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Abstract

Accelerometers are widely used in industrial applications and consumer electronics. We
can find them in automotive crash detection or fitness trackers. The majority are based
on piezoresistive or capacitive effect which are limited by their large size. This negatively
influences their utility in emerging applications such as Internet of Things and biomedical
applications.
NEMS (Nanoelectromechanical systems) are presented as a possible solution for this problem.
The accelerometers used in this project are made of a suspended graphene membrane and
an attached silicon proof mass. They were fabricated by KTH researchers [1]. We study
the possibility of measuring accelerations by monitoring the changes in the device resonant
frequency. If proven, to the best of our knowledge, they would be the first ultra-miniaturized
and sensitive resonant accelerometer.
To do so, we built a functioning model of the accelerometers by combining a theoretical
framework and finite element simulations. The chip was placed on a piezo-shaker and
measurements were conducted using a Laser Doppler Vibrometer. To complement the study,
further measures were taken with an Atomic Force Microscope and a Digital Holographic
Microscope.
The results show a good match between theory and simulations. However, the acceleration
measurements in the device show higher signals not related with accelerations. We proved
they were related to displacements and theorized that they were caused by internal chip forces.
Horizontal forces on the accelerometer frame could eclipse the effect of the accelerations on
the resonant frequency. We suggest the use of a more rigid chip frame as a potential solution.

Key words: Graphene, Accelerometer, Resonator
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1 Introduction

An accelerometer is an electromechanical device able to measure acceleration forces. These

forces can be constant and static (like Earth’s gravity) or they can be caused by moving or

by vibrating the accelerometer. Targeting the dynamic accelerations, MEMS (Micro Elec-

tromechanical Systems) accelerometers have been largely used in automotive applications,

where they are used for crash detection and vehicle stability systems [2]. Additionally, due to

their small size and light weight, they are used in biomedical and robotics applications for

active motion monitoring. They can also be found in the field of consumer electronics inside

smartphones to stabilize pictures while using the camera.

In the literature, different kinds of accelerometers have been reported so far, with working

principles based on piezoresistive effect, capacitance, tunnelling effect and so on. However,

the majority of accelerometers use capacitors or piezoresistors as they have a simple structure

and allow batch-fabrication process. Their biggest disadvantage is their larger size, which

negatively influences their utility in emerging applications such as the IoT (Internet of Things)

that require miniaturized sensors and actuators.

Nowadays, accelerometers with a reduced chip size are needed. Indeed, small, lightweight

accelerometers are necessary for many portable devices, biomedical applications, space

navigation systems, automobile applications, motion control systems and so on. The biggest

challenge is to maintain the sensitivity of the accelerometer as the chip size is decreased.

In this research project, we are addressing this challenge by exploring the possibility of detect-

ing accelerations with the World’s smallest accelerometer [3]. These devices were fabricated

by X. Fan and F. Niklaus [1] and they proved to read accelerations by measuring the changes in

resistivity. In this research study, the same devices are used and accelerations are measured

with a different concept. To achieve that, theoretical analysis, simulations and measurements

are performed.
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Chapter 1 Introduction

1.1 Motivation and Problem statement

The existing resonant MEMS accelerometers are typically large, in the order of several square

millimeters. The creation of ultraminiturized accelerometers that could sense wide frequency

ranges and have good stability in mechanical operation is critical for emerging applications.

They could be useful in wearable electronics, biomedical implants, nanoscale robotics and

internet of things (IoT).

The majority of accelerometers are equipped with a proof mass that moves with acceleration

forces. Downscaling the accelerometer means reducing the size of the proof mass, which can

imply a reduced sensitivity.

1.2 Current technologies and research

Since its discovery, reported by Novoselov et al. [4] in 2004, graphene has attracted attention

due to its unusual two-dimensional structure. Additionally, graphene reported wonderful

properties such as high Young’s modulus, high resonant frequency and unique electrical

behaviour.

Suspended graphene structures are used as resonators. Since graphene is atomically thin, its

resonant frequency is dominated by in-plane tension, which can be modified electrostatically

by applying DC voltage. This means that the resonant frequency can be tuned. Many graphene

mechanical resonators have been reported during the past years, built with doubly or fully

clamped layers of graphene, allowing resonant frequencies around 100 MHz [5].

Later, the idea was expanded by attaching a mass to the suspended graphene membranes

[1]. Accelerations could be measured by reading the change in the electrical resistance of

graphene because of the piezoresistivity of the graphene.

In the present study, the fully clamped graphene membranes with suspended silicon proof

masses are used as resonators. This means that accelerations are measured by monitoring the

changes that the acceleration produces in the resonant frequency of the device.

Until the day of writing these lines, ultra-miniaturized and sensitive resonant accelerometers

have not yet been demonstrated.

1.3 Objectives

This research project studies suspended graphene membrane devices which have a proof mass.

The main objective is to measure accelerations through the changes in resonant frequency.

To have a complete understanding, the problem is studied from different perspectives. First,

the theoretical approach explores how external accelerations create shifts in the resonant
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Introduction Chapter 1

frequency of the system. Later, finite element simulations complete the model. Finally,

measurements are performed and compared with the theory and simulations.

1.4 Work Plan

The work plan followed during the research project was heavily influenced by the unexpected

COVID-19 lockdown. All the measurements on the devices programmed for that period had

to be postponed to June. During lockdown, the theoretical model and simulations were

developed working remotely from Switzerland.

Figure 1.1 shows a Gantt diagram on how the time was organized to address the objectives for

the theory, simulations and measurements. The project started at the beginning of February

2020 and was completed by the middle of August 2020. As a result, it had a total duration of 27

weeks.

Figure 1.1 – Gantt diagram representing the work plan of the research project. The time was split in
Theory, Simulations, Measurements and Courses.

1.5 Thesis structure

Chapter 2. Devices

Description of the accelerometers studied in the research project. Introduction to the language

used in the project to designate the devices depending on their proof mass size.

Chapter 3. Analytical Model

Analytical study to obtain the theoretical resonant frequency shift when the devices are un-

der acceleration forces. Definition of the Responsivity parameter used to materialize the

acceleration sensing capabilities of the devices.

Chapter 4. Finite Element Simulations

Finite Element Simulations are performed to simulate the devices and visualize the effect of

the different parameters. Static simulations allowed to obtain the displacement of the mass

and dynamic simulations predicted the resonant frequency of the devices. Finally, fitting the

simulations with the theory developed, allowed us to verify the goodness of the model and

3



Chapter 1 Introduction

obtain geometrical parameters to complete it.

Chapter 5. Measurements

Measurements of the resonant frequency shifts of the devices when they are under a known

acceleration. All the equipment and methods used are explained, to guide the reader through

the tools and steps used to obtain the results.

Chapter 6. Discussion

The origin of the resonant frequency shift observed in the measurements is discussed. An

origin different from the acceleration is proposed.

Chapter 7. Conclusions

Comparison between the theoretical model, the simulations and the measurements. The

thesis finishes with insights and possible future work.

4



2 Devices

The devices studied during this thesis were created in the Department of Micro and Nanosys-

tems of the KTH Royal Institute of Technology (Sweden). They are Accelerometers built with

suspended graphene membranes that are fully clamped at their circumference and have

attached silicon proof masses.

The devices were designed to measure accelerations by measuring the changes of electrical

resistance of the graphene membrane.I The study was successful and published in Nature

Electronics ([1] and [8]).

In our research, we re-use the same devices for a different purpose. The hypothesis to prove

is that accelerations can be measured by monitoring the changes in the resonant frequency

of the devices. The shifts in resonant frequency must be proportional to the applied external

acceleration.

2.1 Accelerometers with graphene membrane

The accelerometers have a suspended silicon proof mass held by a double-layer graphene

membrane, which is clamped at its entire circumference. They have variations in the attached

mass and membrane dimensions to study how these parameters influence the measurements.

IThe acceleration force acting on the proof mass causes a deflection of the mass. This causes a change of the
strain on the suspended graphene membrane, resulting in a change of the electrical resistance because of the
piezoresistivity of graphene.

5



Chapter 2 Devices

(a) Cross-sectional 3D illustration of a fully clamped graphene
membrane with attached proof mass. The double-layer
graphene membrane has 0.67 nm of thickness. Picture
taken from [1]

(b) Microscope image of a 40 µm mass
accelerometer. The trench between
mass and silicon is 3 µm, and the
size of the mass can change.[1]

Figure 2.1 – Accelerometers made with a double-layer graphene membrane that is fully clamped and
has a mass attached. In our research, we will study whether these devices are useful to
measure accelerations studying the changes in the resonant frequency.

The accelerometer masses range from 10 µm to 100 µm of square area and 16.4 µm of height

(this parameter is constant for all). The nomenclature to designate the accelerometers will be

directly the mass side. For example, for the accelerometers that have masses of 40 µm x 40

µm x 16.4 µm, we will name them "40 µm".

The fabrication of these devices was not part of the research project. For that reason, to know

more about the fabrication process we advise the reader to consult the original publication [1].
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3 Analytical Model

The working principle of the accelerometers is based on the force created on the proof mass

caused by the external acceleration. This force creates a displacement of the mass which

results in a change of the membrane stress (tension) that holds the mass. The change in the

tension directly affects the resonant frequency of the device.

Our purpose is to create a model that can predict and explain the variation in frequency

due to a certain applied acceleration. Firstly, the device model needs to be simplified, while

maintaining what is important.

Since the system is symmetric and the proof mass is rigid compared to the graphene mem-

brane, the model can be simplified to a single graphene membrane with a centre point load

(Figure 3.1). In that case, the effective length of the membrane equals two times the trench

width. The membrane will always be considered squared of length (L), where (L/2) is the

device’s trench.

This approximation is valid as long as the real membrane area is considered when distributing

the produced force (F). For that purpose, we will work with Pressure units.

Figure 3.1 – Simplified model for the analytical study. In A): Transversal cut in the accelerometer.
The mass is held by sections of the graphene membrane. In B): Simplified device model
consisting of a graphene membrane with a centre point load. The membrane is squared
with length equal to the double of the trench size.
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Chapter 3 Analytical Model

3.1 Theoretical Resonant Frequency

Obtaining a complete theoretical model for the accelerometers can be highly algebraically

complex. A better alternative is to use a more general solution for the load-deflection relation

and use finite element simulations to verify the goodness of the expression and to determine

values for the missing geometrical constants.

The general form for the load-deflection characteristic is the one seen in Equation 3.1, which

is obtained from reference [6].

P =
(
CTensi on

[σ0H

L2

]
+Cl i n

[ E H 3

(1−ν2)L4

])
Z +Cnli n

[ E H

(1−ν2)L4

]
Z 3 (3.1)

This equation relates the Pressure exerted over the membrane (P) with the membrane displace-

ment (Z) through the membrane geometry: the thickness of the membrane (H), the length of

membrane (twice the trench distance) (L). Other parameters involved are the built-in stress of

the membrane (σ0), the Poisson’s ratio (ν) of graphene and Young’s modulus (E ). To adjust this

model to the specific geometry of the accelerometers, we dispose of three variables: CTensi on

(multiplying the built-in tension of the membrane), Cl i n (weighting the linear contribution)

and Cnli n (taking into account the non-linear component).

The terms are re-arranged to express the formula in a linearized way:

P =
CTensi on H

L2

(
σ0 + Cl i n

CTensi on

[ E H 2

(1−ν2)L2

]
+ Cnli n

CTensi on

[ E

(1−ν2)L2

]
Z 2

)
·Z (3.2)

Afterwards, the pressure is converted into force. For that, we use the Area of the membrane

from the real accelerometers. This one is obtained geometrically, taking into account the parts

of the membrane that are in the trenches.

P =
F

Ar ea
and Ar ea = (Wmass +L)2 −W 2

mass = 2Wmass ·L+L2 (3.3)

Here the width of the mass (Wmass) comes into play and will be inside the variable Ar ea.

F = Ar ea · CTensi on H

L2

(
σ0 + Cl i n

CTensi on

[ E H 2

(1−ν2)L2

]
+ Cnli n

CTensi on

[ E

(1−ν2)L2

]
Z 2

)
·Z (3.4)

Next, we calculate the stiffness, which for a nonlinear resonator is obtained through the

displacement derivative of the Force equation 3.4. Reference [9].

k =
dF

d z
= Ar ea · CTensi on H

L2

(
σ0 + Cl i n

CTensi on

[ E H 2

(1−ν2)L2

]
+ 3 ·Cnli n

CTensi on

[ E

(1−ν2)L2

]
Z 2

)
(3.5)
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Analytical Model Chapter 3

Afterwards, the natural frequency (resonant frequency) of the device can be obtained with the

relation: k = (2π fR )2m

Ar ea · CTensi on H

L2

(
σ0 + Cl i n

CTensi on

[ E H 2

(1−ν2)L2

]
+ 3 ·Cnli n

CTensi on

[ E

(1−ν2)L2

]
Z 2

)
= (2π fR )2m (3.6)

fR =
1

2π

√
Ar ea ·CTensi on H

mL2

[
σ0 + Cl i n

CTensi on

E H 2

(1−ν2)L2 + 3 ·Cnli n

CTensi on

E

(1−ν2)L2 Z 2
]

(3.7)

We observe that the frequency depends on the displacement. Which, at the same time, could

be obtained from the expression Z = F /k (Equation 3.4). This means that every time we want

to solve the frequency equation 3.7, the displacement needs to be solved first by employing a

root-finding algorithm. For this case, the Newton-Raphson method is used.

Z =
m ·a

Ar ea · CTensi on H
L2

[
σ0 + Cl i n

CTensi on

[
E H 2

(1−ν2)L2

]
+ Cnli n

CTensi on

[
E

(1−ν2)L2

]
Z 2

] → Solved using Newton-Raphson

(3.8)

The Responsivity (R) of our devices is the parameter that tells us the goodness of the device

acting as an acceleration sensor. In our case, it is defined as the shift in resonant frequency

divided by the acceleration applied. This figure is divided by the resonance frequency to

only have acceleration units. Our measurements always have the Earth’s gravity bias, for that

reason, the responsivity is evaluated for an acceleration equal to the Earth’s gravity (g).

R =
1

fR (g )
· ∂ f

∂a

∣∣∣∣∣
g

=
1

fR (g )

fR (g +∆a)− fR (g )

∆a
(3.9)

The use of the Responsivity parameter allows us to observe how the resonant frequency of the

device is modified by an external acceleration acting on the device.

3.2 Simplified Responsivity expression

The Responsivity is always calculated using the Root-finding algorithm, which makes it possi-

ble to resolve the nonlinear equation. However, to be able to create an intuition on how the

Responsivity depends on the other parameters, a simplified expression is needed.

The approximation is to consider large built-in membrane tensions, to make some simplifica-

tions in the Displacement denominator, as seen in 3.10.

9



Chapter 3 Analytical Model



fR = 1
2π

√
Ar ea·CTensi on H

mL2

[
σ0 + Cl i n

CTensi on

E H 2

(1−ν2)L2 + 3·Cnli n
CTensi on

E
(1−ν2)L2 Z 2

]

Z = m·a

Ar ea·CTensi on H

L2

[
σ0+

(((((((((((((((
Cli n

CTensi on

[
E H2

(1−ν2)L2

]
+ Cnli n

CTensi on

[
E

(1−ν2)L2

]
Z 2

]

R ≈ 3Cnli nEL4m2g

Ar ea2Cl i nC 2
tensi onE H 4σ2

0 + Ar ea2C 3
tensi on H 2L2σ3

0

(
1− v2

)+3Cnli nEL4m2g 2
(3.10)

Thanks to the simplified formula for the responsivity, we observe that for increasing values of

σ0, the responsivity decays to zero (R ∝σ−3
0 ). So we observe higher responsivity whenever

the built-in stress in the devices is low.

Figure 3.2 – Relative error between exact responsivity from the root-finding algorithm and the simplified
analytical expression 3.10. We can observe that the formula is only accurate for large
membrane built-in stresses. The simplified equation will not be used in the fittings, but
the expression is useful to visually evaluate the parameter dependencies.
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4 Finite Element Simulations

Simulations are of key importance to obtain a complete theoretical model for the accelerome-

ters. As seen in Section 3, the analytical method depends on some variables (Ctensi on , Cl i n

and Cnli n) that need to be adjusted with simulations.

The finite element analysis simulations are performed in COMSOL and the data output

analysed with Python.

4.1 Graphene membrane devices simulations

To avoid not-on-axis movements an axisymmetric simulation is performed. That means that

the model is designed in 2D and then using a rotation the 3D is built. With this procedure it is

impossible to simulate the proof mass as a cuboid, so we translate the same properties into a

cylindrical mass. The translation keeps the volume (and therefore mass) constant.

VCuboi d = VC yli nder

W 2
mass ·hei g ht =πR2

mass ·hei g ht

Rmass =
Wmassp

π

Figure 4.1 – Real accelerometers on the left and simulated model on the right. The mass size is
translated into a cylindrical shape preserving the volume and the trench length.
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Chapter 4 Finite Element Simulations

In the simulations, the material properties of the original elements are respected: the mass is

made out of silicon (density = 2330 kg /m3) and the membrane are made of graphene (ν = 0.25,

E = 0.22 T Pa). The whole accelerometer is simulated using solid mechanics and initial stress

is implemented in the membrane (acting like the built-in stress σ0).

Figure 4.2 – Simulation of the graphene membrane accelerometer. The geometry is built through axial
symmetry from a 2D model to avoid not-on-axis movements. The end of the graphene
membrane is anchored with a fixed constraint, avoiding a place where the meshing would
fail. With all these simplifications we achieve convergence of the simulations.

As seen in Figure 4.2, the silicon anchor is replaced by a fixed constraint in the membrane

end. These simplifications are needed to have a good convergence of the solutions. This is the

major difficulty for the simulations, due to the large ratio between length and thickness of the

membrane (L = 3 ·10−6 m and H = 0.67 ·10−9 m) which has a ratio of 4500. This means that the

mesh has to be carefully chosen to be able to solve the simulation. A quadrilateral mesh is

created with a minimum element size of 10 pm and a maximum of 3.6 µm.

4.1.1 Static Simulation: Mass displacement study

The static simulations obtain the deflection of the mass due to the external acceleration. As we

always operate with the Earth’s gravity bias, simulations shown in Figure 4.3 are under 1 g of

acceleration. The static displacement of the mass is simulated for different built-in membrane

stresses and different mass sizes.

12



Finite Element Simulations Chapter 4

Figure 4.3 – Displacement of the mass due to the external acceleration (only Earth’s gravity in this
case) for the different mass widths. The figure shows how the static displacement of
the mass is reduced with the increase of the membrane stress. The limit is when the
membrane is so stressed that regardless of the external acceleration, the mass stays at
the same height as the silicon chip (zero displacement).

From Figure 4.3 we observe how the increase of the membrane tension reduces the dis-

placement of the membrane when the stress is higher than 0.1MPa. Below that stress, the

displacement is maintained constant.

To relate the static simulation with the devices we need to perform dynamic simulations.

These will create the link between the resonant frequency of the devices with the membrane

built-in stress.

4.1.2 Dynamic Simulation: Resonant frequency study

Figure 4.4 – Study of the resonant frequency of membrane accelerometers with different proof masses.
The applied acceleration is equal to the gravity. This study gives the opportunity to
directly know the membrane stress knowing the resonant frequency of the devices.

13



Chapter 4 Finite Element Simulations

The dynamic study of our devices allows to simulate the resonant frequency depending on

the built-in stress of the membranes (σ0). The simulation is performed for the different mass

sizes of the real accelerometers (10 µm to 50 µm of width).

4.1.3 Dynamic Simulation: Effect of the external acceleration

In this study, we set a constant mass size (30µm) and we perform dynamic simulations varying

the external acceleration. Here, we can see the magnitude of the resonant frequency shifts

due to the external acceleration. In Figure 4.5 some extreme cases are shown to see the effects:

No applied gravity, Earth’s gravity and 10 times Earth’s gravity.

Figure 4.5 – Resonant frequency study for a device with 30µm width mass under three different external
accelerations. As expected, the presence of an external force increases the membrane
stress and increases the resonant frequency. The effect is predominant when the built-in
membrane stress is low. With an increasing value of the membrane stress, the change in
acceleration is not able to change the resonant frequency.

From Figure 4.5, the increase in external acceleration produces an increase in the membrane

stress, which is translated into a higher resonant frequency. When the built-in stress is high

enough, the frequencies converge, regardless of the external acceleration. These simulations

give us the idea that the built-in stress of the graphene membranes will play an important role

in the Responsivity of the devices, as predicted in Chapter 3.

14



Finite Element Simulations Chapter 4

4.2 Nonlinearities

The theoretical model developed in Section 3.1 is nonlinear, as the force depends on the third

power of the displacement. Before fitting the results of the previous section with the analytical

model, we characterise the importance of the nonlinearities in our devices.

The first procedure to study the nonlinearities is based on the differences of the membrane

profiles for static and dynamic studies. If the membrane profile is identical, the nonlinearity is

negligible, meaning that the Elastic Constant in static and dynamic are similar.

This method allows us to see for which parameters the nonlinear term has a bigger influence.

The used variable is the % Error between the profile of the membrane during the Static and

the Modal study.

Figure 4.6 – The difference between the membrane profiles during Static and Modal studies tells
whether the device is in a nonlinear regime. The bigger the difference between the profiles,
the bigger the importance of the nonlinear terms. In this Figure, the comparison between
membrane profiles in static and dynamic simulations for two membrane thicknesses is
shown. When the membrane thickness is 3 nm (Top), the differences between the profiles
are larger than the case of 30 nm thickness (Down). On the left, we can see the membrane
profiles during Static and Modal studies and on the right the % of error between the
profiles. These two cases show us that nonlinearities are larger when the thickness is 3
nm than 30 nm.

To study the differences seen in Figure 4.6 in more detail, the relative error is computed over a

range of membrane thickness values. The Figure 4.7 shows the result for an accelerometer of

30 µm mass, under 1 gravity and with no built-in tension in the membrane.

15



Chapter 4 Finite Element Simulations

Figure 4.7 – Error between membrane profiles in static and modal simulations with no built-in tension
and for different values of the graphene thickness (H). We observe that for membranes
thicker than 6 nm the nonlinearity is totally negligible for every built-in tension.

The next step is to see how the nonlinearities vary with the built-in stress of the membrane.

The study shown in Figure 4.8 is performed for several mass widths under gravitational

acceleration. This time, the membrane thickness is set to the graphene one (0.67 nm).

Figure 4.8 – Error between membrane profiles in static and modal simulations for different membrane
stresses and different proof masses. The study is performed with a membrane thickness
of 0.67 nm and under Earth’s gravity acceleration. The results show that nonlinearities
start to be negligible after 10 MPa.

4.2.1 Nonlinearity related to the accelerometer geometry

The next study researches what is the implication of the membrane thickness (H) and trench

length (L) in the creation of nonlinear behaviour. Both variables are swept to see if a relation

between H and L exists in terms of nonlinearities.
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Figure 4.9 – Left: Nonlinearity study with sweeps in H and L. Right: The simulations have been
sorted by the ratio H/L. We observe that the ratio of H and L decides if the device
operates in nonlinearity. For this specific case, with no built-in tension, the Length of the
trench must be 500 times larger than the thickness of the graphene to be working in the
linear region.

Figure 4.9 shows the effect of the membrane thickness and length in determining whether

the system is in linear region. The system is more nonlinear whenever the ratio between

the membrane thickness and its trench length is smaller. For the case when the membrane

tension is small, the trench must be 500 times larger than the thickness to be in the linear

region.

4.3 Fitting the model

In this section, the theoretical model developed in Section 3.1, is fitted to the simulations to

obtain the values of the parameters Ctensi on , Cl i n and Cnli n .

Z =
m ·a

Ar ea · CTensi on H
L2

[
σ0 + Cl i n

CTensi on

[
E H 2

(1−ν2)L2

]
+ Cnli n

CTensi on

[
E

(1−ν2)L2

]
Z 2

] (4.1)

fo =
1

2π

√
Ar ea ·CTensi on H

mL2

[
σ0 + Cl i n

CTensi on

E H 2

(1−ν2)L2 + 3 ·Cnli n

CTensi on

E

(1−ν2)L2 Z 2
]

(4.2)

In Section 4.2 we conclude that the nonlinear and linear behaviour has its boundary around a

membrane tension of 10 MPa (when using graphene geometrical parameters). We need to

consider this when fitting the data. The linear term is best fitted in the linear region and has a

higher error in the nonlinear part. The opposite happens for the nonlinear coefficient.

To be sure that the model is adjusted in the linear and nonlinear regimes, the membrane

thickness is varied. Static simulations are performed, obtaining the displacement for an

accelerometer of 30 µm mass without membrane tension. The dynamic simulations obtain
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the resonant frequencies under the same circumstances.

The results of the fittings for the linear and nonlinear coefficients can be seen in Figures

4.10 and 4.11. We observe that the linear coefficient Cl i n are well fitted where the linear

behaviour dominates. On the other side, the nonlinear coefficient Cnli n can be well fitted

in the nonlinear region. In these simulations, the coefficient CTensi on cannot be obtained

because the membrane tension is set to zero.

Figure 4.10 – Fitting the model to obtain the linear coefficient Cl i n . The static and dynamic simulations
fitted with the theoretical model give the same values in the linear region. In the non-
linear region, the linear coefficient is not important and takes an arbitrarily large value.
From this study we obtain the value of the linear coefficient to be around 15.9 (More
simulations are performed to increase certainty).

Figure 4.11 – Fitting of the nonlinear coefficient Cnli n . The static and dynamic simulations give the
same values in the nonlinear region. In the linear region, the nonlinear coefficient is not
important and takes an arbitrarily large value. From this study we obtain the value of
the nonlinear coefficient is 8.0.
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Now we need to obtain the value for CTensi on and double-check the value of the others

coefficients. For that purpose, static and dynamic simulations are performed for different

stresses.

Figure 4.12 – Fitting of the displacement vs membrane tension for an accelerometer with 30µm mass.
From this fitting, the value for Ctensi on is seen to be 4.05 (for an external acceleration
of 1g) and 4.02 (for an external acceleration of 10g).

Figure 4.13 – Fitting of the resonant frequency when varying the membrane tension for an accelerometer
with 30µm mass. From this fitting, the value for Ctensi on is seen to be 3.983 (without
external acceleration), 3.980 (for an external acceleration of 1g) and 3.979 (for an
external acceleration of 10g).

The next study is performed without membrane stress, performing a sweep in gravity. In these

conditions, the device works in the nonlinear region. Only the nonlinear coefficient Cnli n can

be extracted from this study.
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Figure 4.14 – Fitting of the resonant frequency when varying the external acceleration. Study performed
for zero built-in stress and for different mass sizes. All the fittings give a similar value
for Cnli n around 8.0.

Gathering the data of all the fittings, we conclude that the values for the geometric constants

of our devices are:

CTensi on Cl i n Cnli n

4.002 ± 0.028 15.94 ± 0.036 7.9825 ± 0.024
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4.3.1 Responsivity study

At this moment, we dispose of a complete theoretical model with which we can assess the

Responsivity of our devices. Thanks to this study, knowing the resonant frequency of the

devices (measured in Chapter 5. Measurements) allows us to predict the Responsivity and the

stress of the membrane. The Figure 4.15 joins the most important parameter of our devices:

the resonant frequency and the Responsivity, related by the Membrane built-in stress. The

resonant frequency determines the bandwidth of the accelerometer and the responsivity the

possibility of accurately measuring accelerations.

Figure 4.15 – Theoretical Responsivity and Resonant Frequency depending on the Membrane tension.
Knowing the Resonant Frequency of one accelerometer we can extract the membrane
tension and the responsivity directly from this plot.

The Figure 4.15 is useful to predict which would be the Responsivity and Membrane Built-in

Tension of the devices knowing their Resonant Frequency. From a theoretical standpoint, we

expect low responsivities for our accelerometers.

Responsivity comparison with nonresonant accelerometers

An important question to answer is whether these accelerometers are better than the current

nonresonant accelerometer technology. To compare both technologies, we plot the minimum

acceleration detectable against their resonant frequency.
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Figure 4.16 – Comparison between our accelerometers and typical nonresonant accelerometer. This
comparison is made for typical parameters (Allan deviation of 10 ppm for our devices
and displacements of 10 pm for the nonresonant accelerometers). For low resonant
frequency we find that our accelerometers have better sensitivity, for larger frequencies
the average nonresonant accelerometer performs better.

From Figure 4.16 we can observe that, based on the theory, our accelerometers perform better

for resonant frequencies under 40 kHz. On the other hand, for larger resonant frequencies,

the average nonresonant accelerometer can detect lower accelerations.
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5 Measurements

In chapters 3 and 4, the theoretical analysis and the respective simulations for the graphene

accelerometers were shown. The next step is to verify them with measurements on the actual

devices. We are interested in the Responsivity of the devices, which for us, is understood as:

"How much the resonant frequency is shifted due to an acceleration acting on the device".

This magnitude is then normalized by the resonant frequency to only depend on acceleration

units.

R =
1

fR (g )
· ∂ fR

∂a

∣∣∣∣∣
g

(5.1)

For that purpose, the resonant frequency of each accelerometer must be measured, while the

acceleration is applied. The best way to do this is by using a Laser Doppler Vibrometer and a

piezo-shaker to excite the resonance of the device and produce accelerations. Everything is

going to be explained step by step.

5.1 Laser Doppler Vibrometer (LDV)

The Laser Doppler Vibrometry (LDV) is a method that allows the measuring of displacements

(resolutions down to 0.1 pm) and velocities (up to 25 m/s). Additionally, it enables to mea-

sure up to very large frequency ranges (from DC to 24 MHz) and the measurements can be

performed independently of the measuring distance.

The working principle relies on the Doppler Effect produced in the laser that is pointed at the

Device Under Test (DUT). Due to the movement of the DUT, the impinging light is reflected

with a shift in frequency. This light merges with a reference from the laser and is sent to the

detector (see Figure 5.1). The interference between the two beams can be constructive or

destructive, light or dark patterns are generated. To go from the light to dark cycle on the

detector means that the object displacement has been half of the laser wavelength (316 nm).
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Figure 5.1 – The Laser Doppler Vibrometry is based on an interferometer. The Helium-Neon laser is
split to obtain a reference and a measuring beam, which sense the movements of the
sample. Both are combined into a detector and from their doppler shift the velocity and
displacement of the sample are obtained.

5.2 Complete Set-up

Figure 5.2 – Complete set-up to measure displacements and velocities from the Device Under Test
(DUT). It is based on a Laser Doppler Vibrometer, a Vibrometer Decoder and a Lock-in
amplifier. The goal is to excite the resonance of the DUT and to add an acceleration
signal while measuring the resonant frequency changes.

As seen in Figure 5.2, the Laser Doppler Vibrometer is pointing at the device under test. This

one lies over a piezo-shaker, which is a piezoelectric element that converts a given input
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signal into vibrations in the Z-axis. With it, the resonant frequency of the accelerometer is

excited. Simultaneously, a lower frequency signal which creates accelerations is introduced.

The LDV signal is sent to the Vibrometer Decoder which converts it into a Displacement or

Velocity measurement. This output is then read by the Lock-in amplifier and displayed in the

computer.

To better understand how the measurements are taken, the next sections explain the procedure

followed.

5.2.1 Measuring the Thermomechanical Noise

The thermomechanical study helps to find the resonant frequency of the device. We read

the output of the LDV without any actuation of the piezo-shaker. Then, the data is digitally

transformed into the frequency domain and the resonance can be distinguished. Additionally,

the noise floor of the measurement can be known in Power Spectral Density units [V 2/H z].

Figure 5.3 – Thermomechanical Noise measurement of a membrane graphene accelerometer (E6).
This kind of measurements read the signal of the laser without the actuation of the
piezo-shaker. Possible resonances of the devices can be seen and the thermomechanical
noise can be known.

5.2.2 Sweep in Frequency

Once the possible resonant frequency is determined, the next step is to perform a sweep in

frequency for different driving voltages of the piezo-shaker. In Figure 5.4 the resonance is

identified and with the increase of the driving voltage, a linear increase in the amplitude is

observed.
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Figure 5.4 – Frequency sweep performed with the piezo-shaker attached to the device. This measure-
ment allows for identifying the resonances. The change in driving voltage allows us to
see a linear increase of the displacement of the proof mass oscillating at the resonant
frequency.

5.2.3 Atomic Force Microscope Measurements

Atomic Force Microscope (AFM) measurements were performed to obtain the elastic constant

and stresses of the graphene membrane. The AFM measurements allow us to input a force

into the device and measure the displacement produced in the mass. The force is made with

a tip attached to a cantilever, which makes contact with the object to measure. The slope

between the Force and the Displacement will give us the Elastic constant (F = k ·Z ). Moreover,

we can extract information when the tip is increasing the force into the mass (Forward) and

also when it is decreasing it (Backwards).
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Figure 5.5 – AFM measurement where a force is applied over the proof mass of device D8 (25 µm,
168 kHz). This causes a deflection of the mass that depends on the elastic constant.
From every AFM measurement the forward movement (while increasing the force on the
mass) and backward movement (while decreasing the force) is recorded.

The devices are measured in ambient conditions using the Tapping mode. In this mode, the

cantilever is oscillating near its resonance frequency and produces intermittent contacts with

the sample surface. This allows us to have peak forces applied much higher than in contact

mode, but with less damage done to the surface and the tip.

(a) AFM picture of the area studied (Device
E6). We can observe that the graphene
has PMMA residues, due to the graphene
transfer process. [12]

(b) Elastic Constant study performed in the area
shown in a). We observe that half of the el-
ement has an elastic constant which is the
double of the other side.

Figure 5.6 – Left: Topographical image of the E6 device. Right: Analysed AFM data to extract the
elastic constant of 100 different positions on the same device.

This result in Figure 5.6 shows two different regions, one with a higher elastic constant than

the other. The same conclusion are obtained from the measurements taken with the Digital
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Holographic Microscope (DHM) I.

The movement of the same device (E6, 30 µm and 40kHz) at resonant frequency is seen to be

asymmetrical. The DHM allows the video recording of the device movement. Data over one

period is converted in several profiles shown in Figure 5.7.

Figure 5.7 – Horizontal cut in E6 device to see the mass movement for different moments over its
period at resonant frequency. We can observe that the movement is not symmetric,
coinciding with the predictions from the AFM measurements. This measurements were
taken with the Digital Holographic Microscope.

The same measurements were taken in other devices, with different results. That is the case of

the E8 (30 µm, 112 kHz) device, where the AFM elastic constant study showed a much more

homogeneous value in the studied area (Figure 5.8)

IThe Digital Holographic Microscope is an instrument which allows the measuring of the reflected wavefront
information originated from the object as a hologram. Using a computer algorithm, amplitude and phase
information are obtained, enabling the reconstruction of movements in Z-axis. DHM allows measuring vertical
ranges from nanometers to hundreds of microns with sub-nanometric vertical resolution. More information:
www.lynceetec.com
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(a) Topographical image of the device E8 (30
µm, 112 kHz). The trench can be seen in
the inferior part, showing that the study
is made on the mass.

(b) Elastic constant study for the area showed in a),
inside the black square. The image is made out
of 100 measurements and the elastic constants
are more or less homogeneous in that area.

Figure 5.8 – AFM measurements of the Elastic Constant over a square area of 15 µm2 of the E8
device. The elastic constant shows a homogeneous value around 3.7 N/m.

The same device is also measured with the Digital Holographic Microscope, confirming that

the mass has a symmetrical movement while in resonant frequency.

Figure 5.9 – Profiles of the E8 (30 µm, 112 kHz) show the mass oscillates symmetrically for different
moments over a period at resonant frequency (112 kHz). Due to the lower amplitude of
movement, the measurement is noisier than in the E6 case.

The result from the AFM measurements can be seen in Figure 5.10. There the Elastic Constant

(K) extracted is compared with the LDV measurements and the theoretical model.
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Figure 5.10 – Comparison between the AFM measurements and the LDV data and theoretical model.
The AFM elastic constants show a lower value than the one expected theoretically. This
means that the resonant frequencies of the devices might be located at a lower value and
that the ones found are high order harmonics. Unfortunately, no other lower resonances
were found in the devices.

5.2.4 Allan Deviation

In Figure 5.4 we performed a frequency sweep for different driving voltages of the Piezo-shaker.

To proceed with the study, we need to choose the drive voltage that generates the lowest noise

in the device readings. For that goal, we use a powerful tool which is called Allan Deviation.

This magnitude is typically used as a metric for the frequency noise of the sensors and was

named after Allan et al. [10]. In a general way, it is defined as Equation 5.2.

σ2
y (τ) =

1

2(N +1)

N∑
i =1

(yi+1,τ− yi ,τ)2 (5.2)

Where yi is the i th measurement of the magnitude y which is taken during an average time τ:

yi ,τ =
1

τ

∫ iτ

(i−1)τ
y(t )d t (5.3)

The result depends on the integration time τ. In presence of white noise, its value decreases

when τ increases. This presents an advantage when compared to the classical variance.

Another positive aspect is that the Allan variance converges for most of the commonly en-

countered kinds of noise.

For the case of resonant-based sensors, y is chosen to be:

y(t ) =
f (t )− fr esonance

fr esonance
(5.4)

This is the normalized instantaneous frequency difference to the resonant frequency of the

oscillator.

The Allan variance is the best known of the time-domain magnitudes to characterize frequency

inaccuracy. From it, we can know the contributions of a different kind of noise: the White

Noise (goes like τ−1/2), 1/f noise (goes like τ0) and the thermal drift (goes like τ1/2).
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The White Noise region can be theoretically predicted with the Robbin’s formula [11].

σA =
1

2Q

NT

S

√
1

2πτ
(5.5)

Where Q is the quality factor of the resonator, S is the amplitude of the output signal at the

resonance frequency for each drive (in V), NT is the noise level at the output (seen from the

Thermomechanical study) and τ is the integration time.

Figure 5.11 – Allan deviation study for the different driving voltages of the piezo-shaker. The different
types of noises can be seen and in the White Noise region, the predictions made with
Robbin’s formula have been plotted in dotted lines. This study helps us to know which
driving voltage has the lowest Allan deviation and consequently, the lowest noise. For
this specific case (E6 accelerometer, 30 µm and 40 kHz), 300 mV of driving voltage was
chosen.

Once the driving voltage for the piezo-shaker is selected, the response of the devices to

accelerations can be measured.

5.2.5 Acceleration measurements

As explained previously, to produce an acceleration, a lower frequency signal is inputted into

the piezo-shaker, together with the signal that excites the resonant frequency. The acceleration

of a signal is the modulus of the second derivative of the sinusoidal wave function. As Equation

5.6 shows, it depends on the signal frequency and its amplitude.

Accel er ati on = (2π f Accel )2 · Ampl i tude (5.6)

With the complete explained set-up (Figure 5.2), the variation of the resonant frequency is

recorded for 1 minute and the Fourier Transform is performed (see Figure 5.12). Afterwards,
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the amplitude of the FFT at the actuation frequency ( f Accel ) quantifies the effect that the

acceleration has on the resonant frequency of the resonator. As the amplitude of the FFT has

frequency units, the shift is directly given in Hertz unit.

Figure 5.12 – Top: Resonant frequency variation over 1 minute of data acquisition. Down: Fast
Fourier Transform of the data centered in the acceleration frequency applied in the
device. In this example, the resonant frequency shift due to the presence of the external
acceleration is seen to be 0.72 Hz.

As seen in Equation 5.6, accelerations can be created by changing the amplitude voltage of

the Acceleration signal or by changing the frequency. We do both to see if similar results are

obtained.

Accelerations created by changing the signal amplitude

In the experiments of this section, an acceleration frequency of 160 Hz with a 1 g gravitation

bias is used. The 160 Hz frequency is commonly used in accelerometer calibrators, as it avoids

the 50 Hz noise and in our case is well below the resonant frequencies of our devices.

The responsivity of the devices is shown in [1/a] and in [1/g] units, as normally accelerations
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are represented in g units.

R[1/a] =
1

fR (g )

∂ fR

∂a

∣∣∣
g

R[1/g ] = 9.81 ·R[1/a] (5.7)

Acceleration [µg ] ∆Fr es [Hz] ∆Fr es/Fr es Responsivity [1/a] Responsivity [1/g]
320.46 1.2960 3.20 ·10−5 0.01017 0.09981
247.60 1.0760 2.66 ·10−5 0.01093 0.10725
191.89 0.7937 1.96 ·10−5 0.01041 0.10208
136.81 0.5353 1.32 ·10−5 0.00984 0.09656
65.92 0.2580 6.37 ·10−6 0.00985 0.09658
34.14 0.1380 3.41 ·10−6 0.01017 0.09976
16.60 0.0540 1.33 ·10−6 0.00818 0.08027

Table 5.1 – Shifts in resonant frequency associated to input accelerations for the device called E6 (FR

= 40 kHz, σ0 = 75.53 MPa, Mass size = 30 µm x 30 µm x 16.4 µm). The responsivities
are calculated as seen in Equation 5.7. We can see that the responsivities are constant for
different accelerations and have a value around 0.1 [1/g].

The Figure 5.13 can be obtained by repeating the measurements for many different devices

and plotting the resonant frequency shift created by accelerations.

Figure 5.13 – Resonant Frequency shifts produced by accelerations. The study is repeated for different
devices. Linearity between acceleration and frequency shifts is observed, which means
that the resulting Responsivity calculation is constant for the different input accelerations.

The same study is performed for devices with other characteristics (Figure 5.14). Additionally,

the experimental and theoretical responsivities are compared.
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Figure 5.14 – Table including the experimental responsivity (Average and Std) and the comparison
with the theoretical responsivity. We can see that the experimental responsivity obtained
is much larger than the theoretical one. The ratio between responsivities (Experimental
and Theoretical) gives large values.

The experimental Responsivity is also compared to the theoretical responsivity obtained

with the stresses measured in the AFM. But they are still orders of magnitude lower than the

measurements, as seen in Figure 5.15.

Figure 5.15 – Comparison of the experimental responsivities with the ones obtained with the AFM
study. We can observe that, although they get closer, the difference is still large.

If we consider the experimental results as true acceleration measurements we appear be to

able to detect accelerations with high resolution. The studied accelerometers would be far

better than the current nonresonant accelerometers (Figure 5.16).

Figure 5.16 – Minimum acceleration detectable with the measured devices (points in the graph). Also
plotted, the theoretical model developed and the average nonresonant accelerometer
performance. If the accelerometers were truly measuring accelerations, these results
would be outstanding.
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Different accelerations changing the frequency

We see a linear relation between accelerations and resonant frequency shifts. In this section,

accelerations are produced in a different way to see if the results coincide. As seen in Equation

5.6, the acceleration that we input onto the device depends on the amplitude of the signal but

also on its frequency (Equation 5.6). For the next measurements, the signal amplitude is fixed

and the frequency changes to create different accelerations.

Figure 5.17 – Resonant frequency shifts produced by accelerations created by changing the faccel .
For comparing purposes, in dashed lines, the frequency shifts obtained by varying the
Amplitude of the signal producing accelerations (seen in 5.13). Here we expect a similar
behaviour in frequency shift for the two ways of producing accelerations. However,
instead of a linear frequency shift, when changing the faccel the frequency shift remains
constant. These results demonstrate that the shift of resonant frequency is not due to
the accelerations.

In Figure 5.17 we observe that the two ways of producing accelerations do not give the same

results. When accelerations are produced varying the Amplitude of the signal we observe a

linear increase (Figure 5.13). However, when creating accelerations by increasing the faccel we

observe a different behaviour: the resonant frequency shifts remain constant. This mismatch

indicates that the resonance shifts are not produced by the accelerations.

As a consequence of the different results with the two methods to create accelerations, the

responsivity in both cases is also different. Changing the faccel the responsivity is seen to

decay with f −2
accel , instead of being constant.
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Figure 5.18 – Responsivity for different applied accelerations for devices E6 and D8. Using the two
different methods of producing accelerations the results does not match. When creating
accelerations by changing the faccel , the resonant frequency shifts were maintained
constant and as a consequence, the Responsivity is expected to decrease like f −2

accel .

The results shown in 5.17 and 5.18 are really important in this project. From them, we can see

that the shifts in resonant frequency are not due to the applied acceleration, but to the applied

displacement.

For that purpose, a similar definition than the used responsivity can be created, taking into

account the displacement instead of the acceleration.

Rd [1/m] =
1

fR (g )

∂ fR

∂d

∣∣∣
g

(5.8)

Figure 5.19 – Displacement Responsivity for devices E6 and D8. Using the two different ways of
producing accelerations the results match and show a constant behaviour. That means
that the effect that changes the resonant frequency is not the acceleration but the
displacement.

36



6 Discussion

6.1 Origin of the resonant frequency shifts

We observe that the resonant frequency shifts seen in the experiments are related to displace-

ments rather than accelerations. In this Discussion, a possible origin for the displacements is

debated.

The hypothesis we propose is that the vibrations of the piezo-shaker also create horizontal

forces in the silicon surrounding the individual accelerometers. This would then cause varia-

tions in the tension of the membranes and therefore affect the resonance frequency. In this

situation, the attachment of the chip to the piezo-shaker would have an impact.

To verify the hypothesis, the chip is clamped in numerous different ways on the piezo-shaker.

The result that shows the greatest insight is placing the chip in a way that the device under

test is hanging, as seen in Figure 6.1. This displays the impact on the membrane stress, which

would be caused by horizontal forces in the surrounding silicon.

Figure 6.1 – Left: Normal clamped position of the chip to measure the devices. Right: Chip clamping
to allow the device under test to be hanging. This configuration allows us to see the
impact of the horizontal forces on the membrane stress.
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Figure 6.2 – Comparison of the shift in resonant frequency obtained for the different chip positions
showed in 6.1. When the device is hanging, the resonant frequency shift observed is
reduced by 10 times. The acceleration felt by the device in each position is measured at
every moment. The only explanation we can give for the difference is that the detected
signal has its origin in the horizontal forces inside the chip.

The chip position on the piezo-shaker affects the measured resonant frequency shifts. The

accelerations in each position are calibrated.

The effect of the horizontal forces created by the way the piezo-shaker transmits the vibrations

into the chip may be eclipsing the actual effects produced by the acceleration. The response

predicted by the theory developed and the simulations performed cannot be experimentally

proven.

6.2 New model to describe the displacement effect

Figure 6.3 – Plot of the Responsivity and the Stress to obtain the relation between the two variables
from the experiments. The two variables are related through a power of -0.83. This can
be an approximation to the real behaviour that could go with the power of -1.
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To model the horizontal forces created in the chip depending on the way the chip is clamped is

almost impossible. The only direction we can explore is to plot the experimental data points in

a way that we can see the relation of the responsivity with the changes in the membrane built-

in stress. As seen in Figure 6.3, the double logarithmic plot shows that the power dependency

is close to -1.

δ fR

fR ·δz
∝ 1

σ0
(6.1)

More research could be done in that direction. However, this effect is really dependent of the

chip position. The authors of this project believe that the way to proceed would be to fabricate

new devices where the silicon frame would be more rigid. With this change, the horizontal

effects would be minimized.
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The main objective of this project was to verify the possibility of using the suspended graphene

membrane devices as accelerometer resonators. The acceleration would be measured from

the resonant frequency shift produced in the device.

The steps followed during the project to approach the objective have been successful and are

described as follows.

First, a theoretical model was developed (Chapter 3). We extracted the resonant frequency ex-

pression for the devices, depending on the membrane parameters and three extra coefficients

that take into account the geometry of the whole device. We also introduced the figure that

would describe the ability of the sensors to measure accelerations (the Responsivity).

Secondly, using finite element simulations (Chapter 4), we evaluated the static displacement of

the mass and the resonant frequency of the devices. The study showed the implication of the

built-in membrane stress in acceleration detection. The increase of the tension makes it more

difficult to detect accelerations, as the device is less perturbed by external forces. The study

of the nonlinearities allowed us to determine under which characteristics the devices were

working in the linear or nonlinear region. The nonlinear study was crucial for the consequent

fitting of the theoretical model to the simulation results. We obtained the geometric constants

that completed the theoretical model. Using these new constants we predicted the theoretical

responsivity of our devices.

Later, measurements were performed into the devices (Chapter 5). The used set-up included

a piezo-shaker element located under the accelerometer. Its purpose was to excite the reso-

nant frequency of the device and, at the same time, create a sinusoidal acceleration at low

frequency. A Laser Doppler Vibrometer was used to measure the resonant frequency shifts.

Other instruments were used to complement the information. For instance, the Atomic Force

Microscope and Digital Holographic Microscope. They allowed us to see the movements of

the mass and to obtain the membrane elastic constants. The acceleration measurements

showed a much larger responsivity when different accelerations were created changing the
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signal amplitude. However, when accelerations were produced by changing the modulation

frequency, the results showed completely different results. This was proof that the signal that

our devices were returning was not proportional to the acceleration but to the displacement.

Finally, in the discussion (Chapter 6), a possible hypotheses concerning the origin of the

resonant frequency shifts was proposed. This one placed the origin of the signals in the

horizontal forces created inside the chip due to the piezo-shaker actuation. Additionally,

the first steps into the modelling of these new effect were made by viewing the dependency

between Responsivity and Stress.

To conclude, the achievements of this research can be simplified in a list:

• The theoretical model developed matches the behaviour of the finite element simula-

tions. Together, a complete theoretical model was achieved. This allowed us to know the

membrane stress and Responsivity of the devices by knowing their resonant frequency.

• We could prove that the signals seen in the experimental measurements were related to

the displacement of the piezo-shaker instead of the accelerations produced.

• The principal hypothesis is that the signals observed come from horizontal forces

originated in the transmission of the vibrations of the piezo-shaker to the chip. To see

only the effect of the acceleration in the measurements, the chip substrate would need

to be more rigid.

• The acceleration effects in the resonance frequency were eclipsed by the intra-chip

forces. Therefore, the predictions from the theoretical model and the simulations could

not be experimentally proven.
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