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1. Introduction

The problem of estimating a stochastic model from time series is important
in many disciplines (e.g., chemistry, atmosphere-ocean science [5], econometrics
[3], ...). Classes of models used for such inference problems are often based on
stochastic differential equations (SDE) of the form

dXt = f(Xt) dt+ g(Xt) dWt.

Inferring the drift f(x) vector and the diffusion tensor σ(x) = g(x)g(x)T from
time series is in general challenging. A major issue for such problems is that of
model misspecification, when the data is not consistent with the chosen class of
models. In this report we describe a new approach to learn coarse grained-models
(dynamics at slow time scales) from multiscale data, based on filtering techniques.
We show that robust parameter estimation can be derived and that for a class
of fast/slow SDEs the theory of homogenization enables a rigorous study of the
inference problem.

2. Fast slow SDEs and homogenization

We assume that the given data arise from the following class of overdamped
multiscale Langevin SDEs

(2.1) dXε
t = −α · V ′(Xε

t ) dt− 1

ε
p′
(
Xε
t

ε

)
dt+

√
2σ dWt,

that model the motion of particles in a confining potential which has slow vari-
ations V (x) with rapid oscillations superimposed p(x/ε). Here ε > 0 represents
a characteristic size of the small scales in the problem and Wt is a standard one-
dimensional Brownian motion. For the rest of the paper we will assume that the
fast scale is periodic. We also will assume that σ > 0, α ∈ RN , V : R → RN ,
V (x) = (V1(x), V2(x), . . . , VN (x))>, p : R → R, L-periodic, with p, Vi ∈ C∞(R).

For the slow scale potential we further assume that its components Vi and V
′

i

are polynomially bounded, that V ′ is Lipschitz continuous and that there exist
a, b > 0 such that −a+ bx2 ≤ α · V ′(x)x.
Coarse-grained models. The class of models to be fitted to multiscale data are
the following “homogenized models”

(2.2) dXt = −A · V ′(Xt) dt+
√

2Σ dWt.

Under the assumptions above it is possible to show, via homogenization theory,
that Xε

t → Xt in law for ε→ 0 [4, Chapter 3]. As mentioned in the introduction,
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the goal is then to infer the drift coefficient A and the diffusion coefficients Σ from
the multiscale data Xε = (Xε

t , 0 ≤ t ≤ T ).

3. Parameter inference, maximum likelihood estimator.

A classical way to approximate effective drift coefficients A from the coarse-
grained observations X (2.2) is via path-space likelihood expressing the probability

of a model X given a drift coefficient Ã

(3.1) L(X | Ã) = exp

(
−I(X | Ã)

2Σ

)
.

Maximizing the functional L(X | Ã) with respect to Ã gives the maximum likeli-

hood estimator (MLE) Â(X,T ) of A defined by

(3.2) arg min
Ã∈RN

I(X | Ã) = −

(∫ T

0

V ′(Xt)⊗ V ′(Xt) dt

)−1 ∫ T

0

V ′(Xt) dXt.

The above procedure is well understood. Our goal is however different: estimate
A ∈ RN from the multiscale observations Xε = (Xε

t , 0 ≤ t ≤ T ). As Xε
t → Xt for

ε → 0 it seems reasonable to define Â(Xε, T ) for the MLE of A with multiscale
data. But this turn out to be a wrong approach, indeed, under the assumptions
of Section 2 this approach is shown to be biased [8, Thm. 3.4]

(3.3) lim
ε→0

lim
T→∞

Â(Xε, T ) = α.

Parameter inference based on subsampling. The following MLE is intro-
duced in [8] (written here for N = 1 for simplicity) based on subsampling the data
with step δ

(3.4) Âδ(X
ε, T ) = −

∑M−1
i=0 V ′(Xε

iδ)
(
Xε

(i+1)δ −X
ε
iδ

)
δ
∑M−1
i=0 V ′(Xε

iδ)
2

, Mδ = T.

It is shown in [8], again under the assumptions of Section 2, that (3.4) is an
asymptotically unbiased estimator of A in the limit for ε→ 0: if δ = εζ , 0 < ζ < 1
and M = dε−γe with γ > ζ, then

(3.5) lim
ε→0

Âδ(X
ε, T ) = A, in probability.

One of the main drawbacks of this approach is its lack of robustness. Indeed for
a given T and ε the error depends on the choice of ζ, and it is unknown how to
quantify its optimal value (see Figure 1 and [1, Section 5.1.2]). We note that other
approaches based on martingale property [7], operator eigenpairs [6] have been
developed (we refer to [1] for a more comprehensive literature overview).
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Parameter inference based on filtering. We note that subsampling data is
a “smoothing” process, so why not directly smoothing the data ? We therefore
introduce a filtered process

(3.6) Zεt =

∫ t

0

k(t− s)Xε
s ds,

where the filter k(r) is given by

(3.7) k(r) = Cβδ
−1/βe−

rβ

δ , Cβ = β Γ(1/β)−1, δ, β > 0.

For the rest of the paper we assume δ > 0, β = 1. In this case the filter has the
simple expression k(r) = 1

δ e
− rδ and we can derive a coupled system of SDEs

dXε
t = −α · V ′(Xε

t ) dt− 1

ε
p′
(
Xε
t

ε

)
dt+

√
2σ dWt,

dZεt =
1

δ
(Xε

t − Zεt ) dt.

It can then be shown that (Xε
t , Z

ε
t )> is geometrically ergodic with smooth invariant

density µε(dx,dz) = ρε(x, z) dxdz that is the solution of an explicit Fokker Planck
equation. We then define the filtered MLE by

(3.8) Âk(Xε, T ) = −

(∫ T

0

V ′(Zεt )⊗ V ′(Xε
t ) dt

)−1 ∫ T

0

V ′(Zεt ) dXε
t .

We note (see [1] for a comprehensive explanation)

• Âk(Xε, T ) is well defined if det
(∫ T

0
V ′(Zεt )⊗ V ′(Xε

t ) dt
)
6= 0;

• it is essential to keep dXε
t and V ′(Xε

t ) to prove unbiasedness;

• Âk(Xε, T ) has to be thought as a perturbation of Â(Xε, T ) at the level of
the estimator (i.e., after the maximization process of MLE);

• Ãk(Xε, T ) = −
(∫ T

0
V ′(Xε

t )⊗ V ′(Xε
t ) dt

)−1 ∫ T
0
V ′(Zεt ) dXε

t is also a valid

estimator in the non-homogenized regime (when δ depends on ε).

For this estimator, under the assumptions of Section 2, we can prove [1]

Theorem 3.1 (homogenization regime). If δ is independent of ε

lim
ε→0

lim
T→∞

Âk(Xε, T ) = A, a.s.

Theorem 3.2 (multiscale regime). If δ = εζ , ζ ∈ (0, 2)

lim
ε→0

lim
T→∞

Âk(Xε, T ) = A, in probability.

The value ζ = 2 is critical, indeed

Theorem 3.3 (switch to biasedness). If δ = εζ , ζ > 2

lim
ε→0

lim
T→∞

Âk(Xε, T ) = α, in probability.

For the diffusion coefficient, the estimator Σ̂k(Xε, T ) := 1
δT

∫ T
0

(Xε
t − Zεt )

2
dt,

for Σ based on filtering can be employed and proved to be unbiased.
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Figure 1. Multi-dimensional problem N = 4, Vi(x) = Ti(x)
i-th Chebyshev polynomials, α = (−1,−1/2, 1, 1/2), ε = 0.05,
T = 103, subsampling δ = ε2/3, taken from [1].

Discussion. MLE based on filtering are robust in practice with respect to the pa-
rameter of the filter in contrast to estimators based on subsampling (see e.g. Figure
1, where the subsampling size is not optimal, but hard to find for this example).
The MLE based on filtering has also been extended to the Bayesian setting to allow
for a probability distribution for the effective drift A and uncertainty quantifica-
tion. Finally, we note that in many applications only discrete measurements of the
diffusion process are available. Recently, using the filtering approach developed
in this paper and martingale estimating functions a new estimator for learning
homogenised SDEs from noisy discrete data has been introduced [2].
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