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Abstract

Network information theory studies the communication of information in a network
and considers its fundamental limits. Motivating from the extensive presence of the
networks in the daily life, the thesis studies the fundamental limits of particular
networks including channel coding such as Gaussian multiple access channel with
feedback and source coding such as lossy Gaussian Gray-Wyner network.

On one part, we establish the sum-Capacity of the Gaussian multiple-access
channel with feedback. The converse bounds that are derived from the dependence-
balance argument of Hekstra and Willems meet the achievable scheme introduced by
Kramer. Even though the problem is not convex, the factorization of lower convex
envelope method that is introduced by Geng and Nair, combined with a Gaussian
property are invoked to compute the sum-Capacity. Additionally, we characterize
the rate region of lossy Gaussian Gray-Wyner network for symmetric distortion. The
problem is not convex, thus the method of factorization of lower convex envelope is
used to show the Gaussian optimality of the auxiliaries. Both of the networks, are
a long-standing open problem.

On the other part, we consider the common information that is introduced by
Wyner and the natural relaxation of Wyner’s common information. Wyner’s com-
mon information is a measure that quantifies and assesses the commonality between
two random variables. The operational significance of the newly introduced quantity
is in Gray-Wyner network. Thus, computing the relaxed Wyner’s common informa-
tion is directly connected with computing the rate region in Gray-Wyner network.
We derive a lower bound to Wyner’s common information for any given source. The
bound meets the exact Wyner’s common information for sources that are expressed
as sum of a common random variable and Gaussian noises. Moreover, we derive an
upper bound on an extended variant of information bottleneck.

Finally, we use Wyner’s common information and its relaxation as a tool to ex-
tract common information between datasets. Thus, we introduce a novel procedure
to construct features from data, referred to as Common Information Components
Analysis (CICA). We establish that in the case of Gaussian statistics, CICA pre-
cisely reduces to Canonical Correlation Analysis (CCA), where the relaxing param-
eter determines the number of CCA components that are extracted. In this sense,
we establish a novel rigorous connection between information measures and CCA,
and CICA is a strict generalization of the latter. Moreover, we show that CICA has
several desirable features, including a natural extension to beyond just two data sets.

Keywords: Multiple access channel, feedback, Gray-Wyner network, Wyner’s
common information, common information component analysis, canonical correla-

iii



iv Abstract

tion analysis, Gaussian network, noise.



Résumé

La théorie de l’information de réseau étudie les réseaux de communication de l’infor-
mation et leurs limites fondamentales. Motivée par l’omniprésence des réseaux dans
la vie quotidienne, la thèse étudie les limites fondamentales de réseaux particuliers, y
compris le codage de canal tel que le canal Gaussien à accès multiple avec rétroaction,
et le codage source tel que le réseau Gaussien Gray-Wyner avec perte.

D’une part, nous établissons la somme-capacité du canal Gaussien à accès mul-
tiple avec rétroaction. Les bornes inverses, qui sont dérivées de l’argument de
l’équilibre de dépendance de Hekstra et Willems, répondent au schéma réalisable
introduit par Kramer. La factorisation de la méthode d’enveloppe convexe inférieure
introduite par Geng et Nair, combinée à une propriété Gaussienne, est utilisée pour
calculer la somme-capacité lorsque le problème n’est pas convexe. De plus, nous
caractérisons la région de proportion du réseau Gaussien de Gray-Wyner avec perte
pour la distorsion symétrique. Le problème n’étant pas convexe, la méthode de
factorisation de l’enveloppe convexe inférieure est utilisée pour montrer l’optimalité
Gaussienne des auxiliaires. Les deux réseaux sont des problèmes ouverts de longue
date.

D’autre part, nous considérons les informations communes introduites par Wyner
et la relaxation naturelle des informations communes de Wyner. Les informations
communes de Wyner sont une métrique qui quantifie et évalue la similitude entre
deux variables aléatoires. L’importance opérationnelle de la quantité nouvellement
introduite est dans le réseau de Gray-Wyner. Ainsi, le calcul des informations com-
munes de Wyner relaxées est directement lié au calcul de la région de proportion
dans le réseau de Gray-Wyner. Nous en déduisons une limite inférieure aux infor-
mations communes de Wyner pour une source donnée. La borne est exactement
égale aux informations communes de Wyner pour des sources exprimées comme
étant la somme d’une variable aléatoire commune et de bruits Gaussiens. Nous en
déduisons également une borne supérieure sur une variante étendue de l’Information
Bottleneck (IB).

Enfin, nous utilisons les informations communes de Wyner et leur assouplisse-
ment comme outil pour extraire des informations communes à plusieurs jeux de
données. Ainsi, nous introduisons une nouvelle procédure pour construire des car-
actéristiques à partir de données, appelée analyse des composants d’information
communs (CICA). Nous établissons que dans le cas de statistiques Gaussiens, l’ICCA
se réduit précisément à l’analyse de corrélation canonique (CCA), où le paramètre
relaxant détermine le nombre de composants CCA qui sont extraits. En ce sens, nous
établissons un nouveau lien rigoureux entre les mesures d’information et le CCA,
l’ICCA étant une généralisation stricte de ce dernier. De plus, nous montrons que
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l’ICCA a plusieurs caractéristiques souhaitables, notamment une extension naturelle
au-delà de deux ensembles de données.

Mots-clés: Canal à accès multiple, retour d’information, réseau Gray-Wyner,
informations communes de Wyner, analyse des composants d’information commune,
analyse de corrélation canonique, réseau Gaussien, bruit.
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Introduction 1
Shannon [1] initially established the mathematical theory behind communication
and introduced the notion of information theory. Point-to-point communication is
studied and its fundamental limits are solved in the presence of noise [1]. Point-
to-point communication is composed of a single sender and a single receiver where
the information is sent from the sender to the receiver via the channel. Shannon’s
point-to-point communication is mainly composed of the following two fundamental
problems.

• Channel Coding:
Suppose that X is input, Y is output of the channel and p(y|x) describes the
channel. The probability of error is the probability that the encoded message
at the sender side is di↵erent from the decoded message at the receiver side.
To communicate the information reliably we wish to keep the probability of
error as small as possible. The channel capacity C is,

C = max
p(x)

I(X;Y ) (1.1)

that is the maximum communication rate in bits such that the probability
of error is as small as possible. In order to find the capacity for a given
channel with conditional probability p(y|x), we need to optimize over the input
probability p(x).

• Lossy Source Coding:
Suppose that source X is compressed and sent through a noiseless channel and
the receiver reconstructs it with some distortion d(x, x̂), that is the distortion
measure between the sent symbol x and received symbol x̂. The rate-distortion
function R(D) is

R(D) = min
p(x̂|x):E[d(X, ˆX)]D

I(X; X̂). (1.2)

The scope of information theory is not limited to point-to-point communication.
Network information theory studies the limits of information flow in networks con-
sisting of multiple senders and multiple receivers. Interference, cooperation and/or
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2 Introduction

feedback may be present in the network. The importance of networks lie in the
presence in our daily life for instance, the cellphones that communicate form a
telecommunication network, a group of computers that communicate form computer
network, a collection of devices that communicate form a device network. Network
information theory studies a simplistic version of aforementioned examples, that are
far more complicated. In the thesis, we mainly focus on the following two networks
that involve channel coding and lossy source coding as follows.

• Multiple Access Channel with Feedback

Multiple access channel refers to multiple senders communicating information
through a common channel to a single receiver. The receiver observes the sum
of the messages of each user (and added independent noise in the additive
channels). Moreover, the (perfect and causal) feedback is used during the
transmission, which allows the senders to cooperate in communicating their
messages to achieve higher rates than the absence of feedback. The presence of
feedback in point-to-point communication does not help the capacity, however
the feedback increases the capacity in the multiple access channel as it allows
the senders to cooperate. The role of the receiver is to decode the messages
send by each respective user.

• Gray-Wyner Network

The network is composed of one sender and two receivers, that communicate
messages through a common link and two private links. The common chan-
nel is provided to both receivers and each private channel is provided to the
respective decoder. The sender communicates a pair of messages through the
common and two private channels, where each receiver is interested in the
respective message.

A subclass of the networks in information theory are the Gaussian networks,
where in the channel coding, the channel is modelled as Gaussian and in the source
coding the source is modelled as Gaussian. We focus on these networks and compute
the capacity and rate-distortion function for the aforementioned networks.

1.1 Contributions

• Gaussian Multiple Access Channel with Feedback: In Chapter 3 the
sum-Capacity is computed under a symmetric block power constraint by show-
ing the optimality of Gaussian auxiliaries. We prove that the new outer bounds
based on Hekstra-Willems dependence-balance argument meet the Fourier-
Modulated Estimate Correction scheme. Our proof unifies all the previous
partial proofs. The di�culty relies on the fact that the problem is not convex,
thus the factorization of lower convex envelope method is used to compute the
sum-Capacity and prove the Gaussian optimality.

• (Relaxed) Wyner’s Common Information: In Chapter 4 we revive a nat-
ural relaxation of Wyner’s common information, the so-called relaxed Wyner’s
common information that was initially proposed by Wyner, but not studied.
More specifically, in the original definition of Wyner’s common information,
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the conditional independence constraint is replaced by an upper bound on the
conditional mutual information. We provide an alternative proof of (standard)
Wyner’s common information for Gaussian vector sources. Moreover, we solve
the natural relaxation of Wyner’s common information for Gaussian sources.
The solution to natural relaxation of Wyner’s common information for Gaus-
sian sources is interpreted as a reverse water-filling procedure. Later on, the
relaxed Wyner’s common information is used in the common information com-
ponent analysis algorithm to extract common information.

• Gaussian Gray-Wyner Network: In Chapter 5 we compute the rate region
of Gaussian lossy Gray-Wyner network under symmetric mean-squared error
distortion. We prove that it is optimal to select the auxiliary random variable
to be jointly Gaussian with the source random variables.

• Lower bound on (relaxed) Wyner’s Common Information: In Chapter
6 a lower bound to (relaxed) Wyner’s common information is derived where
the proof is fundamentally di↵erent from the method that were used to solve
the Wyner’s common information. We demonstrate that for a number of
distributions the new lower bound is dominant to the existing bounds. When
the distribution is written as the sum of a single arbitrary random variable
and jointly Gaussians, then the new lower bound is tight.

• Common Information Component Analysis: In Chapter 7 we devise
a novel algorithms, the so-called common information component analysis
(CICA). The algorithm is an alternative way to extract common information
from data. Extracting common information is not popular in feature extraction
since two or more data are involved. The majority of the approaches deal with
extraction of the essential information on a single data. The algorithms that
perform common information extraction include canonical correlation analysis
(CCA). The proposed algorithms is composed of two main steps. In the first
one, we solve the relaxed Wyner’s common information and the second one we
project the common information from the earlier step back onto the original
data. When the original data is generated from a jointly Gaussian source,
our algorithms precisely extract the CCA components and a direct connection
with CCA is established. A parameter that is exclusive to this algorithm al-
lows to determines the number of the CCA components that are extracted. In
the examples provided, the CICA outperforms CCA. Most importantly, CICA
is dominant to other methods when extracting common information between
three or more data, which is supported by example.

• Upper Bound on Double Information Bottleneck: In Chapter 8 we
compute an upper bound on an extended variant of information bottleneck.

1.2 Notation

We use the following notation. Random variables are denoted by uppercase let-
ters such as X and their realizations by lowercase letters such as x. The alphabets
in which they take their values will be denoted by calligraphic letters such as X .
The probability distribution function of random variable X will be denoted by pX
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or p(x) depending on the context. Let P be the set of all probability distribu-
tion, discrete or continuous depending on the context. Random column vectors are
denoted by boldface uppercase letters and their realizations by boldface lowercase
letters. Depending on the context we will denote the random column vector also as
Xn := (X

1

, X
2

, . . . , Xn). The i-th entry of the column vector X is denoted by Xi or
[X]i. Calligraphic letters denote sets, e.g., A,B, C. A subset S of the entries of the
column vector X is denoted by XS or [X]S . We denote matrices with uppercase
letters, e.g., A,B,C. The (i, j) element of matrix A is denoted by Aij or [A]ij . Let
us denote with In the identity matrix of dimension n⇥ n and 0n the zero matrix of
dimension n⇥n. For the cross-covariance matrix of X and Y , we use the shorthand
notation K

XY

, and for the covariance matrix of a random vector X we use the
shorthand notation K

X

:= K
XX

. In slight abuse of notation, we will let K
(X,Y )

denote the covariance matrix of the stacked vector (X,Y )T . Let KH be the Her-
mitian transpose matrix. We denote the Kullback-Leibler divergence with D(.||.).
The diagonal matrix is denoted by diag(.). We denote log+ (x) = max(log x, 0).
The expression X ⇠ N (m,�2) denotes a Gaussian random variable with mean m
and variance �2. We denote the convergence in distribution (weak convergence) by
w). We denote by f̆(x) the lower convex envelope of f(x) with respect to x and for
random variables let f̆(X) (or f̆(pX)) be the lower convex envelope of f(X) with
respect to pX . We denote by hb(x) := �x log x� (1�x) log 1� x the binary entropy
for 0  x  1.



Preliminaries 2
Network information theory is mainly composed of channel (coding) and source
(coding) networks. We investigate simple networks when the channel is modelled
as additive Gaussian noise and the source is modelled as Gaussian. In the additive
Gaussian channel network, for a given probability density function of the channel, we
seek the optimal probability density function of the input to attain the capacity of
the channel. In the Gaussian source network, for a given probability density function
of the source, we seek the optimal probability density function of the channel to
attain the rate-distortion function.

2.1 Kac-Bernstein theorem

The following theorem is a property of the Gaussian distribution.

Theorem 1 ([2, 3]). If X
1

and X
2

are independent random variables, and if 1p
2

(X
1

+

X
2

) and 1p
2

(X
1

�X
2

), then X
1

, X
2

are normally distributed.

Let us consider an application of Theorem 1 in a source coding problem.

2.2 Entropy maximization via Kac-Bernstein theorem

Theorem 2. The unique maximizer of

V (�2

X) = max
X:E[X2

]�2
X

h(X), (2.1)

is the Gaussian distribution with mean zero and variance �2

X .

The proof of Theorem 2 is present in [4, Theorem 8.6.5]. Here we provide an
alternative proof by using the Kac-Bernstein theorem.

5



6 Preliminaries

Proof. Let X be an optimizing random variable of V (�2

X). Let X
1

and X
2

be two
independent copies of the optimizing random variable X. Then,

2V (�2

X) = h(X
1

) + h(X
2

) (2.2)

= h(X
1

, X
2

) (2.3)

= h

✓

X
1

+X
2p

2
,
X

1

�X
2p

2

◆

(2.4)

= h

✓

X
1

+X
2p

2

◆

+ h

✓

X
1

�X
2p

2

◆

� I

✓

X
1

+X
2p

2
;
X

1

�X
2p

2

◆

(2.5)

 2V (�2

X)� I

✓

X
1

+X
2p

2
;
X

1

�X
2p

2

◆

, (2.6)

where (2.2) holds becauseX
1

andX
2

are optimizing random variables that attain
V (�2

X); (2.3) holds from the independence of X
1

and X
2

; (2.4) holds because entropy
is preserved for unitary transformations; (2.5) holds by applying the chain rule on
the entropy and (2.6) holds from the definition of V (�2

X). In order for (2.2)-(2.6) to
hold, we need that X1+X2p

2

is independent of X1�X2p
2

.

To sum up, by assumption X
1

and X
2

are independent and by combining (2.2)-
(2.6) we proved that X1+X2p

2

is independent of X1�X2p
2

. Thus, by Theorem 1, X
1

and

X
2

must be Gaussian.

2.3 Gaussian rate distortion via Kac-Bernstein theorem

Let us consider the rate distortion function. A distortion function is a mapping
d : X ⇥ X̂ ! R+ from the set of source alphabet-reproduction alphabet pairs into
the set of nonnegative real numbers. The distortion d(x, x̂) is a measure of the cost
of representing the symbol x by the symbol x̂. The square-error distortion, d(x, x̂) =
(x� x̂)2 is the most popular distortion measure used for continuous alphabets.

Let X be a random variable and its reconstruction be X̂. The problem is to find
the optimal X̂ that minimizes the distortion function, where probability density
function p(x) is given.

By the rate distortion Theorem [4, Theorem 10.2.1] extended to continuous al-
phabets with squared-error distortion, the optimization problem is defined as

V (D) := inf
p(x̂|x):E[(X� ˆX)

2
]D

I(X; X̂) (2.7)

where V (D) is the minimum achievable rate at distortion D. Let X ⇠ N (0,�2

x).
Let (X

1

, X̂
1

) and (X
2

, X̂
2

) be two identical and independent copies of (X, X̂)
and define

(X✓1 , X̂✓1) :=
1p
2
(X

1

+X
2

, X̂
1

+ X̂
2

), (X✓2 , X̂✓2) :=
1p
2
(X

1

�X
2

, X̂
1

� X̂
2

).

(2.8)

Lemma 1. The statements listed below are true.

1. The following equality holds

I(X
1

, X
2

; X̂
1

, X̂
2

) = I(X✓1 , X✓2 ; X̂✓1 , X̂✓2). (2.9)
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2. The following inequality holds

I(X✓1 , X✓2 ; X̂✓1 , X̂✓2) � I(X✓1 ; X̂✓1) + I(X✓2 ; X̂✓2), (2.10)

when X✓1 and X✓2 are independent.

3. The equality in (2.10) holds if and only if

p(x✓1 , x✓2 |x̂✓1 , x̂✓2) = p(x✓1 |x̂✓1)p(x✓2 |x̂✓2). (2.11)

Proof. Item 1 follows from the fact that mutual information is invariant to linear
transformation, i.e. I(AX;BX̂) = I(X; X̂) for linear transformation A and B.

Item 2 is a consequence of

I(X✓1 , X✓2 ; X̂✓1 , X̂✓2) = I(X✓1 ; X̂✓1 , X̂✓2) + I(X✓2 ; X̂✓1 , X̂✓2 |X✓1) (2.12)

= I(X✓1 ; X̂✓1) + h(X✓2 |X✓1) + I(X✓1 ; X̂✓2 |X̂✓1)

� h(X✓2 |X✓1 , X̂✓1 , X̂✓2) (2.13)

� I(X✓1 ; X̂✓1) + h(X✓2)� h(X✓2 |X̂✓2) (2.14)

= I(X✓1 ; X̂✓1) + I(X✓2 ; X̂✓2) (2.15)

where (2.12) and (2.13) are application of the chain rule; (2.14) follows from con-
ditioning reduces entropy, that is h(X✓2 |X✓1 , X̂✓1 , X̂✓2)  h(X✓2 |X̂✓2), conditional
mutual information is non-negative I(X✓1 ; X̂✓2 |X̂✓1) � 0 and h(X✓2 |X✓1) = h(X✓2)
by independence of X✓1 and X✓2 .

Item 3 follows from the equality conditions in (2.14), that are

I(X✓1 ; X̂✓2 |X̂✓1) = 0, (2.16)

I(X✓2 ;X✓1 , X̂✓1 |X̂✓2) = 0. (2.17)

By adding Equation (2.16) and (2.17) we have that I(X✓2 , X̂✓2 ;X✓1 , X̂✓1) = I(X̂✓2 ; X̂✓1),
that is interpreted as p(x✓1 , x✓2 |x̂✓1 , x̂✓2) = p(x✓1 |x̂✓1)p(x✓2 |x̂✓2).

The term I(X; X̂) is a convex function of p(x̂|x) for a given distribution p(x)
and infimum always exits. The mutual information objective is not a↵ected by the
mean of the random variables, however the constraint is a↵ected. In particular, for
a zero mean X the optimal X̂ is mean zero as the term E[(X � X̂)2] only decreases
i.e. if X̂ = X̂

zm

+m, then E[(X� X̂
zm

)2]  D�m2. Now we present the main part.

Lemma 2. Let p⇤(x̂|x) attain V (D) and let (X̂
1

, X̂
2

)|((X
1

, X
2

) = (x
1

, x
2

)) ⇠
p⇤(x̂

1

|x
1

)p⇤(x̂
2

|x
2

), then we have that X✓1 and X✓2 are conditionally independent
given (X̂

1

, X̂
2

) and attain V (D).

Proof. We have,

2V (D) = I(X
1

; X̂
1

) + I(X
2

; X̂
2

) (2.18)

= I(X
1

, X
2

; X̂
1

, X̂
2

) (2.19)

= I(X✓1 , X✓2 ; X̂✓1 , X̂✓2) (2.20)

� I(X✓1 ; X̂✓1) + I(X✓2 ; X̂✓2) (2.21)

� 2V (D), (2.22)
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where (2.18) follows from the optimality of p⇤(x̂
1

|x
1

) and p⇤(x̂
2

|x
2

) satisfying E[(X
1

�
X̂

1

)2]  D and E[(X
2

�X̂
2

)2]  D; (2.19) follows from the assumption that (X̂
1

, X
1

)
is independent of (X̂

2

, X
2

); (2.20) follows from Lemma 1, Item 1; (2.21) follows from
Lemma 1, Item 2; (2.22) follows from definition of V (D), and the constraint

E[(X✓1 � X̂✓1)
2] =

1

2
E[(X

1

� X̂
1

+X
2

� X̂
2

)2] (2.23)

=
1

2
E[(X

1

� X̂
1

)2 + (X
2

� X̂
2

)2 + 2(X
1

� X̂
1

)(X
2

� X̂
2

)] (2.24)

 D + E[(X
1

� X̂
1

)]E[(X
2

� X̂
2

)] = D, (2.25)

where the third term in (2.24) is zero from the independence of (X̂
1

, X
1

) and
(X̂

2

, X
2

).
The inequality starts with 2V (D) and ends with 2V (D) thus, we have equal-

ity in Equation (2.21) and by Lemma 1, Item 3, we have p(x✓1 , x✓2 |x̂✓1 , x̂✓2) =
p(x✓1 |x̂✓1)p(x✓2 |x̂✓2), which implies that p(x✓1 , x✓2 |x̂1, x̂2) = p(x✓1 |x̂1, x̂2)p(x✓2 |x̂1, x̂2),
or X✓1 and X✓2 are conditionally independent given (X̂

1

, X̂
2

).

Let us denoteX|(X̂
1

= x̂
1

) withXx̂1 . By assumption we have that p(x
1

, x
2

|x̂
1

, x̂
2

) =
p(x

1

|x̂
1

)p(x
2

|x̂
2

) or Xx̂1 is independent of Xx̂2 for any instances (x̂
1

, x̂
2

). Let us de-
fine

X✓1 |((X̂1

, X̂
2

) = (x̂
1

, x̂
2

)) :=
1p
2
(Xx̂1 +Xx̂2), (2.26)

X✓2 |((X̂1

, X̂
2

) = (x̂
1

, x̂
2

)) :=
1p
2
(Xx̂1 �Xx̂2). (2.27)

Also, we showed that p(x✓1 , x✓2 |x̂1, x̂2) = p(x✓1 |x̂1, x̂2)p(x✓2 |x̂1, x̂2) or 1p
2

(Xx̂1+Xx̂2)

is independent of 1p
2

(Xx̂1 � Xx̂2) for any instances (x̂
1

, x̂
2

). Then, by Theorem 1,

Xx̂ is Gaussian for any instance x̂. Since Xx̂ are Gaussians for all instances x̂,thus

h(X|X̂) = E


1

2
log (2⇡e)Var(X|X̂)

�

(2.28)

 1

2
log (2⇡e)E[Var(X|X̂)], (2.29)

where the inequality follows from the concavity of log function. Then, a valid lower
bound is

I(X; X̂) = h(X)� h(X|X̂) (2.30)

� 1

2
log

�2

x

E[Var(X|X̂)]
(2.31)

� 1

2
log

�2

x

D
, (2.32)

where the last inequality follows by using the law of total variance

E[Var(X|X̂)] = E[Var(X � X̂|X̂)] (2.33)

 Var(X � X̂) (2.34)

= E[(X � X̂)2] (2.35)

 D. (2.36)
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The same result is obtained by a simpler proof in [4, Theorem 10.3.2], however the
aim is to apply Theorem 1 in an information theoretical problem.

Let us analyse the application of Kac-Bernstein theorem. In the rate distortion
problem we create two independent copies of (X, X̂) that are, (X

1

, X̂
1

) and (X
2

, X̂
2

).
The independence of (X

1

, X̂
1

) and (X
2

, X̂
2

) implies that Xx̂1 (Xx̂1 denotes X|(X̂
1

=
x̂
1

)) is independent of Xx̂1 for any instance (x̂
1

, x̂
2

). By using Lemma 1 and 2, we
show that 1p

2

(Xx̂1+Xx̂2) is independent of
1p
2

(Xx̂1�Xx̂2) for any instances (x̂
1

, x̂
2

).

Then, by Theorem 1, Xx̂ is Gaussian for any instance x̂.

2.4 Lower Convex Envelope

Definition 1. The lower convex envelope f̆ of the function f : K ! R, where K is
a convex set is defined as pointwise supremum of all convex functions that lie under
that function and is uniquely determined.

Let f : K ! R be a lower semicontinuous function. The lower convex envelope
f̆ has the following properties

1. f̆(x) is a convex function of x for x 2 K,

2. f̆(x)  f(x) for all x 2 K,

3. if g is any other convex function such that g(x)  f(x) for all x 2 K, then
g(x)  f̆(x) for all x 2 K,

4. infx2K f(x) = infx2K f̆(x).





Sum-Rate Capacity for Gaussian
Multiple Access Channels with
Feedback 3
3.1 Introduction

The feedback capacity of the two-user Gaussian multiple-access channel (GMAC)1

was established by Ozarow [5]. The coding theorem was based on extending feedback
strategies of Elias [6] and Schalkwijk and Kailath [7] (see [8]), while the converse
followed from a cut-set argument. For more than two users the capacity region re-
mains unknown. Thomas [9] proved that feedback can at most double the sum-rate
capacity for any number of users. Iacobucci and Di Benedetto [10, 11] extended
Ozarow’s scheme to more than two users, but their strategies do not achieve ca-
pacity and perform worse than the no-feedback capacity for more than three users.
Kramer [12] subsequently developed a method he called Fourier-Modulated Esti-
mate Correction, or Fourier-MEC. For the symmetric GMAC and su�ciently large
signal-to-noise ratio (SNR), the Fourier-MEC sum-rate meets the cut-set bound and
is thus optimal. However, the problem remained open for low SNRs.

The coding schemes in [5, 6, 7, 10, 11, 12] start by mapping the message onto a
point on the real line or complex plane, and they iteratively correct the receiver’s esti-
mate of this point by using linear minimum mean square error (LMMSE) estimation.
There are many variants of the schemes. For example, one can convert complex-
channel strategies to real-channel strategies [12], one can interpret the LMMSE step
as posterior matching [13, 14], and one can use multi-dimensional Fourier transforms
for Fourier-MEC, e.g., a Hadamard transform [12, 14].

New outer bounds on the capacity region were derived in [15] by applying the
Hekstra-Willems dependence-balance argument [16]. This idea of dependence bal-
ance is to restrict the set of permissible input distributions to improve standard
cut-set bounds. The intuitive argument given in [16] is that the amount of depen-

1The material of this chapter has appeared in
- E. Sula, M. Gastpar, and G. Kramer, “Sum-rate capacity for symmetric Gaussian multiple access
channels with feedback,” in IEEE International Symposium on Information Theory (ISIT), Vail,
CO, USA, June 2018.
- E. Sula, M. Gastpar, and G. Kramer, “Sum-rate capacity for symmetric Gaussian multiple access
channels with feedback,” IEEE Transactions on Information Theory, vol. 66, no. 5, pp. 2860�2871,
2020.

11
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dence consumed cannot exceed the amount of dependence produced. Remarkably,
the dependence-balance bounds of [15] match the Fourier-MEC sum-rates of [12]
when evaluated with Gaussian signals. However, inferring the optimality of Gaus-
sian signaling is not trivial. Investigations for linear feedback strategies appear
in [17] where the maximum sum-rate is computed under a symmetric block power
constraint.

Multiple-access channels (MACs) with feedback and non-Gaussian noise have
also received attention. For example, outer bounds on the feedback capacity region
of MACs with binary additive noise are derived in [18]. This class of MACs was
also studied in [19, 20] to show that the Cover-Leung [21] achievable rate region can
be improved. Other results for GMACs with imperfect and/or noisy feedback are
presented in [22, 23, 24, 25].

3.1.1 Contribution

Our result unifies [12, 15, 17] and adds a missing piece of the puzzle. In particular,
in [12] the problem remained open for low SNRs, in [15] the optimality of Gaussian
signals was not proven, and in [17] the problem was solved for linear strategies only.
Our starting point is the generalized dependence-balance outer bounds in [15], and
we show that the best sum-rate obtained with these bounds is at most the sum-rate
achieved in [12, Sec. V]. We thus have the following result.

Theorem 3. The feedback sum-rate capacity of the J-user symmetric GMAC is

C
sum

=
1

2
log

2

(1 + PJ↵) bits/channel use (3.1)

where P is the available power for each user and ↵ is the unique solution satisfying
↵ 2 [1, J ] and

(1 + PJ↵)J�1 = (1 + P↵(J � ↵))J . (3.2)

Achievability was established in [12, Section V] and the converse is given in
Section 3.5. The converse combines the Lagrange-duality approach of [26] with a
variant of the factorization of convex envelopes used in [27, 28] that was inspired by
work on functional inequalities [29, 30]. The high level steps behind the proof are
as follows:

• For the Lagrange dual of our capacity maximization problem, we establish the
existence of a maximizing probability distribution (Appendix 3.7.1).

• For the Lagrange dual, we show that if a probability distribution is a maxi-
mizer, then so is the probability distribution of a random variable that is the
sum of two independent random variables, each of which is distributed as the
maximizing distribution (Lemma 3). This is the core of the argument, and it
is established by the technique of factorization of convex envelopes.

• By induction, one can infer that the probability distribution of a random vari-
able that is the sum of 2` (` 2 Z

+

) independent random variables, each dis-
tributed according to the maximizing distribution, must also be a maximizing
distribution (Theorem 5).
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• Finally, by a central limit theorem argument, a Gaussian distribution is a
maximizer (Appendix 3.7.3).

Besides establishing the optimality of Gaussian signals, the non-convex Lagrangian
dual problem is converted into a convex problem that is solved in Lemmas 4 � 7,
which is an alternative proof to [17].

3.1.2 Organization

This chaper is organized as follows. In Section 3.2, we present the system model
and in Section 3.3 we review existing capacity bounds. In Section 3.4, we give an
upper bound on the sum-rate for general GMACs with feedback. In Section 3.5,
we prove Theorem 3. Section 3.6 concludes the chapter and the appendices provide
supporting results and proofs.

3.2 System Model

D

E
2

E
1

EJ

+

...
...

Z

W
2

W
1

WJ

X
2

X
1

XJ

(Ŵ
1

, Ŵ
2

, . . . , ŴJ)

Y

Figure 3.1 – The Multiple Access Channel with Feedback

Consider a GMAC with J transmitters (called users) with channel input symbols
X

1

, X
2

, . . . , XJ , and a receiver with the channel output symbol Y . The received
signal at time instant i is

Yi = Zi +
J
X

j=1

gjXj,i (3.3)

for i = 1, 2, . . . , n, where Z
1

, Z
2

, . . . , Zn is a string of independent and identi-
cally distributed (i.i.d.) zero-mean Gaussian noise variables with unit variance and
g
1

, g
2

, . . . , gJ are channel gains. The J channel inputs have the block power con-
straints

n
X

i=1

E
⇥

X2

j,i

⇤

 nPj , j = 1, 2, . . . , J. (3.4)

The SNR of user j is thus Pjg
2

j . If P1

g2
1

= P
2

g2
2

= . . . = PJg
2

J , then the transmitters
can be swapped without changing the capacity. For such models, we may as well set
Pj = P and gj = 1 for all j, and we refer to this channel as the symmetric GMAC.

Let Wj with nRj bits be the message of user j. The transmitted signal at time
instant i is

Xj,i = fj,i(Wj , Y
i�1), j = 1, 2, . . . , J (3.5)
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where the fj,i(·) are encoding functions to be optimized. The receiver puts out the
estimates

⇣

Ŵ
1

, Ŵ
2

, . . . , ŴJ

⌘

= g(Y n) (3.6)

where g(·) is a decoding function. The event that the receiver makes an error is

E =
J
[

j=1

n

Ŵj 6= Wj

o

. (3.7)

The rate-tuple R = (R
1

, R
2

, . . . , RJ) is said to be achievable if, for any specified
positive error probability Pe and su�ciently large n, there are encoding functions
and a decoder such that Pr [E ]  Pe. The closure of the set of achievable R is
called the capacity region C

MAC-FB

. We are interested in characterizing the sum-
rate capacity C

sum

, i.e., the maximum sum of the entries of any R in C
MAC-FB

.

3.3 Dependence Balance Bounds

3.3.1 Two-User Dependence Balance Bounds

Dependence balance bounds were introduced by Hekstra and Willems [16] for single
output two-way channels. The tool generalizes to other models such as MACs with
feedback. For example, for the two-user MAC with feedback, the achievable (R

1

, R
2

)
must satisfy

0  R
1

 I(X
1

;Y |X
2

, T )

0  R
2

 I(X
2

;Y |X
1

, T )

R
1

+R
2

 I(X
1

, X
2

;Y |T )
(3.8)

for some p(t, x
1

, x
2

, y) for which

T � [X
1

, X
2

]� Y forms a Markov chain, (3.9)

I(X
1

;X
2

|T )  I(X
1

;X
2

|Y, T ). (3.10)

In [16, Section 7], the term I(X
1

;X
2

|T ) is interpreted as the amount of dependence
consumed, and I(X

1

;X
2

|Y, T ) as the amount of dependence produced by commu-
nication. An interpretation of the inequality (3.10) is thus that the dependence
consumed cannot exceed the dependence produced, i.e., communication is limited
by dependence balance.

Other interpretations of this bound are described in [15]. Observe that (3.10)
can be rewritten in the following two ways:

I(X
1

;Y |T ) + I(X
2

;Y |T )  I(X
1

, X
2

;Y |T ) (3.11)

I(X
1

, X
2

;Y |T )  I(X
1

;Y |X
2

, T ) + I(X
2

;Y |X
1

, T ). (3.12)

The bound (3.12) requires the set function f : 2{1,2} ! R defined by

f({1}) = I(X
1

;Y |X
2

, T ) (3.13)

f({2}) = I(X
2

;Y |X
1

, T ) (3.14)

f({1, 2}) = I(X
1

, X
2

;Y |T ) (3.15)
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to be submodular. In other words, for valid choices of p(t, x
1

, x
2

, y), the rate re-
gion defined by (3.8) is a polymatroid. We may thus interpret dependence balance
as a submodularity (or polymatroid) constraint, i.e., communication is limited by
submodularity.

We remark that for two-user GMACs the dependence balance bound yields the
same rate region as the standard cut-set bound. However, the dependence bal-
ance bound is more informative in the following sense. Consider jointly Gaussian
p(t, x

1

, x
2

, y). The optimal correlation coe�cient ⇢⇤ in (3.17) below is the one that
satisfies (3.10)-(3.12) with equality. However, dependence balance (or submodular-
ity) limits ⇢ to the range [0, ⇢⇤], whereas the cut-set bound permits all ⇢ in [0, 1].

Example 1 (Two-User Capacity with Feedback). Feedback enables the users to
cooperate so as to increase rates. For J = 2 the capacity region is known to be [5]

C
MAC-FB

=
[

0⇢1

R(⇢) (3.16)

where R(⇢) is the set of rate pairs (R
1

, R
2

) that satisfy

0  R
1

 1

2
log

�

1 + P
1

(1� ⇢2)
�

0  R
2

 1

2
log

�

1 + P
2

(1� ⇢2)
�

R
1

+R
2

 1

2
log

⇣

1 + P
1

+ P
2

+ 2⇢
p

P
1

P
2

⌘

.

(3.17)

The parameter ⇢ is the correlation coe�cient of the two users. C
MAC-FB

is here the
same as a standard cut-set bound. However, we show that cut-set bounds are loose
for J > 2, and that dependence balance bounds can characterize the fundamental
limits of communication.

3.3.2 Multi-User Dependence Balance Bounds

The two-user dependence balance concept was generalized to J users in [20, Thm. 4]
and more dependence balance bounds are derived in [15, Thm. 1]. The capac-
ity region of the J-user MAC with feedback is a subset of the set of rate-tuples
(R

1

, R
2

, . . . , RJ) satisfying

RS  I(XS ;Y |XSC

, T ) (3.18)

for all S ✓ J , where SC is the complement of S, and where

T � [X
1

, X
2

, . . . , XJ ]� Y forms a Markov chain (3.19)

I(X
1

, X
2

, . . . , XJ ;Y |T )  1

M � 1

M
X

m=1

I(XSC

m

;Y |XS
m

, T ), (3.20)

for any partition {Sm}Mm=1

of J into M � 2 subsets. One may again interpret (3.20)
as a submodular constraint. For example, for the partition S

1

= {1}, S
2

= {2}, . . . ,
SJ = {J} the dependence balance constraint (3.20) becomes

I(X
1

, X
2

, . . . , XJ ;Y |T )  1

J � 1

J
X

j=1

I(XJ\{j};Y |Xj , T ) (3.21)
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Figure 3.2 – Cut-set bounds for the sum-rate of a two-user symmetric GMAC with
feedback.

where J \ {j} is the set {1, 2, . . . , j � 1, j + 1, . . . , J}. As usual, one can add the
power constraints E[X2

j ]  Pj , j 2 J , to these bounds. Also, as for (3.11) for the
two-user case, the bound (3.20) can be written as

M
X

m=1

I(XS
m

;Y |T )  I(X
1

, X
2

, . . . , XJ ;Y |T ). (3.22)

3.3.3 Comparison to Cut-set Bounds

The cut-set bounds give the following result, see [5] and [4, Theorem 15.10.1].

Proposition 1. For the two-user symmetric GMAC with feedback, we have

C
sum

 max
0⇢1

min

(

1

2
log(1 + 2P (1 + ⇢)

| {z }

f1(⇢)

, log(1 + P (1� ⇢2))
| {z }

f2(⇢)

)

. (3.23)

The sum-rate on the right hand side (RHS) of (3.23) turns out to be achiev-
able [5], and it is depicted in Figure 3.2. Similarly, again starting from [4, Theo-
rem 15.10.1], we obtain the following result.

Proposition 2. For the three-user symmetric GMAC with feedback, we have

C
sum

 max
0⇢1

min

(

1

2
log(1 + 3P (1 + 2⇢)

| {z }

g1(⇢)

, (3.24)

3

4
log(1 + 2P (1� ⇢)(1 + 2⇢))

| {z }

g2(⇢)

,
3

2
log

✓

1 +
P (1 + 2⇢)(1� ⇢)

1 + ⇢

◆

| {z }

g3(⇢)

)

.
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Figure 3.3 – Cut-set bounds for the sum-rate of a three-user symmetric GMAC with
feedback and P = 0.3.

The sum-rate (3.25) is not generally achievable. Figure 3.3 illustrates the situ-
ation for the special case P = 0.3. The cut-set bound of Proposition 2 leads to an
upper bound on the sum-rate given by the intersection point of the curves g

2

and
g
3

. However, we show that the capacity is given by the intersection of the curves g
1

and g
2

; this intersection point is achieved by Fourier-MEC [12].

0.4 0.5 0.6 0.7 0.8

1

1.2

1.4

1.6

1.8

⇢

P = 3

g1
g2
g3

Figure 3.4 – Cut-set bounds for the sum-rate of a three-user symmetric GMAC with
feedback and P = 3.

For the symmetric GMAC and large SNR, i.e., more than a certain threshold, the
Fourier-MEC sum-rate meets the cut-set bound. For example, a su�cient condition
for the cut-set bound to give the sum-rate capacity is that the SNR is greater than
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or equal to 2J+1/J2 [12]. Observe that this threshold grows exponentially with the
number of users. For J = 3 users, the threshold becomes 16

9

, thus we pick P = 3,
that is strictly larger than the threshold. The cut-set bound of Proposition 2 is
the intersection point of the curves g

1

and g
2

that is achieved by Fourier-MEC [12]
illustrated in Figure 3.4.

3.4 General Converse Bound for J Users

We derive the following upper bounds on the feedback sum-rate capacity of the
general J-user GMAC.

Theorem 4. For any � � 0 and any partition {Sm}Mm=1

of J into M � 2 subsets,
we have

C
sum

 max
p(x1,x2,...,x

J

)2GG
(1� �)I(X

1

, X
2

, . . . , XJ ;Y )

+
�

M � 1

M
X

m=1

I(XSC

m

;Y |XS
m

) (3.25)

where GG is the set of zero-mean Gaussian distributions satisfying E[X2

j ]  Pj for
j = 1, 2, . . . , J .

3.4.1 Proof of Theorem 4

Our converse bound starts from Section 3.3.2 and we use the shorthand X =
(X

1

, X
2

, . . . , XJ). We find it convenient to express our problem as a minimiza-
tion, i.e., we seek to minimize �I(X;Y |T ). We consider only the sum-rate obtained
by S = J in (3.18) over the input distributions p(t,x) that satisfy the dependence-
balance constraint

I(X;Y |T )  1

M � 1

M
X

m=1

I(XSC

m

;Y |XS
m

, T ) (3.26)

for (T,X) such that T �X � Y forms a Markov chain. We will treat the power
constraints in two steps. First, for any fixed covariance matrix K

X

, we will optimize
over all distributions satisfying E[XX

T ] = K
X

. Then, we will optimize over all K
X

whose diagonal entries are at most P .
After, we form the Lagrangian for our optimization problem as

s�(X|T ) :=(�� 1)I(X;Y |T )� �

M � 1

M
X

m=1

I(XSC

m

;Y |XS
m

, T ). (3.27)

This can be rewritten as

s�(X|T ) =�
✓

�

M � 1
+ 1

◆

I(X;Y |T ) + �

M � 1

M
X

m=1

I(XS
m

;Y |T ). (3.28)

The lower convex envelope is defined as in [27], namely, as

s̆�(X) = inf
p(t|x):

T�X�Y

{s�(X|T )}
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and we note that s̆�(X) is a convex function of p(x) because s̆�(X) is the lower
convex envelope of s�(X), which is defined by discarding the random variable T in
(3.27). In addition, we define

s̆�(X|T ) =
X

t

p(t)s̆�(X|T = t). (3.29)

The dual function of our problem for K
X

⌫ 0 is

V�(KX

) := inf
p(x):E[XX

T

]=KX

{s̆�(X)} . (3.30)

Alternatively, we have

V�(KX

) = inf
p(t,x):E[XX

T

]=KX
T�X�Y

{s�(X|T )} . (3.31)

By the standard Lagrangian duality we bound the original optimization problem as
follows

C
sum

 �max
�

inf
p(t,x): E[X2

j

]P
j

T�X�Y

s�(X|T ) (3.32)

= �max
�

inf
KX⌫0:

[KX ]

jj

P
j

inf
p(t,x): E[XX

T

]=KX
T�X�Y

s�(X|T )

| {z }

V
�

(KX)

. (3.33)

From now on we deal mainly with the dual function V�(KX

). For 0 < �  1,
the minimization problem (3.31) is a convex problem, and it follows from (3.27)
and maximum entropy results that the optimizing distribution p(t, x

1

, x
2

, . . . , xJ) is
jointly Gaussian. The more di�cult case is � > 1. Our approach will be to establish
that one of the distributions attaining the minimum in (3.31) is the Gaussian channel
input, but we do not establish that this is the unique minimizer. This follows from
a novel variant of the factorization of convex envelopes.

Consider two independent uses of the GMAC:

Y
1

= GX

1

+ Z
1

Y
2

= GX

2

+ Z
2

(3.34)

where G =
⇥

1 1 . . . 1
⇤

, X
1

and X

2

are independent and identically distributed,
and where Z

1

, Z
2

⇠ N (0, 1) are independent. One key di↵erence to [27] is that G is
not an invertible matrix. We define

X✓1 =
1p
2
(X

1

+X

2

), X✓2 =
1p
2
(X

1

�X

2

), (3.35)

Y✓1 =
1p
2
(Y

1

+ Y
2

), Y✓2 =
1p
2
(Y

1

� Y
2

). (3.36)

We thus have

Y✓1 = GX✓1 + Z̃
1

, Y✓2 = GX✓2 + Z̃
2

(3.37)
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where Z̃
1

, Z̃
2

⇠ N (0, 1) are independent. Moreover, we generalize the definition (3.28)
to the two-letter extension as

s�(X1

,X
2

|T ) :=�
✓

�

M � 1
+ 1

◆

I(X
1

,X
2

;Y
1

, Y
2

|T ) (3.38)

+
�

M � 1

M
X

m=1

I([X
1

]S
m

, [X
2

]S
m

;Y
1

, Y
2

|T ).

The following proposition establishes the existence of a minimizer in (3.30).

Proposition 3. There is a pair of random variables (T⇤,X⇤) with |T⇤|  J(J+1)

2

+1
and E[X⇤X

T
⇤ ] = K

X

such that

V�(KX

) = s�(X⇤|T⇤). (3.39)

Proof : Existence and the cardinality bound on T⇤ are established in Appendix
3.7.1 by using a similar argument as in [27, Appendix 2A]. ⇤

We can now establish the desired result.

Lemma 3. Let p⇤(t,x) attain V�(KX

) and let (T
1

, T
2

,X
1

,X
2

) ⇠ p⇤(t1,x1

)p⇤(t2,x2

).
Suppose Xt has conditional distribution p⇤(x|T = t) and define

X✓1 |((T1

, T
2

) = (t
1

, t
2

)) :=
1p
2
(Xt1 +Xt2),

Y✓1 |((T1

, T
2

) = (t
1

, t
2

)) :=
1p
2
(Yt1 + Yt2),

X✓2 |((T1

, T
2

) = (t
1

, t
2

)) :=
1p
2
(Xt1 �Xt2),

Y✓2 |((T1

, T
2

) = (t
1

, t
2

)) :=
1p
2
(Yt1 � Yt2).

Then, using T = (T
1

, T
2

), we have

1. (T,X✓1) also attains V�(KX

),

2. (T,X✓2) also attains V�(KX

).

3. The joint distribution (T,X✓1 ,X✓2) must satisfy

• I(Y✓1 ; [X✓2 ]Sm

| [X✓1 ]Sm

, T ) = 0

• I(Y✓2 ; [X✓1 ]Sm

| Y✓1 , [X✓2 ]Sm

, T ) = 0

for m = 1, . . . ,M .

Proof : See Appendix 3.7.2. ⇤

Corollary 1. For every ` 2 N , let n = 2` and (Tn,Xn) ⇠
Qn

i=1

p⇤(ti,xi). Then
(Tn, X̃n) achieves V�(KX

) where X̃n|(Tn = (t
1

, t
2

, . . . , tn)) := 1p
n
(Xt1 + Xt2 +

· · ·+Xt
n

). We choose Xt1 ,Xt2 , . . . ,Xt
n

to be independent random variables.
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Proof : The proof follows by induction using Lemma 3. ⇤

Theorem 5. There is a Gaussian distribution (i.e., T can be chosen to be a con-
stant) that achieves V�(KX

).

Proof : See Appendix 3.7.3. ⇤
Note that our approach does not establish the uniqueness of the minimizing

distribution. Using Theorem 5 in equation (3.33) completes the proof of Theorem
4.

3.5 Feedback sum-rate capacity for symmetric GMACs

The proof of Theorem 3 is a special case of the proof of Theorem 4 with the partition
S
1

= {1} , . . . ,SJ = {J} where the dependence balance constraint is given in (3.21)
or (3.22). We tackle the resulting (non-convex) optimization problem with Lagrange
duality.

Consider the covariance matrix

K
X

=

0

B

B

B

@

Q
1

⇢
12

p
Q

1

Q
2

. . . ⇢
1J
p
Q

1

QJ

⇢
21

p
Q

2

Q
1

Q
2

. . . ⇢
2J
p
Q

2

QJ
...

...
. . .

...
⇢J1
p
QJQ1

⇢J2
p
QJQ2

. . . QJ

1

C

C

C

A

. (3.40)

Lemma 4. We have the bound

�C
sum

= min
p(t,x):E[X2

j

]P
j

T�X�Y
subject to (3.20)

�I(X;Y |T ) � max
�

min
KX⌫0:Q

j

P
j

q(�,K
X

) (3.41)

where

q(�,K
X

) =
(�� 1)

2
log

0

@1 +
J
X

j,k=1

[K
X

]jk

1

A (3.42)

� �

2(J � 1)

J
X

j=1

log

0

B

@

1 +
J
X

`,k=1

[K
X

]`k �

⇣

PJ
k=1

[K
X

]jk
⌘

2

Qj

1

C

A

.

Proof : See Appendix 3.7.4. ⇤
We have shown that the optimal input distributions are Gaussian. At this point

the problem is similar to the one in [17], and we can use Lemmas 4 and 5 from
[17] to complete the optimization. However, the converse in [17] relies on a specific
covariance matrix form with only two variables, and this does not necessarily work
for asymmetric power constraints. Therefore, we provide a di↵erent analysis that
applies to asymmetric power constraints.

Consider the covariance matrix

M
X

=

0

B

B

B

@

P
1

⇢
12

p
P
1

P
2

. . . ⇢
1J

p
P
1

PJ

⇢
21

p
P
2

P
1

P
2

. . . ⇢
2J

p
P
2

PJ
...

...
. . .

...
⇢J1
p
PJP1

⇢J2
p
PJP2

. . . PJ

1

C

C

C

A

. (3.43)
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Lemma 5. For every � � 0, we have

max
�

min
KX⌫0:Q

j

P
j

q(�,K
X

) � max
�

min
⇢12,...,⇢

J(J�1):MX⌫0

q(�,M
X

). (3.44)

Proof : See Appendix 3.7.5. ⇤
Note that Lemma 5 holds with equality, while it su�ces to have it as an inequality
with the specified direction.

We now set all power constraints to be the same, i.e., P
1

= P
2

= · · · = PJ = P .

Lemma 6. For every � � 0, we have

max
�

min
⇢12,...,⇢

J(J�1):MX⌫0

q(�,M
X

) � max
�

min
�2[0,J ]

(3.45)

⇢

(�� 1)

2
log(1 + JP�)� J�

2(J � 1)
log (1 + P� (J � �))

�

.

Proof : See Appendix 3.7.6. ⇤

Remark 1. The proof of Lemma 6 is di↵erent from [17] (see also [12]).

We define the function

`(�, J, P ) =
1

2
log (1 + JP�)� J

2(J � 1)
log (1 + P� (J � �)) . (3.46)

Lemma 7. We have

max
�

min
�2[0,J ]

⇢

�1

2
log(1 + JP�) + �`(�, J, P )

�

= �1

2
log (1 + JP�⇤). (3.47)

where �⇤ is the unique solution to �⇤ 2 [1, J ] and (1+JP�⇤)J�1 = (1 + P�⇤ (J � �⇤))J .

Proof : We have

max
�

min
�2[0,J ]

⇢

�1

2
log(1 + JP�) + �`(�, J, P )

�

= min
�2[1,J ]:`(�,J,P )0

⇢

�1

2
log(1 + JP�)

�

(3.48)

= �1

2
log (1 + JP�⇤) (3.49)

where �⇤ is the unique solution satisfying �⇤ 2 [1, J ] and (1 + PJ�⇤)J�1 = (1 +
P�⇤(J � �⇤))J , (3.48) follows from strong duality as the problem is convex from
Lemma 8 in Appendix 3.7.7 and satisfies Slater’s condition. Slater’s condition holds
because there exists a � such that `(�, J, P ) < 0, e.g., � = 1 so the primal problem
is strictly feasible. Equation (3.49) follows from the Karush-Kuhn-Tucker (KKT)
conditions for a convex problem which satisfy Slater’s condition for the optimal �⇤

and �⇤. We start by showing that �⇤ 6= 0. Suppose that �⇤ = 0, then from the KKT
conditions we have

@

@�

⇢

�1

2
log(1 + JP�) + �`(�, J, P )

�

�

�

�

�

�=0

= � JP

2(1 + JP�)
= 0 (3.50)
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which implies that P = 0. This is impossible, so by contradiction we have �⇤ 6= 0.
Now the complementary slackness condition �⇤ ·`(�⇤, J, P ) = 0 gives `(�⇤, J, P ) = 0,
which is equivalent to

(1 + JP�⇤)J�1 = (1 + P�⇤ (J � �⇤))J . (3.51)

This equation has a unique solution for �⇤ 2 [1, J ], see [12, Lemma 1], [17, Ap-
pendix A]. ⇤
By combining Lemmas 4-7 we obtain

C
sum

 1

2
log (1 + PJ�⇤) (3.52)

where �⇤ is the unique solution satisfying �⇤ 2 [1, J ] and (3.51).

3.6 Conclusions

We derived a new converse bound that combines the Lagrange duality approach of
[15] with a novel variation of the factorization of convex envelopes [27]. The new
converse bound meets the achievable sum-rate of the Fourier MEC scheme, thus
establishing the sum-rate capacity for the J-user symmetric GMAC with feedback.

It remains to see whether, as in [5], Fourier MEC combined with successive inter-
ference cancellation can achieve all rate points in the capacity region of the symmet-
ric GMAC with feedback. For asymmetric transmit power constraints, however, it
is known that Fourier-MEC can be improved by using modulation frequencies other
than the uniformly-spaced frequencies (j � 1)/J for j 2 J . A few more variations
of MEC strategies are described in [12, Sec. VIII].

Example 2. Fourier MEC does not meet the dependence-balance bound under asym-
metric power constraints. For example, consider three users with the power con-
straints P

1

 1, P
2

 4 and P
3

 9, for which Fourier-MEC achieves the sum-rate
R

sum

= 1.6215 bits/use, see [12, Sec. III]. However, the dependence balance bound
permits a larger sum-rate, since the choice (⇢

12

, ⇢
13

, ⇢
23

) = (0.5, 0.44, 0.58) satisfies
the dependence balance constraints and permits R

sum

= 1.6427.

3.7 Appendix

3.7.1 Proof of Proposition 3

The di↵erence compared to [27] is Proposition 8, where instead of the continuity we
prove only lower semi-continuity via a di↵erent technique.

Proposition 4 ([31, Lemma 1]). Suppose that Yn and Y have continuous densities
fn(y) and f(y) with respect to the Lebesgue measure on R. If Yn

w) Y and

sup
n

|fn(y)| M(y) <1, 8y 2 R (3.53)

and fn is equicontinuous, i.e., 8 y, ✏ > 0, 9�(y, ✏), n(y, ✏) such that ky�y
1

k < �(y, ✏)
implies that |fn(y) � fn(y1)| < ✏ 8n � n(y, ✏), then for any compact subset C of R
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we have

sup
y2C

|fn(y)� f(y)|! 0 as n!1. (3.54)

If {fn} is uniformly equicontinuous, i.e., �(y, ✏), n(y, ✏) do not depend on y, and
f(yn)! 0 whenever kynk ! 1 then

sup
y2R

|fn(y)� f(y)| = kfn(y)� f(y)k1 ! 0 as n!1. (3.55)

Proposition 5 ([27, Proposition 16]). Let {Xn} be a sequence of random variables
satisfying Yn = GXn + Z where Z ⇠ N (0, I) is independent of {Xn} and fn(y)
represents the density of Yn. Then the collection of functions {fn(y)} is uniformly
bounded and uniformly equicontinuous.

Definition 2. A collection of random variables Xn on RN is said to be tight if for
every ✏ > 0 there is a compact set C✏ ⇢ RN such that P (Xn 62 C✏)  ✏, 8n.

Proposition 6 ([27, Proposition 17]). Consider a sequence of random variables
{Xn} for which E[XnX

T
n ] = K, 8n. Then the sequence is tight.

Theorem 6 (Prokhorov). If {Xn} is a tight sequence of random variables in RN

then there exists a subsequence {Xn
i

} and a limiting probability distribution X⇤
such that Xn

i

w)X⇤.

Proposition 7 ([27, Proposition 18]). Let Xn
w) X⇤ and let Z ⇠ N (0, 1) be

pairwise independent of {Xn}, X⇤. Let Yn = GXn + Z, Y⇤ = GX⇤ + Z. Further
let E[XnX

T
n ] = K, E[X⇤X

T
⇤ ] = K. Let fn(y) denote the density of Yn and f⇤(y)

denote the density of Y⇤. Then we have

1. Yn
w) Y⇤,

2. fn(y)! f⇤(y) for all y,

3. h(Yn)! h(Y⇤).

Proposition 8 (Lower Semi-continuity). Let Xn
w)X⇤ and Yn = GXn +Z, Y⇤ =

GX⇤ +Z, where Z ⇠ N (0, 1) is pairwise independent of {Xn}, X⇤. Let s�(Xn) =

(�� 1)h(Yn) +
⇣

�
J�1

+ 1
⌘

h(Z)� �
J�1

PJ
j=1

h(Yn|Xjn) and s�(X⇤) similarly. Then

1. (Yn, X1n)
w) (Y⇤, X1⇤),

2. lim infn!1 s�(Xn) � s�(X⇤).

Proof : The first part follows from pointwise convergence of characteristic func-
tions (which is equivalent to weak convergence by Levy’s continuity theorem) since

�
(X

n

,Z)

(u, v) = E[eiuT

X

n

+ivZ ] = E[eiuT

X

n ]E[eivZ ] = �
X

n

(u)�Z(v). By letting

n!1 we have �
X⇤(u)�Z(v) = E[eiuT

X⇤ ]E[eivZ ] = E[eiuT

X⇤+ivZ ] = �
(X⇤,Z)

(u, v).

To relate (Yn, X1n) with (Xn, Z) we use the linear transformation (Yn, X1n)T =
A(Xn, Z)T for a deterministic matrix A. By using the previous steps and the linear
dependence we obtain limn!1�

(Y
n

,X1n)
(t) = limn!1�

(X

n

,Z)

(At) = �
(X⇤,Z)

(At) =
�
(Y⇤,X1⇤)(t).
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For the second part, we fix � > 0 and define N� ⇠ N (0, �) pairwise independent
of {Xn}, X⇤. By the third claim of proposition 7, we obtain

(�� 1)h(Yn) +

✓

�

J � 1
+ 1

◆

h(Z)� �

J � 1

J
X

j=1

h(Yn|Xjn +N�)

! (�� 1)h(Y⇤) +

✓

�

J � 1
+ 1

◆

h(Z)� �

J � 1

J
X

j=1

h(Y⇤|Xj⇤ +N�) (3.56)

as n!1. From the Markov chain (X
1n +N�)�X

1n� Yn and the data processing
inequality we have h(Yn|X1n)  h(Yn|X1n + N�). By using the aforementioned
inequality, we have

lim inf
n!1

s�(Xn) � (�� 1)h(Y⇤) +

✓

�

J � 1
+ 1

◆

h(Z)� �

J � 1

J
X

j=1

h(Y⇤|Xj⇤ +N�).

(3.57)

Since the RHS of (3.57) is continuous in � for � > 0, we take � # 0. We have
lim infn!1 s�(Xn) � s�(X⇤), which is the definition of lower semi-continuity. This
proves the second claim. ⇤

Theorem 7 ([32, Theorem 1]). Let {Yi 2 C} be a sequence of continuous random
variables with densities {fi}, and Y⇤ be a continuous random variable with density
f⇤ such that fi ! f⇤ pointwise. Let kyk =

p

y†y denote the Euclidean norm of
y 2 C. If the conditions

max{sup
y

fi(y), sup
y

f⇤(y)} F (3.58)

max{
Z

kykfi(y)dy,
Z

kykf⇤(y)dy} L (3.59)

hold for some  > 1 and for all i then h(Yi)! h(Y⇤).

Remark 2. We have lim infi h(Yi) � h(Y⇤) due to the upper bound on the densities
and lim supi h(Yi)  h(Y⇤) due to the moment constraints.

Proof of Proposition 3: The proof is similar to [27, Proposition 7]. Define

v�(K̂) = inf
p(x):E[XX

T

]=

ˆK
s�(X). (3.60)

Let Xn be a sequence of random variables such that E[XnX
T
n ] = K̂ and s�(Xn) #

v�(K̂). By the covariance constraint (Proposition 6) the sequence of random vari-
ables Xn forms a tight sequence and by Theorem 6 there exists X⇤

ˆK
and a con-

vergent subsequence such that Xn
i

w) X

⇤
ˆK
. From Proposition 7 and 8 we have

s�(X
⇤
ˆK
) = v�(K̂). For � � 0, we have



26 Sum-Rate Capacity for Gaussian Multiple Access Channels with Feedback

v�(K̂) = s�(X
⇤
ˆK
) � �

✓

�

J � 1
+ 1

◆

I(X⇤
ˆK
;Y )

�
✓

��� J + 1

2(J � 1)

◆

log(1 +GK̂GT ) = C�. (3.61)

Recall that V�(KX

) is defined using a convex combination:

V�(KX

) = inf
(T,X):E[XX

T

]=KX
T�X�Y

s�(X|T ). (3.62)

To obtain the best convex combination subject to the covariance constraint it su�ces
to consider the family of maximizers X⇤

ˆK
for K̂ ⌫ 0. Thus, we have

V�(KX

) = inf
↵
i

, ˆK
i

:↵
i

�0,
P
i

↵
i

=1

P
i

↵
i

ˆK
i

=KX

X

i
↵iv�(K̂i). (3.63)

It takes J(J+1)

2

constraints to preserve the covariance matrix and one constraint to

preserve
P

i ↵iv�(K̂i). Hence, by using the Bunt-Caratheodory theorem, we can

consider convex combinations of at most m := J(J+1)

2

+ 1 points, i.e., we have

V�(KX

) = inf
↵
i

, ˆK
i

:↵
i

�0,
P

m

i=1 ↵i

=1P
m

i=1 ↵i

ˆK
i

=KX

m
X

i=1

↵iv�(K̂i). (3.64)

Consider any sequence of convex combinations ({↵n
i } , {Kn

i }) that approaches
the supremum as n ! 1. Using compactness of the m�dimensional simplex, we
can assume w.l.o.g. that ↵n

i
n!1! ↵⇤

i , i = 1, . . . ,m. If any ↵⇤
i = 0, since ↵n

i K
n
i = K

X

and v�(Kn
i ) � C� it is easy to see that ↵n

i v�(K
n
i )

n!1! 0. Thus we can assume
that mini=1,...,m ↵⇤

i = ↵⇤ > 0. We can find a convergent subsequence for each i,

1  i  m, so that Kn
k

i
k!1! K⇤

i . We thus have

V�(KX

) =
m
X

i=1

↵⇤
i v�(K̂

⇤
i ). (3.65)

In other words, we can find a pair of random variables (T⇤,X⇤) with |T |  J(J+1)

2

+1
such that V�(KX

) = s�(X⇤|T⇤). ⇤

3.7.2 Proof of Lemma 3

Now we state and prove four key propositions needed for the proof of the lemma.

Proposition 9. I(X
1

,X
2

;Y
1

, Y
2

) = I(X✓1 ,X✓2 ;Y✓1 , Y✓2).

Proof : The function f(x, y) =
�

(x+ y)/
p
2, (x� y)/

p
2
�

is bijective. ⇤

Proposition 10. The chain Y✓1�X✓1�X✓2�Y✓2 is Markov and we have

I(X✓1 ,X✓2 ;Y✓1 , Y✓2) = I(X✓1 ;Y✓1) + I(X✓2 ;Y✓2 |Y✓1). (3.66)
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Proof : The Markovity follows by (3.37). We further compute

I(X✓1 ,X✓2 ;Y✓1 , Y✓2) = I(X✓1 ,X✓2 ;Y✓1) + I(X✓1 ,X✓2 ;Y✓2 |Y✓1)
= I(X✓1 ;Y✓1) + I(X✓2 ;Y✓1 |X✓1)

+ I(X✓2 ;Y✓2 |Y✓1) + I(X✓1 ;Y✓2 |Y✓1 ,X✓2)

= I(X✓1 ;Y✓1) + I(X✓2 ;Y✓2 |Y✓1) (3.67)

where the last step follows from the Markov chain. ⇤

Proposition 11. For any � � 0 we have

s�(X✓1 ,X✓2 |T ) � s�(X✓1 |T ) + s�(X✓2 |Y✓1 , T ) (3.68)

with equality if and only if we have

• I(Y✓1 ; [X✓2 ]Sm

|[X✓1 ]Sm

, T ) = 0

• I(Y✓2 ; [X✓1 ]Sm

|Y✓1 , [X✓2 ]Sm

, T ) = 0

for m = 1, . . . ,M .

Proof : We compute

s�(X✓1 ,X✓2 |T )� s�(X✓1 |T )� s�(X✓2 |Y✓1 , T ) (3.69)

=

✓

�

M � 1
+ 1

◆

(�I(X✓1 ,X✓2 ;Y✓1 , Y✓2 |T ) + I(X✓1 ;Y✓1 |T )

+I(X✓2 ;Y✓2 |Y✓1 , T )) +
�

M � 1

 

M
X

m=1

I([X✓1 ]Sm

, [X✓2 ]Sm

;Y✓1 , Y✓2 |T )

�I([X✓1 ]Sm

;Y✓1 |T )� I([X✓2 ]Sm

;Y✓2 |Y✓1 , T )) (3.70)

=
�

M � 1

M
X

m=1

(I([X✓1 ]Sm

, [X✓2 ]Sm

;Y✓1 |T )� I([X✓2 ]Sm

;Y✓2 |Y✓1 , T )

+I([X✓1 ]Sm

, [X✓2 ]Sm

;Y✓2 |Y✓1 , T )� I([X✓1 ]Sm

;Y✓1 |T )) (3.71)

=
�

M � 1

M
X

m=1

(I([X✓2 ]Sm

;Y✓1 |[X✓1 ]Sm

, T )

+I([X✓1 ]Sm

;Y✓2 |Y✓1 , [X✓2 ]Sm

, T )) � 0 (3.72)

where (3.71) follows from Proposition 10. The last step follows from the non-
negativity of mutual information. ⇤

Proof of Lemma 3: We have

2V�(KX

) = s�(X1

|T
1

) + s�(X2

|T
2

) (3.73)

= s�(X1

,X
2

|T
1

, T
2

) (3.74)

= s�(X✓1 ,X✓2 |T1

, T
2

) (3.75)

� s�(X✓1 |T1

, T
2

) + s�(X✓2 |Y✓1 , T1

, T
2

) (3.76)

� s̆�(X✓1) + s̆�(X✓2 |Y✓1) (3.77)

� s̆�(X✓1) + s̆�(X✓2) (3.78)

� 2V�(KX

), (3.79)
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where (3.73) is valid for the distribution p⇤(t,x) that attains V�(KX

); (3.74) follows
since (T

1

,X
1

) and (T
2

,X
2

) are independent by assumption; (3.75) can be proved
in the same way as Proposition 9; (3.76) follows by Proposition 11; (3.77) follows
from

s�(X✓2 |T, Y✓1) =
X

y
✓1

p(y✓1)s�(X✓2 |T, Y✓1 = y✓1) (3.80)

�
X

y
✓1

p(y✓1)s̆�(X✓2 |Y✓1 = y✓1) (3.81)

= s̆�(X✓2 |Y✓1) (3.82)

where (3.81) follows because s̆�(X✓2 |Y✓1 = y✓1) is the lower convex envelope of
s�(X✓2 |Y✓1 = y✓1) and the chain T �X✓2 � Y✓2 conditioned on Y✓1 = y✓1 is Markov
(Markovity is implied by (3.37) where T = (T

1

, T
2

)) and (3.82) is the definition
of s̆�(.|.); step (3.78) follows since s̆�(X✓1) is convex in p(x✓1) and by Jensen’s
inequality s̆�(X✓2 |Y✓1) � s̆�(X✓2); (3.79) follows from definition of V�(KX

) and by
checking the constraint

E[X✓1X
T
✓1 ] =

X

t1,t2

p⇤(t1)p⇤(t2)
1

2

�

E[Xt1X
T
t1 ] + E[Xt2X

T
t2 ]
�

=
X

t

p⇤(t)E[XtX
T
t ] = K

X

.

We now see that all inequalities (3.73) � (3.79) are equalities, and Equation (3.76)
combined with Proposition 11 proves the third claim. The first two claims follow
from Equation (3.79), see the definition of V�(KX

). ⇤

3.7.3 Proof of Theorem 5

The proof is the same as in [27, Appendix IV] and we include it for completeness.
Define the set of typical sequences as

T (n)(T ) :=
�

tn :
�

�|{i : ti = t}|� np⇤(t)
�

�  n!np⇤(t), 8t 2 [1 : m]
 

,

where !n is any sequence such that !n ! 0 as n!1 and !n
p
n!1 as n!1.

For any sequence tn 2 T (n)(T ), let An(t) = | {i : ti = t} |. Thus, the mean of An(t)
is np⇤(t) and the variance is np⇤(t)(1� p⇤(t)). For instance, one may use !n = lognp

n

. By Chebyshev’s inequality, we have

P (
�

�|{i : ti = t}|� np⇤(t)
�

� > n!np⇤(t)) 
1� p⇤(t)

p⇤(t)!2

nn
.

Hence P (tn /2 T (n)(T )) ! 0 as n ! 1. Consider a sequence of random variables
X̂n := X̃n|(Tn = tn).

Proposition 12. X̂n
w) N (0,

Pm
t=1

p⇤(t)Kt).

Proof : We know that An(t) 2 np⇤(t)(1± !n), 8t. Consider a c with real entries
and kck = 1. Let X̂

c

n,i := 1p
n
c

T
Xt

i

such that X̂

c

n,i and X̂

c

n,j are independent
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random variables for i 6= j (recall that the Xt
i

have zero mean). Observe that
Pn

i=1

X̂

c

n,i = c

T
X̂n. Note that

n
X

i=1

E[(X̂c

n,i)
2] =

1

n

X

t

An(t)c
TKtc! c

T

 

X

t

p⇤(t)Kt

!

c,

n
X

i=1

E[(X̂c

n,i)
2; |X̂c

n,i| > ✏
1

] =
1

n

X

t

An(t)E[cTXtX
T
t c; c

T
XtX

T
t c > n✏2

1

]


X

t

p⇤(t)(1 + !n)E[cTXtX
T
t c; c

T
XtX

T
t c > n✏2

1

]! 0.

For the last step, we used that the Kt’s are bounded, and hence c

T
Xt has

a bounded second moment. The Lindeberg-Feller Central Limit Theorem gives
Pn

i=1

X̂

c

n,i
w) N (0, cT

P

t p⇤(t)Ktc). Hence, using the Cramér-Wold theorem we

obtain X̂n
w) N (0,

P

t p⇤(t)Kt). ⇤

Proposition 13. Given any � > 0, there exists N
0

such that 8n > N
0

we have for
all tn 2 T (n)(T )

s�(X̃n|Tn = tn)� s�(X
⇤)  �

where X

⇤ ⇠ N (0,
P

t p⇤(t)Kt).

Proof : Suppose the claim is not true. Then we have a subsequence tnk 2 T n
k(T )

and random variable X̃n
k

|Tn
k = tnk such that

s�(X̃n
k

|tnk) > s�(X
⇤) + �, 8k.

However from Proposition 12 we know that X̃n
k

|tnk

w)X

⇤ and from Proposition 7
we have s�(X̃n

k

|tnk)! s�(X
⇤), a contradiction. ⇤

Proof of Theorem 5: We know from Corollary 1 that for every ` 2 N and n = 2`,
the pair (Tn, X̃n) achieves V�(KX

). Hence we have

V�(KX

) =
X

tn

p⇤(t
n)s�(X̃n|tn)

=
X

tn2T (n)
(T )

p⇤(t
n)s�(X̃n|tn) +

X

tn /2T (n)
(T )

p⇤(t
n)s�(X̃n|tn).

For a given tn, let X̂ := X̃n|Tn = tn so that E[X̂X̂

T
] �

Pm
t=1

Kt. Thus, we have

s�(X̂)  C� for some fixed constant that is independent of tn. Using Proposition
13 we can upper bound V�(KX

) for large n by

V�(KX

) =
X

tn2T (n)
(T )

p⇤(t
n)s�(X̃n|tn) +

X

tn /2T (n)
(T )

p⇤(t
n)s�(X̃n|tn)


X

tn2T (n)
(T )

p⇤(t
n)(s�(X

⇤) + �) + C�

X

tn /2T (n)
(T )

p⇤(t
n)

= P (tn 2 T (n)(T ))(s�(X
⇤) + �) +C�P (tn /2 T (n)(T )).
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Here X

⇤ ⇠ N (0,
P

t p⇤(t)Kt). Since P (tn 2 T (n)(T )) ! 1 as n ! 1 we have
V�(KX

)  s�(X
⇤) + �. However, � > 0 is arbitrary, and hence V�(KX

)  s�(X
⇤).

The other direction V�(KX

) � s�(X
⇤) follows from the definition of V�(KX

) and
P

t p⇤(t)Kt = K
X

. ⇤

3.7.4 Proof of Lemma 4

For the GMAC with channel gains gj = 1 for all j we have

K
XY =

✓

K
X

Cov (X, Y )

Cov (X, Y )T KY

◆

=

✓

K
X

K
X

1
(K

X

1)T 1 + 1TK
X

1

◆

(3.83)

where KY = 1+1TK
X

1, Cov (X, Y ) = K
X

1 and 1 is the column vector of all ones.
By standard Lagrangian duality, we have

�C
sum

= min
p(t,x): E[X2

j

]P
j

T�X�Y
subject to (3.20)

�I(X;Y |T ) � max
�

min
p(x)2GG

s�(X) (3.84)

= max
�

min
KX⌫0:Q

j

P
j

(�� 1)

2
log detKY �

�

2(J � 1)
log

J
Q

j=1

detKX
j

Y

J
Q

j=1

detKX
j

(3.85)

= max
�

min
KX⌫0:Q

j

P
j

8

<

:

(�� 1)

2
log

0

@1 +
J
X

j,k=1

[K
X

]jk

1

A

� �

2(J � 1)

J
X

j=1

log

0

B

@

1 +
J
X

`,k=1

[K
X

]`k �

⇣

PJ
k=1

[K
X

]jk
⌘

2

Qj

1

C

A

9

>

=

>

;

(3.86)

where (3.84) follows from Theorem 4, and step (3.85) follows by inserting S
1

=
{1} , . . . ,SJ = {J} in (3.27) to obtain

s�(X) = (�� 1)I(X;Y )� �

J � 1

J
X

j=1

I(Xj ;Y ). (3.87)

By using Gaussian inputs in (3.87), we obtain

I(X;Y ) =
1

2
log detKY , I(Xj ;Y ) =

1

2
log

detKX
j

Y

detKX
j

(3.88)

and combining the two equalities we have

min
p(x)2GG

s�(X) = min
KX⌫0:Q

j

P
j

(�� 1)

2
log detKY �

�

2(J � 1)
log

J
Q

j=1

detKX
j

Y

J
Q

j=1

detKX
j

.

(3.89)

The RHS of (3.89) represents the function q(·). Step (3.86) above follows by com-
puting the determinants and simplifying. ⇤
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3.7.5 Proof of Lemma 5

The function q(·) in (3.89) can be rewritten as

2q(�,K
X

) = � log detKY �
�

J � 1
log

J
Q

j=1

detKX
j

Y

(detKY )
J�1

J
Q

j=1

detKX
j

. (3.90)

We define K 0
X

to be the same as K
X

except that the (1,1) entry of K 0
X

is P
1

rather
than Q

1

. Then from (3.83) we have

K 0
X1Y = KX1Y �

✓

D F
F E

◆

, (3.91)

K 0
X

j

Y = KX
j

Y �
✓

1 1
1 E

◆

, j 6= 1 (3.92)

where ‘�’ denotes Hadamard multiplication, and where

D =
P
1

Q
1

, E =
KY + P

1

�Q
1

KY
, F =

Cov (X
1

, Y ) + P
1

�Q
1

Cov (X
1

, Y )
. (3.93)

Observe thatD > 1 and E > 1. Oppenheim’s inequality (detK 0
X1Y
� DE detKX1Y )

[33, p. 480] thus gives

2q(�,K 0
X

) = � logEKY �
�

J � 1
log

 

J
Q

j=2

detK 0
X

j

Y

!

detK 0
X1Y

EJ�1DKJ�1

Y

J
Q

j=1

KX
j

(3.94)

 � logEKY �
�

J � 1
logE

J
Q

j=1

detKX
j

Y

KJ�1

Y

J
Q

j=1

KX
j

(3.95)

= �(1 + �

J � 1
) logE + 2q(�,K

X

)  2q(�,K
X

). (3.96)

The minimum is attained for K 0
X

, however K 0
X

is not in a standard covariance
matrix form. We show that it can be rewritten as a standard covariance matrix with
the following correlation coe�cients

K 0
X

=

0

B

B

B

@

P
1

⇢
12

p
Q

1

Q
2

. . . ⇢
1J
p
Q

1

QJ

⇢
21

p
Q

2

Q
1

Q
2

. . . ⇢
2J
p
Q

2

QJ
...

...
. . .

...
⇢J1
p
QJQ1

⇢J2
p
QJQ2

. . . QJ

1

C

C

C

A

(3.97)

=

0

B

B

B

B

B

B

@

P
1

⇢
12

q

Q1
P1

p
P
1

Q
2

. . . ⇢
1J

q

Q1
P1

p
P
1

QJ

⇢
21

q

Q1
P1

p
Q

2

P
1

Q
2

. . . ⇢
2J
p
Q

2

QJ

...
...

. . .
...

⇢J1

q

Q1
P1

p
QJP1

⇢J2
p
QJQ2

. . . QJ

1

C

C

C

C

C

C

A

.
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With the same approach we attain the minimum for Q
2

= P
2

, Q
3

= P
3

, . . . ,
QJ = PJ . Thus, we have the desired lower bound for the original problem.

3.7.6 Proof of Lemma 6

Consider the arithmetic mean

⇢ =
1

J(J � 1)

0

B

B

@

J
X

j,k=1

j 6=k

⇢jk

1

C

C

A

. (3.98)

For the inequality in Lemma 6 to hold we need to show that

J
Y

j=1

0

B

@

1 +
J
X

`,k=1

[M
X

]`k �

⇣

PJ
k=1

[M
X

]jk
⌘

2

P

1

C

A

(1 + P� (J � �))J. (3.99)

We prove the desired result as follows:

J
Y

j=1

0

B

@

1 +
J
X

`,k=1

[M
X

]`k �

⇣

PJ
k=1

[M
X

]jk
⌘

2

P

1

C

A



0

B

B

B

@

1 +
J
X

`,k=1

[M
X

]`k �
J
X

j=1

✓

J
P

k=1

[M
X

]jk

◆

2

JP

1

C

C

C

A

J

(3.100)



0

@1 +
J
X

`,k=1

[M
X

]`k �

0

@

J
X

j,k=1

[M
X

]jk

J
p
P

1

A

2

1

A

J

(3.101)

= (1 + P� (J � �))J (3.102)

where (3.100) follows from the arithmetic-geometric mean (AM-GM) which is valid
for non-negative real numbers, and (3.101) follows by the Cauchy-Schwarz inequality

(12 + 12 + · · ·+ 12
| {z }

J-ones

)

0

@

J
X

j=1

 

J
X

k=1

[M
X

]jkp
P

!

2

1

A �

0

@

J
X

j,k=1

[M
X

]jkp
P

1

A

2

. (3.103)

For equality in both (3.100) and (3.101) a su�cient and necessary condition is ⇢
12

=
⇢
13

= · · · = ⇢
(J�1)J = ⇢. We define � = 1 + (J � 1)⇢. To obtain the expression

in (3.102) we use the identity
PJ

`,k=1

[M
X

]`k = PJ�. Consider the matrix M
X

in
(3.43) where the users have the same power and the same correlation coe�cient
for each pair of users. Then the eigenvalues of M

X

are P (1 � ⇢) with multiplicity
one and P (1 + (J � 1)⇢) with multiplicity J � 1. Since M

X

⌫ 0, we find that
�1/(J � 1)  ⇢  1 and 0  �  J .
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3.7.7 Convexity

Lemma 8. The problem min
�2[0,J ]:`(�,J,P )0

�

�1

2

log(1 + JP�)
 

is convex, where

`(�, J, P ) =
1

2
log (1 + JP�)� J

2(J � 1)
log (1 + P� (J � �)). (3.104)

Proof : For a fixed P and J , the term � log(1 + JP�) is convex in �. We now
show that `(�, J, P ) is convex in � for a fixed P and J . The second derivative of
`(�, J, P ) with respect to � can be written as

@2`(�, J, P )

@�2

=
JP

2(J � 1)(1 + JP�)2(1 + P�(J � �))2
·

�

J2P 3�2(� � 1)2 + JP (P�2 � 1)2 + 4JP 2�3

+2P�2 + 2J2P 2� + 2JP� + 2
�

� 0, (3.105)

since RHS of (3.105) has only non-negative terms. ⇤





On Wyner’s Common Information for
Gaussians 4
4.1 Introduction

Wyner’s Common Information [34] is a measure of dependence between two random
variables. Its operational significance lies in network information theory problems
(including a canonical information-theoretic model of the problem of coded caching)
as well as in distributed simulation of shared randomness. Specifically, for a pair
of random variables, Wyner’s common information can be described by the search
for the most compact third variable that makes the pair conditionally independent.
Compactness is measured in terms of the mutual information between the pair and
the third variable. The value of Wyner’s common information is the minimum of this
mutual information. The main di�culty of Wyner’s common information is finding
the optimal choice for the third variable. Indeed, explicit solutions are known only
for a handful of special cases, including the binary symmetric double source and the
case of jointly Gaussian random variables.

In the same paper [34, Section 4.2], Wyner also proposes a natural relaxation1

of his common information, obtained by replacing conditional independence with
an upper bound on the conditional mutual information. This relaxation is again
directly related to network information theory problems, including the Gray-Wyner
source coding network [35]. In the present chapter, we study this relaxation in the
special case of jointly Gaussian random variables.

4.1.1 Related Work and Contribution

The development of Wyner’s common information started with the consideration
of a particular network source coding problem, now referred to as the Gray-Wyner
network [35]. From this consideration, Wyner extracted the compact form of the
common information in [34], initially restricting attention to the case of discrete ran-

1The material of this chapter has appeared in
- M. Gastpar and E. Sula, “Relaxed Wyner’s common information,” in Proceedings of the 2019

IEEE Information Theory Workshop, Visby, Sweden, August 2019.
- E. Sula and M. Gastpar, “On Wyner’s common information in the Gaussian case,” CoRR, vol.
abs/1912.07083, 2019. [Online]. Available: http://arxiv.org/abs/1912.07083.
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dom variables. Extensions to continuous random variables are considered in [36, 37],
with a closed-form solution for the Gaussian case. Our work provides an alterna-
tive and fundamentally di↵erent proof of this same formula (along with a gener-
alization). In the same line of work Wyner’s common information is computed in
additive Gaussian channels [38]. A local characterization of Wyner’s common infor-
mation is provided in [39], by optimizing over weakly dependent random variables.
In [40] Witsenhausen managed to give closed-form formulas for a class of distri-
butions he refers to as “L-shaped.” The concept of Wyner’s common information
has also been extended using other information measures [41]. Other related works
include [42, 23]. Wyner’s common information has many applications, including to
communication networks [34], to caching [43, Section III.C] and to source coding
[44].

Other variants of Wyner’s common information include [45, 46]. In [45], the
conditional independence constraint is replaced by the conditional maximal corre-
lation constraint, whereas in [46], the mutual information objective is replaced by
the entropy. The relaxation of Wyner’s common information studied in this paper
is di↵erent from the above variants in the sense that it can be expressed using only
mutual information.

The main di�culty in dealing with Wyner’s common information is the fact that
it is not a convex optimization problem. Specifically, while the objective is convex,
the constraint set is not a convex set : taking convex combinations does not respect
the constraint of conditional independence. The main contributions of our work
concern explicit solutions to this non-convex optimization problem in the special
case when the underlying random variables are jointly Gaussian. Our contributions
include the following:

1. We establish an alternative and fundamentally di↵erent proof of the well-
known formula for (standard) Wyner’s common information in the Gaussian
case, both for scalars and for vectors. Our proof leverages the technique of
factorization of convex envelopes [27].

2. In doing so, we establish a more general formula for the Gaussian case of a
natural relaxation of Wyner’s common information. This relaxation was pro-
posed by Wyner. In it, the constraint of conditional independence is replaced
by an upper bound on the conditional mutual information. The quantity is of
independent interest, for example establishing a rigorous connection between
Canonical Correlation Analysis and Wyner’s Common Information [47].

4.2 Preliminaries

4.2.1 Wyner’s Common Information

Wyner’s common information is defined for two random variables X and Y of arbi-
trary fixed joint distribution p(x, y).

Definition 3. For random variables X and Y with joint distribution p(x, y), Wyner’s
common information is defined as

C(X;Y ) = inf
p(w|x,y)

I(X,Y ;W ) such that I(X;Y |W ) = 0. (4.1)
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Wyner’s common information satisfies a number of interesting properties. We
state some of them below in Lemmas 9 and 10 for a generalized definition given in
Definition 4.

We note that explicit formulas for Wyner’s common information are known only
for a small number of special cases. The case of the doubly symmetric binary source
is solved completely in [34] and can be written as

C(X;Y ) = 1 + hb(a0)� 2hb

✓

1�
p
1� 2a

0

2

◆

, (4.2)

where a
0

denotes the probability that the two sources are unequal (assuming without
loss of generality a

0

 1

2

). In this case, the optimizing W in Equation (4.1) can be
chosen to be binary. Further special cases of discrete-alphabet sources appear in [40].

Moreover, when X and Y are jointly Gaussian with correlation coe�cient ⇢,
then C(X;Y ) = 1

2

log 1+|⇢|
1�|⇢| . Note that for this example, I(X;Y ) = 1

2

log 1

1�⇢2
. This

case was solved in [36, 37] using a parameterization of conditionally independent
distributions. We note that an alternative proof follows from our arguments below.

4.2.2 A Natural Relaxation of Wyner’s Common Information

Wyner, in [34, Section 4.2], defines an auxiliary quantity �(�
1

, �
2

). Starting from
this definition, it is natural to introduce the following quantity:

Definition 4. For jointly continuous random variables X and Y with joint distri-
bution p(x, y), we define

C�(X;Y ) = inf
p(w|x,y)

I(X,Y ;W ) such that I(X;Y |W )  �. (4.3)

With respect to [34, Section 4.2], we have that C�(X;Y ) = H(X,Y ) � �(0, �).
Comparing Definitions 3 and 4, we see that in C�(X;Y ), the constraint of conditional
independence is relaxed into an upper bound on the conditional mutual information.
Specifically, for � = 0, we have C

0

(X;Y ) = C(X;Y ), the regular Wyner’s common
information. In this sense, it is tempting to refer to C�(X;Y ) as relaxed Wyner’s
common information. The following lemma summarizes some basic properties.

Lemma 9. C�(X;Y ) satisfies the following basic properties:

1. C�(X;Y ) � max{I(X;Y )� �, 0}.

2. Data processing inequality: If X�Y�Z form a Markov chain, then C�(X;Z) 
min{C�(X;Y ), C�(Y ;Z)}.

3. C�(X;Y ) is a convex and continuous function of � for � � 0.

4. If Z �X � Y forms a Markov chain, then C�((X,Z);Y ) = C�(X;Y ).

5. The cardinality of W may be restricted to |W|  |X ||Y|+ 1.

6. If f(·) and g(·) are one-to-one functions, then C�(f(X); g(Y )) = C�(X;Y ).

7. For discrete X, we have C�(X;X) = max{H(X)� �, 0}.
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Proofs are given in Appendix 4.6.1.
A further property of C�(X;Y ) is a tensorization result for independent pairs,

which we will use below to solve the case of the Gaussian vector source.

Lemma 10 (Tensorization). Let {(Xi, Yi)}ni=1

be n independent pairs of random
variables. Then

C�(X
n;Y n) = min

{�
i

}n
i=1:

P
n

i=1 �i=�

n
X

i=1

C�
i

(Xi;Yi). (4.4)

The proof is given in Appendix 4.6.2. The lemma has an intuitive interpretation
in R2 plane. If we express C�(Xn;Y n) as a region in R2, which is determined by
(�, C�(Xn;Y n)), then the computation of (�, C�(Xn;Y n)) is simply the Minkowski
sum of the individual regions which are determined by (�i, C�

i

(Xi;Yi)).

4.3 The Scalar Gaussian Case

One of the main technical contributions of this work is a closed-form formula for
C�(X;Y ) in the case where X and Y are jointly Gaussian.

Theorem 8. When X and Y are jointly Gaussian with correlation coe�cient ⇢,
then

C�(X;Y ) =
1

2
log+

 

1 + |⇢|
1� |⇢| ·

1�
p
1� e�2�

1 +
p
1� e�2�

!

. (4.5)

The proof is given below in Section 4.3.2.

�I(X;Y )

C(X;Y )

I(X;Y )

C�(X;Y )
I(X;Y )� �

Figure 4.1 – C�(X;Y ) for jointly Gaussian X and Y for the case ⇢ = 1/2, thus,
we have C(X;Y ) = log

p
3 and I(X;Y ) = log(2/

p
3). The dashed line is the lower

bound from Lemma 9, Item 1).

Furthermore, in Figure 4.2 we exploit the relaxed Wyner’s common information
from Theorem 8, by comparing the curves for di↵erent values of �, versus ⇢, that is
the correlation coe�cient of the Gaussian random variable X and Y .

4.3.1 Preliminary Results for the Proof of Theorem 8

The following results are used as intermediate tools in the proof of the main results.



4.3. The Scalar Gaussian Case 39

⇢
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0.1(X;Y )
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C
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Figure 4.2 – Comparison of mutual information I(X;Y ), Wyner’s common infor-
mation C(X;Y ) and relaxed Wyner’s common information C�(X;Y ) for di↵erent
values of �.

Theorem 9. For K ⌫ 0, 0 < � < 1, there exists a 0 � K 0 � K and (X 0, Y 0) ⇠
N (0,K 0) such that (X,Y ) ⇠ pX,Y with covariance matrix K the following inequality
holds:

inf
W

h(Y |W ) + h(X|W )� (1 + �)h(X,Y |W ) � h(Y 0) + h(X 0)� (1 + �)h(X 0, Y 0).

(4.6)

Proof. The theorem is a consequence of [48, Theorem 2], for a specific choice of
p = 1

� + 1. An extended proof is given in Appendix 4.6.3.

To leverage Theorem 9, we need to understand the covariance matrix K 0. In [48],
the right hand side in Equation (4.6) is further lower bounded as h(Y ) + h(X) �
(1 + �)h(X,Y ), where (X,Y ) ⇠ N (0,K) (correlation coe�cient of matrix K is ⇢
and the diagonal entries are unit), which holds for � < ⇢. This choice establishes
the hypercontractivity bound (1 + ⇢)I(W ;X,Y ) � I(W ;X) + I(W ;Y ) (for jointly
Gaussian X,Y and any W ). Unfortunately, for the problem of Wyner’s common
information, this leads to a loose lower bound, which can be seen as follows:

C�=0

(X;Y ) = inf
p(w|x,y):I(X;Y |W )=0

I(X,Y ;W ) (4.7)

= inf
p(w|x,y):I(X,Y ;W )+I(X;Y )�I(W ;X)�I(W ;Y )=0

I(X,Y ;W ) (4.8)

� inf
p(w|x,y):I(X;Y )�⇢I(X,Y ;W )0

I(X,Y ;W ) (4.9)
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= inf
p(w|x,y):I(X,Y ;W )� I(X;Y )

⇢

I(X,Y ;W ) (4.10)

=
I(X;Y )

⇢
=

1

2

log 1

1�⇢2

⇢
, (4.11)

where (4.9) follows from (1 + ⇢)I(W ;X,Y ) � I(W ;X) + I(W ;Y ).
We now show that by a di↵erent lower bound on the right hand side in Equa-

tion (4.6), we can indeed get a tight lower bound for the problem of Wyner’s common
information as well as its relaxation C�(X;Y ). Specifically, we have the following
lower bound:

Lemma 11. For (X 0, Y 0) ⇠ N (0,K 0), the following inequality holds

min

K0
:0�K0�

0

@1 ⇢
⇢ 1

1

A

h(X 0) + h(Y 0)� (1 + �)h(X 0, Y 0)

� 1

2
log

1

1� �2

� �

2
log (2⇡e)2

(1� ⇢)2(1 + �)

1� �
, (4.12)

where �  ⇢.

Proof. The proof is given in Appendix 4.6.6.

4.3.2 Proof of Theorem 8

The proof of the converse for Theorem 8 involves two main steps. In this section,
we prove that one optimal distribution is jointly Gaussian via a variant of the fac-
torization of convex envelope. Then, we tackle the resulting optimization problem
with Lagrange duality. Let us start form the lower bound first.

Lemma 12. When X and Y are jointly Gaussian with correlation coe�cient ⇢ and

unit variance, then C�(X;Y ) � 1

2

log+
⇣

1+|⇢|
1�|⇢| ·

1�
p
1�e�2�

1+

p
1�e�2�

⌘

.

Proof. The lower bound is derived in the following lines

C�(X;Y ) = inf
W :I(X;Y |W )�

I(X,Y ;W ) (4.13)

� inf
W

(1 + µ)I(X,Y ;W )� µI(X;W )� µI(Y ;W ) + µI(X;Y )� µ�

(4.14)

= h(X,Y )� µ� + µ inf
W

h(X|W ) + h(Y |W )� (1 +
1

µ
)h(X,Y |W ) (4.15)

� h(X,Y )� µ� + µ min

K0
:0�K0�

0

@1 ⇢
⇢ 1

1

A

h(X 0) + h(Y 0)� (1 +
1

µ
)h(X 0, Y 0)

(4.16)

� 1

2
log (2⇡e)2(1� ⇢2)� µ� +

µ

2
log

µ2

µ2 � 1
� 1

2
log (2⇡e)2

(1� ⇢)2(µ+ 1)

µ� 1
(4.17)

� log+
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1� |⇢| ·

1�
p
1� e�2�

1 +
p
1� e�2�

!

(4.18)
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where (4.14), is a bound for all µ � 0; (4.16) follows from Theorem 9 where
(X 0, Y 0) ⇠ N (0,K 0), µ := 1

� and for the assumption 0 < � < 1 to be satisfied
we need µ > 1; (4.17) follows from Lemma 11 for µ � 1

⇢ and (4.18) follows by
maximizing the function

g(µ) :=
1

2
log (2⇡e)2(1� ⇢2)� µ� +

µ

2
log

µ2

µ2 � 1
� 1

2
log (2⇡e)2

(1� ⇢)2(µ+ 1)

µ� 1
,

(4.19)

for µ � 1

⇢ . Now we need to choose the tightest bound where µ � 1

⇢ , which is
maxµ� 1

⇢

g(µ) and function g is concave in µ,

@2g

@µ2

= � 1

µ(µ2 � 1)
< 0. (4.20)

By studying the monotonicity we obtain

@g

@µ
= �1

2
log

µ2 � 1

µ2

� �, (4.21)

since the function is concave the maximum has to be when the derivative vanishes
which leads to the optimal solution µ⇤ = 1p

1�e�2� , where µ⇤ � 1

⇢ . Substituting for

the optimal µ⇤ we obtain

C�(X;Y ) � g

✓

1p
1� e�2�

◆

=
1

2
log+
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· 1�

p
1� e�2�

1 +
p
1� e�2�

!

. (4.22)

Now let us move the attention to the upper bound. Let us assume (without loss
of generality) that X and Y have unit variance and are non-negatively correlated
with correlation coe�cient ⇢ � 0. Since they are jointly Gaussian, we can express
them as

X = �W +
p

1� �2NX (4.23)

Y = �W +
p

1� �2NY , (4.24)

where W,NX , NY are jointly Gaussian, and where W ⇠ N (0, 1) is independent of
(NX , NY ). Letting the covariance of the vector (NX , NY ) be

K
(N

X

,N
Y

)

=

✓

1 ↵
↵ 1

◆

(4.25)

for some 0  ↵  ⇢, we find that we need to choose �2 = ⇢�↵
1�↵ . Specifically, let

us select ↵ =
p
1� e�2� , for some 0  �  1

2

log 1

1�⇢2
. For this choice, we find

I(X;Y |W ) = � and

I(X,Y ;W ) =
1

2
log

(1 + ⇢)(1� ↵)

(1� ⇢)(1 + ↵)
. (4.26)
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4.4 The Vector Gaussian Case

In this section, we consider the case where X and Y are jointly Gaussian random
vectors. The key observation is that in this case, there exist invertible matrices
A and B such that AX and BY are vectors of independent pairs, exactly like
in Lemma 10. Therefore, we can use Lemma 10 to give an explicit formula for the
relaxed Wyner’s common information between arbitrarily correlated jointly Gaussian
random vectors, as stated in the following theorem.

Theorem 10. Let X and Y be jointly Gaussian random vectors of length n and
covariance matrix K

(X,Y )

. Then,

C�(X;Y ) = min
�
i

:

P
n

i=1 �i=�

n
X

i=1

C�
i

(Xi;Yi), (4.27)

where

C�
i

(Xi;Yi) =
1

2
log+

(1 + ⇢i)(1�
p
1� e�2�

i)

(1� ⇢i)(1 +
p
1� e�2�

i)
(4.28)

and ⇢i (for i = 1, . . . , n) are the singular values of K�1/2
X

K
XY

K
�1/2
Y

, where K
�1/2
X

and K
�1/2
Y

are defined to mean that only the positive eigenvalues are inverted.

Remark 3. Note that we do not assume that K
X

and K
Y

are of full rank. More-
over, note that the case where X and Y are of unequallength is included: Simply
invoke Lemma 9, Item 4), to append the shorter vector with independent Gaussians
so as to end up with two vectors of the same length.

Proof. Note that the mean is irrelevant for the problem at hand, so we assume it to
be zero without loss of generality. The first step of the proof is to apply the same

transform used, e.g., in [44]. Namely, we form X̂ = K
�1/2
X

X and Ŷ = K
�1/2
Y

Y ,

where K
�1/2
X

and K
�1/2
Y

are defined to mean that only the positive eigenvalues are
inverted. Let us denote the rank of K

X

by rX and the rank of K
Y

by rY . Then, we
have

K
ˆ

X

=

✓

Ir
X

0
0 0n�r

X

◆

(4.29)

and

K
ˆ

Y

=

✓

Ir
Y

0
0 0n�r

Y

◆

(4.30)

Moreover, we have K
ˆ

X

ˆ

Y

= K
�1/2
X

K
XY

K
�1/2
Y

. Let us denote the singular value

decomposition of this matrix by K
ˆ

X

ˆ

Y

= R
X

⇤R
Y

. Define X̃ = RT
X

X̂ and Ỹ =

R
Y

Ŷ , which implies that K
˜

X

= K
ˆ

X

, K
˜

Y

= K
ˆ

Y

, and K
˜

X

˜

Y

= ⇤. The second

step of the proof is to observe that the mappings from X to X̃ and from Y to
Ỹ , respectively, are linear one-to-one and mutual information is preserved under
such transformation. Hence, we have C�(X;Y ) = C�(X̃; Ỹ ). The third, and key,
step of the proof is now to observe that {(Xi, Yi)}ni=1

are n independent pairs of
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random variables. Hence, we can apply Lemma 10. The final step is to apply
Theorem 8 separately to each of the independent pairs, thus establishing the claimed
formula.

In the remainder of this section, we explore the structure of the allocation prob-
lem in Theorem 10, that is, the problem of optimally choosing the values of �i. As
we will show, the answer is of the water-filling type. That is, there is a “water level”
�⇤. Then, all �i whose corresponding correlation coe�cient ⇢i is large enough will
be set equal to �⇤. The remaining �i, corresponding to those i with low correlation
coe�cient ⇢i, will be set to their respective maximal values (all of which are smaller
than �⇤). To establish this result, we prefer to change notation as follows. We define
↵i =

p
1� e�2�

i . With this, we can express the allocation problem in Theorem 10
as

C�(X;Y ) = min
↵1,↵2,··· ,↵n

n
X

i=1

1

2
log+

(1 + ⇢i)(1� ↵i)

(1� ⇢i)(1 + ↵i)
such that
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1

1� ↵2

i

 �.

(4.31)

Moreover, defining

C(⇢) =
1

2
log

1 + ⇢

1� ⇢
, I(⇢) =

1

2
log

1

1� ⇢2
, (4.32)

we can rewrite Equation (4.31) as

C�(X;Y ) = min
↵1,↵2,··· ,↵n

n
X

i=1

(C(⇢i)� C(↵i))
+ such that

n
X

i=1

I(↵i)  �. (4.33)

Theorem 11. The solution to the allocation problem of Theorem 10 can be expressed
as

C�(X;Y ) =
n
X

i=1

(C(⇢i)� �⇤)+ , (4.34)

where �⇤ is selected such that

n
X

i=1

min {f(�⇤), I(⇢i)} = �, (4.35)

where

f(�⇤) =
1

2
log

(exp(2�⇤) + 1)2

4 exp(2�⇤)
. (4.36)

Proof of Theorem 11. Note that (4.33) can be rewritten as

C�(X;Y ) = min
�1,�2,··· ,�n

n
X

i=1

�

C(⇢i)� C(I�1(�i))
�

+

such that
n
X

i=1

�i  �, (4.37)

and thus, for notational compactness, let us define

g(x) = C(I�1(x)) =
1

2
log

1 +
p
1� e�2x

1�
p
1� e�2x

, (4.38)
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which is a strictly concave, strictly increasing function. We also define its inverse,

f(x) = g�1(x) = I(C�1(x)) =
1

2
log

1

1�
⇣

exp(2x)�1

exp(2x)+1)

⌘

2

=
1

2
log

(exp(2x) + 1)2

4 exp(2x)
,

(4.39)

which is a strictly convex, strictly increasing function.
Without loss of generality, suppose that ⇢

1

� ⇢
2

� · · · � ⇢n. The objective
function is composed of n terms which can be active or not, meaning that they can
be either positive or zero. Since the function C(⇢) is increasing in ⇢, we have that
C(⇢

1

) � C(⇢
2

) � · · · � C(⇢n). To summarize the intuition of the proof, note that
the n-th term, i.e., (C(⇢n)� g(�n))

+ , will be inactive first. Therefore, by increasing
� then the terms will become inactive in a decreasing fashion until we are left with
only the first term active and the rest inactive.

Let us start with the case when all the terms are active, which implies that
Pn

i=1

(C(⇢i)� g(�i))
+ =

Pn
i=1

(C(⇢i)� g(�i)) Then, by the concavity of g(�i), we
have

n
X

i=1

g(�i)  ng(
�

n
), (4.40)

thus an optimal choice is �⇤ = �
n , for all i. Hence, in our notation, in this case

�⇤ = g( �n). Clearly, all the terms are active in the interval 0  �  nI(⇢n), with
the reasoning that if the n-th terms is active then the rest of the terms is active
too. Next, consider the case when the n-th term is inactive and the rest is active.
Therefore,

Pn
i=1

(C(⇢i)� g(�i))
+ =

Pn�1

i=1

(C(⇢i)� g(�i)) and by the concavity of
g(�i), we have

n�1

X

i=1

g(�i)  (n� 1)g

✓

�

n� 1

◆

, (4.41)

thus an optimal choice is �⇤ = ���
n

n�1

, for all i 2 {1, 2, · · · , n � 1}. The optimal
choice for �n is �n = I(⇢n), which makes the n-th term exactly zero. This scenario
will happen in the interval, nI(⇢n) < �  I(⇢n) + (n � 1)I(⇢n�1

). Instead, the

corresponding �⇤ in our notation is �⇤ = g
⇣

��I(⇢
n

)

n�1

⌘

. In general, let us consider

the case when k-th term is active and k + 1-th is inactive. By a similar argument

as above, the optimal choice is �⇤ =
��

P
n

i=k+1 �i
n�k for i 2 {1, 2, · · · , k} and �i = I(⇢i)

for i 2 {k + 1, · · · , n}. This scenario will happen in the interval (k + 1)I(⇢k+1

) +
Pn

i=k+2

I(⇢i) < �  kI(⇢k) +
Pn

i=k+1

I(⇢i). Importantly, observe that the optimal
�i can be rewritten as �i = min{I(⇢i), �⇤}, therefore the solution to the allocation
problem can be expressed as

C�(X;Y ) =
n
X

i=1

(C(⇢i)� g(�⇤))+ , (4.42)

where �⇤ is selected such that

n
X

i=1

min {�⇤, I(⇢i)} = �. (4.43)
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The solution to the allocation problem can be rewritten as

C�(X;Y ) =
n
X

i=1

(C(⇢i)� �⇤)+ , (4.44)

where �⇤ is selected such that

n
X

i=1

min {f(�⇤), I(⇢i)} = �. (4.45)

Theorem 11 shows that the allocation problem has a natural reverse water-filling
interpretation which can be visualized in two dual ways. First, we could consider
the space of the �i parameters, which leads to Figure 4.3: None of the �i should be
selected larger than the corresponding I(⇢i), and those �i that are strictly smaller
than their maximum value should all be equal. This graphically identifies the optimal
value �⇤, and thus, the resulting solution to our optimization problem. Alternatively,
we could consider directly the space of the individual contributions to the objective,
denoted by C(⇢i) in Equation (4.37), which leads to Figure 4.4.

1 2 n� 2 n� 1 n

I(⇢n�2

)

I(⇢
2

)
I(⇢

1

)

�⇤

�
1

�
2

�n�2 �n�1 �n
· · · · · · · · ·

Figure 4.3 – Example of reverse water-filling. The (whole) bars represent the �i-s
which make C�

i

(Xi;Yi) = 0, and the shaded area of the bars is the proper allocation
�i to minimize the original problem. In this example, � =

Pn
i=1

�i is chosen such
that C�

n�1(Xn�1

;Yn�1

) = C�
n

(Xn;Yn) = 0.

1 2 n� 2 n� 1 n

C(⇢n�2

)

C(⇢
2

)
C(⇢

1

)

�⇤

C(⇢
1

)� �⇤

C(⇢
2

)� �⇤

C(⇢n�2

)� �⇤

· · · · · · · · ·

Figure 4.4 – Example of reverse water-filling. The (whole) bars represent the (stan-
dard) Wyner’s common information of each individual pair, respectively. The shaded
area of the bars is the respective contribution to C�(X;Y ). In this example, � is
chosen such that (C(⇢n�1

)� �⇤)+ = (C(⇢n)� �⇤)+ = 0.
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4.5 Conclusion

We studied a natural relaxation of Wyner’s common information, whereby the con-
straint of conditional independence is replaced by an upper bound on the conditional
mutual information. This leads to a novel and di↵erent optimization problem. We
established a number of properties of this novel quantity, including a chain rule type
formula for the case of independent pairs of random variables. For the case of jointly
Gaussian sources, both scalar and vector, we presented a closed-form expression for
the relaxed Wyner’s common information.

4.6 Appendix

4.6.1 Proof of Lemma 9

For Item 1), the inequality follows from the fact that mutual information is non-
negative. If � � I(X;Y ), we may select W to be a constant, thus we have equality
to zero. If � < I(X;Y ), then the lower bound proved in the next item establishes
that we cannot have equality to zero. Also, observe that the Lagrangian for the
relaxed Wyner’s common information problem of Equation (4.3) is L(�, p(w|x, y)) =
I(X,Y ;W ) + �(I(X;Y |W ) � �). From Lagrange duality, we thus have the lower
bound C�(X;Y ) � infp(w|x,y) L(�, p(w|x, y)), for all positive �. Setting � = 1, we
have infp(w|x,y)(I(X,Y ;W ) + I(X;Y |W )� �) = infp(w|x,y)(I(X;Y ) + I(X;W |Y ) +
I(Y ;W |X)� �) = I(X;Y )� �. For Item 2), observe that for fixed p(x, y, z), we can
write

C�(X;Y ) = inf
p(x,y,z)p(w|x,y):I(X;Y |W )�

I(X,Y ;W ) (4.46)

� inf
p(x,y,z)p(w|x,y):I(X;Y |W )�

I(X,Z;W ), (4.47)

due to the Markov chain (X,Z)� (X,Y )�W. Moreover, note that since we consider
only joint distributions of the form p(x, y)p(z|y)p(w|x, y), we also have the Markov
chain (X,W )� Y �Z, which implies the Markov chain X � (W,Y )�Z. The latter
implies I(X;Y |W ) � I(X;Z|W ). Hence,

C�(X;Y ) � inf
p(x,y,z)p(w|x,y):I(X;Z|W )�

I(X,Z;W ) � C�(X;Z). (4.48)

By the same token, C�(Y ;Z) � C�(X;Z), which completes the proof. Item 3)
follows directly from [34, Corollary 4.5]. For Item 4), on the one hand, we have

C�((X,Z);Y ) = inf
p(w|x,y,z):I(X,Z;Y |W )�

I(X,Z, Y ;W ) (4.49)

 inf
p(w|x,y):I(X;Y |W )+I(Z;Y |W,X)�

I(X,Y ;W ) + I(Z;W |X,Y ) (4.50)

= C�(X;Y ) (4.51)

where in Equation (4.50) we add the constraint that conditioned on (X,Y ), W is
selected to be independent of Z, which cannot reduce the value of the infimum.
That is, for such a choice of W, we have the Markov chain Z � (X,Y ) � W,
thus I(Z;W |X,Y ) = 0. Furthermore, observe that the factorization p(x, y, z, w) =
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p(x, y)p(z|x)p(w|x, y) also implies the factorization p(x, y, z, w) = p(x,w)p(z|x)p(y|w, x).
Hence, we also have the Markov chain Z�(W,X)�Y, thus I(Z;Y |W,X) = 0, which
thus establishes the last step. Conversely, observe that

C�((X,Z);Y ) = inf
p(w|x,y,z):I(X,Z;Y |W )�

I(X,Y, Z;W ) (4.52)

� inf
p(w|x,y):I(X;Y |W )�

I(X,Y ;W ) + inf
p(w|x,y,z):I(X,Z;Y |W )�

I(Z;W |X,Y )

(4.53)

� C�(X;Y ) (4.54)

where (4.53) follows from the fact that the infimum of the sum is lower bounded by
the sum of the infimums and the fact that relaxing constraints cannot increase the
value of the infimum, and (4.54) follows from non-negativity of the second term.

Item 5) is a standard cardinality bound, following from the arguments in [49].
For the context at hand, see also Theorem 1 in [43, p.6396]. Item 6) follows because
all involved mutual information terms are invariant to one-to-one transforms. For
Item 7), note that we can express C�(X;X) = H(X)�maxp(w|x):H(X|W )� H(X|W ),
which directly gives the result.

4.6.2 Proof of Lemma 10

The achievability part, that is, the inequality

C�(X
n;Y n)  min

{�
i

}n
i=1:

P
n

i=1 �i=�

n
X

i=1

C�
i

(Xi;Yi), (4.55)

merely corresponds to a particular choice of W in the definition given in Equa-
tion (4.3). Specifically, let W = (W

1

,W
2

, . . . ,Wn), and choose {(Xi, Yi,Wi)}ni=1

to
be n independent triples of random vectors. The converse is more subtle. We prove
the case n = 2 first, followed by induction. For n = 2, we have

inf
p(w|x1,x2,y1,y2):I(X1,X2;Y1,Y2|W )�

I(X
1

, X
2

, Y
1

, Y
2

;W )

� inf
p(w|x1,x2,y1,y2):I(X1;Y1|W )+I(X2;Y2|W,X1)�

I(X
1

, Y
1

;W ) + I(X
2

, Y
2

;W,X
1

) (4.56)

= min
�1+�2=�

8

>

<

>

:

inf
p(w|x1,x2,y1,y2):I(X1;Y1|W )�1,

I(X2;Y2|W,X1)�2

I(X
1

, Y
1

;W ) + I(X
2

, Y
2

;W,X
1

)

9

>

=

>

;

(4.57)

� min
�1+�2=�

⇢

inf
p(w|x1,x2,y1,y2):I(X1;Y1|W )�1,I(X2;Y2|W,X1)�2

I(X
1

, Y
1

;W )

+ inf
p(w̃|x1,x2,y1,y2):I(X1;Y1| ˜W )�1,I(X2;Y2| ˜W,X1)�2

I(X
2

, Y
2

; W̃ ,X
1

)

)

(4.58)

� min
�1+�2=�

⇢

inf
p(w|x1,y1):I(X1;Y1|W )�1

I(X
1

, Y
1

;W )

+ inf
p(w̃|x1,x2,y2):I(X2;Y2| ˜W,X1)�2

I(X
2

, Y
2

; W̃ ,X
1

)

)

(4.59)
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� min
�1+�2=�

⇢

inf
p(w1|x1,y1):I(X1;Y1|W1)�1

I(X
1

, Y
1

;W
1

)

+ inf
p(w̃,x̃1|x2,y2):I(X2;Y2| ˜W, ˜X1)�2

I(X
2

, Y
2

; W̃ , X̃
1

)

)

(4.60)

where (4.56) follows from

I(X
1

, X
2

, Y
1

, Y
2

;W ) = I(X
1

, Y
1

;W ) + I(X
2

, Y
2

;W |X
1

, Y
1

) + I(X
1

, Y
1

;X
2

, Y
2

)
(4.61)

= I(X
1

, Y
1

;W ) + I(X
2

, Y
2

;W,X
1

, Y
1

) (4.62)

� I(X
1

, Y
1

;W ) + I(X
2

, Y
2

;W,X
1

) (4.63)

and the constraint is relaxed as follows

� � I(X
1

, X
2

;Y
1

, Y
2

|W ) = I(X
1

;Y
1

, Y
2

|W ) + I(X
2

;Y
1

, Y
2

|W,X
1

) (4.64)

� I(X
1

;Y
1

|W ) + I(X
2

;Y
2

|W,X
1

), (4.65)

(4.57) follows from splitting the minimization, (4.58) follows from minimizing each
subproblem individually which would result in a lower bound to the original prob-
lem, (4.59) follows from reducing the number of constraints resulting into a lower
bound and (4.60) follows from introducing X̃

1

as a random variable to be optimized,
whereas preceding X

1

had a given distribution. In other words, the preceding mini-
mization is taken over p(w̃|x

2

, y
2

, x
1

)p(x
1

|x
2

, y
2

) where p(x
1

|x
2

, y
2

) has a given dis-
tribution, whereas now the minimization is taken over p(w̃|x

2

, y
2

, x̃
1

)p(x̃
1

|x
2

, y
2

),
where we also optimize over p(x̃

1

|x
2

, y
2

). Lastly, denoting W
2

= (W̃ , X̃
1

), this can
be expressed as

inf
p(w|x1,x2,y1,y2):I(X1,X2;Y1,Y2|W )�

I(X
1

, X
2

, Y
1

, Y
2

;W )

� min
�1+�2=�

⇢

inf
p(w1|x1,y1):I(X1;Y1|W1)�1

I(X
1

, Y
1

;W
1

) + inf
p(w2|x2,y2):I(X2;Y2|W2)�2

I(X
2

, Y
2

;W
2

)

�

(4.66)

After proving it for n = 2, we will use the standard induction. In other words, we
will assume that the converse holds for n� 1 i.e.

C�̄(X
n�1;Y n�1) � min

�
i

:

P
n�1
i=1 �

i

=�̄

n�1

X

i=1

C�
i

(Xi;Yi), (4.67)

after we prove it for n as follows,

inf
p(w|xn,yn):I(Xn

;Y n|W )�
I(Xn, Y n;W )

� inf
p(w|xn,yn):

I(Xn�1
;Y n�1|W )+I(X

n

;Y
n

|W,Xn�1
)�

I(Xn�1, Y n�1;W ) + I(Xn, Yn;W,Xn�1)

(4.68)

= min
�̄+�

n

=�

8

>

>

>

>

<

>

>

>

>

:

inf
p(w|xn,yn):

I(Xn�1
;Y n�1|W )

P
n�1
i=1 �

i

,

I(X
n

;Y
n

|W,Xn�1
)�

n

I(Xn�1, Y n�1;W ) + I(Xn, Yn;W,Xn�1)

9

>

>

>

>

=

>

>

>

>

;

(4.69)
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� min
�̄+�

n

=�

8

>

>

<

>

>

:

inf
p(w|xn,yn):

I(Xn�1
;Y n�1|W )

P
n�1
i=1 �

i

,

I(X
n

;Y
n

|W,Xn�1
)�

n

I(Xn�1, Y n�1;W )

+ inf
p(w̃|xn,yn):

I(Xn�1
;Y n�1| ˜W )

P
n�1
i=1 �

i

,

I(X
n

;Y
n

| ˜W,Xn�1
)�

n

I(Xn, Yn; W̃ ,Xn�1)

9

>

>

=

>

>

;

(4.70)

� min
�̄+�

n

=�

(

inf
p(w|xn�1,yn�1

):I(Xn�1
;Y n�1|W )

P
n�1
i=1 �

i

I(Xn�1, Y n�1;W )

+ inf
p(w̃|xn,y

n

):I(X
n

;Y
n

| ˜W,Xn�1
)�

n

I(Xn, Yn; W̃ ,Xn�1)

)

(4.71)

� min
�̄+�

n

=�

(

inf
p(w|xn�1,yn�1

):I(Xn�1
;Y n�1|W )

P
n�1
i=1 �

i

I(Xn�1, Y n�1;W )

+ inf
p(w̃,x̃n�1|x

n

,y
n

):I(X
n

;Y
n

| ˜W, ˜Xn�1
)�

n

I(Xn, Yn; W̃ , X̃n�1)

)

(4.72)

= min
�̄+�

n

=�

⇢

C�̄I(X
n�1;Y n�1) + inf

p(w
n

|x
n

,y
n

):I(X
n

;Y
n

|W
n

)�
n

I(Xn, Yn;Wn)

�

(4.73)

� min
�̄+�

n

=�

(

C�
n

(Xn;Yn) + min
�
i

:

P
n�1
i=1 �

i

=�̄

n�1

X

i=1

C�
i

(Xi;Yi)

)

(4.74)

= min
�
i

:

P
n

i=1 �i=�

n
X

i=1

C�
i

(Xi;Yi), (4.75)

where (4.68) follows from

I(Xn, Y n;W ) = I(Xn�1, Y n�1;W ) + I(Xn, Yn;W |Xn�1, Y n�1)

+ I(Xn, Yn;X
n�1, Y n�1) (4.76)

= I(Xn�1, Y n�1;W ) + I(Xn, Yn;W,Xn�1, Y n�1) (4.77)

� I(Xn�1, Y n�1;W ) + I(Xn, Yn;W,Xn�1) (4.78)

and the constraint is relaxed as follows

� � I(Xn;Y n|W ) = I(Xn�1;Y n|W ) + I(Xn;Y
n|W,Xn�1) (4.79)

� I(Xn�1;Y n�1|W ) + I(Xn;Yn|W,Xn�1). (4.80)

Equation (4.69) follows from the same argument as (4.57), (4.70) follows from the
same argument as (4.58), (4.71) follows follows from the same argument as (4.59),
(4.72) follows from a similar argument as (4.60), (4.73) follows from denoting Wn =
(W̃ , X̃n�1), and (4.74) follows from the induction hypothesis (4.67).

4.6.3 Proof of Theorem 9

The techniques to establish the optimality of Gaussian distributions is used in [27]
and is known as factorization of lower convex envelope. Let us define the following
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object

V (K) := inf
(X,Y ):K(X,Y )=K

inf
W

h(Y |W ) + h(X|W )� (1 + �)h(X,Y |W ), (4.81)

where � is a real number, 0 < � < 1 and K is an arbitrary covariance matrix. Let
`�(X,Y ) = h(Y )+h(X)�(1+�)h(X,Y ), and ˘̀

�(X,Y ) = infW h(Y |W )+h(X|W )�
(1 + �)h(X,Y |W ), where ˘̀

�(X,Y ) is the lower convex envelope of `�(X,Y ).
First, in Section 4.6.4, we prove that the infimum is attained, then, in Sec-

tion 4.6.5, we prove that a Gaussian W attains the infimum in Equation (4.81).
Together, these two arguments establish Theorem 9.

4.6.4 The infimum in Equation (4.81) is attained

Proposition 14 (Proposition 17 in [27]). Consider a sequence of random variables
{Xn, Yn} such that K

(X
n

,Y
n

)

� K for all n, then the sequence is tight.

Theorem 12 (Prokhorov). If {Xn, Yn} is a tight sequence then there exists a sub-
sequence {Xn

i

, Yn
i

} and a limiting probability distribution {X⇤, Y⇤} such that

{Xn
i

, Yn
i

} w) {X⇤, Y⇤} converges weakly in distribution.

Note that `�(X,Y ) = h(Y ) + h(X) � (1 + �)h(X,Y ) can be written as (1 +
�)I(X;Y )��[h(X)+h(Y )]. Thus, it is enough to show that this expression is lower
semi-continuous. We will show by utilizing the following theorem.

Theorem 13 ([50]). If pX
n

,Y
n

w) pX,Y and qX
n

,Y
n

w) qX,Y , then D(pX,Y ||qX,Y ) 
lim inf
n!1

D(pX
n

,Y
n

||qX
n

,Y
n

).

Observe that I(X;Y ) = D(pX,Y ||qX,Y ), where qX,Y = pXpY . For the theo-
rem to hold we need to check the assumptions. First, from Theorem 12, we have
pX

n

,Y
n

w) pX,Y . Second, since the marginal distributions converge weakly if the joint

distribution converges weakly, we also have qX
n

,Y
n

w) qX,Y . Therefore,

I(X;Y )  lim inf
n!1

I(Xn;Yn). (4.82)

To preserve the covariance matrix K
(X,Y )

, there are three degrees of freedom plus
one degree of freedom coming from minimizing the objective, thus |W|  4 is enough
to attain the minimum.

Let us introduce � > 0 and define N� ⇠ N (0, �), being independent of {Xn}, X,
{Yn} and Y . From the entropy power inequality, we have

h(Xn +N�) � h(Xn) (4.83)

h(Yn +N�) � h(Yn), (4.84)

and moreover, for Gaussian perturbations, we have

lim inf
n!1

h(Xn +N�) = h(X +N�). (4.85)

This results in

lim inf
n!1

`�(Xn, Yn) = lim inf
n!1

(1 + �)I(Xn;Yn)� �[h(Xn) + h(Yn)] (4.86)

� lim inf
n!1

(1 + �)I(Xn;Yn)� �[h(Xn +N�) + h(Yn +N�)] (4.87)

� (1 + �)I(X;Y )� �[h(X +N�) + h(Y +N�)], (4.88)
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where (4.87) follows from (4.83) and (4.88) follows from (4.82), (4.85). Letting � ! 0,
we obtain the weak semicontinuity of our object lim infn!1 `�(Xn, Yn) � `�(X,Y ).

4.6.5 A Gaussian auxiliary W attains the infimum in Equation (4.81)

This proof is an extended version of the arguments in [48], that is instead of (4.81)
for 0 < � < 1, we consider

V (K) := inf
(X,Y,Z):K(X,Y,Z)=K

inf
W

h(X|W ) + h(Y |W ) + h(Z|W )� (1 + �)h(X,Y, Z|W ),

(4.89)

for 1 < � < 2. We start by creating two identical and independent copies of the
minimizer (W,X, Y, Z), which are (W

1

, X
1

, Y
1

, Z
1

) and (W
2

, X
2

, Y
2

, Z
2

). In addition,
let us denote with Xw the random variable X|(W = w) and define

X✓1 |((W1

,W
2

) = (w
1

, w
2

) :=
Xw1 +Xw2p

2
, X✓2 |((W1

,W
2

) = (w
1

, w
2

) :=
Xw1 �Xw2p

2
,

(4.90)

Y✓1 |((W1

,W
2

) = (w
1

, w
2

) :=
Yw1 + Yw2p

2
, Y✓2 |((W1

,W
2

) = (w
1

, w
2

) :=
Yw1 � Yw2p

2
,

(4.91)

Z✓1 |((W1

,W
2

) = (w
1

, w
2

) :=
Zw1 + Zw2p

2
, Z✓2 |((W1

,W
2

) = (w
1

, w
2

) :=
Zw1 � Zw2p

2
.

(4.92)

Thus, we have

2V (K) = h(X
1

, X
2

|W
1

,W
2

) + h(Y
1

, Y
2

|W
1

,W
2

) + h(Z
1

, Z
2

|W
1

,W
2

)

� (1 + �)h(X
1

, X
2

, Y
1

, Y
2

, Z
1

, Z
2

|W
1

,W
2

) (4.93)

= h(X✓1 , X✓2 |W1

,W
2

) + h(Y✓1 , Y✓2 |W1

,W
2

) + h(Z✓1 , Z✓2 |W1

,W
2

)

� (1 + �)h(X✓1 , X✓2 , Y✓1 , Y✓2 , Z✓1 , Z✓2 |W1

,W
2

) (4.94)

= h(X✓1 |W1

,W
2

) + h(Y✓1 |W1

,W
2

) + h(Z✓1 |W1

,W
2

)

� (1 + �)h(X✓1 , Y✓1 , Z✓1 |W1

,W
2

) + h(X✓2 |X✓1 ,W1

,W
2

)

+ h(Y✓2 |Y✓1 ,W1

,W
2

) + h(Z✓2 |Z✓1 ,W1

,W
2

)

� (1 + �)h(X✓2 , Y✓2 , Z✓2 |X✓1 , Y✓1 , Z✓1 ,W1

,W
2

) (4.95)

= h(X✓1 |W1

,W
2

) + h(Y✓1 |W1

,W
2

) + h(Z✓1 |W1

,W
2

)

� (1 + �)h(X✓1 , Y✓1 , Z✓1 |W1

,W
2

) + h(X✓2 |X✓1 , Y✓1 , Z✓1 ,W1

,W
2

)

+ h(Y✓2 |X✓1 , Y✓1 , Z✓1 ,W1

,W
2

) + h(Z✓2 |X✓1 , Y✓1 , Z✓1 ,W1

,W
2

)

� (1 + �)h(X✓2 , Y✓2 , Z✓2 |X✓1 , Y✓1 , Z✓1 ,W1

,W
2

)

+ I(X✓2 ;Y✓1 , Z✓1 |X✓1 ,W1

,W
2

) + I(Y✓2 ;X✓1 , Z✓1 |Y✓1 ,W1

,W
2

)

+ I(Z✓2 ;X✓1 , Y✓1 |Z✓1 ,W1

,W
2

) (4.96)

� 2V (K) + I(X✓2 ;Y✓1 , Z✓1 |X✓1 ,W1

,W
2

) + I(Y✓2 ;X✓1 , Z✓1 |Y✓1 ,W1

,W
2

)

+ I(Z✓2 ;X✓1 , Y✓1 |Z✓1 ,W1

,W
2

), (4.97)

where (4.94) follows from entropy preservation under bijective transformation and
(4.97) follows from definition of V (K) such that K

(X
✓1

,Y
✓1

,Z
✓1

)

� K. The above set
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of inequalities would imply that

I(X✓2 ;Y✓1 , Z✓1 |X✓1 ,W1

,W
2

) = 0,

I(Y✓2 ;X✓1 , Z✓1 |Y✓1 ,W1

,W
2

) = 0,

I(Z✓2 ;X✓1 , Y✓1 |Z✓1 ,W1

,W
2

) = 0. (4.98)

By switching the roles of indexes, we get

I(X✓1 ;Y✓2 , Z✓2 |X✓2 ,W1

,W
2

) = 0,

I(Y✓1 ;X✓2 , Z✓2 |Y✓2 ,W1

,W
2

) = 0,

I(Z✓1 ;X✓2 , Y✓2 |Z✓2 ,W1

,W
2

) = 0. (4.99)

By factorizing in another way we have

2V (K) = h(X
1

, X
2

|W
1

,W
2

) + h(Y
1

, Y
2

|W
1

,W
2

) + h(Z
1

, Z
2

|W
1

,W
2

)

� (1 + �)h(X
1

, X
2

, Y
1

, Y
2

, Z
1

, Z
2

|W
1

,W
2

) (4.100)

= h(X✓1 , X✓2 |W1

,W
2

) + h(Y✓1 , Y✓2 |W1

,W
2

) + h(Z✓1 , Z✓2 |W1

,W
2

)

� (1 + �)h(X✓1 , X✓2 , Y✓1 , Y✓2 , Z✓1 , Z✓2 |W1

,W
2

) (4.101)

= h(X✓1 |W1

,W
2

) + h(Y✓1 |W1

,W
2

) + h(Z✓1 |W1

,W
2

)

� (1 + �)h(X✓1 , Y✓1 , Z✓1 |W1

,W
2

) + h(X✓2 |W1

,W
2

)

+ h(Y✓2 |W1

,W
2

) + h(Z✓2 |W1

,W
2

)� (1 + �)h(X✓2 , Y✓2 , Z✓2 |W1

,W
2

)

� I(X✓1 ;X✓2 |W1

,W
2

)� h(Y✓1 ;Y✓2 |W1

,W
2

)� h(Z✓1 ;Z✓2 |W1

,W
2

)

+ (1 + �)I(X✓1 , Y✓1 , Z✓1 ;X✓2 , Y✓2 , Z✓2 |W1

,W
2

) (4.102)

� 2V (K)� I(X✓1 ;X✓2 |W1

,W
2

)� I(Y✓1 ;Y✓2 |W1

,W
2

)

� I(Z✓1 ;Z✓2 |W1

,W
2

) + (1 + �)I(X✓1 , Y✓1 , Z✓1 ;X✓2 , Y✓2 , Z✓2 |W1

,W
2

).
(4.103)

By combining the above inequalities, it implies that

(1 + �)I(X✓1 , Y✓1 , Z✓1 ;X✓2 , Y✓2 , Z✓2 |W1

,W
2

)  I(X✓1 ;X✓2 |W1

,W
2

)

+ I(Y✓1 ;Y✓2 |W1

,W
2

) + I(Z✓1 ;Z✓2 |W1

,W
2

). (4.104)

By considering another factorization, we have

2V (K) = h(X
1

, X
2

|W
1

,W
2

) + h(Y
1

, Y
2

|W
1

,W
2

) + h(Z
1

, Z
2

|W
1

,W
2

)

� (1 + �)h(X
1

, X
2

, Y
1

, Y
2

, Z
1

, Z
2

|W
1

,W
2

) (4.105)

= h(X✓1 , X✓2 |W1

,W
2

) + h(Y✓1 , Y✓2 |W1

,W
2

) + h(Z✓1 , Z✓2 |W1

,W
2

)

� (1 + �)h(X✓1 , X✓2 , Y✓1 , Y✓2 , Z✓1 , Z✓2 |W1

,W
2

) (4.106)

= h(X✓1 |W1

,W
2

) + h(Y✓1 |W1

,W
2

) + h(Z✓1 |W1

,W
2

)

� (1 + �)h(X✓1 , Y✓1 , Z✓1 |W1

,W
2

) + h(X✓2 |X✓1 ,W1

,W
2

)

+ h(Y✓2 |Y✓1 ,W1

,W
2

) + h(Z✓2 |Z✓1 ,W1

,W
2

)

� (1 + �)h(X✓2 , Y✓2 , Z✓2 |X✓1 , Y✓1 , Z✓1 ,W1

,W
2

) (4.107)

= h(X✓1 |W1

,W
2

) + h(Y✓1 |W1

,W
2

) + h(Z✓1 |W1

,W
2

)

� (1 + �)h(X✓1 , Y✓1 , Z✓1 |W1

,W
2

) + h(X✓2 |X✓1 , Y✓1 , Z✓1 ,W1

,W
2

)

+ h(Y✓2 |X✓1 , Y✓1 , Z✓1 ,W1

,W
2

) + h(Z✓2 |X✓1 , Y✓1 , Z✓1 ,W1

,W
2

)
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� (1 + �)h(X✓2 , Y✓2 , Z✓2 |X✓1 , Y✓1 , Z✓1 ,W1

,W
2

)

+ I(X✓2 ;Y✓1 , Z✓1 |X✓1 ,W1

,W
2

) + I(Y✓2 ;X✓1 , Z✓1 |Y✓1 ,W1

,W
2

)

+ I(Z✓2 ;X✓1 , Y✓1 |Z✓1 ,W1

,W
2

) (4.108)

� V (K) + h(X✓1 |W1

,W
2

) + h(Y✓1 |W1

,W
2

) + h(Z✓1 |W1

,W
2

)

� (1 + �)h(X✓1 , Y✓1 , Z✓1 |W1

,W
2

) (4.109)

= V (K) + h(X✓1 |X✓2 , Y✓2 , Z✓2 ,W1

,W
2

) + I(X✓1 ;X✓2 , Y✓2 , Z✓2 |W1

,W
2

)

+ h(Z✓1 |X✓2 , Y✓2 , Z✓2 ,W1

,W
2

) + I(Z✓1 ;X✓2 , Y✓2 , Z✓2 |W1

,W
2

)

+ h(Y✓1 |X✓2 , Y✓2 , Z✓2 ,W1

,W
2

) + I(Y✓1 ;X✓2 , Y✓2 , Z✓2 |W1

,W
2

)

� (1 + �)I(X✓1 , Y✓1 , Z✓1 ;X✓2 , Y✓2 , Z✓2 |W1

,W
2

)

� (1 + �)h(X✓1 , Y✓1 , Z✓1 |X✓2 , Y✓2 , Z✓2 ,W1

,W
2

) (4.110)

� 2V (K) + I(X✓1 ;X✓2 , Y✓2 , Z✓2 |W1

,W
2

) + I(Y✓1 ;X✓2 , Y✓2 , Z✓2 |W1

,W
2

)

+ I(Z✓1 ;X✓2 , Y✓2 , Z✓2 |W1

,W
2

)

� (1 + �)I(X✓1 , Y✓1 , Z✓1 ;X✓2 , Y✓2 , Z✓2 |W1

,W
2

) (4.111)

where the set of inequalities implies that

(1 + �)I(X✓1 , Y✓1 , Z✓1 ;X✓2 , Y✓2 , Z✓2 |W1

,W
2

) � I(X✓1 ;X✓2 , Y✓2 , Z✓2 |W1

,W
2

)

+ I(Y✓1 ;X✓2 , Y✓2 , Z✓2 |W1

,W
2

) + I(Z✓1 ;X✓2 , Y✓2 , Z✓2 |W1

,W
2

). (4.112)

By making use of (4.98) we can simplify the previous inequality as follows

(1 + �)I(X✓1 , Y✓1 , Z✓1 ;X✓2 , Y✓2 , Z✓2 |W1

,W
2

) � I(X✓1 ;X✓2 |W1

,W
2

)

+ I(Y✓1 ;Y✓2 |W1

,W
2

) + I(Z✓1 ;Z✓2 |W1

,W
2

). (4.113)

By combining (4.104) and (4.113) we have

(1 + �)I(X✓1 , Y✓1 , Z✓1 ;X✓2 , Y✓2 , Z✓2 |W1

,W
2

) = I(X✓1 ;X✓2 |W1

,W
2

)

+ I(Y✓1 ;Y✓2 |W1

,W
2

) + I(Z✓1 ;Z✓2 |W1

,W
2

). (4.114)

Now resume in Equation (4.109) and try another factorization thus, we have

2V (K) � V (K) + h(X✓1 |W1

,W
2

) + h(Y✓1 |W1

,W
2

) + h(Z✓1 |W1

,W
2

)

� (1 + �)h(X✓1 , Y✓1 , Z✓1 |W1

,W
2

) (4.115)

= V (K) + h(X✓1 |X✓2 ,W1

,W
2

) + h(Y✓1 |X✓2 ,W1

,W
2

) + h(Z✓1 |X✓2 ,W1

,W
2

)

� (1 + �)h(X✓1 , Y✓1 , Z✓1 |X✓2 ,W1

,W
2

) + I(X✓1 ;X✓2 |W1

,W
2

)

+ I(Y✓1 ;X✓2 |W1

,W
2

) + I(Z✓1 ;X✓2 |W1

,W
2

)

� (1 + �)I(X✓1 , Y✓1 , Z✓1 ;X✓2 |W1

,W
2

) (4.116)

� 2V (K) + I(X✓1 ;X✓2 |W1

,W
2

) + I(Y✓1 ;X✓2 |W1

,W
2

)

+ I(Z✓1 ;X✓2 |W1

,W
2

)� (1 + �)I(X✓1 , Y✓1 , Z✓1 ;X✓2 |W1

,W
2

) (4.117)

and the set of inequalities implies that

(1 + �)I(X✓1 , Y✓1 , Z✓1 ;X✓2 |W1

,W
2

) � I(X✓1 ;X✓2 |W1

,W
2

)

+ I(Y✓1 ;X✓2 |W1

,W
2

) + I(Z✓1 ;X✓2 |W1

,W
2

). (4.118)
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By making use of (4.98) the above inequality simplifies into

�I(X✓1 ;X✓2 |W1

,W
2

) � I(Y✓1 ;X✓2 |W1

,W
2

) + I(Z✓1 ;X✓2 |W1

,W
2

). (4.119)

Once again, we resume in Equation (4.109) thus, we have

2V (K) � V (K) + h(X✓1 |W1

,W
2

) + h(Y✓1 |W1

,W
2

) + h(Z✓1 |W1

,W
2

)

� (1 + �)h(X✓1 , Y✓1 , Z✓1 |W1

,W
2

) (4.120)

= V (K) + h(X✓1 |Y✓2 ,W1

,W
2

) + h(Y✓1 |Y✓2 ,W1

,W
2

) + h(Z✓1 |Y✓2 ,W1

,W
2

)

� (1 + �)h(X✓1 , Y✓1 , Z✓1 |Y✓2 ,W1

,W
2

) + I(X✓1 ;Y✓2 |W1

,W
2

)

+ I(Y✓1 ;Y✓2 |W1

,W
2

) + I(Z✓1 ;Y✓2 |W1

,W
2

)

� (1 + �)I(X✓1 , Y✓1 , Z✓1 ;Y✓2 |W1

,W
2

) (4.121)

� 2V (K) + I(X✓1 ;Y✓2 |W1

,W
2

) + I(Y✓1 ;Y✓2 |W1

,W
2

)

+ I(Z✓1 ;Y✓2 |W1

,W
2

)� (1 + �)I(X✓1 , Y✓1 , Z✓1 ;Y✓2 |W1

,W
2

) (4.122)

where the set of inequalities implies that

(1 + �)I(X✓1 , Y✓1 , Z✓1 ;Y✓2 |W1

,W
2

) � I(X✓1 ;Y✓2 |W1

,W
2

)

+ I(Y✓1 ;Y✓2 |W1

,W
2

) + I(Z✓1 ;Y✓2 |W1

,W
2

). (4.123)

By making use of (4.98) the above inequality simplifies into

�I(Y✓1 ;Y✓2 |W1

,W
2

) � I(X✓1 ;Y✓2 |W1

,W
2

) + I(Z✓1 ;Y✓2 |W1

,W
2

). (4.124)

For the last time we resume in Equation (4.109) and try another factorization thus,
we have

2V (K) � V (K) + h(X✓1 |W1

,W
2

) + h(Y✓1 |W1

,W
2

) + h(Z✓1 |W1

,W
2

)

� (1 + �)h(X✓1 , Y✓1 , Z✓1 |W1

,W
2

) (4.125)

= V (K) + h(X✓1 |Z✓2 ,W1

,W
2

) + h(Y✓1 |Z✓2 ,W1

,W
2

) + h(Z✓1 |Z✓2 ,W1

,W
2

)

� (1 + �)h(X✓1 , Y✓1 , Z✓1 |Z✓2 ,W1

,W
2

) + I(X✓1 ;Z✓2 |W1

,W
2

)

+ I(Y✓1 ;Z✓2 |W1

,W
2

) + I(Z✓1 ;Z✓2 |W1

,W
2

)

� (1 + �)I(X✓1 , Y✓1 , Z✓1 ;Z✓2 |W1

,W
2

) (4.126)

� 2V (K) + I(X✓1 ;Z✓2 |W1

,W
2

) + I(Y✓1 ;Z✓2 |W1

,W
2

)

+ I(Z✓1 ;Z✓2 |W1

,W
2

)� (1 + �)I(X✓1 , Y✓1 , Z✓1 ;Z✓2 |W1

,W
2

) (4.127)

where the set of inequalities implies that

(1 + �)I(X✓1 , Y✓1 , Z✓1 ;Z✓2 |W1

,W
2

) � I(X✓1 ;Z✓2 |W1

,W
2

)

+ I(Y✓1 ;Z✓2 |W1

,W
2

) + I(Z✓1 ;Z✓2 |W1

,W
2

). (4.128)

By making use of (4.98) the above inequality simplifies into

�I(Z✓1 ;Z✓2 |W1

,W
2

) � I(X✓1 ;Z✓2 |W1

,W
2

) + I(Y✓1 ;Z✓2 |W1

,W
2

). (4.129)

By switching the role of the index ✓
1

and ✓
2

for (4.119), (4.124) and (4.129) we get

�I(X✓1 ;X✓2 |W1

,W
2

) � I(X✓1 ;Y✓2 |W1

,W
2

) + I(X✓1 ;Z✓2 |W1

,W
2

), (4.130)

�I(Y✓1 ;Y✓2 |W1

,W
2

) � I(Y✓1 ;X✓2 |W1

,W
2

) + I(Y✓1 ;Z✓2 |W1

,W
2

), (4.131)

�I(Z✓1 ;Z✓2 |W1

,W
2

) � I(Z✓1 ;X✓2 |W1

,W
2

) + I(Z✓1 ;Y✓2 |W1

,W
2

). (4.132)
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By using the non-negativity of conditional mutual information we have

I(Y✓1 , Z✓1 ;X✓2 , Z✓2 |X✓1 , Y✓2)

= I(X✓1 , Y✓1 , Z✓1 ;X✓2 , Z✓2 |Y✓2)� I(X✓1 ;X✓2 , Z✓2 |Y✓2) (4.133)

= I(X✓1 , Y✓1 , Z✓1 ;X✓2 , Z✓2 , Y✓2)� I(X✓1 , Y✓1 , Z✓1 ;Y✓2)

� I(X✓1 ;X✓2 , Z✓2 , Y✓2) + I(X✓1 ;Y✓2) (4.134)

= I(X✓1 , Y✓1 , Z✓1 ;X✓2 , Z✓2 , Y✓2)� I(Y✓1 ;Y✓2)

� I(X✓1 ;X✓2) + I(X✓1 ;Y✓2) (4.135)

=
1

1 + �
[I(X✓1 ;X✓2) + I(Y✓1 ;Y✓2) + I(Z✓1 ;Z✓2)]� I(Y✓1 ;Y✓2)

� I(X✓1 ;X✓2) + I(X✓1 ;Y✓2) � 0 (4.136)

where (4.135) follows from (4.98) and (4.136) follows from (4.114). By rewriting the
last inequality we get

��I(X✓1 ;X✓2)� �I(Y✓1 ;Y✓2) + I(Z✓1 ;Z✓2) + (1 + �)I(X✓1 ;Y✓2) � 0. (4.137)

By using the non-negativity of conditional mutual information we have

I(X✓1 , Y✓1 ;X✓2 , Z✓2 |Z✓1 , Y✓2)

= I(X✓1 , Y✓1 , Z✓1 ;X✓2 , Z✓2 |Y✓2)� I(Z✓1 ;X✓2 , Z✓2 |Y✓2) (4.138)

= I(X✓1 , Y✓1 , Z✓1 ;X✓2 , Z✓2 , Y✓2)� I(X✓1 , Y✓1 , Z✓1 ;Y✓2)

� I(Z✓1 ;X✓2 , Z✓2 , Y✓2) + I(Z✓1 ;Y✓2) (4.139)

= I(X✓1 , Y✓1 , Z✓1 ;X✓2 , Z✓2 , Y✓2)� I(Y✓1 ;Y✓2)

� I(Z✓1 ;Z✓2) + I(Z✓1 ;Y✓2) (4.140)

=
1

1 + �
[I(X✓1 ;X✓2) + I(Y✓1 ;Y✓2) + I(Z✓1 ;Z✓2)]� I(Y✓1 ;Y✓2)

� I(Z✓1 ;Z✓2) + I(Z✓1 ;Y✓2) � 0 (4.141)

where (4.140) follows from (4.98) and (4.141) follows from (4.114). By rewriting the
last inequality we get

��I(Z✓1 ;Z✓2)� �I(Y✓1 ;Y✓2) + I(X✓1 ;X✓2) + (1 + �)I(Z✓1 ;Y✓2) � 0. (4.142)

By adding (4.137) and (4.142) and using (4.124) for 1 < � < 2, we obtain

�I(Y✓1 ;Y✓2) � I(X✓1 ;X✓2) + I(Z✓1 ;Z✓2). (4.143)

In a similar fashion we obtain

�I(X✓1 ;X✓2) � I(Y✓1 ;Y✓2) + I(Z✓1 ;Z✓2), (4.144)

�I(Z✓1 ;Z✓2) � I(X✓1 ;X✓2) + I(Y✓1 ;Y✓2). (4.145)

By adding up (4.143), (4.144) and (4.145) we obtain

(2� �)[I(X✓1 ;X✓2) + I(Y✓1 ;Y✓2) + I(Z✓1 ;Z✓2)]  0, (4.146)

thus, I(X✓1 ;X✓2) = I(Y✓1 ;Y✓2) = I(Z✓1 ;Z✓2) = 0, which implies that

I(X✓1 , Y✓1 , Z✓1 ;X✓2 , Y✓2 , Z✓2) = 0. (4.147)

The following statements are true.
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• The pair (X
1

, Y
1

, Z
1

) and (X
2

, Y
2

, Z
2

) are conditionally independent given
W

1

= w
1

,W
2

= w
2

from assumption, i.e. (Xw1 , Yw1 , Zw1) and (Xw2 , Yw2 , Zw2)
are independent.

• The pair (X✓1 , Y✓1 , Z✓1) and (X✓2 , Y✓2 , Z✓2) are conditionally independent given

W
1

= w
1

,W
2

= w
2

, in other words we have
⇣

X
w1+X

w2p
2

,
Y
w1+Y

w2p
2

,
Z
w1+Z

w2p
2

⌘

and
⇣

X
w1�X

w2p
2

,
Y
w1�Y

w2p
2

,
Z
w1�Z

w2p
2

⌘

are independent. This follows from (4.147).

By applying Theorem 1 on the above listed statements, we can infer that (X,Y, Z)|{W =
w} ⇠ N (0,Kw), where Kw might depend on the realization of W = w. We will now
argue that this is not the case. To make a brief summary we have shown the exis-
tence part thus, by choosing W to be the trivial random variable a single Gaussian
(i.e. not a Gaussian mixture) is one of the possible minimizers. Let us suppose that
there are two Gaussian minimizers N (0,Kw1) and N (0,Kw2), where Kw1 6= Kw2 .
Consider the random variable (W,X, Y, Z) where, (X,Y, Z)|{W = w

1

} ⇠ N (0,Kw1)
and (X,Y, Z)|{W = w

2

} ⇠ N (0,Kw2). Therefore the triple (W,X, Y, Z) also attains
V (K) and satisfies the covariance constraint. At the same time, we showed that the
sum and the di↵erence are also minimizers and they must be independent of each
other, which happens only when Kw1 = Kw2 . In other words, Kw does not depend
on the realization W = w, and the (X,Y, Z) is a single Gaussian (i.e. not a Gaus-
sian mixture). We established that (X,Y, Z) is a unique Gaussian minimizer. The
marginal of W does not a↵ect the defined problem and without loss of optimality
we can assume it to be Gaussian (or by an optimal transform on W ). Thus,

V (K) = h(X|W ) + h(Y |W ) + h(Z|W )� (1 + �)h(X,Y, Z|W ). (4.148)

Furthermore, there exists a decomposition (X,Y, Z) = W + (X 0, Y 0, Z 0) ⇠ N (0,K),
where W is independent of (X 0, Y 0, Z 0) and W ⇠ N (0,K �K 0) and (X 0, Y 0, Z 0) ⇠
N (0,K 0). Then,

V (K) = h(X 0) + h(Y 0) + h(Z 0)� (1 + �)h(X 0, Y 0, Z 0), (4.149)

thus establishing Theorem 9, because

V (K)  inf
W

h(X|W ) + h(Y |W ) + h(Z|W )� (1 + �)h(X,Y, Z|W ), (4.150)

by the definition of V (K) in (4.81).

4.6.6 Proof of Lemma 11

Let us parametrize K 0 as K 0 =

✓

�2

X q�X�Y
q�X�Y �2

Y

◆

⌫ 0. By substituting we obtain

min

K0
:0�K0�

0

@1 ⇢
⇢ 1

1

A

h(X 0) + h(Y 0)� (1 + �)h(X 0, Y 0)

= min
(�

X

,�
Y

,q)2A
⇢

1

2
log (2⇡e)2�2

X�2

Y �
1 + �

2
log (2⇡e)2�2

X�2

Y (1� q2) (4.151)
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where the set A⇢ is defined as

A⇢ :=

⇢

(�X ,�Y , q) :

✓

�2

X � 1 q�X�Y � ⇢
q�X�Y � ⇢ �2

Y � 1

◆

� 0

�

. (4.152)

Matrices of dimension two by two are negative definite (semi-definite) if and only
if the trace is negative (non-positive) and determinant is positive (non-negative).
Thus, the set A⇢ is

A⇢ =
n

(�X ,�Y , q) :
�2
X

+�2
Y

2,

(1�q2)�2
X

�2
Y

+2⇢q�
X

�
Y

+1�⇢2�(�2
X

+�2
Y

)�0

o

. (4.153)

Let us define

B⇢ :=
n

(�X ,�Y , q) :
�
X

�
Y

1,
(1�q2)�2

X

�2
Y

+2⇢q�
X

�
Y

+1�⇢2�2�
X

�
Y

)�0

o

, (4.154)

and the inequality �2

X + �2

Y � 2�X�Y , implies that A⇢ ✓ B⇢. By reparametrizing
�2 = �X�Y , the set B⇢ becomes

D⇢ :=
n

(�2, q) : �21,
(�2

(1�q)�1+⇢)(�2
(1+q)�1�⇢)�0

o

. (4.155)

The second inequality in the definition of the setD⇢ has roots �2 = 1+⇢
1+q and �2 = 1�⇢

1�q
when meet with equality. Thus, we can rewrite the set D⇢ as

D⇢ =
n

(�2, q) : ⇢�q, �2
(1�q)1�⇢

⇢<q, �2
(1+q)1+⇢

o

. (4.156)

Thus, we have

min
(�

X

,�
Y

,q)2A
⇢

1

2
log (2⇡e)2�2

X�2

Y �
1 + �

2
log (2⇡e)2�2

X�2

Y (1� q2) � min
(�2,q)2D

⇢

f(�,�2, q)

(4.157)

where,

f(�,�2, q) =
1

2
log (2⇡e)2�4 � 1 + �

2
log (2⇡e)2�4(1� q2). (4.158)

For now let us assume ⇢ is positive and start from the case ⇢ � q. Then, by weak
duality we have

min
(�2,q)2D

⇢

f(�,�2, q) � min
�2,q

f(�,�2, q) + µ(�2(1� q)� 1 + ⇢)), (4.159)

for any µ � 0. By applying Karush-Kuhn-Tucker (KKT) conditions on the right
hand side of (4.159) we get

@

@�2

= � �

�2

+ µ(1� q) = 0, (4.160)

@

@q
=

(1 + �)q

1� q2
� µ�2 = 0, (4.161)

µ(�2(1� q)� 1 + ⇢)) = 0, (4.162)
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where (4.160), (4.161) is known as stationary condition and (4.162) is known as
complementary slackness condition. By using (4.160) have

µ =
�

�2(1� q)
. (4.163)

By using (4.161) we have

µ =
(1 + �)q

�2(1� q2)
. (4.164)

By equating (4.163) and (4.164) we deduce that q⇤ = �. Since � > 0, then µ 6= 0
and by using (4.162) we have �2

⇤ = 1�⇢
1�� . In addition, µ⇤ =

�
1�⇢ .

Since the KKT conditions are satisfied by q⇤,�
2

⇤ and µ⇤ then strong duality holds.
Thus, we have

min
(�2,q)2D

⇢

f(�,�2, q) = max
µ�0

min
�2,q

f(�,�2, q) + µ(�2(1� q)� 1 + ⇢)) (4.165)

= f(�,
1� ⇢

1� �
,�) (4.166)

=
1

2
log

1

1� �2

� �

2
log (2⇡e)2

(1� ⇢)2(1 + �)

1� �
. (4.167)

By combining (4.151), (4.157), (4.165) and (4.167) we get the desired lower bound.
For the case ⇢ < q, let us optimize over �2 for any fixed q. The function f is

decreasing in �2. Also, the function f is convex in �2. Since the object is continuous
in �2 and the constraint is linear for a given value of q, then the optimal choice is
�2 = 1+⇢

1+q . Thus,

min
(�2,q)2D

⇢

f(�,�2, q) � min
q2[⇢,1]

f(�,
1 + ⇢

1 + q
, q). (4.168)

The function on the right hand side can be written as

f(�,
1 + ⇢

1 + q
, q) =

1

2
log (2⇡e)2

(1 + ⇢)2

(1 + q)2
� 1 + �

2
log (2⇡e)2

(1 + ⇢)2(1� q)

(1 + q)
. (4.169)

The function is convex and increasing in q for q 2 [⇢, 1],

@f

@q
=

q + �

1� q2
> 0, (4.170)

@2f

@q2
=

1 + q2 + 2�q

(1� q2)2
> 0, (4.171)

thus, the optimal value of q⇤ = ⇢ and �2 = 1. To conclude we show that f(�, 1�⇢
1�� ,�) 

f(�, 1, ⇢) for �  ⇢. To show this we define

h(�) := f(�,
1� ⇢

1� �
,�)� f(�, 1, ⇢) (4.172)

=
1

2
log

1� ⇢2

1� �2

� �

2
log

(1 + �)(1� ⇢)

(1� �)(1 + ⇢)
, (4.173)
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and function h is increasing in �,

@h

@�
= �1

2
log

(1 + �)(1� ⇢)

(1� �)(1 + ⇢)
� 0, for �  ⇢ (4.174)

and it is concave in �,

@2h

@�2

= � 1

1� �2

< 0, (4.175)

thus, h(�)  h(⇢) = 0. Then, f(�, 1, ⇢) � f(�, 1�⇢
1�� ,�). The argument goes through

also for the case when ⇢ is negative, which completes the proof.





The Gaussian Lossy Gray-Wyner
Network 5
5.1 Introduction

Source coding for network scenarios has a long history, starting with the work of
Slepian and Wolf [51] concerning the distributed compression of correlated sources
in a lossless reconstruction setting. In this work, we study a source coding network
introduced by Gray and Wyner [35]. In this network, there is a single encoder. It en-
codes a pair of sources, (X,Y ), into three messages, namely, a common message and
two private messages. There are two decoders, both receiving the common message,
and each receiver has access to the respective private message. For this problem,
both in the setting of lossless and of lossy reconstruction, Gray and Wyner fully
characterized the optimal rate(-distortion) regions in [35], up to the optimization
over a single auxiliary random variable (which represents the common message). An
alternative operational interpretation of the Gray-Wyner network as a model for a
caching system has been proposed in [43, Section III.C].

For Gaussian sources the Gray-Wyner network [35] problem remained unsolved.
A closed form solution is given in [35] by assuming that the auxiliaries are Gaussian.
Partial progress was made in [52, 37], when the sum of the common rate and the
private rates is exactly equal to the joint rate distortion function. For this corner
case, it is known that Wyner’s common information is the smallest rate needed on
the common channel. In the present chapter, we solve1 the Gray-Wyner network [35]
for Gaussian sources, encompassing all previous partial results.

5.1.1 Contribution

The contributions of the present chapter includes, for the Gaussian lossy Gray-
Wyner network under symmetric mean-squared error distortion, we prove that it
is optimal to select the auxiliary random variable to be jointly Gaussian with the
source random variables and we compute closed-form solutions of the common rate
versus the sum of private rates. That is reflected in Theorem 15.

1The material of this chapter has appeared in
- E. Sula and M. Gastpar, “The Gaussian lossy Gray-Wyner network,” in 54th Annual Conference

on Information Sciences and Systems (CISS), Princeton, NJ, USA, 2020.

61



62 The Gaussian Lossy Gray-Wyner Network

5.2 System Model

Let us assume that the probability of the pair (X,Y ) is given and X 2 X , Y 2 Y.
Let Sc, Sx and Sy be messages represented by nRc, nRx and nRy bits. Let

(Sc, Sx, Sy) = fE(X
n, Y n), (5.1)

where fE(.) is the encoding function, Xn 2 X n and Y n 2 Yn. Let

X̂n = fD
x

(Sc, Sx), Ŷ n = fD
y

(Sc, Sy), (5.2)

where fD
x

(.), fD
y

(.) are the decoding function, X̂n 2 X̂ n and Ŷ n 2 Ŷn. The system
has a distortion (�x,�y), where

�x = E
"

1

n

n
X

k=1

dx(Xk, X̂k)

#

, �y = E
"

1

n

n
X

k=1

dy(Yk, Ŷk)

#

. (5.3)

Let the event Er be

Er = {Dx < �x} [ {Dy < �y} . (5.4)

A rate triple (R
0

, R
1

, R
2

) is said to be (Dx, Dy)-achievable if, for any specified
positive error probability Pe and su�ciently large n, there are encoding and decoding
functions such that Pr[Er]  Pe. The closure of the set of achievable (R

0

, R
1

, R
2

) is
called R(Dx, Dy).

5.3 The lossless Gray-Wyner Network

Gray and Wyner in [35] introduced a particular network source coding problem
referred to as the Gray-Wyner network.

(X,Y )

X̂

Ŷ

E

Ry

Rc

Rx

Dy

Dx

Figure 5.1 – The Gray-Wyner Network

The Gray-Wyner network [35] is composed of one joint sender and two receivers.
The purpose of this network is to convey the joint source (X,Y ) (where source X
and Y are correlated) to the two receivers, such that each receiver gets only one of
the source, either X or Y . In other words, receiver or decoder Dx wants to obtain
source X, and receiver or decoder Dy wants to obtain source Y . The network is
consisting of three links or channels as described in the figure. The central link, of
rate Rc, is provided to both receivers. In addition, each receiver also has access to
only one private link. From now on we denote the rates of the private links by Rx
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and Ry, respectively. The main result of [35, Theorem 4], says that the rate region
of lossless Gray-Wyner network (�x = �y = 0 in Section 5.2) is given by the closure
of the union of the regions

R = {(Rc, Rx, Ry) : Rc � I(X,Y ;W ), Rx � H(X|W ), Ry � H(Y |W )}, (5.5)

where the union is over all probability distributions p(w, x, y) with marginals p(x, y).

5.4 The Gaussian lossy Gray-Wyner Network

As in the original work of Gray and Wyner [35], one may instead ask for lossy
reconstructions of the original sources X and Y with respect to fidelity criteria.

Theorem 14 (Theorem 6, Equation (40), in [35]). The rate region of the lossy
Gray-Wyner network is given by the closure of the union of the regions

R(Dx, Dy) = {(Rc, Rx, Ry) : Rc � I(X,Y ;W ), Rx � RX|W (Dx), Ry � RY |W (Dy)},
(5.6)

where RX|W and RY |W are conditional rate-distortion function, for a given proba-
bility density function of (X,Y ).

This motivates the following definition that is directly linked with the quantity
T (�) in [35]), that is

T (�) = min
(R

c

,R
x

,R
y

)2R(D
x

,D
y

)

Rc + �xRx + �yRy. (5.7)

Definition 5 (Gray-Wyner rate-distortion function). For random variables X and
Y with joint distribution p(x, y), the Gray-Wyner rate-distortion function is defined
as

R
D,↵(X,Y ) = inf I(X,Y ;W ) (5.8)

such that I(X; X̂|W )  ↵x and I(Y ; Ŷ |W )  ↵y, where the minimum is over all
probability distributions p(x̂, ŷ, w, x, y) with marginals p(x, y) and satisfying

E[dx(X, X̂)]  Dx and E[dy(Y, Ŷ )]  Dy, (5.9)

where dx(·, ·) and dy(·, ·) are arbitrary single-letter distortion measures (as in, e.g., [35,
Eqn. (30) ↵.]).

Let us consider a special case of Definition 5 for which we can derive a closed-form
solution. For a fixed probability distribution p(x, y), we define

RD,↵(X,Y ) = inf I(X,Y ;W ) (5.10)

such that I(X; X̂|W ) + I(Y ; Ŷ |W )  ↵, where the minimum is over all probability
distributions p(x̂, ŷ, w, x, y) with marginals p(x, y) and satisfying

E[dx(X, X̂)]  D and E[dy(Y, Ŷ )]  D, (5.11)

where Dx = Dy = D.
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Theorem 15. Let X and Y be jointly Gaussian with mean zero, equal variance �2,
and with correlation coe�cient ⇢. Let dx(·, ·) and dy(·, ·) be the mean-squared error
distortion measure. Then,

RD,↵(X,Y ) =

8

<

:

1

2

log+ 1+⇢

2

D

�

2 e
↵

+⇢�1

, if �2(1� ⇢)  De↵  �2

1

2

log+ 1�⇢2

D

2

�

4 e2↵
, if De↵  �2(1� ⇢),

(5.12)

that is defined in (5.10).

The proof of this theorem is given in Section 5.4.1.

Remark 4. Assuming that auxiliaries are jointly Gaussian with the sources, the
same formula was derived in [53, Theorem 4.3] via a di↵erent reasoning.

Figure 5.2 will illustrate the piecewise function of (5.12) in terms of De↵, for the
specific choice of ⇢ = 0.5 and �2 = 1.

De↵

RD,↵(X,Y )

(1� ⇢)�2  De↵  �2

0  De↵  (1� ⇢)�2

Figure 5.2 – Piecewise function, RD,↵(X,Y ) versus De↵.

5.4.1 Proof of Theorem 15

Let K be the covariance matrix with unit entries in the main diagonal and ⇢ entries
in the o↵-diagonal. First, we consider the lower bounds for definition 5. We observe
that for mean-squared error, a scheme attaining distortion D for sources of variance
�2 is a scheme attaining distortion D/�2 on unit-variance sources, and vice versa.
Therefore, for ease of notation, in the sequel, we assume that the sources are of unit
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variance. Then, we can bound:

RD,↵(X,Y ) (5.13)

= inf
W, ˆX, ˆY :I(X;

ˆX|W )+I(Y ;

ˆY |W )↵

E[(X� ˆX)

2
]D

E[(Y� ˆY )

2
]D

I(X,Y ;W ) (5.14)

� inf
W, ˆX, ˆY :E[(X� ˆX)

2
]D

E[(Y� ˆY )

2
]D

I(X,Y ;W ) + ⌫I(X; X̂|W )

+ ⌫(I(Y ; Ŷ |W )� ↵) (5.15)

= inf
W, ˆX, ˆY :E[(X� ˆX)

2
]D

E[(Y� ˆY )

2
]D

h(X,Y )� ⌫↵+ ⌫(h(X|W ) + h(Y |W ))

� h(X,Y |W )� ⌫(h(X|W, X̂) + h(Y |W, Ŷ )) (5.16)

� h(X,Y )� ⌫↵+ ⌫ inf
W

h(X|W ) + h(Y |W )� 1

⌫
h(X,Y |W )

+ inf
W, ˆX, ˆY :E[(X� ˆX)

2
]D

E[(Y� ˆY )

2
]D

�⌫(h(X|W, X̂) + h(Y |W, Ŷ )) (5.17)

� h(X,Y )� ⌫↵+ ⌫ · min

0�K0�

0

@1 ⇢
⇢ 1

1

A

h(X 0) + h(Y 0)� 1

⌫
h(X 0, Y 0)

+ ⌫ ·

0

B

B

@

min
(W, ˆX, ˆY )2P

G

:

E[(X� ˆX)

2
]D

�h(X|W, X̂) + min
(W, ˆX, ˆY )2P

G

:

E[(Y� ˆY )

2
]D

�h(Y |W, Ŷ )
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C

C

A

(5.18)

= h(X,Y )� ⌫↵� ⌫ log (2⇡eD)

+ ⌫ · min

0�K0�

0

@1 ⇢
⇢ 1

1

A

h(X 0) + h(Y 0)� 1

⌫
h(X 0, Y 0) (5.19)

=
1

2
log (2⇡e)2(1� ⇢2)� ⌫↵� ⌫ log (2⇡eD)

+
⌫

2
log

⌫2

2⌫ � 1
� 1� ⌫

2
log (2⇡e)2

(1� ⇢)2

2⌫ � 1
(5.20)

=

(

1

2

log+ 1+⇢
2De↵+⇢�1

, if 1� ⇢  De↵  1
1

2

log+ 1�⇢2

D2e2↵
, if De↵  1� ⇢.

(5.21)

where (5.15) follows from weak duality for ⌫ � 0; (5.17) follows from bounding the
infimum of the sum with the sum of the infima of its summands, and the fact that
relaxing the constraints cannot increase the value of the infimum; (5.18) follows from
Theorem 9 where ⌫ := 1

1+� and for the constraint 0  � < 1 (indeed we can also

include zero) to be satisfied we need 1

2

< ⌫  1 and [9, Lemma 1] on each of the
terms; (5.19) follows by observing

h(X|W, X̂) = h(X � X̂|W, X̂) (5.22)

 h(X � X̂) (5.23)
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 1

2
log(2⇡eD), (5.24)

where the last step is due to the fact that E[(X � X̂)2]  D; (5.20) follows from
Lemma 11 for ⌫ � 1

1+⇢ ; and (5.21) follows from maximizing

`(⌫) :=
1

2
log (2⇡e)2(1� ⇢2)� ⌫↵� ⌫ log (2⇡eD) (5.25)

+
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2
log

⌫2

2⌫ � 1
� 1� ⌫

2
log (2⇡e)2
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2⌫ � 1
, (5.26)

for 1 � ⌫ � 1

1+⇢ . Now we need to choose the tightest bound max
1�⌫� 1

1+⇢

`(⌫). Note

that the function ` is concave since

@2`

@⌫2
= � 1

⌫(2⌫ � 1)
< 0. (5.27)

Since it also satisfies monotonicity

@`

@⌫
= log

⌫(1� ⇢)

(2⌫ � 1)De↵
, (5.28)

its maximal value occurs when the derivative vanishes, that is, when ⌫⇤ =
De↵

2De↵�1+⇢ .
Substituting for the optimal ⌫⇤ we get

RD,↵(X,Y ) � `

✓

De↵

2De↵ � 1 + ⇢

◆

=
1

2
log+

1 + ⇢

2De↵ � 1 + ⇢
, (5.29)

for 1 � ⌫⇤ � 1

1+⇢ , which means the expression is valid for 1� ⇢  De↵  1.
The other case is De↵  1 � ⇢. In this case note that ⌫(1 � ⇢) � ⌫De↵ �

(2⌫ � 1)De↵ for ⌫  1. This implies ⌫(1�⇢)
(2⌫�1)De↵ � 1, thus we have @`

@⌫ � 0. Since the
function is concave and increasing the maximum is attained at ⌫⇤ = 1, thus

RD,↵(X,Y ) � ` (1) =
1

2
log+

1� ⇢2

D2e2↵
, (5.30)

where the expression is valid for De↵  1 � ⇢. As stated at the beginning of the
proof, this is the correct formula assuming unit-variance sources. For sources of
variance �2, it su�ces to replace D with D/�2, which leads to the expression given
in the theorem statement.

The upper bound follows by plugging in jointly Gaussian random variables, that
was derived in in [53, Theorem 4.3].

5.5 Conclusion

For the Gaussian lossy Gray-Wyner network under symmetric mean-squared error
distortion, the rate region of the common rate versus the sum of the private rates,
is fully characterized.



Lower Bound on (relaxed) Wyner’s
Common Information 6
6.1 Introduction

Extracting and assessing common features amongst multiple variables is a natural
task occurring in many di↵erent problem settings. Wyner’s common information
in Definition 3 provides one answer to this, which was originally defined for finite
alphabets. For a pair of random variables, it seeks to find the most compact third
variable that makes the pair conditionally independent. Compactness is measured
in terms of the mutual information between the pair and the third variable. In [34],
Wyner also identifies two operational interpretations. The first concerns a source
coding network often referred to as the Gray-Wyner network. For this scenario,
Wyner’s common information characterizes the smallest common rate required to
enable two decoders to recover X and Y, respectively, in a lossless fashion. The
second operational interpretation pertains to the distributed simulation of common
randomness. Here, Wyner’s common information characterizes the smallest number
of random bits that need to be shared between the processors. In subsequent work,
Wyner’s common information was extended to continuous random variables and
was computed for a pair of Gaussian random variables [36, 37] and for a pair of
additive “Gaussian channel” distributions [38]. Other related works include [42, 23].
Wyner’s common information has many applications, including to communication
networks [34], to caching [43, Section III.C], to source coding [44], and to feature
extraction [54].

A natural extension of Wyner’s common information is given in Definition 4.
Di↵erent from Wyner’s common information the constraint of conditional indepen-
dence is relaxed into an upper bound on the conditional mutual information.

In this chapter, we derive a new lower bound 1 on relaxed Wyner’s common
information for continuous random variables. The proof is based on a method known
as factorization of convex envelopes, which was originally introduced in [27]. The
proof strategy is fundamentally di↵erent from the techniques that were used to

1The material of this chapter has appeared in
- E. Sula and M. Gastpar, “Lower bound on Wyner’s common information,” CoRR, vol.
abs/2102.08157, 2021. [Online]. Available: https://arxiv.org/abs/2102.08157.
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solve Wyner’s original common information problem. Specifically, for the latter, the
generic approach is to first characterize the class of variables that enable conditional
independence, and then inside this class to find the optimal variable. By contrast,
we lower bound the relaxed Wyner’s common information problem by a convex
problem, which we can then solve via optimizing.

We illustrate the promise of the new lower bound by considering Gaussian mix-
ture distributions. We also establish that the new lower bound is tight for a simple
case of the so-called “Gaussian channels” distribution. Here, X and Y can be writ-
ten as the sum of a single arbitrary random variable and jointly Gaussian noises. We
note that for this special case, Wyner’s common information was previously found,
using di↵erent methods, in [38].

6.1.1 Main Result

Here we present our lower bound on relaxed Wyner’s common information. The
relaxed Wyner’s common information C�(X;Y ) is given in Definition 4. The bound
is given in terms of the entropy of the pair, entropy and relaxed Wyner’s common
information for Gaussian random variables. The theorem says:

Theorem 16. Let (X,Y ) have probability density functions p
(X,Y )

that satisfy the
covariance matrix K

(X,Y )

. Let, (Xg, Yg) ⇠ N (0,K
(X,Y )

), then

C�(X;Y ) � max{C�(Xg;Yg) + h(X,Y )� h(Xg, Yg), 0}, (6.1)

where

C�(Xg;Yg) =
1

2
log+

 

1 + |⇢|
1� |⇢| ·

1�
p
1� e�2�

1 +
p
1� e�2�

!

, (6.2)

and ⇢ is the correlation coe�cient between X and Y .

The proof is given in Section 6.3. The statement of the theorem is in accordance
with max-entropy statement where the probability density functions have given co-
variances. Interestingly, once we plug in Gaussian random variables and additive
“Gaussian channel” distributions, then the bound is attained with equality.

Remark 5. For � = 0, in [34], it is showed that C(X;Y ) � I(X;Y ). In Section
6.2 we show that our lower bound from Theorem 16 can be tighter.

Remark 6. For � = 0, we have

C(X;Y ) � max{C(Xg;Yg) + h(X,Y )� h(Xg, Yg), 0}, (6.3)

and the same bound is derived in [55, Theorem 6.4.3] and [45, Theorem 1].

Remark 7. The bound of Theorem 16 can be expressed equivalently as

C�(X;Y ) � C�(Xg;Yg)�D
�

p
(X,Y )

�

�p
(X

g

,Y
g

)

�

. (6.4)
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Remark 8. The bound of Theorem 16 can be negative (if not for the correction). If
we choose X and Y to be independent, then Xg and Yg will be independent as well.
Thus, the bound in (6.4) becomes

C�(X;Y ) � �D
�

pX
�

�pX
g

�

�D
�

pY
�

�pY
g

�

, (6.5)

that is a negative bound from the positivity of the Kullback-Leibler divergence.

In the later section, we provide pairs of random variable and compute our lower
bounds on Wyner’s common information to verify the usefulness of the derived
bound.

6.2 Additive “Gaussian Channel” Distributions

In this section, we consider the distributions that are described as follows. Let
(X̂, Ŷ ) be a Gaussian distribution with mean zero and covariance matrix

K
(

ˆX, ˆY )

=

✓

1 ⇢̂
⇢̂ 1

◆

. (6.6)

Then, we consider the two-dimensional source given by

✓

X
Y

◆

=

✓

X̂

Ŷ

◆

+

✓

A
B

◆

. (6.7)

Let (A,B) be arbitrary random variables with mean zero and covariance

K
(A,B)

=

✓

�2

A r�A�B
r�A�B �2

B

◆

, (6.8)

where �A = �B and (A,B) is independent of the pair (X̂, Ŷ ). For this particular
distribution, we evaluate our lower bound in (6.1) and also provide an upper bound.

6.2.1 Lower Bound

We have that E[X] = E[Y ] = 0 and

E[X2] = E[X̂2] + E[A2] = 1 + �2

A, (6.9)

E[XY ] = E[X̂Ŷ ] + E[AB] = ⇢̂+ r�2

A. (6.10)

By symmetry E[Y 2] = E[X2] and

⇢ =
E[XY ]

p

E[X2]E[Y 2]
=

⇢̂+ r�2

A

1 + �2

A

. (6.11)
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Let ⇢ � 0 so the formula given in Theorem 16 evaluates to

C�(X;Y ) � C�(Xg;Yg) + h(X,Y )� h(Xg, Yg) (6.12)

=
1

2
log

 

1 + ⇢

1� ⇢
· 1�

p
1� e�2�

1 +
p
1� e�2�

!

+ h(X,Y )

� 1

2
log (2⇡e)2

�

(1 + �2

A)
2 � (⇢̂+ r�2

A)
2

�

(6.13)

= h(X,Y )� log
�

2⇡e(1� ⇢̂+ (1� r)�2

A

�

+
1

2
log

 

1�
p
1� e�2�

1 +
p
1� e�2�

!

.

(6.14)

where (6.13) follows from substituting forK
(X,Y )

and (6.14) follows from substituting
for ⇢ computed in (6.11).

6.2.2 Upper Bound

Next we give an upper bound on Wyner’s common information for the example of
this section. To accomplish this, rewrite the pair (X̂, Ŷ ) as

X̂ =
p
↵V + Zx,

Ŷ =
p
↵V + Zy, (6.15)

where 0  ↵  ⇢̂ where V is independent of (Zx, Zy), V ⇠ N (0, 1) and (Zx, Zy) ⇠

N
✓

0,

✓

1� ↵ ⇢̂� ↵
⇢̂� ↵ 1� ↵

◆◆

. Then, we select W to be W = (
p
↵V + A,

p
↵V +B) for

0  ↵  ⇢̂. By combining (6.7) and (6.15) we can rewrite the pair (X,Y ) as

X =
p
↵V +A+ Zx,

Y =
p
↵V +B + Zy. (6.16)

Let us compute the constraint, so we have

I(X;Y |W ) = I(
p
↵V +A+ Zx;

p
↵V +B + Zy|W ) (6.17)

= I(Zx;Zy|W ) (6.18)

= I(Zx;Zy) (6.19)

=
1

2
log

1

1�
⇣

⇢̂�↵
1�↵

⌘

2

(6.20)

= �, (6.21)

where (6.18) follows by subtracting the parts that are in the conditioning by recalling
thatW = (

p
↵V +A,

p
↵V +B), (6.19) follows from independence ofW and (Zx, Zy),

(6.20) follows from computation of the mutual information with Gaussians and (6.21)
for

↵ =
⇢̂�
p
1� e�2�

1�
p
1� e�2�

. (6.22)
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Thus, the upper bound is

C�(X;Y )  I(X,Y ;W ) (6.23)

= h(X,Y )� h(
p
↵V +A+ Zx,

p
↵V +B + Zy|W ) (6.24)

= h(X,Y )� h(Zx, Zy|W ) (6.25)

= h(X,Y )� h(Zx, Zy) (6.26)

= h(X,Y )� 1

2
log (2⇡e)2

�

(1� ↵)2 � (⇢̂� ↵)2
�

(6.27)

= h(X,Y )� 1

2
log (2⇡e)2 (1� ⇢̂)2

 

1�
p
1� e�2�

1 +
p
1� e�2�

!

. (6.28)

where (6.23) follows from the definition of C�(X;Y ) where W satisfies I(X;Y |W ) =
�, (6.24) follows by rewriting the mutual information, (6.25) follows from subtracting
the parts that are in the conditioning, (6.26) follows from independence of W and
(Zx, Zy), (6.27) follows from the Gaussian pair (Zx, Zy) and (6.28) follows from
substituting for ↵ given in (6.22).

6.2.3 Example 1

Let us choose (A,B) doubly symmetric binary distribution where p
(A,B)

(A = B =

�A) = p
(A,B)

(A = B = ��A) = 1+r
4

and p
(A,B)

(A = �B = �A) = p
(A,B)

(A = �B =

��A) = 1�r
4

. Note that for these choices, the covariance matrix of A and B is given
by Equation (6.8). If we select A = B or r = 1, this model is precisely the model
studied in Example 1. A numerical evaluation is shown in Figure 6.1.

�A
0 0.5 1 1.5 2 2.5 3

�0.5

0

0.5

1

1.5

Lower bound from Theorem 16
I(X;Y )
Upper Bound from Section 6.2.2

Figure 6.1 – The ⇤-line is the lower bound on C(X;Y ) from Theorem 16 and the
⇧-line is the upper bound on C(X;Y ) from Section 6.2.2. The dashed line is the
mutual information I(X;Y ). In this setup we plot the bounds on C(X;Y ) in nats
versus �A for ⇢̂ = 0.5 and r = 0.9.
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6.2.4 Example 2

Lemma 13. For the additive “Gaussian channel” distributions described in (6.7)
and A = B, we have

C�(X;Y ) = h(X,Y )� 1

2
log (2⇡e)2 (1� ⇢̂)2

 

1�
p
1� e�2�

1 +
p
1� e�2�

!

. (6.29)

The proof follows from the fact that the lower bound (6.14) and upper bound
(6.28) coincide when A = B, which means r = 1. For � = 0, the same result is
derived by a di↵erent approach in [38]. In Figure 6.2, we illustrate Lemma 13, for
A binary ±�A with uniform probability.

�A
0 1 2 3 4

0

0.5

1

C(X;Y )
C
0.02(X;Y )

I(X;Y )

Figure 6.2 – The o-line is the Wyner’s common information C(X;Y ) and the ⇧-line
is the relaxed Wyner’s common information C

0.02(X;Y ) for the specified Gaussian
mixture distribution. The dashed line is the mutual information I(X;Y ). In this
setup we plot the three curves in nats versus �A for ⇢̂ = 0.5.

6.3 Proof of lower bound on relaxed Wyner’s common
information

Note that the mean of the random variables does not a↵ect the Wyner’s common
information and its relaxed variant thus, we assume mean zero for both X and Y .
Also, the relaxed Wyner’s common information is invariant to scaling of X and Y .
Thus, without loss of generality we assume X and Y to be mean zero, unit variance
and correlation coe�cient ⇢, so we proceed as follows

C�(X;Y )

= inf
W :I(X;Y |W )�

I(X,Y ;W ) (6.30)

� inf
W

(1 + µ)I(X,Y ;W )� µI(X;W )� µI(Y ;W ) + µI(X;Y )� µ� (6.31)

= µ inf
W

h(X|W ) + h(Y |W )� (1 +
1

µ
)h(X,Y |W ) + h(X,Y )� µ� (6.32)
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� µ min

K0
:0�K0�

0

@1 ⇢
⇢ 1

1

A

h(X 0) + h(Y 0)� (1 +
1

µ
)h(X 0, Y 0) + h(X,Y )� µ� (6.33)

� h(X,Y ) +
µ

2
log

µ2

µ2 � 1
� 1

2
log (2⇡e)2

(1� ⇢)2(µ+ 1)

µ� 1
� µ� (6.34)

� h(X,Y )� h(Xg, Yg) + C(Xg;Yg) (6.35)

where (6.31) follows from weak duality and the bound is valid for all µ � 0; (6.32)
follows from simplification; (6.33) follows from Theorem 9 under the assumption
that µ > 1 where (X 0, Y 0) ⇠ N (0,K 0); (6.34) follows from Lemma 11 under the
assumption µ � 1

⇢ and (6.35) follows by maximizing the function

g(µ) = h(X,Y )� µ� +
µ

2
log

µ2

µ2 � 1
� 1

2
log (2⇡e)2

(1� ⇢)2(µ+ 1)

µ� 1
, (6.36)

for µ � 1

⇢ . Now we need to solve maxµ� 1
⇢

g(µ). The function g is concave in µ,

@2g

@µ2

= � 1

µ(µ2 � 1)
< 0, (6.37)

and by studying the monotonicity we obtain

@g

@µ
= �1

2
log

µ2 � 1

µ2

� �. (6.38)

Since the function is concave, the maximum is attained when the first derivative
vanishes. That leads to the optimal solution µ⇤ = 1p

1�e�2� , where µ⇤ has to satisfy

µ⇤ � 1

⇢ . Substituting for the optimal solution we get

C�(X;Y ) � g

✓

1p
1� e�2�

◆

(6.39)

= h(X,Y )� h(Xg, Yg) + C�(Xg;Yg). (6.40)

6.4 Vector Wyner’s common information

It is well-known that for n independent pairs of random variables, we have

C(Xn;Y n) =
n
X

i=1

C(Xi;Yi). (6.41)

For the proof see [56, Lemma 2] by letting � = 0.
By making use of Theorem 16 and (6.41) we can lower bound the Wyner’s

common information for n independent pairs of random variables as

C(Xn;Y n) �
n
X

i=1

C(Xg
i

;Yg
i

) + h(Xi, Yi)� h(Xg
i

, Yg
i

). (6.42)

An interesting problem is finding a bound for arbitrary (Xn, Y n), for any de-
pendencies between Xn and Y n. This is not studied here and is left for future
investigation.





Common Information Components
Analysis 7
7.1 Introduction

Understanding relations between two (or more) sets of variates is key to many tasks
in data analysis and beyond. To approach this problem, it is natural to reduce each
of the sets of variates separately in such a way that the reduced descriptions fully
capture the commonality between the two sets, while suppressing aspects that are
individual to each of the sets. This permits to understand the relation between the
two sets without obfuscation. A popular framework to accomplish this task follows
the classical viewpoint of dimensionality reduction and is referred to as Canonical
Correlation Analysis (CCA) [57]. CCA seeks the best linear extraction, i.e., we
consider linear projections of the original variates. Via the so-called Kernel trick,
this can be extended to cover arbitrary (fixed) function classes. Motivated from
CCA, we introduce a novel method of feature extraction namely common information
components analysis (CICA)1

Wyner’s common information is a well-known and established measure of the
dependence of two random variables. Intuitively, it seeks to extract a third random
variable such that the two random variables are conditionally independent given the
third, but at the same time, that third variable is as compact as possible. Com-
pactness is measured in terms of the mutual information that the third random
variable retains about the original two. The resulting optimization problem is not
a convex problem (because the constraint set is not a convex set), and therefore,
not surprisingly, closed-form solutions are rare. A natural generalization of Wyner’s
common information is obtained by replacing the constraint of conditional indepen-
dence by a limit on the conditional mutual information. If the limit is set equal to
zero, we return precisely to the case of conditional independence. Exactly like mu-
tual information, Wyner’s common information and its generalization are endowed

1The material of this chapter has appeared in
- M. Gastpar and E. Sula, “Common information components analysis,” in Proceedings of the 2020

Information Theory and Applications (ITA) Workshop, San Diego, USA, February 2020.
- E. Sula and M. Gastpar, “Common information components analysis,” Entropy Special Issue on

The Role of Signal Processing and Information Theory in Modern Machine Learning, vol. 23, no.
2, 2021.
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with a clear operational meaning. They characterize the fundamental limits of data
compression (in the Shannon sense) for a certain network situation.

7.1.1 Related Work

Connections between CCA and Wyner’s common information have been explored
in the past. It is well known that for Gaussian vectors, (standard, non-relaxed)
Wyner’s common information is attained by all of the CCA components together,
see [44]. This has been further interpreted, see e.g. [58]. Needless to say, having
all of the CCA components together essentially amounts to a one-to-one transform
of the original data into a new basis. It does not yet capture the idea of feature
extraction or dimensionality reduction. To put our work into context, it is only the
relaxation of Wyner’s common information [59, 56] that permits to conceptualize
the sequential, one-by-one recovery of the CCA components, and thus, the spirit of
dimensionality reduction.

CCA also appears in a number of other problems related to information mea-
sures and probabilistic models. For example, in the so-called Gaussian information
bottleneck problem, the optimizing solution can be expressed in terms of the CCA
components [60], and an interpretation of CCA as a (Gaussian) probabilistic model
was presented in [61].

Generalizations of CCA have appeared before in the literature. The most promi-
nent is built around maximal correlation. Here, one seeks arbitrary remappings of
the original data in such a way as to maximize their correlation coe�cient. This
perspective culminates in the well-known alternating conditional expectation (ACE)
algorithm [62].

Feature extraction and dimensionality reduction have a vast literature attached
to them and it is beyond the scope of this chapter to provide a comprehensive
overview. In a part of that literature, information measures play a key role. Promi-
nent examples are independent components analysis (ICA) [63] and the information
bottleneck [64, 65], amongst others. More recently, feature extraction alternations
via information theory are presented in [66, 67]. In [66] the estimation of Rényi’s
quadratic entropy is studied, whereas in [67] standard information theoretic mea-
sures such as Kullback-Leibler divergence are used for fault diagnosis. Other slightly
related feature extraction methods that perform dimensionality reduction on a single
dataset include [68, 69, 70, 71, 72, 73, 74]. More concretely, in [68] a sparse Sup-
port Vector Machine (SVM) approach is used for feature extraction. In [69] feature
extraction is performed via regression by using curvilinearity instead of linearity.
In [70] compressed sensing is used to extract features when the data has a sparse
representation. In [71], an invariant mapping method is invoked to map the high
dimensional data to low dimensional data that is based on a neighbourhood relation.
In [72] feature extraction is performed for a partial learning of the geometry of the
manifold. In [73] distance correlation measure (a measure with similar properties as
the regular Pearson correlation coe�cient) is proposed as a new feature extraction
method. In [74] kernel principal component analysis is used to perform feature ex-
traction and allow for the extraction of non-linearities. In [75] feature extraction is
done by a robust regression based approach and in [76] a linear regression approach
is used to extract features.
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7.1.2 Contributions

The contributions of our work are the following:

• We introduce a novel suit of algorithms, referred to as CICA. These algorithms
are characterized by a two-step procedure. In the first step, a relaxation of
Wyner’s common information is extracted. The second step can be interpreted
as a form of projection of the common information back onto the original data
so as to obtain the respective features. A free parameter � is introduced to
control the complexity of the extracted features.

• We establish that for the special case where the original data are jointly Gaus-
sian, our algorithms precisely extract the CCA components. In this case, the
parameter � determines how many of the CCA components are extracted. In
this sense, we establish a new rigorous connection between information mea-
sures and CCA.

• We present initial results on how to extend CICA to more than two variates.

• Via a number of paradigmatic examples, we illustrate that for discrete data,
CICA gives intuitively pleasing results while other methods, including CCA,
do not. This is most pronounced in a simple example with three sources
described in Section 7.7.1.

7.1.3 A Simple Example with Synthetic Data

To set the stage and in guise of an informal problem statement, let us consider a
simple example involving synthetic data. Specifically, we consider two-dimensional
data, that is, the vectors X and Y are of length 2. The goal is to extract, separately
from each of the two, a one-dimensional description in such a way as to extract the
commonality between X and Y while suppressing their individual features. For
simplicity, in the present artificial example, we will assume that the entries of the
vectors only take value in a small finite set, namely, {0, 1, 2, 3}. To illustrate the
point, we consider the following special statistical model:

X =

✓

X
1

X
2

◆

=

✓

U �X
2

X
2

◆

, (7.1)

and

Y =

✓

Y
1

Y
2

◆

=

✓

U � Y
2

Y
2

◆

, (7.2)

where U,X
2

, and Y
2

are mutually independent uniform random variables over the
set {0, 1, 2, 3} and � denotes addition modulo 4.

The reason for this special statistical structure is so that it is obvious what should
be extracted, namely, X should be reduced to U, and Y should also be reduced to
U. This reduces both X and Y to “one-dimensional” descriptions, and these one-
dimensional descriptions capture precisely the dependence between X and Y . In
this simple example, all the commonality between X and Y is captured by U. More
formally, conditioned on U, the vectors X and Y are conditionally independent.
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The interesting observation of this example is that any pair of components of X
and Y are independent of each other, such as, for example X

1

and Y
1

. Therefore, the
joint covariance matrix of the merged vector (X,Y ) is a scaled identity matrix. This
implies that any method that only uses the covariance matrix as input, including
CCA, cannot find any commonalities between X and Y in this example.

By contrast, the algorithmic procedure discussed in the present chapter will
correctly extract the desired answer. In Figure 7.1, we show numerical simulation
outcomes for a couple of approaches. Specifically, in (a), we can see that in this
particular example, CCA fails to extract the common features. This, of course,
was done on purpose: For the synthetic data at hand, the global covariance matrix
is merely a scaled identity matrix, and since CCA’s only input is the covariance
matrix, it does not actually do anything in this example. In (b), we show the per-
formance of the approximate gradient-descent based implementation of the CICA
algorithm proposed in this chapter, as detailed in Section 7.6. In this simple ex-
ample, this precisely coincides with the ideal theoretical performance of CICA as in
Generic Procedure 1, but in general, the gradient-descent based implementation is
not guaranteed to find the ideal solution.

At this point, we should stress that for such a simple example, many other ap-
proaches would also lead to the same, correct answer. One of them is maximal
correlation. In that perspective, one seeks to separately reduce X and Y by ap-
plying possibly non-linear functions f(·) and g(·) in such a way as to maximize the
correlation between f(X) and g(Y ). Clearly, for the simple example at hand, se-
lecting f(X) = X

1

�X
2

and g(Y ) = Y
1

� Y
2

leads to correlation one, and is thus a
maximizer.

Finally, the present example is also too simplistic to express the finer information-
theoretic structure of the problem. One step up is the example presented in Sec-
tion 7.5 below, where the commonality between X and Y is not merely an equality
(the component U above), but rather a probabilistic dependency.

7.2 Wyner’s Common Information and Its Relaxation

The main framework and underpinning of the proposed algorithm is Wyner’s com-
mon information given in Definition 3 and its extension given in Definition 4.

It is important to observe that the Wyner’s common information is not a convex
problem. First, we observe that I(X,Y ;W ) is indeed a convex function of p(w|x, y),
which is a well-known fact, see e.g. [4, Theorem 2.7.4]. The issue is with the con-
straint set. The set of distributions p(w|x, y) for which I(X;Y |W )  � is not a
convex set. To provide some intuition for the structure of this set, let us consider
I(X;Y |W ) as a function of p(w|x, y), and examine its (non-)convexity. The relation
between the two is described by the epigraph

epigraph{I(X;Y |W )} = {(p(w|x, y), �) : p(w|x, y) 2 P, � � I(X;Y |W )}. (7.3)

The function I(X;Y |W ) is convex in p(w|x, y) if and only if its epigraph is a convex
set which would imply that the set of distributions p(w|x, y) for which I(X;Y |W ) 
� is also convex. Now we present an example that I(X;Y |W ) is not a convex
function of p(w|x, y).
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(b) CICA

Figure 7.1 – The situation for the synthetic data as described in example described
in Section 7.1.3. Figure 7.1a shows the scatterplot for two one-dimensional features
extracted by CCA. Apparently, the approach is not able to extract the commonality
between the vectors X and Y in this synthetic example. Figure 7.1b shows the
performance of the heuristic algorithm of CICA described in Section 7.6, which in
this simple example ends up matching the ideal theoretical performance of CICA as
in Generic Procedure 1 for n = 105 data samples.

Example 3. Let the distributions p(x, y), p
1

(w|x, y), p
2

(w|x, y) be

p(x, y) =



2

5

1

10

1

10

2

5

�

, p
1

(w|x, y) =


1

4

1

4

1

4

1

4

3

4

3

4

3

4

3

4

�

, p
2

(w|x, y) =


1

2

3

4

3

4

3

4

1

2

1

4

1

4

1

4

�

,

(7.4)
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respectively. For this example, one can evaluate numerically that under p
1

(w|x, y),
we have Ip1(X;Y |W ) < 0.279 and under p

2

(w|x, y), we have Ip2(X;Y |W ) < 0.262.
By the same token, one can show that under (p

1

(w|x, y) + p
2

(w|x, y))/2, we have
I
(p1+p2)/2(X;Y |W ) > 0.274. Hence, we conclude that for this example,

I
(p1+p2)/2(X;Y |W ) >

1

2
(Ip1(X;Y |W ) + Ip2(X;Y |W )) , (7.5)

which proves that I(X;Y |W ) cannot be convex.

7.3 The Algorithm

The main technical result of this chapter is to establish that the outcome of a specific
procedure induced by the relaxed Wyner’s common information is tantamount to
CCA whenever the original underlying distribution is Gaussian. In preparation for
this, in this section, we present the proposed algorithm. In doing so, we will assume
that the distribution of the data is p(x,y). In many applications involving CCA,
the data distribution may not be known, but rather, a number of samples of X and
Y are provided, based on which CCA would then estimate the covariance matrix.
A similar perspective can be taken on our procedure, but is left for future work. A
short discussion can be found in Section 7.8 below.

7.3.1 High-level Description

The proposed algorithm takes as input the distribution p(x,y) of the data, as well
as a level �. The level � is a non-negative real number and may be thought of as a
resolution level or a measure of coarseness: If � = 0, then the full commonality (or
common information) between X and Y is extracted in the sense that conditioned
on the common information, X and Y are conditionally independent. Conversely,
if � is large, then only the most important part of the commonality is extracted.
Fixing the level �, the idea of the proposed algorithm is to evaluate the relaxed
Wyner’s Common Information of Equation (4.3) between the information sources
(data sets) at the chosen level �. This evaluation will come with an associated
conditional distribution p�(w|x, y), namely, the conditional distribution attaining
the minimum in the optimization problem of Equation (4.3). The second half of the
proposed algorithm consists in leveraging the minimizing p�(w|x, y) in such a way as
to separately reduce X and Y to those features that best express the commonality.
This may be thought of as a type of projection of the minimizing random variable
W back onto X and Y , respectively. For the case of Gaussian statistics, this can
be made precise.

7.3.2 Main Steps of the Algorithm

The algorithm proposed here starts from the joint distribution of the data, p(x,y).
Estimates of this distribution can be obtained from data samples Xn and Y n via
standard techniques. The main steps of the procedure can then be described as
follows:

Generic Procedure 1 (CICA). 1. Select a real number �, where 0  �  I(X;Y ).
This is the compression level: A low value of � represents low compression,
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and thus, many components are retained. A high value of � represents high
compression, and thus, only a small number of components are retained.

2. Solve the relaxed Wyner’s common information problem,

min
p(w|x,y)

I(X,Y ;W ) such that I(X;Y |W )  �, (7.6)

leading to an associated conditional distribution p�(w|x,y).

3. Using the conditional distribution p�(w|x,y) found in Step 2), the dimension-
reduced data sets can now be found via one of the following three variants:

a) Version 1: MAP (maximum a posteriori):

u(x) = argmax
w

p�(w|x), (7.7)

v(y) = argmax
w

p�(w|y). (7.8)

b) Version 2: Conditional Expectation:

u(x) = E[W |X = x], (7.9)

v(y) = E[W |Y = y]. (7.10)

c) Version 3: Marginal Integration:

u(x) =

Z

y

p(y)E[W |X = x,Y = y]dy, (7.11)

v(y) =

Z

x

p(x)E[W |X = x,Y = y]dx. (7.12)

The present chaper focuses on the three versions given here because for these
three versions, we can establish Theorem 17, showing that in the case of Gaussian
statistics, all three versions lead exactly to CCA. Second, we note that for concrete
examples, it is often evident which of the versions is preferable. For example, in
Section 7.5, we consider a binary example where the associated W in Step 2 of our
algorithm is also binary. In this case, Version 1 will reduce the original binary vector
X to a binary scalar, which is perhaps the most desirable outcome. By contrast,
Versions 2 and 3 require an explicit embedding of the binary example in the reals,
and will reduce the original binary vector X to a real-valued scalar, which might
not be as insightful.

7.4 For Gaussian, CICA is CCA

In this section, we consider the special case where X and Y are jointly Gaussian
random vectors. Since the mean has no bearing on either CCA or Wyner’s common
information, we will assume it to be zero in the sequel, without loss of generality. One
key ingredient for this argument is a well-known change of basis, see for example [44],
which we will now introduce in detail. Note that the mean will not change any
mutual information term, thus we assume it to be zero without loss of generality. We
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first need to introduce notation for CCA. To this end, let us express the covariance
matrices, as usual, in terms of their eigendecompositions as

K
X

= Qx

✓

⇤r
X

0
0 0n�r

X

◆

QT
x (7.13)

and

K
Y

= Qy

✓

⇤r
Y

0
0 0n�r

Y

◆

QT
y , (7.14)

where rX and rY denote the rank of K
X

and K
Y

, respectively. Starting from this,
we define the matrices

K
�1/2
X

= Qx

 

⇤�1/2
r
X

0
0 0n�r

X

!

QT
x (7.15)

and

K
�1/2
Y

= Qy

 

⇤�1/2
r
Y

0
0 0n�r

Y

!

QT
y , (7.16)

where for a diagonal matrix ⇤ with strictly positive entries, ⇤�1/2
r
Y

denotes the diago-
nal matrix whose diagonal entries are the reciprocals of the square roots of the entries
of the matrix ⇤. Using these matrices, we apply the following linear transformation

X̂ = K
�1/2
X

X (7.17)

Ŷ = K
�1/2
Y

Y . (7.18)

In the new coordinates, the covariance matrices of X̂ and Ŷ , respectively, can
be shown to be

K
ˆ

X

=

✓

Ir
X

0
0 0n�r

X

◆

(7.19)

and

K
ˆ

Y

=

✓

Ir
Y

0
0 0n�r

Y

◆

. (7.20)

Moreover, we have

K
ˆ

X

ˆ

Y

= K
�1/2
X

K
XY

K
�1/2
Y

. (7.21)

Let us denote the singular value decomposition of this matrix by

K
ˆ

X

ˆ

Y

= U⌃V H . (7.22)

where ⌃ contains, on its diagonal, the ordered singular values of this matrix, denoted
by ⇢

1

� ⇢
2

� . . . � ⇢n. Also, let us define

X̃ = UH
X̂ (7.23)

Ỹ = V H
Ŷ , (7.24)

which implies that K
˜

X

= K
ˆ

X

, K
˜

Y

= K
ˆ

Y

, and K
˜

X

˜

Y

= ⌃.
Next, we will leverage this change of basis to establish Wyner’s common in-

formation and its relaxation for the Gaussian vector case, and then to prove the
connection between Generic Procedure 1 and CCA.
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7.4.1 Wyner’s Common Information and Its Relaxation in the Gaussian
case

For the case where X and Y are jointly Gaussian random vectors, a full and explicit
solution to the optimization problem of Wyner’s common information defined in
Equation 4.3 is found in [56]. To give some high-level intuition, the proof starts
by mapping from X to X̃ and from Y to Ỹ , as in Equations (7.23)-(7.24). This
preserves all mutual information expressions as well as joint Gaussianity. Moreover,
due to the structure of the covariance matrices of the vectors X̃ and Ỹ , we have
that {(X̃i, Ỹi)}ni=1

are n independent pairs of Gaussian random variables. Thus, by
the tensorization property (see Lemma 10), the vector problem can be reduced to
n parallel scalar problems. The solution of the scalar problem is the main technical
contribution of [56], and we refer to that paper for the detailed proof.

7.4.2 CICA in the Gaussian case and the exact connection with CCA

In this section, we consider the proposed CICA algorithm in the special case where
the data distribution is p(x,y), a (multivariate) Gaussian distribution. We establish
that in this case, the classic CCA is a solution to all versions of the proposed CICA
algorithm. In this sense, CICA is a strict generalization of CCA. CCA is briefly
reviewed in Appendix 7.9.1. Leveraging the matrices U and V defined via the
singular value decomposition in Equation (7.22), CCA performs the dimensonality
reduction

u(x) = UH
k x̂ = UH

k K
�1/2
X

x (7.25)

v(y) = V H
k ŷ = V H

k K
�1/2
Y

y, (7.26)

where the matrix Uk contains the first k columns of U (that is, the k left singular vec-
tors corresponding to the largest singular values), and the matrix Vk the respective
right singular vectors. We refer to these as the “top k CCA components.”

Theorem 17. Let X and Y be jointly Gaussian random vectors. Then:

1. The top k CCA components are a solution to all three versions of Generic
Procedure 1.

2. The parameter � controls the number k as follows:

k(�) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

n, if 0  � < ng(⇢n),
n� 1, if ng(⇢n)  � < (n� 1)g(⇢n�1

) + g(⇢n),
n� 2, if (n� 1)g(⇢n�1

) + g(⇢n)  �
< (n� 2)g(⇢n�2

) + g(⇢n�1

) + g(⇢n),
...,

...,
` if (`+ 1)g(⇢`+1

) +
Pn

i=`+2

g(⇢i)  �
< `g(⇢`) +

Pn
i=`+1

g(⇢i),
...,

...,
1, if 2g(⇢

2

) +
Pn

i=2

g(⇢i)  � <
Pn

i=1

g(⇢i),
0, if

Pn
i=1

g(⇢i)  �,

(7.27)

where g(⇢) = 1

2

log 1

1�⇢2
.
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Figure 7.2 – Illustration of the function k(�) from Theorem 17 for the concrete case
where X and Y have n = 10 components each and the correlation coe�cients are
⇢m = 1/(m+ 1).

Remark 9. Note that k(�) is a decreasing, integer-valued function. An illustration
for a special case is given in Figure 7.2.

Proof. The main contribution of the theorem is the first item, i.e.,the connection
between CCA and Generic Procedure 1 in the case where X and Y are jointly
Gaussian. The proof follows along the steps of the CICA procedure: We first show
that in Step 2, when X and Y are jointly Gaussian, then the minimizing W may be
taken jointly Gaussian with X and Y . Then, we establish that in Step 3, with the
W from Step 2, we indeed obtain that the dimension-reduced representations u(x)
and v(y) turn into the top k CCA components. In detail:

Step 2 of Generic Procedure 1: The technical heavy lifting for this step in the
case where p(x,y) is a multivariate Gaussian distribution is presented in [56]. We
shall briefly summarize it here. In the case of Gaussian vectors, the solution to
the optimization problem in Equation (4.3) is most easily described in two steps.
First, we apply the change of basis indicated in Equations (7.17)-(7.18). This is
a one-to-one transform, leaving all information expressions in Equation (4.3) un-
changed. In the new basis, we have n independent pairs. By the tensorization
property (see Lemma 10), when X and Y consist of independent pairs, the solution
to the optimization problem in Equation (4.3) can be reduced to n separate scalar
optimizations. The remaining crux then is solving the scalar Gaussian version of
the optimization problem in Equation (4.3). This is done in [56, Theorem 3] via an
argument of factorization of convex envelope. The full solution to the optimization
problem is given in Equation (4.27)-(4.28). The remaining allocation problem over
the non-negative numbers �i can be shown to lead to a water-filling solution, given
in [56, Theorem 8]. More explicitly, to understand this solution, start by setting
� = I(X;Y ). Then, the corresponding C�(X;Y ) = 0 and the optimizing distri-
bution p�(w|x,y) trivializes. Now, as we lower �, the various terms in the sum in
Equation (4.27) start to become non-zero, starting with the term with the largest
correlation coe�cient ⇢

1

. Hence, an optimizing distribution p�(w|x,y) can be ex-
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pressed as W � = UH
k K

�1/2
X

X+V H
k K

�1/2
Y

Y +Z, where the matrices Uk and Vk are
precisely the top k CCA components (see Equations (7.25)-(7.26) and the following
discussion), and Z is additive Gaussian noise with mean zero, independent of X
and Y .

Step 3 of Generic Procedure 1:For the algorithm, we need the corresponding
conditional marginals, p�(w|x) and p�(w|y). By symmetry, it su�ces to prove one
formula. Changing basis as in Equations (7.17)-(7.18), we can write

E[W |X] = E[UH
k X̂ + V H

k Ŷ +Z|X̂] (7.28)

= UH
k X̂ + V H

k E[Ŷ |X̂] (7.29)

= UH
k X̂ + V H

k

✓

E[Ŷ X̂

H
]
⇣

E[X̂X̂

H
]
⌘�1

X̂

◆

(7.30)

= UH
k X̂ + V H

k K
ˆ

Y

ˆ

X

X̂ (7.31)

= UH
k X̂ +

�

K
ˆ

X

ˆ

Y

Vk

�H
X̂. (7.32)

The first summand contains exactly the top k CCA components extracted from X,
which is the claimed result. The second summand requires further scrutiny. To
proceed, we observe that for CCA, the projection vectors obey the relationship (see
Equation (7.87))

u = ↵K
ˆ

X

ˆ

Y

v, (7.33)

for some real-valued constant ↵. Thus, combining the top k CCA components, we
can write

Uk = DK
ˆ

X

ˆ

Y

Vk, (7.34)

where D is a diagonal matrix. Hence,

E[W |X] = UH
k X̂ +D�1UH

k X̂ (7.35)

= D̃UH
k X̂, (7.36)

where D̃ is the diagonal matrix

D̃ = I +D�1. (7.37)

This is precisely the top k CCA components (note that the solution to the CCA
problem (7.82) is only specified up to a scaling). This establishes the theorem for
the case of Version 2) of the proposed algorithm. Clearly, it also establishes that
p�(w|x) is a Gaussian distribution with mean given by (7.36), thus establishing the
theorem for Version 1) of the proposed algorithm. The proof for Version 3) follows
along similar lines and is thus omitted.

7.5 A Binary Example

In this section we carry through a theoretical study of a somewhat more general case
of the example discussed in Section 7.1.3 that is believed to be within the reach of
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practical data. In order to do a theoretical study we need to constrain the data into
binary for the reason that computing the Wyner’s common information for doubly
binary symmetric source is already known.

Let us illustrate the proposed algorithm via a simple example. Consider the
vector (U,X

2

, V, Y
2

) of binary random variables. Suppose that (U, V ) are a doubly
symmetric binary source. This means that U is uniform and V is the result of
passing U through a binary symmetric (“bit-flipping”) channel with flip probability
denoted by a

0

to match the notation in [34, Sec. 3]. Without loss of generality, we
may assume a

0

 1

2

. Meanwhile, X
2

and Y
2

are independent binary uniform random
variables, also independent of the pair (U, V ). We will then form the vectors X and
Y as

X =

✓

X
1

X
2

◆

=

✓

U �X
2

X
2

◆

, (7.38)

and

Y =

✓

Y
1

Y
2

◆

=

✓

V � Y
2

Y
2

◆

, (7.39)

where � denotes the modulo-reduced addition, as usual. How do various techniques
perform for this example?

• Let us first analyze the behavior and outcome of CCA in this particular exam-
ple. The key observation is that any pair amongst the four entries in these two
vectors, X

1

, X
2

, Y
1

, and Y
2

, are (pairwise) independent binary uniform random
variables. Hence, the overall covariance matrix of the merged random vector
(XT ,Y T )T is merely a scaled identity matrix. This, in turn, implies that CCA
as described in Equations (7.25) and (7.26) merely boils down to the identity
mapping. Concretely, this means that for CCA, in this example, the best one-
dimensional projections are ex aequo any pair of one coordinate of the vector
X with one coordinate of the vector Y . As we have already explain above, any
such pair is merely a pair of independent (and identically distributed) random
variables, so CCA does not extract any dependence between X and Y at all.
Of course, this is the main point of the present example.

• How does CICA perform in this example? We selected this example because
it represents one of the only cases for which a closed-form solution to the
optimization problem in Equation (7.6) is known, at least in the case � = 0.
To see this, let us first observe that in our example, we have

p(u, v, x
2

, y
2

) = p(u, v)p(x
2

)p(y
2

). (7.40)

Next, we observe that

C�(X;Y ) = C�(U,X2

;V, Y
2

) (7.41)

= C�(U ;V, Y
2

) (7.42)

= C�(U ;V ) (7.43)

where (7.42) follows from Lemma 9, Item 4, and the Markov chain X
2

� U �
(V, Y

2

) that is satisfied from (7.40). The last equation (7.43) follows from
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Lemma 9, Item 4, and the Markov chain Y
2

� V � U that is satisfied from
(7.40). That is, in this simple example, solving the optimization problem of
Equation (7.6) is tantamount to solving the optimization problem in Equa-
tion (7.43). For the latter, the solution is well known, see [34, Sec. 3]. Specif-
ically, we can express the conditional distribution p�(w|x,y) that solves the
optimization problem of Equation (7.6) and is required for Step 3 of Generic
Procedure 1 as follows:

p�=0

(w|x,y) =

8

>

>

>

>

<

>

>

>

>

:

1� ⌫, if w = 0, x
1

� x
2

= 0, y
1

� y
2

= 0,
⌫, if w = 1, x

1

� x
2

= 0, y
1

� y
2

= 0,
⌫, if w = 0, x

1

� x
2

= 1, y
1

� y
2

= 1,
1� ⌫, if w = 1, x

1

� x
2

= 1, y
1

� y
2

= 1,
1

2

, otherwise.

(7.44)

where

⌫ =
1

2
�
p
1� 2a

0

2(1� a
0

)
. (7.45)

Let us now apply Version 1 (the MAP version) of Generic Procedure 1. To
this end, we also need to calculate p�(w|x) and p�(w|y). Again, for � = 0,
these can be expressed in closed form as follows:

p�=0

(w|x) =

8

>

>

<

>

>

:

1� a
1

, if w = 0, x
1

� x
2

= 0,
a
1

, if w = 1, x
1

� x
2

= 0,
a
1

, if w = 0, x
1

� x
2

= 1,
1� a

1

, if w = 1, x
1

� x
2

= 1,

(7.46)

where

a
1

=
1

2

�

1�
p
1� 2a

0

�

. (7.47)

The formula for p�(w|y) follows by symmetry and shall be omitted. The final
step is to follow Equations (7.7)-(7.8) and find argmaxw p�=0

(w|x) for each x

as well as argmaxw p�=0

(w|y) for each y. For the example at hand, these can
be compactly expressed as

u(x) = argmax
w

p�(w|x) = x
1

� x
2

= u, (7.48)

v(y) = argmax
w

p�(w|y) = y
1

� y
2

= v, (7.49)

from the fact that 0  a
0

 1

2

that implies 0  a
1

 1

2

. Hence, we find that for
CICA as described in Generic Procedure 1, an optimal solution is to reduce
X to U and Y to V. This captures all the dependence between the vectors X
and Y , which appears to be the most desirable outcome.

As a final note, we point out that it is conceptually straightforward to evaluate
Versions 2 and 3 (conditional expectation) of Generic Procedure 1 in this
example, but this would require embedding the considered binary alphabets
into the real numbers. This makes it a less satisfying option for the simple
example at hand.
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7.6 A Gradient Descent Based Implementation

As we discussed above, in our problem, the objective is indeed a convex function
of the optimization variables (but the constraint set is not convex). Clearly, this
gives hope that gradient-based techniques may lead to interesting solutions. In this
section, we examine a first tentative implementation and check it against ground
truth for some simple examples.

For convex problems, gradient descent will guarantee convergence to the opti-
mal solution and for non-convex problems it will guarantee only local convergence.
Gradient descent runs in iterative steps, where each step does a local linear approxi-
mation and the step size depends on a learning parameter that is ↵ for our problem.
In our work we want to minimize the objective I(W ;X,Y ) when the constraint
I(X;Y |W ) is held below a ��level.

Instead we apply a variant of gradient descent where we minimize the weighted
sum of objective I(W ;X,Y ) and the constraint I(X;Y |W ), which is I(W ;X,Y ) +
�I(X;Y |W ). The parameter � will permit some control on the constraint, thus
sweeping all its possible values. We present the algorithm where C(p(w|x, y)) will
be a function of p(w|x, y) that will represent I(W ;X,Y ) and J(p(w|x, y)) will be a
function of p(w|x, y) that will represent I(X;Y |W ).

Algorithm 1: Approximate CICA Algorithm via Gradient Descent

1 Set ↵,�, error ;
2 � = � · ↵ ;
3 Initialise p(w|x, y) randomly ;
4 Initialise Cnew  1, Cold  0 ;
5 while |Cnew � Cold| > error do
6 Cold  Cnew ;

7 p(w|x, y) p(w|x, y) + ↵@C(p(w|x,y))
@p(w|x,y) + � @J(p(w|x,y))

@p(w|x,y) ; // update step

8 Cnew  C(p(w|x, y)) ;
9 Output C�  Cnew, �  J(p(w|x, y)) ;

10 Function C(p(w|x, y)) 
P

x,y,w p(w|x, y)p(x, y) log p(w|x,y)P
x

0
,y

0 p(x0,y0)p(w|x0,y0) ;

// I(W ;X,Y )
11 Function J(p(w|x, y)) 

P

x,y,w p(w|x, y)p(x, y) log p(w|x,y)p(x,y)
P

x

0
,y

0 p(x0,y0)p(w|x0,y0)P
x

00 p(w|x00,y)p(x00,y)
P

y

00 p(w|x,y00)p(y00,x) ;

// I(X;Y |W )

The exact computation of the stated update step is presented in the following
lemma.

Lemma 14 (Computation of the update step). Let p(x, y) be a fixed distribution,
then the updating steps for the gradient descent are

@C(p(w|x, y)
@p(w|x, y) = p(x, y) log

p(w|x, y)
P

x0,y0 p(x
0, y0)p(w|x0, y0) , (7.50)

@J(p(w|x, y)
@p(w|x, y) = p(x, y) log

p(w|x, y)
P

x0,y0 p(x
0, y0)p(w|x0, y0)

P

x00 p(w|x00, y)p(x00|y)
P

y00 p(w|x, y00)p(y00|x)
. (7.51)
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Proof. Let the function C be as defined above

C(p(w|x, y)) =
X

x,y,w

p(w|x, y)p(x, y) log p(w|xy)
P

x0,y0 p(w|x0, y0)p(x0, y0)
, (7.52)

and in terms of information theoretic terms the function is C(p(w|x, y)) = I(W ;X,Y ).
In addition, C(p(w|x, y)) is a convex function of p(w|x, y), shown in [4, Theorem
2.7.4]. Taking the first derivative we get

@C(p(w|x, y))
@p(w|x, y) = p(x, y) log

p(w|x, y)
P

x0,y0 p(w|x0, y0)p(x0, y0)
+ p(w|x, y)p(x, y) 1

p(w|x, y)

�
X

x00,y00

p(w|x00, y00)p(x00, y00) p(x, y)
P

x0,y0 p(w|x0, y0)p(x0, y0)
(7.53)

= p(x, y) log
p(w|x, y)

P

x0,y0 p(w|x0, y0)p(x0, y0)
. (7.54)

On the other hand, the term I(X;Y |W ) can be expressed as

I(X;Y |W ) = I(W ;X,Y )� I(W ;X)� I(W ;Y ) + I(X;Y ) (7.55)

= C(p(w|x, y))� C(p(w|x))� C(p(w|y)) + I(X;Y ). (7.56)

Taking the derivative with respect to p(w|x, y) becomes easier once I(X;Y |W ) is
written in terms of function C and we already know the derivative of C from (7.54).
Thus, the derivative would be

@J(p(w|x, y)
@p(w|x, y) =

@C(p(w|x, y))
@p(w|x, y) � @C(p(w|x))

@p(w|x, y) �
@C(p(w|y))
@p(w|x, y) (7.57)

=
@C(p(w|x, y))
@p(w|x, y) � @C(p(w|x))

@p(w|x)
@p(w|x)
@p(w|x, y) �

@C(p(w|y))
@p(w|y)

@p(w|y)
@p(w|x, y)

(7.58)

= p(x, y) log
p(w|x, y)

P

x0,y0 p(w|x0, y0)p(x0, y0)

� p(x) log
p(w|x)

P

x00 p(w|x00)p(x00)
p(y|x)� p(y) log

p(w|y)
P

y00 p(w|y00)p(y00)
p(x|y)

(7.59)

= p(x, y) log
p(w|x, y)

P

x0,y0 p(x
0, y0)p(w|x0, y0)

P

x00 p(w|x00, y)p(x00|y)
P

y00 p(w|x, y00)p(y00|x)
. (7.60)

where (7.58) is an application of the chain rule and the rest is straightforward
computation.

Remark 10. In practice, it is useful and computationally cheaper to replace the
derivative formulas in Lemma 14 by their standard approximations. That is, the
updating step in line 7 of Algorithm 1 is replaced by

@C(p(w|x, y))
@p(w|x, y) ⇡ C(p(w|x, y) +�)� C(p(w|x, y))

�
, (7.61)

@J(p(w|x, y))
@p(w|x, y) ⇡ J(p(w|x, y) +�)� J(p(w|x, y))

�
, (7.62)
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for a judicious choice of �. This is the version that was used to for Figure 7.1b,
with � = 10�3. We point out that in the general case, the error introduced by this
approximation is not bounded.

7.7 Extension to More Than Two Sources

It is unclear how one would extend CCA to more than two databases. By contrast,
for CICA, this extension is conceptually straightforward. For Wyner’s common
information, in Equation (4.1), it su�ces to replace the objective in the minimization
by I(X

1

, X
2

, . . . , XM ;W ) and to keep the constraint of conditional independence. To
obtain an interesting algorithm, we now need to relax the constraint of conditional
independence. The most natural way is via the conditional version of Watanabe’s
total correlation [77], leading to the following definition:

Definition 6 (Relaxed Wyner’s Common Information for M variables). For a fixed
probability distribution p(x

1

, x
2

, . . . , xM ), we define

C�(X1

;X
2

; . . . ;XM ) = inf I(X
1

, X
2

, . . . , XM ;W ) (7.63)

such that
PM

i=1

H(Xi|W ) �H(X
1

, X
2

, . . . , XM |W )  �, where the infimum is over
all probability distributions p(w, x

1

, x
2

, . . . , xM ) with marginal p(x
1

, x
2

, . . . , xM ).

Not surprisingly, explicit closed-form solution are di�cult to find. One simple
case appears below as part of the example presented in Section 7.7.1, see Lemma 16.
By analogy to Lemma 9, we can again state basic properties.

Lemma 15. C�(X1

;X
2

; . . . ;XM ) satisfies the following basic properties:

1. C�(X1

;X
2

; . . . ;XM ) � 1

M�1

max{
PM

i=1

H(Xi)�H(X
1

, X
2

, . . . , XM )� �, 0}.

2. C�(X1

;X
2

; . . . ;XM ) is a convex and continuous function of � for � � 0.

3. If Z �X
1

� (X
2

, . . . , XM ) forms a Markov chain, then

C�((X1

, Z);X
2

; . . . ;XM ) = C�(X1

;X
2

; . . . ;XM ). (7.64)

4. The cardinality of W may be restricted to |W| 
QM

i=1

|Xi|+ 1.

5. If fi(·) are one-to-one functions, then

C�(f1(X1

); f
2

(X
2

); . . . ; fM (XM )) = C�(X1

;X
2

; . . . ;XM ). (7.65)

6. For discrete X, we have C�(X;X; . . . ;X) = max{H(X)� �
M�1

, 0}.

Proofs for these basic properties can be found in Appendix 7.9.2.
Leveraging Definition 6, it is conceptually straightforward to extend CICA (that

is, Generic Procedure 1) to the case of M databases as follows. For completeness,
we include an explicit statement of the resulting procedure.
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Generic Procedure 2 (CICA with multiple sources). 1. Select a real number
�, where 0  � 

PM
i=1

H(Xi)�H(X
1

,X
2

, . . . ,XM ). This is the compression
level: A low value of � represents low compression, and thus, many components
are retained. A high value of � represents high compression, and thus, only a
small number of components are retained.

2. Solve the relaxed Wyner’s common information problem,

min
p(w|x1,x2,...,x

M

)

I(X
1

,X
2

, . . . ,XM ;W ) (7.66)

such that
M
X

i=1

H(Xi|W )�H(X
1

,X
2

, . . . ,XM |W )  �,

(7.67)

leading to an associated conditional distribution p�(w|x1

,x
2

, . . . ,xM ).

3. Using the conditional distribution p�(w|x1

,x
2

, . . . ,xM ) found in Step 2), the
dimension-reduced data sets can now be found via one of the following three
variants:

a) Version 1: MAP (maximum a posteriori):

ui(xi) = argmax
w

p�(w|xi), (7.68)

for i = 1, 2, . . . ,M.

b) Version 2: Conditional Expectation:

ui(xi) = E[W |Xi = xi] (7.69)

for i = 1, 2, . . . ,M.

c) Version 3: Marginal Integration:

ui(xi) =

Z

x1,...,x
i�1,xi+1,...,x

M

p(x
1

, . . . ,xi�1

,xi+1

, . . . ,xM )

E[W |X
1

= x

1

, . . . ,XM = xM ]dx
1

· · · dxi�1

dxi+1

· · · dxM (7.70)

for i = 1, 2, . . . ,M.

Clearly, Generic Procedure 2 closely mirrors Generic Procedure 1. The key
di↵erence is that there is no direct analog of Theorem 17. This is no surprise
since it is unclear how CCA would be extended to beyond the case of two sources.
Nonetheless, it would be very interesting to explore what Generic Procedure 2 boils
down to in the special case when all vectors are jointly Gaussian. At the current
time, this is unknown. In fact, the explicit solution to the optimization problem in
Definition 6 is presently an open problem.

Instead, we illustrate the promise of Generic Procedure 2 via a simple binary
example in the next section. The example mirrors some of the basic properties of
the example tackled in Section 7.5.
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7.7.1 A Binary Example With Three Sources

In this section, we develop an example with three sources that borrows some of the
ideas from the example discussed in Section 7.5. In a sense, the present example
is even more illustrative because in it, any two distinct components of the original
vectors X

1

,X
2

, and X

3

, are (pairwise) independent. Therefore, any method based
on pairwise measures, including CCA and maximal correlation, would not identify
any commonality at all. Specifically, we consider the following simple statistical
model:

X

1

=

✓

U
Z
1

◆

,X
2

=

✓

V
Z
2

◆

,X
3

=

✓

U � V
Z
3

◆

, (7.71)

where U, V, Z
1

, Z
2

, Z
3

are independent uniform binary variables and� denotes modulo-
2 addition. We observe that amongst these three vectors, any pair is independent.
This implies, for example, that any correlation-based technique (including maximal
correlation) will not identify any relevant features, since correlation is a pairwise
measure. By contrast, we can show that one output of Algorithm 2 is indeed to
select W = (U, V ), for � = 0. Thus, the algorithm would reduce each of the three
vectors to their first component, which is the intuitively pleasing answer in this case.
By going through the steps of the Generic Procedure 2, for � = 0, where the the
joint distribution satisfies

p(u, v, u� v, z
1

, z
2

, z
3

) = p(u, v, u� v)p(z
1

)p(z
2

)p(z
3

) (7.72)

we have that

C(X
1

;X
2

;X
3

) = C(U,Z
1

;V, Z
2

;U � V, Z
3

) (7.73)

= C(U ;V, Z
2

;U � V, Z
3

) (7.74)

= C(U ;V ;U � V, Z
3

) (7.75)

= C(U ;V ;U � V ) (7.76)

where we use Lemma 15, Item 3, together with the Markov chain Z
1

�U�(Z
2

, V, Z
3

, U�
V ) that follows from (7.72) to prove step (7.74). Similarly, the Markov chain
Z
2

�V �(U,Z
3

, U�V ) proves step (7.75) by making use of Lemma 15, Item 3. A sim-
ilar argument is used for the last step (7.76). Managing to compute C(U ;V ;U �V )
is equivalent to computing C(X

1

;X
2

;X
3

) and we demonstrate how to compute it
in the next part.

Lemma 16. Let U, V be independent uniform binary variables and � denotes modulo-
2 addition. Then, the optimal solution to

C�=0

(U ;V ;U � V ) = inf
W :H(U |W )+H(V |W )+H(U�V |W )�H(U,V,U�V |W )=0

I(W ;U, V, U � V )

(7.77)

is W = (U, V ) where the expression evaluates to two.

The proof is given in Appendix 7.9.3. If we apply Version 1 of Step 3 of Generic
Procedure 2, we obtain

argmax
w

p�=0

(w|x
1

) = {(u, 0), (u, 1)}, (7.78)
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that is, in this case, the maximizer is not unique. However, as we observe that the
set of maximizers is a deterministic function of u alone, it is natural to reduce as
follows:

u
1

(x
1

) = u. (7.79)

By the same token, we can reduce

u
2

(x
2

) = v, (7.80)

u
3

(x
3

) = u� v. (7.81)

In this example, it is clear that this indeed extracts all of the dependency there is
between our three sources, and thus, is the correct answer.

As pointed out above, in this simple example, any pair of the random vectors
X

1

,X
2

, and X

3

are (pairwise) independent, which implies that the classic tools
based on pairwise measures (CCA, maximal correlation) cannot identify any com-
monality between X

1

,X
2

, and X

3

.

7.8 Conclusion

We introduce a novel two-step procedure that we refer to as CICA. The first step
consists in an information minimization problem related to Wyner’s common infor-
mation, while the second can be thought of as a type of back-projection. We prove
that in the special case of Gaussian statistics, this two-step procedure precisely ex-
tracts the CCA components. A free parameter � in CICA permits to select the
number of CCA components that are being extracted. In this sense, the chapter
establishes a novel rigorous connection between CCA and information measures. A
number of simple examples are presented. It is also shown how to extend the novel
algorithm to more than two sources.

Future work includes a more in-depth study and consideration to assess the
practical promise of this novel algorithm. This will also require to move beyond the
current setting where it was assumed that the probability distribution of the data
at hand was provided directly. Instead, this distribution has to be estimated from
data, and one needs to understand what limitations this additional constraint will
end up imposing.

7.9 Appendix

7.9.1 A Brief Review of Canonical Correlation Analysis (CCA)

A brief review of CCA [57] is presented. Let X and Y be zero-mean real-valued
random vectors with covariance matrices K

X

and K
Y

, respectively. Moreover, let
K

XY

= E[XY

H ]. We first apply the change of basis as in (7.17)-(7.18). CCA seeks
to find vectors u and v such as to maximize the correlation between u

H
X̂ and

v

H
Ŷ , that is,

max
u,v

E[uH
X̂Ŷ

H
v]

q

E[|uH
X̂|2]

q

E[|vH
Ŷ |2]

, (7.82)
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which can be rewritten as

max
u,v

u

HK
ˆX ˆY v

kuk kvk , (7.83)

where

K
ˆX ˆY = K

�1/2
X

K
XY

K
�1/2
Y

. (7.84)

Note that this expression is invariant to arbitrary (separate) scaling of u and v.
To obtain a unique solution, we could choose to impose that both vectors be unit
vectors,

max
u,v:kuk=kvk=1

u

HK
ˆX ˆY v. (7.85)

From Cauchy-Schwarz, for a fixed u, the maximizing (unit-norm) v is given by

v =
KH

ˆX ˆY
u

�

�

�

KH
ˆX ˆY

u

�

�

�

, (7.86)

or equivalently, for a fixed v, the maximizing (unit-norm) u is given by

u =
K

ˆX ˆY v
�

�K
ˆX ˆY v

�

�

. (7.87)

Plugging in the latter, we obtain

max
v:kvk=1

v

HKH
ˆX ˆY

K
ˆX ˆY v

�

�K
ˆX ˆY v

�

�

, (7.88)

or, dividing through,

max
v:kvk=1

�

�K
ˆX ˆY v

�

� . (7.89)

The solution to this problem is well known: v is the right singular vector corre-

sponding to the largest singular vector of the matrix K
ˆX ˆY = K

�1/2
X

K
XY

K
�1/2
Y

.
Evidently, u is the corresponding left singular vector. Restarting again from Equa-
tion (7.82), but restricting to vectors that are orthogonal to the optimal choices of
the first round leads to the second CCA components, and so on.

7.9.2 Proof of Lemma 15

For item 1) we proceed as follows

C�(X1

;X
2

; . . . ;XM ) = inf
W :H(X1|W )+H(X2|W )+···+H(X

M

|W )

�H(X1,X2,...,X
M

|W )�

I(W ;X
1

, X
2

, . . . , XM )

(7.90)

� inf
W

L(�, p(w|x
1

, x
2

, . . . , xM )) (7.91)



7.9. Appendix 95

where we used weak duality for � � 0 and L(�, p(w|x
1

, x
2

, . . . , xM ) is

L(�, p(w|x
1

, x
2

, . . . , xM ) := I(W ;X
1

, X
2

, . . . , XM ) + �[H(X
1

|W ) +H(X
2

|W ) + . . .

+H(XM |W )�H(X
1

, X
2

, . . . , XM |W )� �]. (7.92)

By setting � = 1

M�1

, we obtain

L(
1

M � 1
, p(w|x

1

, x
2

, . . . , xM )) (7.93)

=
M

M � 1
I(W ;X

1

, X
2

, . . . , XM )

� 1

M � 1
[I(W ;X

1

) + I(W ;X
2

) + · · ·+ I(W ;XM )]

+
1

M � 1
[H(X

1

) +H(X
2

) + · · ·+H(XM )�H(X
1

, X
2

, . . . , XM )� �] (7.94)

=
1

M � 1
[I(W ;X

2

, . . . , XM |X
1

) + · · ·+ 1

M � 1
[I(W ;X

1

, . . . , XM�1

|XM )

+
1

M � 1
[H(X

1

) +H(X
2

) + · · ·+H(XM )�H(X
1

, X
2

, . . . , XM )� �], (7.95)

where the infimum of L( 1

M�1

, p(w|x
1

, x
2

, . . . , xM )) in (7.95) is attained for the triv-

ial random variable W , thus C�(X1

;X
2

; . . . ;XM ) � 1

M�1

[H(X
1

) + H(X
2

) + · · · +
H(XM )�H(X

1

, X
2

, . . . , XM )��]. Item 2) follows from a similar argument as in [34,
Corollary 4.5]. For item 3) we start by showing both sides of the inequality that will
result in equality. One side of the inequality is shown below

C�(X1

, Z;X
2

; . . . ;XM ) (7.96)

= inf
W :H(X1,Z|W )+H(X2|W )+···+H(X

M

|W )�H(X1,Z,X2,...,X
M

|W )�
I(W ;X

1

, Z,X
2

, . . . , XM ) (7.97)

= inf
W :H(X1|W )+H(X2|W )+···+H(X

M

|W )

�H(X1,X2,...,X
M

|W )+I(Z;X2,...,X
M

|X1,W )�

I(W ;X
1

, X
2

, . . . , XM ) + I(W ;Z|X
1

, X
2

, . . . , XM )

(7.98)

 C�(X1

;X
2

; . . . ;XM ) (7.99)

where the last inequality follows by restricting the possible set of W , such that W
and Z are conditionally independent given (X

1

, X
2

, . . . , XM ),

I(Z;W |X
1

, X
2

, . . . , XM ) = 0. (7.100)

From the statement of the lemma we have Z �X
1

� (X
2

, . . . , XM ),

I(Z;X
2

, . . . , XM |X
1

) = 0. (7.101)

By adding (7.100) and (7.101) we get I(Z;W,X
2

, . . . , XM |X
1

) = 0. That implies
I(Z;X

2

, . . . , XM |X
1

,W ) = 0, which appears in the constraint of (7.98). For the
other part of the inequality we proceed as follows
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C�(X1

, Z;X
2

; . . . ;XM ) (7.102)

= inf
W :H(X1|W )+H(X2|W )+···+H(X

M

|W )

�H(X1,X2,...,X
M

|W )+I(Z;X2,...,X
M

|X1,W )�

I(W ;X
1

, X
2

, . . . , XM ) + I(W ;Z|X
1

, X
2

, . . . , XM )

(7.103)

� C�(X1

;X
2

; . . . ;XM ), (7.104)

where the last part follows by relaxing the constraint set as I(Z;X
2

, . . . , XM |X
1

,W ) �
0 and by further bounding the terms in the objective, I(W ;Z|X

1

, X
2

, . . . , XM ) � 0.
Item 4) is a standard cardinality bound, following from a similar argument in [49].

Item 5) follows because all involved mutual information terms are invariant to one-
to-one transforms. For item 6) we apply the definition of relaxed Wyner’s common
information for M variables and we have

C�(X;X; . . . ;X) = inf
W :(M�1)H(X|W )�

I(X;W ) (7.105)

= H(X)� sup
W :(M�1)H(X|W )�

H(X|W ) (7.106)

= H(X)� �

M � 1
. (7.107)

7.9.3 Proof of Lemma 16

An upper bound to the problem is to pick W = (U, V ), thus

C(U ;V ;U � V )  H(U, V, U � V ) = 2. (7.108)

Another equivalent way of writing the problem is by splitting the constraint into
two constraints, as we already know that the constraint cannot be smaller than zero,
so it has to be exactly zero and it can be written in the following way

C(U ;V ;U � V ) = inf
W :I(U�V ;U,V |W )=0

I(U ;V |W )=0

I(W ;U, V, U � V ). (7.109)

By using weak duality for � � 0, a lower bound to the problem would be the
following

C(U ;V ;U � V ) � inf
W :U�W�V

I(W ;U, V, U � V ) + �[H(U, V |W ) +H(U � V |W )

�H(U, V, U � V |W )]. (7.110)

By further using the constraint U �W � V the above expression can be written as

C(U ;V ;U � V ) � inf
W :U�W�V

I(W ;U, V, U � V ) + �[H(U |W ) +H(V |W )

+H(U � V |W )�H(U, V, U � V |W )] (7.111)

= H(U, V, U � V ) + inf
W :U�W�V

�[H(U |W ) +H(V |W )]

+ �H(U � V |W )� (1 + �)H(U, V, U � V |W ) (7.112)
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� H(U, V, U � V ) + inf
˜U, ˜V

inf
W :

˜U�W� ˜V
˜U� ˜V�(

˜U, ˜V )�W

�[H(Ũ |W ) +H(Ṽ |W )]

+ �H(Ũ � Ṽ |W )� (1 + �)H(Ũ , Ṽ , Ũ � Ṽ |W ) (7.113)

= 2 + inf
˜U, ˜V

inf
W :

˜U�W� ˜V
˜U� ˜V�(

˜U, ˜V )�W

�H(Ũ � Ṽ |W )�H(Ũ |W )�H(Ṽ |W )
| {z }

r( ˜U, ˜V |W )

(7.114)

= 2 + inf
˜U, ˜V

r̆(Ũ , Ṽ ) (7.115)

where (7.113) is a consequence of allowing a minimization (if minimum exists) over
binary random variables Ũ , Ṽ and the rest of equalities is straightforward manip-
ulation. The last equation is in terms of the lower convex envelope with respect
to the distribution p

˜Up ˜V . The aim is to search for the tightest bound over � by
studying the lower convex envelope with respect to p

˜Up ˜V , which is fact for binary

and independent Ũ , Ṽ can be simplified into

�H(Ũ � Ṽ )�H(Ũ)�H(Ṽ ) = �hb(↵� + (1� ↵)(1� �))� hb(↵)� hb(�) (7.116)

where 0  ↵,�  1. Thus, inf
˜U, ˜V r̆(Ũ , Ṽ ) = inf↵,� r̆(↵,�). Note that (7.116) is a

continuous function of ↵,� so a first order and a second order di↵erentiation will
be enough to compute the lower convex envelope. As a result for � � 2, the lower
convex envelope of the right hand side of (7.116) is just zero, thus completing the
proof.





Upper Bound on Double Information
Bottleneck 8
8.1 Introduction

Information bottleneck [65] is an information theoretic measure closely related to
rate distortion theory and is defined for a pair of random variables labelled as input
and output. More precisely, we seek to compress the input such that it preserves
the maximum information about the output. The information bottleneck is defined
in [65] as

sup
T :

I(T ;X)↵
T�X�Y

I(T ;Y ) (8.1)

Recent studies have shown the usefulness and importance, however the information
bottleneck computation for a given pair of random variables is known only in special
cases. For a pair of Gaussian random variables, the information bottleneck is com-
puted in [60]. This chapter considers an extended variant of information bottleneck
that is defined below.

Definition 7. Double information bottleneck for a pair of random variables (X,Y ),
is defined as

ID(↵) = sup
(U,V ):

I(U ;X)+I(V ;Y )↵
U�X�Y�V

I(U ;V ) (8.2)

We study only the case when the pair (X,Y ) is Gaussian. While the optimal
auxiliary random variable for the standard information bottleneck turns out to be
Gaussian, for the double information bottleneck it is not generally the case.

8.2 Main Result

The main contribution of this chapter is the following theorem.
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Theorem 18. For a pair of Gaussian random variables (X,Y ) where X and Y have
unit variance, correlation coe�cient ⇢ and |⇢| � 1� e�↵, we have

ID(↵)  g
1

(↵, ⇢), (8.3)

where

g
1

(↵, ⇢) = ↵� 1

2
log

1 + |⇢|
2e�↵ � 1 + |⇢| . (8.4)

Proof. Go to Appendix 8.4.1

8.3 Result Comparison

8.3.1 Lower bound evaluated with Gaussians

Proposition 15. For a pair of Gaussian random variables (X,Y ) where X and Y
have unit variance, correlation coe�cient ⇢, we have

ID(↵) � g
2

(↵, ⇢), (8.5)

where

g
2

(↵, ⇢) =
1

2
log

1

1� ⇢2(1� e�↵)2
. (8.6)

Proof. A trivial lower bound is by setting (X,Y, U, V ) to be jointly Gaussian. For
the Markov chain U �X � Y � V to hold we need

⇢uv = ⇢ux⇢vy⇢. (8.7)

In addition, we need to satisfy the constraint

I(U ;X) + I(V ;Y ) =
1

2
log

1

1� ⇢2ux
+

1

2
log

1

1� ⇢2vy
= ↵. (8.8)

Then, by setting ⇢ux = ⇢vy, we have

⇢ux = ⇢vy =
p

1� e�↵, (8.9)

and ⇢uv = ⇢(1� e�↵) by using (8.7) and (8.9). Thus, the lower bound is

I(U ;V ) =
1

2
log

1

1� ⇢2uv
(8.10)

=
1

2
log

1

1� ⇢2(1� e�↵)2
. (8.11)
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8.3.2 (Strong) data processing inequality upper bound

Proposition 16. For a pair of Gaussian random variables (X,Y ) where X and Y
have unit variance, correlation coe�cient ⇢, we have

ID(↵)  min {g
3

(↵, ⇢), I(X;Y )} , (8.12)

where

g
3

(↵, ⇢) = ⇢2
↵

2
. (8.13)

Proof. We bound the objective I(U ;V )  I(X;Y ) by data processing inequality
(DPI), thus

ID(↵)  I(X;Y ), (8.14)

is a trivial upper bound.
For a pair of Gaussian random variables (X,Y ), where X and Y have a corre-

lation coe�cient ⇢ and U satisfies the Markov chain U � X � Y , the strong data
processing inequality in [78] implies that

⇢2I(U ;X) � I(U ;Y ). (8.15)

For the Markov chain U �X � Y � V , the constraint of ID is relaxed as follows

⇢2↵ � ⇢2I(U ;X) + ⇢2I(V ;Y ) (8.16)

� I(U ;Y ) + I(X;V ) (8.17)

� 2I(U ;V ) (8.18)

where (8.16) follows from the original constraint, (8.17) follows from strong data
processing inequality in (8.15) and (8.18) follows from data processing inequality.
Thus, I(U ;V )  ⇢2 ↵

2

and

ID(↵)  ⇢2
↵

2
. (8.19)

By combining (8.14) and (8.19) we have

ID(↵)  min
n

⇢2
↵

2
, I(X;Y )

o

. (8.20)

8.3.3 Comparison with Theorem 18

Let us compare the upper bound from Theorem 18 with the upper bound derived
from (strong) data processing inequality.

Proposition 17. For a pair of Gaussian random variables (X,Y ) where X and Y
have unit variance, correlation coe�cient ⇢ and |⇢| � 1� e�↵, we have

1. I(X;Y ) � g
1

(↵, ⇢),
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2. g
3

(↵, ⇢)  g
1

(↵, ⇢) for |⇢|  1� e�1,

where g
1

is given in Equation (8.4) and g
3

is given in Equation (8.13).

Proof. Go to Appendix 8.4.2.

Figure 8.1 makes a comparison with the previous results in the literature and
shows that the our derived upper bound is better than existing bounds in a certain
regime of ↵ and ⇢. Proposition 17, Item 2 implies that for ↵  1, the bound from
Theorem 18 is worse than the existing results, thus we choose ↵ = 2.6 and we
plot ⇢ versus ID(↵ = 2.6). A more natural plot would be, fixing ⇢ and plotting
↵ versus ID(↵), however for visual purposes prefer fixing ↵ and plotting ⇢ versus
ID(↵). One of the limits of the bound in Theorem 18 is that the bound is valid only
for 1 � ⇢ � 1 � e�↵ or in other words for 0  ↵  log 1

1�⇢ . Thus, for a fixed ↵ the
range of ⇢ is limited and for a fixed ⇢ the range of ↵ is limited. Another limit of the
bound in Theorem 18 comes from Proposition 17, Item 2 that for ↵  1 the bound
is strictly worse than existing results. In Figure 8.1 we show the dominance of the
bound for a relatively large value of ↵ only for the validity region ⇢ � 1� e�↵.

⇢

ID(↵ = 2.6)

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0.6

0.8

1

1.2

g
2

min {g
3

, I(X;Y )}
g
1

Figure 8.1 – The ⇧-line is a lower bound evaluated with jointly Gaussian auxiliaries,
the dashed line is the upper bound from (strong) data processing inequality, i.e.
min

�

⇢2 ↵
2

, I(X;Y )
 

, the +-line is the upper bound from Theorem 18. We plot the
bounds on ID(↵ = 2.6) in nats versus ⇢.

8.4 Appendix

8.4.1 Proof of Theorem 18

Let us consider the case when ⇢ � 0, thus we have

�ID(↵) = inf
(U,V ):

I(U ;X)+I(V ;Y )↵
U�X�Y�V

�I(U ;V ) (8.21)
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� inf
(U,V ):U�X�Y�V

�I(U ;V ) + �(I(U ;X) + I(V ;Y )� ↵) (8.22)

= inf
(U,V ):U�X�Y�V

I(U,X;Y |V ) + I(X;V |U)� I(X;Y )

+ �(I(U ;X) + I(V ;Y )� ↵) (8.23)

= inf
(U,V ):U�X�Y�V

�h(X,Y |U, V ) + (1� �)h(X|U) + (1� �)h(Y |V )

+ �h(X) + �h(Y )� I(X;Y )� �↵ (8.24)

� inf
(U,V ):U�X�Y�V

�h(X,Y |U, V ) + (1� �)h(X|U, V ) + (1� �)h(Y |U, V )

+ �h(X) + �h(Y )� I(X;Y )� �↵ (8.25)

� �h(X) + �h(Y )� I(X;Y )� �↵

+ (1� �) inf
(U,V )

h(X|U, V ) + h(Y |U, V )� 1

1� �
h(X,Y |U, V ) (8.26)

� �h(X) + �h(Y )� I(X;Y )� �↵

+ (1� �) · inf

K0
:0�K0�

0

@1 ⇢
⇢ 1

1

A

h(X 0) + h(Y 0)� 1

1� �
h(X 0, Y 0) (8.27)

� �1

2
log

1

1� ⇢2
� �↵+

1� �

2
log

(1� �)2

1� 2�
� �

2
log

(1� ⇢)2

1� 2�
(8.28)

where (8.22) follows from weak duality, (8.23) follows from the fact that the Markov
chain U �X � Y � V is written in terms of mutual information as

I(U,X;V, Y ) = I(X;Y ). (8.29)

Now rewrite I(U,X;V, Y ) in order to dissociate the term I(U ;V ), thus we have

I(U,X;V, Y ) = I(U,X;Y |V ) + I(X;V |U) + I(U ;V ). (8.30)

By combining (8.29) and (8.30) we get

I(U ;V ) = I(X;Y )� I(U,X;Y |V )� I(X;V |U). (8.31)

Equation (8.24) follows from rearranging the terms, (8.25) follows from condition-
ing reduces entropy i.e. h(X|U) � h(X|U, V ), (8.26) follows from relaxing the
constraint. For � � 1, from the max-entropy argument, the optimal distribution is
jointly Gaussian. The remaining case is 0 < � < 1. Equation (8.27) follows from
Theorem 9 for 0 < � < 1

2

, where (X 0, Y 0) ⇠ N (0,K 0) and (8.28) follows from Lemma
11 for �  ⇢

1+⇢ . Then, we find the tightest bound in (8.28) i.e. we maximize (8.28)

for 0 < �  ⇢
1+⇢ . Let us define

f(�) := �1

2
log

1

1� ⇢2
� �↵+

1� �

2
log

(1� �)2

1� 2�
� �

2
log

(1� ⇢)2

1� 2�
, (8.32)

thus we need to solve

max
�:0<� ⇢

1+⇢

f(�). (8.33)
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The function f is concave for 0 < �  ⇢
1+⇢ because

@2f

@�2

=
1

(1� �)(1� 2�)
 0. (8.34)

By examining the monotonicity

@f

@�
= � log

(1� ⇢)(1� �)

1� 2�
� ↵ (8.35)

where the function is concave for 0 < �  ⇢
1+⇢ , thus the maximum value is when

the first order derivative vanishes,

�⇤ =
e�↵ � 1 + ⇢

2e�↵ � 1 + ⇢
. (8.36)

Thus, we have

ID(↵)  �f(�⇤) = ↵� 1

2
log

1 + ⇢

2e�↵ � 1 + ⇢
. (8.37)

The validity condition is 0 < �⇤  ⇢
1+⇢ , that is

⇢ � 1� e�↵. (8.38)

The result for negative ⇢ follows similarly.

8.4.2 Proof of Proposition 17

Let us assume that ⇢ � 0. In order to prove Proposition 17, Item 1 we need to show
that

1

2
log

1

1� ⇢2
� ↵� 1

2
log

1 + ⇢

2e�↵ � 1 + ⇢
, (8.39)

holds for ⇢ � 1� e�↵. The above inequality is simplified as follows

(1� ⇢)(2e�↵ � 1 + ⇢)  e�2↵, (8.40)

that is further simplified as follows

(e�↵ � 1 + ⇢)2 � 0. (8.41)

Equation (8.41) holds for any ⇢ and ↵.
In order to prove Proposition 17, Item 2 we define

h(↵) := ⇢2
↵

2
� ↵+

1

2
log

1 + ⇢

2e�↵ � 1 + ⇢
. (8.42)

The function h is a convex function of ↵ because

@2h

@↵2

=
(1� ⇢)e�↵

2e�↵ � 1 + ⇢
> 0. (8.43)



8.4. Appendix 105

The possible value of ↵ are 0  ↵  log 1

1�⇢ . Observe that h(0) = 0. Note that

h
⇣

log 1

1�⇢

⌘

< 0 combined with the convexity of function h and h(0) = 0 is su�cient

to establish that h(↵)  0. Now we need to show that h
⇣

log 1

1�⇢

⌘

< 0 for ⇢ 
1� e�1. Let us compute the function h at ↵ = log 1

1�⇢ , that is

h

✓

log
1

1� ⇢

◆

=
1

2
log(1 + ⇢) +

1� ⇢2

2
log(1� ⇢). (8.44)

To show that h
⇣

log 1

1�⇢

⌘

< 0, we need to prove that

(1 + ⇢)
1

1+⇢ 
✓

1

1� ⇢

◆

1�⇢

, (8.45)

that is obtained from (8.44). Let us define, x
1

= 1+ ⇢ and x
2

= 1

1�⇢ where x
1

< x
2

.

In addition, the constraint ⇢  1�e�1, implies that x
2

< e. In order to prove (8.45),

we need to show that g(x) = x
1
x is an increasing function for 0 < x < e. We have,

@g

@x
=

1� log x

x2
x

1
x > 0, (8.46)

for 0 < x < e, thus completing the proof.





Conclusion 9
In this thesis, we solve two long-standing open problems such as Gaussian mul-
tiple access channel with feedback and Gaussian lossy Gray-Wyner network. For
the Gaussian multiple access channel with feedback we compute the sum-Capacity
under a symmetric block power constraint by proving the optimality of Gaussian
auxiliaries. For Gaussian lossy Gray-Wyner network we compute the rate region of
common rate versus sum of the private rates under symmetric mean-squared error
distortion by proving the jointly Gaussian optimality of the auxiliary random vari-
ables. Further, we study a relaxed variant of Wyner’s common information that has
an operational meaning on Gray-Wyner network. We compute the relaxed Wyner’s
common information for Gaussian random vectors and work out lower bounds for any
given distribution of the source, that are tight in certain cases. We build on relaxed
Wyner’s common information to devise a novel algorithm, the so-called common in-
formation component analysis. The proposed algorithm is able to extract common
features when two or more data are involved. The examples indicate that common
information component analysis is dominant to other methods when extracting com-
mon information between two or more data. Future research directions include the
followings.

• Asymmetric Gaussian multiple access channel with feedback: We managed to
compute the sum-Capacity when symmetric block power constraint is imposed
on each user. How to deal with asymmetric block power constraint case? In
the asymmetric case, we have derived a converse bound to the sum-Capacity,
that does not meet the achievable scheme of Kramer [12]. We believe that the
achievable scheme can be improved.

• Asymmetric Gaussian lossy Gray-Wyner network: We managed to compute
the rate region of central rate versus sum of the private rates under symmetric
distortion. A natural extension is to consider the asymmetric distortion case.
Moreover, instead of the central rate versus sum of the private rates it would be
interesting to consider the weighted sum of rates, that is to fully characterize
the rate region of Gaussian lossy Gray-Wyner network.
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• Common information component analysis of multiple data: Common informa-
tion component analysis is build upon relaxed Wyner’s common information,
which is computationally expensive. So far we have explored the algorithm for
two synthetic sets of data to demonstrate its potential. An interesting direc-
tion is to seek an e�cient implementation of common information component
analysis for two data sets or more.
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Teknik Üniversitesi, Turkey.

2013 – 2016 M.Sc in Communication Systems, École Polytechnique
Fédérale de Lausanne, Switzerland.

2016 – 2021 Ph.D. in Computer and Communication Sciences, École Poly-
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