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Abstract

In the present work, we approach two key aspects of memory formation: associative memory

and synaptic consolidation.

The storage of associative memory is commonly related to the medial temporal lobe in humans.

Experimental evidence shows that the memories of objects, people or places are represented in

this brain area by cell assemblies that respond selectively to single concepts. Neurons forming

such assemblies are called concept cells. Associations between different concepts are linked to

concept cells shared between assemblies: we refer to the number of shared neurons as the

overlap between memory engrams. The respective assemblies of two associated concepts (e.g.

Hillary and Bill Clinton) share more neurons compared to the assemblies of two unrelated

concepts (e.g. Hillary Clinton and the Eiffel tower). In particular, three characteristics of

assemblies of concept cells are important for this work: (a) they exhibit a very low mean

activity (about 0.2% of neurons respond to each concept), and (b) assemblies relative to

strongly associated concepts share about 4% of their cells, (c) assemblies relative to non-

associated concepts share less then 1% of their cells. This implies that the association between

two concepts induces a higher level of overlap between the relative memory engrams.

In parallel, theoretical studies have shown that overlaps between memory engrams are funda-

mental in the process of free recall of sequences of words. These models assume that memory

engrams have such a high mean activity that all assemblies are overlapping to a certain extent.

Associative memory is traditionally modeled through attractor neural networks. Memory

engrams are represented by binary patterns of active/silent neurons. The engrams and their

eventual overlaps are encoded into the synaptic weights structure. While there is extensive

literature on independent low-activity patterns, only a few studies can be found on correlated

patterns. Extending the existing theory to include correlation is a key missing point to answer

questions such as: How can shared concept cells encode associations? Why are 4% of neurons

shared and not more?

Using a mean-field approximation, we derive analytic equations for the network dynamics in

the case of correlated patterns. Our results provide a theoretical framework that can explain

the experimentally observed value of shared neurons. We find that for concepts represented

by realistically sparse neural assemblies there are a minimal and a maximal fraction of shared

neurons so that associations can be reliably coded. In the presence of a periodically modulated
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Abstract

signal, such as hippocampal oscillations, chains of associations can be recalled analogously to

theories of free recall of lists of memorized words.

Finally, we compare the predicted number of concepts a neuron responds to with experimental

data. We test different ways of constructing correlated patterns and confirmed the common

opinion that information in the hippocampus is non-hierarchically organised.

In the second part of the thesis, we focus on one of the processes involved in learning new stim-

uli: synaptic consolidation. We propose a model based on two coupled dynamical variables:

the fast synaptic weights and a slow internal synaptic mechanism. In classical experiments, the

consolidation of the synapse is related to the stimulation frequency and number of repetitions.

We show that it is exactly the time scale separation between the dynamics of the two variables

that determines which combination of stimulation amplitude and frequency are suitable to

elicit synaptic consolidation.

Keywords: concept cells, associations, attractor networks, dynamical systems, synaptic con-

solidation.
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Compendio

Nel presente lavoro affronto due aspetti distinti della formazione della memoria: la memoria

associativa e il consolidamento sinaptico.

Nell’uomo l’immagazzinamento della memoria associativa è comunemente collegato al lobo

temporale medio. Evidenze sperimentali mostrano che i ricordi di oggetti, persone o luoghi so-

no rappresentati in quest’area del cervello da gruppi di cellule che rispondono selettivamente

a singoli concetti. I neuroni che formano tali gruppi sono chiamati cellule-concetto.

L’associazione tra concetti diversi implica la condivisione di cellule-concetto tra gruppi di neu-

roni: il numero di neuroni condivisi tra le tracce di memoria è detto sovrapposizione. I gruppi

di cellule relativi a due concetti associati (ad esempio, Hillary e Bill Clinton) condividono più

neuroni rispetto a gruppi relativi a due concetti non associati (ad esempio Hillary Clinton e la

Torre Eiffel).

In particolare, sono tre le caratteristiche dei gruppi di cellule-concetto rilevanti ai fini di questo

lavoro: i gruppi sovrapposti (a) hanno un’attività media molto bassa (circa lo 0,2% dei neuroni

risponde a ciascun concetto), (b) i gruppi relativi a concetti associati condividono circa del

circa 4% delle loro cellule tra loro e i gruppi relativi a concetti non associati (c) condividono

meno del 1% delle loro cellule.

Parallelamente, studi teorici hanno dimostrato che le sovrapposizioni tra le tracce di memo-

ria sono fondamentali nel processo di libero richiamo di sequenze di parole. Tali modelli

teorici ipotizzano un’attività media dei gruppi così elevata che tutti i gruppi di concetti si

sovrappongono in una certa misura.

La memoria associativa è tradizionalmente modellizata attraverso reti neurali attrattive. Le

tracce della memoria e le loro eventuali sovrapposizioni sono codificate nella struttura dei

pesi sinaptici. Le tracce della memoria sono rappresentate da patterns binari di neuroni,

attivi o silenti. Sebbene esista una letteratura molto ampia su patterns indipendenti e a bassa

attività, esistono pochi studi riguardanti patterns correlati. Per rispondere a domande come:

in che modo le cellule concetto condivise possono codificare l’associazione? Perché il 4% dei

neuroni è condiviso e non di più? È necassario estendere la teoria esistente per includere la

correlazionetra patterns.

Usando un’approssimazione di campo medio, deriviamo equazioni analitiche che descrivono

la dinamicha della rete neurale nel caso di patterns correlati. I nostri risultati forniscono un
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quadro teorico che può spiegare il numero di neuroni condivisi osservato sperimentalmente.

Mostriamo che per i concetti rappresentati da gruppi di neuroni realisticamente sparsi ci

sono una frazione minima e una massima di neuroni condivisi, entro le quali le associazioni

possano essere codificate in modo affidabile. In presenza di un segnale modulato periodica-

mente, simile alle oscillazioni ippocampali, catene di associazioni possono essere ricordate

analogamente agli studi teorici del richiamo libero di di parole memorizzate.

Infine, confrontiamo il numero previsto di concetti a cui un neurone risponde con i dati speri-

mentali. Avendo testato diversi modi di costruire patterns correlati, confermiamo l’opinione

comune che le informazioni nell’ippocampo non siano organizzate gerarchicamente.

Nella seconda parte della tesi, ci concentriamo su uno dei processi coinvolti nell’apprendimen-

to di nuovi stimoli: il consolidamento sinaptico. Proponiamo un modello di consolidamento

sinaptico basato su due variabili dinamiche accoppiate: i veloci pesi sinaptici e un lento

meccanismo sinaptico interno. Negli esperimenti classici, il consolidamento della sinapsi

è correlato alla frequenza di stimolazione e al numero di ripetizioni. Dimostriamo che è

esattamente la differenza tra le velocità di evoluzione delle due variabili che determina le

combinazioni di ampiezza e frequenza di stimolazione adatte a suscitare il consolidamento

sinaptico.

Parole chiave: cellule-concetto, associazioni, reti di attrattori, sistemi dinamici, consolida-

mento sinaptico.
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1 Introduction

1.1 Associative and episodic memory

Human memory includes a wide range of cognitive processes: we are able to memorize the

map of a familiar environment or a repeated movement, so that we automatize quite complex

tasks such as navigating in a complex environment, playing a piece of music on an instrument,

or driving a car. However, when we think about memory, the first thing that comes to our mind

is the ability of memorizing and recognising familiar people, places, or objects. It is common

to use the term concept as a general term to indicate either a specific person or object or

place (Quiroga et al., 2005). The memorization of concepts involves different brain areas that

are specialized in specific sub-tasks (Shallice et al., 1994; Tulving, 2002; Cabeza et al., 2002).

In this work, we are interested in two aspect of the memory of concepts: first the ability of

remembering specific events, such as a birthday party or the moment of meeting a new person.

This fundamental skill is usually referred to as episodic memory (Tulving, 1993). Secondly, the

ability to learn and remember an association between two or more concepts (e.g. that certain

person lives in that certain street). This ability is called associative memory (Anderson and

Bower, 2014) and it is strongly related to episodic memories since the associations are learnt on

the base of a specific episode and vice-versa episodic memory works with associations (Shing

et al., 2010). For example, if we meet a new person in a specific environment we will tend to

associate the person and the place where we met him/her: “meeting person X at place Y” is a

single event. The functioning of episodic memory is also based on the overall knowledge of the

context (Hemmer and Steyvers, 2009; Mizumori, 2013). Let’s consider the following example:

if we go to a new pizzeria and we get squared pizzas, we will easily remember that pizzeria

as “the one that makes squared pizzas”. The specific shape of the pizza is not an event itself,

however the association between pizza and a round shape is already encoded in our memory

as the sum of our past experiences in eating pizza. The new restaurant breaks our expectation

of getting a round pizza and this constitutes the event which we easily remember. The two

1



Chapter 1. Introduction

examples, despite their triviality, exemplify the complexity of episodic memory, since forming

episode-based associations requires the integration of pre-processed sensory information

with emotional components (Allen et al., 2008; Murray et al., 2013). The emotional component

of an event such as attention, surprise, fear or excitement plays a fundamental role in selecting

the events worth remembering.

1.1.1 The medial temporal lobe

The Medial Temporal Lobe (MTL) is the area of the brain which includes the hippocampus and

the para-hippocampal cortex and it is classically believed to be responsible for the formation of

both new episodic memories (Rolls, 2018) and associative memory. Placed under the cerebral

cortex, the hippocampus is part of the limbic system. The main components of the complex

hippocampal structure are the dentate gyrus, and areas CA1 and CA3 (Fig. 1.1).

The hippocampus primarily receives inputs primarily from the entorhinal cortex into the

dentate gyrus. The dentate gyrus projects into the CA3 area, which is characterised by the

lack of internal topological organisation and by a dense internal recurrent connectivity. There

is evidence that CA3 behaves as an auto-association (or attractor) network, meaning that it

can reconstruct the full memory starting from a partial cue (Rolls, 2018; Rennó-Costa et al.,

2014; Wills et al., 2005). CA3 projects into CA1 which projects back to the entorhinal cortex

(Knierim, 2015; Hasselmo, 1999). However, the hippocampus also receives inputs from other

areas related to the processing of emotions, the amygdala in particular (Felix-Ortiz and Tye,

2014), which projects into the ventral hippocampus, making it a particularly suited brain area

for high-level integration of different information. Moreover, there is evidence of the role of

the hippocampus in emotion regulations (Frühholz et al., 2014; Jacobson and Sapolsky, 1991;

Koelsch et al., 2015).

Figure 1.1 – The human hippocampus and its internal structure; A) Position of the hippocam-
pus inside of the brain. B) Schematics of the hippocampal internal structure. C) A coronal
human hippocampus section. Figure arranged from (Mendis, 2016).

In Chapter 2 we are mainly going to focus on the hippocampus. However, it is important to
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underline that the hippocampus is not the only brain area involved in storing the memory

of concepts. On the contrary, such a task involves several brain areas, engaging a quite large

portion of the brain. While the hippocampus is fast in encoding new memories (Ison et al.,

2015), it is believed that strong and long-lasting memories are only possible through the

interaction between hippocampus and cortex (Eichenbaum et al., 1994). In particular, the

hippocampus is necessary for the formation of new memories, while old memories are stored

and recalled in cortical regions. This insight emerged from lesion studies such as the very

famous case of the patient H.M., who got his hippocampus removed in a surgical operation in

1957, as an attempt to cure his severe epilepsy. While he was able to recall some long term

memories acquired before the surgery, he was unable to form new ones, suggesting that the

hippocampus is necessary for the formation of new memories, but old ones are stored in

cortical regions.

There is evidence that the interaction between the hippocampus and the pre-frontal cortex

(PFC) is essential for high-level behavior and memory processes (Miller et al., 2002; Zeithamova

and Preston, 2010; Lavenex and Amaral, 2000). And it is well known that the inferotemporal

(IT) cortex plays a fundamental role in face recognition and concept memorization and it

projects directly to the MTL (Lavenex and Amaral, 2000).

In conclusion, the picture that emerges from hippocampal studies is that new memories of

concepts, association between concepts or episodes, are first created in the hippocampus. The

lack of hierarchical organisation in CA3 is believed to favor the fast creation of associations

based on events. In fact, its lack of internal structure makes it equally easy to create an

association between any pair of concepts. Later, only the memories and the associations

that are relevant over a longer time get transferred to the cortex (Squire et al., 2015). On the

contrary of CA3, the cortex is structured hierarchically, and here concepts are believed to be

stored in an organised way (engrams of related concepts are physically close to each other).

1.1.2 Encoding concepts in the human medial temporal lobe

A long line of experimental studies has partially shined light on the fundamental role of the hu-

man medial temporal lobe (MTL) in storing episodic memories (Quiroga et al., 2005; Quiroga,

2012). Such experiments were conducted on patients with pharmacologically intractable

epilepsy, to whom electrodes were implanted in order to find the seizure focus. Each electrode

is able to record activity of individual neurons around its tip. Patients are awake during the

operation and they are presented with pictures of familiar people, landmarks, celebrities and

common animals. During these experiments, scientists have found neurons that respond

selectively to specific concepts.

For this reasons, such neurons are called concept cells. Their response is invariant to the
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specific visual field, for example, a “Sidney opera house” neuron would responds equally to an

image of the famous opera house and the word “Sidney opera” written down. Each memory

item is represented by a whole assembly of concept cells (Reddy and Thorpe, 2014), and many

neurons are activated during the recall of each concept.

In a very recent study (Rey et al., 2020b), the response of concept cells was tested against

different sensory stimuli, corresponding to the same concepts: the picture, the written word

and the spoken word. It was found that the concept representation in the MTL is invariant

within the same type of representation and largely invariant across representations. For

example, different pictures of the same person elicit very similar neural responses (80% of

overlap between the activated neurons). Analogously, a picture and the written name or a

picture and the spoken name of the same person elicit similar neural responses (about 40% of

overlap between the activated neurons in the case of picture and written word and about 50%

in the case of picture and spoken word), thus concluding that representation of concepts in

the human MTL is largely sensory invariant.

Such a high-level representation of concepts is typically human, and it does not apply to

rodents, whose hippocampus seems to be more specialized in spatial representation, while

the monkey hippocampus presents a mixed representation of space and concepts (Quiroga,

2019a).

More recent studies have provided evidence that, not only the concepts themselves, but also

the associations between concepts are stored in the MTL. In (De Falco et al., 2016) the authors

show that cell assemblies encoding associated concepts (such as Hillary and Bill Clinton)

share more concept-cells than non associated cell assemblies, ans they proposed the idea

that shared concept-cell support association between concepts. If that’s the case, it should

be possible to increase the selectivity of a neuron (i.e. the number of concepts it responds

to) by artificially creating the association between two concepts during the experiment. Let’s

consider an Hillary Clinton concept-cell, we say that “Hillary Clinton” is the preferred stimulus

for that cell. All other stimuli to which the cell does not respond to are called non-preferred

stimuli. If an association is created between Hillary Clinton and a a non-preferred stimulus,

let’s say the Eiffel tower, then we expect some of the Hillary-Clinton concept-cells to start

responding to the Eiffel tower as well. The increase of neuron’s selectivity was indeed observed.

In a study (Ison et al., 2015), after identifying the preferred stimulus of a concept cell (for

example the picture of a celebrity), the scientists present to the patient a combined stimulus

in which the preferred is presented together with a non-preferred stimulus (such as a famous

landmark) in a single picture multiple times. Over the presentations, the recorded neuron

acquires selectivity to the non preferred stimuli, confirming the idea that association between

concepts is encoded in shared concept cells.
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1.2 Computational models

In the present thesis, we approach two distinct aspects of memory formation: associative

memory and synaptic consolidation. In the following, we introduce the two topics and how

they can be approached using a dynamical system methodology.

1.2.1 Attractor neural networks

When modelling associative memory, Hopfield type attractor neural networks rule the field.

While attractor neural networks are commonly refer to as “associative” memory network, they

are more precisely auto-associative networks. Auto-associative networks can reconstruct the

complete memory starting from a small cue. For example, let’s suppose that the concept of

“apple” is stored as a memory, and the network is given a picture of half an apple, or a picture

of an apple partially covered by other objects: an auto-associative network is able to retrieve

the complete memory of an apple. While there are in principle some differences between

auto-associative and associative memory, in the “Thesis contribution” session we will make

clear why attractor networks are the natural candidate to describe associative memory in the

MTL too.

In attractor neural networks, each stored concept is represented by a binary memory pattern.

Patterns represent memory engrams in the model. Going back to the previous example, let’s

suppose the concept of an apple is stored in the network, if neuron i belongs to the apple-cell-

assembly than the apple-pattern is be 1 in position i and the other way around, if neuron j

does not belong to the apple-cell-assembly than the the apple-pattern is 0 in position j .

Each pattern is an attractor of the network dynamics: if the network state correlates enough

with one of the stored memory patterns, it converges to it, until the memory is fully retrieved.

The similarity measures, also called overlaps in literature, measure the correlation between

the network state and the stored patterns. Let’s suppose the initial network state is a partially

hidden apple, then in this state the similarity measure between the network state and the

apple-memory-pattern will take some value between 0 and 1. During the process of retrieval

of the full apple-concept, the similarity measure with the apple-pattern will gradually increase,

until reaching the value of 1 corresponding to a complete retrieve of the concept. The ensemble

of similarity measures to all stored patterns constitutes a system of macroscopic variables and

their dynamical equations fully describe the network dynamics. The stable solutions of the

similarity measures’ dynamics constitute the stable states of an attractor network typically

correspond to

1. a rest state, in which all neurons are inactive and no memory is recalled;

2. single retrieving states, in which only the neurons belonging to a specific memory are
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activated. In this case, the network state strongly correlates only with the one pattern

and we say that the memory has been retrieved;

3. one of the many spurious states which correspond to some combination of a few patterns

being partially activated together.

Attractor neural networks are inspired by spin glasses theory, they initially shared the same

statistical physics approach (Hopfield, 1982, 1984; Amit et al., 1985b,a; Mézard et al., 1987).

The stable state solutions to the system are originally found in the very large network limit

with the replica theory Amit et al. (1985b,a) or, alternatively, using the cavity method, also

known as Thouless-Anderson-Palmer (TAP) equations (Mézard, 2017). Both methods rely

on the hypothesis that the connection weights are symmetrical. However, the same solution

can be found with a dynamical system approach (Shiino and Fukai, 1992). The latter method

does not require the matrix of synaptic weights to be symmetric, opening the way to more

bio-plausible asymmetric connections. Furthermore, it provides an interesting dynamical

interpretation of the system. In fact, it allows to write exact dynamical mean-field equations

for the similarity measures.

1.2.2 Models of synaptic consolidation

With synaptic consolidation, we indicate the mechanism that makes the effect of long term

potentiation (LTP) persistent on the time scale of hours. Such mechanism acts locally, and it

should not be confused with memory consolidation, which acts on the time scales of days and

involves multiple brain areas.

In synaptic consolidation experiments, extracellular stimulation is given to both pre- and post-

synaptic fibers. It is well known that, in synaptic pairing stimulation experiments, changes

in synaptic efficacies are induced by the simultaneous activation of pre- and post-synaptic

neurons. The persistence of such synaptic changes can be either short (in the order of tens of

minutes) or long (in the order of several hours). When the changes are long-lasting, the synapse

is said to be consolidated. Experiments show that, whether the synapse gets consolidated or

not, strongly depends on the frequency of the stimulation protocol.

Synaptic consolidation models range from dynamical ones (Benna and Fusi, 2016) to proba-

bilistic ones (Fusi et al., 2005), but they have one key ingredient in common: each model is

the combination of several processes that act on different time scales. Indeed the process of

synaptic consolidation involves a cascade of biochemical processes, characterised by different

speeds and it can only be captured by models that take such heterogeneity into account.
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1.3 Thesis contribution

In this work, I present two studies that tackle episodic and associative memory and synaptic

consolidation using a similar mathematical approach.

The first study (presented in Chapter 2) targets directly the question of how the MTL can

reliably encode the association between memorised concepts. We propose a model that

provides a possible explanation of how memory association is stored and recalled in the

human MTL. The model is based on a recurrent neural network and it is particularly suitable

to understand the area CA3 of the hippocampus, since it is a highly recurrent network (each

neuron receives inputs from about 30’000 others (Andersen et al., 2006)) and it has been shown

to have an auto-associative or attractor behavior (Rolls, 2007). Most theoretical models for

associative memory only consider independent memory engrams with a relative high fraction

of active neurons, while experimental studies in the MTL measured

1. a low fraction of active neurons of about 0.2% (Ison et al., 2015) and

2. a fraction of shared neurons between associated engrams significantly above chance.

This makes the introduction of overlapping low-activity memory patterns a key missing piece

of the theory. Using a mean-field type of approximation, we derive analytic equations for

the network dynamics in the case of overlapping patterns in order to answer the following

questions: How do shared neurons encode associations? How many neurons can be shared?

We show that, for memory engrams realistically sparse, there is a minimal and a maximal

critical fraction of shared neurons such that associations are reliably encoded. If the the

fraction of shared neurons is below the minimal critical value, the paradigm of free recall of

words can not be reproduced. Whereas, if the fraction of shared neurons is bigger than the

maximal critical value, the associated concepts can not be recalled individually. Moreover,

overlapping memory engrams can be constructed in several ways, for example we can start

from the hypothesis that associations have a hierarchical structure or not. To determine

which construction is the most realistic, we compare predicted number of concepts a neuron

respond to with data (De Falco et al., 2016). The non-hierarchical construction for overlapping

engrams is the best fit to the experimental data.

If only two patterns are stored it is possible to fully describe the system with the phase-plane

analysis of the similarity measure relative to the two stored patterns. This is a very convenient

tool to identify the fixed points of the systems, corresponding to stable or unstable states. The

stable states have a physical interpretation and they correspond to the rest state, the two single

retrieving state and one spurious state, in which both memories are partially recalled. Starting

from the phase-plane, it is possible to track the fixed points as a function of the correlation
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between the two stored patterns. At some critical values of correlation the retrieval state might

appear or disappear: there is a phase transition. This is equivalent to construct bifurcation

diagrams (each bifurcation corresponding to a phase transition) to identify the correlation

regime that corresponds to biologically plausible physical phases.

In the second study (presented in Chapter 3), we move to a more local aspect of memory for-

mation: synaptic consolidation. Synaptic consolidation can be observed in both hippocampus

and cortex. Our work is inspired by in vitro experiments in the hippocampus and the cortex of

mice. It is worth noticing, however, that synaptic consolidation has been especially studied in

the hippocampus where a particular role is played by acetylcholine (Hasselmo, 1999), a neuro-

transmitter that alters the available pathways between Hippocampal sub-areas. We proposed a

mathematical model for synaptic consolidation. Experiments to obtain synaptic consolidation

in vitro show that repeated stimulation is key to a long-lasting synaptic potentiation, however,

why is that so? Why a repeated stimulus is preferred to a prolonged one and what is the role of

the stimulation frequency? We propose a phenomenological model that clarifies the role of the

stimulation protocol in the slice experiments. We look at the direct consequences of time scale

separation. We simplify the system down to two coupled dynamical variables that symbolize

a fast and a slow consolidation mechanism. The system is then studied with phase-plane

analysis and we show that it can operate in different regimes depending on the stimulation

parameters, in particular the amplitude of the stimulation and the repetition frequency.
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Abstract

Memory engrams have been suggested to be the neural basis for encoding acquired concepts

into assemblies of neurons. In Human Medial Temporal Lobe, neurons forming such assem-

blies are called concept cells. Neurons that are shared between two assemblies of concept cells
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have been hypothesized to encode the association between the two concepts. Here we test this

hypothesis in a computational model of attractor neural networks. We find that for concepts

encoded in realistically sparse neural assemblies there is a minimal fraction cmin of neurons

shared between assemblies below which associations can’t be reliably coded; and a maximal

fraction cmax of shared neurons above which single concepts can no longer be retrieved. In the

presence of a periodically modulated background signal, such as hippocampal oscillations,

chains of associations can be recalled in a way similar to theories of free recall of lists of

memorized words. Model predictions on the number of concepts a neuron responds to are

compared with experimental data.
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2.2 Introduction

Human memory exploits associations between concepts. If you visited a famous place with a

friend, a postcard of that place will remind you of him or her. The episode “with my friend at

this place” has given rise to an association between two existing concepts: before the trip (the

episodic event), you already knew your friend (first concept) and had seen a photograph of the

place (second concept), but only after the trip, you associate these two concepts.

Concepts are encoded in the human Medial Temporal Lobe (MTL) by neurons, called “concept

cells”, that respond selectively and invariantly to stimuli representing a specific person or a

specific place (Quiroga et al., 2005; Ison and Quiroga, 2008; Quiroga, 2019a). Each concept

is thought to be represented by an assembly of concept cells that increases their firing rates

simultaneously. The fraction γ of neurons in the human MTL which is involved in the rep-

resentation of each concept is estimated to be be γ∼ 0.23% (Waydo et al., 2006). Under the

assumption that each memory item is represented by the activation of a fixed, but random,

subset of active neurons, a single concept is expected to activate γN neurons and two arbitrary

concepts are expected to share γ2N units, where N is the total number of neurons in the

relevant brain areas.

Experimental studies have shown that single neurons can became responsive to new concepts

while learning pairs of associations (Ison et al., 2015). Moreover, it has been estimated that

assemblies representing two arbitrary concepts share less than 1% of neurons, whereas as-

semblies representing previously associated concepts share up to 4−5% of neurons (De Falco

et al., 2016) indicating that an increased fraction of shared neurons supports the association

between concepts (De Falco et al., 2016; Rey et al., 2018, 2020a).

Intuitively, with the presence of shared neurons, the activation of a first assembly (e.g., a place)

makes it more likely to activate a second assembly (e.g., a person). However, this interpretation

poses several theoretical questions.

First, for the brain to function correctly as a memory network, it must remain possible to recall

the two associated concepts separately (e.g. place without your friend), and not automatically

the two together. However, if the concepts share too many neurons it becomes likely that

the two memory items can no longer be distinguished, but are merged into a single, broader

concept with a larger number of active neurons. We therefore ask as first question: what is

the maximally allowed fraction cmax of shared neurons between two assemblies before the

possibility of separate memory recall breaks down? Shared concept cells can be visualised as

an overlap between two memory engrams. Below the maximal fraction cmax of shared neurons,

each of the associated patterns can be recalled as a separate memory pattern, as schematically

illustrated in Fig. 2.1A.
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Second, instead of a static recall of one or the other concept, or of the two associated concepts

together, we are also able to to organize and recall temporal chain of memory items. There

is still no clear evidence on whether human MTL cells encode memories using sequential

coding or rather pattern co-activations(Quiroga, 2020). Nonetheless, associative chains are

directly linked to the psychophysics of free memory recall task (Romani et al., 2013; Recanatesi

et al., 2015, 2017; Naim et al., 2020). In this context, we ask a second question: if each concept

is represented by a small fraction γ of active neurons, is there a minimal fraction of shared

neurons necessary to enable a reliable activation of a memory chain across the associated

concepts?

Associative memory in recurrent networks, such as the area CA3 of the Hippocampus, has

been modeled with attractor neural network (Hopfield, 1982; Weisbuch and Fogelman-Soulié,

1985; Amit and Amit, 1992; Kanter and Sompolinsky, 1987; Tsodyks and Feigel’man, 1988)

where each memory item is encoded as a memory engram (Tonegawa et al., 2015; Josselyn

and Tonegawa, 2020) in a fixed random subset of neurons (called ’pattern’ in the theoretical

literature (Tsodyks and Feigel’man, 1988)) such that no pattern has an overlap above chance

with another one. Animal studies provide evidence of attractor dynamics in area CA3 (Rennó-

Costa et al., 2014; Wills et al., 2005). The few theoretical studies that considered overlapping

memory engrams (Bös et al., 1988; Boboeva et al., 2018) in the past focused on overlaps

arising from a hierarchical organization of memories. Whereas such a hierarchical approach

is suitable for modeling memory representation in the cortex, we are interested in modeling

MTL, and in particular area CA3 of the Hippocampus, where experimentally no hierarchical or

topographical organization has been observed (De Falco et al., 2016). In experiments, episodic

associations between arbitrary different concepts (such as a person and a place) - and shared

neurons in the corresponding assemblies - can be induced by joint presentation of images

representing the different concepts (Ison et al., 2015). Inspired by these experiments, we create

pairwise associations between a number of concepts by artificially introducing shared concept

cells in the model. We will talk about “overlapping engrams” if the fraction of shared concept

cells is significantly beyond the number Nγ2 of cells that are shared by chance.

Part 1 of the RESULT addresses the first question by developing a theory of stationary activity

in a network where assemblies share concept cells; Part 2 addresses the second question

and studies the dynamics of association chains in networks of adaptive neurons. Finally,

Part 3 and 4 look at the bio-plausibility of the model, first by comparing model predictions

to experimental data and second, by testing the model’s robustness to different types of

heterogeneity.
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Caption on the next page
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Figure 2.1 (previous page) – Overlapping concepts can be retrieved separately and jointly. A)
Activation of concepts (schematic). Black filled circles = inactive neurons. Yellow filled circles
= active neurons. Colored halos (red, green) represents assignment to a specific concept.
When the fraction of shared neurons is small (top row, c < cmax) the two concepts can be
recalled separately or together. If the number of shared concept cells is too large (bottom row,
c > cmax), the recall of a first concept (red) at time t = 1 leads inevitably to the activation of the
second associated concept (green). In this regime, it is impossible to reliably recall a single
concept. B) Similarity measure. If only a subset of neurons belonging to the first memory
engram is activated (top), the configuration exhibits similarities m1 < 1 and m2 ≤ c−γ

1−γ . If the
first memory is fully recalled, while memory two is not (bottom), the similarity measures are
m1 = 1 and m2 ∼ 0. C) Dynamics of the similarities for different fractions of shared neurons.
The similarities m1 (green) and m2 (red) as a function of time in a full network simulation (solid
lines) are compared to predictions of mean-field theory (dashed lines). External stimulation
is given to the units belonging to concept µ = 1 during a stimulation period (in grey), long
enough to trigger the activation of the corresponding assembly of concept cells. If c > cmax,
the assembly corresponding to concept µ= 2 gets activated without receiving any stimulation.
D) Three phase-planes of the dynamics of similarity variables m1 and m2 for different values
of fraction of shared neurons c. Arrows indicate direction and speed of increase or decrease
of the similarity variables. Intersections of blue and orange lines (the ’nullclines’ of the two
variables m1,m2) indicate fixed points, with a stability encoded by color (legend). For c = 0.3
only two stable fixed points are left. Parameters: ĥ0 = 0.25, b̂ = 100, rmax = 1, τ̂= τ= 1, α= 0,
γ= 0.002. For simulations: N = 10000, P = 2.

2.3 Results

The two questions introduced above can be summarized into a more general one: What is the

role of concept cells shared between stored memory engrams during the retrieval of concepts?

To answer this question, we consider an attractor neural network of N neurons in which P

engrams 1 ≤ µ ≤ P are stored in the form of binary random patterns (Rey et al., 2018). The

pattern~ξµ = {ξµi ∈ {0,1};1 ≤ i ≤ N } with pattern index µ represents one of the stored memory

engrams: a value ξµi = 1 indicates that neuron i is part of the stored memory engram and

therefore belongs to the assembly of concept µ, while a value of ξµi = 0 indicates that it does

not. A network that has stored P memory engrams is said to have a memory load of α= P/N .

Since concept-cells in human Hippocampus form sparse neural assemblies with a sparseness

parameter γ ∼ 0.23% (Waydo et al., 2006), we pay particular attention to the case of sparse

memory engrams. In other words, an arbitrary neuron i has a low probability γ= Prob(ξµi =
1) ¿ 1 to participate in the assembly of concept cells corresponding to memory engram µ.

The attractor neural network is implemented in a standard way (Pereira and Brunel, 2018;
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Hopfield, 1984). Each neuron, i = 1, . . . , N , is modelled by a firing rate model (Hopfield, 1984)

τ
dri

d t
=−ri +φ(hi ), (2.1)

where ri (t ) is the firing rate of neuron i and φ(h) = rmax/{1+exp[−b(h −h0)]} is the sigmoidal

transfer function, or frequency-current (f-I) curve, characterized by the firing threshold h0,

the maximal steepness b, and the maximal firing rate rmax. The patterns ~ξµ are encoded

in the synaptic weights wi j via a Hopfield-Tsodyks connectivity for sparse patterns so that

the average of synaptic weights across a large population of neurons vanishes (Tsodyks and

Feigel’man, 1988).

In attractor neural network models, memory engrams µ induce stable values r∗
µ,i of the neu-

ronal firing rates during the retrieval of a stored concept. In mathematical terms, to each

engram µ corresponds a fixed point~r∗
µ in such a way that the firing rate r∗

µ,i of neuron i is high

if ξµi = 1 and low if ξµi = 0. When the network state~r (t ) is initialized close enough to the stored

memory µ, the attractor dynamics drives the network to the retrieval state~r∗
µ characterized by

persistent activity of all those neurons that belong to the assembly of concept µ.

The similarity between the momentary network state and a stored memory µ is defined as

mµ(t ) = 1

Nγ(1−γ)rmax

N∑
j=1

(
ξ
µ

j −γ
)

r j (t ). (2.2)

The similarity measures the correlation between the firing rates {r j (t )} j=1,...,N and the stored

patterns~ξµ such that if memory concept µ is retrieved, then mµ ∼ 1 (schematics in Fig. 2.1B),

and, if no memory is recalled (resting state), then mµ ∼ 0 for all µ.

2.3.1 Critical fraction of shared neurons between memory engrams

We start with the case where only the first two assemblies of concept cells (say, one representing

a person and the other one a place) are allowed to share neurons above chance level, i.e. the

patterns~ξ1 and~ξ2 of the corresponding memory engrams are overlapping. The total number n

of shared neurons in a network of size N depends on the fraction of shared neurons c between

the two patterns and the sparsity parameter γ, i.e., n = γcN .

Let us imagine to gradually increase the fraction of shared neurons between the first two

memory engrams. At the lowest end, c = γ, the patterns~ξ1 and~ξ2 are independent, and hence

cell assemblies 1 and 2 share only a fraction of neurons corresponding to chance level. It is

well known, that in this case, each memory engram generates a separate attractive fixed-point

of the network dynamics (Tsodyks and Feigel’man, 1988) implying that the two corresponding

concepts can be retrieved separately. However, experimental data reports that, for associated
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concepts, the fraction of shared neurons c ∼ 4− 5% (De Falco et al., 2016) is much larger

than the chance level γ∼ 0.23%. This observation suggests that the patterns~ξ1 and~ξ2 of two

associated memory engrams have a fraction of shared neurons larger than chance level, c > γ.

On the other hand, in the (trivial) limit case of large fraction of shared neurons c → 1, the

two memory engrams and hence the two cell assemblies share all neurons, and it is clearly

impossible to retrieve one memory without the other.

To study the critical fraction of shared neurons cmax at which independent memory recall

breaks down, we use a mean-field approach for large networks and work in the limit N →∞.

In this limit, it is possible to fully describe the network dynamics using the similarities mµ as

the relevant macroscopic variables. Since we are interested in the retrieval process of concepts

µ=1 and 2, we assume the similarity of the present network state with other memories µ> 2

to be close to zero: we will refer to these non-activated memories as "background patterns".

Under these assumptions, we find dynamical mean-field equations that capture the network

dynamics through the similarity variables m1 and m2.

τ
dm1

d t
=−m1 +F1(m1,m2) (2.3a)

τ
dm2

d t
=−m2 +F2(m1,m2) (2.3b)

where the explicit form of the functions F1 and F2 is given in Eq. (2.11) of METHODS. Equa-

tion (2.3) represents a two-dimensional dynamical systems which can be analyzed using

phase-plane analysis. Figure 2.1D shows three phase-planes in the m1 −m2 space, each for a

different value of the fraction of shared neurons. The m1- or m2-nullclines solve dm1/d t = 0

or dm2/d t = 0 in Eq. (2.3a) and (2.3b), respectively. The intersections between the m1- and

m2-nullcline are equilibrium solutions, or fixed points, of the mean-field dynamics and are

color-coded according to their stability. For c = γ, we identify four stable fixed points: the

resting state (m1,m2) = (0,0), two single-retrieval states (m1,m2) = (1,0) and (m1,m2) = (0,1)

corresponding to the retrieval of concept µ = 1 and the retrieval of concept µ = 2, respec-

tively. Finally, there is a symmetric state which corresponds to the activation of both concepts

simultaneously, (m1 = m2. 1).

If the fraction of shared neurons c exceeds γ, the nullclines are deformed and the fixed points

are shifted. The critical value c = cmax of the fraction of shared neurons is reached if the two

single-retrieval states merge with their nearby saddle points and disappear. To compute the

numerical value of the critical fraction of shared neurons, we extract it from the bifurcation

diagram (Fig. S1). For fractions of shared neurons c > cmax only two stable fixed points are left,

the resting state and the symmetric state in which assemblies of both concepts are activated

together: this symmetric state is the theoretical description of the state that we qualitatively

predicted above where the activation of a first concept leads inevitably to the activation of the
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second, overlapping one (2.1C, bottom).

In the limit of infinite steepness b →∞, vanishing load α= 0 and vanishing sparseness γ→ 0,

the value c0
max of the critical fraction of shared neurons can be calculated analytically. Since

this value provides an upper bound of the critical fraction of shared neurons for arbitrary b,

we have the inequality (Fig. 2.2A)

cmax ≤ c0
max ≡ γ+ (1−γ)

h0

A rmax
, (2.4)

where A is a constant that regulates the strength of the synaptic connections. Further analysis

(see METHODS) shows that the stationary states of the mean-field dynamics depend – apart

from the parameters γ, c andα related to the patterns – only on two dimensionless parameters:

the rescaled firing threshold ĥ0 = h0/(A rmax) and the rescaled steepness b̂ = b · (A rmax). We

find that the critical fraction of shared neurons cmax increases with both ĥ0 and b̂ (Fig.2.2A).

We proceed by studying how the critical fraction of shared neurons varies as a function of the

memory load α= P/N (Fig. 2.2B). As we increase the load, we observe that the critical fraction

of shared neurons decreases, but very slowly so (solid grey line). This weak dependence on

network parameters is robust against two variations of the network where (i) self-interaction

of neurons is excluded; or (ii) the P −2 background patterns are also overlapping in pairs, e.g.,

pattern 3 is overlapping with pattern 4, 5 with 6, etc. For both modifications, the mean-field

equations look slightly different (METHODS) but neither modification leads to a significant

change of the critical fraction of shared neurons cmax (Fig.2.2A). In a network that has stored a

total of P memory engrams, the critical fraction of shared neurons could potentially depend on

the group size p of patterns that are all overlapping with each other. So far we have considered

p = 2. We extended the mean-field approach to the case of three and four overlapping patterns

(SI) by rewriting and adapting Eq. (2.11) to the case of three and four overlapping patterns.

Again we find that the critical correlation is not significantly influenced by the group size

p of overlapping patterns (Fig. 2.2B). The group size p can be large provided that the total

number of patterns P does not exceed the memory capacity of the network. For example,

the critical fraction of shared neurons of a network that has stored a single subgroup of 64

patterns is similar to that of a network that has stored 32 subgroups of 2 patterns. A fraction of

shared neurons c < γ corresponds to memory engrams that share less neurons than chance

level. While this regime does not seem biologically plausible, we checked that there is a value

cmin < γ below which memory retrieval is no longer possible.

Finally, we compare the mathematical results of the mean-field theory with simulations in a

network of N = 10000 neurons. In line with our main theory, we allow only pattern 1 and 2 to

be overlapping. After initializing the network in its resting state, we give an external stimulus

to all those neurons that belong to the assembly of concept µ= 1 in order to activate them. As
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Figure 2.2 – Critical fraction cmax of shared neurons depends on the neuronal f-I curve but not
on the memory load. A) Critical fraction (cmax, color code) as a function of the parameters
b̂ = b Armax (steepness) and ĥ0 = h0/(Armax) (firing threshold) of the f-I curve. The level set
is added for the indicated values of cmax. In the black area the resting state is the only stable
solution. Vertical white dashed lines indicate the asymptotic value c0

max for different values of
ĥ0. B) Critical fraction cmax of shared neurons as a function of the memory load α= P/N (left
graph) without (solid grey line) or with overlaps in pairs of two of the P −2 background patters
(dashed green line); and as a function of the number p of correlated patterns (histogram, right
graph). C) As in Fig. 2.1C, but with a large number of background patterns (α= 0.2). Network
activity exhibits only small similarity with background patterns (diversely colored lines) but
large similarity with the stimulated pattern µ= 1. Parameters (unless specified): γ = 0.002,
b̂ = 100, ĥ0 = 0.25; α= 0 in A-B. For simulations in C: N = 10000, p = 2, γ= 0.002.

predicted by the mean-field theory, for a fraction of shared neurons smaller than the critical

value, concept 2 is not activated, while for values c > cmax, the activity of the cells representing
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concept 1 triggers, after some delay, activity in the cells representing concept 2. The lag in

the activation decreases with increasing C . While in Fig. 2.1C the network has stored a very

small number of memory engrams (α= 0), the network in Fig. 2.2C has stored 2000 memory

engrams (α= 0.2), yet the time course of activation of concepts is similar.

2.3.2 Association chains

Neurons shared between memory engrams have been proposed to be the basis for the recall

of a memorized list of words (Romani et al., 2013; Recanatesi et al., 2015; Katkov et al., 2015;

Recanatesi et al., 2017; Naim et al., 2020). In order to translate this idea to chains of associated

concepts (Fig. 2.3A), we follow earlier work (Romani et al., 2013; Recanatesi et al., 2015; Katkov

et al., 2015; Recanatesi et al., 2017; Naim et al., 2020) and add two ingredients to the model of

the previous subsection. First, we add a global inhibitory feedback current, whose strength

J0(t) is periodically modulated by oscillations mimicking Hippocampal oscillatory activity.

The oscillations provide a clock signal that triggers transitions between overlapping concepts.

The importance of the global feedback signal is discussed later. Second, we add to each neuron

i an adaptation current θi (t ) in order to prevent the network state to return, after a transition,

to the previous concept. With this extended model, the network state hops from one concept

to the next (Fig. 2.3B). The next concept to be activated is the one which shares the most

concept cells with the currently active one, similar to previous models (Romani et al., 2013;

Recanatesi et al., 2015; Katkov et al., 2015; Recanatesi et al., 2017; Naim et al., 2020). Transitions

are repeated, but after some time the network state returns to one of the already retrieved

memories, leading to a periodic cycle of patterns (Romani et al., 2013) (Fig. 2.3B). In our

theory, the number of shared concept cells is identical between all pairs of concepts within the

same subgroup, so that the order of the recalled concepts depends on the initial condition. In

network simulations where concepts are represented by sparse memory engrams (γ= 0.002),

we allow a subgroup of p = 2,4 or 16 memory engrams to share a fraction of neurons of c = 0.2.

If the subgroup of overlapping engrams is small (p = 2,4), all patterns are retrieved, while

for a large group of overlapping engrams (p = 16) the cycle closes once a subgroup of the

overlapping memory engrams has been retrieved (Fig. 2.3B).

In previous studies (Romani et al., 2013; Recanatesi et al., 2015; Katkov et al., 2015; Recanatesi

et al., 2017; Naim et al., 2020), each memory engram involved a large fraction (γ = 10%) of

neurons so that transitions could rely on the number of units shared by chance. However,

given that the value of the sparsity in MTL is much smaller (γ ∼ 0.23%), it is natural to ask

whether the number of neurons shared by chance (c = γ) is sufficient to induce a sequence of

memory retrievals. Our simulations indicate that this is not the case (Fig. 2.3C): decreasing γ

leads to a gradual disruption of the sequential retrieval dynamics. Thus, in a network storing

assemblies with a realistically low sparsity γ ∼ 0.002, memory engrams with a fraction of
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shared neurons above chance are necessary for the retrieval of chains of concepts.

Figure 2.3 – Chain of associations requires shared concepts cells. A) Schematic of a chain of
association cycling between two concepts. Assignment of cells to assemblies is indicated by
halos’ color. Filled black circles indicate inactive neurons and filled white circles indicate active
neurons. The schematics corresponds to the upper line of part B. B) Full network simulation
for engrams overlapping above chance level (c = 0.2 > γ) with low sparsity (γ= 0.002). Each
line corresponds to the similarity mµ with one of the stored memory engrams as a function of
time. A subgroup of p engrams is overlapping (top to bottom: p =2,4,16. If the network state is
initialized to retrieve one of the overlapping concepts, other concepts within the subgroup
are retrieved later. C) Same as in B, but memory engrams are independent (c = γ) and only
share cells by chance. By decreasing their mean activity γ, the retrieval dynamics of a chain of
memories is disrupted. The match between mean-field theory and simulations is shown in
Fig. S5. Parameters: N = 10000, P = 16, b̂ = 100, τθ = 45, T = 0.015, TJ0 = 25.

To better understand the role of overlaps between engrams for the formation of association

chains, we extend the mean-field dynamics to include the global feedback with periodic

modulation J0(t ). Since simulations indicate that overlaps are necessary, we want to estimate
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the minimal and maximal fractions of shared neurons required to enable association chains.

Intuitively, the fractions of shared neurons should be large enough to allow the assembly of

the next concept to be activated, but not too large in order to keep concepts separated - and

avoid the merging of concepts discussed above in Figs. 2.1 and 2.2. Because, in our model, the

strength of the global inhibition J0(t) exhibits a slow periodic modulation, we consider the

dynamics as quasi-static and consider the two limit cases, one when J0 is at its maximum and

another one when J0 is at its minimum. For our parameter setting, when J0(t ) is clamped at

its minimum, the network possesses three stable states: the resting state and the two single

retrieval states. For a successful association chain, we need that concepts can be retrieved

separately. The fraction of shared neurons, cmax, that makes the two single retrieval states

disappear therefore sets the upper bound of the useful correlation range. The parameter cmax

is analogous to cmax in the previous section, but evaluated in the presence of global inhibition.

Global inhibition increases competition between activated neurons so that, compared to

Fig.2.1 two concepts cannot be retrieved simultaneously, but only one or the other or none.

Next, we consider the situation when the global inhibition is clamped at its maximum and

find the minimal fraction such that the system has, besides the resting state, a second stable

fixed point for m1 = m2 > 0 where the assemblies of both the previous and next concept are

simultaneously active at low firing rates. Since this state is necessary to enable the transition,

we call it the transition state. If the transition state is present, the network could, once global

inhibition decreases, either return from the transition state to the previous concept, or jump

to the next one (Fig. 2.4B, right side). However, in the presence of adaptation (which is

not included in the phase plane picture of Fig. 2.4), the transition to the next concept is

systematically favored because neurons participating in the assembly of the earlier concept

are fatigued. Thus, the lower bound of fraction of shared neurons cmin is the smallest overlap

such that the transition state exists, and the existence of the transition state is a necessary

condition for the formation of temporal association chains. Since in the mean-field limit,

the transition state appears only for non-vanishing c, a fraction of shared neurons above

chance level is needed to allow the hopping between concepts. In Fig. 2.4C we show the

dependence of the maximal and minimal fraction of shared concept cells upon the sparsity γ

and the steepness b: in both cases the dependence is not strong, but sparser networks lead to

a slightly smaller range of the admissible fraction c of shared neurons supporting association

chains. Importantly, the minimal fraction of shared neurons between concepts necessary to

make association chains possible is significantly above the fraction of neurons that are shared

by chance in a neural network where memory engrams correspond to a random subset of

neurons.

In conclusion, we have shown the need for correlations between memory engrams – equivalent

to a number of shared concept cells significantly above chance level – to explain the free

memory recall paradigm in recurrent networks such as the human MTL where each engram
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Figure 2.4 – Dependence of association chains on sparsity and neuronal parameters. A)
Dynamical mean-field solutions for m1 and m2 in the case of two correlated patterns. B) Phase
planes corresponding to the minimum (J0 = 0.7) and maximum (J0 = 1.2) value of inhibition
in the case of two associated patterns. C) Minimal and maximal fraction of shared concept
cells as a function of the sparsity γ and F) of the steepness b. Parameters (unless specified):
γ= 0.002, b̂ = 100, c = 0.2, θi = 0 for every i .

involves only a small fraction of neurons. The dynamics of the mean-field theory leads to

predictions that are confirmed by our simulations.

2.3.3 Comparison with experimental data

We compare the predictions of our model with experimental data using a previously published

dataset of human concept cells (De Falco et al., 2016). The dataset contains the activity of 4066

neurons recorded from the human MTL during the presentation of several visual stimuli, from

which we can extract the experimental probability that a single neuron responds to exactly

k different concepts (Fig. 2.5A, black stars). From the probability distribution, we observed

the existence of neurons responding to a large number of concepts (10 or more). We will

refer to those neurons as “hub neurons”. We want to investigate whether, and under which

conditions, our model accounts for the existence of such hub neurons. In the model, the
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probability that a neuron responds to a certain number of stimuli depends on how the pairwise

overlaps between memory engrams is built. Here we test three different algorithms to generate

correlated patterns in a network of N = 100′000 neurons. All algorithms generate random

patterns with sparsity γ = 0.2%, therefore they all assign, on average, the same number of

active neurons per pattern, when an isolated pattern is considered (Fig. 2.5B, p = 1). Moreover,

all algorithms generate an identical pairwise fraction of shared neurons between patterns

(c = 0.04) , meaning that a subgroup of only two correlated patterns involves the same number

of neurons (Fig. 2.5B, p = 2). However, given the different procedures used to generate pairwise

correlations (METHODS), each algorithm uses a different number of neurons when it generates

subgroups of p = 4 or p = 16 patterns. The indicator neuron model assumes that a small

Figure 2.5 – Comparison between theory prediction and experimental data on the number
of concept a neuron responds to. A) Probability that a neuron responds to a given number
of concepts: comparison between data and 3 different algorithms: the indicator neurons,
the iterative correlation and the hierarchical generative model. Hub neurons (right-most
data point) are defined as those responding to ≥ 10 concepts). Each algorithm was run 40
times to generate the mean and error bars (only upward bars are displayed, corresponding to
one standard deviation). B) For each of the three correlation algorithms, we generated three
subgroups of patterns containing p = 16, p = 4, or p = 2 patterns, and an isolated pattern
(p = 1). The table gives the number of neurons needed to represent each subgroup in a neural
network of 100′000 neurons if patterns have sparsity γ= 0.002 and a pairwise fraction of shared
neurons c = 0.04.

subset of neurons indicates to which group of concepts a stimulus belongs (akin to assigning a

title to each subgroup) whereas the iterative correlation model builds pairwise correlations

as new stimuli are included into a subgroup without assuming any hierarchical arrangement.

Both the indicator neuron model and the iterative correlation model predict the existence

of hub neurons, supporting the validity of our approach to model networks of concept cells.

However, the iterative correlation model better fits the data (Fig. 2.5.C) and it is the only one
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that predicts the correct probability of finding hub neurons. Since the iterative correlation

model is not based on a hierarchical generation of patterns, this suggests that the MTL encodes

large subgroups of memory engrams in a non-hierarchical way.

2.3.4 Robustness to heterogeneity

Because biological neural networks present different forms of heterogeneity, we have checked

our model’s robustness to (i) the heterogeneity of F-I curves and (ii) dilution of the number of

synaptic connections.

In the experimental data set, each neuron is characterized by different baseline firing rates

and maximal rates in response to the preferred stimulus. We therefore introduce in our model

heterogeneous F-I curves characterised by a minimum and a maximum firing rates (rmin)i

and (rmax)i respectively and renormalize the network dynamics appropriately (METHODS).

Figure 2.6A is equivalent to Fig. 2.2C but with heterogeneous F-I curves and shows that the full

network simulations are robust to heterogeneous F-I curves when recalling a single memory.

Similarly Fig. 2.6B is the equivalent of Fig. 2.3B, proving that associations chains do not get

disrupted by the introduction of heterogeneous F-I curves.

Secondly, we allow the weight matrix to be diluted. Whereas so far we have assumed an “all-

to-all” connectivity, we now introduce the dilution coefficient d , which indicates the fraction

of synaptic connections we actually allow out of all possible ones. Simulations in Fig. 2.6C

show that the model is robust for d = 0.8, i.e. after dropping 20% of all possible synaptic

connections in combination with an appropriate rescaling of the average connection strength.

We emphasize that for sparsely connected networks, the memory load α is α= P/M where M

is the mean number of connections per neuron (see SI for details).

2.4 Discussion

Our theory and simulations show that overlaps between memory engrams are a suitable

mechanism for encoding the association between concepts. Our results bridge between

observations and theories from four different fields: first, experimental observations in the

human MTL indicating that learned associations are encoded by neurons shared between

assemblies of concept cells (Quiroga et al., 2005; Quiroga, 2012, 2019b,a; De Falco et al., 2016);

second, experimental observations of memory engrams where each memory engram consists

of a set of neurons activated during a specific memory (Tonegawa et al., 2015; Josselyn and

Tonegawa, 2020); third, the theory of association chains used to explain free memory recall

(Romani et al., 2013; Recanatesi et al., 2015, 2017; Naim et al., 2020); fourth the classic theory

of attractor neural networks (Hopfield, 1982, 1984); and fifth the experimental observation

24



2.4. Discussion

Figure 2.6 – The model is robust to heterogeneity of F-I curves. Full network simulations A) in
absence of adaptation, equivalent to Fig. 2.2C, and B) in presence of adaptation and periodic
inhibition. C) The model is robust to the dilutions of the synaptic connections. Full network
simulations equivalent to Fig. 2.2C

of the number of concepts a neuron responds to. Our main result is that, in networks were

concepts are encoded by sparse assemblies, the number of shared concept cells must be above

chance level but below a maximum in order to enable a reliable implementation of association

chains. In particular, with 4-5% overlap between memory assemblies as reported in the human
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MTL (De Falco et al., 2016), association chains are possible for broad range of parameters

of f-I curves; see Figs 4C,D,E. To show this result, we have extended the classical mean-field

formalism (Amit and Amit, 1992) to the case in which memory engrams are overlapping.

Overlaps can be across pairs or larger subgroups of concepts.

We have shown how overlaps between memory engrams influence the retrieval of patterns

in two different setups. In the first set-up, we have analyzed the recall of a single concept

that shares concept cells with a second concept and computed the critical fraction of shared

neurons of memory engrams above which concepts can no longer be recalled individually

but effectively act as one unified enlarged concept. Despite the fact that memory patterns in

the area CA3 of the Hippocampus are known to be very sparse, (for human hippocampus it is

debated whether dentate gyrus provides additional orthogonalization (see (Marr and Thach,

1969; Marr et al., 1971) vs (Quiroga, 2020)) Hebbian learning could induce overlaps between a

small number of specific memories engrams by shared concept cells (De Falco et al., 2016).

The existence of a critical maximal fraction of shared neurons implies that Hebbian learning

must work with an intrinsic control mechanism so as to avoid unwanted merging of separate

concepts.

The second set-up is that of association chains that could form the basis of a “stream of

thought” where the direction of transitions from one concept to the next is based on learned

associations, e.g., as experienced in episodic memory. Our network dynamics is inspired

by the model of Romani and Tsodyks (Romani et al., 2013) and follow-up studies from the

same group (Recanatesi et al., 2015, 2017; Naim et al., 2020). These studies give a theoretical

explanation of the number of words (and their distribution) typically recalled after memorizing

a list of words. Transitions between words depend on the number of shared units between

the stored memory engrams. Even though in the Romani-Tsodys model memory engrams are

independent, finite size effects make some pairs of engrams share neurons above chance level

which enables sequential recall in the presence of a periodic background input. In contrast to

their work on list of words, we ask if such a network is suitable to model association chains

in the human MTL where memory representation is extremely sparse (γ≈ 0.23%). We find

that, in the limit of large networks, neurons shared by chance are not enough to reliably

induce the retrieval of a chain of concepts. Therefore, we extend our mean-field theory to the

case of time-dependent periodic background input and prove that overlaps between memory

engrams can restore the stream of thought dynamics in both the high sparsity and big networks

regimes. For sparse memory engrams, encoding associations with overlaps ensures that only

learned associations, based on real-life episodes, influence the recall dynamics, excluding the

possibility of randomly formed associations.

In our model, we trigger transitions in the association chain by an oscillatory background sim-

ilar to the Romani-Tsodyks model (Romani et al., 2013), but other mechanisms for triggering
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transitions are also possible. For example, in the Russo-Treves model (Russo et al., 2008; Russo

and Treves, 2012; Akrami et al., 2012) the switch from one pattern to the next is triggered by

two adaptation mechanisms that act on different time scales without the need of periodic

inhibition.

2.4.1 Bio-plausibility and parameter choice

Attractor networks are suitable candidate models for associative memory because they present

two features: (i) memory retrieval after stimulation with a partial cue and (ii) sustained activity

after a stimulus has been removed. Many steps have been taken to increase the bio-plausibility

of attractor models, beyond the Hopfield model (Hopfield, 1982, 1984). Two steps have been

the storage of {0,1}-patterns of sparsity γ¿ 1 (Tsodyks and Feigel’man, 1988) and the switch

from all-to-all connectivity in rate networks to random connectivity in spiking networks (Amit

and Brunel, 1997). Moreover, the requirement of symmetric connections is also obsolete,

because the same mean-field equations classically derived with the replica theory (Amit et al.,

1987) or cavity method (Mézard et al., 1987; Shamir and Sompolinsky, 2000), can alternatively

be derived with dynamical systems arguments that do not require the weight matrix to be

symmetric (Shiino and Fukai, 1992). In this work, we store sparse binary {0,1}-patterns and

use the dynamical approach to derive the mean-field equations of the system. Even though

we use a fully connected and symmetric synaptic weight matrix in part 1 and 2 of RESULTS,

these characteristics are not a necessary requirement in any of the derivations and we show in

Part 3 of the RESULTS that the model is robust to a random (non-symmetric) dilution of the

synaptic weight matrix.

The maximal number of patterns that can be stored in an attractor neural networks has

attracted a lot of research (Amit et al., 1985b; Amit and Amit, 1992; Tsodyks and Feigel’man,

1988). However, does the hippocampus actually operate in the regime of high memory load?

Let’s estimate an upper bound for the loadα in the area CA3 of the Hippocampus as follows: an

adult human can recognize at most about P ≈ 3 ·104 objects (Biederman, 1987) (which is also

about the number of words a native English speaker knows according to The Economist, Lexical

Facts). In CA3 there are about 2.7×106 neurons (and 34×106 in the whole Hippocampus)

(Harding et al., 1998), each receiving inputs from about M =30000 other neurons (Andersen

et al., 2006). For sparsely connected networks the load is defined by comparing the number

of patterns P with the number of connections M per neuron α= P/M . Hence we estimate

a load 1 < α < 5 if concepts are stored in area CA3 – and our theory incorporates such a

high load. For full connectivity (M = N ) and sparse memory engrams (γ¿ 1), the maximum

capacity predicted by the mean-field theory is larger than α= 1 (Amit et al., 1987; Tsodyks and

Feigel’man, 1988; Weisbuch and Fogelman-Soulié, 1985), it is, in principle, possible to store

more patterns than neurons.
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In the first section of the RESULTS, we find that the maximal number of neurons which two

concepts can share before they effectively merge into a single concept mainly depends on two

dimensionless parameters: the rescaled threshold ĥ0 = h0/(Armax) and the rescaled steepness

b̂ = Armaxb. Such parameters have so far not being estimated for the human CA3 area of the

Hippocampus or for the MTL in general. A technique for extracting these parameters in-vivo

is proposed inc(Pereira and Brunel, 2018) where they were able to fully characterize the gain

function of pyramidal neurons of the macaque’s IT cortex.

In the absence of a similar quantification for the human Hippocampus, we calculate in Fig. 2.2b

the critical number of shared neurons as a function of ĥ0 and b̂ over a plausible range of the

two parameters. Secondly, real neurons are characterized by different levels of responsiveness:

we modeled such variety with heterogeneous F-I curves and showed that the model is robust

to it.

Finally, by comparing the experimental measured number of concepts a neurons responds

to and model predictions we see that the model can predict the number of hub-neurons

quite accurately. The choice of how to build engrams overlaps plays a key role in fitting the

experimental data and confirms the idea that memory engrams in the Hippocampus are not

hierarchically organised.

2.5 Methods

We consider an attractor neural network of N rate units with firing rates ri , in which P memory

engrams are stored. Each engram 1 ≤ µ ≤ P consists of a binary random pattern ξ
µ

i ∈ {0,1}

where the index i runs over all neurons 1 ≤ i ≤ N . For fixed µ, the set of numbers {ξµi }i=1,..,N

is in the following called the pattern µ. Each neuron follows the rate dynamics of Eq. (2.1).

The connection matrix wi j contains the synaptic weights from neurons j to neurons i and is

defined as (Tsodyks and Feigel’man, 1988; Pereira and Brunel, 2018)

wi j = A

Nγ(1−γ)

P∑
µ

(
ξ
µ

j −γ
)(
ξ
µ

i −γ)
(2.5)

where the constant A can be interpret as the global scale of “connection strength”. Subtract-

ing in Eq. (2.5) the expected number of ones in the random patterns, 〈ξµi 〉 = γ, guarantees

that
〈

wi j
〉= 0, where 〈 .〉 indicates expectation over the random numbers that make up the

patterns.
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2.5.1 Model without adaptation and global feedback

For deriving the results in Figs. 2.1 - 2.2, the total input driving neuron i is

hi (t ) =∑
j

wi j r j (t )+ Ii (t ) =∑
p

(ξµi −γ)mµ(t )+ Ii (t ) (2.6)

where Ii is the external input. The similarity measure (also called “overlap” in the attractor

network literature) mµ measures the similarity (correlation) of the current network state with

pattern µ; cf. Eq. (2.2). In Figs. 1C 2C and 6 the external input Ii = I extξ1
i is positive during

stimulation for all neurons that belong to the assembly of pattern µ= 1.

2.5.2 Model with adaptation and global inhibitory feedback

For Fig. 2.3 of RESULTS, we added adaptation and a global inhibitory feedback to the model as

described in previous studies (Romani et al., 2013; Recanatesi et al., 2015, 2017; Naim et al.,

2020). Specifically, we add two negative feedback terms to the input potential:

hi (t ) =
N∑

j=1
wi j r j (t )−θi (t )− J0(t )

γN

N∑
j=1

r j (t ), (2.7)

First, the variable θi (t ) models neuron-specific firing-rate adaptation via the first-order kinet-

ics

τθ
dθi

d t
=−θi +Dθri . (2.8)

Here, τθ is the adaptation time constant and Dθ determines the strength of adaptation. Note

that this adaptation model with a hyperpolarizing feedback current is equivalent to a model in

which adaptation is implemented as an increase in the threshold h0 +θi (t ).

Second, the global inhibitory feedback term proportional to J0(t ) (third term in (2.7)) provides

a clock signal that triggers transitions betweeen attractors. Importantly, inhibition propor-

tional to the summed activity of the network units penalizes network configurations with

many active neurons and therefore reduces stability of the fused state where two memories

are merged during retrieval. Here, the strength J0(t) of the global feedback is modulated

periodically between values 0.7 and 1.2 with a sinusoidal time course of period TJ0 that sets

the time scale of transitions between memories.

Note that the model without adaptation and global feedback is a special case of the full model

and found by setting Dθ = 0 and J0(t ) ≡ 0.
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2.5.3 Mean-field equations for two overlapping patterns

We introduce correlation between two of the stored patterns. Without loss of generality,

we take patterns~ξ1 and~ξ2 to be correlated, while all other P −2 patterns are independent.

We define the correlation between the two patterns as the Pearson correlation coefficient

(covariance/variance):

C = Cov(ξ1
i ,ξ2

i )

Var(ξµi )
= P11 −γ2

γ(1−γ)
, (2.9)

where P11 = P (ξ1
i = 1,ξ2

i = 1) = 〈ξ1
i ·ξ2

i 〉 is the joint probability of a neuron to be selective to both

patterns. We generate correlated patterns with mean activity
〈
ξ1

i

〉
i
= 〈

ξ2
i

〉
i
= γ and correlation

coefficient C , using the procedure described in SI. The fraction c of shared neurons is related

to C by the identity c =C (1−γ)+γ.

We are interested in the retrieval dynamics of the correlated patterns~ξ1 and~ξ2. The input hi

now depends on the similarities m1 and m2:

ĥi (m1,m2) = (
ξ1

i −γ
)

m1 + (
ξ2

i −γ
)

m2 +
√
αR(m1,m2)Zi + Ii (2.10)

with

τ̂
dm1

d t
=−m1 +F1(m1,m2) (2.11a)

τ̂
dm2

d t
=−m2 +F2(m1,m2) (2.11b)

R(m1,m2) = p

(1−q)2 (2.11c)

q = ∑
x1=0,1

∑
x2=0,1

Px1,x2

∫
φ̂′(ĥx1x2 (m1,m2, z))e−

z2

2
d zp
2π

(2.11d)

p = ∑
x1=0,1

∑
x2=0,1

Px1,x2

∫
φ̂2(ĥx1x2 (m1,m2, z))e−

z2

2
d zp
2π

, (2.11e)

where

Fµ(m1,m2) = ∑
x1=0,1

∑
x2=0,1

xµ−γ
γ(1−γ)

Px1x2

∫
d zp
2π

e−
z2

2 φ̂(ĥx1x2 (m1,m2, z)) (2.12)

and

ĥx1x2 (m1,m2, z) = ∑
ν=1,2

(
xν−γ

)
mν+ I (x1, x2)+

√
αRh(m1,m2)z. (2.13)

For details see SI.

A completely analogous procedure can be used to generate more than two correlated binary

patterns. In Fig. 2.2B we generate a subgroup of p = 2,3,4 correlated patterns and compute

their critical correlation by solving the system of equations that is analogous to (2.11). To
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generate Fig. 2.3C-D we use the mean-field dynamics in the presence of adaptation and global

feedback, analogously to Eq. (2.56). All details are provided in the SI.

2.5.4 Excluding self-interaction

In order to make the network more bio-plausible, we can consider that a neuron does not send

direct input to itself. The effect of excluding the self-interaction term in Eq. (2.10) is captured

by a correction term to be included on the right-hand-side of Eq. (2.13) (Shiino and Fukai,

1992):
qαφ̂(ĥ)(

1−q
) . (2.14)

2.5.5 Correlation between background patterns

In Fig. 2.2B we explore the possibility that the maximal fraction of shared neurons correlation

cmax might be influenced by the presence of correlation between pairs of background patterns.

Moreover, the hypotheses that there are many subgroups of correlated patterns seems more

biologically plausible. If we let the background patterns to be correlated in subgroups of 2

patterns each, the variable R in the mean-field equations of Eq. (2.11) needs to be replaced by

R ′ = p[
(1−q)2 − (qC ′)2

]2 × (2.15)

{[
(1−q)2 + (qC ′)2] (1+C 2)+4(1−q)qC ′} (2.16)

where C ′ = P11−γ2

γ(1−γ) is the correlation between pairs of patterns. The detailed derivation is

provided in the SI.

Furthermore, Eq. (2.16) can be extended to the case in which background patterns share cor-

relation C between non-overlapping subgroups of exactly p patterns (the complete derivation

is provided in the SI).

2.5.6 Algorithms to generate correlated patterns

In this section we describe how a single subgroup of K overlapping patterns with sparseness

γ and overlap cis created according to three different algorithms. The first two models are

variations of a hierarchical construction for correlated patters: in both cases, the correlated

patters are generated from a common parent patter. In the hierarchical generative model only

the active units of the parent pattern can be inherited by the correlated children patterns,

while in the indicator neuron model, children patterns can have active units, which do not

belong to the parent pattern. Finally in the iterative model, no structure is assumed and the
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subgroup of correlated patterns is built pattern by pattern, following an iterative algorithm.

Details and the theoretical probability distribution associated to the algorithms are given in

the SI.

Hierarchical generative model. We start by creating a “parent” pattern which is not part of the

subgroup. The parent pattern has sparseness λ= γ/c , i.e., prob(ξparent
i = 1) =λ. We proceed to

create the actual patterns by copying the ones of the parent pattern with probability c, while

the zeros stay untouched: prob(ξµi = 1|ξparent
i = 1) = c, prob(ξµi = 1|ξparent

i = 0) = 0.

Indicator neuron model. We generate with probability λ a small subset of indicator neurons.

This subset gives a parent pattern of indicator neurons: prob(ξparent
i = 1) = λ= c−γ2

1+c−2γ . In a

network of N neurons, we select ni nd =λN neurons as indicator neurons. To create a pattern

µ, we flip the bits of the parent pattern with probability ε (i.e. a bit is flipped either from 0 to 1

or from 1 to 0 with probability ε.) The desired values of λ and ε are obtained by expressing the

correlation coefficient C and the sparseness γ as a function of them and reversing the formula.

Iterative model. We start by generating the first pattern with γN active neurons. Neurons that

have not been selected for constructing any pattern are classified as “untouched neurons”.

For the construction of each of the following patterns, from 2 to p (where p is the number of

correlated patterns), we select randomly cN neurons from each of the already created patterns.

While building pattern from 2 to p, we count the amount of already shared neurons between

the pattern under construction and the one we are picking the shared units from. Therefore,

we pick cN neurons minus the number of already shared neurons from each of the already

built patterns. Finally we pick the remaining neurons to reach the target of γN active neurons

from the untouched ones.

2.5.7 Experimental data

The experimental dataset of Fig. 2.5 comes from a previous publication (De Falco et al., 2016).

The data was recorded from patients implanted with chronic depth electrodes in the MTL for

the monitoring of epileptic seizures. Micro-wires recorded the localized neural activity; spike

detection and sorting allowed to identify the activity of 4066 single neurons. During recordings,

patients were shown different pictures of known people and places repeated several times. For

each neuron, the stimuli eliciting a response were identified using a statistical criterion based

on the modulations of firing rate during stimulus presentation compared to baseline epochs.

For additional details on the dataset and data processing refer to the original publication.
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2.5.8 Heterogeneous F-I curves

The F-I function of model neurons is neuron-specific and re-written as

φi (x) = (rmax)i − (rmin)i

1+e−b̂(x−(ĥ0)i )
+ (rmin)i , (2.17)

where the values of (rmin)i and (rmax)i are randomly sampled for each neuron from a Gaussian

distribution with mean and standard deviation µmin, σmin and µmax, σmax respectively. The

parameter (ĥ0)i is then defined as h0((rmax)i − (rmin)i ), where h0 is a global constant. Finally

in the firing rate equation, we re-scale the firing rates as follows:

ri → Max

[
0,

ri − (rmin)i

(rmax)i − (rmin)i

]
. (2.18)

In Fig. 2.6 we choose the parameters µmin = 0, µmax = 1, and σmin =σmax = 0.1.

2.6 Supplementary information

Experimental studies measure the fraction of shared memory cell c. Such fraction of shared

neurons can be interpreted as the probability that a neuron that already responds to one con-

cept also responds to a second one. Formally, the fraction of shared neuron is the conditional

probability Prob(x2 = 1|x1 = 1), where xµ are binary variables that indicate is a neuron belongs

to the cell assembly representing concept µ. In other words, c is the fraction of shared neurons

relative to the fact that we are considering only neurons already belonging to one assembly.

We call overlap between two cell assemblies n the absolute number of neurons that are shared

between two cell assemblies: n =∑N
i ξ

µ

i ξ
ν
i = cγN , where γ is the probability for a neuron to

take part in a memory assembly. Note that cγ is the joint probability that a neuron belongs

to two memory assemblies: P11 = Prob(x2 = 1, x1 = 1). If two memory assemblies are not

associate, than the chance they share a neuron is the probability that a neuron is picked twice

to be part of a memory assembly, i.e. γ2. We refer to this scenario saying that the number of

shared neurons is at chance level n = γ2N (and therefore c = γ).

From a formal point a view, the number of shared units is closely related to the Person’s

correlation coefficient between two memory patterns:

C = Cov(ξ1
i ,ξ2

i )

Var(ξµi )
= P11 −γ2

γ(1−γ)
, (2.19)

The fraction of shared neurons c can be related to the Person’s correlation coefficient C

uniquely: c = n/(γN ) = γ+ (1−γ)C . In the following text, we show the derivation of the mean-

field equations for overlapping memory engrams always referring to C simply as correlation.
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2.6.1 Critical fraction of shared neurons between memory engrams

In the METHODS, we introduce the concept of critical fraction of shared neurons, as the frac-

tion of shared neurons below which each pattern has a separated basin of attraction and above

which the basin of attraction merge, or in other words, the memories are indistinguishable. As

mentioned in the introduction each fraction of shared neurons corresponds to a specific cor-

relation value, so we can equivalently speak of critical correlation between memory patterns.

In order to compute numerically the critical correlation, we use the bifurcation diagram in Fig.

2.7B: the fixed points in the phase-plane are projected on the m1-axis and their positions are

plotted as C increases. From the bifurcation diagram we can extract the value Cmax at which

the single retrieval states merge with the saddle points and disappear. Thus, at C =Cmax we

have a saddle-node bifurcation.

The value of the critical correlation C 0
max an be calculated analytically in the limit of infinite

steepness b →∞, vanishing load α= 0, vanishing sparseness and load, γ→ 0 and α= 0. This

value matches the one extracted from the bifurcation plot in Fig. 2.7C.

In the super critical regime C >Cmax, the activation of patter one triggers, with some delay, the

activation of the correlated pattern 2, as shown in Fig. 2.1D. The activation delay of pattern

2 can be quantified using the dynamical mean-field in Eq. (2.56). In Fig. 2.8A we show the

evolution of the system in the phase plane, before, during and after the stimulation respectively.

In Fig. 2.8B, we can see the activation of m2 due to the super-critical correlation with m1

as predicted by the mean-field theory. We choose to quantify the time delay between the

activation of pattern one and that of pattern two, by comparing the m1(t ) and m2(t ) lines in

Fig. 2.8B when they cross the value m1 = m2 = ĥ0: the time gap within the two is delay. Indeed,

the dimensionless parameter ĥ0 marks the point where the m2(t ) curve becomes steeper, or,

in the phase-planes, the ghost of the fixed point corresponding to the single retrieval state.

2.6.2 Association chains

We estimate the range of correlations so that the association chains are possible, i.e. correlation

should be large enough to trigger the activation of the next pattern, but not so large that the

basin of attraction of the single patterns merge. The strength of the global inhibition J0(t)

varies slowly between its maximum and its minimum. Note that, when J0(t ) is clamped at its

minimum in Fig. 2.10B,D,F,H left hand side, the double retrieving state is not present (as it was

in Fig. 2.1C), this is a consequence of the introduction of the periodic inhibitory proportional to

the mean neural activity. The value of correlation, max(C ), that makes the two single retrieval

states disappear can be read off from the bifurcation diagram in Fig. 2.9A. It sets the upper

bound of the useful correlation range and strongly depends on the value of mininal global

inhibitory feedback, min(J0). When we want to estimate the smallest value of correlation,
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Figure 2.7 – A) Four phase-planes of the dynamics of variables m1 and m2 for different values
of correlation C . Fixed points are color-coded by their stability: blue = stable, green = saddle
and red = unstable. B) Bifurcation diagram. The projection of the fixed points position on
m1 is plotted against C . The critical correlation Cmax is highlighted by the black dashed line.
C) Same as B, but in the limit b̂ →∞, which leads to C → ĥ0. Parameters: γ= 0.002, b̂ = 100,
ĥ0 = 0.25, α= 0.

min(C ) so that hopping between attractors is possible, we consider the situation when the

global inhibition is clamped at its maximum and find the minimal correlation such that the

system exhibits a transition state. The transition state is visible in Fig. 2.10D,H right hand side,

but it is not present in Fig. 2.10F, since C = 0. Thus, the lower bound of correlation min(C )

is estimated by the left end of the stable diagonal branch of fixed points in the bifurcation

diagram (Fig. 2.9B).
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Figure 2.8 – Evolution of m1(t) and m2(t) according to the mean-field dynamics for super-
critical correlation. The system is initialized in the rest state. During the stimulation period
(0.5−8s) m1(t ) receives external input. A) The system state is plotted in the phase-plane before,
during and after stimulation respectively. B) The delay between the activation of m1(t) and
m2(t ) is highlighted. Parameters: γ= 0.002, b̂ = 100, ĥ0 = 0.25, , rmax = 1, τ̂= τ= 1rmax, α= 0,
C = 0.2.

In Fig. 2.10 we compare the effect of different sparseness and correlations on the when hopping

from one attractor to the next. For very sparse patterns, γ= 0.002, the transition is sharper

(Fig. 2.10H) and we observe the same dynamics (Fig. 2.10G). While chains of associations are

not possible for C = 0. Indeed, in Fig. 2.10B we assume~ξ1 and~ξ2 to be independent (C = 0)

and the state is never able to leave the basin of attraction of pattern 1. The reason is clear

from the phase-planes in Fig. 2.10A, when J0 is at its maximum, m1 is decreased in value

until a stable fixed point, where still m2 = 0: the second pattern is not even partially activated,

and when the inhibition decreases, the system state falls back into the first pattern basin of

attraction. At the contrary, when enough correlation is added, any activation of ξ1 implies a

partial activation of ξ2. When J0 reaches an high value, the system is pushed in a neutral state

where both m1 = m2 ∼C . At the subsequent decrease of J0, the system might fall in either of

the two single retrieval states, but adaptation breaks the symmetry and pushes the system
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Figure 2.9 – Estimation of the correlation range in which retrieval of a chain of concepts is
possible. A) Estimation of the maximum correlation, which correspond to the loss of the two
single retrieval states, when J0 is lowest. B) Estimation of the minimum correlation, which
corresponds to the creation of the stable fixed point at m1 = m2 > 0, when the inhibition J0 is
at its maximum. In both A and B adaptation is frozen and θ = 0. Parameters: γ= 0.002, α= 0,
b̂ = 50, ĥ0 = 0, min( Ĵ0) = 0.7, min( Ĵ0) = 1.2.

towards the pattern that was not activated yet.

37



Chapter 2. When shared concept cells support associations: theory of overlapping
memory engrams

Caption on the next page
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Figure 2.10 (previous page) – A) Dynamical mean-field solutions for m1 and m2 in the case
of two independent patterns. B) Phase planes corresponding to the minimum (J0 = 0.7) and
maximum (J0 = 1.2) value of inhibition in the case of two independent patterns. C,D) Same as
A and B, but for correlated patterns C = 0.2. Parameters in A - D: γ= 0.1, α= 0, b = 100. E, F)
Same as C and D but in the low activity regime and for independent patterns. G, H) Same as C
and D but in the low activity regime and for correlated patterns. Parameters in E - H: γ= 0.002,
α= 0, b = 100, τθ = 45, T = 0.015, TJ0 = 25. For the dynamics: resolution = 200, factor =1. For
the phase-planes: resolution = 1000, factor = 1, upper bound = 1.2, lower bound = -0.2.

Figure 2.11 – Retrieval dynamics in the presence of adaptation according to the mean-field
equations (dashed lines), and comparison with Fig. 2.3B (shaded solid lines) A) Only two
patterns are correlated. B) Four patterns are correlated.Fig Parameters: N = 104, P = 16 in full
network simulations and α= 0 in mean-field. γ= 0.002, τθ = 45, T = 0.015, TJ0 = 25 in both.

In Fig. 2.11 we compare full network simulation with dynamical mean-field for p = 2 and p = 4.

The mean-field and the full simulation match .

2.6.3 Parameters choice

We have discussed that the critical correlation between patterns depends on two dimensionless

parameters: the rescaled threshold ĥ0 = h0/(Armax) and the rescaled steepness b̂ = Armaxb.

While these parameters have so far not being estimated for human Hippocampus, in (Pereira

and Brunel, 2018) where they were able to fully characterize the gain function of pyramidal

neurons of the macaque’s IT cortex. We though it would be interesting, to compute the critical

correlation for this set of parameters. First, in (Pereira and Brunel, 2018) they input is filtered

by the combination of two Sigmoids, we have chosen the parameters such that our single

Sigmoidal gain function fits the combination of Sigmoids. Moreover, in (Pereira and Brunel,

2018) they assume patterns to follow a Gaussian distribution N (0,1), and our theory assumed

binary patterns. To match, we have chosen γ= N (0,1)(h0), where h0 is estimated from the

fitted gain function. We obtained γ= 0.0375. In Fig. 2.12A we show the phase-plane for C = 0

(or equivalently c = γ) and in Fig. 2.12B we provide the bifurcation diagram from which the
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critical correlation is extracted (equivalent to that in Fig. 2.7B).

Figure 2.12 – Equivalent of Fig 2.7 but with the parameters extracted from (Pereira and Brunel,
2018). In A and B the gain function parameters are taken as those of function φ in (Pereira
and Brunel, 2018): A = 3.55, rmax = 76.2, b = 0.82, h0 = 2.46. On the other hand, in C and D
I estimated the parameters of a Sigmoid function that fits the function f (φ) in (Pereira and
Brunel, 2018) as follows: A = 3.55, rmax = 0.83, b = 4.35, h0 = 1.7. In all plots γ= 0.001. A and
C) The phase-plane for c = 0 shows the position of fixed points. B and D) Bifurcation diagram
and critical fraction of shared neurons according to different parameter choices.

Methods

In this section, we will present the details and the derivation of both the full network simula-

tions and the mean-field model. We partially repeat information present in the main text, with

the goal of providing here a complete and self consistent presentation of the methods used.

2.6.4 Model without adaptation and global feedback

In the figures relative to the Section “Critical fraction of shared neurons between memory

engrams” of the main paper and the SI, we consider an attractor neural network of N rate

units ri , in which P binary memory patterns are stored {ξµi }µ=1,..,P
i=1,..,N . Each neuron follows the

Wilson-Cowan dynamics (Wilson and Cowan, 1972):

τ
dri

d t
=−ri +φ(hi ), (2.20)
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where hi is the input term

hi =
N∑

j 6=i
wi j r j + Ii (t ) (2.21)

which include the sum over the recurrent input from other neurons and a possible external

input Ii (t ). The input is filtered with gain function φ, which is chosen to be a sigmoid:

φ(h) = rmax

1+e−b(h−h0)
. (2.22)

The parameters that define the gain function can be interpreted as follows: rmax is the maximal

firing rate, b is the steepness of the gain function and h0 is the bias which is commonly

interpreted as firing threshold. While the firing threshold is actually equal to h0 for b →∞, at

finite b the firing threshold is effectively a bit smaller. The connection matrix, wi j , contains

the synaptic weights between neurons i and j is defined as in Eq. (2.5), which we repeat for

convenience (Pereira and Brunel, 2018)

wi j = A

Nγ(1−γ)

P∑
µ

(
ξ
µ

j −γ
)(
ξ
µ

i −γ)
(2.23)

where the constant A can be interpret as “connection strength". In order for the weights to be〈
wi j

〉= 0, we subtract the mean activity of patterns < ξµi >= γ. In order to measure how close

is the network state to recalling a pattern, we defined the overlaps mµ which are a measure of

the correlation between the network state and the store patterns:

mµ(t ) = 1

Nγ(1−γ)rmax

N∑
j=1

(
ξ
µ

j −γ
)

r j (t ). (2.24)

2.6.5 Model with adaptation and global inhibitory feedback

For Figs. of sections “Association chains”, we added adaptation and a global periodic inhibitory

to the model, following previous works (Romani et al., 2013; Recanatesi et al., 2015, 2017; Naim

et al., 2020), as introduced in Eq. (2.7):

hi =
N∑

j=1
wi j r j (t )−θi (t )− J0(t )

γN

N∑
j=1

r j (t ), (2.25)

The second term −θi (t ), is a local neuron-specific feedback that models firing-rate adaptation

as follows (as in Eq. (2.8)):

τθ
dθi

d t
=−θi +Dθri , (2.26)

where τθ is the adaptation time constant and Dθ determines the strength of adaptation.
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The term −J0(t)/(γN )
∑N

j=1 r j (t) is the global inhibition which provides a clock signal that

triggers the transitions betweeen attractors. The strength of the global feedback, J0(t), is

modulated periodically in time:

J0 = 1

2
(max(J0)−min(J0))sin

(
t

(2π)

TJ0

−π/2

)
+ 1

2
(max(J0)+min(J0)) (2.27)

2.6.6 Non-dimensionalization of the model

The calculations below are considerably simplified if the model is made dimension-free. We

take into account that rmax has units of 1/time and the parameter A has units of current · time

and measure in the following time in units of r−1
max and current input in units of Armax .

Model without adaptation and global feedback.Using the dimensionless quantities

ĥi = hi

Armax
, ĥ0 = h0

Armax
, b̂ = b Armax, r̂i = ri

rmax
(2.28)

ŵi j =
wi j

A
, τ̂= τrmax, Îi (t ) = Ii (t )

Armax
, (2.29)

the dimension-free model without adaptation reads

τ̂
dr̂i

d t̂
=−r̂i + φ̂(ĥi ), with ĥi =

N∑
j=1

ŵi j r̂ j + Îi (2.30)

with a transfer function φ̂(ĥ) = 1/{1+exp[−b̂(ĥ − ĥ0)]}.

Model with adaptation and global feedback.Introduction of further dimensionless quantities

τ̂θ = τθrmax, θ̂ = θ

Armax
, D̂θ =

Dθ

A
, Ĵ0(t̂ ) = J0(t̂/rmax)

A
(2.31)

leads to the non-dimensional model with adaptation

τ̂
dr̂i

d t̂
=−r̂i + φ̂(ĥi ), (2.32)

τ̂θ
d θ̂i

d t̂
=−θ̂i + D̂θ r̂i (2.33)

with input

ĥi =
N∑

j=1
ŵi j r̂ j − θ̂i − Ĵ0(t )

γN

N∑
j=1

r̂ j (t )+ Îi . (2.34)
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To lighten the notation, we will omit the hats on top of the dimensionless quantities for the

rest of this paper, while we keep the strict distinction between quantities with and without hat

in the Results section.

2.6.7 Review of attractor theory

Starting from the overlap definition Eq. (2.24), we can write equations for the overlaps variables.

We follow an approach well known in literature (Tsodyks and Feigel’man, 1988; Shiino and

Fukai, 1992) and focus on the model without adaptation and global feedback. The only time

dependent variable in the definition of mµ is the network state r j , so that:

τ̂
dmµ

d t
= 1

Nγ(1−γ)

N∑
j=1

(
ξ
µ

j −γ
)
τ

dr̂ j

d t
. (2.35)

By inserting the expression for the single neuron dynamics Eq. (2.20) and recognizing the

overlap definition Eq. (2.24), we obtain:

τ̂
dmµ

d t
=−mµ+m̄µ. (2.36)

with

m̄µ = 1

Nγ(1−γ)

N∑
j=1

(
ξ
µ

j −γ
)
φ̂

(
ĥ j

)
. (2.37)

The input term h j , Eq.2.21, can also be re-written as a function of the overlaps m1, ...,mP , by

using the definition of the weights wi j , Eq. (2.5), and that of the overlaps:

ĥi =
P∑
µ=1

(
ξ
µ

i −γ)
mµ+ Ii . (2.38)

In what follows we are interested in finding stable solutions of Eq. (2.36), mµ = m̄µ. We are

interested in studying the pattern retrieval and, without loss of generality, we consider the

retrieval of pattern 1. To this end, we assume that among all mµ, only m1 is significantly larger

than zero. Under this assumption we can re-write the input term hi isolating the contribution

from m1

ĥi =
(
ξ1

i −γ
)

m1 +
P∑
µ=2

(
ξ
µ

i −γ)
mµ+ Ii . (2.39)

We call the patterns that are not recalled “background patterns”; in our case, these are all

patterns for which µ≥ 2. The second term on the r.h.s of Eq. 2.39 represents the contribution

from the background patterns causing some degree of heterogeneity of the input potential for
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neurons with the same selectivity to pattern 1. For large P , this heterogeneity can be captured

by replacing the term
∑P
µ6=1

(
ξ
µ

i −γ)
mµ by a Gaussian random variable with mean zero and

variance

σ2 = 1

N

N∑
i=1

P∑
µ=2

P∑
ν=2

(
ξ
µ

i −γ)(
ξνi −γ

)
mµmν = γ(1−γ)

P∑
ν=2

(mν)2 (2.40)

To obtain the result in Eq. (2.40), we used the assumption that patterns ξµi and ξνi are uncor-

related, and the fact that only the term for µ 6= ν survives, in fact,
〈

(ξµi ξ
ν
i +γ2 −γξνi −γξ

µ

i )
〉

i
=

δµνγ(1−γ). Here and in the following, the brackets 〈xi 〉 of a variable xi denotes the population

average 〈xi 〉 = 1
N

∑N
i=1 xi . In the next passages we compute (mµ)2,µ 6= 1, in the large network

limit N →∞. We expand Eq. (2.37) around mµ = 0 up to first order in mµ,

m̄µ ≈ 1

γ(1−γ)N

N∑
j=1

[(
ξ
µ

j −γ
)
φ̂(ĥ j )

∣∣∣
mµ=0

+
(
ξ
µ

j −γ
)2

mµφ̂′(ĥ j )

∣∣∣∣
mµ=0

]
(2.41)

and collect on the left hand side the terms multiplied by mµ,

mµ

1−
N∑

j=1

(
ξ
µ

j −γ
)2
φ̂′(ĥ j )

γ(1−γ)N

= 1

γ(1−γ)N

N∑
j=1

(
ξ
µ

j −γ
)
φ̂(ĥ j ). (2.42)

On the left hand side of the last expression, we can make some simplification, considering

that ξµj is uncorrelated with φ′(h j ), in the N →∞ limit

lim
N→∞

1

N

N∑
j=1

(
ξ
µ

j −γ
)2
φ̂′(ĥ j )

γ(1−γ)
= lim

N→∞
1

N

N∑
j=1

φ̂′(ĥ j ) = 〈
φ̂′(ĥi )

〉
i . (2.43)

We can therefore define the quantity q := 〈
φ̂′(ĥi )

〉
i as the expectation of φ̂′(ĥi ) over neurons.

As a consequence, mµ can be written as

mµ = 1

γ(1−γ)(1−q)N

N∑
j=1

(
ξ
µ

j −γ
)
φ̂(ĥ j ). (2.44)

We can finally compute the squared of mν, using Eq. (2.44):

(mν)2 = 1

γ2(1−γ)2(1−q)2N 2

N∑
i=1

N∑
j=1

(
ξ
µ

i −γ)(
ξ
µ

j −γ
)
φ̂(ĥi )φ̂(ĥ j ), (2.45)

= 1

γ2(1−γ)2(1−q)2N 2

N∑
i=1

(
ξ
µ

i −γ)2
[φ̂(ĥi )]2, (2.46)

= p

γ(1−γ)(1−q)2N
. (2.47)
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where p := 〈
φ̂2(ĥi )

〉
i . Similarly as in Eq. (2.40), we used that in the double sum

∑N
i=1

∑N
j=1,

only the term i = j survives. The standard deviation of the neuron-to-neuron variability

(heterogeneity), Eq. (2.40), is

σ=
p
αR, R := p

(1−q)2 . (2.48)

Finally, for µ= 1, we have an a mean-field expression for m1:

m1 = 1

γ(1−γ)

〈(
ξ1

i −γ
)
φ̂(ĥi )

〉
i (2.49)

with input potentials

ĥi =
(
ξ1

i −γ
)

m1 +
p
αR Zi + I (ξ1

i ) (2.50)

and Gaussian random variables Zi ∼ N (0,1).

The population averages 〈·〉 can be treated as expectations over the independent random

variables ξ1
i and Zi . On the one hand, ξ1

i is a Bernoulli variable such that ξ1
i = 1 with probability

P1 = γ and ξ1
i = 0 with probability P0 = 1−γ. On the other hand, Zi is a standard normal

random variable with probability density pZ (z) = exp(−z2/2)/
p

2π. We can therefore rewrite

the population average in Eq. (2.49) explicitly resulting in

m1 = 1

γ(1−γ)

∑
k=0,1

Pk
(
k −γ)∫

φ̂(ĥk (m1, z))e−
z2

2
d zp
2π

(2.51a)

where

ĥk (m, z) = (
k −γ)

m +
√
αR(m)z + Ik . (2.51b)

R(m) = p(m)

[1−q(m)]2 (2.51c)

q(m) = ∑
k=0,1

Pk

∫
φ̂′(ĥk (m, z))e−

z2

2
d zp
2π

(2.51d)

p(m) = ∑
x1=0,1

Pk

∫
φ̂2(ĥk (m, z))e−

z2

2
d zp
2π

. (2.51e)

where is x1 is a binomial random variable which can assume values 1,0 with probability P (x1),

where P (0) = P0 = (x1 −γ) and P (1) = P1 = γ.
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2.6.8 Dynamical mean-field equations

In the case we assume there are no background patterns, it’s possible to write a dynamcial

mean field equation for the retrieving of pattern 1:

τ̂
dm1

d t
=−m1 + 1

γ(1−γ)

〈(
ξ1

i −γ
)
φ̂(ĥi )

〉
i (2.52)

with input potential

ĥi =
(
ξ1

i −γ
)

m1 + I (ξ1
i ). (2.53)

This approach is not directly extensible to the presence of background patterns, since in

passage Eq. (2.41) we use the assumption that overlaps mµ reached their equilibrium value

m̄µ. However, in what follows we write dynamical mean field equations were the overlaps

with retrieved patterns evolve over time and those with background patters are always at

their equilibrium value. While this is not formally correct, it gives results in agreement with

full network simulations (Fig. 2.2C). In other words the mean-field dynamics in Fig. 2.2C is

correct before the stimulus onset and after the system has retrieved pattern 1, but not formally

correct in the transient. Moreover, we argued in the discussion that assuming a small or even

negligible network load α≥ 0 is a bio-plausible assumption for the human MTL. Dynamical

mean-field equation are formally exact for α= 0.

2.6.9 Mean-field equations for two correlated patterns

Taking the results derived in the previous section as a starting point, we now allow two of the

stored patterns to be correlated. Without loss of generality, we choose patterns~ξ1 and~ξ2 to be

correlated, while all other P −2 patterns are independent. The correlation between the two

patterns is defined as the Pearson correlation coefficient (covariance/variance), in Eq. (2.9),

which we rewrite here for convenience:

C = Cov(ξ1
i ,ξ2

i )

Var(ξµi )
= P11 −γ2

γ(1−γ)
, (2.54)

where P11 = P (ξ1
i = 1,ξ2

i = 1) = 〈ξ1
i ·ξ2

i 〉 is the joint probability of a neuron to be selective to

both patterns. In order to generate correlated patterns with mean activity
〈
ξ1

i

〉
i
= 〈

ξ2
i

〉
i
= γ

and correlation coefficient C , we use the indicator neuron model with ε=Ω described later

in the SI. However it is important to note that, if we consider only two correlated patterns, it

does not matter which algorithm we choose, as it will be clear in the “Relation to experiments”

session.

As in the previous section we are interested in the retrieval dynamics of pattern~ξ1. However,

given the correlation with pattern~ξ2, we cannot neglect the overlap of the network state with
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~ξ2. The derivation of the system of mean-field equations in case two correlated pattern case in

Eq. (2.11) is analogous to that described in the section above. The input term hi has now two

non-negligible terms, both from~ξ1 and~ξ2:

ĥi (m1,m2) = (
ξ1

i −γ
)

m1 + (
ξ2

i −γ
)

m2 +
√
αR(m1,m2)Zi + Ii (2.55)

τ̂
dm1

d t
=−m1 + 1

γ(1−γ)

〈(
ξ1

i −γ
)
φ̂(ĥi )

〉
i (2.56a)

τ̂
dm2

d t
=−m2 + 1

γ(1−γ)

〈(
ξ2

i −γ
)
φ̂(ĥi )

〉
i (2.56b)

q =
〈
φ̂

′
(ĥi )

〉
i

(2.56c)

p = 〈
φ̂2(ĥi )

〉
i (2.56d)

R(m1,m2) = p

(1−q)2 (2.56e)

Analogously to Eq. (2.51) we can compute the population averages in Eq. (2.56) explicitly

leading to

τ̂
dm1

d t
=−m1 +F1(m1,m2) (2.57a)

τ̂
dm2

d t
=−m2 +F2(m1,m2) (2.57b)

where the nonlinear functions F1 and F2 are given by (µ= 1,2)

Fµ(m1,m2) = ∑
x1=0,1

∑
x2=0,1

xµ−γ
γ(1−γ)

Px1x2

∫
d zp
2π

e−
z2

2 φ̂(ĥx1x2 (m1,m2, z)) (2.57c)

with

ĥx1x2 (m1,m2, z) = ∑
ν=1,2

(
xν−γ

)
mν+ I (x1, x2)+

√
αRh(m1,m2)z. (2.57d)

This function can be interpreted as the mean-field input potential of a neuron with selectivity

ξ1
i = x1 and ξ2

i = x2, background variability Zi = z, in the case when the network has overlap m1

and m2 with patterns 1 and 2, respectively. The last term in Eq. (2.57d) captures the influence

of background patterns on the mean-field dynamics of m1(t) and m2(t). This influence is

quantified by the function Rh(m1,m2) representing the mean squared overlap of the system

with the background patterns µ= 3, . . . ,P .
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We used a subscript h for Rh(m1,m2) to indicate that R depends functionally on the mean-field

potential ĥx1x2 (m1,m2, z). This functional is given by

Rh(m1,m2) = p

(1−q)2 (2.57e)

q = ∑
x1=0,1

∑
x2=0,1

Px1,x2

∫
φ̂′(ĥx1x2 (m1,m2, z))e−

z2

2
d zp
2π

(2.57f)

p = ∑
x1=0,1

∑
x2=0,1

Px1,x2

∫
φ̂2(ĥx1x2 (m1,m2, z))e−

z2

2
d zp
2π

. (2.57g)

The mean-field input potentials ĥx1x2 (m1,m2, z), x1, x2 ∈ {0,1}, needed in Eq. (2.57c) are ob-

tained from the self-consistent solution of the functional equations (2.57d)–(2.57g), details

are in Section “Numerical solutions".

Equations (2.57) simplify significantly for α= 0, which is the papramter choice of most figures,

so it is worth writing explicitly the m1 and m2 dynamics in the case of negligible load:

τ̂
dm1

d t
=−m1 + 1

γ(1−γ)
{ P11(1−γ)φ̂

[
(1−γ)(m1 +m2)+ I1 + I2

]+ (2.58a)

P10(1−γ)φ̂
[
(1−γ)m1 −γm2 + I1

]− (2.58b)

P01γφ̂
[−γm1 + (1−γ)m2 + I2

]−P00γφ̂
[−γ(m1 +m2)

]}
, (2.58c)

τ̂
dm2

d t
=−m2 + 1

γ(1−γ)
{ P11(1−γ)φ̂

[
(1−γ)(m1 +m2)+ I1 + I2

]− (2.58d)

P10γφ̂
[−γm1 + (1−γ)m2 + I1

]+ (2.58e)

P01(1−γ)φ̂
[
(1−γ)m1 −γm2 + I2

]−P00γφ̂
[−γ(m1 +m2)

]}
. (2.58f)

(2.58g)

The same procedure can be generalized to generate several correlate binary patterns, as in

Fig.2.2B. The generalization is straightforward, we can re-write the system in Eq. (2.57) with

one dynamical equations for each correlated pattern and add the relative terms in the input

ĥ(x1, .., xµ, z). Finally we need the joint probabilities Px1,x2,x3 and Px1,x2,x3,x4 . The general

formula for the joint probability is given in Eq. (2.113). For instance, for three correlated
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patterns, the mean-field dynamics analogue to Eq. (2.57) is given by

τ̂
dm1

d t
=−m1 + 1

γ(1−γ)

〈(
ξ1

i −γ
)
φ̂(ĥi )

〉
i (2.59a)

τ̂
dm2

d t
=−m2 + 1

γ(1−γ)

〈(
ξ2

i −γ
)
φ̂(ĥi )

〉
i (2.59b)

τ̂
dm3

d t
=−m3 + 1

γ(1−γ)

〈(
ξ2

i −γ
)
φ̂(ĥi )

〉
i (2.59c)

q =
〈
φ̂

′
(ĥi )

〉
i

(2.59d)

p = 〈
φ̂2(ĥi )

〉
i (2.59e)

R(m1,m2,m3) = p

(1−q)2 (2.59f)

where

ĥi (m1,m2,m3) = (
ξ1

i −γ
)

m1 + (
ξ2

i −γ
)

m2 + (
ξ3

i −γ
)

m3 +
√
αR(m1,m2,m3)Zi + Ii . (2.60)

2.6.10 Excluding self-interaction

In Section “Review: mean-field equations for independent patterns” we show the derivation

of the mean-field equations for the retrieval of one pattern in an attractor neural network.

However in literature often times some corrections are added in order to keep into account that

neurons do not self-interact. This corrections are to both make the network more bio-plausible

(indeed it would be hard to justify such a self-interaction biologically) and to avoid the creation

of local minima around the attractors corresponding to the stored patterns. Indeed, not

excluding the term wi i r j into the input hi allows some units to self-stabilize. The effect of

excluding the self interaction term on input terms in Eqs. (2.51a) and (2.57d) is capture by a

the correction term (Shiino and Fukai, 1992):

qαφ̂(ĥ)(
1−q

) . (2.61)

For example, Eq. (2.57d) would become

ĥ(x1, x2, z) = (
x1 −γ)

m1 + (
x2 −γ)

m2 + qαφ(h)(
1−q

) +p
αr z + I (x1, x2). (2.62)

The input term in Eq. (2.62), is used in Fig. 2.2B, left hand side.
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2.6.11 Correlation between background patterns

In this section, we provide the derivation needed for Fig. 2.2B, left hand side. We let the

background patterns to be correlated and study how the mean-field equations for the system

change.

To start with, let’s suppose that each pattern is correlated with just one other, so pattern ξµ

is only correlated with ξµ
′
. What changes, compared to the derivation in Section “Review:

mean-field equations for independent patterns" is the variance of the heterogeneity term in Eq.

(2.40) ,
〈
σ2

〉 = 〈∑
µν

(
ξ
µ

i ξ
ν
i −γξνi −γξ

µ

i +γ2
)〉

mµmν, where patterns are pair-wise correlated.

We obtain: 〈∑
µν

(
ξ
µ

i ξ
ν
i −γξνi −γξµi +γ2)〉= δµνγ(1−γ)+δµ,µ′(P11 −γ2), (2.63)

where the second term at the right hand side captures the effect of correlation. Background

patterns can still be approximated by a Gaussian variable in the large network limit, in this

case with variance:

〈
σ2〉= P∑

ν6=1

[
γ(1−γ)(mν)2 + (P11 −γ2)mνmν′

]
. (2.64)

In order to compute Eq. (2.64), we need to derive (mν)2 and mνmν′ . In what follows, we use

the same definition of q and p as in Eq. (2.51). Let’s start from writing mν at the first order

Taylor expansion for mν and mν′ both small:

mν ∼ 1

γ(1−γ)N

N∑
i=1

(
ξνi −γ

)
φ̂(ĥi )+

1

γ(1−γ)N

N∑
i=1

(
ξνi −γ

)2
φ̂′(ĥi )mν+

1

γ(1−γ)N

N∑
i=1

(
ξνi −γ

)(
ξν

′
i −γ

)
φ̂′(ĥi )mν′

(2.65)

Then, following analogous passages as Eq. (2.41-2.44) we can obtain the expressions:

(1−q)mν = 1

γ(1−γ)N

N∑
i=1

(
ξνi −γ

)
φ̂(ĥi )+q

P11 −γ2

γ(1−γ)
mν′ , (2.66a)

(1−q)mν′ = 1

γ(1−γ)N

N∑
i=1

(
ξν

′
i −γ

)
φ̂(ĥi )+q

P11 −γ2

γ(1−γ)
mν, (2.66b)

where P11 is the joint probability defined in Eq. (2.109). Eq. (2.66) is a linear symmetric system
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of the form:

Dmν = B +C mν′ (2.67a)

Dmν′ = B ′+C mν (2.67b)

where B = 1
γ(1−γ)N

∑N
i=1

(
ξνi −γ

)
φ̂(ĥi ), D = (1− q) and C = q P11−γ2

γ(1−γ) . System Eq. (2.66) has

solutions

mν = DB +C B ′

D2 −C 2 (2.68a)

mν′ = DB ′+C B

D2 −C 2 . (2.68b)

We are now ready to write the expressions for (mν)2 and mνmν′ :

(mν)2 =D2B 2 +C 2(B ′)2 +2DC BB ′

(D2 −C 2)2 ,

mνmν′ =D2BB ′+C D(B ′)2 +C DB 2 +C 2BB ′

(D2 −C 2)2 ,

(2.69)

where B and B ′ are analogous to the term on right hand side of Eq. (2.42): (B ′)2 = B 2 = p
N 2γ(1−γ) .

The last missing piece is the cross term BB ′ which can also be calculated analogously to Eq.

(2.47):

BB ′ = 1[
Nγ(1−γ)

]2

N∑
i=1

N∑
j=1

[(
ξνi −γ

)(
ξν

′
j −γ

)
φ̂(ĥi )φ̂(ĥ j )

]
=

= 1[
Nγ(1−γ)

]2

N∑
i=1

[
(P11 −γ2)

]
φ̂2(ĥi ) =

= P11 −γ2

N
[
γ(1−γ)

]2 p.

(2.70)

In the last passage we used the fact that φ̂(ĥi ) and φ̂(ĥ j ) are independent thank to the Taylor

expansion in passage Eq. (2.65). Plugging the expressions for (mν)2 and mνmν′ into Eq. (2.64),

we can obtain the variance〈
σ2〉= p

(D2 −C 2)2
[
γ(1−γ)

]2α·

·{γ(1−γ)
[
(D2 +C 2)γ(1−γ)+2DC (P11 −γ2)

]+
+(P11 −γ2)

[
2C Dγ(1−γ)+ (D2 +C 2)(P11 −γ2)

]} (2.71)

Finally we can write the expression for the effective r ′, under the effect of pairwise correlation
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between background patterns:

r ′ = p[
(1−q)2 − (qC )2

]2

{[
(1−q)2 + (qC )2] (1+C 2)+4(1−q)qC

}
(2.72)

where C = P11−γ2

γ(1−γ) is the correlation between couples of patterns. The so obtained expression

for r ′ can be substituted to that of system Eq. (2.56).

Eq. (2.72) can be proven as follows:

r ′ = p[
(D2 −C 2)γ(1−γ)

]2

{
γ(1−γ)

[
(D2 +C 2)γ(1−γ)+2DC (P11 −γ2)

]+
(P11 −γ2)

[
2DCγ(1−γ)+ (D2 +C 2)(P11 −γ2)

]}=
= p

(D2 −C 2)2

{
(D2 +C 2)+2DCC + (D2 +C 2)C 2}=

= p[
(1−q)2 − (qC )2

]2

{[
(1−q)2 + (qC )2] (1+C 2)+4(1−q)qC

}
. �

(2.73)

The derivation of Eq. (2.72) can be extended to the case in which background patterns share

correlation C between non overlapping groups of exactly p patterns. To do so, we need to

extend the system in Eq. (2.67b) linearly:

M =



D −C −C · · · −C

−C D −C · · · −C

−C −C D · · · −C
...

...
...

. . .
...

−C −C −C · · · D

 ·



mν

mν′

mν′′

...

mνn′

=



B

B ′

B ′′
...

B n′

 (2.74)

where M is a p ×p matrix. In order to find the solution ~mν = M−1~B of system Eq. (2.74) we

need to invert the matrix M . Indeed matrices with the symmetry properties of M

{M }i j =
{

D if i = j

−C if i 6= j
(2.75)

are invertible, with inverse matrix:

{
M−1}

i j =
1

Z

{
D +C −1 if i = j

−1 if i 6= j
(2.76)

where

Z = −D + (n −1)C

C (D +C )2 . (2.77)

In order to derive Eq. (2.76) we can rewrite the matrix M as M = A−C v vT , where A is diagonal
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with entries Ai ,i = D −C and v is a column vector of all ones. If M and A are both invertible,

we can use the Sherman-Morrison formula:

M−1 = (
A−C v vT )−1 = A−1 − −C A−1v vT A−1

1−C vT A−1v
. (2.78)

Since A is diagonal, then (A−1)i ,i = (Ai ,i )−1 = 1
D+C . Then

{
M−1}

i j =
{

1
D+C − 1

c(D−C )2 if i = j

− 1
c(D−C )2 if i 6= j

(2.79)

where the constant c =− 1
C +n 1

D+C . Terms can be re-arranged to obtain Eq.(2.76).

As a final note, we consider the case in which all patterns are equally correlated, then

〈
σ2〉=〈

P

N
γ(1−γ)(mν)2 + P 2

N
(P11 −γ2)mνmµ

〉
(2.80)

This variance can not be computed since the two terms in the brackets scale differently with P

and N . We can conclude that it is not possible to allow all stored patterns to be correlated with

arbitrary correlation C if we fix the pattern mean activity to γ.

2.6.12 Mean-field dynamics in the presence of adaptation and global feedback

In order to derive the mean-field equations for the model with adaptation and global feedback,

we consider the simplest case, in which only two patterns are correlated (~ξ1 and~ξ2) while all

the others are independent. Analogously to Section “Mean field equations for two correlated

patterns”, we can group neurons into four homogeneous populations (in the presence of

background patterns, the neural populations can be slightly in-homogeneous): neurons

that are selective to both patterns (ξ1
i = ξ2

i = 1), neurons selective to pattern 1 but not 2

(ξ1
i = 1,ξ2

i = 0), neurons selective to pattern 2 but not 1 (ξ1
i = 0,ξ2

i = 1) and neurons that

are selective to neither pattern 1 or 2 (ξ1
i = ξ2

i = 0). The probability for a neuron to belong

to population (x1, x2), i.e. ξ1
i = x1 and ξ2

i = x2, is the joint probability Px1,x2 in Eq. (2.109).

Furthermore each population (x1, x2) is characterized by a different firing threshold θx1,x2 (t ).

Following a similar derivation to that that of to Eq. (2.57), we obtain the six-dimensional
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mean-field dynamics:

τ̂
dm1

d t
=−m1 +F1(m1,m2, {θ̂x1x2 }), (2.81a)

τ̂
dm2

d t
=−m2 +F2(m1,m2, {θ̂x1x2 }), (2.81b)

τ̂θ
d θ̂x1x2

d t
=−θx1x2 + θ̂0 + D̂θ

〈
φ̂x1x2 (m1,m2, θ̂x1x2 )

〉
x1, x2 ∈ {0,1}. (2.81c)

Here, we have introduced the nonlinear functions

Fµ(m1,m2, {θ̂x1x2 }) = ∑
x1=0,1

∑
x2=0,1

Px1,x2
xµ−γ
γ(1−γ)

〈
φ̂x1x2 (m1,m2, θ̂x1x2 )

〉
(2.81d)

(µ= 1,2), and the mean firing-rate u of population (x1, x2)

u := 〈
φ̂x1x2 (m1,m2, θ̂x1x2 )

〉= ∫
φ̂(ĥx1x2 (m1,m2, θ̂x1x2 , z))e−

z2

2
d zp
2π

, (2.81e)

the mean-field input potential

ĥx1,x2 (m1,m2, {θ̂k1k2 }, z) = (
x1 −γ)

m1 + (
x2 −γ)

m2 +
p
αRz

− θ̂x1x2 − Ĵ0(t )

γ

∑
k1=0,1

∑
k2=0,1

Pk1,k2

〈
φ̂x1x2 (m1,m2, θ̂k1k2 )

〉
. (2.81f)

and the mean squared overlap of background patterns R given by

R = p

(1−q)2 (2.81g)

q = ∑
x1=0,1

∑
x2=0,1

Px1,x2

∫
φ̂′(ĥ(x1, x2, z), θ̂x1x2 )e−

z2

2
d zp
2π

(2.81h)

p = ∑
x1=0,1

∑
x2=0,1

Px1,x2

∫
φ̂2(ĥx1,x2 (m1,m2, {θ̂x1x2 }, z), θ̂x1x2 )e−

z2

2
d zp
2π

(2.81i)

In order to obtain
〈
φ̂x1x2 (m1,m2, θ̂x1x2 )

〉
in Eq. (2.81c) and (2.81d), Eqs. (2.81e) – (2.81i) need

be solved self-consistently (for more details, see Section “Numerical Solutions”).

2.6.13 Stability of the fixed points

In order to compute the stability of the fixed points in Fig. 2.7, we compute the eigenvalues of

the Jacobian matrix J of the m1−m2 dynamics at the point location in the m1−m2 plane. The

Jacobian matrix is symmetric and the three independent entries are computed from Eq. (2.56)
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as:

J11(m1,m2) =−1+ A

γ(1−γ)

〈(
ξ1

i −γ
)2
φ′(hi )

〉
i

(2.82)

J12(m1,m2) = J21(m1,m2) = A

γ(1−γ)

〈(
ξ1

i −γ
)(
ξ2

i −γ
)
φ′(hi )

〉
i (2.83)

J22(m1,m2) =−1+ A

γ(1−γ)

〈(
ξ2

i −γ
)2
φ′(hi ))

〉
i

(2.84)

In the numerical computation of the J, we exploited the symmetries under exchange of m1

and m2, for example J22(m1,m2) = J11(m2,m1) and so on.

Analogously to the system in Eq. (2.56), also the Jacobian matrix can be adapted to the case of

3 or 4 correlated pattern, using the joint probabilities in Eq. (2.113) and the generic forms

Jµ,µ(mµ,mµ) =−1+ A

γ(1−γ)

〈(
ξ
µ

i −γ)2
φ′(hi )

〉
i

, (2.85)

Jµ,ν(mµ,mν) = A

γ(1−γ)

〈(
ξ
µ

i −γ)(
ξνi −γ

)
φ′(hi )

〉
i

(2.86)

2.6.14 The limit case b →∞: when the gain function is an Heaviside

In the limit b →∞, the gain function can be approximated by an Heaviside function φ(h) =
rmaxΘ(h −h0) which leads to some simplifications in the explicit writing of the mean-field

system Eq. (2.56). First of all, we can rewrite φ2(h) = r 2
maxΘ(h −h0) and φ′(h) = rmaxδ(h −h0),

where δ(x) is the Dirac delta function. In the next passage the erfc function come at hands.

Erfc is defined as erfc(x) = 1−erf(x), where erf is the error function and we use the following

identity, which follows directly from the definition:

∫ ∞

c

e−
x2

2p
2π

= 1

2
erfc

(
cp
2

)
. (2.87)
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The identity in Eq. (2.87) allows to rewrite the system Eq. (2.56) as:

τ
dm1

d t
=−m1 + 1

2γ(1−γ)

〈(
ξ1

i −γ
)

erfc

(
h0 −hi

A
p

2αr

)〉
i

(2.88a)

τ
dm2

d t
=−m2 + 1

2γ(1−γ)

〈(
ξ2

i −γ
)

erfc

(
h0 −hi

A
p

2αr

)〉
i

(2.88b)

q =
∫ ∑

x1

∑
x2

P (x1, x2)
rmaxp

2π
e−

(hi )2

A
p

2αr (2.88c)

p = r 2
max

2

〈
erfc

(
h0 −hi

A
p

2αr

)〉
i

(2.88d)

r = p

(1− Aq)2 (2.88e)

In Eq. (2.88), the input term h(x1, x2, z)) is the same as Eq. (2.57d) and the expectations over i

are computed as in Eq. (2.56).

If we consider the case where neural self-interaction is excluded, an extra correction term

should be added to the input h(x1, x2, z)) and its limit for b →∞ reads as follows:

A2qαφ(h)(
1− Aq

) −−−−→
b→∞

Aαrmax

2
. (2.89)

Finally, in order to derive Eq. (2.4) let’s consider the retrieving state of pattern 1 (that of pattern

2 is symmetric with respect to the m1 −m2 axis in absence of external input): in this state,

m1 = 1, and m2 depends on the correlation C , as it emerges from Fig. 2.7A, however what is

the the exact value? It can be computed analytically in limit, b →∞ and γ→ 0. In this limit,

we can make the following approximations

γ(1−γ) ∼ γ, (2.90a)

P11 = γ2 +γ(1−γ)C ∼ γC , (2.90b)

1−γ∼ 1, (2.90c)

γ∼ 0, (2.90d)

and the identity P01 = ε(1− ε) (as derived in Eq. (2.109)). In these approximations, the m2

value in the fixed points is given by

m2 = 1

rmaxγ
{P11φ

[
Armax(m1 +m2)

]+P01φ
[

Armaxm2]}, (2.91)
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or equivalently

m2 = 1

rmaxγ
{γCφ

[
Armax(m1 +m2)

]+ε(1−ε)φ
[

Armaxm2]}. (2.92)

We use the b →∞ and the assumption m1 = 1:

m2 =CΘ
(

Armax(1+m2)−h0
)+ ε(1−ε)

γ
Θ

(
Armaxm2 −h0

)
. (2.93)

Since h0 < 1 and m2 ≥ 0, the termΘ
(

Armax(1+m2)−h0
)= 1. Therefore, m2 =C if Armaxm2 <

h0 (confront to the bifurcation diagram in Fig. 2.7C). In the limit case where m2 → h0
Armax

we

obtain:

Cmax ≤C 0
max ≡

h0

Armax
= ĥ0. (2.94)

2.6.15 Robustness to heterogeneity

Heterogeneous F-I curves

In this section we introduce heterogeneous F-I curves. Each neuron is characterised by a

baseline firing rate (rmin)i a maximum firing rates (rmax)i . The sigmoidal F-I function in Eq.

2.22 has to be rewritten as

φ(h) = rmax

1+e−b(h−h0)
→φi (x) = (rmax)i − (rmin)i

1+e−b̂(x−(ĥ0)i )
+ (rmin)i . (2.95)

We define two Gaussian distribution N (µrmin ,σrmin ) and N (µrmax ,σrmax )from which we sample

(rmin)i and (rmax)i respectively. Since negative values of firing rates do not have a physical

meaning we set the minimum of (rmin)i to 0. Similarly, we do not want to allow the maximal

firing rate to be too low, so we set the minimum value of the re-scaled firing rate (r̂max)i to

0.5. Finally, parameter (ĥ0)i is defined as h0((rmax)i − (rmin)i ), where h0 is a model’s parameter.

Finally in Eq. 2.20, we re-scale the firing rates as follows:

ri → Max

[
0,

(ri − (rmin)i

(rmax)i − (rmin)i

]
. (2.96)

Diluted weight matrix

We define an attractor neural network of N units, where each unit receives input from K

others. The probability of having a connection between two units is d = M/N . The load of the

network is defined as α= P/N , where P is the total number of patterns. We also assume that

A/d = constant (to be introduced into the dimensional analysis). The input term Eq. 2.21 is
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filtered with gain function φ, which is chosen to be a sigmoid as in Eq. 2.22. The connection

matrix, wi j , contains the synaptic weights between neurons i and j , but, compared to Eq. 2.5,

connections are diluted with probability d as defined in (Pereira and Brunel, 2018)

wi j = A

Nγ(1−γ)

di j

d

P∑
µ

(
ξ
µ

i −γ)(
ξ
µ

j −γ
)

(2.97)

where di j is 1 with probability M/N and 0 otherwise and the constant A can be interpret as

“connection strength". In order for the weights to have expectation
〈

wi j
〉= 0, we subtract the

mean activity of patterns < ξµi >= γ. Using the similarity measure introduced in Eq. 2.24, the

input terms h j can also be re-written as a function of the overlaps m1, ...,mP , by using the

definition of the weights wi j , Eq. (2.97), and that of the overlaps.

hi =
N∑
j

wi j r j = A

N dγ(1−γ)

N∑
j

di j

P∑
µ

(
ξ
µ

i −γ)(
ξ
µ

j −γ
)

r j =

= A

N dγ(1−γ)

N∑
j

di j
(
ξ1

i −γ
)

r j + A

N dγ(1−γ)

N∑
j

di j

P∑
µ=2

(
ξ
µ

j −γ
)(
ξ
µ

i −γ)
r j

(2.98)

where we have separate the “signal” related to the first pattern being retrieved and a noise

term Yi . We write hi = Am1 +Yi , with

Yi = A

N dγ(1−γ)

N∑
j

(1−di j )
(
ξ1

i −γ
)

r j + A

N dγ(1−γ)

N∑
j

di j

P∑
µ=2

(
ξ
µ

j −γ
)(
ξ
µ

i −γ)
r j (2.99)

Since the terms di j and
(
ξ1

i −γ
)

are independent, we have 〈Yi 〉.

We assume Yi to be distributed like a Gaussian with variance

〈〈
σ2〉〉

i =
〈〈

(Yi )2〉〉
i =

1

N

N∑
i

A2

N 2d 2γ2(1−γ)2

P∑
µ6=1

P∑
ν6=1

〈(
ξ
µ

i −γ)(
ξνi −γ

)∑
j

∑
k

(
ξ
µ

j −γ
)(
ξνk −γ

)〉
di j di k r j rk =

= 1

N

N∑
i

A2

N 2d 2γ2(1−γ)2

P∑
µ6=1

(
ξ
µ

i −γ)2 ∑
j

di j

(
ξ
µ

j −γ
)2

r 2
j

(2.100)

in the last passage, we used the fact that
〈(
ξ
µ

j −γ
)(
ξνk −γ

)〉 = δ j kγ(1−γ) and d 2
i j = di j . We

then apply the same independence argument as used for the signal term and obtain

〈
σ2〉= A2r 2

max

d 2 γ(1−γ)d
∑
µ

(mµ)2 (2.101)

From now on the passages are the same as in the SI, except maybe the correction term for
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excluding self-interaction, which I should recompute.

The final difference in the equations is that the term
p
α′r z, where α′ = P/N should be

substituted with
p
αdr z. The two terms however are equivalent since α′ =αd .

2.6.16 Relation to experiments: algorithms to generate correlated patterns

In this section we describe how a single subgroup of K patterns with sparseness γ is created

according to three different algorithms. Patterns belonging to the same subgroup correspond

to associated concepts and share pair-wise a fraction of neurons c. For the hierarchical

generative model and the indicator neuron model, we associate the algorithm to the theoretical

probability distribution for a neuron to respond exactly to k concepts out of K .

Hierarchical generative model.

We start by creating a “parent” pattern which is not part of the subgroup. The parent pattern

has sparseness λ = γ/c: prob(ξparent
i = 1) = λ. We proceed to create the actual patterns by

copying the ones of the parent pattern with probability c, while the zeros stay untouched,

following the conditional probabilities

prob(ξµi = 1|ξparent
i = 1) = c, (2.102a)

prob(ξµi = 1|ξparent
i = 0) = 1− c, (2.102b)

prob(ξµi = 1|ξparent
i = 0) = 0, (2.102c)

prob(ξµi = 0|ξparent
i = 0) = 1. (2.102d)

(2.102e)

This ensures that the patterns ξµi have the right sparseness and fraction of pair-wise shared

neurons. The sparseness can be checked as follows:

prob(ξµi = 1) =λc = γ, (2.103a)

prob(ξµi = 0) =λ(1− c)+ (1−λ) = 1−γ. (2.103b)

On the other hand, the fraction of pair-wise shared neurons is given by the conditional proba-

bility that a neuron is part of pattern ν given that is it part of pattern µ:

prob(ξνi = 1|ξµi = 1) = c + (1− c)δµν. (2.104)
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Hence the fraction of shared neurons as it should be. More generically, the theoretical proba-

bility (or the expectation) that a neuron participates in k patterns out of K is

P K (k) = K !

(K −k)!k !
λck (1− c)K−k + (1−λ)δk0. (2.105)

Indicator neuron model.

To create a subgroup of pair-wise associated patterns using indicator neurons (i.e. neurons

that indicate the subgroup), we proceed in three steps:

1) generate with probability λ a small subset of indicator neurons for this subgroup. This

subset gives a parent pattern of indicator neurons:

prob(ξparent
i = 1) =λi nd = cγ−γ2

(1−ε)2 −2γ(1−ε)+ cγ
. (2.106)

In a network of N neurons, ni nd =λi nd N are indicator neurons.

2) To create each pattern µ of the subgroup, copy indicator neurons with probability (1−ε):

prob(ξµi =+1|ξpar ent
i = 1) = 1−ε (2.107)

3) Add random neurons (with probabilityΩ) to pattern µ

prob(ξµi = 1|ξparent
i = 0) =Ω= γ−λi nd (1−ε)

1−λi nd
. (2.108)

This last probability can also be interpreted as the probability of flipping a 0 from the parent

pattern when creating the correlated patterns.

With this construction, the total number of neurons that are active in pattern µ is λi nd N (1−
ε)+ (1−λi nd )N γ−λi nd (1−ε)

1−λi nd
= Nγ as it should be. The value of λi nd is chosen in order to ensure

that the fraction of pair-wise shared neurons is c. Indeed we found it by solving cγ= λ(1−
ε)2 + (1−λ)Ω.

In this work, we always choose ε such that ε=Ω, For specific case ε=Ω, it is possible to derive

ε directly from the correlation C and the sparsity γ.

We create a “parent" pattern~ξ0 with mean activity
〈
ξ0

i

〉
i
=λ. Starting from~ξ0 we create~ξ1 and

~ξ2, each unit i has probability ε of being the equal to ξ0
i and probability 1−ε of being flipped

compared to ξ0
i . All other patterns ξµ,µ= 3, ...,P are sorted independently from a Bernoulli

distribution with probability P (ξµi = 1) = γ. The joint probabilities Pkl = P (ξ1
i = k,ξ2

i = l ) can
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be computed as functions of the probabilities λ and ε:

P11 =λε2 + (1−λ)(1−ε)2, (2.109a)

P10 = P01 =λε(1−ε)+ (1−λ)ε(1−ε) = ε(1−ε), (2.109b)

P00 =λ(1−ε)2 + (1−λ)ε2. (2.109c)

(2.109d)

Note that by this procedure we only obtain non-negative correlations C ∈ [0,1].

Using P11 from Eq. (2.109), we can express C as

C (λ,ε) = P11 −γ2

γ(1−γ)
= (1−λ)

[
λε2 + (1−ε)2

]
γ(1−γ)

. (2.110)

Similarly, the mean activity of the correlated patterns can be expressed as a function of λ and ε

as

γ(λ,ε) = 〈
ξ1

i

〉
i =

〈
ξ2

i

〉
i =λε+ (1−λ)(1−ε). (2.111)

So far, we showed how to generate correlated patterns given the probabilities λ and ε. Con-

versely, how do we choose λ and ε given the mean activity γ and the correlation C , C ≥ 0? To

this end, we invert the above relations in order to solve for λ(C ,γ) and ε(C ,γ):

λ= γ+ε−1

2ε−1
, (2.112a)

2ε3 −3ε2 + [
1+2γ(1−γ)(1− Ĉ )

]
ε−γ(1−γ)(1− Ĉ ) = 0, (2.112b)

Eq. (2.112b) has up to three solutions, we chose those that are real and in the range [0,1].

The same procedure can be generalized to generate several correlate binary patterns. The

general formula for the joint probability can be written as follows:

Px1,...,xn =λεa(1−ε)b + (1−λ)εb(1−ε)a , (2.113)

where a =∑n
µ=1 xµ is the number of xµ variables taking value 1 and b = n −a is the number of

xµ variables taking value 0. The value of the joint probabilities in Eq. (2.113) is invariant under

permutation of the xµ.

Iterative correlation model.

In this subgroup construction, we do not define any parent pattern. We define the number of

active neurons as γN and the number of pair-wise shared neurons as γcN .
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1) We define the set of “untouched neurons”, which counts all neurons at the beginning of the

procedure

2) We create pattern 1 by randomly sample γN neurons and exclude the sampled neurons

from the untouched ones.

3) For every pattern ξµ with µ from 2 to K , compare it with each of the already created patterns.

Let’s suppose we are comparing the new pattern µ with the already formed pattern ν. a) check

how many neurons are in common between the two. b) sample from pattern ν the remaining

neurons needed to reach γcN shared neurons.

4) Complete pattern µ by adding neurons from the untouched ones until reaching γN active

units. 5) Remove the units used in point 4 from the untouched ones.

It is important to underline the necessity of point 3.a. To make it clearer, let’s consider the

case we are building a subgroup of 3 patterns. We build the first one as in point 2. When we

build pattern two starting from scratch, it does not share any neuron with pattern 1, so we

just sample γcN from pattern 1 and γN (1− c) from the untouched neurons. Now we move to

pattern 3. As before, it does not share neurons from pattern 2, so we pick γcN from it. Now we

compare pattern 3 with pattern 1: it ca be that between the neurons we picked from pattern 2

some belong to pattern 1 as well, that’s why we need to adjust the number of neurons to pick

in order to preserve the correct amount of pair-wise correlation.

When the subgroup size K is big however it is still possible to exceed the correct fraction

of shared neurons between some of the patterns that get build the last. Let’s suppose we

are creating a subgroup of size K = 16, I start by applying point 3 of the algorithm between

pattern 16 and 15, then pattern 16 and 14 and so on. It can be that when we get to the point of

picking neurons from pattern 4, 3, 2, 1 we take some neurons that also belong to pattern 15

but they are not the ones we picked in the in the previous iteration and thus get accepted. This

created an higher correlation between the last built patterns in large subgroups. We checked

that this does not influence significantly the average pairwise correlation during the virtual

experiments described in the next section.

2.6.17 Comparing algorithm predictions with experimental data

We use a data set containing the activity of human MTL neurons (De Falco et al., 2016). Data

were collected in 100 recording sessions with epileptic patients. In each recording session

several stimuli were presented to the patient. The association between each pair of stimuli

was estimated using a web-based association score.

In order to compare the predictions of the algorithms with the data, we try to reproduce
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the real data by running virtual experiments based on the three algorithms presented in the

previous section. In each virtual experiment we replicate the conditions of the real experiment

as follows. For each real experimental session, we first extract the number of responsive

neurons in each session. We then group the presented stimuli into clusters based on an

association matrix derived from the web-association scores. To do so, we use an hierarchical

agglomerating clustering algorithm with threshold equal to the mean of the association matrix

for the session. Such clusters indicate the amount and the size of the patterns subgroups we

have to build for the corresponding virtual experiment.

We can then proceed with the virtual experiment: in each session we a) build subgroups of

patterns in the same number and size as the clusters of stimuli for each of the three algorithms

and then b) sample a neuron at the time and count to how many patterns does it respond to. c)

Finally, the count of how many stimuli a neuron responds to that of other sessions. We sample

neurons until we match the number of responsive neurons with that of the real experimental

session. Each virtual experiment counts N = 105 neurons and it is run 40 times and plot in Fig.

2.5A the normalised mean and standard deviation.

We choose to ignore non-responding neurons in our analysis, since it is likely that the propor-

tion of non-responsive neurons compared to that of responsive ones is largely underestimated

in the experiment ( non-responsive neurons are more likely to remain silent during the experi-

ment and not to be recorded at all).

2.6.18 Comparing virtual experiments and expected distributions

It is also possible to compare the virtual experiments with the theoretical distributions in Eq.

(2.105) and (2.113). Eq. (2.105) and (2.113) provide the probability that a neuron is selective

to k out of K patterns if a single subgroup of stimuli is stored in the network. But how do we

combine such probabilities when several subgroups of patterns are stored in the network?

We defineΨs(k) the probability that a neuron responds to exactly k patterns in session s. We

know from the previous session the number and sizes G j of subgroups present in each session.

Then

Ψs(k) =
maxK∑

j=k
G j P j (k)ζ j (2.114)

where maxK is the biggest between all subgroup sizes K j and ζ j = 1−P j (0) is the probability

that a neuron takes part into the subgroup j . The formula Eq. 2.114 is valid in the assumption

that subgroups are strictly disjoint, meaning that we assume that the same can not take part

into encoding patterns belonging to different subgroups. This assumption is not true for

the way we algorithmically build subgroups patterns in the virtual experiments, however

dropping it make the expression forΨs(k) not treatable. Finally the probabilitiesΨs(k) from
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each session must be combined into the final distributionΨfinal(k):

Ψfinal(k) =
∑

s N sample
s Ψs(k)∑

s
∑

k N sample
s Ψs(k)

= N sample
1 Ψ1(k)+N sample

2 Ψ2(k)+ ...

N sample
tot

(2.115)

where N sample
s is the amount of responsive neurons measured in each experimental session

and Ntot is the total amount of measured responsive neurons. In the last passage, note that∑
s
∑

k N sample
s Ψs(k) =∑

s N sample
s

∑
kΨs(k) = Ntot, since

∑
kΨs(k) in every session s. The com-

parison between the theoretical distributions, the virtual experiments and the experimental

data is shown in Fig. 2.13. The virtual experiments are the same a in Fig. 2.6: we re-run the

experiment 40 times and took the average (main points) and standard deviation (error bars).

The small mismatch between the theoretical predictions and virtual experiments is due to the

fact that in the theoretical prediction we do not allow the same neurons to take part to two

or more subgroups of concepts, while there is no such a restriction in the virtual experiment.

Theory prediction and mean of the virtual experiments are really close, proving that only very

few neurons take part in encoding different subgroups.

2.6.19 Numerical solutions

Two correlated patterns: finding the fixed points

The system in Eq.(2.56) is solved numerically to obtain the fixed nullclines, points, and flux

arrows, plotted in Fig. 2.7. Fixed points are obtain through a grid search in the three-

dimensional space spanned by m1, m2 and R. For each value of Rval ∈ [0,max(R)] and

m1
val,m2

val ∈
[
Lower bound,Upper bound

]
, Eq. (2.57d)–(2.57g) are solved. We call the value

of R obtained by Eq. (2.57d) Rreconstructed. If Rval and Rreconstructed are close enough, namely

|Rval −Rreconstructed| < correction-constant · step. (2.116)

The quantity called “step" is the step size of the linear space we used to span R,

step = max(R)

Resolution
(2.117)

The correction constant can increase or decrease the range in which we accept a value Rval

as a valid solution: it is equal to 1 in most cases, but can be chose to be a bit bigger than one

to avoid counting the same fixed point too many times. The values of Rval that satisfy Eq.

(2.116) are then used to solve Eqs. (2.57), providing the values m1
reconstructed and m2

reconstructed.

Analogously to before, we find the solutions of Eqs. (2.57) comparing the values m1
val and m2

val
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Figure 2.13 – Comparison between model prediction and data. Probability of finding a neuron
responding to a given number of concepts as measured from experimental data (black stars),
predicted by the three algorithms (as in Fig. 2.6, the area between error bar of one standard
deviation is shaded) and theoretically forecast for the indicator neuron model (light blue) and
for the hierarchical generative model (light green) obtained from Eq. (2.115).

with the recomputed counterparts m1
reconstructed and m2

reconstructed as follows∣∣mµ

val −mµ

reconstructed

∣∣< correction-constant · step, (2.118)

where the step is defined as

step = |Upper bound−Lower bound |
Resolution

. (2.119)

Two correlated patterns with adaptation and periodic inhibition

In order to solve the dynamical equations of the mean-field in the presence of adaptation

and global inhibition (as done in Fig. 2.10 and 2.11) we compute at each point in time
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¯φx1x2 (m1,m1,Θx1x2 ), p, q , R and J0(t). In particular, the four ¯φx1x2 (m1,m1,Θx1x2 ) are solved

first and recursively since they are functions of themselves. We then update Θx1x2 (t) with

Euler method. Finally, we compute m1(t ), m2(t ). In order to compute m1(t ), m2(t ), we make

a time-scale separation argument. We assume that m1(t ) and m2(t ) dynamics are much faster

thanΘx1x2 (t ) and J0(t ), τ<< TJ0 < Tθ. According to this approximation, at each point in time

we let m1(t ) and m2(t ) reach their equilibrium values given the currentΘx1x2 (t ) and J0(t ). In

other words, at each point in time, we consider all dynamical quantities frozen, than let m1(t )

and m2(t ) evolve according to their dynamics (we use Euler method) until convergence, and

finally update the other quantities.

To find the fixed points in Fig. 2.10, we proceed like in the non-adaptive case: we do a grid

search in the space spanned by m1, m2 and R. For each solution of R, ¯φx1x2 (m1,m1,Θx1x2 )

are computed recursively. Finally, for the obtained values of R and ¯φx1x2 (m1,m1,Θx1x2 ), the

solutions of m1 and m2 are found.

Excluding self-interaction: a numerical approximation

In Fig. 2.2B, we compute the critical correlation for non-zero network load, α> 0, in the case

we consider the correction to exclude self interaction. To find the numerical solutions of the

fixed points, we have approximated the input term h(x1, x2, z) to the first order in z as follows:

h(x1, x2, z) = 〈
h(x1, x2, z)

〉
z + A

p
αr z. (2.120)

Then the quantity

〈
h(x1, x2, z)

〉
z = Armax

(
x1 −γ)

m1 + Armax
(
x2 −γ)

m2 +
〈

A2qαφ(h(x1, x2, z))(
1− Aq

) 〉
z

(2.121)

can be approximated by

〈
h(x1, x2, z)

〉
z ∼ Armax

(
x1 −γ)

m1 + Armax
(
x2 −γ)

m2 + A2qαφ(
〈

h(x1, x2, z)
〉

z )(
1− Aq

) (2.122)

which is equivalent to take the order 0 term into the Taylor expansion of h(x1, x2, z) for small z.

Stability of the fixed points

The stability of the fixed points in Figs. 2.7,2.8 and 2.9 is obtained by computing the Jacobian

matrix of the differential equations for m1 and m2 from Eq. (2.56a-b) respectively. Analogously,

the stability of the fixed points in Figs. 2.9, 2.10 are obtained by computing the Jacobian matrix

of the differential equations for m1 and m2 from Eq. (2.81ca-b).
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Table 2.1 – Table of parameters, part1. For convenience the section number was dropped, so
that Fig. 2.1, is referred to as simply Fig.1. Meaning of the abbreviations used: MF: obtained
from mean field equations, FS: full network simulation, var. = this parameter is variable and
specified in the figure.

Table of parameters
Param. Fig

1C/7A
Fig 8B-C Fig 2A Fig 2B Fig 1D-

2C
Fig 8A Fig 3 Fig 9

γ 0.002 0.002 0.002 0.002 0.002 0.002 var. 0.002
b̂ 100 100 var. 100 100 100 100 100
ĥ0 0.25 0.25 var. var. 0.25 0.25 0. 0.
rmax 1 1 1 1 1 1 1 1
τ 1 1 1 1 1 1 1 1
A 1 1 1 1 1 1 1 1
α 0 0 0 var. 0, 0.2 0 ∼0 0
C var. var. - - var. 0.3 var. var.
Tθ - - - - - - 45 ∞
TJ0 - - - - - - 25 ∞
Model MF MF MF var. FS/MF MF FS MF
Upper
bound

1.2 1.05 1.05 1.05 - 1.05 - 1.2

Lower
bound

-1.2 -0.05 -0.05 -0.05 - -0.05 - -0.2

max(R) 0.03 0.03 0.03 0.03 - 0 - 0
Resolution 1000 1000 100 100 - 1000 - 500
Corr. Const. 1 1 1.1 1.1 - 1 - 1
Size 1000 - 50 50 - - - 500
dt - - - - 0.1 0.1 0.1 -

When the steepness of the gain function is very high, b > 1000, we approximate the gain

function with an Heaviside. The system Eq. (2.56) as well as the Jacobian matrix are rewritten

in a simpler way for b →∞ as can be found in Eq. (2.88).

In the numerical computation of the Jacobian matrix computed in Section “Stability of the fixed

points”, we exploited the symmetries under exchange of m1 and m2, for example J22(m1,m2) =
J11(m2,m1) and so on.
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Table 2.2 – Table of parameters, part2. For convenience the section number was dropped, so
that Fig. 2.1, is referred to as simply Fig.1. Meaning of the abbreviations used: MF: obtained
from mean field equations, FS: full network simulation, var. = this parameter is variable and
specified in the figure.

Table of parameters
Param. Fig 4/10 Fig 11 Fig 12 Fig 5/13 Fig 6
γ var. 0.002 0.001 0.002 0.002
b̂ 100 100 4.35 - 100
ĥ0 0. 0. 1.7 - var.
rmax 1 1 0.83 - var.
τ → 0 → 0 1 - 1
A 1 1 3.55 - 1
α 0 0 0 - 0.5
C var. 0.2 var. c = 0.04 var.
Tθ 45 45 - - -
TJ0 25 25 - - -
Model MF MF/FS MF - FS
Upper
bound

1.2 - 1.2 - -

Lower
bound

-0.2 - -0.2 - -

max(R) 0 - 0 - -
Resolution 1000 - 500 - -
Corr. Const. 1 - 1 - -
Size - - 200 - -
dt 0.1 0.1 - - 0.1
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Abstract

Synaptic changes induced by neural activity need to be consolidated to maintain memory

over a timescale of hours. In experiments, synaptic consolidation can be induced by repeating

a stimulation protocol several times and the effectiveness of consolidation depends crucially

on the repetition frequency of the stimulations. We address the question: is there an under-

standable reason why induction protocols with repetitions at some frequency work better than

sustained protocols – even though the accumulated stimulation strength might be exactly the

same in both cases? In real synapses, plasticity occurs on multiple time scales from seconds

(induction), to several minutes (early phase of long-term potentiation) to hours and days (late

phase of synaptic consolidation). We use a simplified mathematical model of just two times

scales to elucidate the above question in a purified setting. Our mathematical results show
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that, even in such a simple model, the repetition frequency of stimulation plays an important

role for the successful induction, and stabilization, of potentiation.
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3.2 Introduction

Synaptic plasticity, i.e. the modification of the synaptic efficacies due to neural activity, is

considered the neural correlate of learning (Hebb, 1949; Martin et al., 2000; Caroni et al., 2012;

Nabavi et al., 2014; Hayashi-Takagi et al., 2015; Holtmaat and Caroni, 2016). It involves several

biochemical mechanisms which interact on multiple timescales. The induction protocols

for short-term plasticity (STP, on the order of hundreds of milliseconds) (Turrigiano et al.,

1996; Markram et al., 1998) and for the early phase of long-term potentiation or depression

(LTP or LTD, on the order of minutes to hours) (Levy and Stewart, 1983; Brown et al., 1989;

Artola et al., 1990; Bliss and Collingridge, 1993; Markram et al., 1997; Sjöström et al., 2001) are

well established and have led to numerous models (Bienenstock et al., 1982; Gerstner et al.,

1996; Van Rossum et al., 2000; Song et al., 2000; Senn et al., 2001; Shouval et al., 2002; Rubin

et al., 2005; Pfister and Gerstner, 2006; Brader et al., 2007; Graupner and Brunel, 2007; Clopath
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et al., 2010; Gjorgjieva et al., 2011; Nicolas and Gerstner, 2016). On the other hand, various

experiments have shown that the further evolution of synaptic efficacies on the timescale of

hours depends in a complex way on the stimulation protocol (Frey and Morris, 1997; Dudai

and Morris, 2000; Nader et al., 2000; Redondo and Morris, 2011). This phenomenon is called

synaptic consolidation, to be distinguished from memory consolidation, which is believed

to take place through the interaction between hippocampus and cortex and which occurs

on an even longer timescale (Hasselmo, 1999; Roelfsema, 2006; Brandon et al., 2011). Such

a richness of plasticity mechanisms across multiple timescales has been hypothesized to be

fundamental in explaining the large storage capacity of memory networks (Fusi et al., 2005;

Benna and Fusi, 2016).

Synaptic consolidation is often studied in hippocampal or cortical slices, in which it is induced

by extra-cellular stimulation of afferent fibers with short current pulses (Frey and Morris, 1997;

Sajikumar and Frey, 2004a,b). Experimental protocols are typically organized in multiple

repetitions of stimulation episodes, with variable repetition frequency and duration of each

episode (Fig. 3.1A). The dependence of the consolidation dynamics on the parameters of

the experimental protocol is complex and has remained elusive. Both the intra-episode

pulse frequency and the inter-episode delay play an important role in determining whether a

synapse gets potentiated or not after the stimulation (Larson and Munkácsy, 2015; Kumar and

Mehta, 2011). Furthermore, recent evidence suggests the existence of optimal parameters to

achieve consolidation (Larson and Munkácsy, 2015; Kumar and Mehta, 2011). Existing models

succeeded in reproducing experimental results on early and late LTP (Clopath et al., 2008;

Barrett et al., 2009; Ziegler et al., 2015; Kastner et al., 2016), by a mathematical description of

the interaction of different synaptic mechanisms. However, the complexity of those models

prevents a complete characterization of the dynamics, that links stimulation protocols to

synaptic consolidation. Here we address the following question: why is the temporal structure

of stimulation, i.e. the timing of repetitions, so important for synaptic consolidation?

We introduce a phenomenological model of synaptic consolidation (Fig. 3.1B,C,D) in which, as

suggested by experiments (Petersen et al., 1998; O’Connor et al., 2005; Bosch et al., 2014), both

model variables are bistable. We find that, despite the simplicity of our model, potentiation

of a synapse depends in a complex way on the temporal profile of the stimulation protocol.

Our results suggest that not just the total number of stimulation pulses, but also the precise

timing within an episode and across repetitions of episodes are important, in agreement with

anecdotal evidence that changes in protocols can have unexpected consequences.

3.3 Methods

In what follows, we introduce the synaptic consolidation model that we analyze in the Results

section. Since describing the details of molecular interactions inside a synapse as a system of
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Figure 3.1 – Schematic experimental setup and modeling framework. A: Schematic of extra-
cellular stimulation in experiments. The plasticity-inducing stimulus consists of several
episodes of duration ton with inter-episode interval toff. Zoom: Each episode contains several
high-frequency pulses. B: Schematic of single-synapse consolidation model. The synapse is
described by a weight variable w with time constant τw and a slower consolidation variable z
with time constant τz ≥ τw . Each episode corresponds to a rectangular plasticity-inducing
stimulus I (t). C: Phase-plane for a specific choice of f (w, z) and g (w, z), I (t) = 0 and τz =
7τw . The fixed points in (w, z) = (−1,−1) and (w, z) = (1,1) are stable and correspond to an
unpotentiated and potentiated synapse, respectively. The black line separates the basins of
attraction of the two stable fixed points. D: Evolution of the system dynamics in the phase-
plane. The system is initialized in the unpotentiated state and it evolves under the effect of a
plasticity-inducing stimulus made of three pulses.
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differential equations (Bhalla and Iyengar., 1999; Lisman and Zhabotinsky, 2001) would be far

too complicated for our purpose, we aim to capture the essential dynamics responsible for

synaptic consolidation with an effective low-dimensional dynamical system. In this view, vari-

ables are mathematical abstractions that represent the global state of a network of biochemical

molecules inside a synapse, e.g. during a transition from one metastable configuration to

another (Bosch et al., 2014).

3.3.1 Choice of the model

A one-dimensional dynamical system is not expressive enough to capture experimental data.

Indeed, in a one-dimensional differential equation, it would be sufficient to know the instanta-

neous state of a single variable of the synapse (such as the weight) to predict its evolution, while

this is not the case in experiments. As a natural step toward more complexity, we consider a

general autonomous two-dimensional model

d w

d t
= f (w, z)

d z

d t
= g (w, z) ,

(3.1)

where w represents the measured efficacy of a synaptic contact point (e.g. the amplitude of

the EPSP caused by pre-synaptic spike arrival), while z is an abstract auxiliary variable. For

simplicity, both variables will be considered unit-less. We choose the functions f and g , such

that

τw
d w

d t
=−Kw (w −w0)(w +w0)w +Cw

(
z − z0

w0
w

)
+ I

τz
d z

d t
=−Kz (z − z0)(z + z0)z +Cz

(
w − w0

z0
z

)
,

(3.2)

where (w, z) = ±(w0, z0) are the stable fixed points of the two-dimensional system in the

presence of a fixed coupling Cw ≥ 0, Cz ≥ 0 and in the absence of a drive, i.e. I = 0. In our

simulations, we always choose w0 = z0 = 1. For Kw 6= 0 and Kz 6= 0, we could divide Eq. 3.2 by

Kw and Kz to further reduce the numbers of parameters. However, we will stick to a notation

with explicit Kw and Kz since we do not want to exclude the choice Kw = 0 or Kz = 0. Without

loss of generality, we will choose Kw,z ∈ {0,1}, i.e either zero or unity. Note that the choice

Kz = 0 implies that the dynamics of the auxiliary variable z are linear, while Kz = 1 implies full

non-linearity. The choice of the model is explained in the next section.
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3.3.2 Simplification steps of the 2d-dynamics

In this section we present the arguments leading from Eq. 3.1 to Eq. 3.2. Readers not interested

in the details may jump to the next sections. One way to tackle the very general system in Eq.

(3.1) is to perform a Taylor expansion around w = 0 for the first equation

d w

d t
= A(z)+B(z) ·w +C (z) ·w2 +D(z) ·w3 + . . . (3.3)

and around z = 0 for the second one

d z

d t
= A′(w)+B ′(w) · z +C ′(w) · z2 +D ′(w) · z3 . . . . (3.4)

An expansion up to the third order enables us to implement the bistable dynamics (Petersen

et al., 1998; O’Connor et al., 2005) of single contact points. Bistability requires the system to

have at least two stable fixed points at finite value. This condition cannot be met by degree 1 or

degree 2 polynomials since they can have at most one stable fixed point. Therefore bistability

requires a polynomial of degree 3 or higher in at least one equation. To be more general, we

will consider a system in which both polynomials are of degree 3. We restrict our analysis

to the situation in which we have linear coupling between the two variables, of the form

A(z) = A0 + A1 · z, B(z) = B , C (z) =C and D(z) = D. Analogously, in the second equation we

set A′(w) = A′
0 + A′

1 ·w , B ′(w) = B ′, C ′(w) =C ′ and D ′(w) = D ′.

Bistability is be obtained with a negative coefficient of the third power in both equations.

Before we start the analysis, we rewrite Eqs. 3.3 and 3.4 in a more symmetric form. To do so

we proceed in three steps. (i) Assuming that the degree 3 polynomial has three real roots, we

rewrite our system in the more intuitive form

τw
d w

d t
=−K1(w −w1)(w −w2)(w −w3)+C1z

τz
d z

d t
=−K2(z − z1)(z − z2)(z − z3)+C2w ,

(3.5)

where C1 and C2 are coupling constants and the roots w1, w2, w3 correspond to the fixed

points of the equations in the uncoupled case ( C1 = C2 = 0). The parameters τw and τz

can be interpreted as time constants since they do not influence the location of the fixed

points but only the speed of the dynamics. K1 and K2 are two positive constants that scale the

whole polynomial, while C1 and C2 are positive constants that control the amount of coupling

between the two variables. If we exclude the coupling terms, each equation corresponds to an

over-damped particle moving in a double-well potential (Strogatz, 2014). The parameters K1,

K2, τw , τz , C1, C2, w1, w2, w3 are simple transformations of the parameters A0, A1, B , C , D,

A′
0, A′

1, B ′, C ′, D ′ of the original system. For example K1 = D. (ii) In order to further simplify

our study, we assume that in both equations one of the three roots is zero, one is positive and
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one negative, equally distant from zero. Following (Zenke et al., 2015a), we add a plasticity

induction term to the first equation that describes the drive provided by an LTP induction

protocol. The equations now read

τw
d w

d t
=−K1(w − w̄)(w + w̄)w +C1z + I

τz
d z

d t
=−K2(z − z̄)(z + z̄)z +C2w .

(3.6)

In the absence of coupling, the double well potential related to Eq. 3.6 has minima in w =±w̄ ,

z =±z̄ and a local maximum in w = 0 (z = 0). Notice that this seems to imply that a synaptic

weight can take both positive and negative values, which is biologically implausible. However,

this choice simplifies the calculations without loss of generality, since it is always possible to

go back to a system with positive weights by applying a coordinate translation.

(iii) In the absence of a drive (I = 0), the system has eight free parameters, which all influence

the location of the fixed points. In a final transformation step we rewrite Eq. 3.6 such that

the location of two stable fixed points becomes independent of the coupling constants C1

and C2. The reason for doing this is that the stable fixed points of the system are easier to

access experimentally than other constants. In particular, the value of w at the stable fixed

point should be related to the synaptic weight measured experimentally. We, therefore, rewrite

the system in the form of Eq. 3.2, where w0 and z0 are the absolute values of the stable fixed

point and the parameters can be mapped from Eq. 3.6 to Eq. 3.2, for example, Kw = K1 and

Cw = (K1w̄2 −K1w2
0)w0/z0 and analogously for Cz and Kz .

3.3.3 Nullclines and phase-plane analysis

Since the system is two-dimensional, it can be studied using phase-plane analysis, following a

well established tradition in computational neuroscience (Rinzel and Ermentrout, 1998; Er-

mentrout, 1996, 2002; Wilson and Cowan, 1972). The fixed points of the system are graphically

represented by the intersections of the nullclines (i.e. the curves defined by either d w
d t = 0 or

d z
d t = 0), which in our system are:

w −nullcline: z = z0

w0
w + Kw

Cw
(w −w0)(w +w0)w − I

Cw

z −nullcline: w = w0

z0
z + Kz

Cz
(z − z0)(z + z0)z .

(3.7)
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The maximum number of fixed points for the system in Eq. 3.2 can be easily computed. To do

so, consider a more general form of two nullclines:

w −nullcline: z = Pn(w)

z −nullcline: w =Qm(z) ,
(3.8)

where Pn(z) is a polynomial of degree n in w and, analogously , Qm(w) is a polynomial of

degree m in z; cf. Eq. 3.7. To find the fixed points of the system Eq. (3.8) we need to solve:

w =Qm(Pn(w)) . (3.9)

Eq. (3.9) is a polynomial equation of degree n ·m in w and therefore it allows a number of

real solutions s, 0 ≤ s ≤ n ·m. Applying this formula to our case, we find that we can have a

maximum of nine fixed points.

In order to reduce the number of parameters from 8 to 4, we first consider the symmetric case

(section 3.3.4) in which the two equations have the same parameters. Moreover, since we

make the choice z0 = w0 = 1, the actual number of free parameters is three. In the next section,

we show the effect of changing the coupling coefficients. Then, we briefly comment on the

effect of the time constants and of a constant plasticity-inducing stimulus I . We will move to

the analysis of the asymmetric cases in section 3.3.5.

3.3.4 Symmetric changes of coupling coefficients reveal two bifurcations

We study the case of symmetric coupling Cw =Cz =C and analyze how a change of coupling

strength influences the dynamics of the system. As an aside, we note that for symmetric

coupling we can define a pseudopotential (Cohen and Grossberg, 1983)

V (w, z) = Kw

4
w4 + Kz

4
z4 − 1

2w0

(
Kw w3

0 − z0C
)

w2 − 1

2z0

(
Kz z3

0 −w0C
)

z2 −C w z + I (3.10)

in which the dynamical variables move according to τw
d w
d t =− ∂V

∂w and τz
d z
d t =−∂V

∂z .

We fix τw = τz , Kw = Kz = 1, I = 0, w0 = z0 = 1 and vary C in Eq. 3.2. In the case C = 1, the

system is in a rather simple regime: there are two stable fixed points in (w, z) = (−1,−1) and

(w, z) = (1,1) and a saddle fixed point at the origin (Fig. 3.2). The basins of attraction of the

stable fixed points are separated by the z =−w diagonal.

If we decrease the coupling C , we encounter two bifurcations. A first pitchfork bifurcation takes

place at C = 1/2, when the two nullclines are tangent to each other in the saddle point. Beyond

the bifurcation point of the coupling coefficient, we observe the creation of two additional

saddle points (Fig. 3.2B). The stability properties, the location and the basins of attraction of
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Figure 3.2 – Phase-plane diagram and basins of attractions for the symmetric case with
equal coupling constants, Cw = Cz = C . The plasticity-inducing stimulus is null, I = 0. A:
C = 1, phase-plane with field arrows. The color of the arrows is proportional to the field
strength. w− and z− nullclines are indicated in red and blue respectively. The line that
separates the two basins of attraction is indicated in black. B: Same as A, but C = 0.4. Compared
to A, we notice the creation of two saddle points. C: Same as A, but C = 0.2. The maximum
number of fixed points is achieved. In this case we have four basins of attraction.

the other two fixed points remain unchanged, but the local field strength changes, as shown by

the colored arrows. The second pitchfork bifurcation takes place at C = 1/3. For this coupling

value, each of the two new saddle points splits into a stable fixed point and two further saddle

points. Therefore, for very weak coupling we observe four basins of attractions, whose shape

is shown in Fig. 3.2C. The stability of the fixed points in (w, z) = (−1,−1) and (w, z) = (1,1) is

not affected by the bifurcations.

On the other hand, if we increase the coupling coefficient to a value C > 1, then the two

nullclines will progressively flatten, but the location of the three fixed points is unchanged

with respect to the case C = 1.These observations have been summarized in the bifurcation

diagram of Fig. 3.3A. We observe that there are actually three pitchfork bifurcations, but that

two of them are degenerate since they happen for the same value of C .

3.3.5 Asymmetric parameter choices shape the basins of attraction

As a more general case, we consider asymmetric coupling C or timescale τ. When the coupling

coefficients are asymmetric, we can plot the position of the bifurcation points in the Cw – Cz

plane, (Fig. 3.3B). The choice Cw =Cz of the previous section corresponds to the dashed gray

line. We notice that in the asymmetric case it is possible to have three distinct bifurcations (for
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Figure 3.3 – Bifurcations diagrams. A: Fixed points in the symmetric case. Dashed lines
indicate unstable fixed points while continuous lines indicate stable fixed points. Orange and
green dots indicate bifurcation points. B: Bifurcation points in the Cw – Cz plane (black) for
the general (asymmetric) case. The dashed gray line corresponds to Cw =Cz . The orange and
green dots indicate the corresponding bifurcations in A. Note that, in B, the bifurcation at
Cw =Cz = 1

3 (green dot) is a degenerate point.
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Figure 3.4 – Asymmetric parameter choices. A: In the case Cw = 3 >Cz = 1, the curvature of
the w−nullcline (red) is smaller than that of the z−nullcline (blue) and the basins of attraction
are deformed compared to Fig. 3.2A. (τz = τw = 1) B: For τz /τw = 3 and Cw =Cz = 1, nullclines
are not affected (compare to Fig. 3.2A) but the basins of attraction are. C: For I = 0.5 (all other
parameters set to 1), the basin of attraction of the fixed point at (−1,−1) is smaller than of the
fixed point at (1,1).

example, we can fix Cw = 0.3 and decrease Cz , from 1 to 0). We find that, for Cw +Cz > 1, the

number of fixed points is always three and no bifurcation is possible. On the other hand, if

Cw +Cz < 1, the system enters in the regime with minimum five fixed points. Moreover, we

can analytically compute the bifurcation value of one coupling constant, given the other. An

asymmetric choice Cw 6=Cz influences the shape of the basins of attraction (Fig. 3.4A).

If we keep Cw = Cz but consider instead τz > τw , the system in Eq. 3.2 may be interpreted

as two different molecular mechanisms that act on different timescales. For example, the

variable z can be interpreted as a tagging mechanism or a consolidation variable while w is

the weight variable or amplitude of a post-synaptic potential. A comparison of Fig. 3.2A and

Fig. 3.4B shows that the changes in τ do not affect the nullclines but change the flow field and

the basin of attraction.

Another way by which we can introduce asymmetry in the system is by adding a plasticity-

inducing stimulus I . It follows from Eq. 3.7 that a value I > 0 will cause a down shift of the

w−nullcline. The case of Cw = Cz = 1, τw = τz = 1 s , Kw = Kz = 1 and I > 0 is shown in Fig.

3.4C. A plasticity-inducing stimulus I > 0 also implies a reduction of the basin of attraction of

the lower stable fixed point in favor of an increase of the basin of attraction of the upper stable

fixed point. For high values of I , the basin of attraction of the lower fixed point disappears

via a steady state bifurcation. Therefore, when I > 0 is large enough, the system is forced to

move to the upper fixed point that can be interpreted as a potentiated state of the synapse.

79



Chapter 3. Optimal Stimulation Protocol in a Bistable Synaptic Consolidation Model

Analogously, when I < 0, the attraction basin of the lower fixed point is enlarged and leads,

eventually, to a bifurcation in which the upper fixed point and the saddle point are lost.

A possible generalization of the model would be to consider the coupling coefficients Cw and

Cz as dynamical variables, as it has been explored in previous work (Ziegler et al., 2015). In

these models, the coupling parameters Cw and Cz of the two dynamical variables alternates

between Cw = 0 and Cz = 1 or Cw = 1 and Cz = 0, implementing a write-protection mechanism.

The price we pay is the introduction of additional differential equations and parameters for the

dynamics of the coupling coefficients. In the specific implementation of (Ziegler et al., 2015),

the dynamical coupling is controlled by a low-pass filter of the plasticity-inducing stimulus I

and the concentration of neuromodulators on plasticity.

3.3.6 Numerical simulations

All figures were obtained using Python 2.7, except for the bifurcation plot in Fig. 3, which

was created with Wolfram Mathematica. In the phase-plane plots, the separatrix between

the basins of attraction was obtained doing a mesh-grid search: we initialized the dynamical

system Eq. 3.2 in each point of a 100×100 grid in the w, z space (w, z ∈ [−1.5,1.5]) and checked

to which stable fixed point it converges. Therefore we interpolated the separation line. The

trajectory of the system in the phase-plane was obtained by solving the system in Eq. 3.2

using the Runge–Kutta 4 method with integration step d t = 0.01. In Figs. 3.6-3.7, we inject an

external stimulus into the dynamical equations. The system trajectory is always initialized in

the depotentiated state (−1,−1) and the simulation is stopped when the trajectory enters into

the basin of attraction of the potentiated state (1,1). The position of the stable fixed points

depends on the choice w0 = z0 = 1, which we made for simplicity. In fact, we can remap the

values of the synaptic weight w the desired (positive range) with an affine transformation,

without loss of generality.

3.4 Results

The two-dimensional model, introduced Methods section, predicts a complex dependence of

the synaptic consolidation dynamics upon the parameters of the experimental protocol. This

complex dependence has similarities with the behavior observed in experiments (Sajikumar

et al., 2005; Larson and Munkácsy, 2015); cf. Fig. 3.1. First, we describe how we abstract the

experimental protocol into a time-dependent plasticity-inducing stimulus I (t ). Then, we show

the response of our model to different stimulation protocols. In our model, the plasticity-

inducing stimulus I (t ) drives the synaptic weight w via a non-linear equation characterized by

a time constant τw . The weight w is coupled to a second variable z with time constant τz (Eq.

3.2). The variable z is an abstract description of the complex metastable states (potentiated or

80



3.4. Results

unpotentiated) caused by consolidation (Redondo and Morris, 2011; Bosch et al., 2014). After

an analysis of a single rectangular stimulation (one episode), in section 3.4.2, we will move

to the more realistic case of repetitive stimulation across multiple episodes. Throughout the

results section, we will focus on synaptic potentiation. Since the self-interaction term in Eq.

3.2 is symmetric with respect to w = z = 0, synaptic depression of a potentiated state is the

mirror image of synaptic potentiation of a unpotentiated state.

3.4.1 Abstraction of the stimulation protocol

In their seminal work, (Bliss and Lømo, 1973) showed that repeated high-frequency stimulation

of afferent fibers can lead to long-lasting synaptic potentiation. In later work it was shown

that low-frequency stimulation can lead to long-lasting synaptic depression (Bashir and

Collingridge, 1994). In order to keep the analysis transparent, we use a time-dependent,

real-valued quantity I (t ) as an abstraction for such experimental protocols. In what follows,

we will refer to I (t) as to the plasticity-inducing stimulus. Note that, we do not perform an

explicit mapping from the electrical current used in LTP experiments for the stimulation of

pre-synaptic fibers onto the plasticity-inducing stimulus I (t ) that influences the dynamics of

Eq. 3.2. A precise mapping would require additional assumptions on (i) how extra-cellular

stimulation triggers axonal spikes in multiple fibers, (ii) how pre-synaptic spike arrivals cause

post-synaptic firing and (iii) how pre- and post-synaptic neural activity leads, potentially via

a Hebbian model, to the induction of early-LTP. This means that, in principle, the model’s

dynamics is rich enough to reproduce the four classical synaptic-consolidation experiments

(Frey and Morris, 1997; Nader et al., 2000), however, we would need to set at least four free

parameters, corresponding to the amplitudes of the external input I , needed for strong and

weak LTP and LTD. Instead, we model a set of extra-cellular high-frequency pulses as a single

rectangular plasticity-inducing stimulus of positive amplitude (Fig. 3.1B). The larger the

stimulation frequency, the larger the amplitude of I (t). Analogously, a set of extra-cellular

current pulses at low frequency is modeled as a single negative rectangular plasticity-inducing

stimulus. The compression of multiple extra-cellular pulses into a single rectangular episode

I (t) is justifiable since the time between single pulses, even in the case of low-frequency

stimulation, is very short compared to the timescale of plasticity. This implies that multiple

short pulses in experiments can be well approximated by a single episode, described by

one prolonged rectangular stimulus in our model (Fig. 3.1A and B). In agreement with well-

established plasticity models (Bienenstock et al., 1982; Senn et al., 2001; Pfister and Gerstner,

2006; Clopath et al., 2010; Gjorgjieva et al., 2011), we use I > 0 to describe a high-frequency

stimulation since a positive I leads to potentiation, see Methods and Fig. 3.4C. Conversely, a

negative I favors depotentiation. On the other hand, experiments that involve global variables,

such as cross-tagging (Sajikumar and Frey, 2004b,a), can not be explained by our model.
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3.4.2 One episode

We consider the case in which our two-variable synapse model is stimulated with a single

rectangular plasticity-inducing stimulus I (t ) of variable amplitude and duration ton (Fig. 3.5A).

Experimentally, this would correspond to single-episode, high-frequency protocols of variable

stimulation intensity (i.e. pulse frequency) and duration. For each choice of duration and

amplitude, we initialize the system in the unpotentiated state, defined by the initial value

(w, z) = (−1,−1) and we numerically integrate the system dynamics until convergence. We

then measure the final state of the synapse, i.e. whether it converged to the potentiated or

returned to the unpotentiated state. In Fig. 3.5 we plot the curve that separates the region

of the parameter space that yields potentiation (shaded area) from the one that does not.

Different curves correspond to different time constants τw and τz of the synaptic variables w

and z in Eq. 3.2.

Fig. 3.5C illustrates a rather intuitive result, i.e. if the amplitude of the plasticity-inducing stim-

ulus is increased, the duration needed for potentiation decreases. Moreover, if the amplitude

is too small, we cannot achieve potentiation, even for an infinite pulse duration. The limit of

infinite pulse duration is in the following called the “DC” limit. The effect of DC-stimulation

can be easily understood from a phase-plane analysis (Fig. 3.4). Indeed, the introduction

of a constant term I > 0 in the w equation (DC term), yields a shift in the w-nullcline ver-

tically downward. However, if the term is too small to cause the loss of the low fixed point,

potentiation cannot be achieved (Fig. 3.4C).

The separation curves in Fig. 3.5C indicate that the minimal duration of an episode necessary

for potentiation decreases as the intensity of the plasticity-inducing stimulus increases. We

wondered whether the relevant parameter for potentiation is the area under the rectangular

plasticity-inducing stimulus. To study this, we performed a similar analysis, with the amplitude

of the plasticity-inducing stimulus and its area as independent variables. For each choice

of area and amplitude, the duration of the episode is given by ton = area/amplitude (see Fig.

3.5B). The results are shown in Fig. 3.5D. If there were a regime in which the relevant parameter

is the area of the pulse, then the curve separating parameters of successful from unsuccessful

potentiation would be horizontal. However, we find a near-horizontal curve only for τz = τw ,

limited to the high-amplitude region. For τz > τw we find the existence of an optimal value of

the amplitude that yields potentiation with the minimal area. If we increase the amplitude

beyond this optimal value, the necessary area under the stimulus curve I (t ) starts to increase

again.

In order to understand this effect, we look again at the phase-plane, in particular at the depen-

dence of the separatrix on the timescale separation. In the limit in which the amplitude goes

to infinity and the duration goes to 0 while the area of the whole plasticity-inducing stimulus

stays the same, the stimulus can be described by a Dirac-δ function. In Fig. 3.5D we can see
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Figure 3.5 – Potentiation during a single episode. Different curves correspond to different
ratios of the time constant τz and τw in Eq. 3.2. A: Schematic representation of single-
episode stimulations, corresponding to different choices of ton. B: Schematic representation
of different single-episode stimulations with constant area. The black line is proportional to
1/amplitude in order to stress that all pulses have the same area. C: Separation curves between
regions of successful or unsuccessful potentiation as a function of amplitudes and duration
ton of a the plasticity-inducing stimulus. The initial state is always the unpotentiated synapse
(w = z =−1). The shaded region of the parameter space is the one in which the synapse gets
potentiated. D: Same as C but as a function of amplitude and area of the stimulus during the
episode. The two insets show examples of trajectories (green lines) in the phase-plane for
two different parameters choices. The solid green lines represent the dynamical evolution of
the system during the application of the external stimulus, while the dotted green line shows
the relaxation of the system to a stable fixed point after the stimulation. Red: w-nullcline;
blue: z-nullcline; black: separatrix. The parameters that are not specified in the figure are:
Cw =Cz = 1, I = 0.
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that, if τz À τw , the separatrix tends to an horizontal line for w À 1. Since a δ-pulse input is

equivalent to an instantaneous horizontal displacement of the momentary system state in

the phase-plane, a single δ-pulse cannot bring the system across the separatrix. The δ-pulse

stimulation is, of course, a mathematical abstraction. In a real experimental protocol, such a

stimulation can be approximated by a short episode of very intense high frequency stimulation.

Due to the necessary finite duration of an episode, the system response in the phase-plane

will not be a perfectly horizontal displacement. However, achieving potentiation with short

pulses can still be considered as difficult, because it would require a disproportionately large

stimulation amplitude.

Our findings highlight the fact that changing parameters, such as the ratio of τw and τz , gives

rise to different behaviors of the model in response to changes in the stimulation protocols.

We may use this insight to design optimal experimental protocols for single-episode plasticity

induction. In particular, a model with timescale separation would predict the existence of

an optimal stimulus intensity for which the total stimulus area necessary for potentiation is

minimized. We emphasize that any model where consolidation works on a timescale that

is slower than that of plasticity induction will exhibit timescale separation and be therefore

sensitive to details of the stimulation protocol.

3.4.3 Repeated episodes

As a second case, we consider the potentiation of a synapse induced by repetitions of several

stimulation episodes. In an experimental setting, this type of stimulation would correspond

to several episodes of high-frequency stimulations, characterized by three parameters: the

intensity of stimulation during each episode (amplitude), the duration (ton) of each episode

and the inter-episode interval, toff; cf. Fig. 3.6A,B. To keep the analysis transparent we apply a

number of repetitions large enough to decide whether potentiation is successful or not given

the three parameters. Notice that if toff = 0 we are back to the DC stimulation as defined in the

previous section.

The curves in Fig. 3.6C,D show the separation between parameters that lead to successful

potentiation (shaded) or not (white) in the amplitude-toff space for fixed values of ton and for

different τz /τw ratios. In Fig. 3.6C we fix ton = τw . We observe that, at least for low timescale

ratios, it exists an amplitude above which the synapse gets potentiated independently of toff,

which suggests that, for this intensity of the stimulation, the potentiation happens during

the first episode. The amplitude necessary to obtain potentiation in one pulse, however,

increases rapidly with the τz /τw ratio (see Section 3.4.2). On the other hand, if the value of

toff is small enough (i.e. for high repetition frequency), potentiation can be achieved with

smaller amplitudes and the timescale ratio is less important (notice the superimposed lines in

the bottom left part of the plot). If we decrease the pulse duration to ton = 0.01τw , we obtain
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Figure 3.6 – Potentiation with repeated episodes. A: Schematic representation of stimulation
protocols characterized by different toff, while ton = τw is fixed. B: Schematic representation
of stimulation protocols with ton = 0.01τw . C: Potentiation region for stimulation with long
episodes for fixed ton = τw . The curves for different ratios τz /τw (see color code) indicate the
separation between the region that yields potentiation (shaded) and the region that does not
(white) as a function of intensity of stimulation in each episode (amplitude) and inter-episode
interval (toff). D: Potentiation regions for protocols with shorter episode ton = 0.01τw . The
potentiation region is shaded. The two insets show examples of trajectories (green lines) in the
phase-plane for the same choice of stimulation parameters but different timescale separation.
The solid green lines represent the dynamical evolution of the system during the application of
the external stimulus, while the dotted green line shows the relaxation of the system to a stable
fixed point after the end of the stimulation protocol. The parameters that are not specified
otherwise are: Cw =Cz = 1, I = 0.
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Figure 3.7 – Stimulation effort needed to achieve potentiation for τz /τw = 7 and ton =
0.01τw . A: The potentiation domain (shaded region in Fig. 3.6) is colored proportionally to
the stimulation area needed to achieve potentiation with a repetitive pulse stimulus. The
minimum stimulation area is ' 8.34, it is indicated by the white star and corresponds to the
parameters values toff = 0.11τw , amplitude = 17.75 and 47 pulses. B: Slices of the diagram in
panel A for amplitude = 10 (dashed line) and for amplitude = 20 (dash-dotted line) are plotted
against toff. One can notice that for a fixed stimulation amplitude, there is an optimal repeti-
tion frequency f = 1

ton+toff
that minimizes the stimulus area required to achieve potentiation.

The parameters that are not specified otherwise are: Cw =Cz = 1, I = 0.

qualitatively similar separation curves, but potentiation now requires much larger values for

the amplitude of the plasticity-inducing stimulus (see Fig. 3.6B), than ton = τw (see Fig. 3.6A).

Importantly, in the case of timescale separation (e.g. τz = 7τw ) several repetitions are needed

before the consolidation variable z has sufficiently increased so that the synapse state crosses

the separatrix (Fig. 3.6, insert).

In analogy to the analysis performed in section 3.4.2, we search for an optimal stimulation

protocol in the case of repeated episodes. In order to allow a direct comparison between

single and repetitive episodes, we measured the total area under the stimulation curve I (t)

in the repetitive episode scenario, limited to the minimal number of episodes sufficient

to achieve potentiation. In Fig. 3.7A, we show the minimum stimulation area (number of

episodes times the area of each rectangular plasticity inducing stimulus) required to achieve

potentiation, as a function of the amplitude and the frequency of the stimulus for strong

timescale separation (τz /τw = 7). We notice that the minimum stimulation area (white star)

corresponds to toff ∼ 10 ton, i.e., the waiting time between episodes is ten times long than each

episode. In real experimental conditions, however, it might be difficult to control the intensity
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of the stimulation. For this reason, we consider a fixed intensity (e.g. amplitude I = 10 in Fig.

3.7A) and vary the inter-episode time toff. We find that there exists an optimal stimulation

frequency to obtain potentiation with minimal total area (see Fig. 3.7B). These results highlight

two main facts: (i) for many stimulation intensities (only two are shown in the graph), one can

find an optimal repetition frequency, (ii) there is a broad region in the parameter space (ton,

amplitude, and area) where the number of pulses needed to achieve consolidation is constant.

Indeed, the broad region around the minima in Fig. 3.7B (fixed amplitude and ton) where the

area is approximately constant corresponds a constant number of pulses (npulses = area/ton).

3.5 Discussion

We introduced and analyzed a minimal mathematical model of synaptic consolidation, that

consists of two ODEs with linear coupling terms and cubic non-linearity. Since it is a two-

dimensional model, the system can be studied using phase-plane techniques. While our

model can have up to four stable fixed points, we focused on the case of two stable fixed points,

to allow the physical interpretation of the fixed points as an unpotentiated or potentiated

synapse. The weight variable w should be seen as the bistable building block of complex

synapses. While there is evidence that the potentiation of a single synapse is a all-or-none

process (Petersen et al., 1998; O’Connor et al., 2005; Bosch et al., 2014), recent results challenge

this view in favor of a modular structure of the synapse (Lisman, 2017). Either way, it is possible

to identify a bistable basic element of the synapse.

We showed that our minimal model responds to stimulation protocols in a non-trivial way:

we quantified the total stimulation strength by the stimulus area defined as duration times

intensity, where intensity is a combination of intra-episode frequency and current amplitude

of extra-cellular pulses. We found that the minimal stimulus area necessary to induce poten-

tiation depends non-monotonically on the choice of stimulus parameters. In particular, we

found that, for both single-episode and multiple-episode stimulation, it is possible to choose

the stimulation parameters (intensity, duration and inter-episode frequency) optimally, so

as to minimize the stimulus area (Fig. 3.5 and 3.7). Fig. 3.7 can be used to compare the

minimum stimulation area needed to achieve potentiation in a single episode (corresponding

to the choice toff = 0) to the case of repetitive pulses (toff 6= 0). We conclude that, for a fixed

stimulation area, stimulation over several episodes is advantageous to achieve potentiation,

in agreement with some widely used protocols (Larson and Munkácsy, 2015). The effect is

stronger if the consolidation variable z is slow compared to the weight variable (τz À τw ). Note

that in experiments it is often impossible to have a fine control on the stimulation amplitude:

extra-cellular stimulation of fibers must be strong enough to excite the post-synaptic neuron,

but there is no control of the post-synaptic firing rate, which could undergo adaptation or

exhibit other time-dependent mechanisms. In summary, the existence of an optimal stimula-
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tion frequency is the direct consequence of two very fundamental synaptic properties: (i) the

bistability of a synaptic basic element, and (ii) the time scale separation between the internal

synaptic mechanisms.

Parameter Fig. 2 Fig. 4 Fig. 5 Fig. 6 Fig. 7
Cw 1 1 1 1 1
Cz variable variable 1 1 1
w0 1 1 1 1 1
z0 1 1 1 1 1
τw 1 1 1 1 1
τz 1 variable variable variable 7
d t 0.01 0.01 0.01 0.01 0.01

Table 3.1 – Parameter values used in Figs. 3.5- 3.7 unless otherwise indicated in figures
captures.

The minimum of the total stimulus area is particularly pronounced in the regime of strong

separation of timescale (τz À τw ), which is the relevant regime in view of the experimental

consolidation literature which suggests multiple consolidation mechanisms with a broad

range of timescales (Bliss and Collingridge, 1993; Reymann and Frey, 2007). Assuming that

the timescale τw is on the order of a few seconds, as suggested by some plasticity induction

experiments at the level of single contact points (Petersen et al., 1998), we can interpret a short

stimulation episode of duration 0.01 ·τw ∼ 20ms as a burst of few pulses at high frequency.

For example, one particularly interesting protocol is the theta burst stimulation, where each

burst consists of 4 pulses at 100Hz corresponding to a burst of 30 ms duration (Larson and

Munkácsy, 2015). Assuming that this stimulation does not correspond to an extremely small

amplitude value (a reasonable assumption since the experimentalists want to induce LTP), our

model predicts an optimal frequency (see Fig. 3.7) on the order of toff = 0.11τw ∼ 200ms, which

is in rough agreement with the experimental protocols where theta bursts are repeated every

200ms (Larson and Munkácsy, 2015). When comparing the optimal stimulation frequency

obtained by our model to experimental data, we should keep in mind that in experiments

timing effect come from different sources. In (Larson and Munkácsy, 2015) the key factor that

determines the optimal stimulation protocol is the feed-forward inhibition. Moreover in both

(Larson and Munkácsy, 2015) and (Sajikumar et al., 2005; Kumar and Mehta, 2011) the position

of the stimulation (apical vs basal) plays a fundamental role, together with priming of NMDA

channels. Finally, the fraction of NMDA vs AMPA receptors is another fundamental element.

None of these factors is taken into account in our simplified model.

We have described the simplified dynamics of a bistable basic element of synaptic consolida-

tion (which can be interpreted as a single contact point or a synaptic sub-unit). However, in

most experiments, we can only observe the collective effect of many such elements together
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(Malenka, 1991; Bliss and Collingridge, 1993). Such a collective effect can be interpreted

as the average number of potentiated contact points. For a detailed comparison between

our model and these experiments, it would be needed to simulate the dynamics of the pre-

and post-synaptic neuron groups and of their contact points, in order to obtain an average

quantity that can be compared with the continuous change of EPSP observed in experiments.

Such approach has been taken in (Ziegler et al., 2015) and it requires several assumptions,

among others the specification of the dependence of the plasticity induction current I on

the pre- and post-synaptic activity, the parameters of the two populations and possible re-

current interactions (see also 3.4.1). For these reasons, such a comparison goes beyond the

aim of this work. Moreover, since the model describes a single synaptic contact, it cannot

be applied to more complex experiments that involve cross-tagging, where effects of protein

synthesis are shared between several synapses (Sajikumar and Frey, 2004b). On the other

hand, our results highlight the fact that our model shares similar response properties with

the population-averaged quantities measured in experiments, such as its sensitivity to the

stimulation frequency and the preference for multiple repetitions. Altogether, these findings

suggest that our model possesses the necessary dynamical repertoire to reproduce some of

the experimental results, such as (Malenka, 1991; Bliss and Collingridge, 1993).

Using our model we can only make some qualitative predictions on experimentally measurable

quantities. For example, by comparing the panels C and D in Fig. 3.6, we can see that the

optimal stimulation parameters change when varying the episode duration ton. More precisely,

our model predicts that for shorter ton the optimal stimulus requires a large stimulus intensity

during each episode.

The proposed framework is related to a number of previous modeling approaches to synaptic

consolidation. In particular, the memory formation in networks of excitatory and inhibitory

neurons in (Zenke et al., 2015a) is based on a synaptic plasticity model with a linear weight

variable and a slower consolidation variable, corresponding to a choice of Kw = 0 in Eq. 3.2 of

our model. If we exploit this relation between the two models, the coupling term Cw should

depend on the post-synaptic activity. Such a time-dependent coupling coefficient is similar

to the gating variable in the write-protected model (Ziegler et al., 2015). The write-protected

model (Ziegler et al., 2015) can be considered as a three-dimensional generalization of our

framework. In our model the weight variable w is directly coupled to the consolidation variable

z whereas in the write-protected model w is coupled to an intermediate tag-related variable

which is then coupled to z.

The dynamical understanding of the interplay between stimulation protocol and autonomous

dynamics gained here by studying the two-dimensional system can be also applied to a

three-(or higher-)dimensional generalization, under the assumption that coupling exists

only between pairs of variables and that there is timescale separation. Using such a multi-
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dimensional generalization, it would be possible to explain a much larger set of experimental

results. In addition, the model presented in (Ziegler et al., 2015) features coupling coefficients

that are dynamically adjusted as a function of the induction protocol itself. A change of

coupling C makes a model at the same time more expressive and harder to analyze; cf. section

3.3.3.

The cascade model (Fusi et al., 2005) can be related to the model in the present paper by

introducing several slow variables z1, . . . , zn with time constants τ1, . . . ,τn . The coupling from

k to k+1 is analogous to the coupling of w to z in Eq. 3.2. Even though this extended model and

the cascade model share the concept of slower variables, there are some important differences

between the two. First, the cascade model (Fusi et al., 2005) is intrinsically stochastic, i.e.

the stochasticity due to spiking events is combined with the stochasticity of plasticity itself.

Second, the transitions among states in the cascade model are instantaneous (Fusi et al., 2005)

. In our framework instead, even though there are discrete stable states, the transitions need

some time to happen and this is exactly why the frequency of a repetitive stimulus matters in

our model.

Similarly to the cascade model (Fusi et al., 2005), the “communicating vessels” model (Benna

and Fusi, 2016) relies on multiple hidden variables. However, in contrast to the cascade model

(Fusi et al., 2005), the dynamics in the “communicating-vessels” model are determined by

continuous variables that obey continuous-time differential equations (Benna and Fusi, 2016).

If we truncate the “communication-vessels” model to a single hidden variable, the resulting

dynamics fall into our framework, with the simple choice Kw = Kz = 0. Extensions to multiple

hidden variables with progressively bigger timescales is possible analogously to our discussion

above. Indeed experimental results show that the internal bio-chemical mechanisms of the

synapse are characterized by different timescales (Reymann and Frey, 2007; Bosch et al., 2014).

Similar to the cascade model, the “state based model" proposed in (Barrett et al., 2009), consist

of synapses whose state can shift from e-LTP to l-LTP according to some transition-rates. The

model captures two internal mechanisms (tagging and anchor for AMPAR). The probability

that a particular synapse is in a specific state is a continuous quantity that depends on the

transition probabilities. The main similarity to our model is the presence of a bistable basic

synaptic element.

Finally the synaptic plasticity model proposed in (Shouval et al., 2002) proposes a non-linear

dynamics for the synaptic weights, similarly to our model. The main goal of (Shouval et al.,

2002) is to relate the amount of NMDAR with the Calcium level in the synapse. However, their

model is not bistable and no attempt is made to capture the internal synaptic state.

To summarize, our model focuses on a single transition using two variables. If these variables

have different intrinsic timescales, the temporal pattern of the stimulation protocol plays a
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crucial role. We believe that these insights are applicable beyond our two-variable model

in situations where multiple variables covering multiple timescales are pair-wise coupled to

each other. This includes well-known consolidation models such as the cascade model (Fusi

et al., 2005), the communicating vessels model (Benna and Fusi, 2016) and the write-protected

synapse model (Ziegler et al., 2015).

3.6 Supplementary information
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Figure 3.8 – Synaptic weight as a function of time. We try to qualitatively reproduce Fig. 2 of
(Frey and Morris, 1997). In blue the trace is of the input current and in black is the response of
the synaptic weight which should be proportional to the change in EPSP in the experimental
paper. We considered two stimulation protocols. The first one is one single stimulation pulse,
or “weak” tetanus , duration 0.2 s. The second in three repeated stimuli, or “strong” tetanus:
duration 1 s with 10 min intervals.
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Figure 3.9 – Same as Fig. 3.8, but after applying a low-pass filter on the value of synaptic
weights, so to mimic a saturation effect of the synaptic efficacy.
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4 Conclusions

4.1 Summary of the main contributions

In the current work, we presented two studies dealing with two fundamental aspects of mem-

ory. At the network level, we provide a model that explains how associations between memory

engrams can be stored in an auto-associative neural network. Secondly, at the synaptic level,

we propose a model of synaptic consolidation, with which we study the consequences of the

very essential features of consolidation itself.

4.1.1 Concept association in the human MTL

In Chapter 2 we extend the classical attractor neural networks framework to explain how

associations between concepts are stored in the human MTL, a fundamental brain area for

episodic memory. Attractor neural networks are the most commonly used tool for modeling

associative memory. However, most literature only considers independent memory engrams

with relatively high mean-activity, while experimental studies in the MTL (a) measured a

low mean-activity and (b) strongly suggest that neurons shared between engrams encode the

association between concepts. This makes the introduction of correlation between low-activity

memory patterns a key missing piece of the theory. By including such correlation in a classical

low-activity attractor neural network, we can explain how associations might be encoded. We

characterize the recall dynamics of low activity memory patterns correlated above chance.

We demonstrated that correlation, even if small, deeply modifies the single pattern retrieval

dynamics, and is, therefore, a robust way to encode association. Our results are compatible

with the number of shared neurons between memory assemblies experimentally observed,

even though we would need a more precise estimation of single-neuron parameters for a

better comparison. Moreover, using dynamical mean-field theory, we showed that the free
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recall of a chain of concepts is possible in low-activity attractor networks only if patterns

are correlated. We quantify the range of correlation that allows the free recall of concepts.

In conclusion, our model provides a plausible explanation for how associations are stored

in low-activity networks (such as the MTL) and how it influences the retrieval dynamics of

memory patterns. The correlation was a key missing piece of the theory of attractor neural

network when it is used to model episodic memory in the hippocampus.

Finally, experimental results provide us with two fundamental parameters, which are the

sparseness of the representation (or the fraction of active units when the pattern is retrieved)

and the fraction of shared units (which is uniquely related to the pair-wise correlation) between

two associated patterns. However, correlated memory patterns can be built in several ways

while keeping these two parameters fixed. We propose three algorithms to build correlated

patterns, which (i) keep the measured parameters fixed and (ii) are based on different hypothe-

ses. We tested the model prediction with each of these constructions against the experimental

dataset from (De Falco et al., 2016) and see which pattern construction (if any) can predict

the real distribution of the number of concepts a neuron responds to. We found that the

non-hierarchical pattern construction provides a good fit to the data, unlike hierarchical ones

which fail in predicting the correct number of highly selective neurons. The results confirm

the common opinion that information in the hippocampus is non-hierarchically organised.

4.1.2 Synaptic consolidation

In Chapter 3 we use a simple synaptic model in order to show that the complex response of the

synapse to the stimulation protocol can be explained as a consequence of two assumptions

about the properties of the synapse. The first is the assumption that synapses are bistable, i.e.

they should have at least two stable states, corresponding to depotentiated and potentiated

synapses. Secondly, we assume the existence of an internal synaptic mechanism whose

dynamics is much slower than the one of the synaptic efficacy, in agreement with experimental

evidence that synaptic consolidation is the result of multiple protein mechanisms that are

characterized by different timescales. We model the synaptic weights and the internal synaptic

mechanism as two dynamical variables that evolve with a fast and slow time scale respectively.

The external stimulation input affects directly the synaptic weights and the effect might or

might not be transferred to the consolidation variable. We show that it is exactly the time scale

separation between the dynamics of the two variables that determines which stimuli lead

to synaptic consolidation and which not. Thanks to our analysis we were able to find which

combination of stimulation amplitude and frequency are suitable for synaptic consolidation

as a function of the time scale separation.
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4.2 Possible future developments

In what follows we will propose some possible extensions of the current work in order of

scientific relevance.

4.2.1 Synaptic plasticity

Both presented studies leave a few open questions. There is one, in particular, that bridges

the gap between the two studies: what is an on-line plasticity rule that allows the creation of

correlated memory patterns in an attractor neural network?

While there are plenty of synaptic plasticity models in the computational neuroscience lit-

erature, on-line encoding of memory patterns in an attractor neural network remains an

open issue. Typically in literature, as well as in the study proposed in Chapter 2, we consider

attractor networks in which the memory patterns ~ξµ have already been encoded into the

connection weights wi j via Hopfield-type connectivity for low activity patterns (Tsodyks and

Feigel’man, 1988), that can be regarded as a result of Hebbian learning rule in which patterns

are encoded in one shot during the first presentation (Pereira and Brunel, 2018). However, it is

important to stress that this interpretation is formally correct only for independent patterns.

It is not clear which could be an appropriate Hebbian learning rule to encode correlated

patterns in an attractor neural network. In (Zenke et al., 2015b) the authors propose a spiking

neuron version of a traditional attractor network. In their model, they show that they can store

four correlated stimuli with online synaptic weights updates. The learning rule, which is the

result of a fast LTP rule and a slower homeostatic mechanism, is always active, both during the

encoding and the retrieval of the memories. The four patterns get correctly encoded, during

a stimulation period in which four stimuli are presented to the network one after the other

in random order. The stimulation period exceeds in time the time-scale of the homeostatic

mechanism and four corresponding attractors (or memory patterns) are created. However, the

network fails in storing one more pattern during a second learning session. Instead of creating

novel basins of attraction, one of the old ones gets enlarged until it responds to two concepts.

In this case, the reconstructed stimulus from the network activity is a combination of the

actual pattern and one of the old patterns with which the basin of attraction merged. One

possible solution to the issue might be the introduction of a specific homeostatic mechanism

to prevent basins of attraction from merging.

On the other hand, in (Mongillo et al., 2003), they propose a plasticity model for learning pairs

of associations. The model successfully reproduce the delayed pair-associate tasks, in which

two stimuli are presented to a monkey one after the other, with a delay period between the

two presentations. The network model is intended to reproduce, not only the behavior, but
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also the structure of a “cortical module”: while it can be of inspiration, it is not fitted to be

directly applied to the human hippocampus.

A hypothetical new Hebbian plasticity rule for learning correlated patterns would depend on

how we choose the stimulation to be like. The two main scenarios can be identified as follows:

• the network receives already correlated stimuli and therefore stores them as correlated

memory patterns

• the network receives independent stimuli, but sometimes stimuli are presented to-

gether. It is the simultaneous stimulation that induces the correlation in the memory

representation of the stimuli.

The spiking network from (Zenke et al., 2015b) was failing in learning new concepts in the first

scenario. However, in the context of Chapter 2, we are more interested in the second scenario

In fact, experiments in which memory associations are induced seem to confirm that the

second scenario would be better suited to describe memory engram formation in the human

hippocampus (Ison et al., 2015; Rey et al., 2018). In conclusion, a possible extension of the

model would be the development of a Hebbian learning rule that is able to learn both a) novel

independent stimuli and b) the association between familiar stimuli. In this case, the time

correlation between stimuli should be translated into memory pattern correlations. Finally,

the fact that the correlation between the memory engrams should not exceed the maximal

value cmax, should be guaranteed by some homeostatic or feedback mechanism.

4.2.2 Increasing the bio-plausibility of the model

In Chapter 2 we elucidate how recent versions of attractor neural networks are closer to biology

compared to the original Hopfield model. First of all we consider low activity, {0,1} memory

patterns, in contrast with the traditional {−1,1} with 50% active neurons. This allows patterns

to be interpreted as firing rate units. We have also dropped the assumption that connection

weights must be symmetric and we have checked the robustness of the model to a dilution of

the weight matrix. However, there is plenty of room for increasing further the bio-plausibility

of the proposed model.

First of all, the current rate model violates Dale’s rule. The principle is based on the empirical

observation that biological neurons fall into two distinct categories: excitatory or inhibitory.

Each category can only form a type of synaptic connection with the post-synaptic neuron,

independently from the type of the target cell, so that excitatory neurons can only contribute

to increase the activity of the post-synaptic neuron and vice-versa, inhibitory neurons can only

contribute to decrease the activity of the post-synaptic neuron. In our current implementation
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of the synaptic connection, excitatory connections correspond to positive synaptic weights

and inhibitory connections correspond to negative synaptic weights. The same neuron might

form positive connections with some of the postsynaptic neurons and negative connections

with others. While rate based models of attractor neural networks that satisfy Dale’s law

have been proposed (Burkitt, 1995), this problem is more commonly overcame in spiking

implementations.

Secondly, real neurons have thousands of inputs and only one output, on the contrary, to the

neural network model implemented in Chapter 2, where each neuron has a similar number of

inputs and outputs.

A spiking implementation of the model could be a solution to both problems. There are several

ways to implement a spiking version of an attractor neural network. A possible implemen-

tation of a spiking version of an attractor memory network is described in (Gerstner et al.,

2014). A similar, but more complex implementation is found in (Zenke et al., 2015b). Both

of them respect Dale’s principle, by introducing separate groups of excitatory and inhibitory

neurons, which together reproduce the behavior of the rate model. On the other hand, the

main downside of a spiking implementation is that it reacquires a much greater number of

parameters compared to the rate model and, as a consequence of this, the need to fine-tune

them.

4.2.3 Large scale network simulation with diluted weights

In parallel to the previous improvements to the bio-plausibility proposed in the previous

section, it would be interesting to check the behavior of the attractor neural network proposed

in Chapter 2 in the case of a very diluted synaptic weight matrix. We claimed that the model

is particularly suitable to describe area CA3 of the hippocampus, which is known to be a

very recurrent network. In fact, there are about 2.8 millions neurons in this area and each

neuron is estimated to receive inputs from about 30’000 other neurons (Andersen et al., 2006).

However, it is also estimated that there are about 2.8 million neurons in CA3, which means

that a bio-plausible dilution would be of about d = 0.01, implying to drop of about 99% of

connections starting from a fully connected scenario. Implementing such a diluted network

posed a theoretical and a computational issue. First, since the highest we set the dilution, the

more we are away from the mean-field regime in which the theory is valid. This is particularly

true because the weight dilution adds up to the high sparseness of the memory patterns.

Second, in order to reproduce such a regime in full network simulations, we would need to

scale up the system and increase the number of neurons in the network. However, in trying

to do so, we have encountered a computational problem: the running memory usage of full

network simulation scales with the square of the number of neurons. The current version of

the code (written in Julialang) uses about 16 GB of RAM for a full network simulation counting
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N = 50′000 neurons, a million neurons network would require about 1620 GB of RAM which is

of course not feasible. One option we have tested was to use Julialang’s tool for sparse matrix

computations. Such a tool decreases dramatically the request of memory, for the simulation

of N = 50′000 less than 3 GB are needed, but the price to pay is an increase of the computation

time, which scales roughly with the square of the number of simulated neurons. Also in

this case the computational time needed to simulate a million neurons is prohibited. The

optimization of the simulation of a very diluted attractor neural network is beyond the goals

of the current work, but it would be an interesting future development.

4.2.4 Several time-scales

In this section, we propose possible developments for the results of Chapter 3. Using an essen-

tial model with only two dynamical quantities was useful to clarify the direct consequences of

time scale separation between the biochemical processes that contribute to synaptic consoli-

dation. In particular, we find that time scale separation induces a filtering effect on the type

of stimuli that can induce the consolidation. Only some combination of stimuli amplitude

and repetition frequency are suitable to consolidate the synapse. On the other hand, in the

Supplementary Information of Chapter 3, it becomes clear that a two-dimensional model is

too simple to reproduce the a bio-plausible evolution of the synaptic weights. An improvement

was achieved by introducing by low-pass filtering the weight dynamics, but it is clear that two

dynamical equations are not enough to capture the complexity of the biochemical cascade

involved in synaptic consolidation. A possible future extension of the model proposed in

Chapter 3 is to introduce more dynamical quantities that evolve over a range of different time

scales, in order to capture the more realistic evolution of the synaptic weights. Several models

have been proposed in the past that try to reproduce the synaptic weight dynamics using

several dynamical quantities operating over different time scales. Among the others, we would

like to cite (Benna and Fusi, 2016).
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