm travel increment to precisely adjust the MLA position with

respect to the micro-particle and the objective. The objective is adjusted to focus the beam on

the sample and collect the information on the CCD camera. Two types of objectives (Mitutoyo

APO 50x /NA 0.42 or APO 20x /NA 0.4) are used for recording the fields. A turret carries the two

objectives to more conveniently switch between the two magnifications, as is shown in Fig.

4.7 (b).
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Figure 4.7: (a) Sample holder 2 which retains the MLA and is equipped with a translation
stage to freely move the MLA along the x, y , and z axis. (b) The objective turret that holds
the objectives and (c) The used objectives, 50x for micro-particle near field, and 20x for MLA
near-field recording.

A picture from the two objectives is also shown in Fig. 4.7 (c). Using the 50x objective for

collecting light in the near-field of the micro-particle, the lateral resolution is limited according

to the objective numerical aperture (NA = 0.42) and is described by the Abbe diffraction spot

size limit ∆x = λ/(2N A) = 764 nm in the air for λ= 642 nm. On the CCD camera (CM3-U3-

50S5M-CS) with 2048 x 2448 number of pixels and pixel size of 3.45 x 3.45 µm, each pixel

size corresponds to 69 nm in the object plane which is smaller than the resolution limit. We

employ the 20x objective to collect the MLA near-field; using this objective the field can be

recorded in a large area of 422 µm x 353 µm that covers enough numbers of lenses in our

setup. The 20x objective lateral resolution is 802 nm (for λ= 642nm, NA = 0.4).

Piezo mirror and tube lens in object arm

The incoming beam from the objective is reflected by a mirror and then imaged by a tube

lens on the CCD camera, as shown in Fig. 4.8 (a). Moving the mirror with a precision piezo

actuator and changing the optical path length in the object arm, eight interference patterns

will be recorded to extract the phase by applying an 8-step phase retrieval algorithm.
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Figure 4.8: (a) The tube lens and the piezo-driven mirror which is mounted in the object arm
to precisely change the optical path length for extracting the phase, (b) the front view of the
mirror.

Reference arm

As seen in Fig. 4.9 (a), in the reference arm, the incoming beam out of the fiber is collimated

by a lens and then is linearly polarized along the x axis by applying a polarizer. According to

Fig. 4.9 (b), the beam from the reference arm and the object arm interfere in beam splitter

1(BS1) and the field distribution is displayed on the CCD camera. The setup is equipped with

a lamp and a second beam splitter (BS2) to observe the sample when the laser source is off.

fiber

lens

Polarizer

CCD camera

BS1

BS2

lamp

(a) (b)

Figure 4.9: (a) The beam in the reference arm is collimated by a lens and linearly polarized by
the polarizer, (b) the beam from reference and object arm interfere in beam splitter 1 (BS1),
and the interference pattern is displayed on the CCD camera. The lamp is for observing the
sample if the laser is off.
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Setup translation along x, y , and z

According to Fig. 4.10, the object arm components including the sample holder 2, objective,

piezo-driven mirror, tube and far-field lenses as well as the reference arm can freely move

along x, y , and z using a translation stage. Along the z-axis, the setup is equipped with a digital

micrometer gauge of 10 µm interval increment. The ten-micrometer interval increment is

enough accurate to adjust D which is the distance between the focused source and the MLA.

The moving parts are determined in a dashed line area in Fig. 4.10.

z-axis move

y-axis move x-axis move

Digital micrometer 

gauge

Figure 4.10: The moving parts of the setup by applying the translation stage are determined
in a dashed line area. With the digital micrometer gauge along z axis, we precisely adjust the
distance between the MLA and the focused source.

Recording far-field distribution

To record the far-field intensity distribution, we first block the reference arm, and then we

apply a lens at its focal distance of 200 mm from the CCD camera, as it is shown in Fig. 4.11.
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4.3. High-resolution interference microscopy

For a CCD camera at a lens focal distance, the field distribution is the Fourier transform of the

incoming beam which is mathematically equivalent with the Fraunhofer approximation [7].

Far-field or BERTRAND 

Lens

200 mm

blocked

Figure 4.11: Recording far-field distribution. The incoming beam from the reference arm is
blocked and then the far-field lens is inserted in the setup at its focal distance from the CCD
camera.

Data extraction steps

To summarize our interferometry measurement steps, we review our two configurations that

have been introduced in this chapter. The geometries are shown in Fig. 4.12.

Far-field

P1

P2

P3 P4
P5

MLA

Gaussian beam

D D

MLA

Far-field

(a) (b)

⨀ z

x

y

Figure 4.12: Two configurations are studied using the interferometry setup. (a) MLA under a
focused Gaussian beam and, (b) MLA under a focused Gaussian beam which is modulated by
a micro-particle.

In the first configuration in Fig. 4.12 (a), the MLA is illuminated by a focused Gaussian beam,

and the field distributions are compared for different values of distance D . The measurement

steps for this configuration are as follows:

1. The objective is focused on the MLA surface and the MLA near-field is recorded.

2. To measure the far-field distribution, the reference arm is blocked and the far-field lens

is put into place to record the intensity distribution on the CCD camera.
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Chapter 4. Interferometry setup

In the second geometry in Fig. 4.12, the MLA is illuminated by a focused beam in which the

focused source near-field is modulated by a micro-particle. For this geometry, we record the

fields in the planes P1 to P5 in Fig. 4.12 (b). The measurement procedures are as follows:

1. Micro-particle near-field planes of P1 (x-z plane)and P2 (x-y plane): Remove MLA from

setup. Focus the 50x objective on the micro-particle. Record phase and intensity in the

near-field planes of the micro-particle.

2. Plane of P3 immediately before MLA: Put into place the MLA. Adjust the distance be-

tween the MLA and micro-particle to be our designed value of D . Focus the 20x objective

on the MLA surface. Remove the MLA and record the phase or amplitude distributions.

3. Plane of P4 immediately after MLA: Again, put into place the MLA. Record the phase

and intensity which is collected by the 20x objective.

4. The far-field intensity in the plane of P5: Block the reference arm. Put into place the

far-field lens at its focal distance from the CCD camera to record the far-field pattern

while the 20x objective is focused on the MLA surface.

In chapter 5, chapter 7 and chapter 8, we will present the measured fields for both configura-

tions in Fig. 4.12 and compare them with simulation results.

4.4 Sources of error

Different errors contribute to the phase measurement by applying the phase-shifting inter-

ferometers PSI. Many of the errors can be reduced by applying some particular algorithms,

however, there exist fundamental errors that influence the accuracy. These errors are classified

into three groups; errors originating from the data acquisition process; environmental errors

and errors that come from the optical setup deflection. The explicit study of these errors and

the contribution of different types of phase-shifting algorithms are presented in Ref. [1, 8].

Based on this reference, here, we briefly discuss these errors and strategies to diminish them.

4.4.1 Phase shift error

The error resulting from phase shift influence the data acquisition process using the PSI algo-

rithm. Ideally, the intensity in each point by linearly changing the phase is purely sinusoidal.

However, in practice, the phase shift increment is not the predicted ideal phase shift. Therefore,

we have to choose the algorithm that is less sensitive with respect to phase shift errors. In

general, by acquiring more images, the algorithm can extract the phase with less error because

of a higher sampling [9, 10].
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4.4.2 Detector nonlinearity

Detector nonlinearity introduces an error which is especially important for very high contrast

fringes. In Ref. [11], it is shown that by applying the four-step algorithm (α=π/2), there is no

error in phase measurement for linear and second-order detector nonlinearity however this

cannot be said for the three-step algorithm. By further increasing the number of steps in PSI

algorithm, the effect of high order nonlinearities decreases. However, these errors, in general,

do not affect.

4.4.3 Source stability

Stability of source frequency and amplitude is a critical parameter. The frequency instability

of the laser source, give rise to the instability of fringes that directly reduces the phase mea-

surement accuracy. Considering a path length difference of ∆L, the frequency stability of the

source satisfies the following inequality

∆υ= c.k

∆L
(4.7)

Where c is the light velocity and k = 2π/λ. This shows that the source instability is more

problematic for large optical path differences. For example for a path difference of 2 m,

∆λ< π/λ. For the source wavelength of 642 nm in our case, ∆λ< 2µm should be satisfied.

Our laser source wavelength is 642 nm ±4 nm, meaning that the source is stable enough with

respect to frequency.

Instability in source intensity can be degraded by averaging if the intensity variation is random.

For this reason, the resulting error depends on the used algorithm. For example, it is shown that

for N-step least square algorithm, the standard deviation of the extracted phase is proportional

with 1/
p

N [12]. In our experimental setup, we apply an 8 step PSI algorithm instead of regular

5 steps to reduce the effect of noise in the extracted phase.

4.4.4 Quantization error

To apply the PSI algorithm which is based on digital computing, we first require to convert

the analog intensity signals to digital. There can be quantization errors in this step. However,

nowadays computers and cameras, there is no issue with this subject.

4.4.5 Vibration error

Vibrations and mechanical instability in the optical setup can impose the error on the extracted

phase. Normally, one uses mechanical tools such as vibration isolation mounts, vibration

isolation table for mounting the whole setup, and also, stably building the optical setup. Loca-

tion of optical setup is also important and it should be in a quiet place. Small vibrations can
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be shown by perturbations in phase shift increment. Considering high-frequency vibrations,

the effect of vibration induced by intensity fluctuations depends on the used PSI algorithm.

The extracted phase standard deviation is roughly proportional to 1/
p

N [13] where N is the

number of recorded images. It means that for more number steps, less error is induced due to

small setup vibrations.

Several methods can be applied to reduce the effect of vibration when using PSI algorithms. A

system can be applied in which all frames are taken simultaneously. One of these methods is

based on using the Twyman-Green interferometer in combination with a holographic optical

element (HOE), as seen in Fig. 4.13. Four identical copies of the beam are generated by

applying the HOE. The beams are then collected by a CCD camera that is equipped with four

different phase masks and polarizers to generate four different interferograms. In this strategy,

all the interferograms are captured simultaneously and this way, the system is not sensitive

with respect to vibrations. However, to record four images simultaineously, one requires a

camera with a large number of pixels.

Figure 4.13: HOE based Twyman-Green interferometer setup to extract all frames simultane-
ously [1].

In our work, we develop our setup on the vibration isolated table to avoid vibration errors.

Also, we apply an 8 step instead of a regular 5-step PSI algorithm to decrease the effect of

errors resulting from optical setup vibrations.

4.4.6 Air currents and turbulence

Air currents and turbulence are also a source of errors in measurements. Fibered optics can be

used to reduce this effect.

4.4.7 Coherent noises

The reflected beam from one surface within the coherence length can interfere with another

incoming beam and generate measurement errors. These kinds of measurement errors, in

some cases, can be eliminated. In Ref. [14], it has been shown that the three-step algorithm is
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much more sensitive to reflections than the four-step algorithm. There exist other kinds of

coherent noises; for example, dust and scratches on optical surfaces, inhomogeneities, etc.,

can generate measurement errors.

In summary, increasing the number of recorded frames in the PSI algorithm can reduce

many of the errors and make the system very robust. The increased measurement time is not

important for investigations in the laboratory. Here we compare the three, five, and eight steps

PSI algorithms for extracting the phase, considering no filtering in the extracted phase. As

seen in Fig. 4.14, the extracted phase for the three steps is very noisy. For five and eight steps,

the images are much less noisy because of the averaging over more frames; however, the phase

modulation is not the same for five and eight steps. In our experiments, we apply the 8-step

PSI algorithm to extract the phase.

tan 𝜃 =
𝐼3 − 𝐼2
𝐼1 − 𝐼2

tan 𝜃 =
2(𝐼4 − 𝐼2)

𝐼1 + 𝐼5 − 2𝐼3
tan 𝜃 =

1
2

𝐼4 + 𝐼8 −
1
2

𝐼2 + 𝐼6

1
2

𝐼1 + 𝐼5 −
1
2

𝐼3 + 𝐼7

3 steps 5 steps 8 steps

Figure 4.14: Extracting phase using 3, 5, and 8 steps PSI algorithms
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5 Near-field and far-field measurement
for a focused source

In chapter 4, we introduced the used high-resolution interferometry microscopy (HRIM) setup.

In this chapter, we present the experimentally recorded near-field and far-field for a micro-lens

array (MLA) under the Gaussian beam illumination using the HRIM setup and compare with

simulation results. We use an MLA with a period of 74λ which is in the refraction-diffraction

regime [1] under 405 nm source wavelength. The configuration is shown in Fig. 5.1. We

demonstrate that for certain values of the distance D, a high contrast pattern with a larger

field of view compared to Plane wave illumination can be generated in the far-field.

5.1 Configuration

Considering the configuration in Fig. 5.1(a), a Gaussian beam illuminates the MLA at a certain

distance D and the pattern distribution is recorded in the far-field observation plane. The

Gaussian beam is a single-mode TEM wave with the following complex field, as we earlier

explained in chapter 2 :

u(x, y, z = 0) = exp[− x2

w2
0

].exp(− j kz) (5.1)

Where w0 is the beam waist of the Gaussian beam and k = 2π/λ is the wavenumber. As we

introduced the basic principles of dot generation in this thesis, for particular values of the

distance D, high contrast patterns in the far-field can be achieved based on the known self-

imaging phenomenon [2, 3]. According to this theory, by introducing a point source, the MLA

field distribution would reproduce in the far-field for certain values of D = mP 2

nλ , where P is the

MLA period, and m and n are integer values. However, here we employ a 2D hexagonal MLA

as it is shown in the SEM image of Fig. 5.1(b). The MLA is made of fused silica with a circular

lens shape and no aperture for each lens. For this geometry, there is a trigonal symmetry in

the arrangement of lenses. As a result, the high contrast distance D for the hexagonal MLA

is modified to be D = 3mP 2
y

nλ [4], where Py = 30 µm. Here, we consider n = 2 and m = 1. In this

case, for λ = 405 nm , D is calculated to be 3.4 mm.
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Figure 5.1: (a) Configuration under study which is an MLA under the Gaussian beam illumina-
tion, (b) lens array drawing from side view and a scanning electron microscopy (SEM) images
of sample from top view.

5.2 Simulation of near-field distribution and far-field intensity

According to Fig. 5.1(a), the optical system is split into three regions. The first zone is the

beam propagation from the source to MLA in which we use the angular spectrum of plane

waves method (ASP) [5] that its theory is explicitly explained in chapter 2. Right after, the light

propagation through the MLA is modeled using the thin element approximation (TEA) [5]

because the MLA under investigation is rather flat. In our case, an MLA with a period of 30

µm and a 47 µm radius of curvature is applied. Also, the MLA refractive index is assumed to

be 1.5 (fused silica). The lens is considered to be thin because its height which is 2.5 µm is

much smaller than its radius of curvature of 47 µm, as it is seen in the lens drawing in Fig.

5.1(b). For a thin MLA in the experiment part, the far-field distribution field of view is small

(+/−8◦) and all the information can be easily captured by the camera in our setup. Also, we

choose a thin MLA to be able to apply TEA which is not computationally extensive in a 3D

simulation. In chapter 3, we discussed the validity of TEA in comparison with the rigorous

simulation tools for thin and thick 1D sinusoidal phase gratings. We concluded that for a

period of 50 µm, TEA is valid for a thickness of less than 12 µm or the aspect ratio of 0.24.

As a result, for this optically thin MLA, applying the TEA is valid. Considering the TEA, the

incoming beam only experiences a phase delay that is proportional to the MLA thickness in

each point. With the output of the phase profile after the MLA, the far-field can be found by

Fraunhofer approximation which is the Fourier transform of the MLA near-field [5]. The source

wavelength is 405 nm. We simulated the MLA near-field phase and amplitude modulation as

well as the far-field intensity for D = 3.4 and 4.25 mm as shown in Fig. 5.2. We choose these

values to compare two high and low contrast cases according to the distance D.

70
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3 peak rings in phase4 peak rings in phase

D= 3.4 mm D= 4.25 mm

near−field 2

Phase 
∡ near−field

Far-field 

for z = 1 m

Figure 5.2: Intensity and phase near-field as well as the far-field intensity for D = 3.4 and 4.25
mm.

As it is seen in the near-field intensity distributions, for a larger distance D = 4.25 mm, the

incoming beam covers more number of lenses compared to D = 3.4 mm. Also, the near-field

intensity is not modulated by passing through the MLA, as we employ TEA in which the
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Chapter 5. Near-field and far-field measurement for a focused source

field only experiences a phase delay due to the MLA surface profile. The phase near field

shows a typical appearance of a phase profile for a Gaussian beam with circular equal phase

rings modulated by the additional local phase distribution of the MLA. The near-field phase

modulations are different due to the effect of the distance D of the source to the MLA. Although

the phase profiles look similar in appearance, phase modulation is larger for D = 3.4 mm

compared with D = 4.25 mm as it can be seen in the phase profiles in Fig. 5.2; it means that

the incoming beam wavefront curvature is higher in the former configuration.

Here, we conclude that the two situations lead to two very different far-field patterns because

of different phases and intensity distributions in the near-field. Although, finding a simplified

relation between the near-field and far-field distributions is not straightforward because the

far-field is the Fourier spectrum of the near-field in space. A high contrast pattern in the

far-field is obtained for D = 3.4 mm with very sharp spots in comparison to the situation at

distance D = 4.25 mm in which we obtain a low contrast pattern with a modified distribution

of points.

5.3 HRIM setup

As shown in Fig. 5.3, we use the HRIM system in which we measure the fields for Gaussian

beam and plane wave illumination. The objective (APO 20x /NA 0.4 ) creates an image of an

observation plane on the camera. Using the 20x objective, the lateral resolution is limited by

the Abbe diffraction spot size ∆x =λ/(2N A) = 506 nm in air, which is sufficiently accurate for

recording the MLA near-field.
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Figure 5.3: The schematic of HRIM setup for recording the phase and intensity.

For Gaussian beam illumination, we use the configuration number 1 in Fig. 5.3 as the source.

For the plane wave illumination, we replace this configuration with configuration number 2 in
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Fig. 5.3 and use the collimated beam. To record the far-field intensity pattern, we block the

reference arm and use the far-field lens (as shown in Fig. 5.3) to observe the Fourier image on

the camera sensor (projected far field). All details of optical setup and measurement steps are

explained explicitly in chapter 4.

5.4 Experimental results

Here, we record the near-field and far-field for different configurations; the plane wave illu-

mination and Gaussian beam source for D = 3.4 and 4.25 mm. Figure 5.4 shows near field

intensity (similar to normal microscope image), the near-field phase which is extracted based

on the interferometry technique, and the corresponding far-field distribution. As seen, there

is no strong near-field intensity modulation for this thin lens array. As we also observed in

the simulated near-field intensities, the incoming beam covers more number of lenses for

plane wave and D = 4.25 mm compared to D = 3.4 mm. Furthermore, the near-field phase

modulation shows the effect of the Gaussian beam wave-front in comparison to the uniform

wave-front of plane wave illumination.

D = 3.4 mmPlane wave D = 4.25 mm

near−field 2

Far-field 

Intensity

Phase 
∡ near−field

Figure 5.4: The recorded phase and intensity near-field as well as the far-field intensity distri-
bution using the HRIM setup. Two areas are determined by white circles in the phase profile
images, for comparison.
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As shown in the areas which are determined by white circles in the phase images in Fig. 5.4, the

wave-fronts modulation is larger for D = 3.4 mm, showing that the Gaussian beam has higher

curvature in this case. According to the phase and intensity modulation in the near-field, one

obtains a high contrast pattern in the far-field for D = 3.4 mm and a low contrast pattern for D

= 4.25 mm, as it is seen in far-field distributions.

Finally, we observe a high contrast dot pattern with a wider field of view under the Gaussian

beam illumination for D = 3.4 mm in comparison to a plane wave. It demonstrates that by

applying a diverging Gaussian beam instead of a Plane wave, we can obtain more number of

points with a larger field of view if D is set to the appropriate values that were discussed in the

simulation part. Our experimental approach allows us to record both the phase and amplitude

in different planes and compare with simulation results to obtain a deeper understanding of

our structured generator configuration.

5.5 Summary

We theoretically and experimentally investigated the structured pattern generation in far-field

for an MLA under the Gaussian beam illumination in comparison to the Plane wave. The

MLA period is 74λ, the regime in which the optical effects are governed by both diffraction

and refraction. For Gaussian beam illumination, a high contrast pattern is observed in the

far-field for certain distances between the source and the MLA in which the self-imaging

condition for point source illumination is satisfied. In the simulation part, we compared

the MLA near-field and the resulting far-field distributions for different distances between

the source and the optical element. In the experimental part, we used the HRIM setup for

recording both the phase and intensity of MLA near-field and also the far-field distribution.

Using this setup, by recording both the phase and amplitude distributions, more information

can be extracted compared to a normal microscopy configuration. In this setup, we added

this flexibility to be able to compare the Plane wave with the Gaussian beam illumination

condition. We demonstrated that the near-field phase modulation and the resulting far-field

distribution are not the same for Plane wave and Gaussian beam. Under the Gaussian beam,

we obtained more number of points in the far-field with a larger field of view in comparison

with the Plane wave illumination, for particular distances between the Gaussian beam and

MLA.
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6 Analysis of Photonic Nanojet (PNJ) for
different illumination conditions

A photonic nanojet (PNJ) is a high intensity narrow propagating electromagnetic beam with a

sub-wavelength dimension that is generated in the shadow side surface of a dielectric micro-

particle under the plane wave[1], as seen in Fig. 6.1. Furthermore, the PNJ is generally a

non-evanescent propagating beam and a non-resonant phenomenon that can be applied

to a wide range of sphere diameters until a certain limit [2]. Due to this property of the PNJ

and also its small dimensions that can be smaller than the diffraction limit of λ/2, the PNJ

is regarded as foundation of a wide range of applications including super-resolution optical

imaging [3, 4], nanoparticle optical detection [5, 6], nanoparticle optical trapping [7, 8], data

storage [9], etc.

λ
Imax

Imax

𝟐 FWHM

Effective focal distance f

FWHM

Ljet

Imax

Imax

𝒆𝟐

Ljet

Figure 6.1: Schematic of the PNJ parameters for a dielectric sphere under an illuminating
beam with the wavelength of λ.

As it is seen in Fig. 6.1, the PNJ can be characterized by key parameters including the full-width

at half maximum (FWHM), effective focal length or distance of hotspot from the structure,

nanojet length, and the field enhancement that has been studied and manipulated in various

works. The most important property, influencing the PNJ characteristics is structure geometry

(i.e. particle size and shape) that has been studied and manipulated in numerous works

[10–15]. Also, the effect of structure optical properties i.e the contrast between the particle

and the surrounding medium refractive index on PNJ parameters has been investigated [1, 16],
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especially multi-layer graded-index structures that have been applied in numerous studies

[12, 17–22]. Furthermore, we can manipulate the PNJ properties by modifying the source

characteristics including wavelength, polarization, intensity distribution, coherence, etc.[16,

22].

6.1 PNJ as source near-field modulator for structured light genera-

tion

As we discussed in previous chapters, one of our structured light generation strategies is the

diverging source modulation by applying a micro-particle in the source near-field, as it can

be seen in Fig. 6.2, as a reminder from previous chapters. Applying the micro-particle at

the Gaussian beam near-field, a PNJ is generated in the shadow side surface of the structure

depending on the particle geometry, size, refractive index, and also illumination condition.

The generated PNJ in the Fig. 6.2, is a new source with new optical properties that engineers the

structured light generation. For this reason, it is important to study the PNJ generation under

different illumination conditions and micro-particle sizes. In this chapter, we will theoretically

study the PNJ behavior under different illumination conditions of source numerical apertures

and also particle sizes.

Far-field

MLA

micro-particle

Figure 6.2: Schematic of engineering structured light generation by applying a micro-particle
at diverging source near-field.

In most of the works, the configuration assumed is under plane wave illumination. One reason

is that it is much easier to do the calculations. A few papers have been reported, considering

the non-planar and spherical wavefront sources [23–27]. In Ref. [26], the PNJ has been experi-

mentally observed for a sphere diameter of 12 µm under diverging and converging spherical

wavefront curvatures but no detailed study and guidelines have been presented for different

sphere diameters and source curvatures. In this chapter, we propose a configuration in which

we can systematically investigate the effect of curved wavefront sources (from low to high NA

of 0.8) apart from the effect of beam diameter for sphere sizes of 1 to 20 µm. To our knowledge,

such a situation is neglected by papers but leads to a fundamentally different PNJ behavior for

converging and diverging source curvatures.
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6.2. Configuration

From the practical point of view, the PNJ is often generated using a microscope objective to

illuminate a microsphere, as seen in Fig. 6.3(a). In such a setting which is similar to the illumi-

nation part in our interferometry setup, it is very tricky to determine the absolute position

of the sphere with respect to the incoming beam. It is because of that the active alignment is

used in the experiment and one usually searches for the best spot which might not be at the

plane wave illumination distance [3]. For heavily focused beams using a large NA objective, a

small displacement of the sphere along the axis around the incoming beam focal point can

significantly influence on the generation of PNJ. Our theoretical findings show that the PNJ has

completely different behaviors for different positions of the particle around the microscope

objective focal point and our investigation is helpful to understand the observations in the

experiments from our interferometry setup measurements.
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Figure 6.3: (a) Using a microscope objective to illuminate a microparticle in practical ap-
plications. (b) and (c) The schematics of our configuration under study for converging and
diverging beam hitting the particle, respectively. The microscope objective is modeled by a
thin lens under the plane wave that focuses the beam with the numerical aperture of NA.

6.2 Configuration

Our proposed configurations are shown in Fig. 6.3(b) and (c). The illuminating beam that in

practice is focused by employing a microscope objective in Fig. 6.3(a), is modeled by making

use of a lens under plane wave illumination (beam propagation is along +x). The focusing

beam wave-front curvature changes by changing the lens focal distance, and in such a way

sources of different NAs from low to high are generated. Then, the beam out of lens illuminates

a microsphere of radius R to form PNJ. Assuming the sphere position to be before the lens

focal point along x axis, the converging beams hit the sphere, as shown in Fig. 6.3(b) and

considering the sphere to be located after the lens focal point, the diverging beams cover the

sphere, according to Fig. 6.3(c). A similar configuration has also been proposed in Ref. [28] for

investigating the effect of high NA sources on PNJ for a fused silica particle with a diameter of

2 µm. To do a systematic investigation by changing the source NA for all the sphere sizes, we

choose the sphere position such that it is fully covered by the illuminating beam but the beam

does not transmit through the surrounding medium in the air. To design such configuration,

assuming the lens numerical aperture to be NA = sin(θ), the sphere position with respect to

lens focal point can be geometrically calculated which is + R
N A for converging area and − R

N A for
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diverging area . The advantage of implementing such configuration is that the whole sphere is

fully illuminated by the beam for all the sphere radiuses of R and we can consistently compare

the effect of source wavefront curvature for different sphere sizes.

Several techniques have been used to solve the problem such as the analytical Mie theory

[26], finite difference time domain (FDTD) and finite element method (FEM) [20, 24–26]. We

perform 2D FDTD simulations using the software package of Lumerical FDTD [29] in which

the focused beam out of the lens is modeled using thin element approximation [30] to generate

a high NA source input for rigorous simulations. The rigorous 2-D simulation area is shown in

Fig. 6.3 (b) and (c) and the perfect match layers (PML) boundary condition is implemented

along x and y axis. The source wavelength is 600 nm and polarized along y axis. The sphere

has a refractive index of n = 1.5 and the surrounding medium is air with a refractive index of

unity. In this work, we investigate two main parameters of a PNJ: Effective focal length ( f ) and

the full width at half maximum (FWHM). As seen in Fig. 6.3(c), the effective focal length f

is the distance between the center of the sphere and the point in which the PNJ intensity is

maximum [24].

We start by comparing the PNJ behavior under a converging, diverging, and plane wave il-

lumination for a sphere of 5 µm diameter to illustrate the effect of source curvature. Plane

wave illumination case is considered as a reference for comparison. Later on, we compare

a small (2 µm diameter) and a large microsphere (15 µm diameter). In the rest of the paper,

we analyze the PNJ in more detail for different source NA of 0.1, 0.2, 0.4, 0.6, and 0.8 and

for various sphere diameters of 1, 2, 5, 10, 15, and 20 µm. The simulation results show that

the PNJ has a completely different behavior under converging and diverging illuminations

by changing the sphere size. For diverging beam, the PNJ is localized outside the sphere,

and its FWHM increases for large source NAs. For the very high NA of 0.8 and large sphere

sizes of 15 and 20 µm, no PNJ is generated as the sphere behaves as a diffractive-refractive

ball lens. In contrast, under the converging beam, the FWHM in most cases is smaller than

plane wave and the PNJ moves toward the center of the sphere by increasing the source NA.

For the high NA converging beam, the PNJ is located inside the sphere. Finally, we find an

analogy between the PNJ behavior by changing the source NA for the sphere refractive index of

n in comparison with changing the sphere refractive index of n under plane wave illumination.

6.3 Results and discussion

To introduce the subject, we choose an example with fixed parameters. We first investigate the

PNJ of a microsphere under the diverging and converging sources with NA of 0.4 and compare

it with the plane wave illumination for a sphere diameter of 5µm at 600nm wavelengths

(sphere diameter 8.3λ). Results are shown in Fig. 6.4 in three representations: amplitude,

phase, and Poynting vector streamlines. From the amplitude distributions in Fig. 6.4, one

observes that the hot spot is formed inside the sphere for the converging source, while it moves

to the outside of the sphere for plane wave and diverging beam i.e providing a bigger effective
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focal length f . It demonstrates that the sphere behaves like a ball lens and for this reason,

the hotspot moves along the propagation direction by going from converging to the diverging

source.

The FWHM under plane wave is 0.53λ. Compared to plane wave illumination, the FWHM is

increased by 92% from 0.53λ to 1.02λ, for the diverging beam while it is decreased by 25%

from 0.53λ to 0.4λ for converging beam. Rather than the source wavefront curvature, the

FWHM can also be explained by the refractive index of the medium in which the hot spot is

formed. In the case of a converging beam, as the hot spot is localized inside the sphere of

refractive index n, the FWHM is n times smaller than the hot spot in the air; meaning that the

FWHM is 0.53λ/1.2 ≈ 0.44λ. In the following sections, we will demonstrate that the FWHM

can even go down to smaller dimensions than FWHM/n for high NA converging beams.

As seen from Poynting vector streamlines, the energy flow around the hot spot is not the same

for all illuminating beam curvatures. For the converging beam, the Poynting vectors around

hot spot are mostly scattered outside although for diverging beam, the hot spot is elongated

along the propagation direction since the Poynting vectors around the focal point are almost

parallel. Furthermore, the Poynting vector streamlines confirm the propagating character of

the PNJ as the vector’s intensity is higher at the hot spot position for all the illuminating beam

conditions. Also, the phase distributions in Fig. 6.4 compare the incoming beam wave-front

curvatures as well as the wave-front modulations around the hot spot. As seen, a hot spot with

a higher NA is generated for a converging beam in comparison with diverging beam and plane

wave illumination.

E

E

(c)

(b)

E
(a) |E|

|E|

|E|

Figure 6.4: The dielectric microsphere under different source curvatures for the sphere diame-
ter of 5 µm. The field distribution, Poynting vector streamline and phase distribution for (a)
the Plane wave, (b) converging source, NA = 0.4, and (c) diverging source, NA = 0.4. Please
note that the scale for amplitude distributions are different.
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6.3.1 Comparison of the PNJ for the sphere diameter of 3.3λ and 25λ

Here, we demonstrate that even for small diameters of the spheres, the PNJ, still strongly

depends on the incident wavefront of the illumination and hence cannot be seen as a scattering

phenomenon only. Figure 6.5 shows the evolution of PNJ for the small sphere diameter of 2µm

(or 3.3λ) in comparison with a much larger diameter of 15 µm (or 25λ) under the diverging,

converging beam of NA = 0.4 and plane wave illumination. The PNJ for the sphere diameters of

2 and 15 µm have the following common aspects which were also observed in Fig. 6.4 for the

sphere diameter of 5 µm: From the field distributions, one observes that for the converging

beam the hot spot is formed inside the particle with a smaller FWHM in comparison with

diverging and plane wave illumination in which the hot spot is localized outside the sphere

and elongated along the propagation direction with a bigger FWHM. Also as seen from the

phase modulations for both sphere dimensions, a hot spot with a higher NA is obtained for

the converging beam compared with the plane wave and diverging beam.

On the other side, the PNJ for small and big diameters of 2 and 15 µm has the following differ-

ent aspects: According to the field distributions, the PNJ behaves similarly to a ball lens for the

sphere diameter of 15 µm, meaning that the side lobes around the hot spot are pronounced,

especially under the plane wave and diverging beam. It can be explained by the lens aberration

for large sphere sizes. Although, for the small sphere diameter of 2 µm, the side lobes are

diminished around the hot spot. Figures 6.5 (b) and (d) compare the transverse intensity

profiles at hot spot plane, for 2 and 15µm diameters, clarifying the intensity distribution in

side lobes. Furthermore, the effective focal length f increases by 83% for the diameter of

15µm by going from converging to diverging source although, f increases by 40% only for the

diameter of 2µm (dimensions normalized to the sphere size). This comparison confirms that

the lens behavior of the sphere is dominant for the large sphere diameter of 15µm. For this

reason, we will more deeply investigate the PNJ behavior for the sphere diameter of 1 to 20 µm

(or 1.6λ to 33λ).
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Plane wave NA=0.4, converging NA=0.4, diverging(a) (b)

Plane wave NA=0.4, converging NA=0.4, diverging(c) (d)

Figure 6.5: (a) and (c) Electric field amplitude and phase distribution for sphere diameters
of 2 and 15µm, respectively, under plane wave, converging and diverging illumination with
NA= 0.4, (b) and (d)their corresponding transverse Intensity profile at hot spot position. Please
note that the scale for amplitude distributions are different.

6.3.2 FWHM and effective focal length f versus the sphere diameter d for diverg-
ing beam

In this section, we study more systematically the PNJ for a sphere of diameter between 1 to

20µm and with changing the source numerical aperture NA from 0.1 to 0.8. We concentrate on

the diverging source and compare it with the plane wave illumination as a reference. As seen

in Fig. 6.6(a), the effective focal length f for all NAs and also for the plane wave illumination is

greater than f = d/2, i.e that the hot spot is generated in air, outside the sphere in all the cases.

Also for every source NA, the effective focal length f tends to increase for large diameter d . For

plane-wave and source NAs of 0.1 and 0.2, f linearly increases as a function of d . For NA> 0.2,

the linear behavior of the curve vanishes and f significantly increases for large diameter d .

For the high NA of 0.8, no hot spot is generated in practice for the large diameters of 15µm(or

25λ) and 20um (or 33.3λ) because of that the sphere behaves like a lens that collimates the

beams.
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(a) (b)

d

f

Figure 6.6: PNJ characteristics as a function of the sphere diameter d for diverging beam by
changing the source NA in comparison with the plane wave illumination. (a) effective focal
length f , and (b) FWHM.

As seen in fig. 6.6(b), the smallest FWHM is achieved under the plane wave illumination for

all the sphere diameters d . Also for all the source NAs, the FWHM generally increases as

the particle diameter d increases, providing a lager focus. For the source NAs below 0.4, the

FWHM with respect to d is almost a stable function. By further increase of NA, the FWHM

tends to increase steeply as a function of d , and for the high NAs of 0.6 and 0.8, the FWHM

is much larger than the plane wave illumination. For a high NA of 0.8, no PNJ is formed for

the large diameters of 15µm (or 25λ) and 20µm (or 33.3λ), as we explained earlier. Finally,

Figure 6.6 emphasizes that the generation of PNJ as a function of the sphere diameter d is

much more sensitive for a high NA diverging source than plane wave illumination. This point

should be carefully considered when employing the high NA objective to generate the source

for optical trapping applications [8], etc.

To explore the lens behavior of sphere for high NA diverging sources as a function of sphere di-

ameter d , we show the field distributions in Fig. 6.7 for the source NA = 0.8 and various sphere

diameters of 1,2,5,10,15, and 20µm. As seen in Fig. 6.7(a) and (b) for small sphere diameters

of 1µm (or 1.6λ) and 2µm(or 3.3λ), a PNJ is formed outside the sphere. For diameters of

5µm (or 8.3λ) and 10µm (or 16.6λ), the hot spot is elongated along the propagation direction

having side lobes around the central lobe (Fig. 6.7(c) and (d)). The side lobes around the hot

spot for this range of diameters are the effect of aberration that demonstrates a transition from

the PNJ scattering origin to the behavior of a ball lens having aberrations. According to Fig. 6.7

(e) and (f) for 15µm (or 25λ) and 20µm (or 33.3λ) diameter, the sphere behaves as a lens and

collimates the beam out of the sphere although the diffracted beams are also visible in the colli-

mated beam i.e that the sphere in practice is a diffracting lens. In this case, no PNJ is generated.
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Figure 6.7: Field distribution for diverging source curvature of high NA of 0.8 for sphere
diameters of (a) 1, (b) 2, (c) 5, (d) 10, (e) 15 and (f) 20µm. Please note that the scale for
amplitude distributions are different.

6.3.3 FWHM and effective focal length f versus the sphere diameter d for converg-
ing beam

Here, we study the evolution of PNJ as a function of sphere diameter d for converging beams

with different NAs in comparison with the plane wave illumination. As seen in Fig. 6.8(a),

the effective focal length f linearly increases by increasing the particle diameter d for all NAs

of the converging beam, and the plane wave illumination. For larger NAs, the slope of the

effective focal length curve decreases, the PNJ immersing inside the sphere for NA of 0.4,0.6,

and 0.8 (The curves are below f = d/2). In contrast, the PNJ is localized in the air, outside the

sphere for Plane wave and the low NA of 0.1 and 0.2.

d

f

(a) (b)

Figure 6.8: PNJ characteristics as a function of the sphere diameter d for converging beam by
changing the source NA in comparison with the plane wave illumination. (a) effective focal
length f , and (b) FWHM.

85



Chapter 6. Analysis of Photonic Nanojet (PNJ) for different illumination conditions

As seen in Fig. 6.8(b) for low NA of 0.1 and 0.2, the FWHM variation follows more closely

the plane wave illumination, the cases that the PNJ is located outside the sphere in the air.

Although for the high NA of 0.4,0.6, and 0.8, the FWHM curve is slowly varying as a function of

the sphere diameter d . The similar trend between theses curves also comes from the fact that

the PNJ is localized inside the sphere for all these cases. Also, the FWHM can go down to 0.33λ

for converging sources of high NA 0.6 and 0.8 even for large sphere diameters d although,

for plane wave illumination, the FWHM increases for large sphere diameters and reaches

0.7λ. The achieved ultra-narrow FWHM width for high NA sources is not only because of the

medium refractive index n but also highly depends on the source NA. In summary, using a high

NA microscope objective as the source in the experiment, we have to carefully consider that

there is this possibility that the PNJ is generated inside the particle and no field enhancement

is achieved outside the sphere to apply for optical trapping [8] and other applications, etc.

6.3.4 The analogy between converging source NA and sphere refractive index n

As we discussed, the PNJ for a glass sphere with a refractive index of 1.5 moves in the opposite

direction of field propagation, toward the sphere surface by increasing the converging source

NA and the PNJ is immersed inside the sphere for NA = 0.4,0.6, and 0.8. On the other side, it is

known that for Plane wave illumination, according to the geometrical optics, the focal length

of the ball lens with the radius of R and the refractive index of n is given by [31].

f = R

2

( n

n −1

)
(6.1)

According to this equation, the focal point is outside the sphere for n < 2. For n = 2, the

focal point is at the sphere surface. And for n > 2, the focal point is inside the sphere and

moves toward the center of the sphere by a further increase of the refractive index n [31]. This

geometrical optics approximation for the focal length of the ball lens under plane wave follows

similar behavior as increasing the converging source NA for a glass sphere that was discussed

above. To provide more insight we show in Fig. 6.9 the field distribution for a glass sphere of

15µm diameter under a converging beam in comparison with a sphere with a refractive index

of 2.5 under plane wave illumination. As seen, the PNJ is localized inside the glass sphere

under the converging beam and also for the high refractive index sphere under the plane

wave illumination[1, 18]. It means that the effect of large source NA is equivalent to a high

refractive index sphere under the plane wave. Although, a PNJ with a higher NA is generated

for converging source in comparison with the high refractive index sphere under plane wave

illumination, as seen in Fig.6.9.

Next, we compare a small and a big diameter of 2 and 15µm. The curves in Fig. 6.10, show the

effective focal length f and FWHM for n = 1.5, by changing the source NA from zero to 0.8, in

comparison with the plane wave illumination by changing the refractive index n between 1.5

and 2.5. When comparing Fig. 6.10 (a) and (b), we find a similar trend between the effective

focal length curves versus the NA and refractive index n. As seen in Fig. 6.10 (a), the PNJ
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(a) (b)

Figure 6.9: Electric field distribution for a sphere diameter of 15um under (a) converging
source (NA= 0.8) and sphere refractive index of 1.5 in comparison with (b) plane wave illumi-
nation and sphere refractive index of 2.5. Please note that the scale for amplitude distributions
are different.

is localized inside the sphere for N A > 0.25 for both the sphere diameters of 2 and 15µm.

According to Fig. 6.10(b), the PNJ for a sphere diameter of 15µm, is localized inside the sphere

for n > 1.8 although, for the small diameter of 2µm, the PNJ is immersed inside the sphere

for n > 1.6; i.e. that f as a function of refractive index n is more sensitive than f versus the

source NA for small and large sphere diameters. It can also be seen from Fig. 6.10(b) that

using the ray-tracing equation, the beams are focused inside the sphere for n > 2 for both the

sphere diameters of 2 and 15µm, showing that the ray tracing does not include the effect of

particle size although, f depends on both the refractive index n and size of the sphere, for this

diffractive lens [16, 17].

As seen in Fig. 6.10 (c) and (d), the FWHM tends to decrease for larger source NA and refractive

index n [21]. For the large diameter of 15µm, both curves in Fig. 6.10(c) and (d) follow similar

trends although, for the small diameter of 2µm, the curves behave differently. On the other

side, the minimum FWHM obtained value as a function of NA is 0.33λ although the FWHM

can go down to 0.25λ for large refractive index of 2.5.
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Figure 6.10: Comparison between the increase of source NA and sphere refractive index n for
the sphere diameters of 2 and 15µm. (a) Effective focal length f versus converging source NA
for glass sphere, (b) Effective focal length f versus sphere refractive index n under a plane
wave (c) FWHM versus converging source NA for glass sphere and (d) FWHM versus sphere
refractive index n under plane wave.

6.3.5 Comparison between 2D and 3D simulations

In a real practical scenario, the micro-structure is a three-dimensional (3D) sphere that is

illuminated by a microscope objective however our simulations are 2D. In Ref. [32], the

behavior of PNJ is studied for 3D spheres in comparison with the 2D cylinder geometries for

a diameter of 1 to 5 µm under plane wave illumination. The optical characteristics of PNJ

for 2D and 3D geometries are different however, they follow a similar trend as a function of

structure diameter. In this section, we compare the optical characteristics of PNJ for cylinders

and spheres of 1 and 5 µm diameter under different source wavefront curvatures. For the

sphere diameters larger than 5µm, 3D simulation is computationally extensive and it is not

practical.

In Fig. 6.11 (a), the evolution of PNJ is shown for a sphere diameter of 1 µm under converging

and diverging sources (NA = 0.4, 0.8) in comparison with plane wave illumination. For both

the 2D and 3D geometries, by going from high-converging to high-diverging source, the

formed PNJ moves along the direction of propagation (+x). However, for all the illumination
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conditions, a longer PNJ is realized for a cylinder compared to 3D sphere geometry [32].

03 03 03 03

NA=0.8 NA=0.8NA=0.4 NA=0.4Plane wave

03 0303 03

NA=0.8 NA=0.8NA=0.4 NA=0.4Plane wave

(a)

2

(b)

Figure 6.11: (a) Comparison between the electric field distribution of cylinder and sphere
under converging, diverging sources ( NA = 0.4 and 0.8), and plane wave illumination. The
cylinder and sphere diameter is 1 µm. (b) The extracted FWHM and effective focal length f of
PNJs for the configurations in (a).

In Fig. 6.11 (b), the FWHM and effective focal length f of the PNJs are shown. As seen, the op-

tical characteristics of PNJ are not equal for cylinder and sphere, however, both configurations

show a similar trend under different wave-front curvatures. Going from high-converging to a

high-diverging source, the following tendencies are observed in the curves for both cylinder

and sphere: The FWHM is increased, except that a dip is realized in the FWHM curves in the

case of plane wave illumination. Also, the effective focal length of f tends to increase.

In Fig. 6.12(a), the field distributions are demonstrated for a larger sphere diameter of 5

µm. As it is observed, the PNJ moves along the direction of propagation by going from high

converging to a high-diverging source wave-front. Moving the hot spot along the direction of

propagation is more pronounced for a diameter of 5 µm, compared to the smaller diameter

of 1 µm. Also, the PNJ is elongated along the propagation direction with a longer length for

cylinder compared to a sphere geometry. In Fig. 6.12(b), the FWHM and effective focal length

( f ) of PNJ are compared for cylinder and sphere geometries. The FWHM tends to increase

by the evolution of source curvature from converging to diverging although a minimum is

visible in the FWHM curve for plane wave illumination. Besides, the effective focal length of f

increases by changing the source curvature from converging to diverging.
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Figure 6.12: (a) Comparison between the electric field distribution of cylinder and sphere
under converging, diverging sources ( NA = 0.4 and 0.8), and plane wave illumination. The
cylinder and sphere diameter is 5 µm. (b) The extracted FWHM and effective focal length f of
PNJs for the configurations in (a).

Here we observed similar PNJ behavior for 2D and 3D scenarios according to the diameter of

microstructure for different source wave-front curvatures. It demonstrates that our theoretical

findings in this paper for a 2D cylinder can be useful and informative for understanding the

behavior of real 3D spheres in practical applications.

6.4 Summary

In this chapter, we systematically study the PNJ formed by a microsphere under diverging and

converging sources of low and high wavefront curvatures in comparison with the plane wave

illumination, by conducting the FDTD simulations. We study the characteristic parameters

of PNJ including the effective focal length and FWHM. The PNJ shows a completely different

behavior under converging and diverging illuminations with NA of 0.1 to 0.8 for the sphere

diameters of 1.6λ to 33λ. For diverging source curvature, the PNJ is found to move along the

propagation direction by increasing the source NA, forming a hot spot with a larger effective

focal length and FWHM for all the sphere diameters. By further increase of NA to 0.8, PNJ

is only generated for the sphere diameters of less than 16λ, and for larger diameters, the

microsphere is a diffractive-refractive ball lens that collimates the beams. In contrast under

the converging beam, the effective focal length and FWHM tend to decrease as a function of

source NA, and for N A > 0.2, the PNJ is immersed inside the sphere with a FWHM that can be

as small as 0.33λ. We also found similar PNJ behavior for the two configurations of (i) A glass
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sphere under the converging beam, by increasing the source NA from 0.1 to 0.8, and (ii) By

increasing the sphere refractive index from 1.5 to 2.5 under plane wave illumination.

Finally, our theoretical findings are especially helpful for those practical applications that

implement a high NA objective to illuminate the beam for optical trapping, etc.
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7 Structured light engineering using a
photonic nanojet

7.1 Introduction

As we introduced in chapter 6, Photonic nanojet (PNJ) is a high-intensity strongly focused light

beam that is generated on the shadow side surface of dielectric microparticles. Because of the

flexible optical characteristics, PNJ has recently received significant attention in different fields

especially in super-resolution optical imaging [1, 2], sub-wavelength direct-write nanopattern-

ing [3], nanolithography [4, 5], nanoparticle optical trapping[6, 7], etc. For structured pattern

generation, we employ micro-optical (micro-lens arrays, etc) elements under a Gaussian

beam illumination, as we discussed in previous chapters. In this chapter, we introduce the

structured pattern generation for a micro-lens array using the PNJ phenomenon instead of

a focused Gaussian beam. Our research introduces the potential of PNJ for modifying the

source and engineering its size and angular distribution in a microlens based array generator.

First, we numerically report the structured pattern generation for an MLA that is illuminated

by a PNJ compared to Gaussian beam illumination. We compare the PNJ for three different

spheroid geometries that are illuminated by a focused Gaussian beam. Next, in the experi-

ment part, we use our high-resolution interferometry setup that is adopted to record the field

intensity and phase in different planes and compare them with simulations. Here, the lateral

full width at half-maximum (FWHM) of PNJ is investigated as the main optical parameter.

7.2 Configuration

The 3D schematic of our configuration is shown in Fig. 7.1(a). An x-polarized single-mode

Gaussian beam is focused on a spheroid surface, resulting in a PNJ with a high-intensity narrow

peak in the shadow side. The spheroid is located at a certain distance D from a microlens

array (MLA) and the field intensity distribution is observed in the far-field. The far-field is

referred to the Fraunhofer region in physical optics [8]. The source wavelength is λ= 642 nm

in all simulations and experiments. We choose D = 1.5 mm to fulfill the self-imaging condition

for an MLA to obtain a high contrast pattern in the far-field [9]. More detailed discussions
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on the self-imaging phenomenon for a point source illumination is explained in chapter 2.

We examine the formation of PNJ for three spheroid geometries of the prolate, sphere, and

oblate, as seen in the 3D schematic in Fig. 7.1(c). The sphere diameter is 10 µm, the prolate

spheroid is elongated along the z-axis with the dimensions of 20 µm × 10 µm, and the oblate

spheroid is flattened along the z-axis with the dimensions of 10 µm × 20 µm. The MLA has a

hexagonal lattice with a period of 30 µm and a lens radius of curvature of 47 µm, as seen in the

SEM image in Fig. 7.1(b). The lens height is 2.5 µm because of its high radius of curvature of

47 µm for a lens diameter of around 30 µm and for this reason, it can be considered as a thin

lens. The used MLA in this experiment is the same as the one which was used in chapter 5.

x-polarized

source

FDTD 

simulation box

D = 1.5 mm

MLA

(Thin element approx.)

x
y

z

(a)

(c) PNJ  generators : 3D view

(b)

47 um

https://www.suss-microoptics.com

~2.5 um

Py

Px = 3Py

Figure 7.1: (a) The configuration under study, illuminating an x-polarized beam into a sphere
at a certain distance from an MLA, (b) lens array drawing from side view and a scanning
electron microscopy (SEM) image of sample from top view, (c) 3D view of the considered
spheroid geometries.

7.3 Simulations

In the simulation part, as seen in Fig. 7.1(a), the source is modeled by an x-polarized single-

mode Gaussian beam with a beam waist w0 of 2 µm that propagates along the z-axis, with the

following complex field, as we earlier explained in chapter 2 :

u(x, y, z = 0) = exp

[
− x2

w2
0

]
.exp(− j kz) (7.1)

To calculate the spheroid near-field, we use the 3D rigorous FDTD solver (Lumerical FDTD[10]).

The perfectly matched layer (PML) boundary condition is applied along the x, y , and z-axis

in an average computational domain of 20 µm x 20 µm x 20 µm, and a uniform mesh size of
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50 nm. The electromagnetic field is extracted in the plane in which the PNJ hot spot forms.

The extracted field is propagated from the PNJ to the plane just immediately before MLA for a

distance of D = 1.5 mm by applying the angular spectrum of plane waves method (ASP) [8].

The effect of physical optics by passing throw the MLA is modeled by applying thin element

approximation (TEA) that is valid in our case [9] and only introduces a phase delay according

to the MLA surface profile. However, no amplitude modulation is added by applying this

approximation. As we apply a thin MLA, the pattern field of view in the far-field does not

go far beyond the paraxial approximation. For this reason, the far-field can be calculated by

taking the Fourier transform of the extracted field immediately after the MLA, considering the

Fraunhofer approximation [8]. The spheroid and the MLA refractive index are considered to

be n = 1.5 and the whole configuration is in the air with a refractive index of one.

7.3.1 Gaussian Beam illumination

As reference and starting point, the field distributions at the different planes are shown for a

Gaussian beam illumination(no spheroid, only Gaussian beam+MLA), in Fig. 7.2. As seen, no

phase modulation is observed in P2 which is the Gaussian beam focal plane in this example.

The beam is then propagated for a distance of D, resulting in both the intensity and phase

modulation in the plane of P3, immediately before the MLA. As we employ TEA, only the phase

is modulated after passing through the MLA, however, the intensity distribution remains the

same in planes P3 and P4.

Far-field

P1

P2

P3
P4 P52D view and field extracting planes 

E 2 E 2
E 2

E 2

∡E ∡E ∡E

z

x

y

Figure 7.2: The MLA under the Gaussian beam illumination, without any spheroid in its
near-field, and the extracted fields in different planes by doing simulations.
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Finally, we observe a high contrast pattern of dots with a hexagonal distribution(because of

the MLA hexagonal lattice) in the far-field with +/−8◦ field of view. In a similar representation,

we will theoretically and experimentally study the effect of adding a spheroid with different

aspect ratios in the focal plane of the Gaussian beam. In such a situation, P2 is referred to the

plane in which the hot spot for a PNJ is formed.

7.3.2 Modulated Gaussian beam by PNJ

Figure 7.3 (a) and (b) illustrate the simulation results for the prolate, sphere, and oblate

geometries. As seen from the spheroid nearfield in the plane of P1, a hot spot is produced

for all three geometries. The transverse FWHM of PNJ is calculated to be 0.76 µm and 0.82

µm, for prolate and sphere, respectively. For oblate shape, a PNJ with a larger FWHM of 1.96

µm in comparison with prolate and sphere is formed. One reason is that the oblate shape

transverse diameter of 20 µm is five times larger than the incoming beam diameter of 4 µm,

resulting in less interference between the incoming beam and the spheroid. Besides, a PNJ

with a larger transverse FWHM and effective focal length is formed by going from a prolate to

oblate geometry [11]. From the phase distribution in the PNJ focal plane of P2, one observes

that: First, the phase is modulated in the focal plane of PNJ for all the spheroid geometries

while for a Gaussian beam, no phase modulation is observed at its focal plane , as seen in Fig.

7.2. Second, the smaller the transverse FWHM, the larger the phase modulations in the focus

plane; i.e. that a PNJ with a higher divergence angle is produced for prolate and sphere in

comparison with the oblate geometry. It also leads to different phase distributions for these

configurations, in the following plane of P3 immediately before the MLA. Furthermore, the

phase distribution in the plane of P4 immediately after the MLA is modulated according to the

MLA geometry. The field intensity distribution in the plane of P3 and P4 immediately before

and after the MLA is the same as we implement TEA for modeling the diffraction from MLA,

the approximation in which no amplitude modulation is assumed. More importantly, the

field intensity in the plane of P3 and P4 is distributed in a larger area for prolate and sphere

compared to oblate shape; confirming the higher divergence angle of PNJ for prolate and

sphere.
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(b)

Figure 7.3: (a) Field distribution in the planes of P1 to P4 for oblate, sphere and prolates
geometries, by doing simulations, (b) The PNJ Intensity cross section and their corresponding
far-field distributions.

Figure 7.3(b) demonstrates the transverse intensity profiles at the PNJ plane and their corre-

sponding far-field distributions. As seen, the far-field pattern is distributed in a larger area for

sphere and prolate in comparison with oblates shape; meaning that the pattern FOV is higher.

It is originated from the PNJ optical characteristics. The smaller the transverse FWHM, the

larger the source divergence angle, and the larger the number of lenses that are covered by the

incoming beam, resulting in a higher field of view in the far-field distribution [9].
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7.4 Experiments

In the experimental evaluation, we aim to extract the full information of the field including

intensity and phase. We use our high-resolution interference microscopy system to extract

both field intensity and phase in different planes of P1 to P5. The schematic of setup is shown

in Fig. 7.4. We use configuration 2 for the case in which the Gaussian beam is modulated by a

spheroid. For Gaussian beam illumination with no spheroid in it’s near-field, configuration 2 is

replaced by configuration 1 that is shown in the inset figure of 7.4. The working principle and

step by step field recording in plane P1 to P5, is explicitly explained in chapter 4. Furthermore,

Beam splitter

L
a
s
e

r 
s
o

u
rc

e

λ=642 nm

Sample holder 1 
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Figure 7.4: The schematic of high-resolution interference microscopy setup (HRIM) which
is based on a Mach-Zehnder interferometer. Configuration 2 is replaced by configuration 1
considering Gaussian beam illumination, without any spheroid in it’s near-field.

the spheroid samples are fabricated through a direct laser writing technique by making use of

the commercial Nanoscribe Photonic Professional GT which is a femtosecond laser lithography

system [12]. A few drops of IP-Dip liquid resist is dispensed on a glass wafer. Then the objective

focuses on different planes to polymerize the resist with an axial and lateral resolution of 100

nm. After polymerization, the sample is developed and the non-polymerized resist removes.

The polymerized IP-DIP refractive index is 1.52.
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7.4.1 Gaussian beam illumination

The measured field distributions at the different planes are shown for a Gaussian beam

illumination(no spheroid, only Gaussian beam+MLA), in Fig. 7.5. As seen, the source intensity

distribution is very similar to a Gaussian beam illumination with w0 = 2µm except that the

field distribution is not perfectly symmetric. The beam is then propagated for a distance

of D, resulting in both the intensity and phase modulation in the plane of P3, immediately

before the MLA. As seen from intensity distribution in the plane immediately after the MLA, a

limited number of lenses are covered by the beam. This results in a far-field distribution with

a lower field of view and contrast (especially in the center of the pattern) compared to adding

a spheroid in the system. This effect will be investigated for different spheroid geometries in

the following section.

Far-field
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Extracted fields for Gaussian Beam illumination
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Figure 7.5: The MLA under the Gaussian beam illumination, without any spheroid in its
near-field, and the extracted fields in different planes by doing experiments.
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7.4.2 Modulated Gaussian beam by PNJ

Figure 7.6 illustrates the experimental results for comparison with performed simulations.

From the recorded near-field in the plane of P1, it can be observed that a PNJ with a smaller

transverse FWHM is formed for prolate and sphere in comparison with oblate shape. The

transverse FWHM is measured to be 0.8 µm, 0.82 µm, and 1.06 µm for prolate, sphere, and

oblate, respectively. As seen in P2, the phase distribution in the focal plane of PNJ confirmes

that for smaller FWHM, more modulations are observed in the phase distribution that is

analogous to a source with a higher divergence angle. However, the phase measurement in

this plane is extremely challenging because the fields are mostly concentrated in the focus

of PNJ and, the intensity level in the edges is very low to interfere with the incoming beam

from the reference arm. For this reason, the phase distribution in outer rings is noisy. As seen,

the phase distribution in P3 and P4, immediately before and after the MLA are recorded. In

the plane of P4 immediately after the MLA, the phase distribution is modulated due to the

effect of diffraction from MLA. Also, the field intensity distribution is measured in P3 and

P4 immediately before and after the MLA. As we also observed in the simulation results, the

field intensity in P3 immediately before the MLA is distributed in a larger area for prolate and

sphere in comparison with oblate geometry. The intensity distribution in P4 immediately after

the MLA is weekly modulated because of the diffraction from the thin MLA. This modulation

was not observed in simulation results because the TEA was employed for modeling the MLA.

Figure 7.6(b) shows the transverse intensity profiles at PNJ plane and their corresponding

far-field distributions. As seen, the far-field pattern is distributed in a larger area, having a

higher FOV for sphere and prolate in comparison with oblates shape. For a smaller FWHM of

the PNJ a higher divergence angle is introduced that results in a higher FOV in the far-field

pattern for prolate and sphere geometries.

The simulation and experimental results are in good agreement although, two aspects should

be considered while comparing them. First, underneath the fabricated spheroid where the

structure joins the substrate is not perfectly curved because the spheroid should have flat

support to attach the glass substrate [13, 14]. This effect can be more pronounced for prolate

because of its high curvature in the area in which the structure is attached to the substrate.

Second, the intensity is recorded by focusing the objective in different planes including the

planes inside the spheroid. By focusing the objective, the interference effect inside the particle

due to the material refractive index is not fully considered.
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(b)

Figure 7.6: (a) Field distribution recorded in the planes of P1 to P4 for oblate, sphere and
prolates geometries, using the high-resolution interferometry setup, (b) The PNJ Intensity
cross section and their corresponding far-field distributions.

7.5 Comparison between simulations and experiments

For a thorough study, we do a comparison between the far-field distributions, quantitatively.

We calculate the number of points in the far-field pattern considering only dots intensities

higher than 13% of the maximum intensity in each pattern. Figure 7.7 compares the simulated

and experimentally measured transverse FWHM for each configuration and the corresponding

number of points (N. of points) in the far-field pattern. As seen for both experiments and

simulations, a larger number of points in the far-field pattern is realized for sphere and

prolate with a smaller transverse FWHM in comparison with oblate shape. The experimental

and simulation results match very well. However, the deviation between the experimentally

measured and simulated FWHM is higher than other configurations for oblate geometry. For
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this geometry, both the measured and simulated FWHM are large values and for a large FWHM,

the deviation in source divergence angle is small between these two cases. For this reason, the

experimentally and numerically obtained number of points in the patterns are almost equal

for this configuration.

Figure 7.7: Numerically and experimentally calculated FWHM and the number of points (N.
of points) in the far-field pattern.

7.6 Summary

In summary, we introduce the PNJ as a source manipulator in a structured pattern generation

system. The structured light generator is a microlens array under a diverging source. By

introducing a spheroid in the focal point of the source, the source near-field is modulated,

producing a PNJ that affects the far-field pattern. We developed a high-resolution interferom-

etry setup to record both the phase and intensity in different planes for a deeper comparison

with simulations. The simulation and experimental results demonstrate that the number of

points in the far-field pattern can be engineered by the optical characteristics of PNJ includ-

ing the FWHM and divergence. We examine the oblate, sphere, and prolate geometries and

demonstrate that for a smaller FWHM, a source with a higher divergence angle is realized that

leads to a far-field pattern with a larger field of view.
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8 Structured light engineering for pho-
tonic nanojets as multi-sources

8.1 Introduction

In previous chapters, we studied pattern generation for a single source. Using multi-sources,

the pattern in the far-field may be redistributed, depending on the sources’ optical character-

istics such as coherence. If the sources non-coherently illuminate, the field intensity in the

observation plane is simply the sum of the sources intensities as their fields do not interfere

with each other. For coherently illuminating sources, the fields do interfere with each other

and the problem becomes more complicated. In this chapter, we study using coherently

illuminating multi-sources where the sources are PNJs. The purpose is to apply different

arrangements of PNJs in the Gaussian source near-field and observe the resulting distribution

of dots in the far-field. Our idea is to image the multi-sources near-field distribution in the

far-field observation plane, depending on the geometry that is used in the near-field.

8.2 Simulations

The schematic of our configuration is shown in Fig. 8.1. The x-polarized single-mode Gaussian

beam with the beam waist w0 = 2µm, illuminates a microstructure, resulting in an array of

PNJs with high-intensity narrow peaks in the shadow side. The microstructure is at a certain

distance d from the Gaussian beam focal plane, depending on its size and geometry. In this

way, the microstucture is fully covered by the incoming beam. The microstructure is located

at a certain distance D from a microlens array (MLA) and the field intensity distribution is

observed in the far-field. The source wavelength is λ= 642nm and we use a square lattice

MLA with a period of 50 µm along x and y axis. We choose D to be 3.9 mm to fulfill the

self-imaging condition for this MLA to obtain a high contrast pattern in the far-field.

As it is seen in Fig. 8.1, the used simulation tools are the same as chapter 7. To calculate the

micro-structure near-field, the 3D rigorous FDTD solver (Lumerical FDTD[1]) is used. The

electromagnetic field is extracted in the near-field plane and propagated for a distance of D =

3.9 mm by applying the angular spectrum of plane waves method (ASP)[2]. The effect of beam
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propagation through the MLA is modeled by applying thin element approximation (TEA). The

far-field is then calculated by taking the Fourier transform of the extracted field immediately

after the MLA.

x-polarized

source

FDTD 

simulation box

D = 3.9 mm

x
y

z

dd < 170 μm

Figure 8.1: The configuration under study for a multi-source senario. Micro-structures are
inserted in the source near-field.

We perform the simulations for two example configurations, as it is shown in Fig. 8.2. In

the first configuration, three half-spheres having apertures in a triangular arrangement is

assumed. As seen in Fig. 8.2(a), the near field in the focal plane shows three PNJs that are

generated in a triangular arrangement. The near-field triangular arrangement is imaged in

each period of far-field pattern, as it is seen in the far-field distribution. In Fig. 8.2(b), the

simulations are done for four half-spheres that are arranged in square lattices and four PNJs

are produced in the near-field focal plane of microstructure. The square arrangement of PNJs,

are reproduced in each period of far-field pattern, as seen in the far-field distribution.

The simulation results show that the PNJs near-field is imaged in the far-field observation plane

and in this way, different distributions of dots are generated in the far-field. Although, the far-

field distribution resolution is poor as the high-resolution 3D simulation is computationally

extensive for these configurations.
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Figure 8.2: (a) The triangular arrangement of half-spheres with apertures, the near-field in its
focal plane, and the far-field distribution, (b) The square arrangement of half-spheres with
square lattice shape, the near-field in the focal plane, and the resulting far-field distribution.
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8.3 Experiments

In the experiment section, we examine five microstructure arrangements. The samples are

fabricated using the 3D printing technique, employing the Nanoscribe Photonic Professional

GT. The MLA is retained by a rotating sample holder. Three far-field distributions are recorded

for each microstructure by rotating the MLA plane with respect to the microstructure plane

for the rotation angles of θ = 0◦, 30◦ and 45◦. A three dimensional schematic of configurations

and the recorded near-field and far-fields are shown in Fig. 8.3. As it is seen for the square,

triangular and hexagonal arrangements of the half-spheres in figures 8.3(a) to (d), the near-

field at PNJ plane is imaged in every period of the far-field distribution. By rotating the MLA

with respect to the half-spheres plane, different arrangements of dots can be achieved in the

far-field. For the configuration in Fig. 8.3(a), for 45◦ rotation angle, the far-field distribution is

not simply the image of rotated near-field at PNJ plane but it is a distribution of points in a

square grid with less number of dots compared to 0◦ rotation angle. For the configurations in

Fig. 8.3(b) to (d), the rotated near-field is imaged in each period of far-field for all the rotation

angles. For the configuration in Fig. 8.3(e), the structure is divided into square and rectangular

units, each of the two lenses in square units having a different focal distance. As a result, this

configuration is composed of sources with different optical characteristics. The near-field in

f1 and f2 focal planes of the two lenses having the square lattices are recorded. As seen, for

the small square unit, a high-intensity PNJ is produced in the near-field focal plane f2. This

results in a grid of high-intensity points in the far-field pattern. On the other side, for the larger

square unit, the intensity in its focal plane is lower and generates a grid of low-intensity points

in the far-field observation plane.

The samples are fabricated on a glass substrate without any apertures that can block the

incoming beam around the structure. It is tricky to focus the source on the sample plane such

that it covers the whole structure but does not transmit through the glass substrate around

the sample. For this reason, the contrast of the pattern in the far-field may reduce, especially

this effect is well visible for the triangular configuration in the far-field pattern in Fig. 8.3(b).

Besides, because of the non-uniform intensity distribution of Gaussian source compared to

plane wave illumination, the intensity over PNJs is not the same, for example for the hexag-

onal arrangement in Fig. 8.3(c), the PNJ in the center has a higher intensity compared to

the neighboring PNJs. This effect directly results in low and high intensity peaks in the far-field.

8.4 Summary

In this chapter, we studied an MLA under coherently illuminating PNJs to engineer the field

distribution in the far-field. Different distributions of dots in the far-field is realized by design-

ing the PNJs arrangement in near-field, applying different configurations of micro-structures

in the source near-field. By rotating the MLA plane with respect to the PNJs plane, we can

redistribute the dots and generate different patterns in the far-field observation plane.
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R=12.5 um
𝜽 = 𝟎° 𝜽 = 𝟑𝟎° 𝜽 = 𝟒𝟓°(a)

𝜽 = 𝟎° 𝜽 = 𝟑𝟎° 𝜽 = 𝟒𝟓°(b) R=7.5 um

𝜽 = 𝟎° 𝜽 = 𝟑𝟎° 𝜽 = 𝟒𝟓°(c) R=7.5 um

E 2 ∡E

E 2 ∡E

E 2 ∡E

𝜽 = 𝟎° 𝜽 = 𝟑𝟎° 𝜽 = 𝟒𝟓°

(e)

E 2 in f1 plane

∡E

E 2 in f2 plane

𝜽 = 𝟎° 𝜽 = 𝟑𝟎° 𝜽 = 𝟒𝟓°(d) R=2.5 um

E 2 ∡E

Figure 8.3: Different micro-structure geometries for modulating the source near-field. Ex-
perimentally calculated near-field distribution at the micro-structures focal plane and the
corresponding far-field patterns for rotation angles of θ = 0◦, 30◦ and 45◦ between the MLA
plane and the micro-structure plane are demonstrated.

113



Chapter 8. Structured light engineering for photonic nanojets as multi-sources

References

[1] F. Solutions. “Lumerical solutions inc”. Vancouver, Canada, 2003.

[2] J. W. Goodman. Introduction to Fourier optics. Roberts and Company Publishers, 2005.

114



9 Summary and outlook

In this thesis, we studied the structured light generation, using periodic microoptical elements

in the refraction-diffraction regime, under a focused diverging source instead of a plane wave.

A high-contrast far-field distribution is generated for specific values of the distance between

the source and optical element, according to the Lau effect. Considering this phenomenon, we

obtained a high-contrast structured light distribution. We chose two strategies; modification

of periodic microoptical element surface profile and source modulation by applying an optical

element in its near-field:

In the first stategy, we applied a sinusoidal phase grating instead of a regular lens array under

Gaussian beam illumination to enhance the number of points in the far-field observation plane.

The sinusoidal curvature is a combination of convex and concave curvatures, resulting in more

points in the observation plane compared to the lens array. By changing the sinusoidal phase

grating thickness from thin to thick, different distribution of points with different uniformities

is realized in the far-field. The sinusoidal phase gratings were fabricated using two-photon

absorption polymerization technique and the experimentally recorded far-field distributions

were compared with the simulations. Finally, in a more general configuration, w considered a

concave and convex lens in each period of the optical element instead of a sinusoidal profile;

we optimized the lens curvature to further increase the field of view compared to sinusoidal

shape. By surface optimization, we concluded that the pattern FOV and the number of points

can even further increase to large values. The stat of art point generators, have a large field

of view of 71◦x 51◦ (considering the Full width at half maximum definition) and 6k number

of points that can approach 8k. However, with optimized curvature in our strategy, we can

generate 14.5 k points with large FOV of 77◦x 77◦ . This part of the thesis demonstrates that

by properly defining the refractive-diffractive microoptical element surface profile, we can

achieve even more points in far-field compared to the arbitrary used optical elements such as

lens arrays.

In the next part, we studied structured light generation by modifying the source near-field.

Applying a dielectric microstructure in the source near-field, an alternative source with a

new optical characteristic is generated. Adding a dielectric microparticle in the source near-
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field, a hot spot i.e a photonic nanojet (PNJ) is generated in the shadow side surface of the

structure that is a new alternative source in the system to redistribute the dots in the far-

field. We numerically demonstrated that the PNJ optical characteristics change with respect

to microsphere diameter for diverging and converging sources of low and high wavefront

curvatures. Using this strategy to modify the source near-field, we were able to improve the

structured light generation in the far-field. We demonstrated that by applying the dielectric

microparticle in the source focal plane, a PNJ is generated that corresponds to a high NA

source in the point generator system. This high NA source enlarges the far-field distribution

FOV. In this strategy, the pattern distribution and its period do not change and only the FOV is

increased. In this part, we used a thin lens array generating a low FOV pattern to qualitatively

observe the effect of inserting a microparticle in the source near-field on far-field distribution.

To experimentally evaluate this idea, we used a high-resolution interference microscopy

(HRIM) setup. Our interferometry setup is developed based on a Mach-Zehnder interferometer

in which we can record both phase and amplitude in different planes. We recorded the fields

under both Gaussian beam and plane wave illumination. We experimentally studied the

far-field generation for a microlens array under a Gaussian beam by applying a microparticle

in its near-field. As we expected from our numerical results, by applying the microparticle

in the source near-field, a PNJ is formed that corresponds to a high NA source. In this way,

the pattern FOV increases in the far-field. We extracted the phase and amplitude in different

planes for a deeper understanding and comparison with simulations. In this strategy, the

distribution of points remains the same, however the FOV increases.

Next, to increase both the FOV and density of point distribution in the observation plane, we

applied multiple coherently illuminating PNJs instead of a single microparticle in the source

near-field. As an example, by applying four lenses with square lattice in the source near-field,

four points in each period of far-field distribution are generated instead of one. In this way, we

were able to reach more than 24k points which is a comparable number with the number of

generated points in the iPhone (30k). With this strategy, we can further increase the number

of points by creatively designing more lenses in the source near-field; for example with a

hexagonal arrangement of lenses, the number of points can exceed 40k.

According to this summary, our introduced strategies are promising in the field of structured

light generation and there is room to further advance this research. For industrial applications,

a vertical-cavity surface-emitting laser (VCSEL) is implemented instead of the Gaussian beam

illumination. The VCSEL is a kind of semiconductor laser diode in which the beam emits

perpendicularly from its top surface. One interesting project is to study the generation of

PNJ under a VCSEL source. For this purpose, the fabrication of a lens or multi-lenses on a

VCSEL source can be studied and designed to generate a desirable source with new optical

characteristics.

The study of meta-lens which is a diffractive flat lens is a hot topic in academic environments.

In my view, there is this potential to apply metalens especially the dielectric ones in the
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industry. We can study using dielectric meta-lens instead of microparticles to modulate the

source near-field. To do so, the fabrication of meta-lens on a VCSEL can be investigated; the

topic that is been recently attracted by researches and some experimental results has been

published in this field. Applying meta-lens, there is the possibility to have a more compact

module for industrial applications however, proper fabrication tools are required to be used

for mass production in the industry.

In this thesis, we used the high-resolution interference microscopy system and applied the

PSI algorithm to record the phase. Studying and comparing different types of algorithms to

extract the phase is a broad field of study. With a more detailed comparison between different

algorithms, one can investigate the further improvement of phase extraction in the system.

In the last part of the thesis, we studied coherently illuminating multi-sources instead of a

single source. As we discussed, the near-field of the multi-source is directly imaged in each

period of pattern distribution in the far-field. We have studied this phenomenon for a small

dimension of multi-sources that is less than the lens array period. One can study the self-

imaging phenomenon for larger dimensions and arrangement of the structures in the source

near-field and find the limitations of self-imaging versus dimensions of the structure.
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