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1 Introduction

Second-order phase transitions are described by scale-invariant (or rather conformally in-
variant) quantum field theories. There are two fundamentally different ways to approach
the study of phase transitions. On the one hand, one can try to construct specific fixed
points, using the logic of effective field theory. That is to say that one writes down a Hamil-
tonian for the order parameters of the system, including all possible relevant operators that
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are consistent with its global symmetry group. Given an effective Hamiltonian, one has to
analyze whether it admits one or several fixed points that can describe the phase transition
of interest.

An orthogonal way of thinking of this problem is bottom-up: one could attempt to
make a list of all conformal field theories together with their spectrum (i.e. their critical
exponents). Given such a list, it would be possible to look for theories with a specific global
symmetry group in two or three spacetime dimensions. The problem of classifying CFTs
is known as the conformal bootstrap [1–3] — see ref. [4] for a comprehensive review.

Although both approaches appear to be radically different, they lead to the same ex-
perimental predictions. For instance, the Ising CFT in three dimensions has been studied
for decades via renormalization group methods, yielding predictions for its critical expo-
nents up to four significant digits [5]. In recent years, these predictions were recovered
and even significantly improved by establishing rigorous bounds on the space of unitary,
Z2-symmetric CFTs with two relevant perturbations [6, 7].

Unfortunately, there is at present no simple method to classify all CFTs, even after
fixing a spacetime dimension d and a symmetry group G. To make progress, we analyze in
this paper a simplified classification problem that has been studied since the 1970s [8–12].
To be precise, we consider N scalars φi that interact via a general quartic interaction,

V (φ) = λijkl φ
iφjφkφl, (1.1)

without imposing any constraints on the couplings λijkl, except for the fact that they must
be real-valued (otherwise, the interaction (1.1) can flow to a non-unitary CFT). In two or
three dimensions, any fixed point obtained by turning on the interaction (1.1) is strongly
coupled. However, in d = 4−ε dimensions with ε� 1, the RG flow of the couplings {λijkl}
can be studied perturbatively. The beta functions of the λijkl are of the form

β(λijkl) = −ελijkl + Pijkl(λ) (1.2)

where Pijkl(λ) is an analytic function of the couplings that starts at order λ2. Consequently,
eq. (1.2) has roots that can be expanded order by order in the small parameter ε. To study
CFTs of this type, one can initially discard two- and higher-loop contributions to the beta
function (1.2).

At this stage, it is worth mentioning that the study of CFTs in the epsilon expansion
is an active field of research. Let us briefly sketch some different approaches, without
attempting to be exhaustive. Conformal symmetry strongly restricts perturbative fixed
points, to the extent that certain anomalous dimensions can be determined using rep-
resentation theory ideas [13–15]. Moreover, the ε expansion lends itself well to analytic
bootstrap methods [16–19]. For the Wilson-Fisher CFT, modern tools have been developed
to compute anomalous dimensions systematically without Feynman diagrams [20, 21]. In
other recent work [22], equations of motion were combined with conformal symmetry to
provide many quantitative results to leading order in ε. We also point to ref. [23], which
recently discussed thermal phase transitions for a large class of multiscalar theories of the
form (1.1).
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The problem of classifying one-loop fixed points in the ε expansion is mathematically
well-defined, but it is highly non-trivial: it consists of finding zeroes of dN quadratic
polynomials in dN variables, where dN is the number of couplings λijkl (for instance,
d2 = 5 and d3 = 15). Even for the case of N = 2 fields, the classification of fixed
points was completed only recently, by Osborn and Stergiou [24]. For N ≥ 3 however, no
such classification is known. Progress has been made in a different direction: in ref. [25],
Rychkov and Stergiou were able to show that the norm |λ|2 = λ2

ijkl of fixed point couplings
is bounded from above. This development is interesting because it rules out large swaths
of theory space T , the dN -dimensional space of couplings. Since dN ≈ 1

24N
4, already

for moderate values of N it’s extremely complicated to find fixed points inside the high-
dimensional space T . By showing that fixed points are instead restricted to a compact
domain D ⊂ T , the task of hunting for interacting CFTs becomes much easier.1 The main
goal of this work is to further shrink the allowed region D where CFTs can live.

This paper is organized as follows. In section 2, we review the problem of finding
one-loop fixed points with N scalars in the epsilon expansion, and we discuss some families
of known fixed points and their symmetry groups. For N = 3, 4 we provide a list of known
CFTs along with quantitative data about their couplings λijkl. In section 3, we define
O(N) invariants of λijkl, such as λiijj , and in turn we prove upper and lower bounds on
these invariants. After that, in section 4 we consider the spectrum of order-ε anomalous
dimensions γ(1) of operators of the type Or ∼ φi1 · · ·φir . A key result is that their averages
〈γ〉r and 〈γ2〉r are strongly constrained — in particular, we prove that the O(N) fixed
point maximizes these averages for many values of N and r. In the final part of this
manuscript, the above strategy is applied to theories with N complex scalars as well as to
bosonic QED. In particular, we show that there are no QED fixed points with fewer than
183 flavors. Several appendices provide proofs and explicit computations.

Note. During the completion of this paper we became aware of [27] which obtains a
number of new fixed points for N = 5, 6, 7 via numerical and analytical methods, and
which derives further bounds on O(N) invariants that are consistent with ours.

2 Review of the epsilon expansion

In this section, we will briefly review the classification problem at hand. As announced in
the introduction, we consider a theory of N real scalars φi with a Z2 symmetry φi 7→ −φi

described by the Lagrangian

L = 1
2(∂µφi)2 + B

4! λijklφ
iφjφkφl + counterterms (2.1)

we have introduced an arbitrary factor B > 0 to normalize the couplings λijkl. Without
imposing any further restrictions, the coupling λijkl can be any symmetric tensor. In
d = 4 − ε dimensions with ε small, the quartic couplings have mass dimension ε � 1

1See for example the recent work [26], which describes an effort to look for fixed points numerically using
the aforementioned bound on λ2

ijkl.
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so they are weakly relevant. Working in minimal subtraction, the beta function for the
couplings reads

β(λ)ijkl = −ελijkl + B

16π2 (λijmnλklmn + λikmnλjlmn + λilmnλjkmn) + O(λ3). (2.2)

Cubic and higher-order terms in λ can be computed in perturbation theory, by taking into
account two- and higher-loop Feynman diagrams. In this scheme, the small parameter
ε only appears in the leading term −ελijkl: all higher-order terms are independent of ε.
From now on, we will set B = 16π2 to simplify further formulas.

Consequently, we can look for fixed points β(λ?) = 0 of the form

λ?ijkl(ε) = λijkl ε+ λ
(2)
ijkl ε

2 + . . . . (2.3)

The leading-order contribution λijkl is necessarily a root of the one-loop beta function

β(1)(λ)ijkl = −λijkl + λijmnλklmn + λikmnλjlmn + λilmnλjkmn. (2.4)

Terms λ(n)
ijkl that are subleading in ε can be determined by taking into account n-loop

contributions to the beta function. At least when N = 1, these subleading contributions
are completely fixed2 by the leading piece λijkl.

It is therefore an interesting problem to classify solutions of the one-loop beta func-
tion (2.4). Once such a one-loop CFT λijkl is found, it’s possible to compute its spectrum
of anomalous dimensions (again, to leading order in ε), which gives a rough estimate for its
critical exponents in d = 3, and its global symmetry group G can be determined as well.
If more precise quantitative predictions for 3d physics are needed, it becomes necessary to
perform a higher-loop computation and to resum its results.

2.1 Global symmetries

By construction, any Lagrangian (2.1) has a Z2 global symmetry φi 7→ −φi. A coupling
λijkl can however have a larger global symmetry G ⊂ O(N). In particular, there exists a
maximally symmetric fixed point with an O(N) global symmetry:

V (φ) = λijkl φ
iφjφkφl = 3

N + 8 (φ · φ)2. (2.5)

At the same time, there exist CFTs with discrete symmetry groups, like the hypercubic
fixed point:3

V (φ) = 1
N

(φ · φ)2 + N − 4
3N

N∑
i=1

φ4
i . (2.6)

The above potential is invariant under G = ZN2 o SN , where SN permutes the φi and the
k-th copy of Z2 flips the sign of φk. Finally, there are fixed points with symmetry groups
that are products of discrete and continuous groups. Consider for instance

λijkl = 1
3uiujukul ⇔ V (φ) = 1

3(u · φ)4 (2.7)

2A sufficient condition for this to happen for N ≥ 2 is found in [12].
3For N = 4, the potential (2.6) is nothing but the O(4) model from (2.5).
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where ui is an arbitrary unit vector. This is the well-known Wilson-Fisher CFT, which in
two and three dimensions describes the Ising model. Its symmetry group is Z2×O(N −1),
where O(N−1) acts on fields orthogonal to ui. Concretely, we can e.g. set ui = (1, 0, . . . , 0)
such that the potential only depends on a single field φ1. It is easy to generalize to k ≤ N
copies of the Wilson-Fisher fixed point:

V (φ) = 1
3

k∑
α=1

(u(α) · φ)4. (2.8)

where the u(α)
i are unit vectors obeying u(α) ·u(β) = δαβ . The CFT (2.8) is invariant under

G = (Zk2 o Sk)×O(N − k).
Mathematically, the symmetry group of a coupling λijkl is its stabilizer under the

action of O(N). Concretely, an element R of the orthogonal group acts as

λijkl 7→ λRijkl = Ri′iR
j′

jR
k′

kR
l′

l λi′j′k′l′ (2.9)

so its symmetry group is the set of matrices that leave λijkl invariant, that is to say

Stab(λ) = {R ∈ O(N) : λR = λ } ⊂ O(N). (2.10)

For N = 1, the Wilson-Fisher model (2.7) is a one-loop fixed point with the smallest
possible symmetry group, namely Z2. Whether any CFTs with N ≥ 2 share this property
is an interesting open problem [25].

2.2 Orbits

Two Lagrangians related by a field redefinition φi 7→ Rijφj are physically equivalent.
However, they have different-looking couplings. For concreteness, consider two copies of
the Wilson-Fisher fixed point:

V (φi) = 1
3(φ4

1 + φ4
2). (2.11)

Now rotate the two fields by an angle θ. This gives rise to a one-dimensional family of
potentials

V (φi) 7→ V ′(φi) = 3 + cos(4θ)
12 (φ4

1 +φ4
2)+ sin(4θ)

3 (φ3
1φ2−φ1φ

2
2)+ 1− cos(4θ)

2 φ2
1φ

2
2 (2.12)

all of which describe the same physics. For a general coupling λijkl, the set of equivalent
couplings is known as its orbit:

Orb(λ) = {λR | R ∈ O(N) }. (2.13)

The “size” of the orbit of a tensor λijkl is closely related to its symmetry group: a version
of the orbit-stabilizer theorem shows that

dimOrb(λ) = dimO(N)− dim Stab(λ). (2.14)

For instance, the theory (2.11) has a discrete symmetry group, so the previous formula
correctly predicts that its orbit is one-dimensional.

– 5 –



J
H
E
P
0
4
(
2
0
2
1
)
0
6
8

As an important consequence, individual components of the coupling (λ1111, λ1112, . . .)
don’t have a physical meaning by themselves: observables like critical exponents should not
depend on a choice of frame, but instead they should be constant on orbits. It is therefore
convenient to discuss invariants of a given coupling, like |λ|2 = λ2

ijkl. This idea will be
explored in more detail in section 3.

2.3 Role of isotropy

In much of the RG literature, fixed points are studied based on their putative symmetry
group. That is to say that a global symmetry group G ⊂ O(N) is chosen, and fixed
points are then sought inside the subset of couplings which are invariant under G. If G
is sufficiently “large”, the number of invariant couplings I4 will be of order unity, so it is
relatively straightforward to construct fixed points. For instance, the hypercubic symmetry
group ZN2 o SN has I4 = 2, hence the fixed point (2.6) could be found by solving for two
coefficients.

Even though (2.1) contained only a kinetic term and a quartic coupling, the full φ4

Lagrangian also contains mass terms, i.e. couplings of the form mijφ
iφj . Such terms are

not generated in minimal subtraction, but they appear in more general renormalization
schemes, and they definitely must be considered when doing RG computations directly
in three dimensions. Enforcing invariance under some symmetry group G also limits the
number I2 of such mass terms.

Much of the literature has focused on QFTs with I2 = 1, said to be isotropic. From a
group theory point of view, this means investigating subgroups of O(N) that have a unique
quadratic invariant, δij . When N is small, it is possible to classify such groups and to find
all possible CFTs in the corresponding universality classes. This work has been done for
N = 2, 3 in [28] and for N = 4 in [29]. For N = 2, 3, the only isotropic fixed points turn
out to be the O(N) CFT and N copies of the Ising model; for N = 4 the solution is much
richer.

In the rest of this work, we will not impose isotropy, and instead look for completely
general fixed points. Throughout the next section, we will however comment on the role
of isotropy.

3 Bounds on λijkl at fixed points

The number of couplings λijkl in a theory with N fields is

dN =
(
N + 3

4

)
= 1

24N(N + 1)(N + 2)(N + 3) (3.1)

which grows rapidly with N . For N = 1 there is a single coupling λ1111, and the only
non-trivial fixed point is the Wilson-Fisher CFT. For N = 2 there are d2 = 5 couplings,
and it’s already an interesting problem to classify all solutions [24]. For N = 3, 4, 5, . . .
there are dN = 15, 35, 70, . . . couplings, and no analytic methods are available to produce
such a classification.
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Instead, we can use a bottom-up method to prove theorems about the space of solu-
tions. Assuming that λijkl is a real zero of the one-loop beta function (2.4) for a given
number of fields N , what can we say about λijkl? Both in the older literature [9] and in
more recent papers [24, 25] this question was explored, and in this section we will pursue
this strategy further.

3.1 Bounds on |λ|

Let us start by reviewing one of the main results of ref. [25] by Rychkov and Stergiou. They
found that if λijkl is a one-loop fixed point, then its norm |λ|2 = λ2

ijkl obeys the following
inequality:

|λ|2 ≤


1
36(3 + 4

√
2) ≈ 0.240468 N = 2

1
12(1 + 2

√
3) ≈ 0.372008 N = 3

1
8N N ≥ 4

. (3.2)

The proof of eq. (3.2) relies on a clever application of the Cauchy-Schwarz inequality, and
we refer to [25] for details.

We will now present a new result, namely that the norm of any interacting fixed point
λijkl is bounded from below as well:

|λ| ≥ 1
3 . (3.3)

Of course, λijkl = 0 is also a fixed point — it describes N decoupled free scalars. To
show (3.3), it will be useful to define an operator ∨ on the space of tensors. If Aijkl and
Bm1···mr are two symmetric tensors of rank 4 resp. r ≥ 2, then let4

(A ∨B)i1···ir := Amn(i1i2Bi3···ir)mn (3.4)

where X(i1···ir) denotes symmetrization over the indices {ik}. For instance, for r = 4 this
∨ product is given by

(A ∨B)ijkl = 1
6
(
AijmnBklmn +AikmnBjlmn +AilmnBjkmn

+AjkmnBilmn +AjlmnBikmn +AklmnBijmn
)
. (3.5)

In particular, the one-loop β function (2.4) can be written as

β(λ)ijkl = −λijkl + 3(λ ∨ λ)ijkl (3.6)

omitting the superscript on β(1) from now on. Two key properties of the ∨ product are
stated below.

Fact. The ∨ product (3.4) satisfies

|A ∨B| ≤ |A||B| (3.7)

where |B|2 = B2
i1···ir is the usual norm on tensors. If (3.7) is saturated, then there exist

constants c, c′ and a unit vector ui such that

Aijkl = c uiujukul, Bi1···ir = c′ ui1 · · ·uir . (3.8)

The proof of (3.7) and (3.8) is given in appendix A.
4For the r = 4 case, this operator appeared already in [12].
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Coming back to the β function, we can use the above inequality to get

|λ| = 3|λ ∨ λ| ≤ 3|λ|2 ⇒ λ = 0 or |λ| ≥ 1
3 (3.9)

as promised. When the inequality (3.9) is saturated, eq. (3.8) implies that λ factorizes as
follows:

|λ ∨ λ| = |λ|2 ⇒ λijkl = c uiujukul . (3.10)

The overall normalization c is fixed to be 1/3 by requiring that λijkl is a fixed point. In
conclusion, any fixed point obeying |λ| = 1/3 is equal the Wilson-Fisher CFT (2.7).

3.2 Bounds on O(N) invariants of λ

We can move ahead and further restrict the space of fixed points, by carefully analyzing the
solutions of β(λ) = 0. As announced before, it will be useful to consider O(N) invariants
of the coupling λijkl, since such invariants don’t depend on a choice of frame.

To define such invariants, we recall that symmetric tensors are reducible under O(N).
If Vr denotes the vector space of rank-r symmetric tensors, then we have the following
decomposition in terms of irreducible representations:

Vr = [r]⊕ [r − 2]⊕ · · · ⊕ [r mod 2] (3.11)

writing [`] for the traceless symmetric rank-` irrep of O(N). Let us make the decomposi-
tion (3.11) explicit for the r = 4 case. For an arbitrary tensor Aijkl the decomposition in
invariant components is determined by projectors P` : V4 → [`] ⊂ V4 as follows:

(P0A)ijkl = 3
N(N + 2) δ(ijδkl)Ammnn (3.12a)

(P2A)ijkl = 6
N + 4 δ(ijAkl)mm −

2(N + 2)
N + 4 (P0A)ijkl (3.12b)

(P4A)ijkl = Aijkl − (P2A)ijkl − (P0A)ijkl. (3.12c)

We note that the projector P2 has a simple physical interpretation. In an isotropic quantum
field theory, the coupling λijkl must obey

λijkk = z · δij (3.13)

for some z ∈ R — after all, δij is the only allowed invariant. A tensor satisfying (3.13)
then necessarily has P2λ = 0.

To proceed, we will can define O(N) invariants a`(λ) by means of the projectors (3.12).
There will be one linear invariant a0(λ) and two quadratic invariants a2,4(λ) which by
construction obey

a`(P`λ) = a`(λ) and a`(P`′λ) = 0 if ` 6= `′. (3.14)

Explicitly, they are given by

a0(λ) := λiijj , a2(λ) := λijkl(P2λ)ijkl, a4(λ) := λijkl(P4λ)ijkl. (3.15)
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Notice that the quantity a0(λ) can have either sign (since a0(λ) is odd under λ 7→ −λ)
while a2(λ) and a4(λ) are positive, these invariants are related to |λ|2 via the equation

|λ|2 = 3
N(N + 2) a0(λ)2 + a2(λ) + a4(λ) (3.16)

which can for example be used to eliminate a4(λ). Following the previous discussion, a2(λ)
always vanishes in isotropic theories.

For concreteness, let us compute the above invariants for the Wilson-Fisher CFT ten-
sored with N − 1 free fields (2.7). We get

λ = λWF : |λ|2 = 1
9 , a0(λ) = 1

3 , a2(λ) = 2(N − 1)
3N(N + 4) . (3.17)

Next, we can consider the O(N) fixed point (2.5)

λ
O(N)
ijkl = 3

N + 8 δ(ijδkl) (3.18a)

which obeys

|λ|2 = 3N(N + 2)
(N + 8)2 , a0(λ) = N(N + 2)

N + 8 , a2(λ) = 0. (3.18b)

In the table 1 below, we have collected a list of known fixed points of N = 3 and N = 4
fixed points from the literature (see for instance ref. [29], and in particular ref. [26] for
three new fixed points) and computed their invariants. Notice that most theories in these
tables are decoupled, i.e. they are tensor products of fixed points with fewer than N scalars.
Among the theories listed below, only three CFTs with N = 3 fields and five CFTs with
N = 4 fields are fully interacting.

In what follows, we will derive bounds on the invariants a`(λ) for that are valid at
any fixed point. This idea is not new: essentially, we are generalizing results due to Brézin
et al. from ref. [9]. The new ingredient in our work is that we allow for anisotropic theories;
in their work, they only considered couplings of the form

λijkl = c · (δijδkl + symm) +Wijkl (3.19)

whereWijkl is a traceless tensor. Couplings of the form (3.19) automatically have a2(λ)=0.
Going back to our computation, we start by applying a0 to the fixed point condition

β(λ) = 0, making use of the identity5

3a0(A ∨B) = N−1a0(A)a0(B) + 1
6(N + 4)Aijkl(P2B)ijkl + 2AijklBijkl (3.20)

which yields
1

2N a0(λ)(N − a0(λ)) = |λ|2 + 1
12(N + 4)a2(λ). (3.21)

This is an important relation, showing that the invariant a2(λ) is redundant.
5A version of (3.20) for tensors obeying P2A = P2B = 0 already appeared in [12].
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Table of invariants for N = 3 fixed points
|λ|2 a0 a2 a4

Gaussian 0 0 0 0
Ising 1/9 1/3 4/63 8/315
Ising2 2/9 2/3 4/63 22/315
Ising3 1/3 1 0 2/15
O(2) 6/25 4/5 16/175 18/875
O(2) + Ising 79/225 17/15 4/1575 722/7875
Cubic 10/27 4/3 0 2/135
Biconical 0.370451 1.33713 0.0002184 0.012651
O(3) 45/121 15/11 0 0

Table of invariants for N = 4 fixed points
|λ|2 a0 a2 a4

Gaussian 0 0 0 0
O(2) 6/25 4/5 3/25 1/25
O(3) 45/121 15/11 225/1936 45/1936
O(4) 1/2 2 0 0
O(2) + O(2) 12/25 8/5 0 4/25
Ising 1/9 1/3 1/16 5/144
Ising2 2/9 2/3 1/12 1/12
Ising3 1/3 1 1/16 7/48
Ising4 4/9 4/3 0 2/9
O(3) + Ising 526/1089 56/33 1/121 125/441
O(2) + Ising 79/225 17/15 33/400 389/3600
O(2) + 2 Ising 104/225 22/15 1/300 19/100
N = 3 Cubic 10/27 4/3 1/9 1/27
N = 3 Cubic + Ising 13/27 5/3 1/144 7/432
S1;S2 from di-pentagonal 220/441 40/21 0 20/441
N = 3 biconical 0.370451 1.33713 0.111935 0.0350273
N = 3 biconical + Ising 0.481562 1.67046 0.0072945 0.125463
O(2) (v1 from [26]) 0.499606 1.95458 0.00020497 0.0218515
D4 × Z2 (v2 from [26]) 0.499144 1.92641 0.00026922 0.0349939
S3 × Z2

2 (v3 from [26]) 0.499115 1.92406 0.00024596 0.0361167

Table 1. Table of the invariants for N = 3 and N = 4 for the known fixed points.
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Now, notice that the r.h.s. of (3.21) is bounded from below by 1/9, assuming that
λ 6= 0. This restricts the range of a0:

λijkl = 0 or
∣∣∣∣a0(λ)− N

2

∣∣∣∣ < N

2

√
1− 8

9N . (3.22)

This bound is not yet optimal. To refine it, we can simply replace |λ|2 in (3.21) by the
r.h.s. of (3.16), which leads to

1
2%+

N

a0(λ)
[
%+
N − a0(λ)

]
= 1

12(N + 16)a2(λ) + a4(λ), %+
N := N(N + 2)

N + 8 . (3.23)

Since the r.h.s. of (3.23) is positive, this immediately implies that

λ = 0 or %−N < a0(λ) ≤ %+
N , %−N := N

2

[
1−

√
1− 8

9N

]
. (3.24)

The upper bound is optimal, since %+
N is precisely the value of a0 of the O(N) fixed point

from (3.18b).
We can also obtain an upper bound on |λ|2, starting from the relation (3.21). Since

a2(λ) ≥ 0, it follows that
|λ|2 ≤ 1

2N a0(λ)(N − a0(λ)). (3.25)

As a function of a0(λ) the r.h.s. attains a maximum at a0(λ) = 1
2N , so in particular

|λ|2 ≤ 1
8N , which is the previously announced result (3.2). However, for low values of N ,

the maximum 1
2N is larger than %+

N . This is the case for N = 2, 3, and consequently for
these values of N , |λ|2 is maximal at the O(N) fixed point. In summary, we find that

|λ|2 ≤

|λO(N)|2 = 6
25 ,

45
121 for N = 2, 3

1
8N for N ≥ 4

. (3.26)

For N = 2 and N = 3 this is a slight improvement compared to eq. (3.2): for instance
45/121 ≈ 0.3719 is slightly smaller than 0.3720.

We already proved that |λ| ≥ 1
3 for any interacting fixed point. This lower bound can

be refined using the condition a4(λ) ≥ 0. Using (3.16) and (3.21), we find

0 ≤ a4(λ) = |λ|2 − a2(λ)− 3
N(N + 2) a0(λ)2 (3.27a)

= 1
N + 4

[
(N + 16)|λ|2 − 6a0(λ) + 3

N + 2 a0(λ)2
]

(3.27b)

and therefore
|λ|2 ≥ max

{1
9 ,

3a0(λ)
(N + 2)(N + 16) [2N + 4− a0(λ)]

}
. (3.28)

The two functions appearing on the r.h.s. are equal if

a0(λ) = N + 2−
√

2
27(N + 2)(13N + 19) =: %]N . (3.29)
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Figure 1. Left: allowed region (orange) in the a0, |λ|2 plane for theories with N = 3 fields. Dots
represent known fixed points, as reported in the previous table. Right: zoom near the O(3) fixed
point. In both plots, decoupled fixed points are shown in green, fully interacting fixed points in
black.

0.0 0.5 1.0 1.5 2.0

0.0

0.1

0.2

0.3

0.4

0.5

a0

λ
2

O(4)

v1

v2

v3

di-pentagonal

1.90 1.92 1.94 1.96 1.98 2.00 2.02

0.4988

0.4990

0.4992

0.4994

0.4996

0.4998

0.5000

0.5002

a0

λ
2

Figure 2. Left: allowed region (orange) in the a0, |λ|2 plane for N = 4. Dots represent known
fixed points. Right: zoom near the O(4) fixed point. Dots are color-coded as in figure 1.

For %−N < a0(λ) ≤ %]N , the norm |λ|2 is bounded from below by 1
9 , whereas for %]N <

a0(λ) ≤ %+
N the relevant bound is given by the non-trivial function of a0(λ) appearing

in (3.28).
For N = 3 and N = 4, the allowed regions in the plane spanned by a0(λ) and |λ|2 are

shown in figures 1 and 2, along with the location of all known fixed points.
Finally, we can turn to the anisotropy a2(λ), which by construction is non-negative.

To obtain an upper bound, we start by rewriting eq. (3.21):

0 ≤ 1
12(N + 4)a2(λ) ≤ 1

2N a0(λ)(N − a0(λ))− |λ|2. (3.30)

Depending on whether a0(λ) is smaller or larger than ρ#
N , the r.h.s. can then be bounded

by (3.28). For small a0(λ), we get the inequality

a0(λ) ≤ %]N ⇒ 0 ≤ a2(λ) ≤ 6
N(N + 4)

[
a0(λ)(N − a(λ))− 2

9N
]
. (3.31)

Meanwhile, for larger a0(λ) we find

a0(λ) ≥ %]N ⇒ 0 ≤ a2(λ) ≤ 6
(N + 16)%+

N

a0(λ)(%+
N − a0(λ)). (3.32)
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Figure 3. Left: allowed region (blue) in the a0,a2 plane for N = 3. Dots represent known fixed
points. Right: zoom near the O(3) fixed point. Dots are color-coded as in figure 1.
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Figure 4. Left: allowed region (blue) in the a0,a2 plane for N = 4. Dots represent known fixed
points. Right: zoom near the O(4) fixed point. Dots are color-coded as in figure 1.

This allowed region in the plane parametrized by a2(λ) and |λ|2 is plotted for N = 3, 4 in
figures 3 and 4.

Scanning over all allowed values of a0(λ), we conclude in particular that

a2(λ) ≤ 3%+
N

2(N + 16) <
3
2 . (3.33)

In physics terms, this means that the anisotropy of a coupling λijkl is at most of order unity,
although naively one could expect that there are fixed points with a2(λ) of order |λ|2 ∼ 1

8N .
The rightmost parts of figures 1, 2, 3 and 4 show zoomed-in plots of theory space near

the O(3) and O(4) fixed points, which live at kinks of the allowed region D. Especially for
N = 4, we find that there are many fixed points that extremely close to the O(4) theory.
In particular, the three new N = 4 fixed points found in [26] — labeled by v1, v2 and v3
— have this property. These new fixed points also have a2(vi) 6= 0 but of the order of
10−4 � 1. It would be interesting to find a deeper explanation why there are so many
fixed points near these O(N) kinks.

Finally, let us compare our results to those of ref. [9] by Brézin et al. In that seminal
work, a version of (3.21) was found with a2(λ) = 0, along with a counterpart of (3.23). The
authors of [9] correctly found that for isotropic theories a0(λ) ≤ %+

N , and later Michel [12]
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pointed out that for N < 4, the O(N) model maximizes |λ|2, again assuming isotropy.
Interestingly, both of these results are ultimately independent of the isotropy assumption.

4 Anomalous dimensions

So far, we derived bounds on the couplings λijkl describing a general CFT at order ε in
the epsilon expansion. In what follows, we will instead focus on the spectrum of such a
CFT, that is to say its one-loop anomalous dimensions. We will start by briefly reviewing
the problem of computing one-loop anomalous dimensions and proceed to derive explicit
bounds for operators without derivatives.

4.1 One-loop anomalous dimensions

To start, we briefly review the computation of anomalous dimensions in perturbative quan-
tum field theory. Local operators in the free scalar CFT are of the form

free theory : Oi1···in =
n∏
i=1

∂`iφi1 (4.1)

where ∂` is shorthand for a product of ` derivatives, say ∂` = ∂µ1 · · · ∂µ` . Such operators
can be organized into irreducible representations of the rotation group O(d) and of the
global symmetry group, O(N). In d = 4 − ε dimensions, the operator (4.1) has scaling
dimension

∆free = n ·∆φ +
∑
i

`i = n(1− 1
2ε) +

∑
i

`i (4.2)

since ∆φ = 1
2(d− 1) = 1− 1

2ε is the dimension of a free scalar field.
If the theory is instead deformed by a coupling λijkl such that an IR fixed point is

reached, the scaling dimensions change. There will be a new set of scaling operators [Oα]
with non-zero anomalous dimensions, so

∆α = ∆α,free + γ(1)
α · ε+ γ(2)

α · ε2 + . . . (4.3)

where the γ(n)
α are coefficients that can be computed using an n-loop computation in pertur-

bation theory. The scaling operators [Oα] can still be organized into definite representations
of O(d); however, they are now labeled by representations of the symmetry group of λijkl,
which may be smaller than O(N).

The scaling operators [Oα] can be expressed as linear combinations of free theory
operators of the form (4.1). The computation of the relevant change-of-basis matrix at
general orders in perturbation theory is complicated, and we will not discuss in this work.
However, it is known that expressions for scaling operators at one loop can be computed
by solving a diagonalization problem that only involves free-theory CFT data [30]. To be
precise, let

V = :λijkl φiφjφkφl : (4.4)
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be the operator that perturbs the Gaussian theory, and let Oρ be a generic operator in the
free theory, say a Lorentz scalar, of 4d scaling dimension ∆free = r, which is necessarily an
integer, r ∈ {1, 2, 3, . . .}. In the 4d Gaussian CFT, we have the following OPE:

V(x)Oρ(0) = 1
|x|4

∑
σ

Cσρ(λ)Oσ(0) + non-scalar operators

+ scalar operators of 4d dimension 6= r (4.5)

where Cσρ is a matrix of OPE coefficients that can e.g. be determined using Wick con-
tractions. It can be shown that scaling operators of the IR CFT are precisely of the form
[Ov] = vρOρ, where vρ is an eigenvector of the matrix C:

Cσρ(λ)vρ = ω(v)vσ. (4.6)

Moreover, the one-loop anomalous dimension γ
(1)
v of the operator [Ov] is proportional

to ω(v):6

γ(1)
v = 1

12 ω(v). (4.7)

Notice that the eigenvalue problem (4.6) only involves operators of 4d dimension r, even
though the OPE V ×Oρ also contains operators with dimensions other than r.

The formulas (4.5), (4.6) and (4.7) provide an explicit recipe to compute one-loop
anomalous dimensions of scalar operators of dimension r. It is perhaps illustrative to spell
this out for the case r = 2. All operators with 4d dimension ∆free = 2 are of the form
Oij = :φiφj : or ∂µφi, but the latter have non-trivial Lorentz spin so they don’t mix with
the Oij . Using Wick’s theorem, we have the following OPE:

V(x)Oij(0) = 12
|x|4

λijklOkl(0) + . . . (4.8)

omitting operators with dimension ∆free 6= 2 and spinning operators. In the case of the
Wilson-Fisher CFT with N = 1 we have λ1111 = 1/3, and there is a unique operator
O11 = :φ2 :, so (4.7) predicts that the renormalized operator [φ2] has scaling dimension

∆φ2 = 2− ε+ 12 · 1
3 ·

1
12 ε+ O(ε2) ⇒ γ

(1)
φ2 = 1

3 . (4.9)

This result is well-known and can be obtained using other means, e.g. [31]. It is straight-
forward to generalize to N ≥ 2 fields.

For operators of classical dimension r ≥ 4, one might expect mixing of operators of
the form :φr : (without derivatives) with composite operators built out of m derivatives
and r−m fields, say :φr−4∂µφ∂

µφ : having m = 2. At one-loop order, it can be shown [32]
that such mixing does not arise, based on a careful analysis of the matrix C appearing in
eq. (4.5). It is therefore possible to study operators built out of r fields φi without gradients

6The constant of proportionality depends on the normalization of the field φ. From here on out, we use
the normalization 〈φ(x)φ(0)〉 = 1/|x|2.
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by a very modest generalization of the r = 2 diagonalization problem treated above. If
we let

Oi1···ir = :φi1 · · ·φir : (4.10)

then
V(x)Oi1···ir(0) = 6r(r − 1)

|x|4
λkl(i1i2Oi3···ir)kl(0) + . . . . (4.11)

As a consequence, if v = vi1···ir solves the eigenvalue problem

B

16π2
r(r − 1)

2 λ ∨ v = γ(1)
v v (4.12)

then [Ov] = vi1···irOi1···ir is a scaling operator at the IR fixed point with one-loop anomalous
dimension γ(1)

v . In (4.12) we have allowed for a general normalization of the couplings, to
facilitate comparison to the literature.7

Notice that for fixed r, the number of such operators is equal to the number of sym-
metric tensors of rank r, that is to say

dN,r =
(
N + r − 1

r

)
(4.13)

which behaves as N r/r! at large N . For a given coupling λijkl, finding anomalous dimen-
sions γ(1)

v for rank-r operators is therefore equal to diagonalizing a matrix of size dN,r×dN,r.
The cases r = 0, 1 and r = 3, 4 deserve special treatment. The unique operator with

r = 0 is the identity operator, which does not get renormalized. The fundamental fields
φi only get renormalized at order ε2, by a two-loop diagram. This explains the prefactor
r(r − 1) in the eigenvalue equation (4.12). For r = 3, there are N operators of the form

Oi = λijkl :φjφkφl :, i = 1, . . . , N (4.14)

which have anomalous dimension γ(1)
Oi = 1. These operators therefore satisfy

∆Oi = 3
(

1− 1
2ε
)

+ 1 · ε+ O(ε2) = ∆φ + 2 + O(ε2) (4.15)

as required because of multiplet recombination: in the IR theory, the field φi combines
with Oi to form a long multiplet [13]. The perturbing operator V with r = 4 has γ(1)

V = 2,
so it has scaling dimension ∆V = 4 + O(ε2).8

4.2 Bounds and sum rules

We will now use eq. (4.12) to prove properties of one-loop anomalous dimensions γ(1)
v in

general multiscalar CFTs. First, we will argue that the individual γ(1)
v are bounded, and

second we will study certain averages of anomalous dimensions, namely

〈γn〉λr = 1
dN,r

dN,r∑
v=1

(γ(1)
v )n for n = 1, 2. (4.16)

7Versions of equation (4.12) have appeared in the recent literature, for instance in [33, 34].
8Thus the operator V satisfies d −∆V = −ε + O(ε2) so it’s irrelevant at the IR fixed point, at least at

leading order in the ε expansion.
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It turns out that sums of the form (4.16) can be expressed in terms of n-th order invariants
of the coupling λijkl and as such they can be related to the bounds derived in section 3.

First, let us consider the individual anomalous dimensions γ(1)
v . Setting B = 16π2, we

can simply appeal to (3.7) to find that

|γ(1)
v | ≤

r(r − 1)
2 |λ|. (4.17)

Moreover, equality in (4.17) only holds for the Wilson-Fisher CFT. To be precise, the
bound is saturated for the following potential and operators:

V (φ) = 1
3(u · φ)4 and O = (u · φ)r (4.18)

where ui can be any unit vector. In other words, the well-known one-loop anomalous
dimensions 1

6r(r − 1) of the Wilson-Fisher fixed point play a special role.
The bound (4.17) may be compared to an existing result in the O(N) model. In

ref. [20], Kehrein et al. showed that any operator with r fields (possibly with gradients) in
that theory has a bounded anomalous dimension:

O(N) CFT : 0 ≤ γ(1) ≤ r(3r +N − 4)
2(N + 8) . (4.19)

If N is large, this result is significantly stronger than (4.17), but formula (4.19) does reflect
the ∼ r2 scaling at large r of (4.17).

Next, we turn to the averages 〈γ〉r and 〈γ2〉r from (4.16). For specific theories, such
sums can be computed explicitly. In appendix B, we solve the eigenvalue problem (4.12)
for the case of the Wilson-Fisher model (tensored with N − 1 free fields) and the O(N)
fixed points. For the Wilson-Fisher CFT, we find for instance that

〈γ〉WF
r = r(r − 1)

3N(N + 1) and 〈γ2〉WF
r = r(r − 1)

9(N)4
[N2 + 6(r − 1)2 +N(6r − 7)] (4.20)

where (x)n = x(x+ 1) · · · (x+ n− 1) is the Pochhammer symbol. For the O(N) CFT, we
have instead

〈γ〉O(N)
r = r(r − 1)

N(N + 1)
N(N + 2)
N + 8 (4.21a)

and

〈γ2〉O(N)
r = r(r − 1)

(N)4

N(N + 2)
(N + 8)2 H(N, r),

H(N, r) = N(N − 1)− (13 + 4N +N2)r + (11 + 6N +N2)r2. (4.21b)

Moreover, the spectrum of the N -field hypercubic fixed point was recently analyzed by
Antipin and Bersini in ref. [33], where explicit results were given for scalar operators with
r ≤ 5. They find for instance that

〈γ〉hypercubic
r = 2r(r − 1)(N − 1)

3N(N + 1) for r = 2, 3, 4, 5. (4.22)

The quantity 〈γ2〉hypercubic
r can be computed as well, and the result is printed in eq. (B.12).
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The above formulas look simple, even though they arise from the complicated-looking
eigenvalue problem (4.12). Indeed, we claim that both of these quantities can be expressed
in terms of the invariants ak(λ) that we have encountered previously:

〈γ〉λr = r(r − 1)
N(N + 1) a0(λ) and 〈γ2〉λr = r(r − 1)

(N)4
SN,r(a0(λ), |λ|2) (4.23)

where the function SN,r is given by

SN,r(x, y) = 4(r − 2)(N + r)x+ (r − 2)(r − 3)x2 − (N + r)(7r − 17−N)y (4.24)

using the shorthand notation x = a0(λ), y = |λ|2. The derivation of these identities is
straightforward but slightly cumbersome, and we defer the proof of eq. (4.23) to appendix C.
In the derivation of the second sum rule the relation (3.21) was used, so it only holds at
fixed points. It’s easy to check that (4.23) is valid for the Wilson-Fisher, the O(N) and
the hypercubic CFTs (for r ≤ 5). In fact, the first sum rule shows that the formula (4.22)
holds for any r ≥ 2, as was already conjectured in [33].

Above, we showed that individual anomalous dimensions γ(1) were bounded in terms
of |λ|. In particular, it follows from (4.17) and the Rychkov-Stergiou bound (3.26) that

∣∣〈γ〉λr ∣∣ < r(r − 1)
4
√

2
√
N and

∣∣〈γ2〉λr
∣∣ < r2(r − 1)2

32 N. (4.25)

This is a statement about the spectrum of any one-loop CFT in the epsilon expansion,
regardless of any information about its coupling λijkl. However, the bound (4.25) is far
from optimal, at least in the examples considered above. With some additional work, a
sharper statement can be derived.

Theorem. Consider any one-loop CFT with N ≥ 2 scalar fields, labeled by a coupling
λijkl. For any r ∈ {2, 3, . . .}, the quantity 〈γ〉λr is bounded from above by its value in the
O(N) theory:

〈γ〉λr ≤ 〈γ〉O(N)
r . (4.26a)

For r = 2, we have in addition

〈γ2〉λ2 ≤

〈γ2〉O(N)
2 for N = 2, 3, 4

1
4(N+1) for N ≥ 5

. (4.26b)

If N is sufficiently small, the following analog of (4.26a) holds for r ≥ 3:

N ≤ 4
(
r − 9

8

)2
: 〈γ2〉λr ≤ 〈γ2〉O(N)

r <
r(r − 1)(r2 − r + 1)

(N + 5)2 . (4.26c)

The domain of r and N for which 〈γ2〉r is maximal at the O(N) fixed point is shown in
figure 5.

The above result is a clear improvement compared to the naive bound (4.25): in
particular, the average of the anomalous dimensions 〈γ〉r scales at most as 1/N at large N
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Figure 5. The green region shows the values of r and N for which the quantity 〈γ2〉r is bounded
from above by its value in the O(N) theory, according to eq. (4.26c). In the white region, it is
possible that another CFT has a larger value of 〈γ2〉r. The solid blue line follows from the proof in
Apppendix D; the dotted line is the approximation N ≤ 4 (r − 9/8)2 appearing in (4.26c).

— as can be seen from eq. (4.21a) — compared to
√
N . We also remark that the restriction

on N from (4.26c) is not very severe; even for r = 3, it only requires N ≤ 14 (and in fact
the result holds for N ≤ 18 in that case).

The proof of the bounds (4.26a) is straightforward but long. It relies on the fact that
the quantities 〈γ1,2〉λr can be expressed in terms of the invariants a0(λ) and |λ|2, which we
know are restricted to a compact domain DN ⊂ R2. Therefore

〈γ2〉λr ≤
r(r − 1)

(N)4
sup
DN
SN,r (4.27)

and determining the supremum of SN,r is an exercise in calculus. Some details are provided
in appendix D.

Without the restriction on N , it is still possible to find bounds on the quantity 〈γ2〉λr ,
but such bounds won’t involve the O(N) fixed point. For instance, for r = 3 and N ≥ 19
we can show, using the methods of appendix D, that

N ≥ 19 : 〈γ2〉λ3 ≤
3(N + 4)2

4(N − 4)(N + 1)(N + 2) (4.28)

which is somewhat larger than 〈γ2〉O(N)
3 for these values of N . The bound (4.28) can only

be saturated by an isotropic CFT with a0 = 1
2N(N + 4)/(N − 4); it is an interesting

question whether such a one-loop fixed point exists. Similar bounds can be obtained for
r ≥ 4, but we will not discuss this further.

Using the same ideas, it is possible to derive uniform lower bounds on 〈γ〉r and 〈γ2〉r.
Such lower bounds don’t appear to involve any know fixed points, and we will not discuss
them in the present work either.
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Let us finally comment on the case where λijkl is isotropic. In that case, the order-ε
contribution to the critical exponent ν is given by the anomalous dimension of the operator
φ·φ, which can be computed as a special case of (4.12). Using this information, the authors
of [9] derived a bound on ν valid for general isotropic theories, comparing it to the value
of ν of the O(N) fixed point.

5 Bounds for complex scalars and bosonic QED

So far, we studied in detail the theory of N real scalars φi interacting by means of a
quartic interaction. The landscape of theories with N complex scalars is not as well-
explored. In this section, we will adapt the methods from section 3 to analyze two types of
Lagrangians with complex degrees of freedom: first, the theory of N complex scalars with
a φ̄φ̄φφ interaction, and second the U(1) gauge theory of N charged scalars, also known as
bosonic QED.

5.1 Interactions with N complex scalars

To proceed, let us consider the theory of N complex scalars φi and their conjugates φ̄i in
4− ε dimensions, interacting by means of the following quartic interaction:

L = |∂µφi|2 + B′

6 V (φi, φ̄i), V (φi, φ̄i) = gijkl φ̄
iφ̄jφkφl . (5.1)

Here B′ is an arbitrary constant that will be fixed later. It is possible to allow for a more
general quartic interaction, including terms of the form hijkl φ

iφjφkφl, h′ijkl φ̄iφjφkφl and
their conjugates. However, the action (5.1) is invariant under the U(1) symmetry Q that
assigns a charge +1 to φi and −1 to φ̄i, and we will later gauge precisely this U(1).

By construction, the couplings gijkl are invariant under the Z2 × Z2 symmetry

gijkl = gjikl = gijlk (5.2)

contrary to the full S4 permutation invariance of the real coupling λijkl. In addition, the
reality of L enforces that

g∗ijkl = gklij . (5.3)

It’s easy to show that tensors satisfying (5.2) and (5.3) are parametrized by 1
4N

2(N + 1)2

real coefficients.
Setting B′ = 24π2, the one-loop beta function of gijkl is given by

β(g)ijkl φ̄iφ̄jφkφl = (−gijkl + gijmngmnkl + 4gimkngjnlm)φ̄iφ̄jφkφl. (5.4)

Even though V is not manifestly positive for an arbitrary coupling gijkl, it is indeed positive
at fixed points. To check this, we simply rewrite the above equation as

β(g) = 0 ⇒ V (φ, φ̄) = tr(L†L) + 4 tr(M †M) ≥ 0 (5.5)

with
Lij(φ) = gijmn φ

mφn and Mij(φ, φ̄) = gimjn φ̄
mφn. (5.6)
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As an example, take the most symmetric interaction of the form (5.1):

V (φi, φ̄j) = 1
N + 4 (φiφ̄i)2 . (5.7)

This potential is invariant under a U(N) symmetry that acts on the fields as follows:

U(N) 3 R : φi 7→ Rijφj , φ̄i 7→ (R∗)ijφ̄j = (R†) i
j φ̄

j . (5.8)

The prefactor 1/(N+4) in (5.1) is fixed by imposing that (5.7) is a fixed point. For N = 1,
this is the theory of a single doublet with a (φφ̄)2 interaction (sometimes known as the
XY model). As a side note, the U(N) fixed point (5.7) is equal to the O(2N) fixed point
from (2.5), as can be seen by decomposing φi and φ̄i in terms of 2N real degrees of freedom.

5.2 Invariants and bounds

Just as before, we can try to restrict the space of zeroes of the one-loop beta function (5.4).
By analogy with the result (3.3), we can manipulate eq. (5.4) to show that at a fixed point

gijkl = 0 or |g| ≥ 1
5 . (5.9)

The proof of this inequality is given in appendix E. This bound is optimal, since the U(1)
fixed point from eq. (5.7) has |g| = 1

5 .
To obtain more refined bounds, we can introduce three projection operators Qi as

follows:

Q1(g)ijkl = 1
N(N + 1) (δikδjl + δilδjk)gmnmn (5.10a)

Q2(g)ijkl = 1
N + 2 [δikgjmlm + 3 terms− (2N + 2)Q1(g)ijkl] (5.10b)

Q3(g) = g −Q1(g)−Q2(g) (5.10c)

which indeed obey QiQj = δijQi. Associated to these projectors, we can define invariants

b1(g) = gijij , b`(g) = gklijQ`(g)ijkl = |Qi(g)|2 for ` = 1, 2. (5.11)

Owing to the reality condition (5.3) b1(g) ∈ R, and by construction b2(g), b3(g) ≥ 0. These
invariants are related to the norm |g|2 = gijklgklij as follows:

|g|2 = 2
N(N + 1) b1(g)2 + b2(g) + b3(g). (5.12)

For example, the U(N) fixed point (5.7) has invariants

g = gU(N) : b1(g) = N(N + 1)
2(N + 4) , b2(g) = 0 and |g|2 = N(N + 1)

2(N + 4)2 . (5.13)

In passing, remark the complex analog of the isotropy requirement (3.13) is

gikjk = w · δij , w ∈ R. (5.14)
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If eq. (5.14) is satisfied, b2(g) = 0. In particular, the U(N) fixed point has this isotropy
property. Just like in the real case, we will not impose (5.14).

Let us make a brief comment on the group-theoretical meaning of the projectors Q`.
The group U(N) acts on the tensor gijkl through

U(N) 3 R : gijkl 7→ gRijkl = (R†) i′i (R†) j′

j R
k′

kR
l′

l gi′j′k′l′ (5.15)

cf. the action (5.8) on the fields φi, φ̄i. Under this action the tensor gijkl is reducible:
its irreducible components can be identified with a trivial representation, the adjoint rep
of dimension N2 − 1 and a third representation of dimension 1

4N
2(N − 1)(N + 3), all of

which are self-conjugate. These three irreps are precisely the image of the projectors Q1,
Q2 and Q3.

In order to find an additional relation between the invariants that holds at fixed points,
let us introduce the matrix γij = gikjk, which is Hermitian (γ† = γ). From (5.4), it
follows that

b1(β(g)) = −b1(g) + 3|g|2 + 2tr(γ2). (5.16)

At the same time,
b2(g) = 4

N + 2

(
tr(γ2)− 1

N
b1(g)2

)
. (5.17)

Consequently, at a fixed point we can write

β(g) = 0 ⇒ 2
3N b1(g)

(
N

2 − b1(g)
)

= |g|2 + 1
6(N + 2)b2(g). (5.18)

We are now in a very similar situation as before: the (in)equalities (5.9), (5.12)
and (5.18) are nearly identical to their real counterparts (3.3), (3.16) and (3.21), the only
difference being that some coefficients differ. It is therefore straightforward to show that
e.g. b1(g) and |g|2 can be restricted to a compact domain. We will not provide a complete
derivation, since it would be almost identical to section 3.2. Instead, we will provide a
summary of the results.

Theorem. Given the action (5.1) with N ≥ 1 fields, if gijkl describes a non-trivial CFT
at one loop, then

σ−N < b1(g) ≤ σ+
N (5.19a)

with
σ+
N = N(N + 1)

2(N + 4) and σ−N = N

4

[
1−

√
1− 24

25N

]
. (5.19b)

The upper bound in (5.19a) is optimal, because σ+
N coincides with b1 of the U(N) CFT.

Inside this interval,

max
{ 1

25 ,
2b1(g)
N + 8

(
1− b1(g)

N + 1

)}
≤ |g|2 ≤ 2

3N b1(g)
(
N

2 − b1(g)
)
. (5.20)

In particular

|g|2 ≤

|gU(N)|2 = 1
25 for N = 1

1
24N N ≥ 2

. (5.21)
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The inequality (5.21) is the counterpart of the Rychkov-Stergiou bound (3.2) and its
refinement (3.26) in the case of N real scalars.

Let us make a final comment on the role of charge conjugation C, the Z2 symmetry
that exchanges fields and their conjugates, C : φi ↔ φ̄i. From the point of view of (5.1),
C is a discrete symmetry that may be imposed, although we do not do so in this work.
Concretely, charge conjugation implies that gijkl = gklij or equivalently gijkl ∈ R, recalling
the reality condition (5.3). From a practical point of view, imposing C reduces the number
of real couplings to 1

8N(N + 1)(N2 + N + 2). It is an open question whether C puts
interesting constraints on the space of theories — we only remark that “simple” CFTs like
the U(N) fixed point (5.7) are manifestly invariant under C.

5.2.1 Comparison to real case

As previously mentioned, the theory with N complex scalars (5.1) obeying the reality
condition (5.2) is a special case of the Lagrangian (2.1) with 2N real scalar fields. Explicitly,
one can write the complex fields φi in terms of real fields ψi,α with α = 1, 2 as(

φi

φ̄i

)
= ψi,1 ± iψi,2√

2
(5.22)

such that the ψi,α are canonically normalized. The U(1) global symmetry of the action (5.1)
translates to an SO(2) global symmetry acting on the doublets ψi,α, so the theory in
question is not the most general multiscalar theory.9

In particular, any statement about fixed points with complex scalars should be a
refinement of theorems described previously for real fixed points. Given the normalizations
B = 16π2 and B′ = 24π2, the invariants |g|2 and bj(g) are related to |λ|2 and aj(λ) via

|g|2 = 1
6 |λ|

2, b1(g) = 1
4a0(λ), b2(g) = 1

6a2(λ) and b3(g) = 1
6a4(λ). (5.23)

It follows that the upper bound on |g|2 from (5.21) is identical to (3.26), but the lower
bound |g| ≥ 1

5 translates to |λ| ≥
√

6
5 ≈ 0.49, which is stronger than |λ| ≥ 1

3 . This is not
surprising, as these two bounds correspond to different CFTs, the O(2) versus the Ising
model. The remaining constraints on |g2| from (5.20) are identical to those obtained in the
real case. Finally, the upper bound σ+

N on b1(g) from (5.19a) agrees with the upper bound
%+

2N on a0(λ) from (3.24), although the lower bound σ−N is sharper than its counterpart %−2N .

5.3 Bosonic QED

In this subsection we discuss what happens to the Lagrangian (5.1) if we gauge the U(1)
symmetry under which φi resp. φ̄i have charges ±1. The resulting action describes bosonic
versions of QED in 4 − ε dimensions, allowing for the most general coupling gijkl that is
consistent with gauge invariance and unitarity. Concretely, we minimally couple the matter
fields (φi, φ̄i) from (5.1) to a photon Aµ:

L = |Dµφ
i|2 + 4π2 V (φ, φ̄) + 1

4FµνF
µν , V (φ, φ̄) = gijkl φ̄

iφ̄jφkφl (5.24)

9In fact, the complex theory is specified by ∼ 1
4N

4 couplings, whereas a theory with 2N real fields is
described by ∼ 2

3N
4 couplings.
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where Dµ = ∂µ + ieAµ is the gauge covariant derivative and Fµν = ∂µAν − ∂νAµ. For later
convenience, we can redefine the gauge coupling as follows:

α := e2

24π2 . (5.25)

The one-loop beta functions of α and gijkl are given by10

β(α) = −εα+Nα2 (5.26a)
β(g)ijklφ̄iφ̄jφkφl = [−(ε+ 18α)gijkl + (g[g)ijkl + 4(g]g)ijkl] φ̄iφ̄jφkφl + 54α2(φ · φ̄)2

(5.26b)

where [ and ] are two tensor contractions defined in eq. (E.2). The gauge coupling α has
two possible values at a fixed point: α = 0 or α = α? := ε/N . If α = 0, the photon
decouples and the scalars interact according to the ungauged interaction (5.1). If α = α?
however, the beta function of the scalar couplings is modified. Rescaling gijkl by a factor
1/ε, these modified beta functions are given by

β(g)ijkl = β0(g)ijkl −
18
N
gijkl + 54

N2 Tijkl , Tijkl := 1
2(δikδjl + δilδjk) (5.27)

where β0(g) denotes the ungauged one-loop beta function (5.4). Remark that in the limit
N → ∞, the two terms of order 1/N and 1/N2 vanish, and the ungauged beta function
β0(g) is recovered.

As an example, we can look for maximally symmetric fixed points, having PSU(N),11

as a global symmetry group:

V (φ, φ̄) = c (φiφ̄i)2, c ∈ R. (5.28a)

If the number of flavors N is larger than 183, there are two unitary fixed points with
different values of c, namely12

c± = 1
2N(N + 4)

(
N + 18±

√
N2 − 180N − 540

)
. (5.28b)

The two solutions are referred to as bQED+ and bQED in [35]: bQED+ is known as the
abelian Higgs or the non-compact CPN−1 model, whereas bQED is unstable. The fact that
the solutions (5.28) only exist for N ≥ 183 (at leading order in ε!) has been known for a
long time [36]. For even values of N , refs. [35, 37] also describe two families of one-loop
CFTs with symmetry group SU

(
1
2N
)
× SU

(
1
2N
)
, which exist for N ≥ 197.

10These beta functions can be derived starting from those of scalar QED in four dimensions.
11The global symmetry group is not equal to U(N), since the U(1) factor is gauged and must be modded

out. In addition, eq. (5.28) has a Z2 charge conjugation symmetry C.
12These solutions have the following invariants:

b1(g±) = c±
2 N(N + 1), b2(g±) = b3(g±) = 0 and |g±|2 = c2

±

2 N(N + 1).
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These results suggest that it is difficult to construct one-loop fixed points of the Lan-
grangian (5.24) with a large symmetry group but a finite number of flavors, say N . 100.
However, it could be possible that there exist CFTs at small N that have a small or even
trivial symmetry group. In what follows we will show that this is not the case, by proving
that there are no one-loop CFTs at all with N < 183 flavors. To do so, we employ the by
now familiar strategy of carefully analyzing relations between the invariants b`(g) and |g|2.
For example, we can apply the invariant b1 to (5.27), using the fact that b1(T ) = 1

2N(N+1)
as well as (5.16). This leads to the identity

β?(g) = 0 ⇒ 2
3N b1(g)

(
N + 18

2 − b1(g)
)

= |g|2 + 1
6(N + 2)b2(g) + 9(N + 1)

N
. (5.29)

Using (5.12), |g|2 can be eliminated in favor of b3(g):

b1(g)
3σ+

N

(
N + 18
N

σ+
N − b1(g)

)
− 1

6(N + 8)b2(g)− b3(g) = 9(N + 1)
N

. (5.30)

By construction, b2(g) and b3(g) are positive. Therefore we must have

9(N + 1)
N

≤ 1
3σ+

N

sup
x∈R

x

(
N + 18
N

σ+
N − x

)
= (N + 1)(N + 18)2

24N(N + 4) . (5.31)

But this inequality can only hold for

N ≥ 90 + 24
√

15 ≈ 182.95 (5.32)

as we claimed above.
More quantitatively, we can obtain upper and lower bounds on |g|. To wit, if we use

that b2 ≥ 0 then it follows from (5.29) that

|g|2 ≤ 2
3N b1(g)

(
N + 18

2 − b1(g)
)
− 9(N + 1)

N

≤ −9(N + 1)
N

+ 2
3N sup

x∈R
x

(
N + 18

2 − x
)

= N

24

(
1− 180

N
+ 108
N2

)
. (5.33)

Notice that in the limit N → ∞, the inequality (5.33) is asymptotically equal to (5.21)
from the ungauged case. Finally, we can analyze the beta function (5.27) directly, rewriting
it as(

N + 18
N

)
g = P(g[g+4g]g)+ 54

N2 T, P(A)ijkl := 1
4(Aijkl+Ajikl+Aijlk+Ajilk). (5.34)

Here P is nothing but a projection operator that enforces (5.2). Using the triangle inequal-
ity, the inequalities from section E and the fact that |T |2 = 1

2N(N + 1), it follows that

(
N + 18
N

)
|g| ≤ 5|g|2 + 27

√
2(N + 1)
N3 . (5.35)
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Figure 6. Orange region: the values that |g| can take at fixed points, as a function of the number
of fields N . The blue curve is the upper bound from (5.33); the orange curves are the two branches
of eq. (5.35). The solid and dotted black curves are the two CFTs from eq. (5.28).

For N ≥ 728 this leads to a new constraint on |g|, namely that either |g| ≤ ξ−(N) or
|g| ≥ ξ+(N) for two algebraic functions ξ±(N) that can be determined from (5.35). Ap-
proximating ξ±(N), it can be shown that

N ≥ 728 : 0 ≤ |g| < 74
N

or 1
5 −

70
N

< |g| <
√

1
24N. (5.36)

In figure 6, the possible values of |g| consistent with eqs. (5.33) and (5.35) are shown as a
function of N .

6 Discussion

In this work we showed that one-loop fixed points with N real or complex scalars are
strongly constrained by unitarity alone. Hopefully, these results provide a stepping stone
towards further numerical work along the lines of [26]. In our work we used linear and
quartic invariants of the coupling λijkl, but it is also possible to construct higher-order
O(N) invariants. If it’s possible to improve our bounds using e.g. cubic or quartic invariants,
it would certainly be worthwhile to do so. In addition, it would be interesting to find a
deeper explanation why there seem to be many fixed points close to the O(4) theory, as we
mentioned in section 3.2.

We expect that the methods used in this work generalize to many other situations.
For instance, it is possible to study φn-type interactions with n 6= 4, which are marginal
in d = 2n/(n − 2) — see e.g. [24] for a discussion of fixed points with n = 3, 6 or [22] for
generic even n and n = 3. Likewise, one can add N ′ fermions and attempt to constrain
fixed points with quartic and Yukawa couplings. In the latter case, it could be interesting
to hunt for supersymmetric fixed points.
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In the second part of our work, we studied averages of anomalous dimensions of oper-
ators built out of r fields without gradients. For one, it is an obvious question to extend
these results to spinning composite operators. Moreover, the quantities 〈γ1,2〉 are similar
to averages of anomalous dimensions and OPE coefficients that are encountered in analytic
bootstrap computations (see e.g. [19]), and it would be interesting to make contact with
these results, either in general or for specific theories.
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A Proof of equations (3.7) and (3.8)

In this appendix, we prove the two equations eqs. (3.7), (3.8) from the main text. To prove
the first inequality, we remark that

(A ∨B)i1···ir = C(i1···ir), Ci1···ir = Akli1i2Bi3···irkl. (A.1)

The tensor C is simply a contraction of A and B which equals A ∨ B after symmetrizing
its indices. Therefore

|A ∨B|2 ≤ |C|2 (A.2a)

=
∑
{iα}

(∑
kl

Akli1i2Bi3···irkl
)2 (A.2b)

≤
∑
{iα}

(∑
kl

Akli1i2
)2∑

mn

(
Bi3···irmn

)2 (A.2c)

= |A|2|B|2 (A.2d)

as announced. In passing from (A.2b) to (A.2c), we used the Cauchy-Schwarz inequality.
For that inequality to be saturated, necessarily for all i1, . . . , ir there exists a constant
µ(i1, . . . , ir) such that

Ai1i2mn = µ(i1, . . . , ir)Bi3···irmn (A.3)
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for all m,n. To interpret this equation, we can think of A resp. B as the coefficients of
a linear map A : R2 → (R2)∗ resp. B : R2 → (Rr−2)∗. These maps can be represented
by matrices. The previous equation simply implies that all of the rows of A and B are
proportional to one another. Hence there exist symmetric matrices A′,M and a symmetric
rank-(r − 2) tensor B′ such that

A = A′ ⊗M and B = B′ ⊗M. (A.4)

We will now prove two facts:

(i) any symmetric rank-4 tensor A of the above form factorizes as A = c u⊗4 for some
constant c, and

(ii) if a symmetric rank-k tensor T can be written as T = T ′ ⊗ u for some vector ui 6= 0,
then T = c′ u⊗k for some constant c′ ∈ R.

Setting B = T and B′ = T ′ ⊗ u, these two facts yield the desired result.
In order to establish (i), notice that the symmetry of A in its indices requires that A′

is proportional to M . Hence Aijkl = cMijMkl for some constant c. But the fact that A
is symmetric under all permutations also implies that Aijkl = Alijk i.e. MijMkl = MilMkl.
By taking traces, this implies that M2 − tr(M)M = 0. Yet M is diagonalizable (since
it’s symmetric), and the last equation shows that any non-zero eigenvalue ν must satisfy
ν = tr(M). This can only be satisfied if M has at most one non-zero eigenvalue, or in
other words the image of M is at most one-dimensional. This establishes that there exists
a vector ui such that Mij = ±uiuj .

The proof of (ii) proceeds by induction. For k = 1 it’s a tautology. Suppose that the
claim holds for all k ≤ n. For k = n+ 1, the symmetry of T implies that

T ′i1···inuin+1 = T ′i1···in−1in+1uin (A.5)

for all indices i1, . . . , in+1. By contracting with uin+1 , it follows that

T ′ = T ′′ ⊗ u for T ′′i1···in−1 := 1
|u|2

T ′i1···in−1mu
m. (A.6)

But T ′ has rank k = n, so it T ′ factorizes completely. This completes the proof.

B Sum rules for the Wilson-Fisher, O(N) and hypercubic CFTs

In what follows we will compute the quantities 〈γ〉r and 〈γ2〉r for some infinite families of
known fixed points. To this end, it will be useful to write an index-free version of (4.12).
To wit, if we let O = vi1···irφ

i1 · · ·φir and V (φ) = λijklφ
iφjφkφl, then (4.12) becomes

1
24V,ij(φ)O,ij(φ) = γ

(1)
O O(φ) (B.1)

writing f,ij(φ) = ∂i∂jf(φ). To be clear, here the φi are treated simply as auxiliary vectors,
and not as operators, so there is no need to normal order.
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For example, we can consider the Wilson-Fisher theory tensored with N − 1 free fields
V (φ) = 1

3φ
4
1, which satisfies

V,ij(φ) = 4δi,1δj,1φ2
1. (B.2)

Any polynomial of degree r can be written as

k = 0, . . . , r : O(k)(φ) = φk1 Pr−k(φ2, . . . , φN ), multiplicity = dN−1,r−k. (B.3)

Such a polynomial obeys
1
24V,ij(φ)O(k)

,ij (φ) = 1
6φ

2
1 · k(k − 1)φk−2

1 Pr−k(φ2, . . . , φN ) = k(k − 1)
6 O(k)(φ). (B.4)

Consequently, the sums over anomalous dimensions are given by

〈γ〉WF
r = 1

dN,r

n∑
k=0

dN−1,r−k
k(k − 1)

6 = r(r − 1)
3N(N + 1) (B.5a)

and

〈γ2〉WF
r = 1

dN,r

n∑
k=0

dN−1,r−k

(
k(k − 1)

6

)2
= r(r − 1)

9(N)4

[
N2 + 6(r − 1)2 +N(6r − 7)

]
(B.5b)

as shown in eq. (4.20).
For the O(N) model, any rank-r polynomial can be written in the form

k = 0, . . . , br/2c : O(k)(φ) = (φ · φ)k Pr−2k(φ) (B.6)

where P`(φ) is a harmonic polynomial of degree ` = r − 2k. The number of such polyno-
mials is

d′N,` = dN,` − dN,`−2. (B.7)

This decomposition reflects the decomposition of symmetric tensors in terms of traceless
symmetric tensors. Now

1
24V,ij(φ) = 1

2(N + 8)(δijφ · φ+ 2φiφj) (B.8)

and

O(k)
,ij (φ) =

[
4k(k − 1)(φ · φ)k−2φiφj + 2kδij(φ · φ)k−1

+ 2k(φ · φ)k−1(φi∂j + φj∂i) + (φ · φ)k∂i∂j
]
Pr−2k(φ) (B.9)

from which it follows that
1
24V,ij(φ)O(k)

,ij (φ) = γ
(1)
r,k O

(k)(φ), γ
(1)
r,k = r(r − 1) + k(N + 2r − 2)− 2k2

N + 8 . (B.10)

Here we have used that ∂2P` = 0 and (φ ·∂)P` = `P`. Summing over these results with the
correct multiplicities from eq. (B.7), we have

〈γn〉O(N)
r = 1

dN,r

br/2c∑
k=0

d′N,r−2k

(
γ

(1)
r,k

)n
(B.11)

which leads to eq. (4.21) in the main text.

– 29 –



J
H
E
P
0
4
(
2
0
2
1
)
0
6
8

Finally, for the hypercubic fixed point with symmetry group ZN2 o SN , anomalous
dimensions for all operators with r = 2, 3, 4, 5 have been computed in ref. [33]. Summing
over their results, we obtain

〈γ〉hypercubic
r = 2r(r − 1)(N − 1)

3N(N + 1) and 〈γ2〉hypercubic
r = r(r − 1)(N − 1)

9N2(N + 1) U(N, r)

(B.12a)
with

U(N, 2) = (N + 2)2(N + 3) (B.12b)
U(N, 3) = (N + 3)(N2 + 22N − 8) (B.12c)
U(N, 4) = N3 + 51N2 + 126N − 88 (B.12d)
U(N, 5) = N3 + 85N2 + 220N − 180. (B.12e)

For reference, the hypercubic fixed point has

a0(λ) = 2
3(N − 1) and |λ|2 = (N − 1)(N + 2)

9N . (B.13)

C Proof of equation (4.23)

Let us first turn to the proof of (4.23). We will first choose a basis {eα} of symmetric
tensors of rank r, normalized such that

eαi1···ire
β
i1···ir = δαβ ⇔

dN,r∑
α=1

eαi1···ire
α
j1···jr = 1

r! (δi1j1 · · · δirjr + permutations). (C.1)

Working in this basis, the anomalous dimensions {γα} are eigenvalues of the dN,r × dN,r
matrix

r(r − 1)
2 Mαβ(λ), Mαβ(λ) := λijkl eαijm1···mr−2eβklm1···mr−2

. (C.2)

In particular, we can express sums over eigenvalues as

〈γk〉λr = 1
dN,r

(
r(r − 1)

2

)k
trM(λ)k. (C.3)

Such traces are easiest to evaluate in an index-free formalism. For the k = 1 case, let us
introduce auxiliary vectors ui resp. vj , such that

trM(λ) = λijkl
(r!)2

∂4

∂ui∂uj∂vk∂vl
(Du,v)r−2 (u · v)r, Du,v := ∂2

∂ui∂vi
. (C.4)

This is nothing but a rewriting of the second equation of (C.1). Applying the operator
Du,v r − 2 times, we find

(Du,v)r−2 (u · v)r = (r!)2dN,r
2N(N + 1) (u · v)2 (C.5)
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and performing the final four derivatives, we obtain

trM(λ) = dN,r
2N(N + 1) λijkl

∂4

∂ui∂uj∂vk∂vl
(u · v)2 = 2dN,r

N(N + 1) λiijj . (C.6)

Inserting this into (C.3), the first equation of (4.23) is recovered. For the second sum rule,
we need to evaluate a slightly more complicated expression:

trM2(λ) = λijklλabcd
(r!)4

∂4

∂ui∂uj∂wk∂wl
∂4

∂va∂vb∂tc∂td

× (Du,w)r−2(Dv,t)r−2 [(u · v)r(w · t)r] . (C.7)

Working out the second line, we get

trM2(λ) = dN,r
4r(r − 1)(N)4

λijklλabcd
∂4

∂ui∂uj∂wk∂wl
∂4

∂va∂vb∂tc∂td
P(u, v, w, t) (C.8a)

where

P(u, v, w, t) = (N + r)(N + r− 1)(u · v)2(w · t)2 + 4(r− 2)(N + r)(u ·w)(u · v)(w · t)(v · t)
+ (r − 2)(r − 3)(u · w)2(v · t)2. (C.8b)

Computing the remaining derivatives, we obtain

1
dN,r

trM2(λ) = 4
r(r − 1)(N)4

[
(N + r)(N + r + 1)λ2

ijkl

+ 4(r − 2)(N + r)λ2
ijkk + (r − 2)(r − 3)λ2

iijj

]
. (C.9)

Plugging this into (C.3) with k = 2, and using eq. (3.21), we finally obtain the second
equation of (4.23).

D Bound on 〈γ〉r and 〈γ2〉r for general theories

In this section, we derive the bounds appearing in eq. (4.26). Let’s first obtain (4.26a)
involving 〈γ〉λr . According to (4.23), this quantity is proportional (by a positive constant)
to a0(λ). But the latter quantity is bounded from above by its value at the O(N) fixed
point, as derived in eq. (3.24). Therefore (4.26a) follows immediately.

Next, we will consider the bound (4.26b), using eq. (4.27). We will consider the cases
r = 2 and r ≥ 3 separately. For r = 2, the function SN,r = SN,2 reads

SN,2(x, y) = (N + 2)(N + 3)y = (N + 2)(N + 3)|λ|2 (D.1)

which only depends on |λ|2 and not on a0(λ). So for this case, 〈γ2〉2 can easily be bounded
by appealing to (3.26).

For r ≥ 3, the function SN,r(x, y) depends both on x = a0(λ) and y = |λ|2. Schemati-
cally, for fixed N , the domain DN is of the form

%−N < x ≤ %+
N , f−(x) ≤ y ≤ f+(x) (D.2)
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where f±(x) and %±N depend only on N . The functions f±(x) are equal at x = %±N , and we
also know that %+

N coincides with the O(N) fixed point. The function SN,r obeys

∂

∂y
SN,r(x, y) = (N + r)(N −N?(r)), N?(r) = 7r − 17. (D.3)

For N = N?(r), the function SN,r does not depend on y; for N > N?(r) the sup of SN,r
will be on the upper boundary curve f+, whereas for N < N?(r) it will be on the lower
curve f−.

Let us first consider the case N > N?(r). On the upper boundary curve, the function
SN,r is of the form

SN,r(x, f+(x)) = αN,r x(βN,r − x) (D.4)

for two constants αN,r and βN,r:

αN,r = N2 − 2Nr2 + 4Nr + 5N − 7r2 + 17r
2N , βN,r = (N + r)(N + r + 1)

2αN,r
. (D.5)

If αN,r > 0 the maximum will be attained either at x = %−N , %
+
N or at x = βN,r/2. The

maximum will be attained at %+
N iff βN,r/2 ≥ %+

N . For r = 3, this requires that

r = 3 : 5 ≤ N ≤ 8 + 4
√

7 ≈ 18.6. (D.6)

For r ≥ 4, this condition is schematically of the form

r ≥ 4 : ζ ′(r) ≤ N ≤ ζ(r) (D.7)

where ζ(r), ζ ′(r) are two algebraic functions of r. The function ζ(r) will play a role later,
and an explicit formula is included in the source code of this TEX file.

If αN,r < 0 then this function is a negative parabola, and it can only have a local
minimum. Therefore the sup of SN,r will be attained at either x = %−N or x = %+

N . It turns
out that the sup is always attained at x = %+

N . Hence SN,r is also saturated by the O(N)
fixed point for

r ≥ 4, N?(r) < N < ζ ′(r). (D.8)

Next we consider the case N = N?(r), where SN?(r),r(x, y) =: Sr(x) does not depend
on y, and in fact

d

dx
Sr(x) = 4(r − 2)

[
N?(r) + r + 1

2(r − 3)x
]
> 0 (D.9)

for all r ≥ 3 and all allowed values of x. Therefore the maximum will be attained at x = %+
N .

Finally we can consider the case N < N?(r). In this case, we have to look for a
supremum of the function SN,r(x, f−(x)). The computation goes along the same lines as
before. We find that for all N < N?(r), the maximum is reached at x = %+

N .
Summarizing, supDN SN,r is attained at %+

N , that is to say at the O(N) fixed point, when

2 ≤ N ≤ Nmax(r) :=

18 for r = 3
ζ(r) r ≥ 4

. (D.10)
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Although ζ(r) is complicated, what is important is that the function Nmax(r) can be
bounded as follows:

r ≥ 3 : Nmax(r) > 4
(
r − 8

9

)2
. (D.11)

This leads to the restriction on N that appears in (4.26c).

E Bound for |g| at a complex fixed point

The beta function (5.4) can be written as

β(g)ijklφ̄iφ̄jφkφl = (−gijkl + (g[g)ijkl + 4(g]g)ijkl) φ̄iφ̄jφkφl (E.1)

where
(g[h)ijkl := gijmnhmnkl and (g]h)ijkl := gimknhjnlm . (E.2)

In eq. (E.1), the effect of the contraction with φ̄iφ̄jφkφl is merely to enforce the sym-
metrization according to (5.2). Therefore, at a fixed point we have

|g| ≤ |g[g + 4g]g| ≤ |g[g|+ 4|g]g|. (E.3)

Now, for fixed (i, j, k, l), we have

i, j, k, l fixed : |(g[h)ijkl|2 =
∣∣∣∣∣∑
mn

gijmnh
∗
klmn

∣∣∣∣∣
2

≤
∑
mn

|gijmn|2
∑
pq

|hklpq|2 (E.4)

as follows by applying the inequality

|tr(AB†)|2 ≤ tr(AA†)tr(BB†) (E.5)

with Amn = gijmn and Bmn = hklmn. Consequently, |g[h|2 ≤ |g|2|h|2. Likewise,

i, j, k, l fixed : |(g]h)ijkl|2 =
∣∣∣∣∣∑
mn

gimknh
∗
lmjn

∣∣∣∣∣
2

≤
∑
mn

|gimkn|2
∑
pq

|hlpjq|2 (E.6)

by applying (E.5) with Amn = gimkn and Bmn = hlmjn. Again, it follows that |g]h|2 ≤
|g|2|h|2. In particular, for g = h we conclude from (E.3) that

|g| ≤ 5|g|2 ⇒ gijkl = 0 or |g| ≥ 1
5 (E.7)

as announced.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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