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Abstract

IN recent years, population aging and the consequent higher incidence of

noncommunicable diseases have increased the need for long-term health

monitoring. Moreover, as healthcare cost is projected to grow substantially

by 2030 in the Organisation for Economic Co-operation and Development

(OECD) countries, the demand for portable, easy-to-use and low cost ultra-

low power means of monitoring, diagnosis and prevention rises. Wearable

sensors technology for remote health and wellness monitoring is an optimal

candidate to tackle this problem and has advanced drastically in the last years.

However, wearable sensors impose several design constraints. They must

process data in real-time and provide highly accurate diagnosis and adapt

to different cases. At the same time, to perform long-term monitoring, they

must maximize battery lifetime, hence, usability. However, the need for more

accurate algorithms and the need to obtain energy-efficient implementations

can work against each other. For this reason, enhancing the energy-accuracy

trade-off is essential.

Several works in the literature have addressed the energy-accuracy trade-off

problem. The general approach is to first develop offline methodologies

that maximize the algorithm’s accuracy, using signal processing and ma-

chine learning. Then, these methods are optimized to be implemented as

online designs in resource-constrained ultra-low power platforms. How-

ever, different problems can occur in these two steps. Most methods use

highly variable datasets (mainly having different subjects); others use fixed

parameters tailored to specific conditions, which overall decreases the robust-
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ness of the algorithm. In traditional single-core devices, some optimizations

whose goal is to lower the algorithms’ complexity and computational burden,

such as downsampling or features reduction, can lead to a loss in precision.

With the advances of ultra-low power platforms and new machine learn-

ing strategies, even more challenges arise. However, these advances allow

to exploit the growing capabilities of the platforms and use innovative and

more complex strategies that achieve high levels of accuracy, robustness and

energy-efficiency.

In this thesis, I propose a set of adaptive strategies in the context of remote

health and wellness monitoring for an enhanced energy-accuracy trade-off

in wearable sensors. First, I present three methodologies for multi-biosignal

monitoring and pathology detection, which adapt to the specific physiolog-

ical conditions by means of personalization to the subject and knowledge

acquired from the signal. Second, in the context of modern heterogeneous

wearable platforms, I propose a modular approach to software paralleliza-

tion and hardware acceleration for biomedical applications to maximize the

attainable speed-up and, therefore, minimizing energy consumption. More-

over, I propose an approach to scale computing resources and independent

memory banks based on the specific characteristics of the patient in mod-

ern wearable sensors. Finally, in the context of intense physical exercise, I

propose an online design that adapts to the sudden physiological changes

occurring in the signal. This method combines a lightweight algorithm with a

more robust though more complex one to reduce energy consumption while

maintaining a very high accuracy. Moreover, this adaptive strategy exploits

the heterogeneity of modern platforms by matching the complexity of each

algorithm with the capabilities of each core, which further enhances the

energy-accuracy trade-off.

Keywords: Adaptive Wearable Sensors, Personalized Healthcare, Multi-

Biosignal Monitoring, Modular Design, Scalable Computation, Memory

Management, Heterogeneous Processing Nodes, Parallel Computing,

Energy-Accuracy Trade-Off, Green Internet of Things (IoT), Ultra-Low Power

Computing



Résumé

CES dernières années, le vieillissement de la population et l’incidence

accrue des maladies non transmissibles qui en résulte ont accru la

nécessité d’une surveillance de la santé à long terme. En outre, comme les

coûts des soins de santé devraient augmenter considérablement d’ici 2030

dans les pays de l’Organisation de coopération et de développement écono-

miques (OCDE), la demande de dispositifs de surveillance, de diagnostic et de

prévention portatifs, peu contraignant, peu coûteux et à très faible consom-

mation d’énergie augmente. La technologie des capteurs portatifs pour le

suivi du bien-être et de l’état de santé est un candidat idéal pour s’attaquer

à ce problème, d’autant plus que ce secteur a considérablement progressé

ces dernières années.. Cependant, les dispositifs portatifs imposent plusieurs

contraintes de conception. Ils doivent traiter les données en temps réel et

fournir un diagnostic très précis tout en s’adaptant aux différentes situations.

En même temps, pour effectuer un suivi de long terme, ils doivent maximiser

la durée de vie de la batterie pour diminuer la contrainte qui incombe au

patient de recharger l’appareil régulièrement. Cependant, la nécessité d’avoir

des algorithmes performants et le besoin d’économies énergétiques peuvent

aller à l’encontre l’un de l’autre. C’est pourquoi il est essentiel d’améliorer le

compromis entre la précision énergétique et l’efficacité.

Plusieurs travaux dans la littérature ont abordé le problème du compromis

énergie-précision. L’approche générale consiste à développer d’abord des

méthodologies hors ligne qui maximisent la précision de l’algorithme, en

utilisant le traitement du signal et l’apprentissage machine. Ensuite, ces mé-
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thodes sont optimisées pour être mises en œuvre avec des données arrivant

en flux, dans des plateformes à très faible consommation d’énergie et aux

ressources limitées. Cependant, différents problèmes peuvent survenir au

cours de ces deux étapes. La plupart des méthodes utilisent des ensembles

de données très variables (utilisant principalement données des sujets dif-

férents) ; d’autres utilisent des paramètres fixes adaptés à des conditions

spécifiques, ce qui diminue globalement la robustesse de l’algorithme. Dans

les dispositifs monocœurs traditionnels, certaines optimisations dont le but

est de réduire la complexité des algorithmes et la charge de calcul, comme

le sous-échantillonnage ou la réduction des caractéristiques, peuvent en-

traîner une perte de précision. Avec les progrès des plateformes à très faible

puissance et les nouvelles stratégies d’apprentissage machine, les défis sont

encore plus nombreux. Toutefois, ces progrès permettent d’exploiter les ca-

pacités croissantes des plateformes et d’utiliser des stratégies innovantes et

plus complexes qui atteignent des niveaux élevés de précision, de robustesse

et d’efficacité énergétique.

Dans cette thèse, je propose un ensemble de stratégies adaptatives dans le

contexte du suivi à distance du bien-être et de la santé avec un meilleur

compromis énergie-précision dans les capteurs portatifs. Tout d’abord, je

présente trois méthodologies de surveillance multi-bio-signaux et de détec-

tion de pathologies, qui s’adaptent aux conditions physiologiques spécifiques

par le biais de la personnalisation individuelle et des connaissances acquises

depuis les signaux. Deuxièmement, dans le contexte des plates-formes por-

tables hétérogènes modernes, je propose une approche modulaire de la

parallélisation logicielle et de l’accélération matérielle pour les applications

biomédicales afin de maximiser l’accélération réalisable et, par conséquent,

de minimiser la consommation d’énergie. De plus, je propose une approche

pour le passage à l’échelle les ressources de calcul et les banques de mémoire

indépendantes en fonction des caractéristiques spécifiques du patient dans

les capteurs portatifs modernes. Enfin, dans le cadre d’un exercice physique

intensif, je propose une conception qui s’adapte en continu aux changements

physiologiques soudains qui se produisent. Cette méthode combine un algo-

rithme léger mais moins précis avec un algorithme plus robuste mais plus

complexe pour réduire la consommation d’énergie tout en maintenant une

très grande précision. De plus, cette stratégie adaptative exploite l’hétérogé-



néité des plateformes modernes en faisant correspondre la complexité de

chaque algorithme aux capacités de chaque nœud capteur, ce qui améliore

encore le compromis énergie-précision.

Mots-clés : Capteurs Adaptatifs Portatifs, Soins de Santé Personnalisés, Sur-

veillance Multi-Biosignaux, Conception Modulaire, Calcul Évolutif, Gestion

de la Mémoire, Nœuds de Calcul Hétérogènes, Calcul Parallèle, Compromis

entre Précision et Énergie, Internet des Objets (IdO) Vert, Calcul Économes

en Énergie





Sommario

NEGLI ultimi anni, l’invecchiamento della popolazione e la conseguente

maggiore incidenza di malattie non trasmissibili hanno aumentato

la necessità di monitoraggio della salute a lungo termine. Inoltre, poiché si

prevede che il costo dell’assistenza sanitaria crescerà sostanzialmente entro

il 2030 nei paesi dell’Organizzazione per la cooperazione e lo sviluppo econo-

mico (OCSE), la domanda di mezzi di monitoraggio, diagnosi e prevenzione

portatili, facili da usare, a basso costo e a bassissimo consumo aumenta. La

tecnologia dei sensori indossabili per il monitoraggio remoto della salute e

del benessere è un candidato ottimale per affrontare questo problema ed

è avanzata drasticamente negli ultimi anni. Tuttavia, i sensori indossabili

impongono diversi vincoli di progettazione. Devono elaborare i dati in tempo

reale per fornire diagnosi altamente accurate e adattarsi a casi diversi. Allo

stesso tempo, per eseguire il monitoraggio a lungo termine, devono massi-

mizzare la durata della batteria, quindi l’usabilità. Tuttavia, la necessità di

algoritmi più accurati e la necessità di ottenere implementazioni efficienti

dal punto di vista energetico possono lavorare l’una contro l’altra. Per questo

motivo, migliorare il trade-off energia-accuratezza è essenziale.

Diversi lavori in letteratura hanno affrontato il problema del trade-off energia-

accuratezza. L’approccio generale è quello di sviluppare prima metodologie

offline che massimizzano la precisione dell’algoritmo, utilizzando l’elabora-

zione del segnale e l’apprendimento automatico (i.e., machine learning). Poi,

questi metodi sono ottimizzati per essere implementati online in piattaforme

a bassissimo consumo con risorse limitate. Tuttavia, in queste due fasi pos-
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sono verificarsi diversi problemi. La maggior parte dei metodi utilizza set di

dati altamente variabili (principalmente con soggetti diversi); altri utilizzano

parametri fissi adattati a condizioni specifiche, che nel complesso diminuisce

la robustezza dell’algoritmo. Nei tradizionali dispositivi single-core (i.e., un

processore), alcune ottimizzazioni il cui obiettivo è quello di abbassare la

complessità e il carico computazionale degli algoritmi, come il downsam-

pling o la riduzione dimensionale delle caratteristiche nel machine learning,

possono portare a una perdita di precisione. Con i progressi delle piattaforme

a bassissimo consumo e le nuove strategie di apprendimento automatico,

sorgono ancora più sfide. Tuttavia, questi progressi permettono di sfruttare

le crescenti capacità delle piattaforme e utilizzare strategie innovative e più

complesse che raggiungono alti livelli di precisione, robustezza ed efficienza

energetica.

In questa tesi, propongo una serie di strategie adattive nel contesto del moni-

toraggio remoto della salute e del benessere per un migliore trade-off energia-

accuratezza nei sensori indossabili. In primo luogo, presento tre metodologie

per il monitoraggio di molteplici biosegnali e la rilevazione di patologie, che

si adattano alle specifiche condizioni fisiologiche attraverso la personalizza-

zione al soggetto e la conoscenza acquisita dal segnale. In secondo luogo,

nel contesto delle moderne piattaforme indossabili eterogenee, propongo

un approccio modulare alla parallelizzazione software e all’accelerazione

hardware per applicazioni biomediche con lo scopo di massimizzare la ve-

locita’ di computazione raggiungibile e, quindi, minimizzare il consumo di

energia. Inoltre, propongo un approccio per scalare le risorse computazionali

e i banchi di memoria indipendenti in base alle caratteristiche specifiche del

paziente nei moderni sensori indossabili. Infine, nel contesto dell’esercizio

fisico intenso, propongo un metodo online che si adatta ai cambiamenti

fisiologici improvvisi che si verificano nel segnale. Questo metodo combina

un algoritmo a basso carico computazionale con uno più robusto anche se

più complesso per ridurre il consumo di energia mantenendo un’accuratezza

molto elevata. Inoltre, questa strategia adattiva sfrutta l’eterogeneità delle

piattaforme moderne facendo corrispondere la complessità di ogni algoritmo

con le capacità di ogni processore, il che migliora ulteriormente il trade-off

energia-accuratezza.



Parole chiave: Sensori Adattivi Indossabili, Assistenza Sanitaria Persona-

lizzata, Monitoraggio Multi-Biosegnale, Design Modulare, Computazione

Scalabile, Gestione della Memoria, Nodi di Elaborazione Eterogenei, Compu-

tazione in Parallelo, Trade-Off Energia-Accuratezza, Green Internet of Things

(IoT), Calcolo a Bassissimo Consumo
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Introduction

1

INCREASING healthcare costs [1] and hospital overcrowding call for new

technological advances that improve remote wellness monitoring and

enable self-diagnosis, early intervention, and prevention [2]. In addition,

population aging and the consequent higher incidence of noncommunicable

diseases (NCDs) create the need for long-term health and wellness monitor-

ing. Within NCDs, cardiovascular diseases (CVDs) in particular—which are

characterized by abnormal events that need to be detected in real-time—are

the major cause of death globally [3]. To prevent, predict and detect NCDs,

there is an increasing need for automatic applications that continuously

and remotely monitor biosignals, such as the electrocardiogram (ECG) [4],

and extract relevant characteristics from them. Moreover, to prevent CVDs

a daily physical activity is highly recommended [5]. However, movement

contaminates the signal, which leads to a need for optimizing algorithms to

reduce artifacts and improve inference accuracy for better daily monitoring.

While the need for medically acceptable accuracy is of most priority when

dealing with health and wellness monitoring, the energy consumption of the

wearable sensor nodes (WSNs) employed for continuous remote monitoring

is a parallel concern. In fact, a more extended battery life and, hence, im-

proved usability, can lead to improved results in terms of accuracy. To achieve

extended battery life and improve accuracy, one effective solution is adaptiv-

ity of algorithms and platforms by means of personalization to the subject,

online multibiosignal-based knowledge acquisition, modular and scalable
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Chapter 1. Introduction

Figure 1.1 – Representation of a remote health and wellness monitoring
system with different WSNs

optimizations. New adaptive approaches to optimize the energy-accuracy

trade-off in modern ultra-low power (ULP) wearable devices in the context of

continuous remote health and wellness monitoring is the center topic of this

thesis discussion and contributions.

1.1 Remote Health and Wellness Monitoring
Telemedicine describes a set of healthcare services to provide diagnosis, treat-

ment and prevention of disease to a physically distant individual using infor-

mation and communication technologies (ICTs) [6]. The history of modern

telemedicine as a means of diagnosis is fairly recent, with the transmission of

an ECG in 1905 by Einthoven, who is also known for providing the standard

model for ECG electrode placement [7]. He was able to combine his gal-

vanometer, the first high-quality ECG machine, with a telephone and succeed

in transmitting and receiving heart beats through it about 1.5 km away [8].

With the advent of modern communication technologies and specifically

faster and wireless transmissions, a new era for remote patient monitoring

started, and with it the introduction of wearable sensors. Fig. 1.1 shows a typi-

cal system for remote health and wellness monitoring with multiple wearable

sensors. The purpose of the system is to gather physiological and biome-
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1.2 Energy-accuracy trade-off in modern wearable sensors

chanical information, transmit it to a portable smart device, such a tablet

or a phone, and make it available, usually through the cloud, to doctors and

trainers. Then, they can evaluate the data and send feedback to the individ-

ual. The data processed by the wearable sensors and then transmitted to the

phone can be either signals or more advanced diagnostics with a final goal of

transmitting only an alarm in case of anomalies. No matter the configuration,

the system is a revolutionary idea to solve the problems of distance and slow

intervention, as well as to promote self-awareness of health and wellness.

Wearable non-invasive technology for telemedicine emerged with the first

portable though bulky Holter ECG monitor in 1949 [9, 10]. The first prototype

was an approximately 35 kg backpack transmitting the ECG via radio and it

was tested while cycling on a stationary bike, a major breakthrough since

most ECG devices at the time required the subject to lie still. Nowadays it

is a miniaturized, battery-powered portable device that doctors give to the

patient to continuously monitor their heart’s activity for 24-48 hours record-

ings. Needless to say, the standard Holter monitor does not perform any

complex processing but only stores and transmits the signal, though recent

developments in long-term Holter monitors include ECG waves detection,

heart rate variability (HRV) analysis, and even additional biosensors, such as

an oxygen saturation (SpO2) sensor [11]. Nevertheless, the evolution of health

and wellness wearable devices varies from standard ECG monitors to smart

health and physical activity monitors with multiple biosignals and processing

capabilities [12–14], smart clothing [15], and the recent stretchable strain

sensors [16].

1.2 Energy-Accuracy Trade-Off in Modern Wear-

able Sensors
The main goal of this thesis is to propose more targeted, adaptive, and person-

alized solutions in the context of WSN-based biomedical applications. These

innovative solutions aim at improving the detection and prevention of NCDs

with the use of advanced computing, such as machine learning. However,

with the development of new complex algorithms comes the question of

constrained resources management in WSNs, and the consequent toll on

3
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energy consumption. In this section, I explore how to maximize accuracy and

minimize energy consumption for an enhanced energy-accuracy trade-off.

1.2.1 Maximizing Accuracy and Robustness

Remote patient monitoring through WSNs has the advantage of a more tar-

geted diagnostic and personalized medicine [17,18]. In fact, the development

of new algorithms for physiological parameters and pathology detection,

specifically NCDs, increased significantly in the last years [19]. Some algo-

rithms can detect vital parameters, such as blood pressure, which can be

estimated by measuring a surrogate marker of it, pulse transit time (PTT) [20].

This can be extracted by combining relevant information from the ECG and

the optical photoplethysmography (PPG) signal (i.e., the pulse) to estimate

the time for the blood to transit from the heart to the PPG measurement

location. Others apply more complex machine learning-based approaches

to detect or classify different types of CVDs, such as arrhythmias [21–23].

Moreover, some works use the ECG information related to the autonomic

nervous system (e.g., low frequency and HRV analysis), to detect different

types of pathologies, such as obstructive sleep apnea and epilepsy [24, 25].

These algorithms achieve good performances in terms of detection accuracy,

however, it is in general far from what doctors can achieve, specifically in

terms of personalized medicine. In fact, patient-specific approaches have

been proven to increase the accuracy of detection methods by eliminating the

variability factor across patients [23–29]. Moreover, some pathologies show

sudden changes that are manifested in the biosignals morphology that are not

often captured by standard algorithms, making them less robust. Therefore,

there is a need for the detection algorithms to adapt to the physiology and

characteristics of the patient—even though the validation process requires

collecting more data from the same patient—as well as their pathology, at

design and run time in remote health monitoring.

In the context of wellness monitoring in healthy subjects, most smart wear-

able sensors on the market focus on giving information about the intensity

of training sessions and rely on anthropomorphic data and assumptions

to estimate parameters [30]. Only recently, there was an increase to pro-

mote awareness of the advantages and limitations of consumer wearable
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a

Low-power sleep mode

Figure 1.2 – Comparison of edge computing and signal streaming in terms
of energy consumption for a well-known WSN-based biomed-
ical application [38] in a real-life ECG-based device [24], di-
vided in their main blocks of signal acquisition, transmission,
low-power sleep mode and processing

devices and developing best-practice protocols for the evaluation of their

validity [31]. Modern heart rate (HR) monitors, such as chest straps, can

provide good or moderate reliable HRV analysis [32], which are helpful for

fatigue detection [33] and estimation of oxygen uptake and V O2max [34–36],

as they affect the autonomous system. However, according to [31] only few

chest straps were validated for reliable RR data, which is the basis for HRV

analysis. PPG-based devices are also compelling WSNs, as they are low cost

and more comfortable than electrode-based sensors. However, their parame-

ter estimations or noise removal are not reliable for challenging conditions

such as intense physical exercise [32, 37]. These analyses are subject-specific

and are based on sudden changes in the HR series. Hence, there is a need for

new algorithms that are personalized to the physiology of the subject and,

more importantly, adapting their parameters in real-time to strive for medical

standards of accuracy and robustness when deployed on WSNs.
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1.2.2 Minimizing Energy Consumption

Advances in wearable technology for health and wellness monitoring have

risen in parallel to the improvements in low power electronics [12], as more

edge- and fog-based systems offload the data processing to the network

edge [39]. Nowadays, edge computing is widely spread in the Internet of

Things (IoT) domain for different reasons, from delays in transmission to

offloading computational power, advantages in data security and privacy [39,

40]. In WSNs specifically, edge computing is preferable as signal transmis-

sion consumes more energy than processing an anomaly detection on the

node. Fig. 1.2 shows an example comparison in terms of energy consump-

tion between edge computing and continuously transmitting the signal via

Bluetooth Low-Energy (BLE), in the context of a well-known wavelet-based

ECG delineation algorithm [38] running for 24h on a Cortex-M3 core, con-

sidering the energy consumption numbers in [41]. As the figure shows, edge

computing highly decreases the energy consumption, as it was demonstrated

in previous works in the literature for different types of devices [38, 42, 43].

However, the energy consumed during signal acquisition is yet significant

and edge computing inevitably has resource constraints that might affect the

accuracy of biomedical applications.

To tackle the problem at the acquisition process, some works focus on its

optimization at the hardware (HW) level. In fact, signal digitization is one

of the main energy draining blocks in some biomedical applications [24, 38].

Therefore, event-triggered solutions have been explored to highly reduce the

energy required by the sampling process [43]. These solutions abandon the

paradigm of a constant sampling in time for one based on thresholds, or

levels, reached by the signal, or abnormal events. For an ECG, this translates

to acquiring only few samples belonging to its main waves (i.e., level crossing)

or few abnormal QRS complexes (i.e., knowledge-based), highly reducing the

sampling rate while maintaining the QRS detection accuracy. However, these

solutions are still being explored, so this thesis focuses on the challenges in

edge computing.

The evolution of WSNs from single-core systems [24, 42, 44] into multi-core

parallel computing platforms [45–49] has opened new possibilities for health
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and wellness monitoring. From parallel processing to independent memory

banks, to heterogeneity of cores and HW accelerators, these platforms facili-

tate the implementation of more complex, accurate and adaptive biomedical

applications. However, the question of how to design adaptive approaches

that exploit the capabilities of modern platforms still remains. Fig. 1.3 shows

the effect of the application duty cycle (here used as a measure of algorithm

complexity), multi-core processing (assuming a 7× speed-up) and memory

banks scaling on the energy consumption of one of the aforementioned mod-

ern platforms [49]. The energy numbers are computed based on the power

numbers in [48,49]. The architecture has one main core and a cluster of up to

eight cores, which are different from the main one, and memory banks that

can be powered off independently. From the figure, I show the possibilities

for optimization that the architecture can give. For example, for a low-duty

cycle application memory management has more impact than for high duty

cycle applications, which are affected more by the processing. Therefore, for

applications with higher complexity, adapting the computing resources (i.e.,

the number and type of cores used) and maximizing speed-up should receive

higher priority than memory management, whereas for applications with

lower computational complexity the focus should be on the reduction and

scaling potential of the number of memory banks.

The capabilities of modern platforms allow designers of biomedical applica-

tions to approach the energy-accuracy trade-off with different lenses, having

the ability to implement optimal adaptive solutions from both the physiolog-

ical and the platform perspectives.

1.3 Contributions
This thesis describes three main domains of contributions in the context of

remote health and wellness monitoring. First, I propose new personalized

and ULP algorithms for multi-biosignal monitoring in traditional wearable

sensors, with the goal of maximizing accuracy and reducing energy consump-

tion. Then, in the context of modern ULP heterogeneous nodes, I propose

platform optimizations for the modular and scalable (i.e., personalized to the

subject) use of the computing and memory resources to design more energy-

efficient biomedical applications. Finally, I propose an adaptive design based

7



Chapter 1. Introduction

Figure 1.3 – Effects of duty cycle (i.e., algorithm complexity), multi-core
processing (assuming a 7× speed-up), and memory banks
scaling on energy consumption in modern ULP wearable sen-
sors [49] for health and wellness monitoring, divided in power
and memory (PM) management, and processing in single-
core and multi-core designs. For a low duty cycle application,
multi-core processing with very good speed-up is advanta-
geous compared to a single-core design. Moreover, the energy
consumed for memory management (green) is approximately
half in the multi-core design, hence, memory scaling from
eight banks to one bank lowers the energy significantly. On
the contrary, for a high duty cycle application, memory scal-
ing does not affect the energy consumption, while multi-core
processing can significantly lower the energy consumption.
This analysis is relevant for designers of biomedical applica-
tions, which can focus on some optimizations rather than
others considering the application computational complexity,
attainable speed-up and, memory management
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on a novel highly accurate though complex ECG R peak detection algorithm,

called BayeSlope, and a lightweight and less robust method, called REWARD.

The mail goal of this adaptive design is to achieve an optimal energy-accuracy

trade-off by triggering the more accurate BayeSlope when REWARD fails and

assigning different computing resources based on their complexity.

1.3.1 Personalized and Ultra-Low Power Multi-Biosignal

Monitoring

In the context of multi-biosignal monitoring through WSNs, the challenges

to maximize accuracy while reducing energy consumption lie first at the algo-

rithmic level. Many approaches have been tackling this issue with acceptable

levels of accuracy and energy efficiency [23–28]. However, a new perspec-

tive must be applied to improve the energy-accuracy trade-off. Therefore, in

Chapter 2, I propose three new methods involving adaptive, personalized (i.e.,

to the patient’s physiology) and knowledge-based strategies that are accurate

and energy-aware.

The first contribution is presented in Section 2.2. Here I propose a novel light-

weight real-time R peak detection method, called Relative-Energy-based

WeArable R Peak Detection algorithm (REWARD). The method is based on

a nonlinear filtering technique called Relative-Energy (Rel-En) [50], which

amplifies the dominant peaks in the ECG. Rel-En can actually be applied to

different types of biosignals other than ECG, making it a good candidate for

multi-biosignal filtering. However, this thesis focuses only on its use on the

ECG. REWARD applies adaptive hysteresis thresholds for the peak search and

knowledge of physiological parameters to discern correct and incorrect peaks.

REWARD is implemented on a traditional single-core Cortex-M3 device, and

it is compared in terms of accuracy and energy to state-of-the-art algorithms

running on the same platform.

Section 2.3 presents the second contribution of Chapter 2, which is a novel

method for HR estimation using the PPG signal, a low-cost optical alternative

to the ECG. A PPG-based device detects the blood volume changes in vessels

by illuminating the skin with a light emitting diode (LED) and receiving a

waveform that represents the light reflected by the tissues. The PPG waveform
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gives information about the pulse rate, since the blood volume changes are

caused by the heart pumping the blood to the periphery during each cardiac

cycle and affect the sensor light absorbed. However, in conditions of intense

physical exercise, PPG is highly affected by motion artifacts (MAs) that fall

in the same range of frequencies as the pulse rate [51]. Therefore, I propose

a novel method for MAs removal that compares the frequency domain of a

3-axis accelerometer and the PPG without the need for signal reconstruction.

The knowledge of the movement analysis makes the algorithm more robust

than other state-of-the-art examples [52–55]. Moreover, the method is highly

energy-efficient by focusing on the frequency domain and implementing

signal downsampling, integer arithmetic, and power management.

The third contribution of Chapter 2, presented in Section 2.4, describes a new

online paroxysmal atrial fibrillation (PAF) prediction model for ULP wearable

sensors, which scales the computation by considering the specific features

of the individuals and their condition. In fact, atrial fibrillation (AF) is a type

of arrhythmia caused by heterogeneous mechanisms in different patients

and is one of the major causes of stroke and heart failure [56]. Therefore,

personalization is essential for an accurate diagnosis and prediction. As

mentioned, personalization has been proved to highly increase the accuracy

of pathology detection and, specifically, in a previous work I proved that

this is also the case for PAF prediction [57]. In this contribution, I exploit a

patient-specific training phase to implement an optimized feature extraction

and inference model to achieve scalable computation. The adaptive patient-

specific training parameters affect the design in single-core platforms and the

energy consumption by creating different energy levels based on the patient

characteristics. Finally, power management allows for a scalable battery

lifetime targeted to each individual.

1.3.2 Modularity and Patient-Specific Scalability in Multi-

Core Heterogeneous Nodes

In the context of modern ULP heterogeneous platforms presented in Sec-

tion 1.2, in Chapter 3, I propose two solutions that apply software (SW)

parallelization and HW acceleration techniques on independent application

modules. Moreover, I propose an adaptive and scalable solution for assigning
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computing and memory resources in multi-core heterogeneous nodes based

on the specific characteristics of the patient, in the context of the online

PAF prediction that I present in Section 2.4. The two main contributions of

Chapter 3 are presented in Section 3.4 and Section 3.5.

Most biomedical applications are organized in independent sequential mod-

ules, namely signal filtering, enhancement, feature extraction, and inference,

as I explain in Section 3.2. Sometimes all the modules are present, such

as [57], while other applications might apply only some of them, such as

REWARD [41]. By exploiting the capabilities of modern ULP heterogeneous

platforms, described in detail in Section 3.3, I propose a top-down approach

to SW parallelization with techniques applied at different abstraction levels

(c.f. Section 3.4). This strategy has the intent of maximizing the attainable

speed-up of the parallelization and, hence, the potential energy savings. Ad-

ditionally, I apply memory management to adaptively switch each memory

independent memory bank between active, retentive and off mode based on

the buffer acquisition memory usage, and reduce energy consumption. Fi-

nally, computationally intensive kernels are accelerated by a domain-specific

coarse-grained reconfigurable array (CGRA) [46], consuming less energy than

the general purpose cores available. Overall the three optimizations are or-

thogonal to each other and can be applied independently according to the

application needs.

In Section 3.5, I present my design of a patient-specific parallelization tech-

nique targeting a multi-core platform, based on the online personalized PAF

prediction algorithm that I present in Section 2.4. For each patient, the ap-

proach selects specific parameters and training models during the learning

phase representing the number of cores used for the parallelization. In fact, as

I analyze in Section 3.3.5, assuming the same attainable speed-up, assigning

the lowest number of cores achieves higher energy savings than assigning

more cores. Therefore, in the context of a personalized approach to PAF

prediction, assigning computing resources based on the characteristics of

each patient ensures significant energy savings. Moreover, I explore the ef-

fect on the energy consumption of memory bank scaling from 8 KiB to 4 KiB,

2 KiB and 1 KiB. By scaling to 1 KiB, the algorithm achieves the highest energy

savings overall, although scaled to the specific characteristics of the patient.
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In conclusion, modularity and scalability, by means of personalization at al-

gorithmic and platform levels, are adaptive solutions that maximize accuracy

while significantly reducing energy consumption.

1.3.3 Online Adaptive Design for Enhanced Energy-

Accuracy Trade-Off

In the context of biomedical applications that monitor complex physical

conditions, enhancing the energy-accuracy trade-off is challenging. As an

example, during intense physical exercise (but not only) the cardiovascular

and respiratory systems undergo significant changes that are manifested in

signals like the ECG. Sudden changes in the heart rhythm, hyperventilation

and the high demand in blood supply by the muscles translates in shorter

RR intervals (i.e., the time between two heart beats), changes in the P wave

(i.e., contraction of the upper chambers of the heart), smaller R peaks (i.e.,

main heart contraction or what mainly constitutes a heart beat) and higher

T waves (i.e., lower chambers relaxation). In these conditions, standard R

peak detection algorithms fail to properly discern the ECG main wave. More-

over, more complex algorithms can cause a substantial draining of platform

resources leading to frequent device charging, not suitable for long-term re-

mote monitoring. For this reason, in Chapter 4, I propose an adaptive design

of a novel highly accurate and robust R peak detection algorithm, BayeSlope,

paired with the lightweight but less robust REWARD. An error detection is

applied to the output of REWARD that triggers BayeSlope if REWARD fails.

Moreover, to exploit the advent of modern ULP heterogeneous platforms and

their capabilities, BayeSlope is implemented in a more capable core and with

more resources than the one where REWARD runs. By monitoring and adapt-

ing its performance and complexity, by means of two different algorithms,

this strategy achieves an optimal energy-accuracy trade-off.
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Personalized and Ultra-Low Power
Multi-Biosignal Monitoring

2

Tackling the energy-accuracy trade-off in wellness monitoring applications

that use wearable sensor nodes (WSNs) is a multifaceted challenge. The

first step is to consider innovative optimizations at the algorithmic level for

different biomedical applications using multiple biosignals. In fact, from vital

parameters estimation in various physical conditions to pathology detection,

the challenges of improving energy efficiency while maintaining accuracy

in wearable sensors are similar. However, optimizations need to be targeted

and adaptive to reach an optimal energy-accuracy trade-off specific to the

application and/or the subject analyzed.

In this chapter, I propose several algorithmic optimization methods in the

context of wellness monitoring, which achieve a high level of energy-accuracy

trade-off, as a first aspect of the final optimal goal. First, I explore two meth-

ods that estimate, respectively, the instantaneous and average heart rate (HR)

from two different biosignals (electrical and optical), and in distinct physical

conditions (rest, pathology, and intense physical exercise). Then, I tackle the

problem of atrial fibrillation (AF), a cardiovascular disease (CVD) that is one

of the major causes of stroke and heart failure, and propose a patient-specific

real-time approach to predict its onset.
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2.1 Introduction
Remote wellness monitoring has become an essential branch of healthcare

with the rapid development of wearable sensors technology. WSNs are un-

obtrusive and cost-effective means of continuous monitoring of vital param-

eters and noncommunicable diseases (NCDs) with the final goal of health

enhancement and prevention [58]. WSNs can acquire multiple biosignals,

such as the electrocardiogram (ECG) and the photoplethysmography (PPG)

waveform, and be used in various settings, such as at rest and during intense

physical exercises. Moreover, they can also include embedded algorithms for

the detection and prevention of CVDs, which are the primary cause of death

globally [3].

The vital parameters estimation and pathology detection algorithms for WSNs

must provide a high level of accuracy according to medical standards. Many

works that target remote wellness monitoring focus on reaching this medically

acceptable level by optimizing their algorithms [21, 24, 26, 38, 42, 54, 57, 59].

However, energy efficiency must be taken into account for edge comput-

ing devices used for continuous monitoring, which are the object of this

thesis [23–28]. In this chapter, I propose various methods that are energy-

efficient while maintaining high levels of accuracy for ultra-low power (ULP)

wearable devices.

For the first contribution of this chapter, I present the Relative-Energy-based

WeArable R Peak Detection algorithm (REWARD), which is a novel real-time

R peak detection mechanism based on a nonlinear filtering method called

Relative-Energy (Rel-En) [50] applied to an ECG signal. The ECG describes

the electrical activity of the heart during its contraction with three main

waves1 [60], shown in Fig. 2.1. The P wave represents the contraction of the

upper chambers of the heart (i.e., atria). Then, the QRS complex, or the ECG

main wave, represents the contraction of the lower chambers of the heart (i.e.,

ventricles). Finally, the T wave represents the relaxation state of the ventricles.

The three waves combined make one cardiac cycle, or a heartbeat. The R peak

is a parameter included in the ECG main wave and the frequency of its occur-

rence, i.e., HR, provides valuable medical information [61]. R peak detection

1In this thesis, U waves were not considered as they are not always observable.
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Figure 2.1 – ECG heart beat with its three main waves representing the
phases of the heart electrical activity during its contraction

is essential to more complex algorithms that screen for serious medical con-

ditions that affect the cardiac rhythm, such as myocardial infarction [26]

and atrial fibrillation [42]. Moreover, it is the base for heart rate variability

(HRV) analysis, measured as the variation in the beat-to-beat interval or RR

time series. This analysis gives essential information on the effects of the

autonomous nervous system in medical and sport settings [33, 62–65]. Cur-

rent real-time R peak detection algorithms employ techniques such as signal

derivative analysis [66], adaptive thresholds and parameters [67], and varia-

tions of the Wavelet Transform [38,68,69]. These algorithms have been widely

compared in terms of R peak detection accuracy [70]. However, few of these

works have performed a complete study on the energy and memory footprint

trade-offs of the algorithms when implemented on resource-constrained

real-time systems [38, 66, 71]. Furthermore, each work tests its proposed algo-

rithm on a different hardware (HW) processor or simulator platform, which

makes a comparative assessment of the algorithms difficult. Few works in the

literature have compared the feasibility of implementing different real-time

R peak detection techniques on embedded systems. For this reason, this

contribution addresses the need for a comprehensive comparison of well-
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established approaches for real-time R peak detection in wearable systems.

The main objectives of this contribution are:

• Implementing the Rel-En method in real-time and designing a peak

detection procedure to complement it.

• Optimizing the REWARD algorithm specifically for use on resource-

constrained systems, maximizing its accuracy while minimizing its

energy and memory footprints.

• Comparing this new algorithm against three state-of-the-art real-time R

peak detection algorithms and showing that it performs comparably in

terms of accuracy while consuming less energy and memory, measured

on the same HW platform.

The second contribution to this chapter is an alternate method for HR estima-

tion using an optical source (i.e., PPG) instead of an electrical one (i.e., ECG)

and in conditions of intense physical exercise where the PPG signal integrity

is most negatively affected. In fact, a PPG sensor gives information about the

cardiac rhythm, by illuminating the skin with a light emitting diode (LED) and

collecting the light reflected (i.e., the PPG waveform), which detects the blood

volume changes in vessels. Specifically, by considering the PPG frequency

spectrum, it is possible to estimate the HR within its standard range between

0.67 Hz and 3.67 Hz, i.e., 40 beats per minute (BPM) and 220 BPM, considered

in this work, corresponding to a range of HR from a rest condition to intense

physical exercise. However, during the latter the PPG signal is affected by

strong motion artifacts (MAs) in the same range of frequencies [51]. There are

various methods to estimate the HR from the PPG waveform [52–55], but they

all present different problems from a low level of accuracy to a high level of

complexity, which makes it not suitable for implementation on ULP WSNs for

remote wellness monitoring. Therefore, I propose a method for monitoring

HR in real-time which only analyzes the spectrum retrieved from the fast

Fourier transform (FFT) and it is targeted to WSNs. The main outcomes of

this contribution are:

• The method does not require a noise-free signal reconstruction, but

only focuses on the detection of MAs as peaks within the standard range
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of frequencies previously mentioned. This allows to gain computational

time, speed and memory space and decrease power consumption in

the embedded device.

• The method detects a wide range of MAs, and it manages to estimate

the HR when PPG and MAs spectra overlap. Overall, it shows an average

absolute error of only 1.27 BPM with a standard deviation of 0.91 BPM

on the database analyzed, comparable to the performance of state-of-

the-art offline algorithms.

• The method works on short windows of data, which makes it applica-

ble to real-time processing on WSNs. It does not require a reference

signal, as the history of estimated values is used to update the cur-

rent one. Moreover, it employs integer arithmetic to reduce execution

time. By computing the execution time of the algorithm on-board, i.e.,

226 ms per second, it grants a battery autonomy of 9.37 days for the

fully working device.

Finally, for the third contribution to this chapter, I propose a methodology

to design a new online paroxysmal atrial fibrillation (PAF) prediction model

targeting scalable computation on ULP wearable sensors, which considers the

specific features of the individuals and their condition. In fact, in a previous

work I proved that a patient-specific approach highly increases the accuracy

of PAF prediction [72]. In this chapter, I tackle the challenge of designing

a real-time version of this approach for ULP WSNs and exploit the patient-

specific training phase to achieve scalable computation. The scalability is

driven by the adaptive training parameters, which affect the design in single-

core platforms to reduce energy consumption for each individual patient.

The main outcomes of this contribution are the following:

• The online energy-efficient PAF prediction model is implemented on

a single-core ULP wearable sensor INYU [24], which is personalized

according to the characteristics of each patient. The optimized and

personalized model allows to reduce the energy consumption and pro-

cessing execution time, by considering the constraints of the wearable

sensor.
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• Additionally, by exploiting the existing low-power sleep modes between

sample acquisition, the wearable device running my proposed method

achieves a scalable battery lifetime of, at least, 37 days.

This chapter continues by presenting the details of the three contributions

mentioned. First, Section 2.2 describes the related work, methods, experi-

mental setup, and results of the REWARD algorithm, which has been pub-

lished in the proceedings of Engineering in Medicine and Biology Conference

(EMBC) [41]. Then, it presents the second main contribution in Section 2.3,

which has been published in the proceedings of the 19th Euromicro Con-

ference on Digital System Design (DSD) [57]. Then, it follows with the third

contribution in Section 2.4, which has been published in a special issue of the

IEEE Transactions on Emerging Topics in Computing journal, called “New

Trends in Parallel and Distributed Computing for Human Sensible Applica-

tions” [73].

2.2 REWARD: a Real-Time Relative-Energy Wear-

able R Peak Detection Algorithm
An essential parameter detection for CVD monitoring and diagnosis is the

detection of the ECG main wave, which includes the R peak. For this reason,

I present a new lightweight real-time R peak detection algorithm, called

REWARD, and I compare it with three state-of-the-art algorithms in terms of

accuracy, robustness, memory footprint, and energy consumption using the

same HW platform.

In this section, I first explore the state-of-the-art algorithms used in the

comparison (c.f. Section 2.2.1). Then, I describe the complete method and

the optimizations for resource-constrained ULP embedded devices (c.f. Sec-

tion 2.2.2). Finally, I present the database and HW platform used for the

comparison of the four algorithms (c.f. Section 2.2.3), resulting in the out-

comes described in Section 2.2.4.
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Figure 2.2 – Block diagram of a general real-time R peak detection

2.2.1 Related Work on Real-Time R Peak Detection Algo-

rithms

Many R peak detection algorithms have been developed, but relatively few

are designed for real-time implementation on ULP embedded systems. Three

algorithms that meet these design constraints are the Pan-Tompkins (PT)

algorithm [67], a wavelet transform delineation (WTD) [38], and a derivative-

analysis-based delineation (DAD) [66]. These algorithms are well-known

for their high accuracy and previous implementation on real-time wearable

systems. They also represent diverse R peak detection methodologies.

An ECG R peak detection algorithm generally consists of a two-step procedure,

as depicted in Fig. 2.2. First, a preprocessing step may include a filtering

method to suppress noise in the ECG excerpt, as well as specific techniques

to highlight the principal components of the ECG waveform. Then, a peak

detection procedure locates the R peaks.

This section provides an overview of the aforementioned three state-of-the-

art R peak detection algorithms, detailing the real-time implementation

of each of them. All filters and algorithms are implemented in the C pro-

gramming language using primarily 16-bit integer arithmetic, a sampling

frequency of 250 Hz, and minimal buffer sizes to ensure a fair energy and

memory consumption comparison.

2.2.1.1 Real-Time Preprocessing Methods

Every algorithm contains its own preprocessing method for filtering and high-

lighting the principal components of the ECG waveform. These methods
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are often used to remove baseline wander, high-frequency noise, and muscle

artifacts. Two frequently-used real-time filtering approaches, a morpholog-

ical filtering (MF) [74] and a band-pass filtering (BPF) [66], are analyzed to

determine the benefits they provide to the accuracy of each algorithm ver-

sus the drawbacks of additional energy and memory consumption. The MF

performs two operations, opening and closing, which respectively remove

the peaks and valleys of the signal. These operations produce the baseline,

which is then subtracted from the original signal to remove any baseline

drift. An opening window of 0.2 s is used, along with a closing window of

0.3 s. The filter is coded in C in real-time and introduces a delay of 0.49 s.

The finite impulse response (FIR) filter design of the BPF, with a passband of

0.3-40 Hz and order 32, is done offline, which suppresses both the baseline

and high-frequency noise. It is coded in C using mainly 16-bit integer opera-

tions and implemented using symmetry criteria for the filter coefficients, as

described in [66].

2.2.1.2 Real-Time R Peak Detection Algorithms

The Pan-Tompkins Algorithm (PT) Pan and Tompkins proposed a real-

time ECG R peak detection algorithm in 1985 [67], which has since been

widely used in the literature. The 4-step preprocessing method of the algo-

rithm consists of a 5-12 Hz bandpass filter, a derivative of the filtered signal,

squaring the derivative to amplify the QRS complex, and a moving-window

integrator. Then, the peaks of the ECG signal are identified by applying adap-

tive thresholds on the filtered and integrated signals. These thresholds use

the past eight peak amplitudes and RR intervals to identify peaks and ensure

that they have an RR interval above 0.2 s.

The initial delay and buffer size of this algorithm include 5 s of signal, namely,

2 s to initialize the peak detection thresholds, plus 3 s to compute the initial

RR interval and search back for missed peaks. The algorithm is implemented

in real-time in C using primarily 16-bit integer arithmetic.

Wavelet Transform Delineation (WTD) A widely implemented algorithm

that performs full ECG delineation is the wavelet transform (WT). The WT

of a signal is proportional to the derivative of the signal with a smoothing
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impulse response at different scales. Therefore, the zero-crossings of the WT

function correspond to the local maxima or minima of a signal at a given

scale, and the peaks correspond to its maximum slopes. Five dyadic scales

are chosen (i.e., 21 to 25), since most of the ECG signal energy lies within these

scales [68]. Once the WT is applied to the signal, the R peaks are identified as

the zero-crossings that are common across scales 21 through 24, and which

are preceded by a positive peak and followed by a negative peak.

The WTD algorithm analyzed in this work is the optimized, single-lead, of-

fline ECG delineation algorithm presented in [68], implemented by [69], and

extended in [38]. This delineator detects all characteristic points of an ECG

waveform using a quadratic spline WT. The algorithm is implemented in

real-time with a buffer size of 1.024 s. It is coded in C using primarily 16-bit

integer operations.

Derivative Analysis Delineation (DAD) Recently, Bote et al. proposed a

derivative-based, low-complexity algorithm for ECG delineation [66], which

has a modular design. It can perform either full ECG delineation, or operate

in a low-power mode that only detects R peaks, the latter of which is analyzed

in this work. First, the signal is preprocessed with a 14 Hz lowpass filter. Next,

the first and second derivatives in a 2 s window are analyzed to identify the

R peaks as points at which 1) there is a zero crossing of the first derivative,

2) the RR interval is higher than 0.25 s, and 3) the magnitude of the second

derivative exceeds 0.33× the average of the past five minimum/maximum

window values. This algorithm is implemented in real-time with a buffer

length of 2 s. It is coded using primarily 16-bit integer arithmetic.

2.2.2 REWARD Design and Real-Time Optimization

The REWARD algorithm includes two main components. Firstly, the ECG

signal is preprocessed to highlight its peaks and suppress its baseline using

the Rel-En nonlinear filtering method proposed in [50]. Secondly, the R

peaks are detected from the filtered signal. In this section, I present the

first real-time implementation of the Rel-En preprocessing method and the

optimizations for use on ULP wearable systems. Then, it is paired with the R
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peak detection procedure that was designed within the same publication [41],

all of which is described next.

2.2.2.1 Rel-En Preprocessing Implementation and Optimization

The Rel-En preprocessing method considers the energies of a long sliding

window l win (0.95 s) and a short sliding window swin (0.14 s), both centered at

sample n. l win describes the long-term behavior of the ECG signal x, while

swin can capture an R peak occurrence, resulting in a larger short-term energy

than when no peak occurs. The ratio between the energies of these windows,

the coefficient c(n), is multiplied by x(n), resulting in a signal xRE, in which

the peaks are amplified, as depicted in (2.1) and (2.2). The parameter w in

(2.1) represents a Hamming window function, and p = 2.

c(n) =
∑n+swi n/2

i=n−swi n/2 |x(i )|p∑n+l wi n/2
j=n−l wi n/2 |w( j )×x( j )|p (2.1)

xRE(n) = c(n)x(n) (2.2)

The effect of Rel-En on a filtered ECG is shown in Fig. 2.3, where it is evident

how the method amplifies the dominant peaks of the ECG in the final output

xRE .

In this contribution, the Rel-En preprocessing method is ported from MAT-

LAB to C and optimized for single-lead, real-time ECG R peak detection on

resource-constrained wearable systems. First, the computation is changed

from floating point arithmetic (32-bit) to short integer (16-bit) to consume

less energy and memory on the microcontroller unit (MCU). Subsequently,

the Rel-En method is implemented using circular buffers to minimize RAM

usage and processing delays. It considers a centered sliding window of 0.95 s

of the ECG signal for preprocessing to obtain the xRE signal.

Finally, the Rel-En preprocessing method is simplified to reduce its energy

consumption. In [50], the Hamming window function is used to smooth the

long-term energy of each coefficient c(n), which represents a significant num-

ber of operations performed per coefficient output. Specifically, suppressing
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FIltered ECG (x)

Rel-En output signal (xRE)

Figure 2.3 – The output of the Rel-En method applied to a filtered ECG.
Rel-En isolates and amplifies the dominant peaks in a signal.

this step reduces the computational load by a factor of N=fs*lwin where f s is

the sampling frequency, so for each coefficient there must be N calculated

Hamming window coefficients and N multiplications. In order to reduce the

algorithm’s complexity and consequent energy consumption, the method

does not use the Hamming window function from the long-term window

calculation, i.e., w( j ) = 1, whose removal did not result in any significant cost

to the algorithm’s performance (c.f. Section 2.2.4.1).

2.2.2.2 REWARD Peak Detection

To complete the REWARD algorithm, a second step is paired to the Rel-En

method. This is a real-time peak detection procedure that is both adaptable

and computationally simple. The algorithm is based on the hysteresis com-

parator [75], and several optimizations are applied to improve its detection

accuracy. The R peaks are detected using a window of 1.75 s. Consequently,

the initial delay of this algorithm is (0.95/2+ 1.75)s. For each R peak de-

tection window, the algorithm first checks if the dominant peak is positive
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or negative to change the values of its parameters accordingly. Then the

hysteresis comparator is applied to identify possible peaks. Next, the algo-

rithm selects the peaks that meet a set of criteria, such as representing an

HR between 30-240 BPM and a peak width in the same range as that of the

previously-selected R peak.

The first step of the algorithm is a real-time variation of the negative peak

identification procedure described in [76]. Within the 1.75 s peak detection

window, if the minimum amplitude relative to the mean value of xRE is greater

than 70% of the maximum amplitude relative to the mean, it is presumed that

the R peak is negative. The method applies the same steps for both positive

and negative peaks, though the values of its parameters change depending on

the polarity. For simplicity from this moment on, I will describe the positive

case.

Next, the hysteresis comparator method is implemented to identify the loca-

tions of the peaks based on two adaptive thresholds, as illustrated in Fig. 2.4.

Segments in which the signal goes above the upper threshold, Thupper, and

subsequently below the lower threshold, Thlower, are considered active peak

regions. The maximum of the signal between these two points is considered

a peak candidate. The purpose of having two thresholds is to eliminate false

R peak candidates due to high-frequency oscillations or false peaks at the
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Algorithm 1 REWARD: R peak selection within a long window

1: function PEAKSEL(xRE,Rl ast ,Tu ,Tl )
2: (Av g , M ax, Mi n) = st atSi g InW i ndow(xRE);
3: T hupper = Av g +Tu ×|Av g −M ax/Mi n|;
4: T hlower = Av g +Tl ×|Av g −M ax/Mi n|;
5: pksloc,wid = f i ndPks(xRE,T hupper ,T hlower );
6: for n = 2 : leng th(pksloc) do
7: if 0.25s < pksloc

n −Rl ast then
8: di scar dPeaks(pksloc

n );
9: else if pksl oc

n −Rl ast > 0.5s then
10: keepPeaks(pksloc

n );
11: else
12: if 0.65 < pkswi d

n /pkswi d
n−1 > 1.35 then

13: di scar dPeakW i thLar g er W i d th();
14: else
15: keepPeaks(pksloc

n );
16: end if
17: end if
18: end for
19: end function

threshold boundary. This procedure is less complex than initially searching

for all local maxima in a window and then applying a threshold to select the

peaks, since false peaks often exist at the threshold boundary due to signal

noise.

In order for the thresholds to adapt to changes in the signal’s amplitude

from one window to the next, they are defined as shown in Lines 2-4 of

Algorithm 1. Av g and M ax denote the mean and maximum values in one

window of xRE. To determine the optimal thresholds, the unfiltered REWARD

algorithm was tested on the QTDB with every combination of threshold

constants Tu and Tl . Thresholds that are too high result in missed peaks and

low sensitivity, whereas thresholds that are too low result in a low positive

predictive value (PPV). Thus, after a careful experimental validation, the

chosen pair of threshold constants are the ones that produce the highest

G-mean (98.61%) is Tu = 0.4 and Tl = 0.15.

25



Chapter 2. Personalized and ultra-low power multi-biosignal monitoring

False peaks often occur due to enlarged T-waves that exceed T hupper . To solve

this issue, it is necessary to employ the physiological characteristics of the

RR interval and the T-wave: The RR interval lies between 0.25-2s, while the T-

wave is typically wider than the QRS complex and occurs within 0.5 s after the

R peak. Accordingly, the peak selection procedure is described in Lines 5-18

of Algorithm 1. First, the algorithm computes the peak widths in Line 5 and

checks the corresponding RR interval. The peak width is the time interval

between the peak onset and offset, determined by T hupper and T hl ower . If

the RR interval is longer than 0.5 s, the current peak is kept, and if it is less than

0.25 s, the peak is discarded. Finally, if the RR interval is between 0.25-0.5s,

the widths of both peaks are compared to determine if both peaks are valid

or one is an enlarged T-wave. If one peak is more than 35% wider than the

other, the peak is discarded. This percentage value was chosen empirically

(cf. Section 2.2.3.1 for details about the used databases), considering the

physiology of the ECG waveform and taking into account the different types

of morphologies included in the database. The aforementioned approach is

robust against premature beats because whenever the condition on the RR

intervals is not satisfied, the algorithm checks the widths of the two peaks

and if they are within the same range, it keeps both peaks.

The real-time peak detection procedure is more adaptable and computation-

ally simple than the peak detection proposed in [50]. In particular, in the

original offline method, the entire signal was first normalized based on its

minimum and maximum values, the mean of the signal was subtracted, and

then a fixed threshold was applied. This normalization and mean subtraction

introduces significant computational complexity, since each function per-

forms at least one mathematical operation on every sample in the signal. In

contrast, the hysteresis-based procedure described in Algorithm 1 includes

peak detection thresholds, Thupper and Thlower, which are adapted based on

the average and maximum values of each peak detection window.
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2.2.3 Experimental Setup

2.2.3.1 Standard Databases and Metrics for Accuracy Evaluation

In order to quantify the detection accuracy of the algorithms, I use two public

databases provided by Physionet [77]. The first is the QT Database (QTDB)

[78], which consists of 105 two-channel ECG Holter recordings with a wide

variety of ECG morphologies, including various arrhythmias and sudden

death cases. Each 15-minute recording contains two leads, sampled at 250 Hz.

At least 30 beats of each recording have been manually annotated by an

expert to identify the locations of several ECG fiducial points. Out of the 3622

annotated beats in the database, a total of 3587 annotations include the R

peak.

Next, to test the algorithms’ robustness to noise, the Noise Stress Test

Database (NSTDB) [79] is used. The NSTDB consists of two clean 30-minute-

long signals of the MIT-BIH Arrhythmia Database (MITDB), to which five

varying amounts of noise were added such that the Signal-to-Noise Ratio

(SNR) decreased by 6 dB for each noise addition. The signals were originally

sampled at a frequency of 360 Hz and re-sampled to 250 Hz to maintain

consistency when testing the algorithms. The original R peak annotations

from the MITDB are used as ground-truth.

To assess the performance of the analyzed algorithms, the true positives (TP),

false positives (FP), and false negatives (FN) of the detected peaks were com-

puted using 150 ms of tolerance from the annotated peak [80]. Accordingly, I

show the performance metrics of sensitivity (SE = T P
T P+F N ), positive predictive

value (PPV = T P
T P+F P ), geometric mean (G-mean =p

SE ∗PPV ), and detec-

tion error rate (DER = F P+F N
T P+F N ). Finally, the mean error (m) and its standard

deviation (σ) are measured.

2.2.3.2 HW Platform for Real-Time Implementation

To measure the energy consumption of the state-of-the-art and proposed

algorithms and filters on resource-constrained wearable devices, they were

implemented on the Silicon Labs EFM32 Leopard Gecko 32-bit MCU [81].

This board contains a 48 MHz ARM Cortex-M3 CPU, 32 KiB of RAM, and
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256 KiB of flash memory. These HW specifications are similar to those found

on wearable ECG sensor nodes; the aforementioned INYU device uses the

same processor. Every algorithm runs using the -O3 compiler optimization

level, which is the best optimization tolerated by the EFM32. The board, along

with its development environment Simplicity Studio, includes an energy pro-

filer that measures the execution time, as well as the total energy consumed

by the algorithms within a specified execution window. The board is placed

into a sleep mode before and after each algorithm execution to ensure that

the energy consumption and execution time only reflect those of the algo-

rithm. The Simplicity Studio development environment also measures the

amount of memory, both RAM and Flash, consumed by each algorithm. Flash

memory permanently stores the variables and instructions of a program,

whereas RAM performs run-time operations on the variables it retrieves from

Flash.

The algorithms were tested independently on the EFM32 board, considering

12 s (3000 samples) of four different recordings of the QT Database, which

were chosen to contain varying degrees of R peak detection accuracy.

2.2.4 Experimental Results

2.2.4.1 Accuracy and Energy Impact of REWARD Real-Time Design
and Optimization

As REWARD was designed for use on real-time, ULP systems, several optimiza-

tions were performed to minimize its energy and memory footprints while

increasing its R peak detection accuracy. This involved multiple changes to

the original Rel-En preprocessing method proposed in [50], as well as our

design of a paired peak detection algorithm.

First, the original Rel-En preprocessing method was ported from MATLAB to

C, changed from 32-bit floating point to 16-bit integer arithmetic, and run on

the EFM32 using the -O3 optimization level. Then the Rel-En method was

optimized by removing the Hamming window function w( j ) in Equation (2.1),

as described in Section 2.2.2.1. Multiplying each value of the long window by

its corresponding Hamming window coefficient significantly increased the

number of operations performed per coefficient output. Consequently, the
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Figure 2.5 – The G-means of the four R peak detection algorithms with
their respective filters applied to the QTDB.

Hamming window function consumed 96 % of the total energy of REWARD.

This optimization only decreased the unfiltered REWARD G-mean by 0.13 %,

but dramatically reduced the energy consumption by more than three orders

of magnitude (1316x).

The original algorithm described in [50] was tested on the QTDB with an of-

fline 4-40 Hz BPF and produced a G-mean of 99.97 %. The final G-mean of the

new optimized, real-time REWARD algorithm with a real-time 0.3-40 Hz BPF

was only 1.28 % lower than that of the original algorithm.

2.2.4.2 R Peak Detection Accuracy

The accuracy results of the four algorithms are displayed in Table 2.1, which

lists the performance with no additional filters "NF", and with a MF or BPF

applied. Moreover, the algorithms’ performance in terms of G-mean is sum-

marized in Fig. 2.5. First, the benefit of the two filters was assessed. Due

to their design, using a BPF alongside the REWARD, WTD, DAD, and PT

algorithms did not significantly improve their accuracy; their G-means in-

creased by 0.08 % or less. This is because the REWARD preprocessing am-

plifies the peaks, and the hysteresis comparator counteracts the effects of

high-frequency noise. Similarly, PT and DAD use aggressive lowpass filters,

while their use of derivatives mitigates baseline drift. MF, on the other hand,

resulted in higher G-mean increases in the algorithms. The use of MF in-

creased PT’s G-mean by 11.5 %, that of REWARD by 0.70 %, and that of WTD

by 0.10 %. Overall, filtering does not significantly increase the accuracy of
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Table 2.1 – R peak detection results on the QT database on 3587 evaluated
beats

Methods

Filters REWARD PT [67] WTD [38] DAD [66]

TP
NF 3550 2694 3574 3445
MF 3563 3281 3581 3421
BPF 3546 2602 3576 3443

FP
NF 63 129 0 4
MF 26 32 0 3
BPF 53 209 0 2

FN
NF 37 833 13 142
MF 24 306 6 166
BPF 41 985 11 144

SE (%)
NF 98.97 76.38 99.64 96.04
MF 99.33 91.47 99.83 95.37
BPF 98.86 72.54 99.69 95.99

PPV (%)
NF 98.26 95.43 100.0 99.88
MF 99.28 99.03 100.0 99.91
BPF 98.53 92.56 100.0 99.94

G-mean (%)
NF 98.61 85.38 99.82 97.94
MF 99.30 95.18 99.92 97.62
BPF 98.69 81.94 99.85 97.94

DER (%)
NF 2.74 26.31 0.36 4.07
MF 1.38 9.34 0.17 4.71
BPF 2.58 31.45 0.31 4.07

m±σ(ms)
NF 9.5±4 100±9.6 11±3.8 11±3.3
MF 9.3±3.5 13±4.4 7.5±3.3 7.5±3.2
BPF 9.7±4.3 100±10 11±3.7 7.6±3.2
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these algorithms, but it is still advisable for medical applications in which

precise results are indispensable.

Analyzing the SE and PPV of the algorithms reveals that REWARD produced

high accuracy results both with and without filtering. In terms of SE, REWARD

paired with MF was only 0.50 % less than WTD with MF. In terms of PPV,

REWARD with MF was 0.72 % lower than WTD with and without filtering. The

four achieved high PPVs with MF: over 99.0 %. WTD produced the highest

G-mean, with the unfiltered G-means of REWARD and DAD trailing that of

WTD by only 1.2 % and 1.89 %, respectively. With MF applied, the REWARD

G-mean was only 0.62 % lower than that of WTD. Furthermore, REWARD

produced comparable accuracy results to both WTD and other state-of-the-

art algorithms, and MF further increased its performance [70].

The comparison of all these parameters gives a complete picture of the per-

formance of the four algorithms, in terms of correct detection of R peaks

but also maximum error rate. The performance results considering the use

of filters describe the robustness of the four algorithms and the additional

complexity introduced, which are two important factors to consider when

tackling the energy-accuracy trade-off problem.

2.2.4.3 Robustness to Noise Evaluation

REWARD, WTD, and DAD were tested on the NSTDB to determine how signal

quality degradation affects their R peak detection accuracy. In Fig. 2.6, the

SNR of each signal in the NSTDB is plotted against the corresponding G-mean

of each algorithm. For signal 118, G-mean of REWARD was an average of

3.77 % lower than that of DAD for the three highest SNRs, and an average of

7.67 % lower overall. REWARD performed poorly on signal 119, however, due

to overly high hysteresis thresholds for this particular ECG morphology. The

REWARD G-mean decreased fairly consistently with each 6 dB drop, while

the DAD and WTD G-means stayed nearly the same for SNRs between 12

and 24 dB and then dropped sharply. These results indicate the algorithms’

behavior in the presence of noise, which can occur in daily environments

using a wearable sensor.
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Figure 2.6 – The accuracy results of WTD, DAD, and REWARD algo-
rithms with MF and BPF on the NSTSB signals with varying
SNRs.

2.2.4.4 Energy Consumption and Memory Footprint Assessment

The energy metrics of the algorithms and filters on the four 12-second-long

(3000 samples) QTDB signals, when run on the EFM32 MCU using -O3 com-

piler optimization, are averaged and presented in Table 2.2. First, the table

displays the computational burden, which is the total code execution time di-

vided by the total ECG signal acquisition time (i.e., 12 s). This metric indicates

what percentage of the ECG sampling period (i.e., 4 ms) is spent performing

the algorithm’s functions. The table also shows the total energy that it takes to

process the 12 s. REWARD consumed the least energy: only 916µJ, which cor-

responds to 305 nJ per processed sample. DAD and WTD consumed 2.72×
and 3.6× more energy than REWARD, respectively. Furthermore, when the

code was run using no compiler optimizations (-O0), DAD consumed 2.29×
more energy than REWARD, indicating that increased optimization levels

lead to a comparatively better performance for REWARD. PT consumed over

98× as much energy as REWARD.

Fig. 2.7 depicts the energy consumed by each algorithm when it processes

12 s of data from the QTDB, when both filters are applied. It shows that three
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Figure 2.7 – The energy consumed by four R peak detection algorithms
with and without filters on 12 s of samples from the QTDB.

of the four algorithms (REWARD, WTD, and DAD) had comparable energy

consumptions, while PT consumed much more.

Table 2.2 also displays the memory footprints of the algorithms and filters. RE-

WARD consumed by far the least amount of RAM; 1.51× less than DAD. WTD

consumed 3.96× more RAM than REWARD, while PT consumed nearly all of

the available 32 KiB of RAM. REWARD and DAD consumed less Flash than the

other algorithms, followed by PT. Finally, WTD consumed 1.89× more Flash

than REWARD. Overall, REWARD and DAD were the most memory-efficient

algorithms.

2.2.4.5 Energy and Memory vs Accuracy Analysis

Fig. 2.8 displays the energy and RAM consumption of each algorithm-filter

combination, except those of PT, plotted against their G-means from Table 2.1.

This figure shows that without filters, REWARD achieves the lowest energy

and RAM footprint, while WTD has the highest accuracy but also the largest

amount of RAM and energy consumption. It also shows that applying a MF

to REWARD increases both the accuracy and energy consumption, whereas

applying filters to WTD and DAD increases their energy consumption without

a significant impact on their accuracies.
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Table 2.2 – Energy profile and memory footprint of R peak Detection
Algorithms and Filters

Computational
burden (%)

Total
Energy (mJ)

RAM
(KiB)

Flash
(KiB)

Filtering
MF 0.95 5.52 1.88 15.8

BPF 0.29 1.92 0.228 7.50

R peak
detection

PT 16.4 90.6 28.6 16.7

WTD 0.56 3.30 6.26 23.10

DAD 0.37 2.49 2.34 8.51

REWARD 0.16 0.916 1.58 12.20

REWARD has the lowest energy consumption and a small memory footprint,

but its current implementation is less robust than for WTD and DAD. WTD

produces the most accurate, robust results, and consumes little energy, but

its memory footprint is significantly higher than that of DAD and REWARD.

Similarly, DAD exhibits the best robustness to noise and lowest Flash memory

consumption, but its SE when tested on the QTDB is low compared to the

WTD and REWARD, which implies that it does not correctly identify R peaks

of various ECG morphologies present in the QTDB. Finally, for the filters,

Table 2.2 shows that BPF is more energy-efficient than MF, using 65 % less

energy, whereas Table 2.1 shows that MF leads to higher G-means. Though the

use of MF only slightly improved the accuracy results of the four algorithms,

it should still be considered for processing noisier signals from wearable

sensors.

While each algorithm’s specific computational burden and energy consump-

tion may vary depending on the selected HW, testing all four algorithms on

the same ARM Cortex-M3-based platform provides a comparative analysis

of the algorithms relative to each other. This assessment enables wearable

technology designers to select the algorithm and filter that fits the accuracy,

energy consumption, and memory footprint constraints of their device. All

the options and results presented in Table 2.2 in terms of memory footprint

and computational burden fit in any state-of-the-art microcontrollers [82–85].
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Figure 2.8 – The energy and RAM consumed by the R peak detection
algorithms with their respective filters versus their accuracies
tested on the QTDB.

Moreover, the results indicate that the new optimized REWARD algorithm

is the optimal choice for wearable medical devices in which on-board ma-

chine learning is necessary, since its low energy consumption and memory

footprint leave room for additional processing capabilities. For example,

using REWARD for R peak detection would leave RAM available for complex

cardiological analysis, such as the HR variability analysis algorithm described

in [86] (which consumes 8 KiB of RAM), and the atrial fibrillation detection

algorithm in [42] (which uses 2 KiB of RAM). The implementation of such

complex analyses on-board enables real-time feedback to the user in case of

complex pathologies.

2.3 Ultra-Low Power Heart Rate Estimation Using

a Wearable Photoplethysmographic System
On top of ECG analysis and R peak detection, another relevant biosignal for

wellness monitoring is the PPG waveform. This signal is acquired using an

optical sensor that illuminates the skin and collects the light reflected by

the tissues. The changes in blood volume within the vessels represent the

subject pulse and affect the light absorbed so that the pulse is visible in the
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PPG waveform. PPG analysis is very useful for blood pressure detection [87],

oxygen saturation, and HR estimation [88] in various physical conditions.

However, the PPG signal is strongly affected by MAs, which must be removed

for accurate vital parameters estimation. In this section, I present a new

approach for HR estimation from a PPG waveform during intense physical

exercise. This method uses FFT analysis without signal reconstruction.

First, I describe the background of PPG-based WSNs (c.f. Section 2.3.1).

Then, I describe the complete method (c.f. Section 2.3.2) and subsequent

optimizations for resource-constrained embedded devices (c.f. Section 2.3.3).

Then, I present the accuracy of the algorithm based on the database described

in Section 2.3.4. Finally, I measure the execution time and estimate the energy

consumption on a real-life device and present the results in Section 2.3.5.

2.3.1 Background and Related Work

Wearable systems based on PPG apply a non-invasive, low-cost, optical tech-

nique, which detects the blood volume changes in vessels. They contain

a sensor that consists of a LED illuminating the skin and a photodetector

receiving the light reflected from the tissues. The alternating current com-

ponent of the PPG waveform gives information about the cardiac rhythm,

therefore, considering the PPG frequency spectrum, it is possible to estimate

the HR within its standard range between 0.67 Hz and 3.67 Hz, i.e., 40 BPM

and 220 BPM. This range corresponds to the standard values of HR from a

rest condition to an intense physical exercise.

During exercises and physical activities, the PPG signal can be affected by

strong MAs in the same range of frequencies, which must be removed to

make accurate HR estimation. There are commercial wrist-based devices

for fitness applying algorithms for MAs removal, such as Mio Alpha 2 [89],

which presents a high accuracy but a considerable variation from subject to

subject [90]. Additionally, different research studies present various methods

for estimating HR in corrupted PPG signals. One of the common methods

used is the periodic moving average filter, based on the quasi-periodicity of

the PPG signal [52]. This filter segments the signal into periods and resamples

each period. However, in-band noise occurs when the spectra of the MAs and
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Figure 2.9 – PPG signals and corresponding spectra at a sampling fre-
quency of 125 Hz. (a) represents a PPG signal of a subject
at rest and (b) its single-sided amplitude spectrum. (c) rep-
resents a PPG signal while the subject is running with strong
MAs and (d) the corresponding spectrum.
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the PPG one overlap. Another technique is using acceleration-based adaptive

filters. They require a reference signal to minimize the mean squared error

between the filter output and the reference [53]. One relevant framework for

motion removal from the PPG signal is TROIKA [54], which claims that the

three steps of the method are necessary for this purpose. The method applies

a signal decomposition, which partially removes MAs frequency components

and reconstructs the noise-free signal. In addition, it applies a sparse sig-

nal reconstruction for high-resolution spectrum estimation, which requires

solving an optimization problem to improve performance. The last step is a

spectral peak tracking with verification, which analyzes the PPG spectrum to

detect the HR as a peak and verifying it by looking at previous windows. The

method shows an average absolute error (see Section 2.3.4) for HR estimation

of 2.34 BPM, with a standard deviation of 0.82 BPM. Another work was pro-

posed by the same authors [55], but it is not designed for embedded devices

as we target in this contribution.

2.3.2 Proposed Algorithm for HR Estimation

During physical activity, the PPG signal is strongly affected by MAs. In fact,

periodical MAs appear in the PPG frequency spectrum in addition to the

pulse rate. Fig. 2.9 shows an example of PPG signals of a subject at rest (a)

and during running (c), and the corresponding single-sided spectra obtained

by applying the FFT (b, d). In the spectrum (d), the peak due to the MAs is

highlighted and shows a high amplitude compared to the peak corresponding

to the HR.

A simple method to detect and remove MAs is adopting a 3-axis accelerometer.

This gives information about proper acceleration in a 3-axis reference system

due to the movement of the body part where the system is worn. Moreover,

the selection of the wavelength of the LED employed is relevant to decrease

MAs in the PPG signal. The green light (530 nm) was shown to be more

suitable than red, blue, and near-infrared light for monitoring the HR in daily

life due to its relative freedom from MAs compared to other wavelengths [91,

92]. Therefore, I use a PPG system with a green LED in reflectance mode,

since the chosen measurement position is the upper arm or the wrist.
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Figure 2.10 – Block diagram of the main steps of the proposed algorithm

The developed algorithm is divided into three main steps, as the block dia-

gram in Fig. 2.10 shows, which are described in detail in the following sections.

2.3.2.1 Frequency Analysis and Peak Detection

The first step of the method is a frequency analysis based on the FFT and

subsequent peak detection. Searching for the pulse rate only within the

FFT spectrum and not using additional complex signal decomposition and

reconstruction can reduce significantly the computational time. Since the

PPG signal is non-stationary and quasi-periodic, a Fourier series analysis is

not directly applicable. It can only be applied on a cycle-by-cycle basis [93].

Therefore, I have chosen the use of the FFT applied to short windows of data

(8 s) sliding by 1 s per iteration, assuming that the main frequency is stable.

Before computing the FFT, a band-pass FIR filter is applied to the PPG signal

to remove low and high frequencies with cut-off values set at 0.5 Hz and

10 Hz, which account for the full range of frequencies needed. Next, the

algorithm computes the FFT and the corresponding spectrum for both PPG

and accelerometer signals, within the range of frequencies needed to find

the pulse rate and MAs (40 - 220 BPM). In order to lower the FFT resolution,

the actual window length of the input signal to the FFT is increased with a

7:1 ratio of zero-padding from the initial 8-second window of data. Given a

sampling frequency of 125 Hz and a window of 8 s (1024 samples), the actual

window length is set at 8192 samples so that the resolution is 125
8192 = 0.0153 Hz.

The window length is set as a power of two because it is faster to calculate [94].

The pulse rate and MAs are represented as peaks within the FFT spectrum

of the PPG. Similarly, the MAs are peaks within the FFT spectrum of the

accelerometer signals within the same range. The method detects k biggest
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(a) PPG spectrum (b) Accelerometer spectrum

Figure 2.11 – In the PPG spectrum on the right, the k biggest peaks
are chosen since the HR can be very low compared to the
MAs. In the accelerometer spectrum (one for each axis), a
threshold based on the maximum peak is applied to find the
peak corresponding to the MAs
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peaks within the PPG spectrum, as shown in Fig. 2.11a. In fact, in the PPG

spectrum the pulse rate can correspond to a low peak compared to the MAs,

hence, a higher number of peaks must be kept to account for its amplitude

variability within the spectrum. In the accelerometer spectrum (Fig. 2.11b),

the peaks related to the MAs to keep are chosen based on a threshold relative

to the maximum peak. The peaks detected from the spectrum of each axis

of the accelerometer are used as a reference to remove the MAs in the PPG

spectrum, as well as extract the correct peak corresponding to the pulse rate.

A complete analysis of what happens when the HR is synchronized with the

cadence is provided later in this chapter.

2.3.2.2 Motion Artifacts Removal

To remove the MAs from the PPG spectrum and extract the HR, the algorithm

takes into account different events occurring in the signals. As the PPG

spectrum is a superimposition of different frequencies due to the pulse rate

and MAs, the frequency at which the movement occurs is not exactly the

same as the one appearing in the accelerometer spectrum. Therefore, in

order to detect MAs in the PPG spectrum, the algorithm sets a tolerance for

the frequency of the movement occurring in the PPG spectrum. This interval

depends on the frequency in the accelerometer spectrum, and it is set at ±2 %

from it. Fig. 2.12 shows the spectra of both PPG and X-axis accelerometer.

The peak highlighted in the figure, with value 160.2, is removed because it is

lower than 159.3∗1.02 ' 162.49, as the condition requires.

The main peak of the PPG could sometimes correspond to the horizontal

movement of the arm or the wrist, and it must be removed. In fact, if we take

a 3-axis reference system on the upper arm or the wrist and consider the Z

axis as the vertical movement, the frequency along Z corresponds to the step

frequency, unlike the horizontal one, which corresponds to half of the step

frequency, namely, to complete an arm swing two footsteps are necessary [95].

The step frequencies range reached during this activity starts from 2.2 Hz (fast

walking, corresponding to 132 BPM) to 3.2 Hz (190 BPM) or even more, as

extrapolation of previous studies [96]. While running, the HR can reach

values from 70 % to 90 % of the maximum HR (from 105 BPM to 140 BPM

as minimum value) [97], far from the maximum frequency of horizontal
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Figure 2.12 – Peak recognition in PPG spectrum when it is in the range
of one of the accelerometer peaks. (a) PPG spectrum. (b)
Accelerometer spectrum.

movement considered. Therefore, if there is a peak in the accelerometer at

half of the frequency of the maximum considered (190 BPM, that is 95 BPM),

it is removed from the PPG peaks.

If the pulse rate gets closer to the step frequency, there are two main strategies

that the algorithm follows corresponding to two conditions. One strategy is

used for discerning the peak corresponding to the HR that is close to the MAs,

though with a low amplitude. Another strategy deals with the event where the

HR is merged with the accelerometer peak. The first strategy mainly checks

the neighbourhood of the dominant peak and the distance between this peak

and each of the other peaks within the PPG spectrum. If one of the peaks

of the neighbourhood is close to the dominant peak (less than 10 BPM) and

tall enough (20 % of the maximum amplitude), it is likely that it represents

the real HR while the dominant peak represents the step frequency and it is

removed. The parameters of distance and threshold on the amplitude are

set depending on the resolution of the FFT and the corresponding spectrum.

The second strategy is used when close peaks within the neighbourhood are

not detected. In this case, the HR value is likely merged with the PPG main

peak. To detect it, the algorithm computes the 2nd order derivative of the
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(a) PPG spectrum (b) 2nd derivative

Figure 2.13 – Sometimes the HR can be merged with the MAs peak since
their values are close to each other. To discern them, the
method checks for peaks in the 2nd derivative that represent
the inflection point in the PPG spectrum, namely, the HR

spectrum and then finds the peaks. As shown in Fig. 2.13, the potential HR in

the PPG spectrum is represented by an inflection point within the MAs peak.

In the 2nd derivative signal, the MAs corresponds to a zero-crossing while

the potential HR is a maximum. Therefore, within the PPG spectrum, the

MAs frequency point is removed while the inflection point is kept as potential

HR. However, if there is only one discernible peak in the PPG spectrum that

corresponds to MAs frequency, the peak is kept as potential HR as it is highly

likely that the HR is synchronized with the cadence (i.e., step frequency).

After removing all the MAs, the algorithm checks that the remaining peaks,

which are potential HR values (only the biggest two are kept), do not vary

significantly compared to the previous five HR values. The maximum varia-

tion between the HR from one window to another is set to 5 BPM. This value

assumes that in one second the HR does not vary more than 5 BPM. Therefore,

the maximum variation from the 5th previous windows is 25 BPM, from the

4th 20 BPM, etc.
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2.3.2.3 Adjustment and Updating of the HR Value

Algorithm 2 shows the third and final step of my proposed method. If the

PPG spectrum main peak exceeds the maximum range of variation of HR set

for the previous five windows ( f l ag HROK = 0), then the peak needs to be

adjusted. This can happen when the acquired PPG signal is noisy compared

to the accelerometer one. Therefore, the peaks found in the PPG spectrum

are mainly MAs related. This problem can lead to an accumulated error,

Algorithm 2 Adjusting and updating HR considering previous window

1: if f l ag HROK = 0 then
2: HRnew = HRol d + si g n(mai nPeakppg −HRol d )×2
3: else
4: if l eng thPeaksPPG > 0 then
5: di sttoLastPeak = 1000
6: for i = 0 to leng thPeaksPPG do
7: di st = di st (pPPG (i ), HRol d )
8: if pPPG (i ) 6= 0 & di st ≤ di sttoLastPeak then
9: HRnew = HRol d + si g n(pPPG (i )−HRol d )×mi n(di st ,5)

10: di sttoLastPeak = di st
11: end if
12: end for
13: end if
14: end if
15: if leng thPeaksPPG > 0 then
16: HR = HRnew

17: HRol d = HRnew

18: else
19: HR = HRol d

20: end if
21: hrpr ev (pr ) = HR
22: . This code is executed after removing MAs and checking five previous

windows

therefore, the algorithm decreases the maximum variation of the current

HR from the previous window to 2 BPM. The direction of the variation is

chosen as the position of the current PPG main peak from the previous HR

value (si g n(mai nPeakppg −HRol d )). The HR value in the current window
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is updated as shown in the formula in Line 2, where HRol d is the HR value in

the previous window.

If no error occurs, the algorithm checks the distance between every remaining

peak and the previous HR. The closest one is chosen as the suitable HR value.

In this case, the current window is updated as shown in the formula at Line 9,

where di st is the distance of every PPG peak from the old HR. If the distance

is lower than 5 BPM, the algorithm updates the value using di st , otherwise it

updates the HR by 5 BPM. Finally, if the algorithm does not detect any peaks,

it assigns the value of the previous window as the current HR, as shown in

Line 19.

2.3.3 Optimizations for Execution in Wearable Sensor

Nodes

To better execute the presented algorithm on WSNs, I present two main

optimizations. The first one is the use of integer arithmetic to lower the

execution time of the FFT routine and to generally reduce the memory space

allocated for the computation. In this contribution, the main portion of

computation time gained is related to the FFT routine. Therefore, I chose

to use a fixed-point short integer FFT [98] faster than the one using floating-

points. As a second optimization, I downsampled the acquired data without

losing accuracy and resolution of the FFT. In fact, the device used in this

contribution contains a PPG sensor and a 3-axis accelerometer sampling

data at 125 Hz and 250 Hz and an ULP 32-bit MCU with a 48 KiB RAM. Let us

compute the initial memory footprint of the window of data and the sliding

window used. First, to have the same sampling frequency for both PPG

and accelerometer to compare their spectrum with the same resolution, I

downsample the accelerometer to 125 Hz. Then, I compute the memory

footprint of both PPG and accelerometer data considering their size in bytes.

The final memory footprint of the window of data used by the FFT is:

memwi nd = 2∗1024∗4+2∗3∗1024∗2 ' 20KiB (2.3)
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where 1024 represents the length of the window buffer of 8,192 s of data

(power of two used for the speed of the FFT) at the specified sampling fre-

quency, in samples. The value is multiplied by two because I use a circular

buffer to update the window and a sorted buffer as actual input to the algo-

rithm. The first addend represents the PPG data, which consists of 22-bits

per sample; therefore, we store integer values, each occupying four bytes of

memory. The second addend represents the 3-axis accelerometer data, short

integer values, each occupying two bytes of memory. The memory footprint

of the sliding window of data used for updating the HR value is:

memsl i de = 2∗128∗4+2∗3∗128∗2 ' 2.5KiB (2.4)

where 128 represents the length of the sliding buffer of 1,024 s of data at the

specified sampling frequency, in samples. The value is multiplied by two

because we use two buffers in the interrupt routine in order to execute the

algorithm routine while the signal is sampled.

Since the memory portion stored at 125 Hz is almost half of the memory

available, I reduce the sampling frequency to 31.25 Hz that, according to

the Nyquist-Shannon sampling theorem, can represent a bandwidth of F s
2 ,

that is 16 Hz, greater than the maximum frequency of 3.67 Hz considered

in the algorithm. With this second optimization, I manage to reduce the

memory footprint of approximately 25 % using 31.25 Hz compared to 125 Hz

of sampling rate, that is 5.8 KiB.

2.3.4 Experimental Setup

The first validation of the algorithm was conducted in Matlab R2014b and

involved twelve datasets provided by the 2015 IEEE Signal Processing Cup [99].

They were recorded when subjects performed various physical exercises.

Two-channel PPG signal and 3-axis accelerometer were recorded from the

subject’s wrist and one-channel ECG from the subject’s chest as ground-truth

of the HR, each sampled at 125 Hz. As the ECG-based HR is updated every 2 s,

the output of the algorithm is also plotted every 2 s, even if computed every
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second. I used only one of the two PPG channels and the 3-axis accelerometer

data. The algorithm is applied to signals sampled at 125 Hz and downsampled

at 31.25 Hz, on a data window of 8 s. For the validation, the output of the

algorithm is plotted compared to the ECG ground-truth value. Two types

of analysis are conducted to show the behaviour of the algorithm: Average

Absolute Error (AAE) and median value.

A AE = 1

N
×∑ | HRal g (i )−HRtr ue (i ) | (2.5)

where N is the number of window steps considered, HRal g (i ) is the output

of the algorithm at each step and HRtr ue (i ) is the ground-truth value from

the ECG. The AAE is used in order to compare it with the existing algorithms,

while the median shows the difference of the two values not biased by small

or big values. It is computed considering the values estimated and the ECG

after 15 steps, that is 30 s, giving the algorithm time to reach stability.

The on-board processing was implemented in C, using the device mentioned

in Section 2.3.3. The sampling of PPG and accelerometer signals were sim-

ulated storing static arrays of 30 s of data for the twelve subjects considered

and filling the buffers in the interrupt routine. The execution time of the

algorithm routine is computed on one of the signals on a 30 s window of

data. The power consumption of the device is computed considering the

duty cycle of the PPG sensor for both receiving and transmission modes, the

accelerometer, the MCU active and sleep mode, and the execution of the

proposed HR estimation algorithm.

2.3.5 Results and Validation

Table 2.3 shows the AAE of the twelve subjects and the median value for both

sampling frequencies mentioned in Section 2.3.4. It also shows the average

and standard deviation of the AAE and median value for the twelve subjects.

Fig. 2.14a and Fig. 2.14b show the results for two of the twelve subjects, the

best and worst case, for a sampling frequency of 125 Hz. As shown in Ta-
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Table 2.3 – Analysis on twelve subjects of SPC 2015 - AAE and median
in BPM for signals sampled at 125 Hz and 32.15 Hz

Analysis in BPM

125 Hz 31.25 Hz
AAE Median AAE Median

S1 1.62 0.91 1.87 1.40
S2 1.42 0.71 2.97 2.19
S3 1.26 0.65 2.08 1.82
S4 1.40 0.49 2.53 1.73
S5 0.61 0.39 1.56 1.48
S6 1.55 0.60 2.00 1.30
S7 0.47 0.45 1.24 1.18
S8 0.43 0.39 2.10 1.7
S9 0.36 0.31 1.43 1.23
S10 3.78 2.03 4.99 3.04
S11 1.14 0.80 1.49 1.31
S12 1.16 0.77 2.60 2.20
MEAN 1.27 0.7 2.24 1.71
STD 0.91 0.46 1.01 0.54
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Figure 2.14 – Heart rate estimated compared to ECG true HR for best
case subject (a) and worst case subject (b), for a sampling
frequency of 125 Hz
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ble 2.3, at 125 Hz, the AAE for the twelve subjects is 1.27 BPM ± 0.91 BPM,

which compared to the TROIKA firmware (2.34 BPM, c.f. section 2.3.1) is

1 BPM lower and the maximum value (1.27+ 0.91 = 2.18 BPM) of AAE is

0.16 BPM still lower than the TROIKA average result. Eleven subjects out

of twelve show an AAE lower than 1.7 BPM. In contrast, an outlier shows

an AAE of 3.78 BPM, which compared to the TROIKA is only 1 BPM more,

acceptable considering the advantages of the method. The outlier is shown

in Fig. 2.14b: after reaching stability the algorithm follows the ground-truth

pretty well, even in the worst case subject. The best subject is presented in

Fig. 2.14a, which has an AAE of 0.36 BPM. The median value in the worst

case is 2.03 BPM and in the best case is 0.31 BPM, showing that the unbiased

difference between the two values is very low. At 31.25 Hz, the AAE for the

twelve subjects is 2.24 BPM ± 1.01 BPM, 1 BPM more than the one at 125 Hz,

because of the resampling precision. The value range is still comparable to

the performance of the TROIKA framework. The median value is lower than

the AAE because it is not biased by small or big values. The outlier has an

AAE higher than the mean value, but it is still acceptable considering the ad-

vantages for real-time processing. The results show clearly that it is possible

to avoid signal reconstruction and focus directly on the spectra of the PPG

and accelerometer and relative peaks, obtaining high performance in terms

of accuracy.

Therefore, the method is suitable to be implemented on embedded systems

and Table 2.4 shows the absolute error between the post-processing results

and the same data streamed on an actual wearable device. The average error

has a mean value of 0.42 BPM which is due to the approximation precision

for using integer arithmetic implementation on device, while in Matlab the

HR is computed as a floating-point value.

I computed the execution time of the algorithm routine, obtaining an average

of 226 ms per second, which is the time between two outputs of the algorithm.

Table 2.5 shows the total average current computed considered the features

mentioned in Section 2.3.4 to retrieve the total amount of power consumed

while the device is fully working.
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Table 2.4 – Absolute Error (AE) between the HR value computed in post-
processing and the one computed in the embedded device
considering a sampling frequency of 31.25 Hz

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

AE

(BPM)
0.41 0.37 0.3 0.2 0.26 0.27 0.36 0.24 0.31 0.40 0.24 1.72

Table 2.5 – Average current consumed by HW components and algorithm
processing with a sampling frequency of 31.25 Hz

Current (mA) Time (%s)
Average current

(mA)

PPG Tx On-Rx On 1.225 10% 0.123

PPG Tx Off-Rx On 0.6 10% 0.06

Accelerometer 0.5 100% 0.5

Baseline current 0.045 100% 0.045

HR processing 10.5 23% 2.415

Sleep mode 0.018 77% 0.014

Total 3.16
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Considering the battery rating of 710 mAh the device can successfully achieve

a battery lifetime of 9.37 days.

2.4 Real-Time Personalized Atrial Fibrillation

Prediction on Single-Core Wearable Sensors
After describing a set of algorithmic optimizations for vital parameters esti-

mation in multiple biosignals, the next step in achieving an optimal energy-

accuracy trade-off in remote wellness monitoring is to focus on relevant

pathology detection through personalized methods. As described in Section

1, within NCDs, CVDs are the major cause of death globally. One CVD, the PAF,

a type of arrhythmia, is one of the key causes of stroke and heart failure [56].

In this section, I propose a new online PAF prediction model targeting ULP

single-core WSNs, which considers the specific features of the individuals and

their condition. First, I describe the background of the pathology (c.f. Sec-

tion 2.4.1) and a preliminary analysis of how this patient-specific algorithmic

optimization achieves high accuracy compared to state-of-the-art algorithms

that consider inter-patient variability (c.f. Section 2.4.2). Then, I present the

optimization for ULP single-core WSNs and show how the method also re-

duces energy consumption and processing execution time (c.f. Section 2.4.3

and Section 2.4.5). Finally, I describe the scalable battery lifetime achieved by

implementing the method, personalized to the characteristics of each patient,

on a real-life ULP ECG monitoring device, INYU [24], (c.f. Section 2.4.5).

2.4.1 Background and Motivation

Wearable sensors allow monitoring specific characteristics of a pathology by

measuring bio-signals with non-invasive sensors, e.g., ECG and electroen-

cephalography (EEG). Therefore, they can enable accurate detection and

prediction of major NCDs and allow people to self-assess their health sta-

tus [20–23,25,26]. Despite recent advances in wearable technologies, essential

challenges exist to exploit such systems fully. In particular, energy efficiency

and scalability (i.e., according to the specific pathology characteristics of each

patient) are fundamental factors to take into account in any wearable sensor

design [100] for personalized remote long-term health monitoring [23–28]. In
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the context of PAF prediction, I propose a new online personalized method

targeting single-core WSNs, which scales the computation based on the char-

acteristics of each patient.

AF is a type of arrhythmia, defined as a quivering or irregular heartbeat [56].

The majority of patients suffer from an initial paroxysmal form (PAF), which

progresses into a persistent or permanent arrhythmia. Moreover, a significant

proportion of patients affected by PAF are initially asymptomatic, and PAF

events may be undiagnosed, risking complications, such as stroke and heart

failure [56]. According to the European Society of Cardiology (ESC) 2016

guidelines [56] for the management of AF, the aim is to reduce the frequency

of episodes, prevent complications and alleviate symptoms, in the case of PAF.

Furthermore, PAF patients may be suitable for domiciliary self-treatment,

using the so-called “pill in the pocket” approach [56], that is, a single oral

dose pharmacological cardioversion. Therefore, continuous personalized

monitoring of PAF patients by predicting a recent-onset episode may shorten

the initiation of the treatment, as well as the time to resolution of symptoms.

Additionally, this prediction is particularly relevant for treating asymptomatic

episodes, which remain unseen otherwise.

Different studies describe the prediction of PAF onset, by analysing changes

in the surface ECG from few minutes to few hours before the onset. The clas-

sical approach is to consider premature atrial complexes (PACs) and P-wave

variability [101, 102] in the 30 minutes prior to the onset. PACs are premature

beats originating in the atria from ectopic pacemaking tissue active before

the sinoatrial node. Zong et al. [101] detect the PACs and predict the PAF

onset based on a measurement of PAC rate weighted for different windows in

the signal, favouring the closest to the onset. Schreier et al. [102] analyse the

P-wave morphology of both regular and premature beats. Then, they extract

the probability that a specific degree of P-wave variability is associated with a

PAF episode. Other approaches consider the P-wave non-linear dynamics to

achieve higher accuracy in the prediction two hours prior to the onset [59].

However, AF is caused by heterogeneous mechanisms in different patients,

and the therapeutic strategies should derive from the individual conditions.

Different works report patient-specific modelling, in particular for ECG signal

analysis. Indeed, two works report automatic patient-specific classification
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Figure 2.15 – Block diagram of the personalized PAF prediction. On top
(a), the blocks of the configuration and training phase. At
the bottom (b), the real-time prediction process executed
on a wearable sensor.

of normal or premature beats considering swarm optimization feature selec-

tion [103, 104]. In order to draw a comparison with my method, I report two

key cases of the recent literature [59, 105], describing offline methodologies,

which include inter-patient variability and achieve higher accuracy compared

to other methods [101, 106, 107]. I apply my method on the same dataset

used in these works, the PAF prediction challenge [108], which is described in

detail in Section 3.5.3. In this case, the prediction of a PAF onset is defined as

a classification method of a 30-minute ECG excerpt as one of the two labeled

classes, far from or close to the onset. Based on this definition, I compare the

accuracy results of the online design with the two state-of-the-art methods

and my preliminary work on an offline PAF prediction [72].

2.4.2 Personalized PAF Prediction Method for Long-Term

Monitoring on Wearable Sensors

The personalized PAF prediction approach presented in this section is de-

signed to be used for long-term monitoring. First, the method trains a per-

sonalized model on a set of ECG signals previously acquired from a single

patient. Then, the model is applied to a newly acquired ECG signal from the

same patient, producing an output at least every 15 s to 45 s.
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Fig. 2.15 shows the methodology for a single patient. In Fig. 2.15a, I show the

offline method running on a local server, which performs the personalized

analysis on previously acquired ECG data for the target patient. These data

need to include one excerpt of ECG signal before the onset of a PAF event

(i.e, “Close to PAF”). Additionally, the approach needs one excerpt of normal

sinus ECG signal at least 45 min far from any event (i.e., “Far from PAF”). The

data is split into separated training and test set for each patient. I choose a

training window of at least 350 R peaks for both excerpts, which corresponds

to 3–9 min considering a HR varying from 40 BPM to 110 BPM, as done in [72].

For the excerpt “Close to PAF”, the training window is extracted right before

the PAF onset, while the test window starts from 30 minutes away and stops

before the training window starts. Moreover, to avoid overfitting and ensure

robustness and generalization of the training model, the approach includes a

learning curve analysis [109] on the number of training samples and a 5-fold

cross-validation (CV).

Referring to Fig. 2.15a, the ECG signals are, first, preprocessed by filtering

and delineating their main waves, in Step 1. Then, the methodology extracts

features from small windows of consecutive beats to capture short events

that can happen before a PAF onset (Step 2). The features are the input to

Step 3, called “personalized configuration and training”. The training is done

using a linear classifier based on support vector machines (SVMs) and a

5-fold CV. The output of the offline process is a subset of optimal features

specific to the patient and the corresponding classification model. After

the personalized configuration parameters, the selected features and the

classification model are loaded in the embedded device, which runs the

automatic PAF prediction, shown in Fig. 2.15b. Once the device acquires a

small window of consecutive beats of ECG signal, the algorithm starts the

preprocessing (Step 1) and extraction of a reduced set of features personalized

to the patient (Step 2). Finally, using a linear SVM classification model (Step 3),

the algorithm performs an online PAF prediction producing a binary output,

as shown in Step 4. Additionally, the preprocessing and feature extraction

steps are suitable for parallelization (cf. Section 3.5.1).
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Figure 2.16 – Detection of the onset (offset) of the P-wave based on the
minimum Euclidean distance between the P-wave and a
triangle wave with a slope depending on the peak and the
onset (offset).

2.4.2.1 Preprocessing -- Filtering and Delineation

In both phases of the methodology, the first step is preprocessing the signal.

The common step to both phases is filtering, which consists of removing the

baseline wandering by applying a MF. I use an implementation proposed by

Sun et al. [74] and optimized for an embedded system by Braojos et al. [71].

The MF removes the peaks and valleys of the signal with operations related to

the shape or morphology of the signal features. Then, the signal baseline is

finally subtracted from the original signal.

For the delineation of both offline and online real-time processing, I use

sequentially three methods. First, I use a real-time implementation of the WT

delineation to detect the R peak [38, 68] for a design on standard platforms.

This method uses the WT of a signal, which is proportional to its derivative

with a smoothing impulse response at different scales. By applying the WT to

the signal, the R peaks are detected as the zero-crossings that are common

55



Chapter 2. Personalized and ultra-low power multi-biosignal monitoring

onset offset

P

R

S

time

am
p
lit
u
d
e

onset offset

P

R

S

time

am
p
lit
u
d
e

T T

Q Q

Figure 2.17 – Feature extraction on a small window of two consecutive
beats.

across scales 21 through 24 (where most of the ECG signal energy lies [68]).

These zero-crossings must be preceded by a positive peak (i.e., increase in the

original ECG main wave) and followed by a negative peak (i.e., decrease in the

original ECG main wave) to be detected. Moreover, for the single-core design,

I consider a more lightweight R peak detection, called REWARD [41], which

is more suitable for personalization (and parallelization, c.f. Section 3.4.1).

REWARD includes two main steps: signal enhancement and R peak detec-

tion. The signal enhancement method is called Rel-En, and it uses the signal

energy to amplify dominant peaks. The R peak detection step generates a

set of adaptive hysteresis thresholds to isolate the highly dominant peaks

and performs a subsequent check on their widths to eliminate false positives.

WT and REWARD are described extensively in Section 2.2 and compared in

terms of accuracy and energy consumption running on the same platform.

Second, I apply a method described in my previous work [72] to detect the

onset and offset of the P wave by comparing it with a triangular wave start-

ing at the P peak and finishing at the isoelectric line, as shown in Fig. 2.16.

Finally, the third method delineates the S wave as the minimum point after

the R peak, within the standard physiological duration of the QRS complex

(approximately 80 ms to 100 ms).
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2.4.2.2 Personalized Feature Extraction

The features considered in the prediction algorithm depend directly on the

fiducial points delineated, as shown in Fig. 2.17. Specifically, I consider the

distance in time from the main fiducial points analyzed (P wave onset, peak

and offset, and S) to the R peak within the same beat, and beat-to-beat RR

intervals if the fiducial point is the R peak itself. Additionally, I consider the

signal amplitude of the five fiducial points related to the amplitude of the

closest R peak. These features were chosen since they can be affected by the

changes that occur before a PAF event, as depicted in Fig. 2.18 on one ECG

segment extracted from the dataset analyzed (c.f. Section 2.4.4.1). Moreover,

S amplitude changes

P wave? P wave? P wave?P wave?

R amplitude and RR interval changesRR1 RR2

Figure 2.18 – Example of ECG before a PAF onset where sudden changes
occur: variable RR intervals and R peaks amplitude, missing
P waves and variable S waves amplitude.

the algorithm selects a personalized combination of features in a specific

amount of consecutive beats that defines a small window of processing. In

this way, the approach analyzes sudden events occurring within the window,

as shown in my previous work [72]. Additionally, I include an overlapping

window adjusted to the patient. By considering groups of features depending

on the main ECG waves, the algorithm trains and chooses the set that gives
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Algorithm 3 Offline: personalized feature selection

1: Input: windows of n consecutive beats of the filtered ECG; m beats sliding
window

2: Output: selected g r oup of fiducial points

3: for wi ndow = 1,2, ..., ECGleng th
m do

4: for beat = 1,2, ...,n do
5: Extract R peaks
6: Extract P, P onset, P offset, S
7: end for
8: end for
9: Consider 5 groups of fiducial points: (R); (P,R); (P,R,S); (P,Pon,Po f f ,R);

(P,Pon,Po f f ,R,S)
10: for g r oup = 1,2, ...,5 do
11: Train and test SVM with 5-fold CV
12: Compute mean F-score on folds
13: end for
14: Choose g r oup with best mean F-score
15: return g r oup

the best 5-fold CV performance for each patient (F-score), as shown in Lines

9–14 of Algorithm 3. Then, in the online phase, the algorithm only delineates

the fiducial points related to the selected group of features. The personalized

features selection has the advantage of scaling the computation of the ECG

delineation in the wearable sensor by performing a selective delineation for

each patient.

2.4.2.3 Personalized Classification Parameters

The offline personalized configuration and training, shown in Fig. 2.15a, in-

cludes several steps, other than the feature selection. The personalization of

the model for each patient captures the heterogeneity of the PAF pathology

and optimizes its implementation on wearable sensors. I use a minimum

time resolution window for the prediction of 25 beats. This value varies within

15 s and 45 s, considering a resting HR in the range of 40 BPM to 110 BPM,

which is a fair prediction window length considering the physiology of the

PAF event occurrence. The first set of configuration parameters includes

the training model coefficients. I choose to use a supervised learning model
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Algorithm 4 Offline: personalized configuration and training

1: Input: filtered ECG; n = 3 : 7 consecutive beats; m = 1 : n sliding window;
selected g r oup; pr ed wl en = 25beat s

2: Output: selected (n,m); selected th; SVM model (mdl )
3: function SMALLWINDOWPARAMETERS

4: for (n,m) = (3,1), (4,2), ..., (7,n) do
5: Compute fitting and F-score on learning curves
6: end for
7: Choose (n,m) with best fitting and F-score
8: end function
9: function THPARAMETER

10: nw = pr ed wl en
m . small windows in pr ed wl en

11: for th = 0.1,0.2, ...,0.9 do
12: Train and test SVM with 5-fold CV
13: Count small windows “Close to PAF” (sw pa f )

14: if sw pa f
nw > th then

15: “Close to PAF”
16: else
17: “Far from PAF”
18: end if
19: Compute mean F-score on folds
20: end for
21: Choose th with best mean F-score
22: end function
23: Train SVM mdl with selected g r oup, (n,m), th
24: return (n,m); th; mdl
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based on SVMs to classify an excerpt of signals labeled “Close to” or “Far from”

PAF events. An SVM-based model is selected since at inference time it has

very low complexity [110], and it achieved a high accuracy and robustness in

the preliminary offline approach [72]. The second set of personalized config-

uration parameters includes the number of consecutive beats (n) within a

small window and the length of the sliding window in beats (m). These two

parameters vary within the following ranges: n = 3,4, ...7 and m = 1,2, ...n

and affect the number of training samples. The best combination (n,m) was

chosen by selecting the most robust model performance using leaning curve

analysis [109] and F-score. In my methodology, summarized in Lines 3–8 of

Algorithm 4, I analyze the F-score against the number of samples with an

increment of 10 samples at each iteration, applying a 5-fold CV for better

generalization of the results. Next, within the predefined minimum predic-

tion window, the algorithm cross-validates a threshold on the set of small

windows the model classifies correctly, based on (n,m), described in detail

in Lines 9–22 of Algorithm 4. The final step of the learning phase consists

in choosing the number of minimum prediction windows of ECG samples

needed to process and predict the PAF onset, where abnormal events may

occur. Considering the heterogeneity of the occurrence of small and sudden

events [108], my algorithm learns on both normal sinus rhythm (i.e., signal

far from any PAF event) and close to a PAF event to choose the prediction

time length for each patient. The algorithm computes the maximum amount

of consecutive prediction windows (each of 25 beats) in the normal sinus

rhythm misclassified as “Close to PAF”, using excerpts from a different set

than the training and test ones. Therefore, the updated minimum window of

prediction is a multiple of 25 beats, which corresponds approximately to the

range from 15 s to 45 s.

During the online PAF prediction monitoring, shown in Fig. 2.15b, once the

personalized features within the small window (of n consecutive beats) are

extracted, they are fed to the linear SVM model. Then, the algorithm classifies

each small window as either “Close to PAF” or “Far from PAF”. Next, my algo-

rithm is optimized to stop the processing once the precomputed personalized

threshold of small windows classified as “Close to PAF” is reached, reducing

the energy consumption and scaling it for different patients. The final output
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of the classification is transmitted at least every 15 s to 45 s, according to the

minimum window of prediction selected.

2.4.3 Patient-Specific Optimizations for Single-Core Ultra-

Low Power Platforms

The parameters and model selected during the learning phase, described

in Section 2.4.2.3, are the configuration inputs to apply in the algorithm

implemented on a wearable embedded device. With the final goal of saving

energy for personalized continuous monitoring, I apply a set of optimizations

to implement an online method for a single-core platform.

2.4.3.1 Patient-Specific Online Design for Single-Core Platforms

Considering the model selected at training time for each patient, I present

two main optimization techniques that decrease the computation within a

window of analysis.

Selective Feature Extraction As described in Section 2.4.2.2, the algorithm

only extracts for each patient the group of features within n consecutive beats

with a sliding window of m beats, which were selected in our personalized

patient configuration phase (see Section 2.4.2.2). Aiming to save and scale

computation, hence energy, the algorithm delineates within each consecutive

beat only the fiducial points needed for the ECG waves selected at training

time.

Fig. 2.19 describes the strategy used to optimize the delineation within a

beat for two different patients, and it receives as input their corresponding

selected group of features. In Fig. 2.19a, the trained group of features are

within the P and R wave, while in Fig. 2.19b they are within the R and S wave.

As presented in my previous work [72], the method to compute the P wave

onset/offset compares the corresponding wave and a set of triangular waves

with origin in the peak, which end in different points of the isoelectric line.

This is computationally more expensive than finding a minimum such as S.

Therefore, if for the patient in Fig. 2.19b the algorithm would delineate the

three main ECG waves the computation load will be much higher. However,
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Figure 2.19 – Proposed selective online feature extraction within a beat
for two patients with different training models.

if the personalized model for a patient includes full P wave feature set, as

shown in Fig. 2.19a, then the algorithm will compute them.

Optimization on the Classification Threshold By applying the threshold

on the small windows processed within a minimum window of prediction,

defined in Section 2.4.2.3, my approach increases the computational savings

in the online PAF prediction process. As an example, Fig. 2.20 describes

the real-time prediction on an excerpt of ECG signal before a PAF onset

for Patient 1 of the chosen dataset [108] (cf. Section 2.4.4.1). As described

in Section 2.4.3.1, the algorithm extracts patient-specific features based on

the fiducial points for each beat of the small window of consecutive beats.

For this patient, the small window consists of three consecutive beats (n)

with a sliding window of two (m), and the features extracted are the time and

amplitude of the R peaks and the S wave. Once the features are extracted, they
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Figure 2.20 – Proposed optimized online prediction of a PAF event for
Patient 1 of the chosen dataset (cf. Section 2.4.4.1). The
configuration parameters are (n,m) = (3,2), th = 10%.
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are fed to the linear SVM model, which classifies the small window as “Close

to PAF”. Then, using the training parameter (th), the algorithm computes

and checks the percentage of small windows classified as positive over a

large window of 25 beats to define the whole large window as positive. In the

case in Fig. 2.20, the algorithm reaches th with only one small window, i.e.,

approximately 10 % of 25 beats. Till the end of the current large window, the

algorithm stops extracting features and performing the classification. It starts

over at the next large window. This implementation allows to save energy

within a window of analysis, i.e., 25 beats, by stopping the feature extraction

and classification. Finally, this process is different for each patient enabling

scalability, thus the adaptability of the device lifetime (cf. Section 2.4.5.2).

2.4.4 Experimental Setup

In this section, I describe the database used for training the models and the

test bench for the single-core design.

2.4.4.1 Database for Offline Training and Online Testing

The framework has been tested on the PAF Prediction Challenge (2001) Phy-

sionet database [108], containing 53 patients affected by PAF over the two

learning and test sets described. The database includes for each patient two

30-minute ECG signals close to and far from (at least 45 min) a PAF event.

The signals are acquired at a sampling frequency of 128 Hz and resampled

at 250 Hz. In this work, I did not consider the signals acquired from healthy

subjects with a normal sinus rhythm, as the part of the challenge related

to prediction did not include them. However, the signal far from any event

includes for the most part normal sinus beats. For both signals, the personal-

ized model is trained on the last 350 beats of the recording (approximately

3–9 min considering a HR range from 40 BPM to 110 BPM). For the signals

close to a PAF event, the method tests on the remaining of the recording. For

the signal far from any event, two-thirds of the remaining signal are used to

configure the minimum window of prediction (cf. Section 2.4.2.3), and then

testing is done on the remaining third.
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2.4.4.2 Test Bench and Platforms for Single-Core Design

The single-core design is a sample-by-sample method. Two different R peak

detection algorithms are used for testing, a wavelet-based as done in my

previous work [72] and REWARD [41]. I report the overall accuracy on the

full database with both wavelet and REWARD algorithms. Then, I choose six

cases that vary in terms of configuration parameters to evaluate one window

of analysis when a PAF event occurs. I consider the window length-related

parameters n and m, the selected group of features, and the classification

threshold, described in Section 2.4.2.2 and Section 2.4.2.3. Specifically, I select

from a worst to a best case of computation in the context of the target multi-

core architectures exploration, considering the sum of each configuration

parameter computational cost. Finally, the window of analysis varies from

15 s to 45 s, depending on the patient. I measure the energy consumption

of the single-core wavelet-based design using the Simplicity Studio software

(SW) energy profiler on the Cortex-M3 based EFM32LG-STK3600 [111]. Then,

I use this energy measurement to show the battery lifetime estimation on the

real-life SmartCardia INYU ECG-based wearable device [24]. Finally, I run the

energy profiling on the single-core REWARD-based design for the six cases

on the Cortex-M3 platform.

2.4.5 Experimental Results

In this section, I first report the results on the prediction performance of the

real-time personalized approach, after the optimizations described in Sec-

tion 2.4.3, and I compare it with the state-of-the-art offline algorithms. Then,

I report the energy consumption of my online single-core design. Finally, I

present the scalable battery lifetime achieved by the method while running

on a real-life ULP ECG monitoring device [24].

2.4.5.1 Accuracy of the PAF Event Prediction

In Table 2.6, I compare the accuracy of the two inter-patient variability

approaches presented by Martínez et al. [59] and Ebrahimzadeh et al. [105],

the offline personalized algorithm presented in my previous work [72], my

real-time optimized personalized single-core approach considering the

wavelet-based R peak detection [38], and the optimized version with the
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Table 2.6 – Performance scores for patient-specific (offline and real-time)
and inter-patient variability approaches: accuracy, F1 score
(F1), sensitivity (Sens), specificity (Spec).

Evaluation
parameters

Accuracy F1 Sens Spec

Inter-patient
variability

[59] Martínez
et al. (%)

93.0 – – –

[105] Ebrahimzadeh
et al. (%)

98.2 – 100.0 95.5

Personalized

[72] Offline
(%)

97.1 97.1 96.2 98.1

Real-time with
WT [38] (%)

93.4 93.6 96.2 90.6

Real-time with
REWARD [41] (%)

91.5 91.6 92.5 90.6
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REWARD algorithm [41]. Moreover, I report the F1 score, sensitivity, and

specificity of the personalized approaches over the full dataset. The F1

score is a measure of the classification accuracy that focuses on the positive

rate and it is defined as the harmonic mean of precision (i.e., PPV) and

recall (i.e., sensitivity). The sensitivity is defined as the proportion of ECG

segments classified correctly as “Close to PAF”, while the specificity is the

proportion of ECG segments classified correctly as “Far from PAF”. In all the

cases presented, I define as “prediction” the classification of the two types of

segments mentioned before and, consequently, the performance scores refer

to this classification.

The online single-core implementation using the wavelet-based delineation

reduces the accuracy by 4 % compared to the reference offline algorithm [72],

while keeping the same sensitivity. However, the accuracy is comparable

with the state-of-the-art offline algorithms. I also used a more lightweight

and suitable for personalization R peak detection [41] with a 2 % reduction

in accuracy due to the misdetection of peaks. REWARD relies on amplitude

thresholds applied to the Rel-En signal within a window of analysis (1.75 s)

to detect its peaks. However, if sudden changes in amplitude occur within a

window, namely, a small peak follows a tall peak, REWARD can fail in detecting

the small peak, hence, the accuracy loss. I explore this issue in Chapter 4, and

I propose an adaptive solution that detects failures in REWARD and triggers

a more robust algorithm. However, in this case, the accuracy loss of 2 % is

acceptable as it is still within the state-of-the-art range.

2.4.5.2 Energy Consumption in Standard Single-Core Platforms

In the EFM32LG-STK3600 Cortex-M3 based sensor, the energy consumed

within one window of analysis varies between 16 mJ and 9 mJ for the worst

case and best case scenario. The personalized training of the optimized PAF

prediction model (cf. Section 2.4.3.1) allows energy savings between patients

with 84 % to 56 % difference compared to the worst case of the six selected

cases. Then, using the energy results of EFM32, I estimate the battery lifetime

of the different components and execution modes of the real-life ULP ECG

monitoring device, INYU [24], which uses the same MCU family to run my

PAF prediction algorithm. I show the worst case in terms of computational
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Table 2.7 – Average current consumed by different modules of the INYU
in the worst case

Current
(mA)

Duty cycle
(%)

Average
current

(mA)

ECG
acquisition

ADS1291
active [112]

0.427 100 0.427

Accelerometer
(idle)

MPU600 [113] 0.005 100 0.005

Data
processing

PAF prediction
process

10.5 3.2 0.336

Power
saving

Low-Power
sleep mode [82]

0.018 96.8 0.017

BLE NRF8001 [114] 0.014 100 0.014

Total 0.799

burden, calculated as the execution time of the processing part over the actual

prediction time. The maximum operating frequency used on the EFM32 was

48 MHz. However, the STM32 on the INYU device can operate only up to

32 MHz. Therefore, I apply a factor of 1.5× to the execution time measured

in EFM32 to use it for the battery lifetime estimation on the STM32.

Table 2.7 shows the worst case of total average current consumed among the

six cases chosen. The duty cycle represents the percentage of computational

load of the five main modules of the INYU over a 30-minute window. The

ECG signal acquisition is always on for the 30-minute window, as well as the

Bluetooth Low-Energy (BLE) module to send the output of the classification

every 15 s to 45 s. In addition, by computing the total average current of

0.799 mA consumed within 30 min and a battery of 710 mAh, the battery

lifetime of the worst case is 889 hours (approximately 37 days) in the six cases

analyzed. In the best case, the battery lifetime is 41 days. This is an excellent

result because the system can last more than a month with a single battery

recharge.
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2.5 Conclusion

The results demonstrate how a personalized online PAF prediction algorithm

in single-core can save energy depending on the patient features. Moreover,

to the best of my knowledge, there are no other algorithms that tackle this

problem in embedded devices. In Chapter 3, I show how my personalization

can also be applied to adapt an ULP multi-core architecture to the character-

istics of each patient.

2.5 Conclusion
Wearable technologies provide accurate, energy efficient means of health

and pathology monitoring, prevention, and diagnosis. The first step towards

achieving an optimal energy-accuracy trade-off in ULP WSN platforms is

focusing on algorithmic optimizations. In this chapter, I provided many

examples in various domains and levels of problem complexity, which already

achieve a significantly high energy-accuracy trade-off.

First, I detailed the real-time implementation and optimization, in the con-

text of resource-constrained wearable devices, of the low-complexity Rel-En

preprocessing method, as well as the design of a novel R peak detection algo-

rithm to complement it. Furthermore, this contribution has addressed the

need for a comprehensive comparison of three state-of-the-art real-time R

peak detection algorithms (PT, WTD, DAD), as well as the REWARD algorithm,

to determine each algorithm’s feasibility of implementation on ultra-low

power real-time embedded systems. REWARD was the most efficient com-

pared with state-of-the art R peak detection algorithms, using at least 63 %

less energy and 32 % less RAM than the other algorithms while producing

comparable accuracy results. This algorithm is highly suitable as a base for

more complex cardiovascular analysis algorithms, as illustrated throughout

this thesis.

Next, on top of ECG analysis and its R peak detection, I have shown an

accurate and energy-efficient HR estimation though using wearable non-

invasive low-cost PPG systems. The challenge of using these optical sensors

is to accurately detect the HR during physical activities from a signal strongly

affected by MAs. Therefore, I proposed a method which applies the FFT on

short windows of data and removes MAs depending on the spectra of the PPG
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and 3-axis accelerometer signals, avoiding signal complex reconstruction

or adaptive filtering. The results showed that the algorithm removes a wide

range of MAs, thus achieving a high degree of accuracy. The method was

suitable to be implemented in a wearable embedded device running 22.6 %

of the time between two HR values. The device can fully work for 9.37 days,

including idle and processing time.

Finally, in the context of a more complex problem regarding one of the ma-

jor causes of heart failure, AF, I have proposed an online, energy-efficient

and personalized PAF prediction method targeting emerging ULP wearable

sensors. In fact, patients affected by PAF are at risk of the arrhythmia progres-

sion into a sustained AF. Therefore, predicting the onset of PAF episodes is

required for progression prevention and lower stroke risk. In a preliminary

analysis of this contribution, I demonstrated that considering the specific

profile of each patient, highly improves PAF onset prediction. By training

a linear SVM classifier and considering features related to the P-wave and

the QRS complex, the real-time patient-specific method predicts PAF onset

with an F1 score of 93.6 %, a sensitivity of 96.2 %, and a specificity of 90.6 %.

Moreover, my method enables energy savings for a continuous PAF event

monitoring in single-core resource-constrained wearable sensors, and scales

its energy consumption depending on the patient’s characteristics. By consid-

ering my algorithm running on the INYU wearable ECG-monitoring sensor, I

estimated a battery lifetime of at least 37 days.

These contributions show how personalized and ULP multi-biosignal ap-

proaches highly improve accuracy while consuming very low energy in real-

life devices. However, the resources and constraints of new platforms need to

be taken into account when designing WSNs for remote wellness monitoring.

In the next chapter, I will focus on the challenges posed by the resources of

modern ULP platforms for wearable sensors and exploit their power-saving

capabilities to design WSN-based biomedical applications.
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3

The next step in the design of a wearable sensor node (WSN) for wellness mon-

itoring is looking at modern platforms and the challenges to overcome and

reach an optimal energy-accuracy trade-off. Modern ultra-low power (ULP)

platforms provide parallel computing capabilities, clock- and power-gating

of independent blocks to reduce power during idle time and the possibility to

connect accelerators to further decrease energy consumption.

In this chapter, I propose two methods to tackle the challenges of energy

savings in these platforms, ensuring the high accuracy required by biomedical

applications in the context of remote wellness monitoring. First, I expose the

modularity of parallelization and power-saving capabilities of modern ultra-

low power platforms. Then, in the context of paroxysmal atrial fibrillation

(PAF) prediction, I propose a method to scale the computational resources

(i.e., number of cores) and memory banks, according to a patient-specific

model.

3.1 Introduction
WSNs have already proven capable of attaining accurate inference with

minimal power consumption [18]. In this way, WSNs have evolved from

single-core systems [24, 42] into ULP [44] and multi-core parallel comput-

ing platforms [45–49]. Most of the typical WSN-based biomedical applica-

tions in the state of the art have been implemented on single-core proces-
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sors [24, 25, 42, 57]. To exploit the new parallel capabilities of modern WSN

platforms in the context of biomedical applications, per-lead (i.e., channel)

multi-core computation is a natural option to achieve low-power operation,

as in the case of multi-lead electrocardiogram (ECG) analysis [46, 115]. How-

ever, more general WSN-based biomedical applications for monitoring of

noncommunicable diseases (NCDs) typically include several building blocks

which often are not amenable to standard parallelization techniques (e.g.,

per-lead parallelization) [21, 24, 25, 47, 57, 72, 116–119]. Modern platforms

have also evolved into hybrid systems with a main core and an additional

cluster of cores [45] that allow flexible design of efficient single-core and par-

allel modules, in applications where several modules cannot be parallelized

easily.

In addition to parallelization, modern platforms offer clock- and power-

gating mechanisms to reduce both dynamic and static (leakage) power when

the system is not actively computing (e.g., when waiting for new samples to

arrive in an input buffer considering the usual low sampling frequency of

biomedical applications). Some platforms include specialized direct mem-

ory access (DMA) engines that execute data capturing tasks within tight

power budgets while the rest of the system is clock-gated or executing other

tasks [48, 49]. Additionally, other platforms contain SRAMs structured in

independent banks that can be power-gated depending on the application

needs [48, 49]. Moreover, application modules typically include computation-

ally expensive kernels that can be accelerated with domain-specific hardware

(HW), such as coarse-grained reconfigurable arrays (CGRAs) [46]. Thus, HW

acceleration is an orthogonal benefit to the parallelization, and it can benefit

both single-core and multi-core application design.

For my first contribution to this chapter, I propose modular optimizations for

ULP heterogeneous platforms with the following main outcomes:

• I show how the parallelization of the typical modules in WSN-based

biomedical applications at different levels of abstraction (i.e., lead,

sample analysis-window, heart beat, or data-level) maximizes speed-

up and consequently reduces energy consumption up to 41.6 %.
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• I explore the reduction of static power by exploiting power management

and SRAM-bank memory scaling with additional energy savings of up

to 16.8 % for a state-of-the-art application.

• I investigate the use of programmable domain-specific accelerators

to perform intensive computations at lower power than with general-

purpose processors obtaining energy savings up to 46.7 % in the multi-

core implementation of the state-of-the-art application.

• Finally, I show the orthogonality of the previous optimizations achiev-

ing accumulated energy savings of up to 51.3 %.

Although modularity highly reduces energy consumption for a general

biomedical application, more challenges are introduced if we consider

personalized medicine. As proved in Chapter 2, patient-specific methods

highly improve the accuracy of pathology detection, and it is as well advanta-

geous for energy reduction in traditional single-core platforms [23–28, 73].

However, modern ULP heterogenous platforms offer better resources to

tackle the challenge of energy efficiency and scalability (i.e., according to

the specific pathology characteristics of each patient) [100]. For this reason,

as a second contribution, I propose a methodology to design a new online

PAF prediction model targeting scalable computation on modern ULP

wearable sensors, which considers the specific features of the individuals

and their condition. The scalability is driven by the adaptive algorithm and

architecture parameters, which affect the design in multi-core platforms

to reduce energy consumption for each individual patient. I have already

shown the scalability in single-core platforms and, specifically, in a real-life

ECG monitoring device in Section 2.4.5. The main outcomes of this method

are the following:

• I develop a personalized parallelization technique for new open-source

multi-core RISC-V based computing architectures that can be included

in wearable sensors. This technique scales with the number of cores,

i.e., distributing the computation among cores, according to a patient-

specific model. My proposed parallelization achieves energy savings of

up to 24 % compared to the single-core design.
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• I explore the memory design space to execute personalized atrial fib-

rillation (AF) algorithms in multi-core Internet of Things (IoT) and

wearable platforms [48], by scaling the size of the memory banks (8 KiB,

4 KiB, 2 KiB, and 1 KiB) and storing buffers of different lengths accord-

ing to the number of cores. Also, I highlight the energy consumption

reduction thanks to deep sleep modes that exploit the specific charac-

teristics of the patient, as done in the single-core design in Chapter 2.

Overall, the personalized multi-core design provides up to 34 % energy

savings in comparison to recent single-core wearable sensors.

This chapter initially presents the typical modules of a biomedical application

in Section 3.2. Next, Section 3.3 describes the capabilities of modern ULP

platforms and the motivation analysis to sustain the two contributions. Then,

it presents the first main contribution mentioned before in Section 3.4, which

has a double publication in the ESWEEK 2020 (CODES+ISSS) conference and

in the IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems journal [120]. Then, it follows with the second contribution in

Section 3.5, which has been published in a special issue of the IEEE Trans-

actions on Emerging Topics in Computing journal, called “New Trends in

Parallel and Distributed Computing for Human Sensible Applications” [73].

3.2 Typical Biomedical Modules
Considering the characteristics of modern ULP platforms, I propose a mod-

ular design approach for biomedical applications that combines different

types of software (SW) parallelization to achieve optimal speed-up. This

approach is applied to the two contributions presented in this chapter. Let us

consider a typical WSN-based biomedical application for long-term health

monitoring, described in Fig. 3.1. First, the single or multi-channel signal is

filtered to remove high or low frequency noise, baseline wandering, or muscle

noise. The second module typically includes some additional preprocessing

of the signal to enhance specific characteristics or combine different chan-

nels. The third module is the extraction of patterns or features, such as the

signal main waveforms and time or frequency-domain parameters. The final

step, inference, includes any kind of classification or regression technique

that uses the information of the extracted features to predict an outcome,
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Filtering Enhancement

Normal

Pathology

Inference
Feature

	Extraction

Figure 3.1 – Typical modules of a general WSN-based biomedical applica-
tion.

such as the occurrence of a pathology. In this chapter, I apply the energy-

saving capabilities of modern platforms to an optimized single-core version

of well-known instances of each of those modules. Then, I evaluate them as

part of complete state-of-the-art applications. Moreover, I apply the same

modularity approach to the PAF prediction method described in Section 2.4.

3.2.1 Filtering

Digital filtering in biomedical applications is used to remove undesired noise

at specific frequencies or isolate the frequencies of interest. In biosignal

processing there exist different types of filtering [121]. In this chapter, I

analyze the morphological filtering (MF), which extracts the signal baseline

based on the shape of the original signal and then subtracts it. This method

was originally used in image processing and then modified to be used on a

single or a multi-lead ECG in embedded systems [71]. Additional techniques

to filter the raw ECG input data that are suitable for embedded systems are

described in [71].

3.2.2 Enhancement

Several techniques, such as the signal derivative or the root-mean-square

(RMS) combination, are available to enhance a biosignal or combine differ-

ent leads. I study a lightweight example of short-term event amplification:

Relative-Energy (Rel-En) [41]. In the context of an ECG signal, this technique

extracts the energy of specific windows of analysis to amplify the R peaks,

since the signal energy is larger when an R peak occurs. The Rel-En method

is also used for K-complex detection in electroencephalography (EEG) and

pulse extraction in imaging photoplethysmography (iPPG) [50]. Additionally,
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I consider the RMS lead combination as part of a complete application in

Section 3.4.6.

3.2.3 Feature Extraction

This module enables the biosignal abstraction through the extraction of the

most relevant features, from its waveforms or points to time and frequency

domain parameters [21, 24, 47, 57, 72, 116, 118, 119]. In ECG analysis, for

example, a common technique, called “delineation,” abstracts the signal

main waves (i.e., QRS complex, P and T waves [68]) with three “fiducial points”

representing the onset, offset and peak. These points are the input to the

inference module or can be further processed extracting additional features

(e.g., QRS complex duration, QT interval, etc.). In this chapter, I analyze the

ECG delineation since it is a relevant and well-known method for long-term

monitoring of NCDs. The process of delineation can be divided into two parts.

First, the R peak or QRS complex are detected, often independently from the

other ECG waves, since they describe the heart rhythm and are relevant

for the detection of many arrhythmias [21]. As R peak detection technique,

we choose to implement REWARD [41] for its claimed low computational

load and described in Section 2.2. REWARD uses amplitude thresholds to

isolate the R peak. Moreover, it analyzes physiological peak-to-peak distance

and peak width to filter false positives, such as dominant T-waves. The

remaining fiducial points can be delineated in different ways. I choose a

low-complexity method [72], described in Section 2.4.2.1, which assumes

that the signal’s main waves are positive. This can be ensured by an RMS

combination of leads or choosing lead II of the 12-lead ECG technique [122].

Under this assumption, the Q and S points are identified as a minimum

within a physiological interval near the R peak. The P and T peaks of the

two other main waves are computed as a maximum within physiological

windows between two R peaks. Finally, the onset/offset of the P and T waves

are computed considering the minimum Euclidean distance between the

original waves and their piece-wise linear approximation. The point with

the minimum Euclidean distance that intersects the isoelectric line is the

onset/offset.
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3.2.4 Inference

The last module is commonly a classification or regression problem applied

to a set of features that performs automatic events and pathology detection,

such as the occurrence of abnormal beats. Several types of arrhythmia can

change the heart electrical signal, thus causing abnormalities in the ECG

main waves. Therefore, automatically detecting abnormal beats and their

nature helps to treat them and prevents further complications [42,117]. Other

biosignals (e.g., photoplethysmography (PPG), respiration, impedance car-

diogram (ICG), etc.) also contain relevant features to classify NCDs, such as

sleep apnea [116], to monitor a subject state in stressful environments [119] or

for gesture recognition [47]. In this chapter, I analyze a classification module

for detection of abnormal beats from an ECG signal using random projections

and a neuro-fuzzy classifier [123].

3.3 Modern Ultra-Low Power Platforms for Wear-

able Sensors
The main goal of modern ULP platforms is reducing energy consumption

to maximize battery lifetime, while still running complex algorithms on

the nodes. Multiprocessing has been proved effective in reducing energy

consumption—through lower operating frequencies and supply voltages—

while preserving performance in the biomedical [115] and multimedia [45]

domains. However, SW tasks must be divided into parallel subtasks or or-

ganized as independent parallel ones, i.e., application modules, targeting

an energy-efficient management of resources. Often, a major obstacle to

achieve adequate speed-ups is the overhead of synchronization. Fast HW

event managers offer single-cycle synchronization and enable clock-gating

the processors while waiting for events, hence saving significant amounts of

energy even with fine-grained parallelization [49, 124]. A novel architecture

that can overcome these obstacles and ensure the flexible design of modular

and personalized WSN-based biomedical applications, is the open-source

RISC-V based PULP platform [45]. In this section, I describe the power saving

capabilities of parallelization on multi-core platforms based on PULP. More-

over, I describe the power and memory management possibilities in modern
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Figure 3.2 – Main architecture of PULP-based platforms, divided into a
main streamlined processor, the fabric controller (FC), and
an 8-core parallel compute cluster (CL). PULP includes a
multi-banked L2 memory, a DMA, and a shared multi-banked
L1 memory in the cluster side.

ULP platforms. Finally, I explore the architectural heterogeneity of adding

CGRAs to accelerate computationally intensive kernels.

3.3.1 Parallelization in the PULP Platform

In this chapter, I target the PULP platform [45], whose main architecture

is shown in Fig. 3.2. PULP is divided into a main streamlined processor,

the fabric controller (FC), and an 8-core parallel compute cluster (CL). It

includes a multi-banked 512 KiB L2 memory, a HW event synchronizer, and

a shared multi-banked 64 KiB L1 memory with single-cycle latency in the

cluster side. Both FC and CL are power-gated while the DMA fills the required

L2 memory bank during sample acquisition. Each of the cores in the CL
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can be independently clock-gated to reduce dynamic power. For example,

the CL cores become clock-gated after reaching a synchronization point.

This flexibility allows to easily implement parallel and single-core modular

applications with adaptable resources assignment.

3.3.2 Power and Memory Management

In addition to parallelization, WSN-based biomedical applications need

power management to ensure continuous remote monitoring. A common

technique to save energy is clock-gating, which reduces dynamic power. In

the context of the PULP platform, architecture-level clock-gating is applied

at different levels. The SoC is clock-gated when waiting for an event, such

as a DMA transfer or the end of a computation on the CL. Additionally, if no

workload is assigned to some cores of the CL, they are automatically clock-

gated. This is relevant in the context of modular WSN-based biomedical

applications, because an optimal assignment of resources to the modules

reduces energy consumption. Conversely, power-gating interrupts the power

supply to parts of the circuit that are unused for longer periods, hence sup-

pressing leakage current. Power-gating has a larger physical overhead than

clock gating—due to the power switches and controllers around the power

gated area. Thus, it is applicable only for large blocks (e.g., a cluster of proces-

sors). Moreover, the recovery period for power-gating can be in the order of

tens of thousands of cycles, particularly if clock generators are affected, mak-

ing it suitable only for applications that undergo long idle periods. Typical

WSN-based applications are characterized by low sampling frequency (e.g.,

ECG acquisition is in the standard range of 250 Hz–500 Hz), hence, the main

SoC can be power-gated, while waiting for the following sample. Additionally,

the division of the platform SRAM memories into smaller banks that can

be independently power-gated, or placed into retention mode, enables fine-

grained control on memory energy use. In the context of healthcare wearable

sensors, this feature enables the processing of the acquired input biosignals

in “windows” that drive which banks are written by the DMA (active), which

ones contain data to retain until the next processing interval, and which

banks can remain off. Furthermore, the use of banks of different sizes enables

an appropriate data placement for input data of accessed biosignals into

smaller banks, which consume less energy per access (cf. Section 3.5.4.1).
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3.3.3 HW Acceleration

Finally, domain-specific accelerators, either programmable (e.g., CGRAs [46])

or task-specific (e.g., for fast Fourier transform (FFT) or sample-rate conver-

sion [44]) are added to accelerate intensive application kernels. In this case,

energy savings stem from the shorter execution times and the specialized

implementations of the accelerators. Hardware accelerators can be intro-

duced at the end of the optimization process to offload kernels assigned to

particular cores. In this chapter, I explore the possibility of integrating a CGRA

into the PULP platform, designed to execute small loop-based kernels with

high numbers of iterations. I describe in detail the architecture of the CGRA

and the computational kernels accelerated in Section 3.4.4.

3.3.4 Motivational Analysis for Optimizations in PULP

Considering the low duty cycle of WSN-based biomedical applications, we

conduct an analysis of the impact of the application duty cycle and the attain-

able speed-up in an 8-core parallelization on the energy savings in the PULP

platform. In this analysis, I assume the eight cores are all used during the

active part of the duty cycle, while during idle periods they are power-gated.

In contrast, in many biomedical applications or its modules, as the ones I

present in Section 3.4.6, it may happen that only some of the cores are active.

At the same time, the remaining ones are clock-gated (i.e., unused). Moreover,

I show how activating one bank (of 64 KiB) or the full memory (i.e., eight

banks for a total of 512 KiB) affects the energy savings. Finally, this analysis

shows that the percentage of energy consumed during idle time is propor-

tionally inverse to the duty cycle. Consequently, platforms that execute very

low duty cycle applications need to optimize energy consumption during idle

periods (e.g., turning off unused memory banks). In contrast, with higher

duty cycles, the energy consumed during active time prevails. Therefore, it be-

comes more relevant to optimize computation (e.g., increasing the speed-up

to reduce active time) in order to lower the total energy consumption.

Figure 3.3 shows the previous analysis on one evolution of the PULP plat-

form, Mr.Wolf [49]. For each platform, the graph reports the energy savings

compared to a single-core implementation of a generic application in the

80



3.3 Modern ultra-low power platforms for wearable sensors

0.00 0.10 0.20 0.30 0.40 0.50
Duty-cycle %

3

4

5

6

7

8

Sp
ee

d-
up

10.0%

0.0%

-10.0%

8 banks active

0.00 0.10 0.20 0.30 0.40 0.50
Duty-cycle %

3

4

5

6

7

8

-10.0%

0.0%

10.0%

20.0%

30.0%

1 bank active

-50%

-40%

-30%

-20%

-10%

0%

10%

-100%

-80%

-60%

-40%

-20%

0%

20%

Energy savings

Mr.Wolf

Figure 3.3 – Potential energy savings in Mr.Wolf, an implementation of
the PULP platform, according to the application duty cycle
and the attainable speed-up through an 8-core parallelization
in the CL. On the left, I present the analysis on Mr.Wolf
with its eight memory banks active. On the right, I show the
analysis on Mr.Wolf with only one bank active. The dotted
lines mark different levels of energy savings.
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FC. Mr.Wolf includes a core for the FC (Zero-riscy [125]) that is simpler than

the RI5CY cores of the CL [126] and runs at a higher frequency (170 MHz for

FC and 110 MHz for the CL) but has a lower IPC. Moreover, Mr.Wolf is more

efficient for higher duty cycles because it was designed to handle high compu-

tational load, and the deep sleep mode is not optimized for long idle periods—

different PULP implementations with a core optimized for deep sleep exist,

though. Therefore, my analysis is applied to the Mr.Wolf architecture with

a more optimized deep sleep mode based on other PULP implementations.

The graphs in Fig. 3.3 are generated using the energy models in (3.1) and (3.2)

for the single-core (ESC ) and the multi-core (EMC ) configurations, respec-

tively, where dc is the duty cycle of the application, FC _Pd yn and FC _Pl eak

are the dynamic and leakage power of the FC, respectively, DS_P is the power

in deep sleep, C L_Pd yn and C L_Pl eak are the dynamic and leakage power of

the CL, and fcr is the frequency correction ratio ( 170MHz
110MHz ) for the FC and CL.

ESC = dc × (FC _Pd yn +FC _Pl eak )+ (1−dc)×DS_P (3.1)

EMC = dc × fcr

speedup
× (FC _Pl eak +C L_Pleak +C L_Pd yn)

+(1− dc × fcr

su
)×DS_P

(3.2)

Finally, the ratio (in percentage) of potential energy savings attainable by a

multi-core configuration against the single-core one is computed using (3.3).

E% = (1− EMC

ESC
)×100 (3.3)

On the left side of Fig. 3.3, I show the analysis for Mr.Wolf with the full memory

active (i.e., eight banks). It shows that the energy overhead of the multi-core
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CL is recovered when a speed-up of 4.6× is reached and becomes more en-

ergy efficient compared to the single-core implementation for higher speed-

ups. Additionally, each of the Mr.Wolf eight memory banks of 64 KiB can be

powered-off depending on the application. Consequently, on the right side

of Fig. 3.3, I show how the analysis changes if there is only one bank active.

Whereas the threshold of speed-up does not change, for lower duty cycles it

is possible to achieve higher energy savings.

I have also run the analysis on the full scale of duty cycle values to explore

the benefits attainable under higher duty cycles. The architecture is able

to achieve energy savings up to 42 % for 100 % duty cycle and maximum

speed-up with the eight cores and eight banks always active. An interesting

result is that, for high duty cycle applications, memory management has less

impact than for low duty cycle ones. Nonetheless, in this chapter, I focus on

the energy savings attainable on low duty cycle, which is a characteristic of

typical biomedical applications.

From this previous analysis, I can conclude that, for this implementation

of PULP, the speed-up required by the parallel application has to be at least

4.6x. This shows the importance of suitable optimizations (e.g., parallelization

techniques) to achieve energy efficiency on modern low power heterogeneous

platforms, which is the main motivation for this chapter. To achieve optimal

speed-up, a modular approach to SW parallelization is necessary considering

the typical modules of WSN-based biomedical applications described in

Section 3.2. Then, to maximize the speed-up of the overall application, I

consider different parallelization techniques and HW acceleration. Power

management is also a significant factor in low duty cycle applications. Finally,

memory bank management plays an important role in energy saving and,

specifically, for applications with low memory footprint. In Section 3.4, I refer

to a general conceptual architecture that takes advantage of all the benefits

of the PULP platform discussed in this analysis.

3.3.5 Energy Savings versus Resources Assigned

One of the two main goals of this chapter is to show how a patient-specific

assignment of resources in a multi-core platform, like PULP, achieves signifi-
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Figure 3.4 – Potential energy savings in the multi-core GAP8 platform [48]
according to the duty cycle of the application and the attain-
able speed-up compared to the single-core implementation.
I report five configurations with a varying number of active
cores in the CL from eight to four. The dotted contour lines
represent different levels of energy savings, which include the
efficiency border between single and multi-core computation
for GAP8 at 0 %. Additionally, I mark the working point for
the six subjects [108] studied in Section 3.5.4.
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cant energy savings. To this end, I did a preliminary analysis on the estimated

energy consumption of one commercial implementation of PULP, GAP8 [48],

by varying the resources assigned in terms of the number of active cores,

application duty cycle (i.e., percentage of application computational load

in 1 s), and parallel implementation speed-up. In this analysis, the energy

consumption estimation accounts for the processing and idle time with one

memory bank active out of the four banks available in GAP8, and it is com-

puted as done in Section 3.3.4. Fig. 3.4 shows the energy savings compared

to the single-core implementation in the five possible multi-core configura-

tions of my design space with a varying number of active cores from eight to

four. Each configuration reports the percentage of energy savings achieved at

different attainable speed-up figures from 1× to 8×, while the application

duty cycle values can vary between 0 % to 0.5 %, according to the typical

intervals that a single-lead ECG-based biomedical application has. Thus, the

attainable speed-up for a specific number of cores is a measure of efficiency

of the parallel application. However, as Fig. 3.4 shows, there is a threshold

of speed-up that the parallel application needs to reach to start achieving

energy savings compared to the single-core implementation. Nonetheless,

interestingly enough, this threshold significantly varies with the number

of active cores, namely, from 2.3× for an 8-core implementation to 1.7×
for a 4-core implementation. Therefore, below the speed-up threshold, the

single-core implementation is more efficient than a particular multi-core

implementation. In contrast, above the threshold, the multi-core option is

more efficient.

In addition, in Fig. 3.4, I report six cases of the analyzed dataset [108] to cover

a wide range of computational requirements (i.e., including best, average

and worst case scenarios) with different patients (cf. Section 3.5.3.1 and Sec-

tion 3.5.4). In my design space, the duty cycle of the parallel application

varies from 0 % to 0.07 %. At the same time, I assign between four and eight

cores depending on the window length (i.e., number of consecutive beats),

thus achieving different speed-ups from 3× to 5×. As a result, Fig. 3.4 indi-

cates that the absolute energy savings increase by adding more active cores.

Nonetheless, if the parallel application achieves its highest speed-up for a

certain number of cores, for example, 3× in the 4-core configuration, it is
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then more energy-efficient to assign the lowest possible number of cores (i.e.,

it is better to use four cores instead of five or more for Patient 45). Moreover,

within one configuration, for example the 5-core implementation in Fig. 3.4,

in the context of limited duty cycle values, the case with a higher duty cycle

but lower speed-up (Patient 37) achieves higher energy savings than the case

with a lower duty cycle and higher speed-up (Patient 15). I further discuss the

implications of this analysis on the six reported cases in Section 3.5.4.1.

3.4 SW and HW Optimizations in Modular

Biomedical Applications
In this section, I do a top-down exploration of parallelization techniques

at different abstraction levels. This strategy helps to compose a modular

biomedical application. Therefore, it can exploit the energy-saving platform

characteristics and maximize it taking into account the analysis done in Sec-

tion 3.3.4. Additionally, I apply memory and power management according to

general characteristics of the application (e.g., duty cycle, memory needed for

acquisition, etc.). Finally, I integrate a domain-specific accelerator that can

execute intensive kernels faster (and consuming less energy) than the general

purpose cores available. In Fig. 3.5, I draw a conceptual architecture, based

on the analysis reported in Section 3.3.4, which can be used to apply the SW

and HW optimizations described in this section. For each main optimization,

I report their mapping to the component used in the architecture. Then, I

present the experimental setup (c.f. Section 3.4.5) used to apply the opti-

mizations and achieve the results and conclusions of this first contribution

presented in Section 3.4.6.

3.4.1 Modular SW Optimizations

Considering the characteristics of the algorithms described in Section 3.2, I

present several techniques to extract parallelism. I also propose a top-down

order for exploring them, as follows. These techniques are mapped to the

8-core cluster, shown in Fig. 3.5. The first choice of parallelization is by lead

(or channel). In fact, if leads are processed independently throughout the

application, it is the simplest and most efficient implementation. However,
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many biomedical applications and their modules only work on single-lead

or a combination of multiple leads into one. Then, a window parallelization

should be considered where the cores work on subsegments of the signal.

In some cases, the characteristics of the signal and the application make

it necessary to consider a more specific type of parallelization, such as a

beat parallelization for cardiovascular-based signals. This method can be

extended to any kind of periodic or pattern signals where the features within

a period or pattern need to be captured. When the previous methods cannot

be applied, a general data-level parallelization should be considered. Finally,

if none of the previous methods can be applied, or if the obtained speed-up

is not satisfactory, a pipelining strategy can be considered, where a subset of

the cores is assigned to each of the pipeline stages. The cores at one stage

process segments of input data and produce segments of output, which are

processed by the cores in the next stage in a parallel consumer/producer

pattern. However, for accuracy and standardization purposes, biomedical

applications often include checks or feature combinations that need to be

executed once the complete output of a module has been generated [41, 57,

62]. Given this limitation, and the fact that the effort to implement pipelining

is larger, I consider only the first four types of per-module parallelization in

the proposed top-down order. Table 3.1 summarizes the different kinds of

parallelization techniques applied to each module described in Section 3.2.

3.4.1.1 Lead Parallelization

WSN-based biomedical applications commonly acquire multi-lead signals

(e.g., 3–12 ECG leads) to extract more information for highly accurate moni-

toring. Multi-lead parallelization, where each core processes the data corre-

sponding to one lead in parallel, should be applied first as it typically offers al-

most linear speed-ups. The most common application is the filtering module,

which often works on multiple leads or channels [46, 47] or even on multiple

signals [57]. Another example from the literature where this parallelization is

applied is a multi-lead delineation using multi-scale morphological deriva-

tives (MMD) [46].

As shown in Fig. 3.5, in the PULP architecture the DMA can access both the

L2 and L1 memories. It can be used to transfer the samples of each lead from
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Table 3.1 – Summary of parallelizations applied to each analyzed module

Module Algorithm Parall. Notes

Filtering Morph. Filt. (8L-MF) Lead Data-dependent
Enhance. Relative-Energy (Rel-En) Window Homogen., overlap
Enhance. Lead combination (RMS) Data Homogen., 1/8 samples
Feat. Extr. R peak (REWARD) Window 8×1.75s windows
Feat. Extr. Fiducial points Beat Data-dependent
Inference Beat classification Beat Data-dependent

L2 into separate areas of L1, thus allowing the cluster of cores to implement

the per-lead filtering without interference. The MF algorithm analyzed is

data-dependent; hence, the workload of each core depends on the amount of

noise of each lead (e.g., due to problems in the electrode positioning). For

the modular analysis to compute the maximum attainable speed-up of an

8-core parallelization against a single-core design, I consider an 8-lead ECG

(8L-MF), one lead per core.

3.4.1.2 Window Parallelization

For subsequent modules in the processing chain, or in the case of applications

that obtain data from a single lead, the data to be processed can be divided in

multiple windows [47,72]. In this way, each window is processed in parallel by

a different core. Furthermore, if the samples are directly collected by the DMA

module, this method enables power-gating of the platform cores over larger

periods. Energy savings stem from operating at lower frequency and voltage

than a single core and by a more aggressive application of power-gating than

possible when operating on a sample-by-sample basis.

In my example, I apply this technique to the signal enhancement (Rel-En)

and the feature extraction (R peak detection) modules. In the case of Rel-En,

I divide the window into smaller windows, with each core starting from the

first sample of each sub-window as explained in [127]. Since the Rel-En algo-

rithm computes the signal energy at the sample n using information starting

from (t (n)− 0.95
2 ) s, a small window overlapping is necessary. Therefore, the
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computational workload is, in this case, homogeneous among the cores, but

the speed-up is reduced by the introduced overhead.

On their side, R peak detection techniques usually consider fixed windows of

analysis to extract the peaks based on physiological characteristics. In our

case, the REWARD algorithm [41] uses a fixed window of 1.75 s. Therefore,

considering 8 cores, my method collects a buffer of (8×1.75)s so that each

core will compute one fixed window.

3.4.1.3 Beat Parallelization

The ECG and other cardiovascular-based signals (e.g., PPG) are characterized

by beats, each representing one cycle of the heart contraction as a periodic

wave. Applications often perform the same operation for each beat in which

there is essential information. Therefore, beat parallelization is the next step

to explore in the top-down proposed order. This technique can be applied to

any upper-level feature, time series, or excerpt of relevant information from

the signal. There are several examples of classifiers and feature extraction

techniques in the literature where this type of parallelization can be applied

[72, 117, 123, 128]. However, for simplicity I only analyze two of them, as they

represent standard techniques, similar to other examples in the literature,

which apply the same type of computation for each beat and are targeted

and implemented for embedded devices. They correspond to two of the

modules described in Section 3.2, namely the beat classification [123] and the

delineation of fiducial points [72]. In the former case, the beat is centered to

the R peak; in the latter, it comprises the signal between two R peaks. Again,

to match the characteristics of our platform, we collect eight beats, one per

core. During beat classification, the workload is data-dependent and also

varies with the window length (which may be fixed). In the case of the fiducial

points delineation, each core’s workload is linked to the natural variability of

the RR intervals (i.e., heart rate (HR)). In Section 3.4.6, I show the effect of the

different workloads on speed-up and energy consumption.

3.4.1.4 General Data-Level Parallelization

General-purpose parallelization techniques can be applied to the inner ker-

nels of each module. Good candidates at this stage common to multiple
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applications are sorting algorithms, RMS combination [47, 123], training

algorithms running on node [47], or several filtering techniques, such as

those presented in [24]. In this contribution, I study the RMS combination

algorithm, which is also used in the complete application that I analyze in

Section 3.4.6. RMS is a signal enhancement technique that computes the

root-mean-square of a buffer of data. In WSN-based biomedical applications,

this is used to combine a multi-lead signal into a single-lead one. Following

the work presented in [123], the implementation first computes the sum of

squares of the samples of the different leads and then applies a square-root to

the result. Since RMS works on sample ith from each lead independently of

the other samples, each core receives a similarly-sized subset of the samples

from all the leads.

3.4.2 Power Management and Memory Bank Scaling

When combining the modules into a full application, I apply SoC and SRAM

power-management considering the two components shown in Fig. 3.5, the

FC and the L2 memory with its independent banks. The FC in the PULP

platform is power-gated whenever the data is acquired, while it needs to

be clock-gated when the DMA stores the data in L2. Considering the low

duty cycles of typical WSN-based biomedical applications, such as the one

reported in Section 3.4.6, the time spent during acquisition and storing is

significantly high compared to the processing. The power management strat-

egy of power- and clock-gating during idle time allows to significantly reduce

the energy consumption. Moreover, during the acquisition phase, banks

not containing new data (nor application code) can be powered off. Banks

that contain captured samples waiting to be processed can be placed in re-

tention mode. Finally, only the bank currently receiving samples needs to

be active. However, since the memory needed for the analyzed biomedical

applications is significantly lower than 512 KiB, I explore the possibility of

reducing the overall memory to 128 KiB and assuming eight banks scaling

each bank size to 16 KiB. This strategy allows a smaller resolution in bank

size and a better management of the activated banks depending on the spe-

cific application, hence, reduced energy consumption. For example, let us

consider an application that needs to process a signal window of 30 s integer

16 bit acquired at a sampling frequency of 250 Hz. Since the buffer to store
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is 30s∗250Hz∗2 = 15KiB, only one bank needs to be active, on top of the

banks needed for the code. As shown in Fig. 3.5, the scaling strategy can be

pushed to the limits of feasibility and significantly lower energy consump-

tion, especially for applications with low memory footprint. Memory scaling

and management is a relevant design factor orthogonal to parallelization for

typical low duty cycle biomedical applications. I will explore this concept

further in Section 3.5.

3.4.3 Application-Level Optimizations

In addition to general-purpose power and memory management, specific

algorithmic-level optimizations for WSN-based biomedical applications

need to be applied. These optimizations are related to the usage of

computing resources. They are mapped in the cluster of cores in Fig. 3.5. For

example, one of the applications I evaluate is the beat classifier discussed

in Section 3.2, which requires several of the modules described previously.

The single-core implementation of this algorithm adapts its computational

complexity based on the outcome of the classification. First, it analyzes a

single-lead ECG and performs only R peak detection to save energy. Then, if

the algorithm detects an abnormal beat via a neuro-fuzzy classifier based

on random projections, it performs an RMS combination of a 3-lead ECG1

and a full delineation, as shown in the original paper [123]. However, this

approach can be counter-productive in multi-core platforms because the

direct execution of the 3-lead ECG analysis on three cores consumes roughly

50 % less time than the “1+2” analysis approach. In particular, with the

database used in the experiments (MITDB, c.f. Section 3.4.5), approximately

27 % of the patients experience abnormal beats more than 50 % of the time,

thus requiring the full 3-lead processing. This can be exploited at run time

by determining the frequency of execution of the full analysis: if a certain

threshold is exceeded, the system switches to the parallel version. Another

application that I evaluate is the delineation of a complete set of 12-lead ECG.

The resources assigned in this case include the full 8-core cluster. However,

after processing eight leads with an approximately equal distribution of

1Using a 3-lead electrode positioning is a medical standard in mobile ECG measurements

92



3.4 SW and HW Optimizations in Modular Biomedical Applications

computation, four cores are automatically clock-gated while the other four

process the remaining leads.

3.4.4 HW Acceleration for Intensive Computational Kernels

The last optimization that I propose is a HW acceleration of intensive com-

putational kernels, and it is mapped in a CGRA that can be connected to the

FC or the CL, as shown in Fig. 3.5. MorphoSys [129] is one of the earliest ex-

amples of CGRAs originally proposed to accelerate multimedia applications

with strong computational demands. Later works showed how a CGRA can

be used in the domain of biomedical applications to reduce power by both

accelerating common operations and reducing the energy cost of executing

those operations [46]. I consider the open-source PULP platform [130] ex-

tended with a CGRA following the design presented in [46] for biomedical

applications, which is composed of 16 reconfigurable cells (RCs) forming a

4×4 torus interconnect. The CGRA can be integrated with the SoC-domain

(i.e., connected to the FC), or in the cluster domain (i.e., connected to the

cores of the CL), accessing the L2 or L1 memories directly, respectively, as

shown in Fig. 3.5. In this contribution, I use a CGRA divided into four inde-

pendent columns of RCs; each kernel may use 1, 2 or 4 columns. Unused

columns remain clock-gated. The configuration memory is implemented as a

2 KiB standard cell memory (SCM). The cores make acceleration requests by

writing a kernel ID to the CGRA peripheral registers (one per core). The CGRA

synchronizer maps the request to the number of columns necessary to exe-

cute the specified kernel. When a core requests an acceleration, it becomes

clock-gated until the request is completed. The RCs of the CGRA have a 16-bit

datapath, which is suitable for most WSN-based biomedical applications

whose input data is typically limited by ADC resolution. However, several

modules, such as the signal enhancement, require 32-bit accumulation; thus,

it cannot be accelerated with the current platform design.

3.4.4.1 Kernel Selection

The kernel selection procedure for the CGRA follows the steps described

in [131, Chap. 3]. LLVM is used to analyze the application from the C code

and generate an execution profile report. This enables the identification of
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Table 3.2 – Computational kernels executed on the CGRA

Algorithm Kernel Notes

Morph. Filt. dblmin / dblmax Linear 1st and 2nd min./max.
search in a vector

Fiducial points maxpeak Linear peak (absolute max.)
search in a vector

Beat classification min_max Circular min. and max. search
in a vector

computationally intensive loops that are good candidates for CGRA accelera-

tion.2 Finally, kernels that do not meet the design constraints of our CGRA

are discarded. In that sense, the main limiting factor is the small instruc-

tion memory of the CGRA (16 32-bit instructions per RC), which restricts the

selection to short kernels. Table 3.2 lists the kernels executed on the CGRA.

3.4.4.2 Kernel Mapping

To map kernels on the CGRA, the C code disassembly is inspected to identify

operations that can be parallelized. Then, these operations are translated to

the CGRA instruction set and distributed over the RCs and columns. This last

step is done manually to fully exploit the torus interconnect of the CGRA—

each RC is connected to its neighbours—generating the data flow execution

that is one of the advantages of this CGRA design.

3.4.5 Experimental Setup

3.4.5.1 Test Benches for Biomedical Modules

I designed a test bench for each module that includes appropriate input sig-

nals. For the filtering, signal enhancement, and signal delineation modules, I

consider excerpts of signals from the Physionet QT database (QTDB) [78]. This

database was used to analyze the three single-core benchmarks presented in

Section 3.2 by [41]. I chose four signals from the QTDB, as four examples that

2If LLVM is not available for the target platform, cycle-accurate simulators, such as those
available in the PULP SDK, can be used in combination with processor HW counters to
profile the main blocks of the application.
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represent worst, best, and two average cases in terms of a combination of

noise and shape of the three ECG waves (Fig. 3.6). For the inference module,

I consider the MIT-BIH Arrhythmia Database (MITDB) [132], as reported

in [123]. I chose four signals as worst, best and two average cases in terms

of percentage of abnormal beats over the total number of annotated beats

(Fig. 3.7). Its output is a label classifying the beat depending on the pathology:

“N” for normal beats, “V” for premature ventricular contraction, “L” for left

branch block and “U” for unknown. For all the modules, the choice of four

cases should describe most of the design space in terms of complexity and

energy consumption due to data-dependent variability. The performance in

terms of accuracy of all the methods was not affected by the parallelization

process.

3.4.5.2 Test Benches for Biomedical Application

To better evaluate the impact of the proposed optimizations, I evaluate two

applications, with data capturing periods, using our biomedical modules.

First, I consider a 3-lead heartbeat classifying application [123]. This appli-

cation applies MF, Rel-En, and R peak detection on one lead (lead I). If the

heartbeats are classified as normal, the algorithm goes to the next window of

analysis. However, if any abnormality is detected (e.g., the beat is classified

as “V”,“L” or “U”), then it applies the same methods and fiducial points de-

tection to the other two leads (leads II & III) to supply additional information.

Second, I implement an application processing the complete set of 12-lead

ECG signals. Such application is required for medical compliance and used

in intensive care units of hospitals, or in athletic or military training super-

vision. It combines the modules MF, RMS (to combine all the signals into a

single one), R peak, and fiducial points detection. Both applications capture

ECG samples during 15 s; then, the system becomes active to process. The

performance in terms of accuracy of both applications was not affected by

the parallelization process.

3.4.5.3 Multi-Core WSN Platform: PULP+CGRA

To measure the execution time of both independent modules and complete

applications I used the open PULP platform [130]. PULP provides the RTL

description of the multi-core platform and an SDK to run RTL simulations,
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Figure 3.6 – Four signals selected from the Physionet QT database
(QTDB) [78] representing best, worst, and two average cases
in terms of a combination of noise and shape of the three
ECG waves. The four signals are shown on standard ECG
sheets containing small squares of 1 mm·1 mm correspond-
ing to 40 ms (horizontal) and 0.1 mV (vertical) [60]. They
also include big squares of 5 mm·5 mm, and correspond to
200 ms·0.5 mV.
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Figure 3.7 – Four signals selected from the MIT-BIH Arrhythmia Database
(MITDB) [132] representing worst, best, and two average
cases in terms of percentage of abnormal beats over the
total number of annotated beats. The four signals are
shown on standard ECG sheets containing small squares of
1 mm·1 mm corresponding to 40 ms (horizontal) and 0.1 mV
(vertical) [60]. They also include big squares of 5 mm·5 mm,
and correspond to 200 ms·0.5 mV.
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using Modelsim, in order to obtain cycle-accurate timings. Additionally, to

further explore the advantages of heterogeneous platforms, I consider the

CGRA that was added to the cluster domain integrating it in the existing

cycle-accurate simulation flow. I used the power numbers reported for a

chip based on the PULP architecture implemented in TSMC 40 nm LP CMOS

technology, Mr.Wolf [49]. This SoC features a streamlined 12 k-gates RISC-V

main processor (Zero-riscy [125]) (i.e., FC) and an 8-core compute cluster

(i.e., CL) with DSP extensions (RI5CY). This platform includes eight physical

memory banks for the 512 KiB L2 memory. I picked the lowest energy point

of the platform, at 0.8 V. The platform requires 3.6µW when power-gated3

and 12.6µW with full L2 retention—since typical biomedical applications

require small amounts of memory, the size of the L2 was reduced to one

fourth (i.e., 128 KiB), while maintaining the same bank number, and cor-

respondingly reducing its power requirements. When the SoC is active, it

requires 0.98 mW with its main processor clock-gated, and 6.66 mW with it

operating at 170 MHz. Once the CL is activated, it requires 0.61 mW with all

cores clock-gated and 18.87 mW with the eight cores running at 110 MHz.

The power estimations for the CGRA are obtained through pre-layout netlist

simulation with the TSMC 40 nm LP CMOS technology. The CGRA requires

104µW when idle, with an average power of 669µW when active. The CGRA

and the CL are power-gated together.

First, I performed the RTL simulation and estimated the energy consump-

tion on the test benches for biomedical modules to show the impact of the

modular SW optimizations, as shown in Section 3.4.6.1. Then, I ran the RTL

simulation and estimated the energy consumption on the complete appli-

cations to report in Section 3.4.6.2 the impact of parallelization, memory

scaling, and HW acceleration.

3As reported for GAP-8 [48], which is an industrial version of PULP with SoA deep sleep
optimizations not yet included in its academic counterpart.
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Figure 3.8 – Computation time and corresponding speed-up of each ana-
lyzed module for multi-core and multi-core + CGRA imple-
mentations versus a single-core one.

3.4.6 Experimental Results

3.4.6.1 Per-Module Speed-Ups and Energy Savings on PULP

Figure 3.8 shows the execution time of each module with the single- and

multi-core implementations and the geometric mean of the obtained speed-

ups. The maximum speed-up (7.1×) is reached in the Rel-En module, despite

its small overhead due to the window overlapping scheme. For the remaining

modules, the speed-up varies between 4.8× and 7.0×, which is above the

threshold of speed-up for the PULP platforms discussed in Section 3.3.4. The

RMS module, which applies a data-level parallelization, reaches a speed-up

of 7.0×, since the eight cores work independently on similar workloads. The

MF module is executed on the same trace repeated for the eight leads to have

the same workload and show a data-independent multi-core processing. This

module achieves a similar speed-up of 6.8×, which is justified by two factors:

the eight cores in the CL run at a lower frequency than the FC (i.e., ≈ 0.65×),

but they have a higher IPC.
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Table 3.3 – Execution time of the delineation module for different subjects
from the Physionet QTDB [78] and the subsequent varying
speed-ups

SUBJECT SINGLE-CORE MULTI-CORE SPEED-UP
(ms) (ms)

1 2.77 0.67 4.13×
2 3.66 0.78 4.69×
3 4.72 0.93 5.08×
4 3.88 0.75 5.17×

Table 3.4 – Energy savings in the delineation module on four subjects from
the Physionet QTDB [78] for the single-core and multi-core
platforms

SUBJECT SINGLE-CORE MULTI-CORE SAVINGS
(µJ) (µJ) (%)

1 18.4 11.3 38.6
2 24.3 13.6 44.0
3 31.4 16.4 47.8
4 25.8 13.2 48.8

The minimum speed-up (4.8×) is obtained for the delineation module (Del)

because the workload cannot be divided evenly among the cores: first, the R

peak detection algorithm has several data-dependent conditional branches

that change the execution path for different cores; second, the beat par-

allelization used during the delineation depends on how many peaks are

detected; finally, the beat length (i.e., the RR interval) is variable and, hence,

the size of the input varies for each core. This effect can be observed in the

time spent in the delineation module (Table 3.3) for four different subjects

from QTDB.

The previous speed-ups translate neatly into energy savings. Figure 3.9 re-

ports the geometric mean of the energy consumption for each module over

the four chosen subjects of [78] and [132]. The maximum energy savings

of the multi-core design correspond to the RMS (60 %) and Rel-En (58 %)
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Figure 3.9 – Per-module energy consumption and savings (geometric
mean) compared to the single-core design.

modules, which are also the modules with the highest speed-up. Again, the

minimum energy savings (45%) are obtained for the delineation module due

to the variability in the load of each core (Table 3.4).

3.4.6.2 Application-Level Energy Savings on PULP

I evaluate the impact of the previous optimizations on two different modular

applications, including the energy spent during data capturing periods. First,

I consider a 3-lead heartbeat classifying application [123] in three different

configurations depending on the optimizations discussed in Section 3.4.3.

Then, I consider the 12-lead ECG delineation application. Table 3.5 shows

the energy and time results for these applications. The values reported in-

clude memory scaling to banks of 16 KiB on both single- and multi-core

implementations.

The multi-core configuration of the platform is the most efficient option in

the four cases analyzed. Even for the 1-lead application, where MF is the

most expensive module (i.e., 81.6 % of the active time) and it is executed
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Table 3.5 – Average results of energy consumption (including data capture)
and execution time on PULP (with memory scaling) for the
complete applications on four subjects

# of leads Single core Multi-core
Energy Time Energy Savings Time Speed-up

(mJ) (s) (mJ) (%) (s) (×)

1 lead 0.326 0.025 0.302 7.3 0.019 1.28
1+2 leads 0.611 0.068 0.588 3.7 0.041 1.66
3 leads 0.611 0.068 0.493 19.3 0.023 2.95

12 leads 1.78 0.238 1.00 43.5 0.046 5.14

on the FC, by parallelizing the other modules on the CL, I obtain modest

energy savings (7.3 %). The total speed-up is low (1.28×) due to the small

percentage of parallel code. However, the average speed-up of all the other

parallel modules (approximately 5.6×) and the memory scaling are enough

to achieve fair savings. However, when the application detects abnormal

beats the following strategies (1+2 leads and 3 leads) can be applied. In the

first case, which follows the optimizations of [123], processing the additional

two leads after the first one limits the energy savings since the obtained

speed-up is not enough to offset the energy of the cores of the CL during the

extended period. However, if the beat classifier detects abnormal events often

enough, the application can use the second strategy and process the three

leads in parallel. In that case, the parallel version would achieve a reduction

in computation time of 66 % and 19.3 % in energy. In this way, the three leads

are analyzed simultaneously on three active cores of the CL while the others

are clock-gated, enabling better energy savings.

Considering the low computational load of this application, the energy sav-

ings of the multi-core optimization are modest but still significant. However,

applications requiring medical compliance, such as in intensive care units

of hospitals, or in athletic or military training supervision, must process the

complete set of 12-lead ECG signals, which generates higher computational

load. The last row of Table 3.5 shows that the parallel version achieves, in this

case, a speed-up of 5.14× and energy savings of 43.5 %.
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Figure 3.10 – Decomposition of energy consumption for the 3-lead and 12-
lead ECG applications for PULP, including memory scaling.

I investigate the use of HW acceleration for the cases of 3-lead and 12-lead

ECG signals, which can be observed in Fig. 3.10. The savings achieved by ac-

celerating some intensive computational kernels in the 3-lead beat classifier

application are 67 % in time and 2.9 % in energy compared to the multi-core

implementation. The reason for the modest energy saving is the low com-

putational load of the 3-lead application. Moreover, the minimalist CGRA

design covers only a small amount of the total number of executed instruc-

tions, limiting its impact. Compared to the single-core implementation, it

represents 21.6 % of energy savings. For the 12-lead application, the impact

is more significant due to the higher computational load, with 9.6 % of addi-

tional energy savings compared to the multi-core implementation. However,

as the figure shows, for low duty cycle applications, such as the 3-lead beat

classifier, the energy consumed by the memories during sampling, although

not dominant, is significant. In the case of the 12-lead application, the energy

consumed during computation is much higher than the energy consumed

by the memories during the sampling period (Fig. 3.10), hence the higher

savings achieved. In fact, the energy during memory management was highly

reduced by applying size scaling of each memory bank from the original
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64 KiB of [49] to 16 KiB and memory management to keep only the bank

needed by the application in active or retentive state. In applications with

low computation load, one possible solution would be to design the SRAMs

with a more significant number of banks and scale to the feasible resolution

to enable a more aggressive power management during data sampling peri-

ods. I will explore different scaling factors for the second contribution of this

chapter, described in Section 3.5.

Finally, in Table 3.6, I show a summary of the energy savings compared to the

single-core configuration applying the optimizations described in Section

3.4. The three main optimizations, including parallelization, memory scaling

and HW acceleration, can be applied orthogonally and significantly reduce

the energy consumption compared to the traditional single-core implemen-

tation. For example, by applying memory scaling directly to the single-core

implementation, the energy savings reach up to 23.45 % (this result corre-

sponds to the value of the first column of Table 3.5 within a small rounding

error). Additionally, it is possible to apply HW acceleration not only on the

multi-core implementation but on the single-core design, achieving energy

savings from 9.03 % up to 27.05 %. Therefore, the designer of WSN-based

biomedical applications should take into account modularity and parallel

implementation, memory scaling and, HW acceleration.

3.5 Patient-Specific Optimizations for Multi-Core

Ultra-Low Power Platforms
With the final goal of saving energy for a personalized continuous monitoring

and explore further the optimizations already presented in Section 3.4, I

design a patient-specific parallelization technique targeting a multi-core

platform and I apply memory and power management. As a starting point

to apply these optimizations, I consider the online PAF prediction algorithm

tested in a single-core platform analyzed in Section 2.4.2. The parameters

and model selected during the learning phase, described in Section 2.4.2.3,

are the configuration inputs to assign the resources in a multi-core wearable

embedded device considering the specific characteristics of the patient.
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Table 3.6 – Summary of energy savings applying the SW parallelization
techniques, the HW acceleration and the memory scaling for
the analyzed applications on the PULP platform. “1 lead”,
“1+2 leads”, and “3 leads” represent different configurations
of the heartbeat classifier. The “12 leads” corresponds to the
12-lead delineation.

Heartbeat classifier Delineation

1 lead 1+2 leads 3 leads 12 leads

Energy
(mJ)

Single-core 0.43 0.71 0.71 1.86

Energy
savings
(%)

Multi-core 6.51 3.18 16.56 41.57

Single-core +
CGRA

3.61 4.68 4.68 3.61

Single-core +
Memory scaling

23.45 14.05 14.05 4.53

Multi-core +
CGRA

6.59 6.37 18.58 46.73

Multi-core +
Memory scaling

29.95 17.23 30.60 46.10

Single-core +
CGRA +
Memory scaling

27.05 18.73 18.73 9.03

Multi-core +
CGRA +
Memory scaling

30.03 20.42 32.62 51.26
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Figure 3.11 – Block diagram of the real-time personalized PAF prediction
highlighting that steps that are parallelized.

3.5.1 Patient-Specific Parallelization for Multi-Core Plat-

forms

Considering the number of consecutive beats selected at training time for

each patient (n), I apply a patient-specific parallelization by varying the

number of cores depending on n. The method consists of a three-step paral-

lelization process by using #cor es = n+1, where n changes depending on the

patient. Figure 3.11 shows the blocks of the real-time PAF prediction that are

parallelized. The filtering step was designed to be parallelized on leads [46],

as shown in Section 3.4. However, since I use a single-lead ECG, this step is

not parallelized in this application. The three steps that can be parallelized

are the signal enhancement preprocessing, Rel-En, the R peak detection steps

of REWARD [41], and the selective feature extraction (cf. Section 2.4.3.1 and

Section 3.2.3). Since the selective feature extraction includes the computa-

tion of the RR interval, the algorithm needs n +1 consecutive beats to extract

all the necessary features. Considering that n = 3,4, ...7, I can assign from

four to eight cores for the multi-core implementation. In order to parallelize

on the feature extraction, n +1 consecutive beats are required, hence, the

multi-core implementation needs to collect a specific window of analysis and

then process the data. In this way, I exploit the characteristics of modern ULP

architectures, by storing a buffer using the DMA until it reaches the desired

length, processing at the lowest voltage, but also at the maximum operating

frequency, and enabling a faster computation.

Fig. 3.12 shows the three steps of the algorithm that are parallelized. Let

us consider an example where at training time, the method chose n = 3 for

one specific patient, therefore #cor es = 4 are assigned. Since the first two

steps are part of the REWARD algorithm for R peak detection, I can define the
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Figure 3.12 – Proposed personalized parallelization by choosing the num-
ber of cores based on n number of consecutive beats to
analyze, so that #cor es = n +1.

window length of analysis based on how many peaks the R peak detection

can detect. The R peak detection needs a minimum window length of 1.75 s

to detect at least one peak. Since I need four peaks the window of analysis

is (1.75∗4)s. Moreover, the Rel-En step computes the energy of the signal

for each sample by using the information of a specific window of 0.95 s [41].

Therefore, the final window length for this specific case is (1.75∗4+0.95)s.

Fig. 3.12a shows the parallelization applied to the Rel-En step. For this case, I

can parallelize on four cores by dividing the window of analysis in four parts

and assigning different windows to different cores, with an overlap. Fig. 3.12b
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shows the parallelization applied to the R peak detection step. In this step,

the cores are assigned to four windows of 1.75 s, subtracting the delay of

0.95 s. Both steps use the window parallelization technique described in

Section 3.4.1.2. Finally, the last step is the selective feature extraction, which

uses the beat parallelization technique described in Section 3.4.1.2. This is

performed within a peak-to-peak interval, and each core is assigned to one

of the beats within the small window of analysis, containing in this case four

peak-to-peak intervals. Since within 1.75 s there might be more than one

peak, the feature extraction will reassign the cores to the next small window

of three consecutive beats. All in all, the proposed parallelization exploits the

patient-specific model parameters to save energy for an optimal personalized

continuous monitoring in an ULP multi-core platform.

3.5.2 Memory and Power Management

Considering the modern ULP multi-core wearable sensors, in particular the

GAP8 architecture [48], I apply memory management to the multi-core de-

sign to save energy during the signal buffering, which depends on the patient

model. Considering the GAP8 L2 memory characteristics, I explore the pos-

sibility of reducing the total L2 memory size and, therefore, the bank size to

meet the conditions of the application. First, for the single-core design, I con-

sider a total of 64 KiB as a baseline, increasing the number of banks to eight

and reducing the bank size to 8 KiB, since up to 48 KiB are required. Then, for

the multi-core design, I explore lower bank sizes of 4 KiB, 2 KiB, 1 KiB with a

total of 32 KiB, and increasing the number of memory banks. Considering

smaller bank sizes, it is possible to power off the unneeded banks, based on

the window length of analysis, thus on the patient model. Moreover, since the

buffer requires more banks I alternate retention/active mode for buffer slices

already stored. Hence, if for two patients I use windows of analysis from 4 KiB

to 8 KiB, by reducing the bank size resolution (for example, to the minimum

of 1 KiB) I can have a more efficient patient-specific memory management

and an overall reduction in energy consumption. Finally, my design includes

switching to deep sleep mode between the acquisition and storage of two

samples since the signal sampling frequency is low.
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3.5.3 Experimental Setup

In this section I describe the database used for training the models, the test

bench and the platform analyzed for the multi-core design.

3.5.3.1 Database and Test Bench for Multi-Core Design

I apply the framework to the PAF Prediction Challenge (2001) Physionet

database [108], which contains 53 patients affected by PAF. For each patient

two 30-minute ECG signals close to and far from a PAF event are acquired

at a sampling frequency of 128 Hz and, then, resampled at 250 Hz. The per-

sonalized training process has been described in Section 2.4.2. The training

data includes the last 350 beats of the recording (approximately 3–9 min

considering a HR range from 40 beats per minute (BPM) to 110 BPM). The

testing process is done on the remaining of the recording for the signals close

to a PAF event. For the signal far from any event, the method configures

the minimum window of prediction on two-thirds of the remaining signal

(cf. Section 2.4.2.3) and then tests on the remaining third.

I chose six cases that vary in terms of configuration parameters to evaluate

one window of analysis when a PAF event occurs (the same as the ones

reported in Section 2.4.4.1). I consider a set of input parameters trained

for each patient, namely, the window length-related parameters n and m,

the selected group of features, and the classification threshold, described

in Section 2.4.2.2 and Section 2.4.2.3. Specifically, I select from a worst to

a best case scenario, considering the sum of each configuration parameter

computational cost. Finally, the window of analysis varies from 15 s to 45 s,

depending on the patient. The multi-core method is designed to collect a

window buffer depending on the number of cores (i.e., number of consecutive

beats different for each patient).

3.5.3.2 Platform for Multi-Core Design: The GAP8 Sensor

GAP8 [48] is a commercial RISC-V implementation based on the PULP

project [45] and built on a 55 nm technology. Its structure is similar to the

main PULP architecture described in Section 3.3, with a main core (i.e., FC),

and a cluster of eight cores (i.e., CL). In order to observe the energy savings,
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I implement a window-based single-core design, similar to the multi-core

one but running on the FC of GAP8 [48], instead of the CL. I use an open

source SDK that simulates a RISC-V PULP platform [130] to profile the

window-based single-core and multi-core designs. I profile the active cycles

of the different cores in the RTL simulation and, then, I estimate the energy

consumption using the power numbers for the GAP8 platform provided

by [48], running at the lowest possible voltage supply 1 V and maximum

operating frequency of 150 MHz in the SoC and 90 MHz in the CL. Moreover,

during the idle time the platform is set at the lowest power leakage of

3.6µW, since the deep sleep mode mostly dominates the consumption in the

analyzed application. Furthermore, the GAP8 platform contains a 30µW fully

retentive memory of 512 KiB that can be divided into four banks of 128 KiB.

Then, since my personalized and parallelized AF prediction algorithm does

not need more than 64 KiB of storage, the overall memory was reduced to

64 KiB; thus, reducing the consumption to 10µW, accounting for the leakage

and the memory retention. Additionally, I explore bank size scaling from

8 KiB, 4 KiB, 2 KiB to a minimum of 1 KiB. To account for the memory and

power management I estimate the energy spent in storing the window buffer

with different bank sizes and entering deep sleep mode between the samples.

3.5.4 Experimental Results

In this section, I report the energy consumption and corresponding savings

of the real-time personalized window-based PAF prediction approach on the

analyzed multi-core. First, I show the energy savings achieved by the person-

alized parallelization technique in active mode. Then, I report the energy

savings achieved by applying power and memory management, specifically

the personalized bank size scaling. Finally, I show the comparison of the total

energy consumption between the single- and the multi-core designs.

3.5.4.1 Energy Savings in Personalized Multi-Core Design

The ULP multi-core architecture described in 3.5.1 assigns a different number

of cores depending on the patient model. In this section, I discuss the energy

savings derived by applying the patient-specific parallelization.
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Figure 3.13 – Energy consumption in µJ during processing for the selected
six cases for single-core and multi-core.

Fig. 3.13 shows the energy consumption of the six cases of the test bench. I re-

port the energy consumed in the single-core window-based design compared

to the multi-core. For the six cases, the multi-core design performs better

than the single-core design with energy savings from approximately 13 % up

to 24 %. The difference between the patients is directly depending on the

corresponding training model and patient-specific parallelization. Since the

number of cores depends on the small window length of n consecutive beats,

the personalized selection of the window length directly affects the energy

consumption. To describe this effect, I refer to the different configurations

of the model described in Fig. 3.4 (cf. Section 3.3.5). In this figure, I report

the cases analyzed by considering only the potential energy savings of the

parallel implementation, while Fig. 3.13 shows the energy savings of the full

implementation. Moreover, in Fig. 3.4, I also consider the energy consumed

in idle time with one bank active. However, the final results in energy savings

reflect the analysis previously mentioned. Furthermore, Table 3.7 reports

a summary of the application features for the six analyzed cases and the

corresponding energy results during processing, according to the analysis

done in Section 3.3.5.

111



Chapter 3. Modular and patient-specific optimizations in modern
wearable sensor nodes

Let us consider two examples within the 5-core configuration, namely, Pa-

tient 15 and Patient 37, which have a duty cycle of 0.038 % and 0.044 %, respec-

tively, for the parallel implementation. Even though the case of Patient 15

reaches a higher speed-up of 3.96× (3.63× for Patient 37), the case of Pa-

tient 37 achieves higher energy savings. Moreover, if we consider the case of

Patient 45, which achieves a speed-up of 3.02× with only four cores active,

the parallel implementation (that only represents 30 % of the total computa-

tion) achieves better energy savings compared to a higher number of active

cores for the same speed-up. Finally, if we consider the case of Patient 10,

implemented in an 8-core configuration, it has a duty cycle of 0.069 % (ap-

proximately 43 % of the total computation) and it reaches a speed-up of

4.53×. This case achieves the highest overall energy savings of 23.6 %, which

is explained by the higher value of duty cycle compared to the other cases.

In fact, the speed-up is comparable to the case of Patient 18, implemented

with a 6-core configuration, but its duty cycle is double. Moreover, if we com-

pare the cases of Patient 10, Patient 37, and Patient 41 (duty cycle of 0.041 %

and highest speed-up of 5.46× with a 7-core configuration), it is possible to

observe the effects of the trade-off between the three variables analyzed in

Section 3.3.5. Indeed, as shown in Table 3.7, the three cases achieve high and

comparable energy savings due to a varying number of active cores, speed-up,

and duty cycle. This effect is also visible in the cases of lower energy savings

in Fig. 3.4 and the corresponding values in Table 3.7.

The results show how the patient-specific multi-core design allows to scale

the computational load by assigning the number of cores depending on the

personalized application model and, therefore, scale and save energy.

3.5.4.2 Energy Savings with Memory Banks Management

As described in Section 3.5.2, I apply memory management scaling the bank

sizes of the GAP8 L2 memory to 8 KiB, 4 KiB, 2 KiB and 1 KiB. In Table 3.8, I

show the results of the energy savings for the memory and sleep mode in a

window of analysis compared to the single-core window-based design. The

single-core bank size is 8 KiB with the necessary number of banks powered on

depending on the patient. The results show two orthogonal levels of energy

savings. The first one is the buffer length which depends on the number
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Table 3.7 – Summary of the energy savings during processing for the six
analyzed cases compared to the application features

Patient

10 15 18 37 41 45

Application
features

# Active
cores

8 5 6 5 7 4

Speed-up
(×)

4.53 3.96 4.20 3.63 5.46 3.02

Duty cycle
parallel (%)

0.069 0.038 0.036 0.044 0.041 0.039

Parallel
code (%)

43.05 28.95 27.04 38.15 33.73 30.43

Results
energy
processing

Single-core
energy (µJ)

649.9 343.9 408.2 300.5 429.1 271.5

Multi-core
energy (µJ)

496.6 290.3 347.9 242.4 339.5 235.2

Energy
savings (%)

23.6 15.6 14.8 19.3 20.9 13.4

Table 3.8 – Energy savings with memory management considering different
buffer lengths and bank sizes

Bank size (KiB)

8 4 2 1

Buffer size (KiB)
(patient-specific)

7.5 18.2% 26.1% 27.8% 29.8%

4.8 10.3% 19.6% 24.0% 24.9%

5.7 10.3% 19.2% 21.2% 23.4%

4.8 10.3% 19.6% 21.5% 23.7%

6.6 10.3% 18.93% 20.87% 23.03%

4 0% 11.1% 15.9% 16.9%
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of cores, hence, varying from 4 KiB to 7.5 KiB in this application. On this

level, by keeping the bank size fixed for all the buffer size cases the memory

management strategy achieves energy savings up to 18 % compared to the

single-core design. The second level is fixing the buffer size and varying

the bank size. By scaling from 8 KiB to 4 KiB, the strategy reaches energy

savings up to approximately 10 %. A further scaling to 8 KiB or 1 KiB results

in a significant improvement, up to 17 % (i.e., for the smallest buffer length

of 4 KiB). Overall, the platform can get up to 30 % of savings during buffer

storage and sleeping between samples compared to the single-core design by

scaling the bank size to the minimum of 1 KiB.

3.5.4.3 Comparison of Total Energy Consumption in Single and Multi-
Core Design

I combine the results of the energy consumed during the processing and in

storage and deep sleep mode to show the overall savings of the multi-core de-

sign compared to the single-core design. Additionally, I show the energy con-

sumed in the single-core original sample-by-sample design. Fig. 3.14 shows

the energy consumed in µJ for the sum of processing (green) and memory and

sleep (pink). In all the cases, the energy consumed during the processing is up

to 6× the energy consumed in the memory and sleep. Therefore, the impact

of the memory management on the overall energy consumption is reduced

to 5–6% from the values presented in Table 3.8, although still significant. The

multi-core design reduces the energy consumption more in the cases with

more computational load (i.e., Patient 10) up to 33.9 %. The minimum value

of energy savings reached in the six cases analyzed is 14.5 % compared to the

single-core designs. In this case, the single-core sample-by-sample design

can be more or less efficient than the window-based one because of different

conditions. First, since the MF is always running on the FC this step accounts

for 57 % to 73 % of the total computation, depending on the patient model.

Second, the model itself varies the computational load considering the differ-

ent configuration parameters for each patient (i.e., the features extracted, the

small window of consecutive beats and sliding window, and the classification

threshold). Finally, the multi-core design uses the L1 memory to store the

buffers and variables used by the parallelization steps. Accessing the L1 mem-

ory from the CL is more efficient than accessing the L2 from the SoC. The
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Figure 3.14 – Energy consumption in µJ during processing for the selected
six cases (“PT” as “Patient”) for single-core sample-by-
sample (SBS), single-core window-based (SCW) and parallel
(PAR).

results show how a multi-core design where the number of cores and memory

bank sizes are scaled according to personalized models for biomedical ap-

plications is advised in modern ULP platforms. From the results, even if the

parallelization step counts for only 30 % of the total computation, the energy

savings of the two combined optimizations show a sufficient improvement

compared to the single-core design.

3.6 Conclusion
Modern ULP platforms for wearable sensors offer characteristics such as

multiprocessing, clock- and power-gating that enable power and memory

management and HW acceleration. In this chapter, I have proposed two

methods for platform optimizations in the context of WSN-based biomedical

applications.

In the first method, I propose a top-down approach of parallelization tech-

niques to improve the mapping of modular biomedical applications. Addi-
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tionally, I have shown how heterogeneous platforms can benefit from domain-

specific accelerators, such as CGRAs, and memory scaling and management

to further reduce energy consumption. I have demonstrated my proposal

on a set of independent modules typical of WSN-based biomedical applica-

tions and on two composed multi-lead ECG-based applications. The results

demonstrate energy savings of up to 60 % for the RMS module and up to

41.6 % for a complete multi-core application processing 12-lead ECG signals

for a general PULP platform. Furthermore, I demonstrated that memory scal-

ing is an orthogonal optimization that can be exploited to achieve additional

energy savings up to 23.45 %. Finally, the experiments have also established

that the domain-specific accelerator used can increase the energy savings

to 46.7 % for the 12-lead delineation and 18.6 % for the complete heartbeat

classifier. Thus, the overall combined energy savings reach up to 51.3 %.

In the second contribution, I have proven the portability, energy saving and

scalability of an online, energy-efficient, and personalized PAF prediction

method (proposed in Section 2.4) on the new generation of ULP multi-core

architectures, based on the ULP GAP8 IoT architecture. In detail, I proposed a

parallelization technique that assigns the number of cores depending on each

patient’s characteristics. Moreover, I explored the use of memory bank sizing

(from 8 KiB to a minimum of 1 KiB) and buffer length sizing for a different

number of cores, specific to each patient. My final ULP multi-core design

combining processing and memory scalability achieves up to 34 % of energy

savings with respect to the original single-core sensor design. A dynamic

reconfiguration of the personalized parameters and resource assignment

after the occurrence of new PAF events is a highly suitable extension of this

work in future research (c.f. Chapter 5).

These two approaches show how platform optimizations are as relevant and

needed as algorithmic optimizations to reduce energy consumption though

maintaining the high accuracy required by WSN-based biomedical applica-

tions. The final step in the design of WSN for remote wellness monitoring is

combining the two sets of optimizations described in Chapter 2 and Chapter

3, to design an adaptive system that achieves an optimal energy-accuracy

trade-off.
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After the exploration of algorithmic and platform optimizations, the last step

to reach an optimal energy-accuracy trade-off is through an online adaptive

design of algorithms in modern ultra-low power (ULP) platforms. In fact,

in biomedical applications for wellness monitoring, the conditions often

change quickly (e.g., different physical activity intensities, sudden events in

pathologies, etc.), which require adapting in real-time the complexity and

accuracy of the algorithms and the use of platform resources.

In this chapter, I propose an online adaptive design of an R peak detection

algorithm using an electrocardiogram (ECG), in the context of an incremental

physical stress test. When the algorithm detects at run time an accuracy

error on a less robust but less complex algorithm that runs by default on the

main core, it triggers a more complex but more accurate method on a second

energy-efficient core.

4.1 Introduction
In complex biomedical applications for remote wellness monitoring, the

output accuracy is of most importance. However, implementing these appli-

cations in traditional wearable sensor nodes (WSNs) can cause a substantial

draining of platform resources leading to frequent device charging [133].

Moreover, different algorithmic optimizations to lower the device energy con-

sumption can lead to a decrease in the algorithm output accuracy [134]. With
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the advent of modern ULP platforms and their capabilities, optimizing the

energy consumption of the device resources maintaining a highly accurate

output has become more attainable [73, 120, 135, 136]. Nevertheless, in the

context of complex biomedical applications for WSN-based wellness moni-

toring, the designer faces new challenges to reach an optimal energy-accuracy

trade-off. First, there exist different pathologies or physical conditions where

sudden events occur in the acquired and analyzed biosignals that traditional

algorithms can miss or misinterpret (e.g., atrial fibrillation (AF) or intense

physical exercise) [56, 137–139], hence, their robustness in these cases is

compromised. Second, another problem is the static nature of traditional

algorithms and the need for handling and adapting the platform resources

at run time according to the complexity of the application. New algorithms

tackle self-aware applications at the algorithmic level applying a multi-layer

classification or detection system with increasing complexity [123, 140, 141].

Based on the confidence of the low complexity classifiers or the detection

of pathological events, the algorithm decides if it will run a more complex

layer and therefore consume more energy. However, these algorithms are

targeted to traditional homogeneous platforms, and some do not consider

the error in the pathological events detection. There are examples reporting

the advantages of adaptive design in terms of energy-accuracy trade-offs,

such as in [142]. However, it is in the context of activity recognition in mobile

phones. For ECG-based applications where sudden events occur, the need

for adaptive and robust strategies starts with the R peak detection, as it is the

base for most ECG analyses.

For these reasons, in this chapter, I propose an online adaptive design of a

new ECG R peak detection algorithm, which exploits the capabilities and

heterogeneity of modern ULP platforms. The proposed design introduces for

the first time, BayeSlope, a slope-based R peak detection that uses a Bayesian

filter, non-linear normalization, and a clustering technique. In the literature,

the use of slope-based QRS detectors has been extensive [61, 68]. There are

examples of the use of the Kalman filter for smoothed estimation of the heart

rate (HR), different than R peak detection, and using multiple signals [143].

However, many of these works target ambulatory monitoring. Therefore, to

the best of my knowledge, this is the first time that an R peak detection like
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BayeSlope is used in the context of intense physical exercise. In fact, I apply

the proposed method to a dataset collected in collaboration with the Institut

des sciences du sport de l’Université de Lausanne (ISSUL), where the subjects

performed an incremental stress test on a cycle ergometer till exhaustion.

The outcomes of this contribution are:

• I propose a new highly accurate slope-based R peak detection, called

BayeSlope, based on unsupervised learning. My new R peak detection

method applies a Bayesian filter and a non-linear normalization to the

input signal to enhance and correctly detect the next R peak in the

expected position on a peak-to-peak resolution.

• I pair the newly proposed algorithm with the REWARD algorithm, pre-

sented in Chapter 2, which is less complex though more prone to error

if sudden events occur. To ensure the adaptive nature of the design, I

propose an error detection routine applied to REWARD that triggers

BayeSlope if REWARD fails.

• The heterogeneity of the platform allows to run BayeSlope on a more

capable core than the one where REWARD runs, which is simpler. In

fact, the R peak detection step of REWARD is approximately 104× less

complex than BayeSlope when running on the same core. Therefore, a

simpler and faster processor can handle it better, while a more powerful

core handles better the more complex BayeSlope.

• The fully adaptive process has an F1 score of up to 99.0 % compared to

92.5 % when running only REWARD, across five different exercise inten-

sities. Moreover, the adaptive process loses less than 1 % in accuracy

compared to always running BayeSlope, which achieves an F1 score

up to 99.3 %, across the five exercise intensities. However, the adaptive

method implemented in modern heterogeneous platforms can reach

energy savings up to 38.7 % compared to always executing BayeSlope.

Therefore, the newly proposed adaptive design is the best solution for

an optimal energy-accuracy trade-off.

In Section 4.2, I describe the background of the application analyzed and

the relevance of a highly accurate R peak detection in such conditions. In

119



Chapter 4. Online adaptive design for enhanced energy-accuracy
trade-off

(a) (b)

Figure 4.1 – Standard protocol for gas analysis during incremental exercise
stress test on a cycle ergometer

Section 4.3, I present the new R peak detection algorithm and its adaptive

design. In Section 4.4, I describe the protocol of the experiments and the

platform used. Finally, in Section 4.5 and Section 4.6, I present, respectively,

the results and the conclusion of my analysis.

4.2 Background
In Chapter 2, I described the medical relevance of the R peak detection in an

ECG for the diagnosis of cardiovascular diseases (CVDs) and for the analysis

of the heart rate variability (HRV) in wellness monitoring. In this chapter,

I focus on the importance of the latter in the context of assessing the respi-

ratory and cardiovascular state during intense physical exercise. To capture

this state, there exists a gold standard protocol where the subject performs

an incremental exercise stress test on a cycle ergometer or a treadmill till

exhaustion wearing a gas mask (c.f., Fig. 4.1) that measures the volume of

O2 and CO2 (VO2, VCO2) inhaled and exhaled [144, 145]. Additionally, the
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Figure 4.2 – Ventilatory thresholds estimation and agreement on the VE,
VE/VCO2 (a) and VO2 (b) measurements from a gas analysis
during incremental physical stress test on a cycle ergometer.
These measurements are related to Subject 3 of the dataset
analyzed in this chapter 4.4.1. After a resting period, the
subject starts cycling till it reaches the hyperpnea (VT1)
resulting in a non-linear increase in VE/VO2 (orange in (a)
and purple in (b)). Then, at VT2 the hyperpnea is not enough
to eliminate the CO2, which remains constant, leading to a
sharp increase of VE/VCO2 (blue). Finally, VO2max is the
maximum oxygen uptake at the moment of exhaustion.
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protocol includes a single-lead ECG acquisition and analysis, from which

specific HRV parameters can be extracted to estimate the so-called ventila-

tory thresholds (VT1, VT2 and VO2max ) with certain success [34–36, 146, 147].

These three parameters describe the cardiovascular and respiratory state

during intense physical exercise. Fig. 4.2 shows an example of the gas anal-

ysis output and the ventilatory thresholds outputs on one of the subjects

analyzed in this chapter. VT1 measures the hyperpnea (i.e., faster breathing)

caused by the increased production of CO2 for exercise intensities above the

anaerobic threshold resulting in a non-linear increase in the ratio between

ventilatory flow (VE) and VO2. VT2 represents a phase where the hyperpnea is

not enough to eliminate the CO2, which remains constant, leading to a sharp

increase of VE/VCO2. Finally, VO2max is the final stage where exhaustion is

reached and, consequently, a maximum oxygen uptake and HR. However,

the ventilatory thresholds extraction usually relies on an agreement between

medical experts who evaluate the gas analysis and the HRV parameters and

agree on where the thresholds are.

The HRV analysis uses the peak-to-peak (RR) time series of an ECG signal

to extract time and frequency domain features, which are a measure of the

autonomous nervous system. Within this, the respiratory trend is represented

by the low frequency range within an ECG and its RR time series. Once the

HRV features needed are extracted, they can be used for a direct estimation of

VT1, VT2 and VO2max [35]. The current methods to estimate these thresholds

from HRV features are performed in post-processing with the help of medical

experts and, usually, the RR time series is often interpolated and corrected.

To ensure the correct comparison between ventilatory measurements and

the RR time series, the R peak detection needs to be accurate and robust.

Moreover, in future works (c.f. Section5.2 and Appendix A), the ventilatory

threshold detection based on HRV parameters could be performed in real-

time on wearable sensors. In this case, the R peak detection needs to be

energy-efficient and adapt at run time to the sudden changes that affect the

ECG during intense physical exercise [137].
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Figure 4.3 – On the left, data-flow diagram of the adaptive R peak detec-
tion algorithm with a raw ECG input. REWARD refers to
the low complexity R peak detection presented in [41] and
described in Section 2.2. BayeSlope is a new slope-based R
peak detection algorithm presented in this Chapter. On the
right, the PULP-based [45] architecture used for the analysis.
Preprocessing, REWARD, and error detection run on the SoC
domain in the fabric controller (FC), while BayeSlope runs on
the cluster domain, in one core of the cluster (CL) of eight
cores.

4.3 Adaptive R Peak Detection in Modern Wear-

able Sensors
One of the main problems in the context of edge computing in WSNs is

minimizing energy consumption while maximizing output accuracy. In this

section, I propose a method to detect R peaks from a single-lead ECG that

optimizes the energy-accuracy trade-off with a two-level adaptive method.

Fig. 4.3 shows the data-flow diagram of the full process and the architecture

where the algorithm is implemented [45]. The lower level of adaptivity con-

sists in the two different R peak detection algorithms, namely REWARD and

the newly proposed algorithm, BayeSlope. REWARD was presented in [41]
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and described in Chapter 2, and it uses hysteresis thresholds that are adapted

to each window of 1.75 s. However, this window resolution is too small to

capture peak-to-peak sudden changes. For this reason, I introduce BayeS-

lope that uses peak normalization by logistic function and a Bayesian filter

to enhance and compute the expected position of the next R peak, and the

k-means clustering to compute two centroids, one of which represents the

R peak. The higher level of adaptivity consists in the data-flow shown in

Fig. 4.3, where the output of REWARD is fed to an error detection method

that checks when REWARD fails to properly detect R peaks and, in this case,

triggers the more accurate BayeSlope. Moreover, BayeSlope is a more com-

plex algorithm, hence, it benefits from execution on the cluster of cores in

the platform, which includes eight cores with higher IPC and floating point

units. Secondly, the main core, which is a simpler and faster core, can handle

better running the less complex REWARD. In the next sections, I describe first

the different blocks shown in Fig. 4.3 and then the higher level design within

the heterogeneous platform used.

4.3.1 Preprocessing, REWARD and Error Detection

A standard R peak detection algorithm requires several steps of preprocessing

of the ECG input signal. In this case, the input is a single-lead ECG where

a morphological filtering (MF) is applied to remove the baseline and high

frequency noise [71]. Then, the signal is enhanced by applying the Relative-

Energy (Rel-En) method, which amplifies the most dominant peaks [41]. This

preprocessing method is part of the REWARD algorithm presented in [41]

and described in Chapter 2. The second part of the algorithm searches for the

R peak in a window of 1.75 s using hysteresis thresholds (c.f., Fig. 2.4) based

on the ECG morphology within the window. However, during intense phys-

ical exercise, the interval between two R peaks (i.e., RR interval) decreases

significantly and sudden changes in amplitude occur. Therefore, within a

window of analysis, many peaks can be missed, as shown in Fig. 4.4. More-

over, towards exhaustion during an incremental exercise stress test, the T

wave—the wave after the R peak that represents the repolarization of the

heart ventricles—can be significantly more dominant than the R peak itself

while the P wave—the wave before the R peak that represents the depolariza-

tion of the atria—disappears, decreasing the RT interval. In these conditions,
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Figure 4.4 – Missed peaks in REWARD R peak detection using hysteresis
thresholds (in orange and yellow) based on the ECG window
morphology. The excerpt was extracted from Subject 3 of
the dataset used (c.f. Section 4.4.1).

REWARD fails in detecting very small peaks as the hysteresis thresholds are

skewed by the higher amplitude variability of the peaks within the window.

However, it performs extremely well if these events do not occur as demon-

strated in [41].

For this reason, I propose a method to identify errors in the R peak detection

within a window of 1.75 s analyzing the distribution of the ratio RR(n)
RR(n−1) , where

n = 0,1,2..., of all the data acquired. The distribution is computed offline

using BayeSlope, since it is the most accurate (c.f. Section 4.5). However, to

avoid data snooping, for each subject, the RR ratio distribution is computed

with a leave-one-out (LOO) strategy, in which the analyzed subject is not

included in the distribution. The RR ratio can capture sudden changes with a

three-peak resolution, such as missing peaks, additional wrong peaks (e.g., T

wave), and highly noisy signal excerpts.

First, the method computes offline the RR intervals and the corresponding

RR ratio sequence used for the distribution from all the subjects, but the one

analyzed. Then, for each subject, if at least one value of RR ratio computed

within each window falls in the tails of the distribution (below the 0.5 or above
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Figure 4.5 – RR ratio distribution for the full dataset acquired for this
analysis

the 99.5 percentiles of the RR ratio distribution, respectively), the algorithm

detects an error. This is performed in the online phase of the error detection

applied to the output R peaks of REWARD. Fig. 4.5 shows the distribution

considering all the subjects analyzed in this chapter. I report the overall

distribution for convenience, although it is not the one used in the online

error detection, as there is one specific distribution for each subject following

the LOO strategy. The right tail is longer than reported on the figure as it is

redundant considering that the percentile thresholds with the LOO strategy

are:

P0.5 = 0.58±0.03; P99.5 = 1.66±0.06; (4.1)

Therefore, if we consider the ECG example in Fig. 4.4, the result of the error

detection are shown in Fig. 4.6, where the values of the RR ratio over the

excerpt are reported. Considering the percentile thresholds P0.5 = 0.64 and

P99.5 = 1.47 for the analyzed subject, the method can detect an error where

REWARD fails. The last peak in Fig. 4.4 where there is an error will be detected

in the next window.
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P0.5 = 0.64
P

99.5 = 1.47

rRR3 = 3.95

rRR4 = 0.25

rRR5 = 1.00

rRR1 = 0.98

rRR2 = 1.03

Error

Figure 4.6 – Result of error detection on example ECG extracted from
Subject 3 of the dataset used (c.f. Section 4.4.1). The values
of the RR ratio are computed on a resolution of three R
peaks. Considering the percentile thresholds for the analyzed
subject (bottom left), the method can detect an error where
REWARD fails (in the red boxes).
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4.3.2 BAYESLOPE: Adaptive Slope-Based R Peak Detection

Once an error is detected, a more accurate adaptive R peak detection, BayeS-

lope, is triggered. This newly proposed method applies a non-linear normal-

ization of the signal and a Bayesian filter to enhance high slope areas, which

are assumed to belong to the QRS complex, and correctly detect the next peak

in the expected position, which is based on the current HR. To distinguish

low and high slope areas, the approach relies on a clustering method based

on K-means.

Algorithm 5 describes the main steps of BayeSlope. The method takes as

input the Rel-En signal window, s, and it outputs the vector of R peaks de-

tected. The algorithm is derivative-based and considers two clusters that

represent the high and low slope areas of the signal. The two centroids are

initialized beforehand, as shown in Line 3, with hcentr as the 99 percentile

of the derivative of s and lcentr = 1. When a new sample is assigned to a

cluster it is labeled as 1, if belonging to hcentr cluster, or 0, if belonging to

lcentr cluster. Two windows of 1.75 s are used for the hcentr initialization

to account for enough peaks even at rest and avoid errors due to signal noise.

Then, the algorithm initializes all the other parameters needed, constant and

varying, in Lines 4–5. The values for these parameters were chosen based on

physiological information and empirical tests.

The main process starts by considering the derivative of s and computing

its absolute value, x, in Lines 7–8. The reason for applying this initial trans-

formation is to enhance the maximum and minimum slopes of the original

signal s, since the R peak is assumed to be located within the maximum

upward and downward deflections within an ECG signal. Next, the method

computes the Bayesian filter (Line 9), which is a Gaussian centered on the

expected peak, mu, with standard deviation sd , two parameters computed

based on the last five peaks. Then, in Line 10, the algorithm computes the

generalized logistic function [148] with input x and its parameters computed

based on the last hcentr and l centr . In fact, the sigmoid varies between 0

and the value of the higher k-means centroid, hcentr . The sigmoid and the

Bayesian filter are used to normalize the peak or, specifically, to increase the

amplitude of expected small peaks, as shown in Line 11 and Fig. 4.7. If the
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Algorithm 5 BayeSlope R peak detection

1: Input: windows of RelEn signal, s
2: Output: R peaks, r
3: Initialize centroids: hcentr = percentile(diff(s),99) and lcentr = 1
4: mi n_r r _di st = 240 ms; max_qr s_dur = 140 ms; . Constant variables
5: Initialize: mu = 75 bpm; sd = 100 ms; zer octr = 0; qr s_i ni t = 0; l abel =

0; i n_qr s = false;
6: for i = 2, ...length(s) do
7: s2[i ] = s[i ]− s[i −1]); .Derivative approximation
8: x = abs(s2[i ]);
9: b f [i ] = gaussian(i − l ast_peak,mu, sd); . Bayesian filter

10: bt [i ] = genlogfun(x, par am_log f un); . Sigmoid normalization
11: st [i ] = max(x,bt [i ]∗b f [i ]); .Normalize signal
12: Update hcentr and lcentr applying k-means clustering
13: if i n_qr s then . Peak search
14: if l abel = 0 then
15: zer octr+= 1;
16: else
17: zer octr = 0;
18: end if
19: if zer octr = 0 OR i −qr s_i ni t > max_qr s_dur then
20: max_mi n_sl ope = argmaxmin(st ∗ si g n(s2));
21: Search for new_peak within max_mi n_sl ope
22: r [i ] = new_peak;
23: end if
24: else
25: if l abel = 1 AND i > l ast_peak +mi n_r r _di st then
26: i n_qr s = true;
27: qr s_i ni t = 1;
28: end if
29: end if
30: end for
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Figure 4.7 – Peak normalization in the expected location through bayesian
filter (i.e., prior expectation) and generalized logistic func-
tion. Once the normalization is applied, the observed value
is transformed into the posterior estimation, shown in the
rectangle

analyzed sample does not reach the computed threshold, the function does

not increase its value. When the input is approximately double the value of

the lowest centroid, st (in Algorithm 5) reaches the threshold between the

lcentr and hcentr . In Fig. 4.7, the expected location of the peak (i.e., the

prior expectation) is depicted with the Gaussian centered on it. In this case,

the original peak (i.e., observed value) in x (|s′|) is small, and it will be en-

hanced by the Gaussian multiplied by the sigmoid function, st . This occurs at

the values where st exceeds the threshold (in orange), with the result shown

in the posterior estimation rectangle.

Once the signal is normalized, the algorithm starts a peak search within a

QRS complex—the ECG main wave—in Lines 13–29. The distance between

QRS complexes must be more than mi n_r r _di st , according to standard

physiological characteristics and the sample that starts the QRS complex

(qr s_i ni t in Line 25) must belong to the cluster represented by hcentr (i.e.,

l abel = 1). Within the QRS complex, the algorithm waits till it reaches its

maximum duration according to physiology (max_qr s_dur ) or for enough
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samples (zer octr = 30) labeled 0 that represent the end of the QRS com-

plex (Lines 14–19). Once within this interval (Lines 20–22), the algorithm

computes the maximum and minimum of the function st ∗ si g n(s2) repre-

senting the maximum upslope and downslope of the original signal. The

sign function is used in case these values fall in the Q, S or T wave, which are

not distinguished if only st is used, as it is positive by definition. Finally, the

new_peak is found and stored in the vector r .

4.3.3 Adaptive Design in Modern Heterogeneous Platforms

As shown in Fig. 4.3, the algorithm modules run in different cores of the archi-

tecture depending on the complexity of the module. The architecture used in

this work is based on the open-source PULP platform [45], and specifically

on one of its evolutions, Mr.Wolf [49]. The PULP structure consists of a main

streamlined processor, the fabric controller (FC), and an 8-core parallel com-

pute cluster (CL). Moreover, PULP includes a direct memory access (DMA)

that can transfer data to a multi-banked 512 KiB L2 memory during acquisi-

tion time or from L2 to a shared multi-banked 64 KiB L1 memory, which has

a single-cycle latency in the cluster side. Both FC and CL are power-gated

while the DMA fills the required L2 memory bank during sample acquisition.

The FC is clock-gated when the CL is active, and each of the cores in the

CL can be independently clock-gated to reduce dynamic power. Mr.Wolf

includes a core for the FC (Zero-riscy [125]) that is simpler than the RI5CY

cores of the CL [126] and runs at a higher frequency (170 MHz for FC and

110 MHz for the CL) but has a lower IPC. Mr.Wolf was designed to handle

high computational load with a deep sleep mode not optimized for long idle

periods. However, different PULP implementations do optimize deep sleep,

consuming 3.6µW when the platform is power-gated1. Therefore, the work in

this chapter considers the Mr.Wolf architecture with a more optimized deep

sleep mode based on other PULP implementations [48], as done in the work

presented in Section 3.4.

Considering this design, the modules of preprocessing, REWARD (which

includes Rel-En and R peak detection via hysteresis thresholds), and error

1As reported for GAP-8 [48], which is an industrial version of PULP with SoA deep sleep
optimizations not yet included in its academic counterpart.
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detection run in the Zero-riscy core (FC). The MF for a single-lead ECG was

designed for single-core use, and it can only benefit from a parallelization

per lead in the CL (c.f. Chapter 3), which is not possible in this case since

the ECG acquired is single-lead. REWARD is a very lightweight integer-based

algorithm, as demonstrated in [41]. In a preliminary analysis, considering the

dataset (c.f. Section 4.4.1), I performed one test where the R peak detection

step of REWARD was running on one core of CL and a second test where

it was running on FC. The algorithm run on CL is 1.23× slower (in terms

of execution time) and consumes 1.35× more energy. Therefore, REWARD

benefits from running on the FC, which is a simpler and faster core. On the

contrary, BayeSlope is a more complex floating point-based algorithm that

benefits from running on a more capable core. In fact, since the FC does not

have a floating-point unit, running BayeSlope on it requires a conversion

to fixed-point representation of the complex operations in the algorithm,

such as the Gaussian and the generalized logistic function. For this reason, I

performed a test to convert BayeSlope, where the complex operations had

to be divided into smaller ones. This can result in a slower execution time.

Moreover, the clustering step requires an incremental variable that, in a

fixed-point representation of 16-bit integer part and 16-bit decimal part,

quickly reaches the maximum range representable (i.e., approximately 15 s

of signal processing). In contrast, this does not occur in the floating-point

representation as the maximum range is reached after a large number of

hours of signal processing. Therefore, BayeSlope runs on one core of the CL

(RI5CY), which has a floating point unit and higher IPC. BayeSlope has not yet

been parallelized because of two reasons. First, the main goal of this chapter

is to prove that the proposed adaptive design is able to assign heterogeneous

resources based on the complexity of the algorithms, which can be done by

only using two different cores. Second, the parallelization process requires

several optimization steps to maintain the accuracy of the algorithm that take

time to develop. In fact, I proposed this as a possible short-term future work

(c.f. Section 5.2), which can use the parallelization techniques presented in

Section 3.4.1.

After the signal filtering and REWARD running on the FC, the error detection

(also running on the FC) checks the accuracy of the R peaks output. If an
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Figure 4.8 – Sketch of the BIOPAC [149] sensors positioning (on the left)
during the experiment and the sensors themselves (on the
right)

error is detected, the DMA transfers the necessary buffer of data from L2 to

L1 ready for the core in the CL, while the FC is clock-gated. Since BayeSlope

needs an initialization of the R peaks of two windows of 1.75 s, the previous

window error needs to be checked. If the error in the previous window is 0,

then the DMA transfers two windows, otherwise it transfers only one. This is

an optimization applied in case REWARD fails more frequently and to avoid

recomputing twice the same window. BayeSlope runs on the CL while FC

is clock-gated. The final output is the combination of correct R peaks from

REWARD and BayeSlope.

4.4 Experimental Setup

4.4.1 Database Acquisition Protocol

The database was acquired considering 22 subjects performing an incremen-

tal exercise stress test on a cycle ergometer for an average of 30 minutes each

till exhaustion. The power of the cycle ergometer was increased every 3 min

by 30 W, after initial 3 min of rest. A single-lead ECG sampled at 500 Hz was

acquired using the BIOPAC system [149], together with other biosignals and

oxygen uptake measurements that were not used for this work. Fig. 4.8 shows

a sketch of the biosignals positioning and the equipment used. The ECG was

downsampled to 250 Hz since REWARD was validated only for this frequency.

Two of the 22 subjects were discarded because one did not complete the
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protocol and for the second one the majority of the recording was corrupted.

Therefore, the statistics and analysis are performed on 20 subjects. Next, five

20-second excerpts were extracted from the full ECG of each subject to be

manually annotated by medical experts. These excerpts were chosen based

on the different phases of the incremental stress test (i.e., before and after

VT1, before and after VT2, and during the recovery after exhaustion). The

segment at rest was ignored since REWARD performs very well in this con-

dition, and there is no need to run BayeSlope. Only one out of 100 excerpts

was not annotated. Therefore, the total number of excerpts considered for

this analysis is 20 ·5−1 = 99. The input excerpts to the peak detection were

extracted considering the 20 s given to the experts and going backward of

0.6s+0.95s+1.75s, which represents, respectively, the initial delay of the

MF, the initial delay of Rel-En, and one additional window of analysis for

BayeSlope initialization, and going forward another 1.75 s to avoid missing

the last peaks. Therefore, each excerpt is approximately 25 s long. The accu-

racy of the R peak detection is measured according to the standard tolerance

of 150 ms as the time difference between the detected peak and the manually

annotated one [80]. Moreover, I also report for each subject the mean and

standard deviation of the time difference between the two. I compare the

accuracy of the following three designs:

1. preprocessing (MF) and always running REWARD (Rel-En + peak detec-

tion);

2. preprocessing (MF + Rel-En) and always running BayeSlope;

3. adaptive design including preprocessing (MF), REWARD (Rel-En + peak

detection), error detection and running BayeSlope only when REWARD

fails.

4.4.2 Test Benches on Heterogeneous Platform

The three designs are mapped on the PULP platform to estimate their overall

energy consumption and perform the energy-accuracy analysis. In all the

test benches, the preprocessing always runs on FC. The first two test benches

consists of 1) REWARD running on the FC with the CL power-gated, and 2)

BayeSlope always running on the CL, which was first implemented in Python,
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then translated to C and ported to PULP. The third test bench consists of the

fully adaptive process, including the error detection, with REWARD running

on the FC and BayeSlope running on CL when REWARD fails. Each of the test

benches is applied to the 99 excerpts described in Section 4.4.1.

To measure the execution time of the three configurations, I used the open

PULP platform [130]. PULP provides an SDK to run RTL simulations, using

Modelsim, in order to obtain cycle-accurate profilings. To estimate the en-

ergy consumption I use the power numbers reported for a chip based on

the PULP architecture implemented in TSMC 40 nm LP CMOS technology,

Mr.Wolf [49], described in Section 4.3.3. I consider the lowest energy point of

the platform, at 0.8 V. The platform requires 3.6µW [48] when power-gated

and 12.6µW with full L2 retention. To implement better memory manage-

ment of the activated banks (c.f., Section 3.4.2 and Section 3.5.2), I reduce

the L2 size to 128 KiB, with a resolution of 16 KiB per memory bank, since the

application does not need more memory. When the SoC is active, it consumes

0.98 mW with its main processor clock-gated, and 6.66 mW with it operating

at 170 MHz. Once the CL is activated, it consumes 0.61 mW with all the cores

clock-gated and 18.87 mW with the eight cores running at 110 MHz.

The three designs are compared first in terms of accuracy, then energy con-

sumption of their mapping to the PULP platform and then in their energy-

accuracy trade-off for all the subjects in the dataset and as a summary for

worst, average and best cases.

4.5 Experimental Results

4.5.1 Accuracy Analysis of Test Benches

In Fig. 4.9, I report the percent of the error rate (ErrRate%) in the peak detec-

tion of the three designs, described in Section 4.4.1, and its evolution through

the type of excerpts for three example subjects. These examples illustrate

three cases within the worst, best, and average groups in terms of accuracy of

the new algorithm, BayeSlope, and the fully adaptive design (REWARD+Error

detection (ErrDet)+BayeSlope) compared to REWARD. ErrRate% is computed
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Figure 4.9 – Percent error rate of the three designs described in Sec-
tion 4.4.1 for three worst, average, and best case subjects
along five increasing exercise intensities. Excerpts 1 and 2
represent the exercise before and after VT1, excerpts 3 and
4 before and after VT2, and excerpt 5 is the recovery right
after exhaustion136
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ecg_sub7_exc3

Figure 4.10 – ECG excerpt 3 (i.e., before VT2) for Subject 7. The ampli-
tude of the peaks is highly variable due to the changes in the
exercise intensities. The signal is shown on a standard ECG
sheet containing small squares of 1 mm·1 mm correspond-
ing to 40 ms (horizontal) and 0.1 mV (vertical) [60]. They
also include big squares of 5 mm·5 mm and correspond to
200 ms·0.5 mV.

as (1-F1)*100, where F1 score is a measure of the peak detection performance

defined as

F1 = T P

T P + 1
2 · (F P +F N )

(4.2)

TP is the set of the correctly detected peaks that match the manual annota-

tions. FP represents all the misdetected peaks by the algorithm. FN is the set

of all the peaks in the algorithm that do not match any manual annotation.

The different excerpts shown in Fig. 4.9 represent increasing exercise intensi-

ties till the recovery after exhaustion (excerpt 5), as described in Section 4.4.

In Fig. 4.9a, Subject 7 has one of the worst error rates for the new algorithm,

and the reason is that excerpt 3 is quite noisy. The quality of the excerpt is

shown in Fig. 4.10, where the amplitude of the ECG has a high variability due

to changes caused by the exercise intensities near VT2 (excerpt 3 is before

VT2). However, BayeSlope and its adaptive design, with an F1 score at ap-

proximately 60.5 % and 56.8 %, respectively, gains within 13.5 % and 9.9 % in

performance, compared to REWARD. In Fig. 4.9b, Subject 3 represents an

average case where REWARD has a lower error rate compared to the worst

case (Subject 7), though significant. In fact, the adaptive design performs

significantly better, with an error rate up to 3 %, slightly worse than BayeS-

lope. In Fig. 4.9c, Subject 16 is one of the best cases where REWARD fails only
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during more intense exercise, with an error rate up to 5.5 %, while BayeSlope

has an error rate of only 1 %.

Considering the five exercise intensities, a relevant summary of the algo-

rithms’ performance is depicted in Table 4.1. Here, I report the F1 score,

sensitivity, and positive predictive value (PPV) of the three test benches for

each of the five types of excerpt computed across the subjects, as well as the

mean and standard deviation of the time difference between each test bench

output and the manual annotations. BayeSlope is the most accurate of the

designs over all the performance parameters. In fact, by adapting to all the

changes in the ECG during intense physical exercise, it reaches an F1 score up

to 99.3 % with very low variability through the excerpts. On the contrary, the

F1 score and the sensitivity of REWARD during more intense exercise (before

VT2 and right after exhaustion), where sudden changes in ECG occur, are

significantly lower than the acceptable medical standard, compared to less

intense exercise. However, combining both methods in an adaptive design is

as accurate as BayeSlope (up to 1.7 % of difference in F1 score).
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Rarely, the adaptive design could perform better (less than 1 % difference in

score) as it is shown in the sensitivity values. This is due to the initialization

process of BayeSlope, which requires the signal to be stable as it does not use

any prior information within this initial stage. Therefore, it happens rarely

that the signal is more stable later in the excerpt where BayeSlope is triggered

and will be initialized compared to the initialization at the beginning of the

excerpt (when always running BayeSlope). This can also cause a delay in the

adaptation and very few peaks missed and result instead in a slightly worse

accuracy. Another reason for a lower performance in the adaptive design

compared to always running BayeSlope, specifically for more intense exercise

(before and after VT2, and recovery) as shown in Table 4.1, is due to an issue

in the error detection. In fact, the RR ratio distribution used to compute the

tail thresholds is performed on the full dataset and accounting for different

exercise intensities. Within more intense exercises, as the RR intervals get

smaller, it can happen that even if REWARD misses one peak, the RR ratio

is still within the distribution. This is shown in Fig. 4.11, where the RR ratio

computed on the small peaks not detected by REWARD is close to the P99.5

of the distribution but not enough to trigger an error. This results in a lower

accuracy for the adaptive design. One way to fix this problem is to compute

different distributions for different exercise intensities. In the case of this

dataset, it could be five distributions or two groups of low and high intensities.

Another way is to adapt the distribution online by detecting the intensity type

with a machine learning algorithm and choose the correct tail thresholds.

Finally, as modern heterogeneous platforms allow, the distribution can be

computed directly on the signal acquired through a small training process on

BayeSlope and then adapting the tail thresholds.

In conclusion, the accuracy results show that always running BayeSlope is the

most accurate and robust of the three designs. At the same time, REWARD’s

performance highly varies with the intensity of the exercise. However, it is ap-

proximately 104× more complex than the R peak detection step of REWARD.

Therefore, I proposed the adaptive design that combines both algorithms

and has a similar accuracy compared to BayeSlope. In the next section, I will

show the advantages in terms of energy consumption of the adaptive design

mapping on the PULP platform.
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Figure 4.11 – ECG excerpt 4 (i.e., after VT2) for Subject 3 with the R
peaks from the three designs. The RR ratio where the small
R peaks are not detected by REWARD is close to P99.5 but
not enough to trigger an error

4.5.2 Energy Consumption of Test Benches in PULP

Figure 4.12 shows the three subjects described in Section 4.5.1. In Subject 7

(Fig. 4.12a), the worst case scenario, the fully adaptive design consumes the

same amount of energy in almost all the windows. In excerpt 3, the adaptive

design achieves 6.5 % of energy savings compared to always running BayeS-

lope, with a 3.7 % difference in F1 score. However, the overall accuracy is

far from the required medical standard. In Subject 3 (Fig. 4.12b), for all the

exercise intensities except the last one, the fully adaptive design has energy

savings up to 48 % compared to the BayeSlope with a loss in accuracy of only

up to 2 % (c.f. Fig. 4.9b). For excerpt 3, even if the energy savings are one of

the lowest at approximately 3.3 %, the fully adaptive design is as accurate as

BayeSlope and 18.8 % more accurate compared to REWARD. Therefore, on

average cases such as Subject 3, in most exercise intensities, choosing the

fully adaptive design can improve the energy-accuracy trade-off. Subject 16,

representing one of the best case scenario in Fig. 4.12c, highlights the adap-

tivity of the full design and its error detection through the excerpts, starting
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Figure 4.12 – Energy consumption of the three test benches described
in Section 4.4.2 for three worst, average, and best case
subjects along five increasing exercise intensities. Excerpts 1
and 2 occur before and after VT1, excerpts 3 and 4 before
and after VT2, and excerpt 5 is the recovery right after
exhaustion
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Figure 4.13 – Percentage of windows over the full excerpt where BayeSlope
is triggered during the adaptive design for worst, average,
and best case scenarios. Comparing these trends with the
ones shown in Fig. 4.12, it is evident that the adaptive
design reduces energy consumption by reducing the number
of times BayeSlope runs on the CL

with a minimum energy consumption, since only REWARD is running, and

maximum attainable accuracy. Then, when the exercise intensity increases,

REWARD fails more frequently, and BayeSlope takes over the R peak detection.

The fully adaptive design maintains a high level of accuracy (approximately

99 %) while limiting the energy consumption compared to running BayeSlope

for the full excerpt, with energy savings from 31.8 % up to 58.6 %. Fig. 4.13

shows how many times BayeSlope runs in the adaptive design in terms of

percentage of windows over the full excerpt for three cases analyzed. For

counting the windows where an error occurs that trigger BayeSlope, the pre-

vious window also counts as triggered since BayeSlope needs an additional

window for the initialization process (c.f. Section 4.3.3). From the figure, it is

evident that the trend is similar to the energy reduction compared to always

running BayeSlope shown in Fig. 4.12. For Subject 7, starting from excerpt 3,
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Table 4.2 – Energy consumption in mJ for the three test benches and the
five exercise intensities computed across the subjects

REWARD
(RW)

BayeSlope
(BS)

RW +
ErrDet +

BS

Energy(mJ)

Before VT1 0.479±0.004 2.078±0.016 1.348±0.573

After VT1 0.479±0.003 2.070±0.032 1.469±0.556

Before VT2 0.476±0.004 2.071±0.037 1.84±0.299

After VT2 0.477±0.002 2.080±0.020 1.275±0.562

Recovery 0.476±0.003 2.075±0.032 1.823±0.412

Total 0.477±0.004 2.075±0.028 1.553±0.536

the trend is slightly different than the one in Fig. 4.12a. In fact, excerpt 3 has

a 6.5 % reduction in energy of the adaptive design compared to BayeSlope,

while it is less than 1 % in excerpt 4. To explain this result, I drew the error

detection pattern in excerpt 3 and 4 for Subject 7 shown in Fig. 4.14, where

1 indicates that an error occurred. In excerpt 3, the error does not happen

on every window but alternating, although BayeSlope runs for two windows

whenever the error in the previous window is 0. On the contrary, in excerpt 4

the error is triggered in consecutive windows and BayeSlope runs as well on

every window. When BayeSloperuns on every window an overlapping occurs

to avoid missing peaks at the border between two windows. This does not

occur in the adaptive design (excerpt 3) when the algorithm runs once on

two windows, avoiding this overhead with a small advantage in energy con-

sumption. The big differences in the three subjects show how the proposed

design can adapt to the subject and different exercise intensities to reduce

energy consumption instead of constantly falling in the worst case scenario.

This personalized and adaptive reduction in energy consumption can lead to

a longer battery lifetime for WSNs and better usability.

Table 4.2 shows a summary of the average energy consumption for the five

exercise intensities. As we saw for the accuracy analysis, higher exercise

intensities require to run BayeSlope more often in the adaptive design. How-
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Figure 4.14 – Error occurrence in two excerpts of Subject 7 with the same
percentage of BayeSlope triggers shown in Fig. 4.13. Excerpt
3 has an alternating pattern, while in excerpt 4 the error
occurs in consecutive windows, which explains the slightly
bigger energy reduction in excerpt 3 compared to expert 4
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Figure 4.15 – Energy-accuracy analysis of the three test benches and the
different exercise intensities

ever, the algorithm achieves significant energy savings compared to always

running BayeSlope. In fact, during the fully adaptive design, the CL of cores

(where only one is used in this application) is clock-gated if not used, and

the power consumed accounts only for the FC and the CL leakage, which

for this design is negligible. On average, for this application, the FC con-

sumes only 20 % of the energy consumed by FC+1-coreCL within a window of

analysis. Therefore, if the CL is active only for specific windows, it limits the

total energy consumption over the 25-second excerpt. In fact, the adaptive

design achieves energy savings up to 38.7 %, considering the average for the

five exercise intensities, and up to 74.2 % for the overall dataset analyzed,

compared to the always active CL running BayeSlope.

4.5.3 Energy-Accuracy Test Benches Comparison

Figure 4.15 shows the energy-accuracy comparison between the three test

benches and an analysis on the different exercise intensities. I use once

again F1 score as a measure of algorithm detection accuracy. For the three

excerpts before and after VT1, and after VT2, REWARD is fairly accurate, and
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consuming the minimum energy for this application. These values of F1

score are similar to the ones I showed in the paroxysmal atrial fibrillation

(PAF) application in Chapter 2. As during exercise, PAF is characterized by

sudden changes in the ECG morphology (e.g., ectopic beats, which are usually

smaller in amplitude, rhythm irregularities and missing P waves). REWARD

fails to adapt to this sudden change by design, although within the medical

acceptability. However, performing the fully adaptive design (in purple) is

always more advantageous in terms of accuracy, with a performance increase

of up to 8.2 %. Moreover, it is comparable in F1 score to BayeSlope although

more energy-efficient, with energy savings up to 38.7 %.

However, when the exercise intensity, hence, the number of peaks within

a window increases, the hysteresis thresholds of REWARD do not adapt to

the smaller peaks within a window of analysis (1.75 s), as described in Sec-

tion 4.3.1 and Fig. 4.4. In fact, before VT2 a non-linear increase in HRV

parameters occurs [34], representing a significant increase in O2 and CO2

consumption and further increase in exercise intensity, which can explain the

decreased accuracy of REWARD. The excerpt extracted during recovery after

exhaustion (i.e., when reaching V O2max ) represents the highest intensity and,

hence, disruption of the ECG morphology, specifically in the amplitude of

the R peak and the RR intervals (HRV reaches its minimum). Therefore, it is

the reason for a decreased performance in REWARD. On the contrary, the F1

score of the fully adaptive design is only up to 1.7 % lower than BayeSlope,

which is the most accurate. The energy savings for these two excerpts are

lower than the other three, though still significant (up to 12.2 %).

This analysis shows how the new BayeSlope algorithm is highly accurate and

more robust than the lightweight REWARD when sudden changes in the ECG

morphology occur. However, if we consider the design where BayeSlope is

mapped on a PULP-based platform and running on CL (with the preprocess-

ing modules running on FC), the device consumes on average 4.6× more

than the mapping of REWARD (and the preprocessing) in FC. In contrast,

the adaptive design enhances the energy-accuracy trade-off, maximizing

accuracy while limiting energy consumption on modern ULP platforms. This

adaptive design is not limited to applications where intense physical exercise

is involved but also but can also be applied to pathologies where the ECG
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morphology changes, such as PAF [56] and other types of arrhythmia [132].

Moreover, if BayeSlope is parallelized in the 8-core CL (c.f. Section 5.2), more

computing resources can be assigned to HRV analysis (c.f. Appendix A) and

pathology detection for fully on-node processing to ensure low-rate transmis-

sion and data privacy.

4.6 Conclusion
In health and wellness monitoring, specifically cardiovascular, there exist

pathologies and physical conditions where sudden changes in the measured

biosignals occur. In particular, during intense physical exercise, sudden

changes in the ECG heart beats amplitude and rhythm cause errors in some

standard R peak detection algorithms, and therefore on any further analysis

based on the HR. Moreover, more accurate algorithms often require a higher

amount of computing resources leading to a need for more capable platforms

with a flexible resource management.

In this chapter, I have proposed a new online design to detect R peaks in a

single-lead ECG signal which adapts at run time to the changes in its mor-

phology. Furthermore, this adaptive design exploits the core heterogeneity of

modern ULP platforms, which can run efficiently more complex algorithms

using different types of cores. The online adaptive design uses a standard

lightweight algorithm, REWARD, and an error detection to measure the algo-

rithm’s accuracy. When REWARD fails, a more accurate though more complex

algorithm, BayeSlope, is triggered and runs in a more efficient core. In the

context of an incremental exercise stress test, the new online adaptive design

achieves an F1 score up to 99.0 % compared to 92.5 % when running only RE-

WARD, across five different exercise intensities. By implementing the newly

proposed method in the PULP architecture, it can reach energy savings up

to 34.6 % compared to always running the more complex BayeSlope. There-

fore, the newly proposed online adaptive design maximizes the accuracy

while minimizing the energy consumption for an optimal energy-accuracy

trade-off.
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Remote health and wellness monitoring through wearable technology has

advanced from electrocardiogram (ECG) radio transmission to modern ultra-

low power (ULP) smart sensors for pathology detection and real-time vital

parameters assessment for noncommunicable diseases (NCDs) prevention.

This trend towards increased complexity and broader functionality will face

new challenges as population aging and incidence of NCDs is projected

to grow at a faster pace. Therefore, there is a need for new approaches to

improve the performance of wearable sensors in terms of maximizing the

accuracy of their applications for better and personalized healthcare while

minimizing the energy consumption for continuous use.

In this thesis, I have presented novel approaches for remote health and well-

ness monitoring, tailored to the subject and tackling the energy-accuracy

trade-off problem from both algorithmic and platform perspectives.

5.1 Adaptivity is the Key
Throughout Chapters 2–4, the common factor to the proposed solutions for

enhancing the energy-accuracy trade-off in modern wearable technologies is

adaptivity. The thesis tackled this key factor from two main aspects.

First, in Chapter 2, I have presented a series of strategies that adapt to the

subject, and exploit knowledge from multiple biosignals at run time, in tradi-
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tional single-core platforms. Specifically, in the context of remote health and

wellness monitoring, I proposed:

• A novel lightweight method, called REWARD. It uses adaptive thresh-

olds on the ECG amplitude to detect enhanced QRS complexes.

• A highly accurate and ULP algorithm for heart rate (HR) estimation

from a photoplethysmography (PPG) signal. This algorithm exploits the

frequency-domain knowledge acquired from motion sensors to remove

artifacts caused by intense physical exercise and past information to

update the current HR value.

• A personalized real-time paroxysmal atrial fibrillation (PAF) prediction

method that is trained with a model based on the specific character-

istics of the patient and their condition, and, consequently, scales the

energy consumption on a real-life ECG-based device, for better and

personalized usability.

Second, in Chapter 3, I have exploited the capabilities of modern multi-

core heterogeneous platforms through modular and personalized strategies.

Specifically, I proposed software (SW) and hardware (HW) optimizations

applied to the typical modules of biomedical applications, including a top-

down approach of parallelization techniques to maximize the attainable

speed-up, memory scaling and management at acquisition time, and HW

acceleration of computationally intensive kernels. Then, in the context of

the previously mentioned PAF prediction method, I focused on the impact

of patient-specific assignment of platform resources (i.e., different number

of cores based on the patient-specific training parameters), and memory

scaling. This analysis unveiled the adaptivity and scalability of computing

and memory resources in modern ULP wearable sensors.

By combining the findings from these two perspectives, in Chapter 4, I pro-

posed a final adaptive design that takes into account run-time adaptivity

based on accuracy performance and platform heterogeneity for the ultimate

enhanced energy-accuracy trade-off. First, I explored the flaws of REWARD

during specific conditions of sudden changes in the ECG signal, which can oc-

cur during intense physical exercise or in certain pathologies. Next, I designed
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an error detection algorithm that can detect when REWARD fails. Then, I

proposed a novel and more robust slope-based R peak detection algorithm,

called BayeSlope, that is triggered when an error in REWARD’s output is de-

tected. Moreover, the more complex BayeSlope is offloaded on a different

type of core, with additional capabilities.

In conclusion, the designer of new wearable sensors for remote health and

wellness monitoring should focus on adaptivity, by means of personaliza-

tion, online multibiosignal-based knowledge acquisition, modularity and

scalability, as the key to enhance the energy-accuracy trade-off.

5.2 Future Work
The next step for future work related to this thesis can be divided into short-

term and long-term. The first is based on the preliminary work that has been

done, but not yet implemented or presented as a main contribution, and the

latter is a collection of ideas for future research or device development. For

both long-term and short-term, I will refer to the specific contributions of

this thesis that can be expanded beyond it.

5.2.1 Short-Term

• The algorithm for HR estimation from PPG presented in Section 2.3

can be integrated into a newly presented multi-modal device for on-

line cognitive workload monitoring [150], as it was tested in the same

microcontroller used in this work. Moreover, the method can benefit

from the modular parallelization techniques explored in Section 3.4, as

it includes most of the modules presented in Section 3.2. Since there

are instances of the same module applied to the 3-axis accelerometer

and the PPG signal, it is suitable for a lead parallelization. Additionally,

there are also modules where window and data-level parallelization

can be applied. Furthermore, there are instances of computationally

expensive kernels that can be accelerated, such as the fixed-point fast

Fourier transform (FFT). Finally, considering the application duty cycle

of approximately 23 %, the approach can benefit from the three orthog-
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onal optimizations discussed in Section 3.4, and it can be thought for a

multi-modal device, such as the one presented in [151].

• In the context of the adaptive design presented in Chapter 4, an approx-

imate version of BayeSlope can be integrated and tested in PULP. I have

already done preliminary work on the comparison of the piecewise

linear approximation of computationally intensive functions (gaussian

and logistic function) and the original ones. Specifically, I estimated

the reduction in active cycles of the approximated version of circa 15 %.

These functions are not data-dependent though more testing is needed

to estimate the impact on the energy consumption.

• The adaptive design is also suitable for parallelization, specifically the

module BayeSlope, following the window parallelization technique

presented in Section 3.4. This can significantly reduce the energy con-

sumption to leave room for additional inference in pathology detection,

such as PAF prediction, or heart rate variability (HRV) analysis (e.g., for

ventilatory thresholds detection, c.f. Appendix A).

• Finally, for a more adaptive approach, once BayeSlope is triggered,

in the next window the physiological parameters of REWARD can be

updated based on BayeSlope’s output. I have tested this strategy on one

incremental exercise stress test recording, and the original REWARD

without parameters update showed 38 % of RR outliers compared to

BayeSlope. In contrast, the parameters update reduces the RR outliers

to 8 %. This can lead to less triggering of BayeSlope as REWARD should

fail less. More testing on the full dataset needs to be performed, as well

as an analysis on the effect of this adaptivity on each subject in terms

of accuracy and energy consumption. Additionally, as mentioned in

Section 4.5.1, the RR ratio distribution used for the error detection can

be more adaptive to the different exercise intensities. First, separated

distributions can be computed for different intensities. Second, the

distribution can be trained and adapted online via machine learning

algorithms to detect the exercise intensity and adapt the tail thresholds.
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5.2.2 Long-Term

• Considering personalized biomedical applications, such as the one

proposed in Section 2.4 and Section 3.5, it could be relevant to explore

how to dynamically change the operating frequency and voltage to

lower the energy consumption based on the characteristics of the pa-

tient. An energy-accuracy evaluation must be performed. Additionally,

for the online PAF prediction method and other modular biomedical

applications analyzed, it would be very promising to explore the ef-

fect on energy consumption of dynamic memory management at run

time in modern platforms like PULP. This is useful to optimize fur-

ther the power consumption of the system. As memory management

at acquisition time has been proven to reduce energy consumption

(c.f. Chapter 3), there could be benefits by parallelizing the buffering

and the processing [45].

• The Relative-Energy (Rel-En) approach could be applied to a PPG sig-

nal [50] paired to the frequency analysis of the HR estimation from

PPG (c.f. Section 2.3) to explore pulse rate variability as a substitute

to ECG for more comfortable and low-cost sensors. Additionally, the

frequency analysis can be used to remove motion artifacts and recon-

struct the filtered PPG in modern ULP platforms that can afford more

computationally expensive modules.

• The adaptive design presented in Chapter 4 can be applied to venti-

latory threshold detection algorithms, such as the preliminary work

presented in Appendix A. This work paired with the adaptive design

can be extended to a real-time and subject-specific detection based

on HRV patterns [34]. The final method following the combination of

algorithmic and platform optimizations can tailor the design of a new

ULP wearable device to substitute the gas analysis during incremental

exercise stress tests to be used in sport medicine.

• Finally, this thesis can open a new and exciting field of exploration into

the design of targeted platforms by considering biomedical application

requirements. Key factors to consider for platform specialization are

the memory and computing resources organization based on the needs
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of the application, as discussed in Chapter 3 and Chapter 4; and the

personalization described in Chapter 2 and Chapter 3.
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THIS appendix describes a preliminary work for an optimal exercise train-

ing system using the ventilatory thresholds obtained by the medical

excerpts in the dataset presented in Chapter 4.

A Sub and Superoptimal Training Detection Using

Ventilatory Thresholds
Referring to Section 4.2, when VT1 is reached, hyperpnea occurs. Physiolo-

gists refer to the phase before VT1 as suboptimal training and after VT1 as

superoptimal training (80% and 120% of VT1). The goal of this preliminary

work was to classify in real-time ECG and PPG segments as suboptimal or

superoptimal exercises based on a training model that considers the full

dataset. The classification was implemented in a system, which includes two

devices, one running the ECG and another one running the PPG, based on

the platform used in [119]. In fact, another goal of the work was to observe if

using ECG and PPG data together could achieve more accurate results com-

pared to using only ECG. The devices connect via the Bluetooth Low-Energy

(BLE) protocol to a tablet that runs an Android application. Here is a list of

the components of the system:
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• STM32L151xD, which is an Ultra-low-power 32-bit microcontroller

unit (MCU) Arm Cortex®-M3 with a 384KB Flash, a 48KB SRAM and

different power saving modes;

• an ECG sensor ADS1291 sampling at 250 Hz;

• a PPG sensor sampling at 125 Hz;

• a 3-axis accelerometer sampling at 250 Hz;

• nRF8001 BLE module;

• UARTs to send the signals from the dataset for more reliable testing;

• an Android application.

The first step consists of training a classification model to identify a subop-

timal (before VT1) or superoptimal exercise. This was performed offline by

considering the data from the incremental stress test phase of the dataset

for 19 out of 22 subjects (3 of them did not perform the second phase of the

experiment or one of the recordings was not usable). I separated the ECG and

PPG segments belonging to the two classes considering the position of VT1

that was identified by several medical experts. Moreover, I used also some

segments of the second phase of the experiment in which the subject had to

cycle at 80 % and 120 % of VT1 (constant exercise). However, I chose only 13

out of 19 subjects from the second phase and used the remaining (segments

from 6 subjects) for testing.

I evaluated two classification models, one that uses both ECG and PPG (two-

device model) and one that uses only ECG (one-device model). The features

extracted from the ECG for this application are the mean and rmssd param-

eters extracted from the RR intervals of 20-second windows (HRV features).

From the PPG, I considered the mean and standard deviation of the HR com-

puted using the algorithm presented in Section 2.3 on 20-second windows.

I trained the features with a linear support vector machine (SVM) for the

one-device model and a random forest for the two-device model as they

performed better at training time. In fact, the cross-validation results applied

to the training data achieved a G-mean of 79 % for the one-device model
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and 83 % for the two device model. I tested the classification models on the

segments acquired from the constant exercise performed by the 6 subjects

left out of the training. At testing time, the classification inference achieved

a G-mean of 89 % for the one-device model and 86 % for the two-device

model. These results are very promising considering that they use a general-

ized model on different subjects. In future works, the classification can be

subject-specific for better performance. Moreover, the ventilatory thresholds

detection could be performed in real-time considering the HRV parameters

of the ECG as done in [35].

The classification model of the one-device model is deployed on the ECG-

based device since it needs to transmit only the final output. On the contrary,

the classification model of the two-device model is deployed on the tablet

that receives the features of the two signals coming from two different devices.

Fig. A.1 shows the system overview starting with the tablet on the right and

the devices on the left. In the Android application, the user can choose to

perform a suboptimal or superoptimal training. This information will later be

used to send feedback to the user if they are performing the constant exercise

correctly or not, that is, maintaining the suboptimal or the superoptimal

training or deviating from it. Moreover, the user can choose if performing

the exercise with one or two sensors. The application will then connect via

BLE to one or two devices depending on the choice. If the user chooses only

one sensor, the application sends a flag to the devices that specifies which

model they should use. This applies only to the ECG-based device since the

PPG is used only in combination with the PPG. Fig. A.2 shows the power

management strategy derived by the two models and for both devices when

they receive the flag. In the ECG-based device, if the flag is two the device will

only perform the feature extraction and send the features as output to the

tablet via BLE. If the flag received is one, the ECG-based device will perform

the feature extraction and the classification model using a linear SVM. If the

user requested two sensors, then the PPG-based device is included in the

system and will perform only the feature extraction and send only the features

via BLE to the tablet. The PPG-based device comprises a 3-axis accelerometer,

as it is needed for the motion artifacts removal in the HR estimation.
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Welcome!

subopt
superopt

1 sensor
2 sensors

SCAN

SCAN

filter 
"ESL ECG"

filter 
"ESL"

Alarm

Alarm

flag 1 sensor

flag 2 sensors

flag type exercise

Features ECG

Features PPG

Figure A.1 – System overview of the application for optimal training

Figure A.2 – Power management and transmission strategy in both devices
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Figure A.3 – Energy consumption divided by the different components of
the ECG-based device, running the two-device model (on the
left) and the one-device model (on the right). On the bot-
tom, the battery lifetime for the two models considering the
total average current measured of 0.459 mA and 0.462 mA,
respectively

To evaluate the performance of the two models (one-device and two-device),

I profiled the energy consumption using the Simplicity Studio SW energy

profiler on the Cortex-M3 based EFM32LG-STK3600, since it is within the

same family of microcontrollers as the STM32L151xD. I also consider the

consumption of all the components in the ECG-based device running the two

models and in the PPG-based device. Finally, I estimated the battery lifetime

of both devices. Fig. A.3 and Fig. A.4 show the consumption divided in the

different components of the two devices and how it is affected by the two

models. I also report the battery lifetime at the bottom of the figures.

Considering the results of Fig. A.3, running the two-device model or the

one-device model has a small difference in battery lifetime. This is due to

the fact that the linear SVM classification model is very lightweight and the
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Figure A.4 – Energy consumption divided by the different components of
the PPG-based device for the two-device model. On the
bottom, the battery lifetime considering the total average
current measured of 13.246 mA
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difference in processing is small (dark blue section). Moreover, the trans-

mission accounts for a small percentage of the total energy consumption

since the output sent to the tablet consists of one or two values for both

cases. If more features were extracted and a more complex model was used,

the energy consumption would have a bigger difference in the two models.

Nonetheless, using the two-device model is better for the battery lifetime in

this case, although it is more accurate to use one-device model, according to

the test results. Furthermore, in the two-device model the second PPG-based

platform need to be accounted for. In fact, the second device consumes a lot

more compared to the first device with a battery lifetime of only 2.23 days.

Therefore, using the two-device model is worse overall. However, the low

battery lifetime is due to the sampling of the PPG and accelerometer, which

accounts for almost 70 % of the total energy consumption. More studies need

to be performed on optimizing the acquisition process as were proposed

already for the ECG [43].
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