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Résumé
Les collisionneurs de hadrons de haute énergie sont conçus pour générer des collisions

entre particules au sein de détecteurs spécialisés. Des faisceaux de haute qualité sont néces-
saires pour obtenir un grand nombre de collision. Ils sont caractérisés par une haute intensité
et une faible émittance, c’est à dire par un grand nombre de particules dans une faible section
transverse. Cette thèse traite de l’impact du bruit sur la qualité des faisceaux en terme de gé-
nération d’instabilités collectives ainsi que de grossissement de l’émittance. Les mécanismes
de dégradation du faisceau sont décrits par le biais de nouveaux développements analytiques,
de simulations numériques par traçages, de solutions numériques d’équations aux dérivées
partielles ainsi que par des expériences sur le Grand Collisionneur de Hadron (LHC) du CERN.

L’impact du bruit ne peut pas être décrit proprement dans le cadre d’une perturbation de
l’équation Vlasov au premier ordre, qui est communément utilisée pour l’étude des insta-
bilités collectives. L’équation de Vlasov linéarisée est donc étendue au deuxième ordre, se
traduisant par un mécanisme de diffusion causé par l’action du bruit, de la décohérence qui
en résulte ainsi que de l’action des champs de sillage électromagnétiques. Cette diffusion
aplati progressivement et localement la distribution de particules, résultant en une perte de
l’effet Landau avec un temps de latence. Une formule analytique pour le temps de latence
ainsi qu’un algorithme numérique pour la diffusion sont obtenus, donnant des prédictions en
accord avec les résultats des expériences conduites sur le LHC. Cet effet peut être maîtriser
en opérant la machine avec suffisamment de marge de stabilité, c’est à dire avec un étale-
ment des fréquences plus élevé que prédit par la théorie linéaire du premier ordre pour un
faisceau Gaussien. Ce résultat explique donc la raison pour laquelle le LHC a dû être opéré
avec une marge de stabilité d’environ un facteur 2, déterminée empiriquement jusqu’à lors.
De meilleures paramètres opérationnels réduisant le besoin en étalement des fréquences sont
ainsi proposés. La théorie permet aussi d’effectuer des extrapolations pour les projets futurs,
tel que le LHC Haute-Luminosité (HL-LHC), ainsi que d’estimer l’impact de composants
novateurs tel que les cavités crabes.

Les sources de bruit externes ainsi que le bruit provenant du système de rétroaction transverse
provoque un grossissement de l’émittance du faisceau de par la décohérence qui en résulte.
La théorie existante permettant d’estimer la suppression du grossissement de l’émittance
par un système de rétroaction considérant les paquets individuellement est étendue pour
décrire l’impact d’un système de rétroaction traitant le signal de plusieurs paquets. L’étude
numérique de cet effet est réalisée au moyen d’un nouvel algorithme parallélisé incluant deux
faisceaux composés de multiple paquets. Pour un cas typique où les sources de bruit externe
sont de basse fréquence et le bruit du système de rétroaction est non-négligeable, le système
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Résumé

de rétroaction multi-paquets s’avère plus performante que le traitement paquet-par-paquet,
car il permet de réduire le bruit généré par le système de rétroaction tout en conservant son
efficacité contre le bruit externe. Une optimisation du gain et de la bande passante du système
de rétroaction multi-paquet est proposée pour l’opération du LHC.

Mots clés : Accélérateur de particules, Collisionneur, LHC, Bruit, Décohérence, Diffusion,
Système de rétroaction, Grossissement de l’émittance, Qualité du faisceau, Stabilité du fais-
ceau, Amortissement Landau, Diagramme de stabilité, Champ de sillage électromagnétique,
Interaction faisceau-faisceau, Simulation multi-particules.

iv



Abstract
High-energy hadron colliders are designed to generate particle collisions within special-

ized detectors. A higher number of collisions is achieved with high-quality beams of low
transverse emittances, meaning a small transverse cross-section, and high intensity, meaning
many particles per bunch. This thesis studies how noise negatively impacts the beam quality
in high-energy hadron colliders, both in terms of beam instabilities and emittance growth. The
impact is analyzed through the derivation of new theories, multi-particle tracking simulations,
the numerical solving of partial differential equations, and dedicated experiments in CERN’s
Large Hadron Collider (LHC).

The impact of noise on beam stability cannot be treated with the first-order, linear Vlasov
equation, which is commonly used to study the thresholds of collective instabilities. Therefore,
the Vlasov equation has in this thesis been expanded to second order in the perturbation of
the beam distribution, finding a diffusion mechanism driven by the interplay between noise,
decoherence, and wakefields. The diffusion leads to a local flattening of the distribution,
which can cause a loss of Landau damping after a time delay referred to as the latency. An ana-
lytical formula for the latency and a specialized numerical diffusion solver were successfully
benchmarked against the latency measurements in a dedicated experiment conducted in the
LHC. Precaution in the machine operation has to be taken to account for this new mechanism.
In particular, it is found that the machine must be operated with a margin to the linear stability
threshold. For the case of the LHC, it has previously been found empirically that the octupole
current during operation must be increased by about a factor 2, and this thesis provides the
explanation as to why that is. Alternative operational settings are suggested to reduce the
required octupole current in the LHC. In addition, the new theory allows for extrapolations to
future machines, such as the High-Luminosity LHC, as well as the estimation of the impact of
new devices, such as crab cavities.

External noise and noise from the transverse beam feedback system cause an emittance
growth rate due to decoherence of the noise kicks. Analytical theories for the suppression of
the emittance growth rate with a bunch-by-bunch feedback have here been extended to a
multi-bunch feedback. The numerical study of suppression during collision was conducted by
means of a newly developed parallel multi-beam multi-bunch algorithm. For the typical case
of low-frequency external noise and non-negligible feedback noise, a multi-bunch feedback
has both analytically and numerically been found superior to a bunch-by-bunch feedback, as
it can suppress the impact of the external noise equally well, while simultaneously reducing
the noise generated by the feedback itself. Suggestions for a more optimal operation of the
LHC are discussed, including a reduction of the upper cutoff frequency of the feedback system.
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Electromagnetic wakefield, Beam-beam interaction, Multi-particle tracking simulation.
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Introduction

High-energy hadron colliders are today one of the main tools used to gain a deeper
understanding of fundamental particles and the interactions between them. The high-energy
physics (HEP) community needs high-quality beams for their experiments to reach the number
of collisions required to detect rare events. In modern high-energy hadron colliders, such
as the Large Hadron Collider (LHC), two beams are stored in separate rings, which mainly
consist of a multitude of superconducting magnets, and are brought into collision only within
specialized detectors. The beams are subject to many deteriorating mechanisms that reduce
the beam quality. External sources of noise are especially problematic if the noise contains
frequency components at similar or higher frequencies compared to the beam revolution
frequency. Furthermore, a beam acts on itself through wakefields, electron clouds, and space
charge forces, and the other beam through beam-beam interactions. Uncorrelated noise kicks
can lead to emittance growth through decoherence, while correlated or self-amplified kicks
can drive the beams unstable. This thesis studies how different sources of noise negatively
impact the beam quality in high-energy hadron colliders, both in terms of beam instabilities
and emittance growth, and how this impact is affected by other mechanisms.

Beam stability is of utmost importance for the safe operation of high-energy hadron collid-
ers, as instabilities can cause a significant reduction of the beam quality, induce a dump of
the entire beam, or even potentially damage the collider. Some stabilization is commonly
achieved with Landau damping, stabilizing coherent oscillations due to a spread in the single-
particle oscillation frequencies. Therefore, Landau damping has been studied extensively and
successfully in the past, often in terms of the linear Vlasov equation. Yet, there have been
observations of beam instabilities developing in the LHC after prolonged stays in configu-
rations that were predicted to be stable by such linear theories. Consequently, the LHC has
been operated with an additional unexplained safety margin of approximately a factor two
times the frequency spread predicted to prevent instabilities. That has been acceptable in the
LHC, since the installed octupole magnets, generating the frequency spread, are sufficiently
strong to cope with the additional requirements. However, a proper understanding of the
underlying mechanism behind this loss of Landau damping is crucial to know how to mitigate
it and achieve the desired performance also in future colliders, such as the High-Luminosity
Large Hadron Collider (HL-LHC), the future circular hadron collider (FCC-hh), and the Super
proton-proton Collider (SppC). Partly because Landau damping is sensitive to small variations
from the commonly assumed Gaussian transverse bunch distribution, and partly due to the
existence of a nonzero latency, the hypothesis investigated in this thesis is that the loss of
Landau damping is caused by a noise driven evolution of said transverse bunch distribution.
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Introduction

A small and steady emittance growth rate can also significantly reduce the long-term beam
quality. The emittance growth rate due to noise can be suppressed by active transverse beam
feedback systems. Such feedback systems work by measuring the position of each bunch, and
then partially kicking the bunches back onto their closed orbit each turn. They can either be
operated bunch-by-bunch, or also be dependent on the measurements of the neighboring
bunches in a multi-bunch configuration. Since the beam position measurements have a finite
precision and accuracy, the transverse feedback system introduces additional noise on the
beam. This noise has been identified as a potential performance limitation for future colliders,
due to the long-term emittance growth and thereby degradation of the beam quality. This
thesis aims at determining how to optimally operate the transverse feedback system, taking
into account the technological limitations, to ensure both beam stability and high long-term
beam quality.

The main body of this thesis is split into three. In Part I, an introduction to the relevant
accelerator physics is presented. An introduction of the LHC is given in Ch. 1. The relevant
Hamiltonian beam dynamics, as can be found in the literature, is described in Ch. 2. And
finally, the impact of noise on the beam dynamics is introduced in Ch. 3.

In Part II, a study on the loss of Landau damping in single bunches is presented. A set of key
experimental observations, which were made in the past, and a dedicated experiment on
loss of Landau damping in the LHC are discussed in Ch. 4. A particle diffusion mechanism,
caused by the interplay between noise, decoherence, and the feedback system, is derived
from a master equation and discussed in Ch. 5. Another diffusion mechanism, caused by the
interplay between noise, decoherence, and wakefields, is derived from a nonlinear Vlasov
equation and discussed in Ch. 6.

In Part III, a study on the preservation of the full beam quality by the transverse feedback
system is presented. Simulating full beams, not just single bunches, requires state-of-the-art
parallel algorithms that fully exploit the potential of high-performance computing (HPC).
A new parallel algorithm that has been developed is discussed and benchmarked in Ch. 7.
The noise driven emittance growth rate is then both derived analytically and simulated in
Ch. 8. The optimal bandwidth and gain of the transverse feedback system in the LHC is found
numerically.
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1 The Large Hadron Collider

The hadron collider with the highest collision energy in the world, at the time of writing,
is the LHC [1]. Because this research work was conducted in collaboration with the European
Organization for Nuclear Research (CERN), the relevant experimental observations were done
in the LHC, and the derived analytical and numerical models have been applied to the LHC
and to its future upgrade, the HL-LHC. Therefore, for the reader to understand what is to
come, some knowledge of this collider is required. A subset of key parameters, which will be
explained later, are given in Table 1.1.

Table 1.1: Machine and beam parameters in the LHC and HL-LHC during proton physics,
unless otherwise specified [1–5].

Parameter Unit LHC HL-LHC
(Nominal) (2018) (standard)

Number of bunches, Nb [1] 2808 2556 2760
Injection proton energy [GeV] 450 450 450
Injection tunes, (Qx ,Qy ) [mod 1] (0.28,0.31) (0.275,0.295) (0.27,0.295)
Proton energy [TeV] 7 6.5 7
Relativistic gamma, γrel [1] 7461 6928 7461
Fractional tunes, (Qx ,Qy ) [mod 1] (0.31,0.32) (0.31,0.32) (0.31,0.32)
Synchrotron tune, Qs [10−3] 1.90 1.91 2.12

Revolution frequency, frev
1 [kHz] 11.245 11.2455 11.2455

Total RF voltage [MV] 16.0 12.0 16.0
RF frequency [MHz] 400.8 400.8 400.8
Harmonic number [1] 35640 35640 35640
Bunch spacing [ns] 25 25 25

Intensity, N [1011 p/b] 1.15 1.1 2.3
Norm. transverse emitttance, εn [µm] 3.75 2 2.5
Bunch length, σs [cm] 7.55 8.0 7.55
rms momentum spread, σδ [10−4] 1.129 1.03 1.1
Hor. intra-beam scattering time [h] 80 to 106 ∼100 21 to 26

1 Precision update in the revolution frequency since the LHC design report [1].
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Chapter 1. The Large Hadron Collider

1.1 Machine layout

The LHC is a 27km long ring, illustrated from above in Fig. 1.1 [1]. It consists of injection and
extraction points for the beams, superconducting magnets that steer and focus the beams,
Radio-Frequency (RF) cavities that accelerate the beams, and 8 Interaction Regions (IRs)
where various important activities are performed on and between the beams. The magnets
are supported by a sophisticated cryogenic system, keeping the magnets at 1.9K.

Figure 1.1: Layout of the LHC, with description of the main activity in each of the 8 interaction
regions (IRs). Beam 1 (B1) is blue and moves clockwise, while Beam 2 (B2) is red and moves
counterclockwise. The experiments are conducted at IR1, IR2, IR5 and IR8, where the beams
are crossing. Courtesy of [6].

The beams do not start in the LHC, but are injected from a sequence of pre-accelerators.
The structure of the injector chain yields the filling scheme that will be discussed in Sec. 1.3,
but is otherwise not of direct relevance to this thesis. At the end of a fill, or if the continued
circulation of the beam may endanger the machine safety, the beams are extracted and
dumped in specialized dumping blocks.

The main types of magnets, and their uses, are:
• Dipole magnets, used to bend the beam around in a circle.
• Quadrupole magnets, used to focus the beam.
• Sextupole magnets, used to counteract the linear chromaticity (discussed in Sec. 2.3.1).
• Octupole magnets, used to create a transverse amplitude dependent detuning (dis-

cussed in Sec. 2.3.2).
• Kicker magnets, used either for injection, feedback, or extraction of the beam. It is

essentially a strong dipole magnet, but with a fast rise/fall time of the field strength.
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1.2. Operational cycle

Since the LHC is a collider, it transports two beams in opposite directions, Beam 1 (B1) and
Beam 2 (B2), which typically are colored blue and red, respectively. The beams are kept in
separate vacuum chambers except for the 4 experiments ATLAS, ALICE, CMS and LHCb. At
the Interaction Point (IP) at the center of these experiments, the beams are meant to collide to
create events that can be studied by the HEP community. Only a small fraction of the particles
collide at each passing. One advantage of a circular collider over a linear collider is that the
particles that do not collide, can circle back and possibly collide on the next turns.

1.2 Operational cycle

The steps required to go from an empty LHC to collisions is illustrated in Fig. 1.2. During
injection, groups of bunches are injected from the pre-accelerators at the injection energy,
seen by the gradual increase of the intensity of both beams. Then, the individual particle
energy is ramped from the injection energy to the steady operational energy. Some actions
are then performed during flattop, including the transition from injection to collision tunes,
before the transverse cross-section of the beams is squeezed in the experiments, illustrated
by the reduction of β∗. The LHC is then adjusted to get the beams into collision, seen by the
increase of the luminosity in the various experiments. When this procedure is finished, the
machine enters the phase when physics events are registered in the experiments. This phase
normally lasts up to ∼12h (the record is > 24h) [8], during which the intensity and luminosity
gradually drops, before the beams are extracted and dumped.

There are different operational challenges in the different phases of the cycle. This thesis
focuses on beam stability at full energy before collision (flattop and squeeze) and optimal
long-term beam quality during physics, to get the maximum luminosity.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Time [h]

Injection Ramp
Flat-
top Squeeze Adjust Physics

Intensity B1
Intensity B2
Energy

*
IP1&5
*
IP2
*
IP8

ATLAS luminosity
CMS luminosity
LHCb luminosity

Figure 1.2: Example of the beginning of an LHC fill (fill 2718). The values plotted are the
intensities per beam, the energy per proton, the optical transverse β-function at the IPs of the
experiments, and the luminosity in three of the experiments. Courtesy of [7].
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Chapter 1. The Large Hadron Collider

1.3 Filling scheme

The beams in the LHC are bunched, rather than being continuous streams of hadrons. This
is a consequence of accelerating the beams with RF cavities [9]. The RF cavities in the LHC
are operated at a frequency of 400.8MHz, creating 35640 RF buckets spaced by 2.5ns. At most
every tenth bucket will in operation contain a bunch. In other words, the bunch slots are
spaced by 25ns. Furthermore, not every bunch slot is filled in the LHC, some are kept empty
to allow for extraction and injection in the different rings using kicker magnets with rise and
fall times exceeding 25ns. In the nominal filling scheme, 2808 bunch slots contain bunches,
organized as in Fig. 1.3. Alternative filling schemes exists. The number of interactions between
the bunches in the experiments depends on the filling scheme.

Bunch slot0 3564

72 bunches
119 bunches missing

39 bunches missing

38 bunches missing

8 bunches missing

Total number of bunches: 2808

Figure 1.3: Nominal bunch filling scheme of one beam in the LHC. 2808 out of 3564
(79%) bunch slots are filled with bunches. The bunches are gathered in trains consisting
of 72 bunches, with various numbers of empty bunch slots in between the trains. Courtesy of
(based on) [1].
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2 Beam dynamics

The relevant concepts in noise-free beam dynamics will be introduced in this chapter.
This thesis will, where reasonable, follow the notation style and definitions in the text book by
A. Wolski [10], where a more thorough introduction can be found.

2.1 Relativistic Lorentz force

Charged particles are affected by electro-magnetic fields. The Lorentz force on a particle of
charge q and velocity v moving through an electric field E and magnetic field B is

F = dp̃

dt
= q (E+v×B) . (2.1)

Electrostatic fields are not used in high-energy accelerators, partially due to dielectric break-
down of high field strengths. Strong magnetic fields are used instead, for which the force scales
with the speed. Assuming a uniform vertical magnetic field of magnitude |B| = B , particles
will move in horizontal circles of radius ρ found by comparison of the Lorentz force and the
centrifugal force γrelmv2/ρ,

Bρ = γrelmv

q
. (2.2)

The left-hand side (LHS) of Eq. (2.2) describes the machine, while the right-hand side (RHS)
describes the particles. The expression is called the beam rigidity, and models how the particles
resist bending at higher energy. The rigidity explains why the LHC is large. If one wants to
accelerate particles of high momentum in a synchrotron, one must achieve a high product
of the magnetic field and the curvature radius of the bending magnets. The magnetic field is
limited by technology, but the size of the machine is mostly limited by the budget.

2.2 Linear optics

2.2.1 Phase space coordinates

Synchrotrons have a reference orbit, on which the reference or synchronous particle moves. If
the beamline is designed and operated properly, this orbit will move through the center of the
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Chapter 2. Beam dynamics

Figure 2.1: Co-rotating, orthogonal synchrotron coordinates (X ,Y , Z ), centered at and follow-
ing the circulating reference particle per bunch. The synchrotron is illustrated as a circle, but
will in reality consist of both curves and straight sections.

magnets, as far away as possible from the physical aperture, the inner walls of the beam pipe.
The position X of the particles will be given in the co-rotating coordinates (X ,Y , Z ) illustrated
in Fig. 2.1. The momentum of a particle in the new coordinates is given as

P = (Px ,Py ,Pz ) = γrelmẊ

p̃0
, (2.3)

whereγrel is the relativistic factor. The momentum is given in units of the reference momentum
of the synchronous particle in the lab frame, p̃0 = γrel0mv0. The longitudinal phase space
coordinates are

Z = s

βrel0
− ct , (2.4)

Pz =
p̃s − p̃0

p̃0
= ∆p̃

p̃0
, (2.5)

where βrel0 = v0/c. In the relevant ultra-relativistic limit, βrel0 = 1.

In high-energy hadron colliders, one can typically make use of the paraxial approximation
Px ¿ Ps ≈ P0 = 1. This gives in the horizontal plane

X ′ = dX

ds
= Px

Ps
≈ Px . (2.6)

When the particles are accelerated to higher energies, they are accelerated longitudinally.
Hence, p̃0 ≈ p̃s ∝ γrel increases, while p̃x remains constant, causing X ′ ≈ Px ∝ 1/γrel to de-
crease. This effect is called adiabatic damping.

A synchrotron is a particle lens system, consisting of an array of carefully designed, manufac-
tured and positioned magnets and other components. The impact of beamline components
on the transverse phase space coordinates can be considered with transfer maps R as

X
Px

Y
Py


s0+L

= R


X
Px

Y
Py


s0

. (2.7)

Only linear transfer maps will be considered at the moment, which can be given as matrices.
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2.2. Linear optics

The transfer matrix of an empty drift space of length L is

Rdrift =


1 L . .
. 1 . .
. . 1 L
. . . 1

 , (2.8)

where the dots represent zeros. The empty drift space of length L changes the position of the
particles by P j L in the transverse plane j ∈ {x, y}, but not the momentum.

The job of a dipole magnet is to bend the reference orbit into the horizontal circle illustrated
in Fig. 2.1. The transfer matrix of a weak (not affecting the position) dipole magnet of length L
and bending curvature equal to the curvature of the reference orbit is

Rdip =


1 L . .

−1/ fw 1 . .
. . 1 L
. . . 1

 , (2.9)

where fw is the focal length of the weak horizontal focusing. The dipole magnet does kick the
horizontal physical momentum independently of the coordinates. However, since this matrix
is given in units of the co-rotating coordinates, this kick is already included.

The job of a quadrupole magnet is to focus the beam. The transfer matrix of a weak quadrupole
magnet of length L and horizontal focal length fq is

Rquad =


1 L . .

−1/ fq 1 . .
. . 1 L
. . 1/ fq 1

 . (2.10)

Note that if the magnet is focusing in the horizontal plane, corresponding to a positive hori-
zontal focal length fq > 0, then the magnet is defocusing in the vertical plane. A combination
of quadrupole magnets are needed to get a net focusing in both planes.

How an ensemble of particles is transported through the beamline is characterized by the
optical β-function, which is related to the standard deviation (STD) of the particles as〈

(X −〈X 〉Ψ)2〉
Ψ (s) = εxβx (s), (2.11)

where the angle brackets imply an average over the subscripted value, in this case the full
bunch distribution Ψ, and εx is the geometrical beam emittance, which will be explained
in Sec. 2.4. Note that the β-function only depends on the magnetic lattice, not the bunch
distribution.

Since a synchrotron can be seen as a periodic beamline, the β-function is a periodic function
with the machine circumference. If one chooses a specific location s along the synchrotron,
and measures the transverse phase coordinates of a particle, one finds that they trace out an
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Chapter 2. Beam dynamics

Figure 2.2: Poincaré section showing the link between the coordinates (X ,Px ), the physical
action Ix , and the horizontal optical functions βx , αx and γx . This ellipse will be traced out by
a single particle as it passes the same location in the machine turn by turn.

ellipse as in Fig. 2.2. This can be modeled with a one-turn-map (OTM)

ROTM =
[

R2x2
OTMx .

. R2x2
OTMy

]
, R2x2

OTM j =
[

cos
(
µ j

)+α j sin
(
µ j

)
β j sin

(
µ j

)
−γ j sin

(
µ j

)
cos

(
µ j

)−α j sin
(
µ j

)] ,

(2.12)
where γ j and α j are the additional optical Twiss functions, related to the β-function as

α j =−1

2

dβ j

ds
, (2.13)

1 =β jγ j −α2
j , (2.14)

and µ j is the phase advance in plane j , which is related to the bare tune of the machine

Q j =
µ j

2π
. (2.15)

The tune is the number of betatron oscillations during one revolution of the machine. It is
important to keep the tune away from rational numbers of low denominators, as nonlinearities
can cause resonances and particle losses at such tunes. The corresponding angular betatron
frequency in units of rad/s is

ω j = 2π frevQ j =ωrevQ j , (2.16)

where frev is the revolution frequency of the beam around the full machine.

In this section, the optics were considered to be uncoupled, i.e. the motion in the horizontal
and vertical phase space are independent of each other. This is not exact, but remains a useful
representation of an ideal machine.

2.2.2 Action-phase coordinates

If there exist stable trajectories around the orbit, a particle will trace out an ellipse of constant
shape in the transverse phase space coordinates, as was illustrated in Fig. 2.2. It can be
shown that there is a conserved property in this motion, the area within the ellipse, which is
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2.2. Linear optics

proportional to the physical action I j . When the ellipse is evolving along the beamline, it is
due to the change of the optical functions, while the action remains constant.

The horizontal (and equivalently the vertical and longitudinal) phase space coordinates of the
ellipse can be expressed in terms of action-phase coordinates as

X =
√

2βx Ix cos
(
φx

)
, (2.17a)

Px = dX

ds
=−

√
2Ix

βx

[
sin

(
φx

)+αx cos
(
φx

)]
, (2.17b)

where the phase φx is the canonical conjugate of the action Ix . The horizontal action of a
particle can be calculated as

Ix = 1

2

(
γx X 2 +2αx X PX +βx P 2

X

)
. (2.18)

Similarly, there is an oscillation in the longitudinal parameters, caused by the RF cavities. At
low speeds, a particle with slightly larger kinetic energy will move faster and spend less time
on one revolution around the ring. However, as the speed of light is approached, increased
energy does not cause a much higher speed. Simultaneously, the path length traveled by
the particle increases in general with the energy due to the beam rigidity. Hence, at energies
above a transition energy, the particles of higher energy than the reference particle will move
backwards relative to the reference particle, and the particles of lower energy will move forward,
i.e. the particles will oscillate counterclockwise in a (Z ,Pz ) phase space. The machines of
interest in this thesis are operated above transition. The longitudinal motion can be described
by action-phase coordinates and optical functions as

z ≡ Z =
√

2βz Iz cos
(
φz

)
, (2.19a)

δ≡ Pz =−
√

2Iz

βz
sin

(
φz

)
, (2.19b)

where αz has been assumed to be 0, by the smooth focusing approximation, and the standard
notation δ for the relative momentum and energy deviation has been introduced.

The OTM of the action and phase can be found from an effective Hamiltonian with Hamilton’s
equations [11]

H0 = Ixωx + Iyωy − Izωs , (2.20a)

İ j ≡
dI j

dt
=−∂H0

∂φ j
= 0, İz =−∂H0

∂φz
= 0, (2.20b)

φ̇ j =
∂H0

∂I j
=ω j , φ̇z =

∂H0

∂Iz
=−ωs , (2.20c)

where the conservation of the action is ensured, the angular betatron frequency in Eq. (2.16)
has returned, andωs is the angular synchrotron frequency, which is here defined to be positive
above transition. Note that the subscript s is used instead of z for the synchrotron frequency,
as it is the standard notation.
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Chapter 2. Beam dynamics

The transverse phase space ellipse can be transformed to a normalized phase space circle

x = X√
βxεx0

=
√

2Jx cos
(
φx

)
, (2.21a)

px =βx
dx

ds
=−

√
2Jx sin

(
φx

)
, (2.21b)

where εx0 is the emittance used to normalize the coordinates, typically equal to the initial
emittance. The evolution of the normalized transverse phase space coordinates can be written

x + i px =
√

2Jx exp
[−i (φx0 +ωx t )

]
. (2.22)

The phase φx is unchanged, but the normalized action Jx is

Jx = Ix

εx0
= 1

2

(
x2 +p2

x

)
. (2.23)

The longitudinal phase space coordinates are on the other hand kept unnormalized,
(z,δ) ≡ (Z ,Pz ), as defined in Eq. (2.19). The evolution of the normalized action-phase co-
ordinates can be found by insertion in Eq. (2.20)

H0 = εx0 Jxωx +εy0 Jyωy − Izωs , (2.24a)

J̇ j =− 1

ε j 0

∂H

∂φ j
= 0, (2.24b)

φ̇ j =
1

ε j 0

∂H

∂J j
=ω j . (2.24c)

In a transverse one-dimensional (1D) model, or in a two-dimensional (2D) model with
εx0 = εy0, the Hamiltonian could have been divided by ε j 0 for simplicity. However, when
introducing higher-order action terms in the following, it is better to keep it on this form.

2.3 Nonlinear optics

In theory, only linear elements that can be treated with matrices are needed to create a
synchrotron for single particles. In reality, alignment and powering errors, magnetic imperfec-
tions, particle to particle energy spread, and collective effects introduce nonlinearities and
sources of instabilities. This creates the need for higher-order magnets with nonlinear transfer
maps.

2.3.1 Chromaticity

Chromaticity is the variation of the transverse tunes due to the momentum mismatch

Q j =Q j 0 +Q ′
jδ+Q ′′

j δ
2 +O

(
δ3), (2.25)
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2.3. Nonlinear optics

where the linear coefficient Q ′
j often is called the linear chromaticity. The (linear) chromaticity

can be modeled by the introduction of a one-turn Hamiltonian

Hchroma = (ω′
xεx Jx +ω′

yεy Jy )δ, (2.26)

where ω′
j =ωrevQ ′

j . This Hamiltonian also affects the longitudinal motion. However, it can be
found that it is negligible compared to the synchrotron motion described in Eq. (2.19) [12, 13].

The momentum mismatch δ oscillates with the synchrotron frequency, and will therefore
cause a modulation of the transverse motion. By insertion of Eq. (2.19) in Eq. (2.25), one finds

cos[φ j (t )] = cos

[
ω j 0t +

∫ t

0
ω′

jδdt

]

= cos

ω j 0 +
ω′

j

√
2Iz /βz

ωs
sin

(
ωs t −φz0 −

π

2

)
=

∞∑
n=−∞

Jn

ω′
j

√
2Iz /βz

ωs

cos
[

(ω0 +nωs)t −n
(
φz0 +

π

2

)]
,

(2.27)

where Jn(·) are the Bessel functions of the first kind of order n, not to be confused with the
normalized actions, acting as coefficients of the various synchrotron sidebands.

Chromatic aberration in visual light optics is the dependence of the bending angle through
a lens on the momentum of the photons. Similarly, the bending of the particles in magnetic
fields depends on their momentum (magnetic rigidity). In particular, the quadrupole magnets
generate a natural (negative) chromaticity. However, a large chromaticity can be detrimental
to the beam. Therefore, it is typical to counteract the natural chromaticity with sextupole
magnets. As an example, the LHC is typically operated with a chromaticity Q ′

j ∈ [0,15].

2.3.2 Landau octupoles

Landau octupoles are put in a machine to produce a tune spread in order to keep the beam
stable through Landau damping, which will be introduced in Sec. 2.6 [14]. The octupoles
cause an action dependent tune spread in both transverse planes, relative to the bare machine
tune, which can be expressed as

∆Qx/y = Ax/y Ix/y +Bx/y Iy/x ,

where Ax/y are the in-plane detuning coefficients and Bx = By are the cross-plane detuning
coefficients, as defined in [14]. In terms of the normalized actions introduced in Eq. (2.23) and
used in this thesis, the octupole tune spread, relative to the bare tune, can instead be given as

∆Qx/y = ax/y Jx/y +bx/y Jy/x , (2.28)

or equivalently for the angular frequency shift

∆ωx/y = ãx/y Jx/y + b̃x/y Jy/x , (2.29)
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Chapter 2. Beam dynamics

where ã j =ωreva j . The integrated impact of the octupole magnets along the machine can be
included in an effective one-turn Hamiltonian as

Hoct =
ãx

2
εx J 2

x +
ãy

2
εy J 2

y + b̃xεx Jx Jy . (2.30)

Note that in the last term on the RHS, b̃xεx =ωrevBx/yεxεy = b̃yεy .

The magnitude of the detuning is determined by the (normalized) detuning coefficients, which
in the horizontal plane of B1 in the LHC are

ax =+543.2
6.5/0.938

γrel
Ioctεx ,

bx =−383.6
6.5/0.938

γrel
Ioctεy ,

(2.31)

where Ioct is the octupole current, limited to maximum ±570A. The prefactors (543.2,−383.6)
are calculated based on the optical functions at the locations of the octupole magnets in the
LHC during the main experiments referred to in this thesis [15], for a particle energy of 6.5TeV.
In B2 they are (531.3,−383.4). The prefactor for ay is slightly different, while the prefactor is
equal for by , for each beam separately, but this is of little relevance in this thesis. The deflec-
tion achieved by the magnets is inversely proportional to the energy, explained in Eq. (2.2).
Since the coefficients are relative to the normalized actions, the detuning coefficients are
proportional to the geometrical emittance, which is also inversely proportional to the energy.
The detuning coefficients can be increased further by a factor ∈ (2,4) by use of telescopic
optics [16].

It will in some chapters be relevant to discuss the tune spread relative to the average tune of
all the particles

∆̃Qx/y =Qx/y −
〈
Qx/y

〉
Ψ

= ax/y
(

Jx/y −
〈

Jx/y
〉
Ψ

)+bx/y
(

Jy/x −
〈

Jy/x
〉
Ψ

)
,

(2.32)

which will be denoted by the tilde across the∆ in ∆̃Q, and mentioned in the text when relevant.

The root mean square (rms) tune spread is
√

a2
j +b2

j , assuming a Gaussian distribution.

2.4 Beam quality and luminosity

So far, the description has only considered single particles moving through a linear beamline.
However, as introduced in Ch. 1, the particles are gathered in bunches of multiple parti-
cles. These ensembles will here be described by probability density functions, with several
important macroscopic quantities.

The bunch distribution can be given as a probability function of the 6 phase space coordinates,
Ψ(x, px , y, py , z,δ). In high-energy hadron colliders, the distributions are often assumed
uncoupled to first order

Ψ(x, px , y, py , z,δ) =Ψx (x, px )Ψy (y, py )Ψz (z,δ). (2.33)
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2.5. Collective dynamics

Furthermore, the transverse distributions are often assumed to be Gaussian in the normalized
coordinates

Ψx (φx , Jx ) = 1

2π
exp

(
−x2 +p2

x

2

)
= 1

2π
exp(−Jx ), (2.34)

which is uniformly distributed in the phase coordinate, φx . Therefore, one can rather use the
1D distributionΨx (Jx ) = 2πΨx (φx , Jx ).

Key macroscopic quantities of a bunch include:
• The bunch intensity N , which is the number of particles in a bunch.
• The transverse geometrical emittances ε j , related to the bunch size by Eq. (2.11).
• The rms relative momentum and energy spread σδ.
• The bunch length σs , often calculated as the STD of the particles’ longitudinal position

assuming a Gaussian distribution. The value given for the bunch length is often 4σs , as
in Table 4.1, which would include 95% of the particles in a Gaussian distribution.

The emittance of a beam on orbit is the average transverse physical action of the particles

ε j =
〈

I j
〉
Ψ

. (2.35)

Due to adiabatic damping, the geometrical emittance decreases with the energy, while

εn j = γrelβrelε j , (2.36)

called the normalized emittance, remains constant.

The key goal of a hadron collider is to generate hadronic collisions for the experiments, the
more the merrier. The rate of hadron collisions is measured in terms of the luminosity. For
two equal, round Gaussian bunches colliding head-on, the luminosity is given by

L = N 2 frevNb

4πβ∗
j ε j

∝ N 2

ε j
, (2.37)

where N is the bunch intensity in both beams, Nb is the number of bunches that collide
per beam, and β∗

j is the value of the optical β j -function at the location of the collisions. As
indicated in the equation, to get a high luminosity one requires high bunch intensity and small
transverse emittances. Therefore, in this thesis, a high beam quality refers to a bunch with a
high intensity and small transverse emittances, and preserving the beam quality refers to the
goal of minimizing the particle loss rate and emittance growth rate.

2.5 Collective dynamics

Collective dynamics in an accelerator beam is mechanisms that depend on the beam dis-
tribution. Such mechanisms can drive collective instabilities. If there is a transverse force
that to first order is proportional to the transverse offset from the reference path, it can drive
transverse oscillations around that reference path. These oscillations evolve like exp(−iωcoht ),
with a complex frequencyωcoh =ω0 +∆ωcoh consisting of a bare frequencyω0 and a frequency
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Chapter 2. Beam dynamics

shift ∆ωcoh =ωrev∆Qcoh driven by the collective dynamics. If Im{ωcoh} > 0, the coherent mode
of oscillation is unstable and its amplitude will (initially) grow exponentially.

2.5.1 Beam-beam interactions

When the proton beams are put into collision to produce luminosity for the experiment at an
IP, an unavoidable byproduct are low-angle deflections between the non-colliding protons. In
the weak-strong model, one can calculate the deflection and detuning of a test particle caused
by an opposing rigid Gaussian bunch. If the bunch is round, the detuning in 1D is [17]

∆QBB(J ) =−ξBB · 2

J

[
1− I0

(
J

2

)
exp

(
− J

2

)]
, (2.38)

where I0 is the modified Bessel function of the first kind, J is the action of the test particle
normalized to the opposing bunch, and ξBB is the linear beam-beam parameter, which for
round high-energy beams is

ξBB = N rpβrel

4πεn
, (2.39)

where rp is the classical proton radius. The rms tune spread is approximately 0.168ξBB [18].
The largest absolute tune shift is ξBB and is experienced by test particles of zero action, where-
upon the tune shift approaches zero for larger actions. In 2D, the tune spread is illustrated
in Fig. 2.6a. If there are multiple IPs, the beam-beam parameter can be added up to a total
beam-beam parameter ξBB,tot. By comparing Eq. (2.39) to the luminosity in Eq. (2.37), it is
clear that a higher luminosity in general will generate stronger beam-beam interactions.

In reality, both beams are affected by each other, and this can drive coherent beam-beam
modes. In the case of 1 bunch per beam, the coherent modes are the 0-mode and π-mode,
named after their phase difference at the IP as illustrated in Fig. 2.3. If not damped, these
modes can drive the beams unstable. The coherent tune shift of the 0-mode is 0, while the
coherent tune shift of the π-mode is 1.2ξBB–1.3ξBB [19], depending on the bunch shape, and
is thus outside the incoherent tune spectrum in Eq. (2.38).

Figure 2.3: Coherent beam-beam modes with 1 bunch per beam and 1 interaction point.

In the LHC, there are several bunches per beam. As a consequence, as illustrated in Fig. 2.4,
there are both a head-on interaction at each IP and several parasitic interactions on both
sides. Therefore, the beams are typically made to collide with a nonzero crossing angle such
that the parasitic interactions become long-range, thus reducing their impact. However, this
reduces the overlap between the colliding bunches at the IP as well. Crab Cavities (CCs) are
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2.5. Collective dynamics

Figure 2.4: Interaction region with a crossing angle θxing, displaying both head-on and long-
range beam-beam interactions. The intended effect of the Crab Cavities is also illustrated:
Tilting the bunches so that they collide with maximum overlap, while still ensuring a large
crossing angle θxing to reduce the impact of the long-range interactions.

designed to tilt the bunches at the IP, as illustrated in Fig. 2.4, by kicking the head and tail of
the bunches in opposite directions [20]. The bunches are tilted back after the IP. This is done
to increase the luminosity, while simultaneously allowing for a significant separation of the
bunches at the long-range interactions. CCs are not implemented in the LHC, but are part of
the design for the HL-LHC.

2.5.2 Impedance and wakefields

When charges move through a beamline, image charges and currents are induced in the
walls of the beam pipe [10], which induce their own electro-magnetic fields. In the ultra-
relativistic limit, these fields can only affect trailing bunches. The wakefields depend both on
the interacting charges, as illustrated in Fig. 2.5, and the beam pipe itself, either through a
finite resistivity or geometry variations along the beam pipe.

Witness

Source

Figure 2.5: Illustration of a wakefield interaction. A source charge traverses the machine,
produces an electromagnetic response, and affects the trailing witness charge.

The horizontal wake force, Fx , from the source particle on the witness particle, integrated over
a distance of the machine, causes an energy change [21]

∆Ex =
∫

Fx (∆xs ,∆xw , z; ss)dss =−qs qw Wx (∆xs ,∆xw , z)

≈−qs qw
[
Wx0(z)+WxD (z)∆xs +WxQ∆xw

]
,

(2.40)

where z = sw − ss is the distance from the source to the witness, and Wx is the horizontal wake
function, which models the wakefields in time domain. The impedance, being the Fourier
transform of the wake function, models the wakefields in frequency domain. In the ultra-
relativistic case, the wake function is 0 for z > 0, and also approaches 0 for z →−∞. To get the
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impact of the entire beam on the witness charge, the wake function must be convoluted with
the charge distribution ahead of it, including the witness charge itself at previous turns. The
wake functions differ between various components of the beamline. These can, as a useful
approximation, be combined into a single effective wake function for the entire machine.

The wake function can be Taylor expanded in terms of the transverse offsets of the source
and witness charges, as is done in the second line of Eq. (2.40): Wx0(z) is the zeroth-order
wake function and will typically be zero for symmetrical structures; WxD (z) is the dipolar
wake function, which can drive modes with complex coherent tune shift ∆ωcoh; WxQ (z) is the
quadrupolar wake function, which can cause an additional tune shift. The tune shift, along
with other details of the modes, can be calculated with numerical Vlasov solvers as DELPHI [22]
or circulant matrix solvers as BimBim [7]. These modes will be treated more carefully in Ch. 6.

2.5.3 Active beam feedback system

The active beam feedback system is different from the inherent collective effects treated so far,
in that it is intentionally included in the machine and it is controlled by the operators. In short,
the transverse bunch feedback system, sometimes called the damper, measures the transverse
position of the bunches turn-by-turn, and if it oscillates around the synchronous orbit, a kicker
magnet is used to reduce the transverse offset [1, 23]. Hence, if operated correctly, it induces
a negative imaginary coherent tune shift, which can prevent instabilities. As will be seen in
Ch. 3, the feedback can also reduce the emittance growth rate.

Since the bunches are moving at almost the speed of light, the bunch cannot be acted on
at the same turn as the position measurements. Instead, the feedback system must use
measurements from previous turns to predict the current transverse offset. For this reason, it
is important to know the tunes of the particles accurately. Otherwise, the feedback system
may drive the beam unstable [24]. A key parameter when considering the stability of the
feedback loop is the group delay of the feedback filter, how far into the future the prediction
is made [25]. Much work has been put into designing optimal multi-turn filters, damping a
bunch based on the measurements from more than one turn. Different filters have different
stability limits [26].

A dipolar feedback system predicts the average transverse momentum of bunch b and reduces
it by a gain g j as

p j b → p j b − g j p j b = p j b(1− g j ). (2.41)

This is called a bunch-by-bunch feedback, since each bunch is damped independently of the
other bunches. If all the particles in a bunch have the same tune, and there are no other forces
included, it can be shown that the feedback reduces the center of mass (COM) radius in phase
space as √

〈x〉2
Ψ+〈

p
〉2
Ψ∝ exp

(
−g T

2

)
≡ exp

(
− T

τg

)
, (2.42)

where the damping time τg = 2/g has been defined in units of turns. There also exist feedback
systems that reduce the headtail motion of the bunch [27], but that is not of interest in this
thesis.
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If the beam consists of bunch trains, as introduced in Sec. 1.3, then it can in some cases be
preferential from a physics point of view to use a multi-bunch feedback

p j b → p j b − g j
∑
b′

wbb′p j b′ , (2.43)

where wbb′ is the peak-normalized response over all the bunches. It is defined as 1 for bunch b,
and then decreasing for larger

∣∣b −b′∣∣. This is the case for the LHC Transverse Damper (ADT).
More details about the multi-bunch feedback will be introduced in Ch. 8.

2.6 Landau damping and the linear Vlasov equation

Landau damping is essential for the successful operation of high-energy hadron colliders.
Without it, some of the modes driven by collective effects would be unstable. It was first
described in plasma physics [28], as the damping of a small plasma vibration due to a spread of
the particles’ velocities. This mechanism and description has been adopted by the accelerator
community, with some modifications.

Landau damping in accelerator physics can be described as “a physical process in which an
ensemble of harmonic oscillators ... that would otherwise be unstable is stabilized by a spread
in the natural frequencies of the oscillators” [29]. In other words, a mode that is unstable
without a tune spread among the particles, can be stabilized if there is a tune spread. That
is why many machines include Landau octupoles, which were described in Sec. 2.3.2, as the
name hints at. However, it is essential that the same particles that are involved in the coherent
(possibly unstable) oscillation are also involved in the incoherent tune spread. Furthermore, it
should be noted that Landau damping in accelerator physics is not actually damping of an
instability, but rather the absence of one [30].

To evaluate Landau damping, it is common to start with Liouville’s theorem [11]. In a collision-
free Hamiltonian system, Liouville’s theorem states that the distribution functionΨ is constant
along any trajectory of the system in phase space. For non-colliding particles, the Liouville
theorem can be stated mathematically by the Vlasov equation [12, 22, 31–33]

dΨ

dt
= ∂Ψ

∂t
+ [Ψ,H ] = 0, (2.44)

where H is the Hamiltonian of the system and the brackets are the Poisson brackets.

The question now is whether or not unstable coherent modes with frequencies ωcoh j can be
stabilized by Landau damping, changing the frequencies toΩLD j with a negative imaginary
part, due to an action dependent spread of the incoherent frequencies ω j (Jx , Jy ). Under the
weak headtail approximation, one can linearize the Vlasov equation, as in App. A [34], and get
an integral relation between these quantities

−1

∆ωcoh j
=

∞∫
0

∞∫
0

dJ 2

J j
dΨ(Jx , Jy )

dJ j

ΩLD j −ω j (Jx , Jy )
= 2R(ΩLD j ), (2.45)

21



Chapter 2. Beam dynamics

(a) (b)

Figure 2.6: Tune spreads in (a), of similar size, and corresponding stability diagrams in (b).
The grids in (a) correspond to particles at various numbers of the STD of the distributions.
The stability diagrams in (b) mark the limit of stability. If a coherent mode has a tune shift
∆Qcoh that is inside/below this curve, the mode will be stabilized by that detuning. If it
is outside/above, it will be unstable. The octupole tune spread corresponds to a negative
octupole current. For a positive current, the stability diagram in (b) would have been mirrored
horizontally around Re{∆Q} = 0. Courtesy of [30, 35].

where R(ΩLD j ) is the response function. Instead of evaluating each mode individually, it is
simpler to find the limit of stability. The stability diagram is the set of tune shifts ∆ωSD j of
coherent modes that are barely stabilized with a given frequency spread ω j (Jx , Jy ), i.e.

−1

∆ωSD j
=

∞∫
0

∞∫
0

dJ 2

J j
dΨ(Jx , Jy )

dJ j

ΩR j −ω j (Jx , Jy )
= 2R(ΩR j ), (2.46)

whereΩR j has a vanishing positive imaginary part. The stability diagram in terms of the tunes
is found by multiplying both sides by ωrev.

Various tune footprints and stability diagrams are given in Fig. 2.6, where the sources of
the detuning are octupole magnets operated with a negative current, head-on beam-beam
interactions, and long-range beam-beam interactions [30, 35]. Even though the footprints are
of similar size up to 6 beam sigmas, the stability diagrams are quite different. Most importantly,
the stability diagram due to head-on beam-beam interactions is much larger than the other
two. This is because the head-on interactions cause the largest tune spread for particles in the
core of the bunch, while the other two cause the largest tune spread for particles in the tail of
the bunch. Both the distribution and the tune spread matter.
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3 Noise excited beam dynamics

3.1 Noise

‘Noise’ will in this thesis refer to stochastic transverse kicks applied to the particles in a bunch,
changing their (normalized) momenta as

p → p +∆p, (3.1)

and thereby their actions as

J0 →
x2 + (p +∆p)2

2
= J0 +p∆p + ∆p2

2
≡ Jk . (3.2)

Various types of noise are illustrated in Fig. 3.1. The sources of noise will be explained in the
following, and all noise amplitudes are given in the normalized coordinates, i.e. in units of the
‘beam sigma’ (1 STD). Since the focus in this thesis is transverse dynamics, the subscript j ,
denoting the transverse plane, has been omitted when possible for ease of notation.

(a) (b) (c)

Figure 3.1: Different types of noise. (a) Rigid/dipolar noise, where all particles experience the
same kick each turn, but the kick is stochastic from turn to turn. (b) Headtail noise, where
each kick is correlated along the bunch. The illustration is of a linear correlation along the
bunch, but higher order correlations can exist as well. (c) Incoherent noise, where there is no
correlation between the kicks experienced by individual particles.

3.1.1 External noise

‘External noise’ will in this thesis refer to noise that is independent of the beam itself. Examples
of sources of external noise are ground motion [36], Power Converter (PC) ripples [37], in-
cluding 50Hz lines [38], and amplitude or phase noise in CCs [20]. For a full bunch length of
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Chapter 3. Noise excited beam dynamics

Figure 3.2: Power Spectral Density of the ground motion in tunnels at CERN, measured in
1993. The LEP tunnel is now the LHC tunnel. Courtesy of [40].

∼1ns, as in the LHC, the noise needs power in frequencies close to or above ∼1GHz to not
be constant along the bunch. External noise is, for various reasons, typically strongest at low
frequencies [39]. Therefore it tends to affect all particles in a bunch equally, as illustrated in
Fig. 3.1a, with crab cavity amplitude noise being the exception.

The noise amplitude of ground motion is in general weak at high frequencies, as illustrated in
Fig. 3.2. Noise at such small frequencies can be problematic in that it shifts the closed orbit of
the particles, and therefore generates a beam offset at the IP, but it is less problematic within
the scope of this thesis.

PCs are used to deliver Direct Current (DC) voltage to the superconducting magnets in the
LHC. Ripples in the output from a PC lead to a ripple in the current in the magnets, and
thereby a ripple in the magnetic field seen by the particles. The maximum acceptance level
of the PC output ripple is given in Fig. 3.3. This voltage will be damped by self-inductance
in the electromagnets, giving an additional factor 1/ f 2 in the power of the output magnetic
field ripple. Furthermore, the magnetic field ripple will be damped by the beam screen [39].
Hence, the Power Spectral Density (PSD) of the PC ripple noise acting on the beam will be
much weaker at large frequencies, and therefore be dipolar in nature.

The magnitude of the resulting dipolar external noise on the beam is, however, challenging
to quantify. Dedicated emittance growth measurements have been performed with proton
beams in the LHC [41, 42]. The effective noise amplitude per turn was σext ∼5×10−5 in units
of the beam sigma with a normalized emittance of 2µm at an energy of 6.5TeV. This assumed
a flat PSD, as due to white noise. Other beam measurements have found that the spectrum is
not flat, but contains peaks at integer multiples of 50Hz, at frequencies where they can affect
the beam [38]. If the beam spectrum contains such a 50Hz line, it would be detrimental for
the beam. A full understanding of the noise is needed to calculate the impact on the beam. In
the following, the noise is considered to have a flat spectrum up to a maximum frequency.
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3.1. Noise

Figure 3.3: Maximum acceptance level of output voltage ripple from power converters at
CERN, which deliver current to the electromagnets in the machine. Courtesy of [37].

Crab cavity amplitude noise is slightly different. CCs are designed to tilt the bunches at the IP,
as was illustrated in Fig. 2.4. Small inaccuracies in the CC kick amplitude will lead to an overall
unwanted tilt of the bunch after the IR. Hence, the crab cavity amplitude noise is of the form
illustrated in Fig. 3.1b. The impact of crab cavity amplitude noise will not be studied in detail
in this thesis, but may require studies in the future, especially with regards to long-term beam
stability. Nevertheless, the formalism that will be developed is general enough, such that it
can be directly applied to crab cavity amplitude noise or even higher frequencies.

3.1.2 Beam position monitor noise

A Beam Position Monitor (BPM) measures the transverse position of the beam at a given
position along the accelerator. A set of BPMs is usually dedicated to the feedback system,
which can reduce the beam offset from the closed path, as explained in Sec. 2.5.3. However, the
measured positions are not exact, leading to an error between the predicted momentum pbp

and the actual momentum pb in either transverse plane. Thus, the effect of a bunch-by-bunch
feedback in Eq. (2.41) changes to

pb → pb − g pbp = pb(1− g )+ gδbp , (3.3)

where δbp is the BPM error, which can be assumed to be drawn from a normal distribution
δbp ∼N (0,σ2

BPM), and it was assumed that the prediction of the momentum did not introduce
additional error, requiring a small gain and correct tune knowledge. The effective BPM error
amplitude in the LHC was measured to beσBPM ≈ 2.3×10−5, in units of the beam sigma with a
normalized emittance of 2µm at an energy of 6.5TeV [41,42]. This BPM error is then filtered by
the feedback system before it affects the beam. The resulting unwanted kick from the feedback
system on the beam is in this thesis referred to as the BPM noise. For a bunch-by-bunch
feedback, the kick is gδbp , which is drawn from a normal distribution with variance g 2σ2

BPM.
The BPM noise with a multi-bunch feedback is studied in Ch. 8.
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Chapter 3. Noise excited beam dynamics

3.1.3 Incoherent noise

Unlike the noise sources considered above, incoherent noise affects all particles differently.
One source of incoherent noise is intra-beam scattering (IBS) [43], which is the process where
particles in the same bunch scatter elastically off each other. Macroscopically, this noise
causes an emittance growth. The horizontal IBS time in the LHC is reported in Table 1.1,
corresponding to a relative emittance growth rate of approximately 2%/h, while the vertical
emittance growth rate due to IBS is approximately 0.

Another source of incoherent noise is synchrotron radiation (SR) [44], which microscopically
is the process where particles emit photons stochastically as they are bent around the syn-
chrotron by the dipoles. The photon emission leads to a reduction of the momentum, which
is compensated by the RF cavity only in the longitudinal direction. Hence, the macroscopic ef-
fect is a reduction of the emittance, even though the individual particles experience a random
walk. The energy loss through SR from a beam in a synchrotron is inversely proportional to
the particle mass to the fourth power, ∆E ∝ 1/m4. Hence, it is a dominant effect for electrons,
while it is more negligible in proton colliders built so far.

There exist sophisticated models of both IBS and SR. Here, the impact will be simplified as a
single incoherent kick per particle per turn ∆p ∼N (0,σ2

I j ). Each kick will lead to a change of
the action, for each particle individually, given by Eq. (3.2). The incoherent noise will lead to a
uniform diffusion of the distribution governed by

∂Ψ

∂t
=

∑
j={x,y}

∂

∂J j

(
J j D I j

∂Ψ

∂J j

)
, D I j =

σ2
I j

2τrev
, (3.4)

which can be found as in App. B.1. Macroscopically, this gives a relative emittance growth rate

ε̇ j

ε j 0
=

σ2
I j

2τrev
, (3.5)

where it has been assumed that the SR damping is negligible as the focus here is hadron
colliders. The diffusion coefficient D I j is here, and in the rest of this thesis, defined such
that a uniform diffusion in phase space corresponds to a constant diffusion coefficient. An
alternative convention, which is also common in the literature, is to call J j D I j the diffusion
coefficient.

3.2 Modeling coherent noise

Coherent noise affects all particles at the same point in space-time equally. This noise can be
modeled as a force Fnoise(s; t ). Here, it is neglected that a small part of the noise force may also
depend on the transverse coordinates, e.g. due to noise in the focusing fields. The change of
momentum is the time integral of this force, also known as the noise impulse.

There are several noise sources along the beamline. Noise source l affects the beam with kicks
of PSD Sl (ω). Assuming no correlation between the noise sources, the PSD of the full coherent
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3.2. Modeling coherent noise

noise is
Snoise(ω) =

∑
l

Sl (ω). (3.6)

Similarly, the noise amplitude variance acting on a particle, not per kick, but per time, can be
calculated over N turns as

σ2
noise =

〈
∆p2〉

t = lim
N→∞

1

Nτrev

n=N∑
n=1

∑
l
∆p2

ln =
∑

l
σ2

l , (3.7)

where ∆pl n is the impulse from noise source l on turn n. Each noise source will act on the
particles only once per turn. Hence, individual particles will only sample each noise source
with sampling frequency equal to the revolution frequency frev. Noise at frequencies above
the Nyquist frequency frev/2 will still affect the particles, but aliased into lower frequencies.

Instead of modeling all the noise sources separately, the effect can be modeled as a single
source ξ(t ). This noise kicks each particle only once per turn. The model noise shall have the
same PSD as given by Eq. (3.6), and variance per kick

σ2
ξ =σ2

noiseτrev, (3.8)

which depends on the period between each kick, here set equal to the revolution period τrev.

Assume for now that the noise is white. White noise is characterized by having uncorrelated
kicks of zero mean, defined mathematically as

〈ξ(t )〉t = 0 , 〈ξ(t )ξ(t +τ)〉t =σ2
noiseδD (τ), (3.9)

where δD (·) is the Dirac delta distribution — However, note that 〈ξ(t )ξ(t )〉t =σ2
noise, it is well

defined and finite — The PSD of a continuous white noise signal is flat, and is by the Wiener-
Khinchin theorem equal to the Fourier transform of the autocorrelation function [45]

Sξ(ω) = |F [ξ(t )]|2 =F
[〈ξ(t )ξ(t +τ)〉t

]=σ2
noise =σ2

ξ frev. (3.10)

The noise on a specific particle is not continuous, it consists of individual kicks of variance σ2
ξ

with a repetition frequency frev. The PSD of the white noise on a particle can in this case be
modeled as

Sξ(ω) =
{
σ2
ξ frev ,ω ∈ [

0,π frev
]

0 ,otherwise,
(3.11)

only extending to the Nyquist frequency.

So far, the focus was the effective noise acting on a particle. Now, the focus is the effective
noise acting on a bunch. The noise may differ between the head and the tail of the bunch, as
illustrated in Fig. 3.1b. To model this, the noise function ξ(t ) can be decomposed as

ξ(t ) ≡
∑

i
ξi (tc )Ξi (z), (3.12)

in a small interval around tc , the time when the synchronous particle reaches the effective
noise source. Here, Ξi (z) are orthogonal functions, square normalized over the initial bunch
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Chapter 3. Noise excited beam dynamics

distributionΨ0(z) 〈
Ξi (z)2〉

Ψ0
= 1, (3.13)

and ξi (tc ) are the amplitudes of the noise components across the bunch. For the machines of
interest in this thesis, the only two components of interest are a constant one Ξ0 ∝ z0 and a
linear headtail component Ξ1(z) ∝ z. Thus, the variance of the noise kick amplitude is〈

ξ(t )2〉
t =σ2

noise =σ2
ξ frev =

(
σ2
ξ0 +σ2

ξ1

)
frev, (3.14)

averaged over all the particles in a bunch.

As mentioned in Sec. 3.1.1, noise at sufficiently low frequencies will affect all particles in a
bunch equally, as in Fig. 3.1a, and almost all noise in the LHC is of such low frequencies. The
CC will be the main contributor to the noise component Ξ1(z) in the HL-LHC, but they do not
exist in the LHC. Hence, in the LHC, a valid approximation is σ2

ξ
≈σ2

ξ0 ≡σ2
k . Here, the variance

of the rigid dipole kick has been renamed σ2
k , consisting of external noise (without CCs) and

BPM noise
σ2

k =σ2
ext + g 2σ2

BPM. (3.15)

The frequency spectrum of this noise is typically not of great importance when studying
a single bunch, unless it contains narrow peaks, for example due to the 50Hz lines in the
LHC. However, in Ch. 8, the noise spectrum will be important as it can correlate multiple
neighboring bunches.

3.3 Rigid single-bunch dynamics

In a rigid bunch, the distance in phase space between all particles is fixed. It is a simple, yet
useful, model of a bunch, and it is accurate in the limit that all the particles have the same
tune and the noise is purely dipolar. The dynamics of a rigid bunch can be considered purely
by studying the COM of the bunch, represented here with the coordinates (x, p) for ease of
notation. In one transverse plane, the dynamics can be described with a Hamiltonian as in
Eq. (2.24)

H = ω0

2

(
x2 +p2)−x∆p, (3.16a)

ẋ = ∂H

∂p
=ω0p, (3.16b)

ṗ =−∂H
∂x

=−ω0x +∆p, (3.16c)

where ∆p models impulses scaled per time unit. This gives the equation of motion (EOM)

ẍ +ω2
0x =ω0∆p. (3.17)

If the kicks ∆p in Eq. (3.17) are due to a bunch-by-bunch feedback, as described in Sec. 2.5.3,
∆p =−g frevp, where frev is required to scale the feedback gain from per turn to per second.
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Figure 3.4: Power response of a damped harmonic oscillator of natural frequencyω0 to a noise
signal ξ at different frequencies. This is in the relevant limit of weak damping, g frev ¿ω0.

By use of Eq. (3.16b), the EOM becomes

ẍ + g frevẋ +ω2
0x = 0, (3.18)

where the feedback enters as a damping term on the LHS, as it should. Solving this with an
exponential ansatz, x ∝ exp(λt ), returns the expression for the damping time in Eq. (2.42).

If the kicks ∆p in Eq. (3.17) are due to a white dipolar noise source, the COM will perform a
random walk. The action of the COM will, after a kick ∆p = k, be changed from J0 → Jk , as
given by Eq. (3.2). By taking the average over all possible kicks, the expected change of action is

〈Jk − J0〉k =
〈

pk + k2

2

〉
k
=
σ2

k

2
. (3.19)

Assuming that the initial COM action is zero, J (0) = 0, the expected action after T turns
(assuming one kick per turn) is

E[J (T )] =
σ2

k T

2
, (3.20)

where the notation on the LHS stands for the expected value in time after multiple kicks.

If there are both a feedback and a noise source, ξ(t ), the EOM can be written

ẍ + g frevẋ +ω2
0x =ω0ξ(t ). (3.21)

By taking the Fourier transform, one can find that the PSD of the COM position is

Sx (ω) = |F (x)|2 =
∣∣ω2

0

∣∣Sξ(ω)(
ω2

0 −ω2
)2 + g 2 f 2

revω
2

. (3.22)

The response to the noise power Sx /Sξ is illustrated in Fig. 3.4. The response is greatest at
ω=ω0, and drops off quickly from there, being halfed at |ω−ω0| = g frev/2. Assume a white
noise with a flat PSD Sξ(ω) =σ2

k frev. By use of the Wiener-Khinchin theorem, as in Eq. (3.10),
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it can be shown in the limit of weak damping that

lim
t→∞E

[
x(t )2]= 1

2π

∞∫
−∞

Sx (ω)dω=
σ2

k

2g
= lim

t→∞E[J (t )] . (3.23)

The COM will reach an equilibrium offset due to a balance between the noise and the feedback.
Note, as this is important, that if the noise instead has zero power at the frequencies close to
the bunch’s betatron frequency and corresponding alias frequencies, the bunch will not be
significantly affected.

3.4 Rigid multi-bunch dynamics

There are typically multiple bunches in a beam, whose motion can be coupled. Consider a
beam consisting of M equidistant bunches, with revolution frequency frev and transverse (non-
integer) tune Q. The bunch repetition frequency is fb = M frev. These bunches can oscillate in
M different multi-bunch modes with phase difference between neighboring bunches [46]

∆φ= m

M
2π, (3.24)

where m ∈ {0,1, ..., M −1} is the mode number. These modes have frequencies

fm = frev ·min
{
m +Q, M − (m +Q)

}< fb

2
, (3.25)

i.e. all frequencies below fb/2 whose alias is frev ·min{Q,1−Q} with a sampling frequency frev.

Similar to the result for a single bunch in Eq. (3.22), a multi-bunch mode will only gain energy
from the noise if the noise contains energy close to the betatron frequency of the mode. This
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Figure 3.5: Simulation of low-frequency noise acting on 60 equidistant bunches, with Q = 0.31
and g = 0.01. (a) The noise signal in the first 5 turns, acting on each bunch once per turn. The
red crosses mark the subsequent kicks on one of the bunches. (b) The PSD of both the noise
in red, which is flat up to 5 frev, and the beam in blue.
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3.5. Single-bunch decoherence

can be understood intuitively if one considers, as an example, a low-frequency (LF) noise
signal whose amplitude changes slowly with time. The noise will affect neighboring bunches
similarly, and will therefore tend to drive multi-bunch modes with small phase differences
between neighboring bunches. A numerical example is shown in Fig. 3.5, with M = 60 bunches
affected by a noise signal with a PSD that is flat up to fmax = 5 frev and zero above. Only the 10
multi-bunch modes with frequencies below 5 frev are exited by the noise.

3.5 Single-bunch decoherence

Most often, real bunches do not fully behave as rigid bunches, because a tune spread is
required to achieve Landau damping, as was explained in Sec. 2.6. When there is a tune spread
among the particles, the COM will not oscillate indefinitely, but will decohere over time. This
process will modify the distribution and bring the COM offset to 0, as illustrated in Fig. 3.6.

Consider again the change of action after a normalized kick ∆p = k in Eq. (3.2). Assuming a
bunch with uniform phase distribution, the average change of action immediately after the
kick is independent of the initial action J0

〈Jk − J0〉φ0
=

〈
−

√
2J0 sin

(
φ0

)
k + k2

2

〉
φ0

= k2

2
. (3.26)

What happens next depends on the feedback system and the tune spread. If there is a feedback
and no tune spread, the COM will be damped back to zero without modifying the distribution.
However, if there is no feedback and the bunch decoheres completely, the actions remain as
they were immediately after the kick, resulting in a relative emittance growth

∆ε

ε0
= k2

2
. (3.27)

If the kick is large, the distribution will change qualitatively [47]. However, if the kick is small,
an initially Gaussian distribution will remain Gaussian, but with a larger cross-section.

The beams are not kicked once, but are continuously affected by various noise sources. The
impact of the single kick can be extended to a series of uncorrelated small kicks, e.g. drawn

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
ω0t

−1

0

1

x/
x 0

Figure 3.6: Decoherence of 10 particles starting at (x, p) = (x0,0) with uniform frequency
spread around ω0. The blue curves are the positions of the individual particles and the bold
red curve is the COM.
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Chapter 3. Noise excited beam dynamics

from a normal distribution, k ∼N (0,σ2
k ). Due to the decoherence, the resulting distribution

evolution is equivalent to the case with incoherent noise, governed by the uniform diffusion
equation in Eq. (3.4) and emittance growth rate in Eq. (3.5), but with σI →σk . This can be
verified by both derivations of the Fokker-Planck equation in App. B. An essential assumption
in these derivations is that one can average over a uniform phase distribution. This requires a
fast phase relaxation, due to detuning, compared to the diffusion time in action space.

3.5.1 Feedback and incoherent detuning

If there is both a feedback system and a source of detuning, the distribution evolution will
depend on the balance between the two. The change of action of a particle with incoherent
tune shift ∆̃Q, relative to the average tune 〈Q〉Ψ of all the particles in the bunch, is derived
in App. C. Here, the term ‘incoherent detuning’ refers to a detuning which is independent of
the bunch distribution. An example of a source of incoherent detuning are Landau octupoles.
By taking the average of Eq. (C.14), both over the distribution and over the possible kicks, the
familiar expression [48] for the expected relative emittance growth rate is found to be

ε̇

ε0
=

σ2
k

2τrev

〈 (
1− g

2

)2
4sin2

(
π∆̃Q

)
( g

2

)2 + (
1− g

2

)
4sin2

(
π∆̃Q

)
〉
Ψ

, (3.28)

which is zero for ∆̃Q = 0 and equal to the rms value of Eq. (3.27) for g = 0, as it should be.

3.5.2 Feedback and beam-beam interactions

In most of the operation cycle of the LHC, the main source of detuning is beam-beam inter-
actions. In this case, the detuning does depend on the bunch distribution, and the result in
Eq. (3.28) is not accurate. One main difference is that the beam-beam interactions can drive
discrete modes, as introduced in Sec. 2.5.1. Additionally, the emittance growth will be shared
equally between the two bunches if the noise only acts on one of the beams. Assuming that
both beams are affected by white dipolar noise of kick variance σ2

k , the emittance growth rate
with a single head-on beam-beam interaction and a transverse feedback is [49]

ε̇

ε0
=

σ2
k

2τrev

1− s0

2

(
1+ g

2πξBB,tot

)−2

, (3.29)

where (1− s0)/2 is the reduction due to the absorption of energy in the discrete beam-beam
modes, and ξBB,tot is the total beam-beam parameter. For round beams, it can be determined
numerically that s0 ≈ 0.645. Hence, only (1− s0)/2 = 18% of the emittance growth from full
decoherence is expected even without the feedback. The rest of the energy, which is carried
by the beam-beam modes, can lead to an instability if not stabilized by a transverse feedback
system. This is one of the reasons why the LHC is continuously operated with the ADT on.
Equation (3.29) is also correct if there are two head-on beam-beam interactions with equal
phase advances between the IPs for the two beams. However, the emittance growth rate
can be larger in more complex configurations that include other sources of detuning, such
as chromaticity, or additional beam-beam interactions, either long-range and/or a second
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3.6. Nonlinear Vlasov equation

head-on interaction with different phase advances between the IPs for the two beams. In the
latter case, the discrete beam-beam modes are expected to be inside the incoherent spectrum
and no longer be able to prevent the emittance growth [41].

These analytical models of the emittance growth rate are useful. Nevertheless, simulations are
necessary to model the full complexity of machines with noise, feedback systems, chromaticity,
Landau octupoles, and beam-beam interactions. This will be done in Ch. 8.

3.6 Nonlinear Vlasov equation

Disclaimer: This section was adapted from the following article — with permissions
of the co-author and publisher:

[50] S. V. Furuseth and X. Buffat, “Loss of transverse Landau damping by noise and
wakefield driven diffusion”, Phys. Rev. Accel. Beams 23, p. 114401, Nov. 2020.
doi:10.1103/PhysRevAccelBeams.23.114401

It was published under Creative commons license (CC-BY) 4.0.
My contribution: All results presented here.

So far, Landau damping of instabilities and decoherence of noise have been discussed sepa-
rately in Ch. 2 and Ch. 3, respectively. However, both mechanisms affect the beam simulta-
neously, and should be treated together. Using a perturbation approach, one can write the
distribution as

Ψ=Ψ0 +εΨ1 +ε2Ψ2 +O
(
ε3), (3.30)

whereΨ0 is the equilibrium distribution, assuming no wakefields nor noise,Ψ1 andΨ2 are
higher-order perturbations, and the tag ε denotes the size of each term as O (ε) ¿ 1. The role
of the tag is to imply the value of the term it is multiplied with. In the end it will be set to 1.

Similarly one can write the Hamiltonian as

H =H0 +εH1 +ε2H2 +O
(
ε3)

=H0 +ε (Hwake +Hnoise)+ε20+O
(
ε3),

(3.31)

where H0 is the equilibrium Hamiltonian, which models the phase space rotation etc.,
H1 =Hwake +Hnoise is the first-order perturbation, including both the weak wakefields
driven by Ψ1 and the noise, and H2 = 0 models the wakefields driven by Ψ2, which are
assumed to be non-existent. As long as the beam is stable, the noise drives a perturbation
Ψ1 ∝Hnoise, which again drives wakefields Hwake ∝Ψ1. Hence, these terms should be of the
same order, denoted by the tag. The perturbation representing the impact of the wakefields,
Hwake, models the collective wake force from the full ensemble of particles, as was first sug-
gested by A. Vlasov [31]. The short-range interactions between individual particles are in this
manner neglected, as required by the Vlasov equation. Such perturbations to the Hamiltonian
can be constructed based on the dipolar wake potentials within the ultra-relativistic approxi-
mation, as have been done in [12, 13, 22, 32, 33, 51]. In this thesis, the perturbation Hwake is
assumed to only represent the transverse kicks from weak dipolar wakefields.
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The perturbations in Eqs. (3.30) and (3.31) can be inserted into the Vlasov equation in Eq. (2.44).
By organizing the terms by order of ε, one gets

∂Ψ0

∂t
+ [Ψ0,H0] = 0, (3.32a)

∂Ψ1

∂t
+ [Ψ1,H0] =− [Ψ0,Hwake]− [Ψ0,Hnoise] , (3.32b)

∂Ψ2

∂t
+ [Ψ2,H0] =− [Ψ1,Hwake]− [Ψ1,Hnoise] . (3.32c)

Eq. (3.32a) models the evolution of the equilibrium distribution due to the unperturbed
Hamiltonian. Similarly, the LHS of the subsequent equations model the evolution of the
perturbations due to the unperturbed Hamiltonian. Without any driving terms on the RHS,
Ψ0 will remain as the initial distribution, typically assumed to be Gaussian in the transverse
planes. The perturbations will, however, evolve with time due to the driving terms, which
must be considered in detail:

• [Ψ0,Hwake] is the excitation of the bunch by the wakefields. This term in addition to the
LHS is the linear Vlasov equation, which was used to derive the stability limit in Sec. 2.6.

• [Ψ0,Hnoise] is the excitation of the bunch by the noise, as was studied in Sec. 3.3.
• [Ψ1,Hnoise] is the second-order excitation of the bunch by the noise, leading to a feed-

back dependent diffusion that will be studied in Ch. 5 [52].
• [Ψ1,Hwake] is the second-order excitation of the bunch by the wakefields, leading to a

diffusion that will be studied in Ch. 6 [50].
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4 Instability latency in the LHC

This chapter acts as a motivation for Ch. 5 and Ch. 6, by focusing on discrepancies between
predictions made with the linear Vlasov theory and observations made in the LHC. The most
interesting observation is the concept of instability latency: a bunch that is initially stable can
become unstable after a time delay referred to as the latency. To understand the underlying
mechanism causing these observations is the main goal of this part of the thesis.

4.1 Discrepancies between linear theory and observations

The linear Vlasov theory has become the gold standard in evaluating beam stability in accel-
erator physics, because it manages to explain a wide variety of observations. Nevertheless,
once and again observations are made that are not explained by this theory. Sometimes, the
discrepancies can be caused by an improper experimental approach where the controlled
variables have not been kept constant at the correct values. However, it can also point to
physics that is not explained by the linear theory.

The possibly most concerning difference between observations in the LHC and the linear
Vlasov theory is the required current in the Landau octupole magnets to keep non-colliding
beams stable through Landau damping. The lowest octupole current that provides enough
Landau damping to maintain beam stability will from here on be referred to as the stability
threshold. Regardless of willingness to reduce the octupole current in physics fills,

“in 2018 the octupole current used for operation [was approximately] a
factor 2 higher than the prediction [of the stability threshold.]” [53]

The stability margin of a factor 2 has been considered acceptable in the LHC, because the
predicted threshold current of about Ioct,thr. 200A is more than a factor 2 smaller than the
maximum current of about 570A. However, in order to proceed with future designs for the HL-
LHC upgrade and the FCC-hh, the cause of this discrepancy must be understood, especially
whether the required stability margin to the linear theory threshold will increase or not.

Another difference between the linear theory and the observations is the value of the tune
shift of the coherent modes. Both the real and imaginary parts of the tune shift, the latter of
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which corresponds to the growth rate of an instability, have been found to be larger in absolute
value in experiments than in simulations based on the linear theory.

“[The] factor between measurements and simulations [of the coherent
tune shifts] can be estimated to be between 30% and 50%.” [54]

One possible explanation for this discrepancy, is that the impedance given as input to the linear
theory is smaller than the actual impedance. The existence of an unknown ‘dark’ impedance
can explain a part of the factor 2 on the stability threshold discussed above.

Another important observation was that the discrepancy between the observations and the
theoretical predictions calculated numerically with DELPHI (Discrete Expansion over Laguerre
Polynomials and HeadtaIl modes) [22] depends on the linear chromaticity [55, 56].

“[F]or positive chromaticity, Q ′ ≥ 2 . . . good agreement is found between
measurements and DELPHI predictions . . . For negative chromaticity,
Q ′ < 2, there is large disagreement between measurements and DELPHI
predictions.” [56]

The threshold was severely underestimated for chromaticities close to zero, and this area is
therefore typically avoided in operation. For chromaticities in the interval Q ′ ∈ [−10,−2], the
ideal feedback with a positive feedback gain was predicted to keep the otherwise unstable
rigid mode stable without the help of octupole magnets, Ioct,thr = 0A. This was not confirmed
experimentally. On the other hand, for Q ′ ≥ 2, good agreement was found even without the
inclusion of the ‘dark’ impedance mentioned above, suggesting that the impedance model is
an accurate representation of the actual impedance.

A final important observation was that the good agreement for positive chromaticity in fact
depended on the experimental approach. The experimental stability threshold is typically
found by starting with a large octupole current, and then gradually reducing it step by step
until the beam goes unstable.

“[M]easurements performed by reducing the octupoles in short steps of
≈1 minutes lead to results compatible with the model [[55]], whereas
experiments with longer steps (≈10 minutes) revealed a difference of about
a factor 2 [[57]].” [53]

The dependence on how long the machine is kept in a constant configuration implies that
time is an important factor and that something is changing slowly.

4.2 Latency in physics fills and in simulations

On May 16, 2017, a bunch went unstable in the LHC after being stable in a constant machine
configuration at flattop (see Sec. 1.2) for ≈ 40min [58]. In other words, Landau damping was
lost after a slow change of a quantity that was not measured. By studying the expression in
Eq. (2.45), the three possible candidates are:
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• The mode frequency shift ∆ωcoh, relative to the stability limit ∆ωSD.
• The detuning ω(Jx , Jy ).
• The distributionΨ(Jx , Jy ).

The mode could in principle change, with an uncontrolled shift of the chromaticity, and
the detuning itself could change, both due to a dynamical change of the field strength in
the superconducting magnets. However, a significant dynamical change of fields on such
time scales were excluded [59]. This supported the hypothesis that it was the transverse
bunch distribution that changed from the assumed Gaussian distribution to something non-
Gaussian, such that a coherent mode that previously was inside the stability diagram and
stable, would become outside and unstable. This type of mechanism is obviously not explained
by the linear Vlasov theory, where the equilibrium distribution is assumed constant.

The detrimental change of the stability diagram, due to a modification of the transverse distri-
bution, had previously been measured in a simulation with an artificial harmonic excitation [7].
After the measurement in operation, this effect required further studies. In simulations with
external rigid white noise, transverse feedback, octupole detuning, and wakefields correspond-
ing to the LHC impedance model, bunches that were predicted to be stable, were found to
repeatedly go unstable after a significant time delay and a slow and steady distribution evolu-
tion [58]. The length of this delay, referred to as the latency of the instability, was found to have
clear dependencies on the simulation parameters. Hence, the instabilities were not random
events, but caused by a mechanism that steadily modified the distribution and corresponding
stability diagram. Such a mechanism would explain the dependence of the experimental
stability threshold on the length of the time steps when decreasing the octupole current,
discussed in Sec. 4.1. The mechanism may also explain the factor 2 between the operational
stability threshold and the predicted threshold, assuming Gaussian transverse distributions.

4.3 Dedicated latency experiment in the LHC

Disclaimer: This section was adapted from the following documents — with permis-
sions of the co-authors:

[15] S. V. Furuseth, X. Buffat, E. Métral, D. Valuch, B. Salvant, D. Amorim, N. Mounet,
M. Söderén, S. A. Antipov, T. Pieloni, and C. Tambasco, “MD3288: Instability
latency with controlled noise”, CERN, Geneva, Switzerland, Rep. CERN-ACC-
NOTE-2019-0011, Apr. 2019.

[60] S. V. Furuseth, D. Amorim, S. A. Antipov, X. Buffat, N. Mounet, E. Métral, T. Pieloni,
B. Salvant, and C. Tambasco, “Instability Latency in the LHC”, in Proc. 10th Int.
Particle Accelerator Conf. (IPAC’19), Melbourne, Australia, May 2019, pp. 3204–
3207. doi:10.18429/JACoW-IPAC2019-WEPTS044

The first document is an open source CERN note, while the second document was
published under CC-BY 3.0. Neither of the documents were officially peer-reviewed.
My contribution: The analysis and post-processing of the experiment. The planning
and execution was performed in collaboration with the co-authors.
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Chapter 4. Instability latency in the LHC

A dedicated experiment was conducted in the LHC on June 14 and July 26, 2018, to investigate
the latency of single-bunch instabilities [15, 60]. The hypothesis at the time was that a loss
of Landau damping could be caused by a change of the distribution, driven by an external
rigid-bunch noise. The goals were first to confirm the hypothesis that external noise could
lead to loss of Landau damping, and secondly to measure the dependence of the latency on a
few key machine and beam parameters as well as the external noise amplitude.

4.3.1 Experimental procedure

The experiment was conducted over three fills in the LHC. Up to 13 proton bunches per beam
were injected into the machine, with separations of 5.25µs or more [15]. The bunches were
arranged longitudinally in each beam such that all beam-beam interactions were avoided.
The ADT was used both as a feedback system and to act on the bunches as an external source
of white noise up to 40MHz, which was Gaussian in the time domain. A few key parameters
are listed in Table 4.1.

The experiment was conducted as follows (two examples are presented in Fig. 4.1):
1. Accelerate the bunches to flattop with β∗ = 1m under nominal conditions.
2. For a given configuration, act on a group of 4 bunches with different noise amplitudes.
3. Wait for the bunches to go unstable. The time it took before an instability was visible on

the emittance measurement is referred to as the latency.

Different machine configurations were tested systematically:
• In fill 1, the octupole current, Ioct, was varied.
• In fill 2, the chromaticity, Q ′, was varied.
• In fill 3, the transverse feedback gain, g , was varied.

In fill 1, the noise only acted horizontally, while in fills 2 and 3, the noise acted in both trans-
verse planes. The external background noise in the machine was assumed to be negligible
compared to the applied noise. This assumption was later supported by analyzing the emit-
tance growth rates.

The experiment was given a total time window of 16h. Therefore, if the latencies for a given
configuration were too high, the current in the Landau octupoles was eventually reduced
stepwise, to measure how much the stability threshold had changed in a given time. The
difference between the actual octupole current when the bunches went unstable, I emp

oct,thr, and

the predicted octupole stability threshold, I the
oct,thr, is denoted

∆Ioct,thr = I emp
oct,thr − I the

oct,thr. (4.1)

The predictions have been calculated with DELPHI [22], assuming a Gaussian distribution
with the measured intensity, emittances and bunch length at the time the noise was turned
on. The rate of change of the stability threshold will be presented as ∆Ioct,thr/τnoise, where
τnoise is the time during which a given bunch was affected by the external noise before it went
unstable. A high rate of change of the stability threshold means that the configuration is prone
to experience instabilities of short latencies, and such configurations should be avoided.
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4.3. Dedicated latency experiment in the LHC

Table 4.1: Important parameters during a latency experiment conducted in the LHC [15, 60].
The bunch parameters are averaged values in e.g. the horizontal plane of beam 1 (B1H).

Parameter Unit Fill 1 Fills 2 & 3
Energy per proton [TeV] 6.5 6.5
Horizontal tune, Qx [mod 1] 0.275 0.275
Vertical tune, Qy [mod 1] 0.295 0.295
Synchrotron tune, Qs [1] 0.00191 0.00191
Revolution frequency [kHz] 11.2455 11.2455
Total RF voltage [MV] 12.0 12.0
Normalized emittance B1H 1 [µm] 1.86 1.91
Normalized emittance B1V 1 [µm] 1.14 1.18
Normalized emittance B2H 1 [µm] 0.87 1.37
Normalized emittance B2V 1 [µm] 1.48 1.24
Intensity [1011 p/b] 0.91 1.10
Bunch length, 4σs [ns] 1.12 1.07
rms momentum spread, σδ [10−4] 1.08 1.04

1 Measured with the beam synchrotron radiation telescope (BSRT).

4.3.2 Results

The evolution of the emittance of two groups of bunches in B2 in fill 1 is presented in Fig. 4.1.
The chromaticity was Q ′ ≈ 15, and the feedback damping time in the horizontal plane of
B2 was τg ≈ 170 turns. The first group was first acted on with a small noise for ≈ 10min,
which was found to be too small. Therefore the noise was doubled. The part of the latency
with the smaller noise has been included with a scaling of 1/4, assuming that the latency
is inversely proportional to the noise amplitude squared, as discussed later in Ch. 6. The
octupole current was 452A, while the stability thresholds predicted with DELPHI at the time
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Figure 4.1: Evolution of normalized horizontal emittance for two groups of 4 bunches in
Beam 2 (B2), with linearly spaced external noise amplitudes V . Displayed emittance is a rolling
average over the 25 closest values measured with the BSRT. Q ′ ≈ 15 and τg ≈ 170 turns. The
vertical black solid (dashed) lines indicate where the noise was turned on (off).
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Figure 4.2: Scan of octupole current in B2, with a chromaticity Q ′ ≈ 15 and damping time
τg ≈ 170 turns in both transverse planes. The values for Ioct when the noise was turned on
is given in the legends. (a) shows the latency. (b) shows the rate of change of the stability
threshold.

the larger noise was turned on were I the
oct,thr = [193A,234A,235A,257A], in order of decreasing

noise. Hence, the operational octupole current when the bunches went unstable was a factor
∼2 larger than the predicted threshold. Note that all the emittances measured with the beam
synchrotron radiation telescope (BSRT) oscillated nonphysically during this measurement.
These oscillations have been treated as an additional source of uncertainty on the measured
emittance, adding up to the device specification of 10% [61]. As a result, also the predicted
stability thresholds for these bunches have a higher uncertainty.

The second group, and all the subsequent groups, was only acted on by noise once. The initial
octupole current for the second group was 546A, while the stability thresholds predicted with
DELPHI at the time the noise was turned on were I the

oct,thr = [232A,221A,232A,225A], in order
of decreasing noise. Hence, the operational octupole current when the first three bunches
went unstable was a factor ∼2.4 larger than the predicted threshold. The last bunch did not go
unstable until the operational octupole current had been reduced to 414A.

The latencies of the bunches in Fig. 4.1 are presented as a function of the noise amplitude in
Fig. 4.2a. The latency was longer for a higher octupole current and a larger noise amplitude, as
confirmed in simulations [58]. Note that the longest latency of ≈ 60min was measured after a
reduction of the octupole current, and is therefore most likely a lower limit on the latency. The
corresponding average rate of change of the stability threshold is presented in Fig. 4.2b, being
higher for a lower octupole current and higher noise amplitude.

Different chromaticities were tested with three groups in both beams of fill 2. The chromatic-
ities were set to be Q ′ ∈ {0,5,15}, but were spread around these values by 2−4 units in both
planes of both beams, according to measurements at the end of the fill. The rate of change of
the stability thresholds for both beams are presented in Fig. 4.3. A non-monotonic trend was
found in both beams, the rate was high for Q ′ ≈ 0, low for Q ′ ≈ 15 and negligible for Q ′ ≈ 5.
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Figure 4.3: Scan of chromaticity in both beams. B1 is in (a), where the last point is at
(4.7×10−4 σp ,404A/min). B2 is in (b). The points marked with a ‘V’ became unstable vertically.
The values for Ioct when the noise was turned on are annotated next to the lines. The damping
time was τg ∼200 turns.

The dependence on the feedback gain was also scanned with multiple groups in fill 3. At low
gains, zero bunches went unstable while affected by the noise. The noise was therefore turned
off, and the gain was increased to test a new group. Many of the bunches tested at low feedback
gains became unstable shortly after the gain was increased to the nominal, corresponding to
τg ∼200 turns. However, no clear trend could be observed in the rate of change of the stability
threshold [15]: at a low noise amplitude the rate was higher with a low gain, while at a high
noise amplitude, the rate was higher with a high gain.

4.3.3 Discussion

The emittance is expected to grow in the presence of noise, which was also measured. Com-
parison between the experimental emittance growth rate and that in comparable simulations
was used to estimate the noise amplitude in B1 and B2, separately. Assuming still a Gaussian
distribution, the stability threshold octupole current should then have been reduced. How-
ever, Landau damping was instead lost, supporting the hypothesis of a modification of the
distribution through an amplitude dependent diffusion. Because the distribution evolution is
understood to be driven by the noise, it was expected that the latency would be shorter for a
higher noise, as was measured.

The experiment further confirmed that with a higher Ioct, it takes a longer time to lose Landau
damping. Moreover, with a lower Ioct, when the bunch is closer to its stability threshold, the
rate of change of the stability threshold is higher. This supports the idea that the noise induced
coherent motion, of the modes closest to their stability thresholds, participates strongly in
this mechanism. This will be investigated in Ch. 6.

In this experiment it was found that the rate of change of the stability threshold was by far
highest for Q ′ ≈ 0. This can be explained by either an underestimation of I the

oct,thr with DELPHI,

43



Chapter 4. Instability latency in the LHC

as referred to in Sec. 4.1, or by a much shorter latency than at higher chromaticities. Therefore,
no conclusion can be drawn on the dynamics around Q ′ ≈ 0, based on this experiment.

Finally, the latency seemed to be shorter with a higher feedback gain in the experiment, at
odds with simulations with an ideal feedback, where the latency was proportional to the
feedback gain [58]. This apparent discrepancy might be explained by the additional noise
introduced by the feedback itself, but requires further studies.

4.3.4 Summary

In this experiment it was successfully shown that Landau damping can be lost due to external
noise, with a stability margin of more than a factor 2. This mechanism might explain why it is
typically necessary to use an octupole current in the LHC about a factor 2 larger than what is
predicted from a stability diagram approach assuming a Gaussian distribution.

The latency of the instabilities, which is the time from the external noise was turned on to the
time when the bunches became unstable, depends on key machine parameters:

• A higher noise amplitude leads to a shorter latency.
• A higher octupole current leads to a longer latency.
• The dependence on chromaticity was non-monotonic, the latency was longest with

Q ′ ≈ 5, intermediate with Q ′ ≈ 15 and shortest with Q ′ ≈ 0.
• A higher feedback gain seemed to lead to a shorter latency in the experiments.

The latter is not compatible with results obtained in simulations, but might be explained by
the noise introduced by the feedback, and requires further studies.

Another measurement presented was the rate of change of the stability threshold octupole
current from the predicted value, assuming a Gaussian bunch, to the value of Ioct when the
bunch actually went unstable. These values are more straightforward to compare than the
pure latencies, as they partly filter out dependencies on a few bunch-to-bunch and group-
to-group variations. The rate of change was higher with a higher noise amplitude. It was
lower with a higher octupole current, implying that the process is faster as the instability
threshold is approached. The dependence on chromaticity was again non-monotonic, the rate
of change was negligible for Q ′ ≈ 5, higher for Q ′ ≈ 15, and highest for Q ′ ≈ 0. The dependence
on the feedback gain could not be properly resolved experimentally. Note that no bunch went
unstable while the LHC was operated with a gain lower than the nominal one, although they
were acted upon by noise at such gains. This was not expected, and will require further studies.

The existence of a mechanism that causes a finite instability latency for initially stable bunches
has been verified in this experiment. The experimental results have given some hints on
how this mechanism works. For instance, the higher rate of change of the stability threshold
for a lower octupole current implies that the process is related to the least stable modes
themselves. In the following two chapters, two mechanisms that can change the transverse
bunch distribution are studied in detail. The ultimate goal is to have an analytical model that
predicts how fast the stability threshold is approached, to guide the search for optimal machine
and beam parameters, mitigating such instabilities by maximizing the latency, relevant for
HL-LHC and other future projects.
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5 Single-bunch evolution due to noise,
decoherence, and feedback

Disclaimer: This chapter was adapted from the following articles — with permissions
of the co-author and publishers:

[62] S. V. Furuseth and X. Buffat, “Change of beam distribution due to decoherence
in the presence of transverse feedback”, in J. Phys.: Conf. Ser. 1350, May 2019,
p. 012118. doi:10.1088/1742-6596/1350/1/012118

[52] S. V. Furuseth and X. Buffat, “Long-term evolution of Landau damping in the
presence of transverse noise, feedback, and detuning”, Phys. Rev. Accel. Beams
23, p. 034401, Mar. 2020. doi:10.1103/PhysRevAccelBeams.23.034401

Both were published under a CC-BY, 3.0 and 4.0, respectively.
My contribution: All results presented here.

5.1 Introduction

In the experiment discussed in Ch. 4, Landau damping was lost after being affected by a
controllable external source of noise over an extended period of time. The working hypothesis
is that this loss of Landau damping was caused by a noise induced change of the transverse
bunch distribution, away from the commonly assumed Gaussian distribution.

In this chapter, an analytical theory is derived, explaining how the transverse equilibrium
distribution changes in the presence of transverse noise, due to the combined effects of a
transverse action dependent detuning and a transverse feedback system. The mechanism is
modeled by the Fokker-Planck equation. It corresponds to a diffusion that is zero for particles
with tune equal to the average tune of the bunch, and which is growing quadratically with the
tune shift in the vicinity. The slow change of the distribution due to the wakefields themselves
has at this stage been neglected, and will be discussed separately in Ch. 6. The stability of the
slowly evolving beam is at each time step evaluated by the linearized Vlasov equation through
the stability diagram.
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5.2 Theory

The calculation consists of 4 steps:
1. Derive an expression for the change of the action for each particle after a kick, taking

into account both the tune spread and the transverse feedback.
2. Consider the change of action as a Wiener process with a drift, and derive the Fokker-

Planck equation for the particle density distribution of the bunch.
3. Solve the Fokker-Planck equation numerically to get the time evolution of the distribu-

tion. This is achieved with the code PyRADISE (Python Radial Diffusion and Stability
Evolution), which is described in App. D.

4. Calculate the correspondingly evolving stability diagram, given by Eq. (2.46), numeri-
cally with the code PySSD (Python Solver for Stability Diagram) [35]. PySSD is integrated
in PyRADISE, and is also described in App. D.

The 4-step calculation may be applied to various sources of tune spread. In this thesis, the
focus is when the tune spread is achieved with Landau octupoles, as described in Sec. 2.3.2.

5.2.1 Change of action after a single kick

The goal of this section is to model the change of the action of each individual particle after a
kick, when there is both a transverse tune spread and a transverse feedback. There already
exists an expression for the subsequent emittance growth in such a configuration [48]. A
similar approach will be taken here. The change of action is found to depend on the feedback
gain g and the offset of the single particle tune from the average tune

∆̃Q =Q(Jx , Jy )−〈Q〉Ψ . (5.1)

Note the distinction between ∆̃Q and ∆Q, which is the offset from the bare tune. The change
of action after a kick k, given in units of the beam divergence, can in this formalism be given as

∆J =k2

2

(
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)2
4π2∆̃Q2( g
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)(
1− g

4

)
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2 k2L2 +k

√
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[
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(
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)+N sin
(
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)]
(5.2)

=1
2 k2L2 +k

√
2J0

√
M 2 +N 2 cos

(
φ0 −atan

( M
N

))
,

where L, M and N are functions of ∆̃Q and g in this chapter only. The step-by-step derivation
is given in App. C. The first term of Eq. (5.2) is an average growth, while the second term is
a spread based on the phase of the particle. By averaging over the distribution, one gets the
same expression for the emittance growth as in [48], assuming a uniform phase distribution.
Equation (5.2) simplifies to Eq. (3.2) in the limit g ¿ ∆̃Q, and to 0 in the limit g À ∆̃Q.

Equation (5.2) was derived under the assumption that the reduction of the transverse offset
comes from the transverse feedback, not the decoherence (g À ∆̃Q). The weighting functions
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L2, M 2, and N 2 are related to each other by the expression

M 2 +N 2 = L2 +
(
1− g

2

)2 ( g
4

)2
(2π∆̃Q)4[( g

2

)2 + (
1− g

2

)
(2π∆̃Q)2

]2 , (5.3)

where the second term on the RHS is negligible for all relevant values of ∆̃Q and g . Hence, one
can rewrite Eq. (5.2) as

∆J = 1
2 k2L2 +k

√
2J0L cos

(
φ̃0

)
, (5.4)

where φ̃0 =φ0 −atan
( M

N

)
, which will still be uniformly distributed for each J0, and

L2(g ,∆̃Q) =
(
1− g

2

)2
4π2∆̃Q2( g

2

)2 + (
1− g

2

)
4π2∆̃Q2

, (5.5)

with a maximum value of (1− g /2) ≈ 1.

The focus of this investigation is the dynamics caused by the combination of the active
transverse feedback and detuning caused by Landau octupoles, because of its relevance for
operation of the LHC. The detuning is given by Eq. (2.28), with in-plane detuning coefficient
a j and cross-plane coefficient b j . In a simplified model with only horizontal noise and bx = 0,
L2 takes the shape illustrated in Fig. 5.1.
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ax/gx=10−3

Figure 5.1: Action dependence of L2 for a horizontal feedback gain gx = 0.01 and different
values for the octupole detuning coefficient ax , in the simplified case that bx = 0.

In the derivation of Eq. (5.4), the incoherent tune offset ∆̃Q was assumed constant. However,
in general it depends on J , which changes during this process. Right after the kick, the action is
changed to Jk , given by Eq. (3.2). Due to the feedback, the action will be reduced back towards
J0. The variation of action during the process will be taken into account by calculating the
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average of Eq. (5.4) from J0 to Jk in the following manner:

∆J = 1

Jk−J0

Jk∫
J0

∆J (J0)+ (J ′−J0)
∂∆J

∂J

∣∣∣∣
J=J0
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2
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∣∣∣∣
J=J0

=∆J (J0)+
1− g

4

1− g
2

· k2

2
J0
∂L2

∂J
+O

(
k4).

(5.6)

Note that the only impact of the variation of J after the kick is through the action dependence
of ∆̃Q(J). The values of J0 and φ0 are supposed to be taken prior to the kick. Terms that will
become zero when averaging over φ0 were dropped.

5.2.2 Fokker-Planck equation in action

The change of action after a kick k in Eq. (5.6), ∆J (k, J0,φ0,∆̃Q0, g ), will from here on be
referred to as ∆. The next step is to derive how this change of action will change the distri-
butionΨ. When extending from a single kick to a sequence of kicks, modeled as a coherent
white noise source, the change of action can be considered a stochastic process described by
the Fokker-Planck equation derived in App. B.1 [63]

∂tΨ=−∂J (UΨ)+∂2
J (JDΨ) , (5.7)

where the drift and diffusion coefficients are given by

U (J ,Ψ) =
∞∫

−∞

∆

τrev
ϕ(∆; J ,Ψ)d∆, (5.8a)

D(J ,Ψ) = 1

J

∞∫
−∞

∆2

2τrev
ϕ(∆; J ,Ψ)d∆, (5.8b)

where τrev is the time interval between each kick, set equal to the revolution period. The
division of D by J , in comparison to the alternative diffusion coefficient D̃ = JD, will be
convenient in the following. For this process to be modeled well by the Fokker-Planck equation,
the detuning must be fast enough, relative to the noise amplitude, to achieve the required
phase relaxation. For increasingly large noise amplitudes, this model is therefore gradually
less able to accurately represent the dynamics.

The probability distribution for the change of action after a kick, derived from Eq. (5.6), can be
written as

ϕ(∆; J ,Ψ) = F (k)dk

π

√√√√2Jk2L2 −
[
∆−k2

2

(
L2 +

1− g
4

1− g
2

J
∂L2

∂J

)]2
, (5.9)
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and it is defined only between the singularities. F (k) is the probability distribution of the kicks,
assumed to have zero mean and STD σk .

The next step is to calculate the coefficients U (J ,Ψ) and D(J ,Ψ). The integral over ∆ must
be done first, as its limits depend on k. When assuming a uniform phase distribution, the
coefficients become

D(J ,Ψ) =
σ2

k

2τrev
L2, (5.10a)

U (J ,Ψ) = D +
1− g

4

1− g
2

J
dD

dJ
. (5.10b)

The second term of U comes from the inclusion of the dynamically evolving ∆̃Q during the
decoherence process, i.e. by using ∆J instead of ∆J .

The last step is to insert the expressions for U and D of Eq. (5.10) into the Fokker-Planck
equation of Eq. (5.7). The first term of U cancels ∂J [∂J (J )Dψ]. In the assumed limit of small g ,
the second term cancels the term ∂J [J∂J (D)ψ]. Thus, the Fokker-Planck equation turns into
the well-known diffusion equation

∂tΨ= ∂J
[

JD∂J (Ψ)
]

. (5.11)

This equation could also be obtained by assuming a time reversal symmetry on the micro-
scopic level. That is, the probability of going from Ja to Jb is equal to the process of going back,
or ϕ(Jb − Ja ; Ja) =ϕ(Ja − Jb ; Jb).

If one would have assumed constant tunes during the feedback and decoherence process
of a single kick, the D in Eq. (5.11) would have been inside the inner derivative. That partial
differential equation (PDE) would have corresponded to a stochastic process where the prob-
abilities of reducing and increasing the action by ∆ from an initial action J0 were equal, or
ϕ(∆̃+∆; J0) =ϕ(∆̃−∆; J0), where ∆̃= k2L2/2 is assumed small. It is a subtle, but important
distinction from the process modeled by Eq. (5.11), and it will be highlighted in Sec. 5.3.

This theory will now be extended to a general 2D Fokker-Planck equation like

∂tΨ=
1∑

j=0

∂

∂J j

[
−U jΨ+

1∑
i=0

∂

∂Ji

(√
J j Ji D j iΨ

)]
, (5.12)

where the indexes i and j go over the two transverse planes, with definitions of U j and D j i

as before. This equation can be obtained by doing a 2D Taylor expansion as in App. B.1. As

for a single plane, it is still true that U j ∝σ2
k j +O

(
σ4

k j

)
and D j j ∝σ2

k j +O
(
σ4

k j

)
. Since the

external noise in the two planes is considered to be uncorrelated, 〈kx ky 〉t = 0, the coupling
diffusion coefficients can be considered negligible, because Dx y = D y x ∝σ2

kxσ
2
k y ¿ D j j . The

Fokker-Planck equation in 2D transverse action space, which corresponds to Eq. (5.11) for one
transverse plane, can therefore be written as

∂Ψ

∂t
= ∂

∂Jx

(
Jx Dxx

∂Ψ

∂Jx

)
+ ∂

∂Jy

(
Jy D y y
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)
. (5.13)
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The diffusion coefficients are given as before,

D j j =
σ2

k j

2τrev
L2 [

g j ,∆̃Q j (Jx , Jy )
]

, (5.14)

where it has been written explicitly that L2 depends on the detuning and feedback gain in the
given transverse plane.

5.2.3 Solving the Fokker-Planck equation

To get the evolution of the bunch distribution, one must either solve Eq. (5.11) in 1D or
Eq. (5.13) in 2D. Without the feedback, ∆̃Q À g , there will be no action dependence of the
diffusion coefficient, and the distribution will simply widen, as in Eq. (3.4). In another extreme
limit, g À ∆̃Q and ∆̃Q → 0, the diffusion coefficient will be zero. The offsets from the kicks will
be damped, without modifying the distribution at all.

In the interesting regime, when both the feedback and the detuning will be relevant, the
coefficients will depend on the transverse actions, and a numerical solver is required to
determine how the distribution will change. To do so, a PDE solver named PyRADISE has been
developed. It is described in detail in App. D. In the results that follow, the boundary condition
(BC) at Jmax = 20 is absorbing, representing a physical aperture in a real machine, the COM
tune, 〈Q〉, is kept constant, and the grid is 700×700 in 2D. The stability diagram is calculated
numerically after each discrete time step, using PySSD [35] to perform the integral in Eq. (2.46)
with a uniform trapezoidal discretization in (Jx , Jy ).

5.3 Numerical verification

In this section, the objective is to numerically test and verify the theory derived in Sec. 5.2 by
means of particle tracking simulations. The radius in transverse phase space is defined as

r =
√

2J , (5.15)

and will at times be referred to instead of the action.

5.3.1 Change of action after a single kick

The change of action after a kick and the subsequent decoherence was derived and found
to be given by Eq. (5.6). Here, this will be tested with 1D toy models without dependence on
the vertical plane, with gx = 0.1, ax = 5×10−4 and bx = 0. Simulations of this configuration
have been run with 107 macroparticles for 150 turns, after a single horizontal kick of various
amplitudes k. Macroparticles are used in simulations to represent multiple particles, e.g.
representing a bunch of N = 1011 protons with Np = 107 macroparticles of higher mass and
charge. The phase advance per particle has been kept constant in one set of simulations, and
evolving dynamically as J changes in another. The first abides by the assumptions used to
derive Eq. (5.4), while the second is the actual beam dynamics, which is modeled by Eq. (5.6).
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Figure 5.2: Change of action after a single kick of amplitude k as a function of the particles’
initial actions. Multi-particle simulations were run with constant tunes corresponding to the
initial actions, Q(0), and dynamically evolving tunes corresponding to the evolving actions,
Q(t). The simulations are compared to a theory assuming constant tunes, and a modified
theory, denoted in the legend by ∗, given by Eq. (5.4) and Eq. (5.6), respectively.

The dependence of 〈∆J〉φ and 〈∆J 2〉φ on J0 is presented in Fig. 5.2. They are compared to the
theory given by Eq. (5.4) and modified theory including dynamical tunes given by Eq. (5.6).
The modification did not change the expected value for 〈∆J 2〉φ to first order. The simulated
curves for 〈∆J〉φ have more statistical noise, as the average is proportional to k2, while the
spread is proportional to k

p
J0, which is why the curves stop at J0 = 4 and were not calculated

for k < 0.1. The agreement is excellent between Eq. (5.4) and the simulations with constant
tune, denoted by Q(0). The expression in Eq. (5.4) has thus been verified numerically, using
the same assumptions. There is a difference between the modified theory and the simulations
run with dynamically evolving tunes, denoted by Q(t). The dependence on the dynamical
tunes does have an impact. The difference appears not to diminish for smaller kicks k. The
difference between the simulations and the modified theory is similar for 〈∆J〉φ and 〈∆J 2〉φ.
Hence, the agreement is considered acceptable for this study. If this mechanism would have
been found to be critical for long-term beam stability, it could deserve further studies.

5.3.2 Fokker-Planck vs multi-particle simulations

The importance of modeling the evolution of the tunes, due to the change of action following a
kick, seemed to not modify the qualitative behavior significantly in Sec. 5.3.1. Here, the change
of the distribution after multiple infinitesimal kicks is considered. A 1D toy configuration will
be studied, with ax = 5×10−3, bx = 0 and gx = 0.2.

In the derivation of Eq. (5.4), it was assumed that the amplitude of the stochastic process was
solely dependent on the particle parameters before the kick. This can be modeled by either
the Fokker-Planck equation in Eq. (5.7), without the second term on the RHS of Eq. (5.10b), or
with a multi-particle simulation with a centered incoherent noise of variance σ2

k ·L2 over T
turns. The distribution evolutions, predicted by the Fokker-Planck solver and measured in
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the simulation after σ2
k ·T = [0,1, . . . ,4]·25/6turns, are shown to have a perfect agreement in

Fig. 5.3a. The time is scaled to hours of operation of the LHC, with a noise of σk = 5.77×10−4,
comparable to the noise amplitude in the experiment described in Ch. 4.

The more accurate description of the beam dynamics includes the dynamical evolution of
the tune of the incoherent particles. Such a multi-particle simulation has been run, using
4×106 macroparticles and 4×106 turns. The distribution is shown in Fig. 5.3b after T turns
such that σ2

k ·T = [0,1, . . . ,8]·25/6turns. The evolution of multiple edges in the simulation can
be a numerical artifact. Clearly, this distribution evolution is qualitatively different from the
one in Fig. 5.3a.

The distribution evolution modeled by the Fokker-Planck equation in Eq. (5.11) is given in
Fig. 5.3c. This evolution is in better agreement with the realistic multi-particle simulation.
According to the new theory, an edge develops at r =

p
2 ≈ 1.4, where ∆̃Q = 0. This is the effect

of the diffusion: Ψ increases at J . J (∆̃Q = 0) and at large J , and is depleted at J & J (∆̃Q = 0)
and at J ∼0. In other words,Ψ flattens in the two regions separated by J (∆̃Q = 0) = 1, with a
step in between.

The expected distribution evolution due to multiple small uncorrelated kicks is governed
by Eq. (5.11). This works well for continuous distribution functions and non-zero diffusion
coefficients. However, in this case, the distribution evolves towards a hard step with a singular
derivative at the action of zero diffusion coefficient, J (∆̃Q = 0), making the product D∂JΨ in
Eq. (5.11) undefined and inaccurately evaluated with the numerical solver. Therefore, even
though discontinuities have been observed also in multi-particle simulations, the evolution
calculated numerically based on the Fokker-Planck equation becomes inaccurate as the
distribution approaches this hard step.

The mechanism at hand, the evolution of the stability diagram due to amplitude dependent
transverse diffusion, caused by the combined effect of amplitude dependent detuning and
active feedback, is difficult to assess with multi-particle simulations. Relevant parameters
for this effect in the LHC are g ∼0.1, ∆̃Q ∼ 10−4, σk ∼ 10−4, N ∼ 1011 particles per bunch,
T ∼107 turns. There are multiple numerical obstacles: (i) The process is according to Fig. 5.1
strongly dependent on the ratio ∆̃Q/g ∼10−3 ¿ 1, and altering it will correspond to a different
machine configuration; (ii) The COM offset depends on the noise and feedback gain as√〈〈x〉2

Ψ

〉
t =σk /

√
2g ∼2×10−4 ¿ 1, neglecting the damping from the decoherence. If the

COM offset becomes significantly larger, e.g. if one increases σk to reduce the necessary
number of turns in the simulation, the detuning per particle will be averaged over a wider
range, leaving the assumption of a weak noise perturbation, and the diffusion becomes closer
to uniform; (iii) Due to a limited number of Np macroparticles, the ideal feedback causes
unphysical, numerical stochastic cooling [64, 65]. This effect is weaker for larger Np /g ; (iv)
The rate of change in the distribution is for small ∆̃Q/g proportional to Tσ2

k ∆̃Q2/g 2. Bringing
it all together, a good simulation will have a large Np T · ∆̃Q2/g 2 ·σ2

k /g ∼Np T ·4×10−14. The
complexity of the simulations will approximately be proportional to Np T , which will have to
be large. Experience has shown that Np T ≥ 1013, with Np ∼T , is necessary to get an estimate
of this effect, but with further improvement achievable for higher Np T . Assuming a perfect
simulation, it is also required to have an even higher Np to interpolate the multi-particle
bunch to get an agreeable expression for ∂J (Ψ), which enters in Eq. (2.46) for the stability
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Figure 5.3: Distribution evolution in units of r =p
2J with ax = 5×10−3, bx = 0, gx = 0.2, and

equivalent noise of σk = 10−3/
p

3. (a) shows the process modeled by ∆J given by Eq. (5.4),
and a multi-particle simulation with incoherent noise of variance σ2

k ·L2. (b) shows a realistic
multi-particle simulation of this process, using 4×106 macroparticles and 4×106 turns. (c)
shows the process modeled by ∆J given by Eq. (5.6).

diagram. For numerical calculations of the stability diagram, good statistics up to r = 6 is
necessary.

5.4 Results

In this section, results obtained by solving the Fokker-Planck Eq. (5.13) with PyRADISE will
be presented. First, two test cases are presented in Sec. 5.4.1, focusing on the distribution
evolution in 2D and corresponding evolution of the stability diagram. Then, the effective
detuning strength will be defined in Sec. 5.4.2. Finally, the effective detuning strength will be
studied in several scans of the relevant parameters in Sec. 5.4.3. Symmetry is assumed between
the detuning coefficients and feedback gains in the transverse planes in all configurations,
i.e. ax =ay =a, bx =by =b and gx =g y =g . Hence, the subscripts will not be included in the
following.
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Figure 5.4: Evolution with noise in the horizontal plane only: (a) distribution after 12h;
(b) corresponding relative change of the distribution; (c) and (d) stability diagrams in the
horizontal and vertical planes, respectively. The black dashed curves in the stability diagrams
correspond to the stability diagrams of the initial distribution with half the detuning strength.

5.4.1 Distribution and stability evolution

Now, a more realistic model for the LHC will be considered, with a = 5×10−5, b =−3.5×10−5,
g = 0.01, and σk j = 5×10−4. This noise amplitude is compatible with the experiment in the
LHC that is described in Ch. 4. First, a configuration with noise only in the horizontal plane is
considered. Secondly, a configuration with equal noise in both planes will be considered. The
number of turns T have been scaled to a time variable t = T / frev, where frev is the revolution
frequency in the LHC.

The distribution and relative change of the distribution after 12h, with noise only in the hori-
zontal plane, is displayed in Figs. 5.4a and 5.4b, respectively. This is an equivalent trend for
each value of Jy , as the one in Fig. 5.3c, except for that Jx (∆̃Qx = 0) now depends on Jy . There-
fore, it is more difficult to see that the projection of the new distribution in the (x, y) plane is
not Gaussian, than with b = 0. The stability in the horizontal plane evolves as in Fig. 5.4c, and in
the vertical plane as in Fig. 5.4d. After 24h, the horizontal stability diagram is partly inside the
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Figure 5.5: Evolution with equal noise and detuning in both planes: (a) distribution after
12h; (b) corresponding relative change of the distribution; (c) stability diagram. The stability
diagram evolves equally in both planes, due to symmetry. The black dashed curve in the
stability diagram corresponds to the stability diagram of the initial distribution with half the
detuning strength.

black dashed curve, which is the stability diagram of the initial distribution with half the detun-
ing strength. The vertical stability decreases initially slightly at positive Re

{
∆Qcoh

}
, but there

is no extreme reduction of the stability for any real tune shift. However, at Re
{
∆Qcoh

}≈−1.6a,
the drilling of a hole has begun. This is due to the uncommon appearance of a positive
distribution derivative, ∂Ψ/∂Jy > 0, close to ∆̃Qx = 0.

The distribution and relative change of the distribution after 12h, with equal noise in both
transverse planes, is displayed in Figs. 5.5a and 5.5b, respectively. The evolution is driven by
both horizontal and vertical diffusion. Where the horizontal diffusion is zero, the particles
only diffuse vertically, leading to a zero distribution derivative, ∂Ψ/∂Jy ≈ 0. Due to perfect
symmetry between the two planes, in noise, decoherence, and feedback, the stability in both
planes evolves as in Fig. 5.5c. The evolution of the stability diagram is in this case qualitatively
similar to the sum of the evolutions in both planes when there was only horizontal noise.
There is a reduction of the stability limit at Re

{
∆Qcoh

}∼0, especially for weakly negative real
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coherent tune shifts, where the most problematic coherent modes in the LHC reside [66]. After
24h, the stability limit has been reduced to almost that of the initial distribution with half the
detuning strength.

5.4.2 Relative effective detuning strength

A stability diagram has been calculated for each distributionΨ(t =tk ) with the correct detun-
ing coefficients, as described in App. D and presented in Figs. 5.4 and 5.5. In addition, stability
diagrams have been calculated for the initial Gaussian distributionΨ(t =0) with scaled detun-
ing coefficients (as ,bs) = s · (a,b). The relative effective detuning strength at time tk is defined
as the largest factor s that corresponds to a stability diagram that is completely inscribed in
the stability diagram for distributionΨ(t = tk ). It represents a pessimistic characterization of
the potential reduction of Landau damping at a given time.

The evolution of the relative effective detuning strengths for the two cases in Sec. 5.4.1 are
presented in Fig. 5.6. The decrease of the stability limit is evident, except in the vertical plane
when there was no vertical noise. The effective detuning strengths are after 24h, in these cases,
reduced to as low as 42% of the octupole detuning one actually has in the machine. That the
relative effective detuning strength eventually becomes smaller than 0.5, is visualized by the
red curves in Fig. 5.4c that cross the dashed black line corresponding to a relative detuning
strength of s = 0.5. As seen by the evolution of the stability diagrams in the previous section,
the stability does also increase for certain values of Re

{
∆Qcoh

}
, the relative effective detuning

strengths correspond to a worst-case scenario.
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Figure 5.6: Evolution of the relative effective detuning strengths, corresponding to the distri-
bution evolutions in Figs. 5.4 and 5.5.

5.4.3 Parameter dependence

It is of both academic and operational interest to investigate how the impact of this mechanism
scales with the most important parameters, a, b, g and σk j . These parameters have been
varied to look for the optimal and worst configurations. The parameters were varied relative to
a0 = 5×10−5, b0 =−0.7a0, g0 = 0.01,σkx0 =σ0 = 5×10−4 andσk y0 = 0, as in the configuration
in Fig. 5.4.

In the limit g À a, which is relevant for machine operation, the diffusion coefficients in
Eq. (5.14) mostly depend on the parameter σk j a/g . This is confirmed by the scans of a/a0,
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g0/g andσkx /σ0, presented in Figs. 5.7a, 5.7b and 5.7c, respectively. There is a small difference
for the largest values of a/g , as expected. Note that the largest two values of σkx a/g are
included for completeness, but they are not realistic in the LHC as of now. The scans of a/a0

and g0/g were repeated while keeping σkx a and σkx /g constant, respectively. In these scans,
there were no clear dependences on a or g . Note that an increase of a corresponds to an
increase of the stable area for ∆Qcoh. Here, the focus is the relative change of this area. With a
larger a, there is a larger initial margin for a given mode to go unstable, but the reduction of
the margin is also faster, according to these results.

The ratio b/a has also been studied. This ratio is typically about −0.7 in the LHC, but it is
possible to operate with other ratios, as it mainly depends on the ratio of the transverse β-
functions at the locations of the octupoles [34]. Note that varying b/a will change the shape of
the stability diagram. The ratio b/a is typically negative, which generates Landau damping for
coherent modes of both positive and negative Re

{
∆Qcoh

}
[67]. The modes in the LHC have

in general a negative tune shift, Re
{
∆Qcoh

}< 0. Hence, it could be desired to keep {a,b} < 0.
However, this is not possible in the LHC. The scan of b/a is presented in Fig. 5.7d. The evolution
of the vertical stability is worst for b/a ∈ {−1,1}. In these configurations, the horizontal and
vertical isotune curves (curves of equal tunes) in 2D action space are equal. Therefore, the
positive derivative ∂Ψ/∂Jy , which is visible in Fig. 5.4b, will add up for certain Q in Eq. (2.46),
such that the stability limit on Im

{
∆Qcoh

}
becomes negative. Note that bx /ax ∝ εy /εx . Hence,

a bunch in the LHC with larger vertical than horizontal emittance can have b/a =−1. This
was approximately the case for several of the bunches in the experiment in Ch. 4. However,
vertical latencies of ∼10h are far above what was measured. The evolution of the horizontal
stability is not strongly dependent on b/a.

Next, the vertical noise was increased, and the scan is shown in Fig. 5.7e. The noise am-
plitudes σkx and σk y were varied such that max{σkx ,σk y } =σ0, and the relative difference
rel(σkx−σk y ) was scanned, which has been defined as

rel(α−β) = α−β
α+β , α,β≥ 0. (5.16)

Due to an otherwise perfect symmetry, the change of the relative effective horizontal detuning
strength for rel(σkx−σk y ) = d is equal to the relative effective vertical detuning strength for
rel(σkx−σk y ) =−d . The relative effective detuning strength in a plane is reduced the fastest
with noise in only that plane, and the least with noise in only the other plane, as was already
seen in Sec. 5.4.1.

At last, an incoherent noise of amplitude σI j has been introduced, to model in a simplified
manner the stochastic process generated by IBS. The incoherent noise amplitude corresponds
to a uniform diffusion coefficient D I =σ2

I /2τrev. Such a uniform diffusion will cause a distri-
bution to become more Gaussian, and will therefore counteract the destabilizing change in
the distribution, driven by the coherent noise. A scan with noise in the horizontal plane only
is shown in Fig. 5.7f. The vertical noise was kept at zero. The horizontal noise amplitudes
σkx and σI x were varied to scan rel(σkx−10σI x ) from −1 to 1, keeping σkx =σ0, except for
when the relative difference is −1, in which case σkx = 0 and σI x =σ0/2. The incoherent noise
is beneficial for long-term beam stability. However, after ∼4h, there was a reduction of the
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Figure 5.7: Scan of a, g , σkx , σk y , σI x and b/a, given by the legends. The relative effective
detuning strength is explained in Sec. 5.4.2. The relative difference in (e) and (f) is given
by Eq. (5.16). The configuration in Fig. 5.4 is the same as a/a0 = 1, g0/g = 1, σkx /σ0 = 1,
b/a =−0.7, rel(σkx−σk y ) = 1 and rel(σkx−10σI x ) = 1, respectively in order from (a) to (f).

58



5.5. Conclusion

stability for rel(σkx −10σI x ) ≤−0.67. It has been found that this happens because the beam
size grows towards the aperture at Jmax, such that the beam becomes Gaussian with its tails
collimated at a certain amplitude [67, 68]. With the strongest incoherent noise, the beam
size was doubled after 142min, and 83% of the bunch intensity was lost after 24h. For strong
incoherent noise, the non-uniform diffusion due to the coherent noise is actually beneficial
for long-term stability. The increase of the relative effective detuning strength beyond 1.5 is
not of interest.

The change of the relative effective detuning strength over the first hour, for all the parameter
scans, is presented in Fig. 5.8. The reduction is faster due to noise in the same plane, with
b/a =−1, and with no incoherent noise. To a certain extent, it does not matter how one
changes σkx a/g . Except at large values of this parameter, there is never a reduction of the
relative effective detuning strength faster than 10%/h. Hence, this effect cannot reduce the
stability substantially within a latency time of . 30min, which has been observed in the
LHC [60].
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Figure 5.8: The initial reduction of the relative effective detuning strength, from the scans
that are given in more detail in Fig. 5.7. The value corresponds to the change during the first
hour, after starting with a Gaussian transverse distribution. The vertical scale is linear on the
interval [−10−2,10−2], and logarithmic otherwise.

5.5 Conclusion

The collective motion of the particles in 6D phase space have in this study been considered
in detail. It has been found that due to the combined mechanism of linear detuning and
transverse feedback, the change of action after a kick depends on the tune of the individual
particle, relative to the average tune of the distribution. By considering the change of action
after an initial kick, due to a noise source, as a stochastic process, the Fokker-Planck equation
has been derived from a master equation. The resulting diffusion coefficient is 0 for particles
with tune equal to the average tune of the bunch, and grows quadratically with the tune from
there. While incoherent noise, such as IBS, causes the distribution to tend to a Gaussian, the
coherent noise causes the distribution to tend to a step function.
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The change in the distribution from a Gaussian towards a step, changes the stability diagram
as well. The change of the stability limit has been studied through the change of the relative
effective detuning, a worst-case measure. The relative effective detuning strength in the
horizontal plane decreased faster, and thus approached an instability faster, with:

• Larger absolute values of the detuning coefficients a and b (∆Qx = a Jx +b Jy ).
• Smaller horizontal feedback gain gx .
• Stronger coherent noise in the same plane σkx .
• Coherent noise in only the opposite plane, combined with b/a =−1.
• Larger ratio of the coherent noise amplitude in the same plane to that in the other plane,
σkx /σk y .

• Larger ratio of the coherent noise to the incoherent noise in the same plane, σkx /σI x .
The relative effective detuning strength was reduced by up to 58% in a realistic configuration
without IBS, over a time period of 24h. It was not found a reduction of the relative effective
detuning strength higher than 10%/h with LHC relevant parameters. Hence, this mechanism
does not explain the latencies measured in the LHC.
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6 Single-bunch evolution due to noise,
decoherence, and impedance

Disclaimer: This chapter was adapted from the following articles — with permissions
of the co-author and publishers:

[50] S. V. Furuseth and X. Buffat, “Loss of transverse Landau damping by noise and
wakefield driven diffusion”, Phys. Rev. Accel. Beams 23, p. 114401, Nov. 2020.
doi:10.1103/PhysRevAccelBeams.23.114401

[69] S. V. Furuseth and X. Buffat, “Noise and possible loss of Landau damping – Noise
Excited Wakefields”, in Proc. of ICFA mini workshop on Mitigation of Coher-
ent Beam Instabilities in particle accelerators, Zermatt, Switzerland, Sep. 2019,
pp. 262–269, Rep. CERN-2020-009. doi:10.23732/CYRCP-2020-009.

Both were published under CC-BY 4.0.
My contribution: All results presented here, except for: The BimBim calculations,
which return the details of the wake driven eigenmodes.

6.1 Introduction

In the experiment discussed in Sec. 4.3, Landau damping was lost after the bunches were
affected by a controllable external source of noise over an extended period of time. The
working hypothesis is that this loss of Landau damping was caused by a noise induced change
of the transverse bunch distribution, away from the commonly assumed Gaussian distribution.

In this chapter, a mechanism is introduced where the coherent wakefield driven modes are
excited by noise in the machine, whereupon they act back on the individual particles through
wakefields and are damped by decoherence. If the modes are stable, the energy they carry is
typically assumed to be infinitesimal. However, since the beam is excited by external noise
sources, the modes will be excited to finite amplitudes and carry a non-negligible energy.
Hence, it is necessary to go beyond a first-order perturbation theory, as was explained in
Sec. 3.6.
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Chapter 6. Single-bunch evolution due to noise, decoherence, and impedance

6.2 Noise excited wakefields

The mechanism introduced in this chapter can cause a loss of Landau damping by diffusion.
The mathematical explanation of noise excited wakefields consists of 4 steps:

1. The wakefields drive eigenmodes with complex coherent eigenfrequencies ωm ≡ωcoh,
found from the linearized Vlasov equation, assuming no tune spread and no noise. This
is discussed in Sec. 6.2.1. The mode number m is an iterative index over different modes.
The subscripts m are omitted for brevity, except for when it is the only subscript, as it
will be clear from context which mode is treated.

2. Due to the tune spread, the discrete modes mix with the continuous incoherent spec-
trum, and the complex eigenfrequencies are changed to Ωm ≡ΩLD, which are found
in Sec. 6.2.2. If Im{Ωm} > 0, the mode is already unstable. The interesting case is when
Im{Ωm} < 0. The detuning will be assumed to be due to Landau octupoles, as was
introduced in Sec. 2.3.2.

3. An external noise drives the initially stable eigenmodes to finite amplitudes that depend
on the noise amplitude and damping rates of the modes.

4. The noise excited modes drive wakefields that act on the incoherent particles. By
considering the wake force as a stochastic excitation, in the framework of the Liouville
equation, a diffusion equation will be derived in Sec. 6.2.4.

The diffusion will be found to be narrow in frequency space, and thus also in action space,
causing a local flattening of the equilibrium distribution. Other mechanisms can cause a
similar frequency dependent diffusion, but will not systematically be peaked at a critical
frequency: the frequency of a mode that requires stabilization by Landau damping. The
distribution evolution can correspond to the drilling of a borehole in the stability diagram, i.e.
a local reduction of the imaginary part of the curve. Hence, initially stable regions are changed
into unstable ones at the real frequencies of the coherent modes. In relevant and reasonable
limits, an analytical expression for the latency of an initially stable mode is derived in Sec. 6.2.5.
However, in a different and less relevant limit, the flattening does not cause a drilling. It is
in general better to solve the diffusion and corresponding stability evolution numerically, as
explained in Sec. 6.2.6. The stability of the evolving bunch is continuously evaluated by the
linearized Vlasov equation through the stability diagram in Eq. (2.46).

6.2.1 Wakefield eigenmodes –ωm

It is common to assess beam stability by neglecting noise and assuming weak wakefield driven
perturbations, in which case Eq. (3.32) becomes the linearized Vlasov equation. The dipolar
wake force is only dependent on z, not δ. It is common to model it as one effective kick
∆p = Pcoh(z, t ) per turn. One can solve the Vlasov equation with a normal mode analysis,
assuming that the distribution perturbation in either transverse plane can be written as a sum
of orthogonal modes [12]

Ψ1 =
∑
m
∆Ψm(φ, J ,φz , Iz , t )

=
∑
m

fm(φ, J , Iz )e−iφm (t ,φz ,z),
(6.1)
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with phases

φm(t ,φz , z) =φm0 + (ωm+lmωs)t − lmφz −
zω′

ωsβz
. (6.2)

Here,ωm =ω0 +∆ωm is the coherent frequency of mode m 6= 0,∆ωm is the complex frequency
shift generated by the wakefields, lm is the angular mode number, ω0 is the bare betatron
frequency of the synchronous particle, and the last term is the headtail phase factor. Here, it
has been assumed that a mode consists of a single angular spatial frequency.

The individual particles are oscillating in longitudinal phase space, as given by Eq. (2.19). The
phase of the mode at the location (φz , Iz ) of an individual particle is

φ∆m(t ) = (φm0−lmφz0)+ωm t − z(t )ω′

ωsβz
, (6.3)

where the synchrotron frequency has been canceled. This phase evolves with time equally to
the transverse phase of the single particle in Eq. (2.27), illustrating that the coherent mode in
fact consists of the motion of synchronized individual particles.

The average transverse complex offset of the distribution in the y plane, following the longitu-
dinal motion of the single particles, can be written in terms of normalized, fixed eigenfunctions
mm(φz , Iz ) with time dependent amplitudes χm(t ) as

χm(t )mm(φz , Iz ) =
∞∫

0

dJ

2π∫
0

dφ (y+i py )∆Ψm(φz+ωs t ). (6.4)

The normalization of mm is done over the equilibrium distribution [70]

〈
mmmm

〉
Ψ =

∞∫
0

dIz

2π∫
0

dφzΨ0(φz , Iz )
∣∣mm(φz , Iz )

∣∣2 = 1, (6.5)

where the horizontal line on the LHS implies a complex conjugation.

The evolution of these modes with time is governed by the following equation of motion

χ̈mmm +ω2
mχmmm = 0. (6.6)

The eigenmodes mm and eigenfrequencies ωm can be found with numerical Vlasov solvers,
such as DELPHI [12], or circulant matrix solvers, such as BimBim [7].

The wake impulse of mode m can be found by moving the impedance dependent terms to the
RHS as

χ̈mmm +ω2
0χmmm = (ω2

0 −ω2
m)χmmm

=ω0Pm(φz , Iz , t ). (6.7)

To drive modes of shape mm(φz , Iz ), with a discrete frequency shift ∆ωm , an effective wake
kick Pm can be found that is proportional to the mode mm . It can be evaluated as the average
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kick on particles starting at (φz , Iz ), over the synchrotron motion

Pm(φz , Iz , t ) =
〈

Pcoh[z(t ′), t ′]e iφ∆m (t ′)
〉

t ′
e−iφ∆m (t ). (6.8)

6.2.2 Damped wakefield eigenmodes –Ωm

Whether a mode is stabilized by Landau damping or not is typically assessed with the mapping
given by Eq. (2.45), which is valid only in the weak headtail approximation. The stability
diagram is calculated as ∆ωm →∆ωSD in the limit Im{∆Ωm} → 0+, given by Eq. (2.46). If one
desires the rise time τm of a mode m that is outside/above the stability diagram, this can be
found as τm = 1/Im{Ωm} > 0 [71].

Obtaining the damping time of a mode that is inside/below the stability diagram, as is of inter-
est in this chapter, is a greater challenge. The mapping in Eq. (2.45) has a hole in its domain
inside the stability diagram. N. G. Van Kampen has addressed this issue in plasma physics [72].
Inside the stability diagram, there will exist a continuous spectrum in addition to the discrete
modes. However, if the continuous motion is damped faster than the discrete modes, an
arbitrary initial distribution may after a short transient time behave like a superposition of
damped discrete modes. This requires that the continuous spectrum is damped faster than
the discrete modes [73]. In the following, it will be assumed that the beam motion can be
described sufficiently accurately with a single damped mode. This hypothesis will be tested
with particle tracking simulations.

An algorithm is needed to extend the mapping in Eq. (2.45) inside the stability diagram.
The challenge is illustrated in Fig. 6.1. The goal is to obtain an expression relating
Mcoh =∆ωm −∆ωSD and MLD =∆Ωm −∆ΩR , the margins of the free and damped mode fre-
quencies, for a mode that is barely damped. The free margin Mcoh will be chosen to be purely
imaginary.

Re{Δω}

Im{Δω}ΔΔΔΔΔΔΔΔΔΔΔΔ

ΔΔωcohΔΔ

ΔΔΩLDΔΔ

ΔΔωSDΔΔ

ΔMcohΔ

ΔΔΩRΔΔ

ΔMLDΔ

Figure 6.1: Illustration of the problem of finding the damped frequency ∆ΩLD =∆Ωm corre-
sponding to the undamped frequency ∆ωcoh =∆ωm that is inside the stability limit in blue,
commonly referred to as the stability diagram. The marginally stable point ∆ΩR corresponds
to the point on the stability diagram ∆ωSD, given by Eq. (2.46).
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For the solution to be physical, the damped frequency shift ∆Ωm should change continuously
through the artificial discontinuity of the mapping at zero growth rate. If there is no frequency
spread, there is no hole in the mapping, and

−1

∆ωm
= −1

∆Ωm
=⇒ MLD = Mcoh. (6.9)

When including a frequency spread, one can do a Taylor expansion of Eq. (2.45), assuming
|Mcoh|¿ |∆ωSD| and |MLD|¿ |∆ΩR |. The LHS becomes

−1

∆ωm
= −1

∆ωSD +Mcoh
= −1

∆ωSD

(
1− Mcoh

∆ωSD

)
, (6.10)

where the higher order terms of Mcoh/∆ωSD have been omitted. Doing the same for the
integrand on the RHS gives

1

∆ΩR (Jx , Jy )+MLD
= 1

∆ΩR (Jx , Jy )
− MLD

∆ΩR (Jx , Jy )2 , (6.11)

where ∆ΩR (Jx , Jy ) =ΩR −ω(Jx , Jy ). After performing the integral, the first term becomes
−1/∆ωSD, the first term in Eq. (6.10). Next, assume that the mean squared will be of the
same order as the squared mean, 〈1/∆Ω2

R〉 ∼〈1/∆ΩR〉2. Thus, the second terms on the RHS of
Eqs. (6.10) and (6.11) give

Mcoh

∆ω2
SD

= 1

α

MLD

∆ω2
SD

=⇒ MLD =αMcoh, (6.12)

where α is a correction factor, which is 1 without a frequency spread as in Eq. (6.9). Based on
this derivation, one cannot determine what α is with detuning, but one can assume that it is
close to 1.
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Figure 6.2: Stability diagram (black dashed line) and α given by Eq. (6.13), in comparison to
the estimate α= 1. The configuration corresponds to linear detuning coefficients a = 1×10−4

and b =−0.7a.
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Since the mapping in Eq. (2.45) works for positive growth rates, one can calculate α in this
domain as

α≈ ∂MLD

∂Mcoh
= lim
∆Ωm→∆ΩR

∆Ωm −∆ΩR

∆ωm −∆ωSD
, (6.13)

and assume that α varies negligibly for small negative growth rates. In other words, one
assumes that MLD is a smooth function of Mcoh, in addition to being continuous. The complex
α, for a Gaussian distribution, is displayed in Fig. 6.2. For large real frequency shifts, one
finds α→ 1, as expected. Equation (6.12) can be considered a correction to the zeroth-order
expression in Eq. (6.9). This expression works well for small Im{Mcoh} > 0. Here, it is postulated
that it also works for small Im{Mcoh} < 0, inside the stability diagram. This is tested numerically
in Sec. 6.3.1.

6.2.3 Noise excited damped wakefield eigenmodes

The particle beam in an accelerator is continuously excited by external noise sources. The
noise has been neglected in the derivation so far. By adding a noise term to the RHS of
Eq. (6.6), using the damped frequencyΩm , multiplying by mm , and taking the average over
the longitudinal distribution, one finds

χ̈m +Ω2
mχm =Ωm

∑
i

〈
mmΞi

〉
Ψ ξi , (6.14)

where the noise has been decomposed as in Eq. (3.12). The excitation per noise component is
proportional to the modes’ noise moments ηmi ∈R, defined as

ηmi =
∣∣〈mmΞi

〉
Ψ

∣∣. (6.15)

The spectrum of the mode amplitudes can be found in the standard way by Fourier transform-
ing Eq. (6.14)

F (χm) = Ωm
∑

i
〈

mmΞi
〉
ΨF (ξi )

Re{Ω2
m}−ω2 + i Im{Ω2

m}
. (6.16)

This derivation has modeled the ensemble of oscillators making up the mode as a single
damped stochastic oscillator with frequency found in Sec. 6.2.2. The approximation is valuable,
as it allows the analytical latency formula below in Sec. 6.2.5. On the other hand, due to the
frequency spread of the individual harmonic oscillators, the frequencies could also be mapped
with Eq. (2.45). That corresponds to a change of ω→ωSD andΩm →ωm in Eq. (6.16). In the
already assumed limit of small tune shifts, so thatΩ2

m −ω2
0 = 2Ωm∆Ωm , this changes Eq. (6.16)

for a dipolar noise to Eq. (A.14).

The noise in the LHC is of sufficiently low frequency to be modeled as dipolar noise. Hence,
only the dipolar noise moment of the modes is of interest, ηm0 = |〈mm〉|. Dipolar moments
can be calculated analytically, e.g. for an airbag bunch using Eq. (6.186) in [13]. However,
calculating the dipolar moments for a Gaussian bunch that is perturbed by the transverse
feedback system and wakefields will here be done numerically with BimBim. In an LHC like
configuration, but without transverse feedback, the dipole moments of the prevalent modes
are presented as a function of the linear chromaticity in Fig. 6.3. At nonzero chromaticity, the
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Figure 6.3: Largest dipole moments for modes at various sidebands, with various chromatici-
ties and zero transverse feedback. The values have been calculated numerically with BimBim,
for the experiment in the LHC described in Sec. 4.3.

dipolar moment of the angular headtail modes (lm 6= 0) is nonzero, and can thus be excited
by a dipolar noise. These are the most problematic modes in the LHC as of 2018, since the
transverse feedback can stabilize the dipolar modes efficiently. In the following, the noise will
be assumed to be white and dipolar, as illustrated in Fig. 3.1a, acceptable over the frequency
span of a single bunch in a machine without CCs. The PSD of this noise on a particle can be
modeled as in Eq. (3.11), equal to σ2

k /τrev for a frequency below frev/2.

6.2.4 Wakefield driven diffusion

The noise and wakefields do not only affect the coherent modes, but also the individual
particles. Describing the individual particles by their amplitudes y and frequencies ω(Jx , Jy ),
their motion in one transverse plane is governed by

ÿ +ω2 y =ωξ(t )+ωPwake

=ωξ(t )+
∑
m

ω

ω0
(ω2

0 −ω2
m)χmmm .

(6.17)

The first term on the RHS models the direct impact of the noise. This term was studied in detail
in Ch. 5 and found to not be detrimental for stability in the LHC. The second term is the main
focus in this chapter, modeling the indirect impact of the noise through the wakefields. Here,
the first term will be neglected, and it will be shown that this is an acceptable approximation,
since the second term will dominate the diffusion.

To better understand the single-particle dynamics driven by the stochastic force in Eq. (6.17),
it is modeled by a perturbed Hamiltonian as in Eq. (3.31). Focusing only on the complex
effective wake force, the perturbation is given by

εH1 =−Re{(y + i py )Pwake}, (6.18)
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Chapter 6. Single-bunch evolution due to noise, decoherence, and impedance

which returns the normal −yPwake when Pwake ∈R [12, 13, 22, 51]. The change of the quickly
varying phases due to the perturbation is negligible, while the change of the action is by
Hamilton’s equations only caused by the perturbation as

J̇ =−ε∂H1

∂φ
=−

√
2JRe{i e−iφPwake}. (6.19)

This requires that the unperturbed Hamiltonian H0 only depends on the actions, not the
transverse phases of the particles. Note that φ is the transverse phase of the particle, given in
Eq. (2.27), and that Pwake ∝ exp

(−iφ∆m
)
, with phase given by Eq. (6.3). Hence, the headtail

phase shifts cancel.

If the stochastic forces are sufficiently weak to accurately be modeled as a perturbation, they
drive a diffusion of the individual particles that can be modeled by [74, 75]

∂Ψeq

∂t
= ∂

∂J

[
JDwake

∂Ψeq

∂J

]
, (6.20)

Dwake = lim
ttot→∞

1

2J ttot

t0+ttot∫
t0

dt

t0+ttot∫
t0

ds
〈

J̇ (t ) J̇ (s)
〉
φ, (6.21)

which is derived in App. B.2.

In the interesting regime, the modes are uncoupled. Therefore, the force from the different
modes have zero expected correlation, and the diffusion coefficient can be given as

Dwake =
1

2

∑
m

SPm [ω(Jx , Jy ), Iz ], (6.22)

where SPm (ω) is the PSD of the wake force due to mode m on a particle, calculated by com-
bining Eqs. (6.16) and (6.17). Here, it was used that SPm (ω) is the Fourier transform of the
autocorrelation function of the wake force acting on a particle, after the cancellation of the
headtail phase shift.
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Figure 6.4: Shape of diffusion coefficient in frequency space due to a single Landau stabilized
mode, given by Eq. (6.23c). The half width at half maximum is equal to |Im{Ωm}|, the damping
rate of the mode.
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In general, the diffusion coefficient in Eq. (6.22) depends on the longitudinal action Iz , in
addition to the transverse actions, since SPm ∝ 〈

mmmm
〉
φz

. Since only the transverse diffusion
is of concern, and the longitudinal distribution is expected to not evolve, the average over Iz

can be taken, for which the normalization of mm in Eq. (6.5) is of use. The diffusion coefficient,
only dependent on the transverse single-particle frequency ω(Jx , Jy ), can be written as

Dwake(ω) =
∑
m

Dm
maxB(ω)C , (6.23a)

Dm
max =

σ2
kη

2
m0|∆ωm |2

2τrevIm{Ωm}2 , (6.23b)

B(ω) = Im{Ω2
m}2(

Re{Ω2
m}−ω2

)2 + Im{Ω2
m}2

, (6.23c)

C =
∣∣∣∣1+ ∆ωm

2ω0

∣∣∣∣2 |Ωm |2
Re{Ωm}2 , (6.23d)

where the noise has been assumed to be dipolar. In the relevant limit of small wake driven
frequency shifts ∆ωm ,∆Ωm ¿ω0, one can ignore corrections proportional to the frequency
shifts of second or higher power, and get

B(ω) = Im{Ωm}2

(Re{Ωm}−ω)2 + Im{Ωm}2
,

C = 1.

The B function, illustrated in Fig. 6.4, expresses the dependence of the diffusion coefficient on
the single-particle frequency ω. It has a maximum value of 1 and half width at half maximum
of ∆ω= |Im{Ωm}|. The C function contains the higher-order terms, and will typically be close
to 1. To express the diffusion coefficient as a function of the tune, one writes ω=ωrevQ. Every
factor ωrev will cancel.

Going from diffusion in 1D to 2D is elementary. The noise is already assumed to be centered,
〈ξi (tc )〉 = 0. By further assuming no correlation between the horizontal and vertical noise, and
no horizontal wakefields from a vertical offset, there is no cross-plane diffusion. Hence, the
wakefield driven diffusion equation in 2D is

∂Ψ

∂t
= ∂

∂Jx

[
Jx Dxx

∂Ψ

∂Jx

]
+ ∂

∂Jy

[
Jy D y y

∂Ψ

∂Jy

]
, (6.24)

D j j (Jx , Jy ) = Dwake j [ωrevQ j (Jx , Jy )],

where Dwake j includes the noise and details of the modes in the transverse plane j .

6.2.5 Instability latency

The diffusion derived in Sec. 6.2.4 will locally flatten the distribution around the actions
resonant with the frequency of the least stable mode. Since the derivative of the distribution
appears in the integral in Eq. (2.46), a change of the stability diagram is expected. In general,
the diffusion modeled by Eq. (6.24) requires a numerical technique to be solved accurately,

69



Chapter 6. Single-bunch evolution due to noise, decoherence, and impedance

as will be done in Sec. 6.2.6. Nevertheless, the latency can be calculated analytically under
certain assumptions, as will be done here. For ease of notation, the complex frequencies will,
in this subsection only, be written with an alternative notation as

ω= Re{ω}+ i Im{ω} = ω̃+ iγ,

Ω= Re{Ω}+ i Im{Ω} = Ω̃+ iΓ,

using the subscripts already introduced in Fig. 6.1. Furthermore, only horizontal noise, and
thus diffusion, will be considered, and it is assumed that only one dominant horizontal mode
drives the diffusion.

In 1D, the stability diagram can be calculated as [30]

lim
ε→0+

∞∫
−∞

f (x)dx

g (x)+ iε
= P

∞∫
−∞

f (x)dx

g (x)
−iπ

∞∫
−∞

f (x)δD [g (x)]dx

= P

∞∫
−∞

f (x)dx

g (x)
−iπ

∑
xr s.t.

g (xr )=0

f (xr )∣∣g ′(xr )
∣∣ ,

(6.25)

where f (x), g (x) ∈R, P denotes the principal value, g ′(x) = ∂x g (x), and the sum is over all zeros
xr of the function g (x).

The penultimate goal of this section is to calculate the imaginary part of the stability diagram at
the real frequency ω̃m of the least stable mode, γSD(ω̃m) = γSDr , where the subscript r denotes
the resonance condition. By considering the imaginary part of Eq. (2.46), one finds

γSDr

|∆ωSDr |2
=−π

∞∞Ï
0 0

dJ 2 JxΨ
′δD [Ω̃Rr −ω(Jx , Jy )], (6.26)

whereΨ′ = ∂Ψ/∂Jx |(Jx ,Jy ). Consider linear detuning, as given by Eq. (2.29). Assuming that ã
is nonzero, there will for each vertical action be only one resonating horizontal action Jxr ,
defined by

∆Ω̃Rr = ã Jxr (Jy )+ b̃ Jy . (6.27)

Furthermore, in the limit of large relative real tune shifts |∆ω̃SDr |À
∣∣γSDr

∣∣, which is true for
the least stable modes in the LHC, and assuming that the real part changes negligibly, sinceΨ′

only will change close to the resonance, the imaginary part can be approximated by

γSDr

|∆ω̃SDr |2
=− π

|ã|

∞∞Ï
0 0

dJ 2 JxΨ
′δD [Jx − Jxr (Jy )]. (6.28)

The imaginary part of the stability diagram, at the critical frequency, is under these assump-
tions proportional to the derivative of the distribution at the resonant actions. Thus, the local
flattening of the distribution will lead to a reduction of γSDr , which can be illustrated as the
drilling of a borehole in the stability diagram at this critical frequency. See a visual illustration
of this process in Fig. 6.8. If this process carries on for long enough uninterrupted, it can lead
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6.2. Noise excited wakefields

to a loss of Landau damping as γSDr → γ+m . Note that in the limit of small relative real tune
shifts, |∆ω̃SDr |¿

∣∣γSDr
∣∣, γSDr would be proportional to the inverse of the RHS of Eq. (6.28),

and a local flattening would initially lead to an increase of the imaginary part of the stability
diagram. This special case will be investigated in more detail numerically in Sec. 6.4.1.

To evaluate the evolution of γSDr , one must evaluate the evolution ofΨ′. Taking the action
derivative of the diffusion equation in Eq. (6.24) gives

∂Ψ′

∂t
= ∂2

∂J 2
x

[
Jx DxxΨ

′] . (6.29)

It is only the evolution ofΨ′ at the center of the diffusion coefficient in Fig. 6.4 that is of interest.
However, this evolution also depends on the diffusion close to it. To evaluate the macro-
diffusion, the finite difference of the RHS of Eq. (6.29) has been taken at {Jxr−WJ , Jxr , Jxr+WJ },
where WJ = |Γm/ã| is the half width at half maximum in the horizontal action coordinate. By
assuming a Gaussian initial distribution in transverse phase space, equal to an exponential
distribution in actionΨ0(Jx , Jy ) = exp

(−Jx − Jy
)
, Eq. (6.29) becomes

1

Ψ′
r

∂Ψ′
r

∂t
=−Dmax

W 2
J

[
Jxr +W 2

J − Jxr W 2
J +O

(
W 3

J

)]
, (6.30)

where Ψ′
r =Ψ′(Jxr (Jy ), Jy ). For the relevant cases, it has already been stated that

|∆ω̃SDr |À
∣∣γSDr

∣∣, and that the mode is close to the stability threshold, γm . γSDr . Further-
more, it is illustrated in Fig. 6.2 that max(γSDr ) ≈ ã, when b̃ is small wrt to ã. It follows that
WJ ¿ 1. Hence, the first term on the RHS of Eq. (6.30) will dominate, except when Jxr ≈ 0. If
b̃ 6= 0, then Jxr (Jy ) is not constant, and one can calculate a nonzero effective action, as will be
done in the following. Therefore, all but the first term on the RHS will be neglected.

If the RHS of Eq. (6.30) would have been constant, the distribution derivative would have
evolved as

Ψ′
r (t ) =Ψ′

r (0)exp

(
− Jxr Dmax

W 2
J

t

)
,

where the flattening would gradually slow down. This is not correct. AsΨ′
r is flattened, γSDr

is reduced while γm stays put, such that Γm approaches 0 and Dmax/W 2
J increases. This

evolution has to be solved self-consistently.

The ultimate goal of this section is to get the latency, i.e. the time it takes for γSDr → γ+m
and Γm → 0−. Combining Eqs. (6.28) and (6.30), returns an expression for the relative time
derivative of γSDr

1

γSDr

∂γSDr

∂t
=− Jx,effDmax

W 2
J

, (6.31a)

Jx,eff =

∞∞Î
0 0

dJ 2 J 2
xΨ

′δD [Jx − Jxr (Jy )]

∞∞Î
0 0

dJ 2 JxΨ′δD [Jx − Jxr (Jy )]
, (6.31b)
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using that onlyΨ′ depends on time. Assuming that ãb̃ ≤ 0 and ã 6= 0, as in the LHC, one gets

Jx,eff = min(Jxr )+ b

b −a
+

(
b

b−a

)2

min(Jxr )+ b
b−a

≥ 2b

b −a
, (6.32)

expressed in a and b, as the factors ωrev have canceled out. The value min(Jxr ) is the min-
imum horizontal action of a resonant particle, being equal to max{0,∆Ω̃Rr /ã}. The most
critical modes in the LHC have ∆Ω̃Rr < 0. For a positive octupole current, ã > 0, one then gets
min(Jxr ) = 0. For a negative octupole current, on the other hand, one gets min(Jxr ) > 0 and
the effective action Jx,eff will be larger.

To get the evolution of Γm , one combines Eqs. (6.31a) and (6.12), assuming that α will stay
constant. This assumption is a simplification of the physics, necessary to reach an analytical
expression for the latency, and it is the main difference in this derivation from what a numerical
solver can model. Since γm is constant, it follows that ∂tΓm =−Re{α0}∂tγSDr . One gets

1

Re{α0}γSDr

∂Γm

∂t
= Jx,effDmax

W 2
J

= Jx,effDmax0Γ
2
m0ã2

Γ4
m

, (6.33)

where the subscript 0 denotes that the values should be taken at time t = 0, when the diffusion
process starts. Note that Γm < 0 when stable, such that a positive time derivative takes it
towards 0 and a possible loss of Landau damping. The latency L can finally be calculated as

L = 1

Jx,effDmax0Γ
2
m0ã2

0∫
Γm0

Γ4
mdΓm

Re{α0}γm −Γm
, (6.34)

where the fraction outside the integral is a constant only dependent on the initial condition.

The latency integral in Eq. (6.34) can be approximated as the integrand is always positive and
its denominator goes from Re{α0}γSDr 0 to Re{α0}γm , which should be a small relative change
according to the assumptions. A lower estimate can be calculated by assuming the initial
value, and a maximum value can be calculated by assuming γm = 0

(γSDr 0−γm)W 2
J0

5γSDr 0 Jx,effDmax0
≡ LL ≤ L ≤ LL

5

4
. (6.35)

Inserting the physical quantities gives

LL

τrev
= γSDr 0−γm

γSDr 0

(γSDr 0−γm)4

2.5ã2|∆ωm |2
Re{α0}4

Jx,effσ
2
kη

2
m0

= (Im{∆QSDr 0−∆Qcoh})5

2.5Im{∆QSDr 0}a2|∆Qcoh|2
Re{α0}4

Jx,effσ
2
kη

2
m0

.

(6.36)

As τrev is the revolution period in the machine, the RHS of Eq. (6.36) gives the lower estimate
of the latency in number of turns. Remember that ∆QSDr 0 is the point on the stability diagram
at the same real tune as the coherent mode, Re{∆QSDr 0} = Re{∆Qcoh}. Furthermore, note that
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α0 to zeroth order can be approximated by α0 = 1, as illustrated in Fig. 6.2. This expression
can serve as a guide in designing future high-energy hadron colliders to avoid this diffusion
driven instability mechanism.

The latency is, according to this analytical calculation, proportional to W 2
J0/Jx,effDmax0. In

words, the latency is shorter for a fast diffusion that is narrow in action space. Such a diffusion
will efficiently reduce Ψ′ at the resonant actions without increasing the overall beam size.
The latency is also proportional to (γSDr 0−γm)/γSDr 0. This is a measure on how much the
stability diagram must be lowered, for the mode to reach the stability threshold. At first glance,
it may look like the latency is shorter for a larger detuning coefficient a, which would be
counterintuitive, but note that a larger a also leads to a more negative Γm , which in total leads
to a longer latency.

6.2.6 Numerical method

The diffusion modeled by Eq. (6.24) must be solved numerically to be solved accurately.
Numerical estimates are also needed to lift the assumptions, such as the one of large relative
real tune shifts, taken in Sec. 6.2.5. The results that will be presented in the following have
been produced with a PDE solver named PyRADISE, which is described in detail in App. D.
The 2D transverse action space has been discretized into a 700×700 grid, going from 0 to
Jmax = 20, which is equidistant in

p
J . Thus, the minimal grid spacing is min(∆J ) = 4×10−5,

and the grid spacing increases for larger actions where the distribution is less dense.

It has been assumed that a single mode is dominant, even though this is not required by the
code. The diffusion coefficient has been recalculated at each time step during the diffusion
process, whereupon the diffusion has been solved with an implicit backward differentiation
formula for the following time step. Using an implicit scheme is necessary, as the maximum
value of the diffusion coefficient will grow as the instability is approached, eventually rendering
an explicit solver numerically unstable. Calculating the diffusion coefficient requires the
calculation of the tune QLD =ΩLD/ωrev of the damped mode. This is done using the algorithm
in Sec. 6.2.2 and a numerical trapezoidal integrator implemented in PySSD [35], which has been
imported in PyRADISE. If Im{QLD} eventually becomes positive, the bunch will be considered
to have become unstable.

6.3 Numerical verification

In this section, various aspects of the new theory derived in Sec. 6.2 will be tested with multi-
particle simulations run with the tracking code COMBI (Coherent Multi-Bunch Interactions)
[7, 76, 77]. The source of detuning is always assumed to be due to Landau octupoles, and
only the detuning in the plane of the noise and coherent mode is of importance. A detuning
symmetry is assumed for simplicity in all configurations, i.e. ax = ay = a and bx = by = b.
Hence, the subscripts denoting the plane will in general not be included in the following.
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Chapter 6. Single-bunch evolution due to noise, decoherence, and impedance

6.3.1 Dynamics inside the stability diagram

The response of the beam to an external noise has been modeled as a single under-damped
harmonic oscillator, with a complex frequency that is found by Eqs. (6.12) and (6.13). To verify
this, simulations have been run with 106 macroparticles. The simulations were run with an
anti-damper inducing a complex tune shift ∆Qcoh =−1.47×10−4 +1.25×10−5 i . This mode is
stabilized with a = athresh = 5.0×10−5 and b =−0.7a. The real and imaginary tune shifts, in
the simulations and according to Eqs. (6.12) and (6.13), are presented in Fig. 6.5. Each point is
the average of 10 simulations, from which the STD has been used as an error bar. The Taylor
algorithm works equally well for modes outside and just inside the stability diagram. For this
complex tune shift, the approximation α= 1 has a minimal impact close to athresh, compared
to finding α by Eq. (6.13).

The simulations presented here were initialized with nonzero initial horizontal amplitudes,
to get a measurable evolution from which to calculate the negative imaginary frequency.
With a nonzero initial offset, some bunches that were supposed to be barely stabilized by
Landau damping, eventually became unstable. This was caused by a similar mechanism to
the one introduced in this chapter, except that the noise over multiple turns was combined
into a single kick. Furthermore, according to the law of large numbers, the average of Np

numbers drawn from a centered Gaussian distribution of spread σx , will itself be drawn from
a Gaussian distribution with zero mean and spread σx /

√
Np . Therefore, the imaginary part

of the frequency has been calculated based on the initial damping until the COM reached
4×10−3σx , which occurs earlier for a larger a and smaller initial offset, causing a larger
error bar at these points. The real part of the frequency has been calculated based on the
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Figure 6.5: Tune shift of a coherent mode outside and inside the stability diagram. The
theoretical curves have been calculated with Eq. (6.12), using both α= 1 and α given by
Eq. (6.13). The error margin (solid lines) is the STD of 10 simulations, for each value of a
separately.
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turn-by-turn position, using an interpolated Fast Fourier Transform implemented in the
code Harpy [78]. The real part did not change systematically with time for each calculation
separately.

6.3.2 Wakefield driven diffusion

In Sec. 6.2, the impact of the wakefields was modeled as a diffusion, with diffusion coefficient
given by Eq. (6.23). Here, this expression will be compared to a numerical diffusion coefficient

Dnum(J0) =
〈
∆J 2

〉
φ

2T J0
, (6.37)

where J0 is the initial action of a particle and ∆J is the change of action after T turns. Without
loss of generality, the diffusion coefficient is in this section given in units of action variance
per action per turn, instead of per second.

The test configuration includes a dipolar mode with complex coherent tune shift
∆Qcoh =−1.47×10−3 +1.25×10−4 i , detuning given by athresh = 5×10−4, a = 1.5athresh,
b =−0.7a, Q ′ = 0, and a noise of σk = 10−4. 20 simulations have been run with Np = 107 par-
ticles over T = 104 turns. This many particles were needed to make the numerical noise
negligible, and this few turns were necessary to avoid a significant change of the distribution
and thereby the stability. The individual and average numerical diffusion coefficients are
presented in Fig. 6.6a, in comparison to the theory given by Eq. (6.23). The numerical diffusion
coefficients in the individual simulations have not reached the expectancy value, but the
average has. The apparent small difference in the real tune shift of the coherent mode may be
attributed to the Taylor technique used to map ∆Qcoh to ∆QLD =−1.06×10−3 −1.987×10−4i .
The width of the average numerical diffusion coefficient is slightly larger than in the new
theory, which may cause an underestimation of the latency, analytically found to be propor-
tional to the width squared in Eq. (6.35). Note that the peak wake diffusion of ∼3×10−7/turn is
significantly larger than the direct diffusion of 5×10−9/turn, as stated in Sec. 6.2.4. The direct
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Figure 6.6: Numerical diffusion coefficient in 20 simulations and comparison to theory given
by Eq. (6.23). (a) with external noise of amplitude σk = 10−4. (b) without external noise.
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diffusion would have been reduced even further in the presence of a transverse feedback, as
was described in Ch. 5.

In the simulations presented in this section, an anti-damper have been used to generate the
tune shift ∆Qcoh, so that it could be controlled perfectly. The main challenge in calculating
Dnum is that a bunch consisting of Np particles normally distributed with zero mean and
spread σx , will not actually have zero mean, explained by the law of large numbers. Therefore,
a large number of particles is needed for the numerical noise to be negligible compared to
the small controlled external noise. With 107 particles, the numerical diffusion coefficient
without external noise is presented in Fig. 6.6b. The maximum of this average is 6% of the
maximum with external noise. At least this many particles is therefore needed in simulations
of this configuration.

6.3.3 Diffusion or resonant motion?

It was assumed in Sec. 6.2.4 that the impact of the noise driven wakefields was sufficiently
stochastic to be modeled as a diffusion mechanism. Whether the events in the future and
the past are sufficiently independent was considered by a phase mixing condition in [75].
The autocorrelation function of the under-damped stochastic harmonic oscillator (USHO) is
an exponential exp

(
Im{Ωm}

∣∣t − t ′
∣∣), which satisfies the phase mixing condition. The process

will in this case converge to a diffusion process in the limit of small perturbations εH1 → 0
and long times t →∞. Thus, a minimal requirement is a lower limit on the time of the
process, i.e. the latency, which should be much longer than the correlation time of the USHO,
L À τm = 1/|Im{Ωm}|. For typical modes in the LHC, this requirement implies that the latency
should be L À 10s to be well modeled as a diffusion.

Now, consider in more detail the process at hand. To be modeled as a diffusion, the change
of the distribution during a correlation time of the stochastic excitation must be limited.
Therefore, the integrated change of a particle’s action, κwake, due to the wake force within one
correlation time must be small compared to the width of the diffusion coefficient in action
space. The PSD of the noise driven wakefields was in Eq. (6.23) found to have half width at
half maximum of |Im{Ωm}|. Since the considered detuning is caused by octupoles, the width
in action space is given by WJ = |Im{Ωm}/ã|. In the relevant limit of a small ∆ωm and a single
dominating mode, one can write Pwake = Pm =−2∆ωmχmmm . The mean square amplitude
of an USHO can be given as the product of the noise PSD and τm/4. Thus, the condition for
diffusion can be written as

κwake ≈
ηm0σk |∆ωm |
|Im{Ωm}|3/2

¿
∣∣∣∣ Im{Ωm}

ã

∣∣∣∣. (6.38)

Due to the definition ofσk ∝p
τrev, there is no direct dependence on the revolution frequency.

In the limit Im{Ωm} → 0, the wake force becomes a deterministic harmonic excitation of a
single frequency. The particles will oscillate around the harmonic frequency Re{Ωm}, causing
an oscillation of the distribution and emittance, discussed in more detail in App. E. The
maximum half width in action of particles oscillating around the harmonic frequency is Wh ,
estimated by Eq. (E.14). The period of this oscillation is estimated to be somewhat larger than
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Figure 6.7: Evolution of emittance in (a) for different values of RD given by Eq. (6.39), and of
the distribution in (b) for RD = 10. The solid lines correspond to multi-particle simulations
in COMBI, while the dotted lines have been calculated with PyRADISE. RD was changed by
changing the external noise amplitude σk and the number of turns T , while keeping the
product Tσ2

k constant.

the minimal τhmin, given by Eq. (E.12). This deterministic evolution will be negligible when
Wh ¿WD and τhmin À τm . Both these requirements and the requirement in Eq. (6.38) can be
summarized by a condition on a single ratio of relevant parameters

RD = |Im{∆Ωm}|2.5

a frevσkηm0|∆ωm | À 1. (6.39)

If this condition is met, then the diffusion will dominate over the resonant motion.

The condition on RD has been estimated by simple calculations. Simulations have been run
to verify this condition, and to find how large RD needs to be, before the process is acceptably
estimated by a diffusion. The emittance evolution in 5 different simulations is presented
in Fig. 6.7a and the distribution evolution for the case of RD = 10 is presented in Fig. 6.7b.
It was assumed in Sec. 6.2 that the least stable mode could be modeled as an USHO. To
avoid the numerical noise challenges described in Sec. 6.3.2, such a stochastic oscillator has
been implemented in COMBI. There is a great agreement between the simulations and the
PDE solver PyRADISE for RD = 10. For small values of RD , the emittance fluctuates as in App. E,
and is clearly dominated by the resonance. It seems that the evolution is fairly well modeled
as a diffusion starting already at RD = 1. In all the following results, it has been checked that
RD À 1 at the initial condition.

The message of this section is that the effect of the noise driven wakefields is a diffusion only
if the noise is small enough. In Sec. 6.3.2, it was found that a large noise was needed to be
stronger than the numerical noise. To model this mechanism self-consistently with multi-
particle simulations, both of these requirements must be met. One should use a minimum of
107 macroparticles and O

(
106

)
turns. This is why the analytical diffusion model presented in

this chapter is invaluable in evaluating this mechanism.
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Figure 6.8: Change of distribution in (a) due to diffusion driven by horizontal wakefields,
and corresponding evolution of the horizontal and vertical stability diagrams in (b) and (c),
respectively. The dashed line in (a) marks the actions where Qx (Jx , Jy ) =QLDx . The cross at
∆Qcohx =−1.47×10−4 +1.25×10−5i in (b) marks the tune shift of the least stable mode in the
horizontal plane. No mode, nor noise, is included in the vertical plane.

6.4 Results

6.4.1 Distribution and stability evolution

The change of the distribution, and corresponding change of the stability diagram, will here
be evaluated in two representative configurations with only horizontal noise. Both cases
use athresh = 5×10−5, a = 1.5athresh, b =−0.7a, and ηm0σk = 1×10−4. The difference is the
coherent tune shift in absence of Landau damping, ∆Qcohx . Note that the diffusion coefficient
in Eq. (6.23) and analytical latency estimate in Eq. (6.34) do not depend on the absolute values
of a and ∆Qcohx , but only on their ratio. This fact is also illustrated in Fig. 6.2, as the frequency
shifts are given in units proportional to a.

In the first case, the least stable mode is at ∆Qcohx =−1.47×10−4 +1.25×10−5i . This is the
same configuration as was tested in Sec. 6.3.1. The relative change of the distribution at the
time of the instability is illustrated in Fig. 6.8a. The distribution is locally flattened in the
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Figure 6.9: Change of distribution in (a) and evolution of the horizontal stability diagram
in (b), due to diffusion driven by horizontal wakefields. The dashed line in (a) marks the
actions where Qx (Jx , Jy ) =QLDx . The cross at ∆Qcohx = 5.00×10−5i in (b) marks the tune of
the least stable mode.

horizontal direction at the resonant actions Qx (Jx , Jy ) =QLDx , equivalently to the process
illustrated in Fig. 6.7. The local flattening causes a change of the horizontal stability diagram
that is illustrated in Fig. 6.8b. A borehole is drilled in the stability diagram directly at the
frequency of the least stable mode. The drilling speeds up as the instability is approached,
since Im{QLDx } approaches 0. The vertical stability diagram in Fig. 6.8c is barely modified in
this process.

In the second case, the least stable mode is at∆Qcohx = 5.00×10−5i , which is purely imaginary.
The relative change of the distribution after 10s and the evolution of the stability diagram are
illustrated in Fig. 6.9. The distribution changes as in the first case, with the main difference
being a shift of the resonant tune, due to the different Re{∆Qcohx }. Instead of the drilling of
a borehole in the stability diagram, the stability threshold does initially grow, before a loop
starts developing. This loop is difficult to interpret and it causes challenges for the numerical
algorithm used to calculate α and ∆QLDx . Therefore, the diffusion coefficient has, in the
calculation presented here, been kept constant at the initial value. Similar evolutions have
been calculated with a time evolving diffusion coefficient. With zero real tune shift, it was
derived in Sec. 6.2.5 that a local flattening at the resonant actions would initially lead to an
increased stability threshold, which has been verified.

The evolution of Im{∆QLDx } for these two cases is presented in Fig. 6.10. In the derivation of
the analytical latency in Sec. 6.2.5, it was assumed thatαwould stay constant at its initial value
α(0). This is not correct. As the borehole is drilled, the curvature of the stability diagram will
increase, leading to a reduction of α(t ) with time. In addition to the calculations presented in
Figs. 6.8 and 6.9, an additional calculation has been executed of case 1 where α has artificially
been kept constant at its initial value. The latencies for case 1 in the PyRADISE calculations
are 1.65s with evolving α(t ) and 3.88s with constant α(0), in comparison to 3.84s estimated
with the analytical theory in Eq. (6.34). Note also that even if the stability margin initially
increases for case 2 with Re{∆Qcohx } = 0, it eventually decreases. Nevertheless, the latency is
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Figure 6.10: Evolution of Im{∆QLDx } for the two test cases illustrated in Figs. 6.8 and 6.9. The
vertical line marks the latency estimated with Eq. (6.34) for the calculation represented by the
dashed line (“Case 1, α(0)”).

longer than the 87.0s that would have been wrongly estimated with Eq. (6.34), which assumed
|Re{∆Qcohx }/Im{∆Qcohx }|À 1.

6.4.2 Detuning margin

Test case 1 in Sec. 6.4.1 is representative of the type of modes that typically are the least stable
modes in the LHC. The drilling of a borehole in the stability diagram can be expected, and
this drilling speed increases as the instability is approached. The latency for the least stable
mode ∆Qcoh =−1.47×10−4 +1.25×10−5i , affected by noise such that ηm0σk = 1×10−4, is
presented with different detuning margins in Fig. 6.11. By scaling the detuning margin by
1 order of magnitude, from 10% to 100%, the latency increases by more than 4 orders of
magnitude.

Note the three different sets of points calculated with PyRADISE: (i) For the points labeled
“α(0)”, the factor α has been kept constant at its initial value, as was assumed in the analytical
latency in Eq. (6.34). The agreement between these points and the approximative analytical
latency is striking for a < 2athresh; (ii) The points labeled “α(t )” are considered to best represent
the physics at hand, self-consistently solving for both α and the diffusion coefficient as the
distribution changes. However, for large stability margins, a > 2athresh, the linear extrapolation
of the damped mode becomes increasingly inaccurate at t = 0. Furthermore, as the borehole
is drilled this deep for this mode, α= ∂MLD/∂Mcoh is quickly varying due to an increased
curvature of the stability diagram. Thus, a small inaccuracy in the initial Re{∆QLD} will cause an
unphysical drift of Re{MLD} by use of Eq. (6.12) for |Mcoh|À ε. This can prevent the instability
in the numerical calculation, by nonphysically varying the resonant action; (iii) Therefore, for
the points labeled “α(t ) ∈R,Re{∆Q}(0)”, the real tune of the damped mode has been forced
constant at the initial value, while α has been allowed to evolve in time, but forced to be real.
This is considered the best approximation of the drilling at large detuning margins for this
mode.
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Figure 6.11: Latency for a mode of coherent tune ∆Qcoh =−1.47×10−4 +1.25×10−5i , stabi-
lized by octupole detuning with athresh = 5×10−5 and b =−0.7a.

6.4.3 Dedicated latency experiment in the LHC

This theory has been tested against the experiment conducted in the LHC that was reported
in Sec. 4.3 [15, 60]. While at flattop, subsets of the bunches were excited by a controllable noise
source, acting equally on all particles per bunch per turn with effectively a white spectrum over
multiple turns. Only latencies between 1min and 60min were acceptable, due to constraints
of the theory and the alloted time with the machine. The condition for diffusion in Eq. (6.37)
has been found to be met for all investigated bunches with RD ' 200.

The latency for a specific bunch depends strongly on the individual bunch parameters, espe-
cially the emittance and intensity. This can mask the dependence on the machine parameters.
The analytical latency for the worst mode, given by Eq. (6.34), is illustrated as a function of the
chromaticity and feedback gain in Fig. 6.12a. The second shortest latency is given in Fig. 6.12b,
in units of the shortest latency, hinting at whether a single mode is sufficient in modeling the
latency or not. Note that the predicted latencies vary by more than 6 orders of magnitude in
this limited parameter space, where neither the octupole current, nor the noise amplitude,
nor the bunch specific parameters have been varied.

The latencies of the 8 bunches in B2 in fill 1 in Fig. 4.1 have been investigated in more detail,
including the bunch specific parameters, such as the intensity, emittances, bunch length,
and applied noise amplitude. The comparison between the experimental latencies and the
latencies calculated with PyRADISE is given in Fig. 6.13a. The first set of bunches (450-1350)
was the first intentional experimental realization of this mechanism. These bunches were
acted on by external noise in two intervals, with an emittance measurement that was sub-
par by chance, giving cause for the large error bars. They went unstable with a ≈ 2athresh,
assuming a Gaussian bunch. The second set of bunches (1950-2850) was acted on in slightly
better conditions, allowing for a better quantitative comparison to the diffusion model. The
first three of these bunches bunches went unstable with a ≈ 2.4athresh, assuming a Gaussian
bunch. Bunch 2850 did not go unstable during the experiment. The chromaticity was Q ′ = 15,
and the damping time due to the feedback was 170 turns. For this configuration, all modes
with positive Im{∆Qcoh} and centered maximally 10 synchrotron sidebands from the bare
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Figure 6.12: Analytical latency of the worst horizontal mode in B1 in the LHC in (a) and second
worst mode in (b), for the parameter values: normalized emittance εn j = 1.4µm; bunch length
4σs = 1.05ns; intensity N = 1.1×1011 p/b; noise amplitude σk = 1×10−4; octupole current
Ioct = 400A. Latencies below 0.6s have been marked as if the bunch was already unstable.

tune, |lm | ≤ 10, are displayed in Fig. 6.13b. Since one mode stands out, a single mode should
represent the diffusion well.

The error bars in Fig. 6.13a are large, because the latency scales quadratically or faster with a set
of uncertain parameters, as given by Eq. (6.36). The considered most significant uncertainties
are: (i) The emittance measured with the BSRT was found in 2018 to have a 10% accuracy [61].
During the measurement of bunches 450-1350, the emittance measurement of all bunches
displayed an unphysical oscillatory drift. The total uncertainty in the emittance of these
bunches has therefore been estimated to 25%. As the linear detuning coefficients in Eq. (2.31)
are proportional to the emittance, this uncertainty affects the knowledge of the stability
margin. Furthermore, the horizontal noise σk is given in units of the beam divergence, such
that σ2

kεnx is constant. Thus, the larger emittance corresponds to the upper error bar on
the latency. A 10% uncertainty in the emittance causes an uncertainty of a factor ∼2 on the
latency for these detuning margins. Remember that the dependence is rather on the stability
margin than the absolute emittance. Hence, this factor should not be used in general. It
was found in 2018 that the BSRT on average underestimated the emittance, favoring the
upper error bar [4]; (ii) The noise amplitude was experimentally known with low accuracy.
By comparing the emittance growth of these bunches in B2 with multi-particle simulations,
the noise amplitude has been scaled by a factor 3.85±0.30 to σk ∈ [3.4,14.3]×10−4, ignoring
the uncertainty; (iii) The feedback gain is considered to be estimated with approximately
10% margin; (iv) The chromaticity was not measured on the day of the fill presented in
Fig. 6.13. It is therefore only estimated with accuracy ±1. The uncertainty in the feedback
gain and chromaticity causes an uncertainty in ∆Qcoh and ηm0. The shortest and longest
latency has been calculated with Q ′ = 15±1 and g = (12±1)×10−3. The uncertainty in gain
and chromaticity only causes a small part of the total error bar on the latency, in comparison
to that caused by the uncertainty in the emittance.
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Figure 6.13: Comparison between an experiment in the LHC [15, 60] and the latency found
by PyRADISE solving the diffusion equation introduced in this chapter in (a), for the worst
mode found by BimBim in (b). The error bars in (a) are due to uncertain measurements of the
emittances, chromaticity, feedback gain, and external noise amplitude during the experiment.
Predicted latencies below 1min are not shown, as the dynamics require more time to be
modeled accurately as a diffusion (see Sec. 6.3.3). Bunch 2850 did not go unstable before Ioct

was reduced after 52min.

The experiment was repeated in similar conditions, but with the chromaticity set to Q ′ = 5. No
instabilities were reached during the experiment at the initial octupole current. Furthermore,
by reducing Ioct, it was found that the stability threshold had barely been modified by the noise.
This is in qualitative agreement with the predictions in Fig. 6.12a, where the latency is more
than an order of magnitude longer for g ∼0.01 and Q ′ ∼5, than for g ∼0.01 and Q ′ ∼15. The
alternative settings, with Q ′ ∼5, would allow for a reduction of the required stability margin in
operation. Nevertheless, other instability mechanisms have been observed with low positive
chromaticities [55]. They may limit the range of acceptable chromaticities for the operation of
the LHC.

6.4.4 Physics fills in the LHC

This study was mainly motivated by the observations reported in Ch. 4. Instabilities were
developing when the beam was maintained in a steady configuration for a few to tens of
minutes, with an octupole current less than twice the required value expected from linear
Vlasov theory with a Gaussian distribution. Consequently, the LHC was operated with at least
twice as much octupole current as initially expected to mitigate this instability [3, 53]. The
detuning coefficients in normal operation in 2018 were on average close to the ones in the
experiment described in the previous section, with an average normalized emittance of 1.9µm
and octupole current Ioct = 280A. The noise was measured at approximatively σk = 6×10−5,
with the operational gain of g = 0.01 [41]. The predicted latency for the average bunch at
Q ′ = 15 and g = 0.01 is 120min, which is slightly larger than the value in Fig. 6.12, due to the
lower noise amplitude. With a 15% lower emittance, the expected latency drops to 9.9min,
illustrating again how sensitive the latency is to the individual bunch parameters. Similar
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reductions of the latency occur from an equal reduction of Ioct or increase of the intensity. We
note that the latencies obtained with the formula in Eq. (6.34) are usually overestimated with
respect to the numerical estimates. Nevertheless, such latencies seem compatible with safe
operation of the LHC. Hence, this study confirms the observed efficiency of the mitigation
strategy of operating with a margin in the octupole current, initially implemented based on
empirical evidence only.

6.5 Discussion

The analytical latency and simulated results that have been presented have assumed that a
single mode was dominant. The ratio of the second shortest latency in B1 in the LHC to the
shortest latency was presented in Fig. 6.12b. In the configurations that have been studied, the
shortest latency is at least an order of magnitude shorter than the second shortest, and is thus
dominant. In configurations where two modes are relevant, one of three things can happen:

• The modes flatten the distribution at exactly the same frequency, reducing the latency
by maximally a factor 2 for uncoupled modes.

• The modes flatten the distribution at close but different frequencies, widening and
increasing the diffusion, causing either an increase or decrease of the latency, depending
on the separation in frequency.

• The modes flatten the distribution at well separated frequencies, with no impact on one
another.

A case-by-case study is required for exact predictions of the impact of the second worst mode.

In this chapter, only the wake driven diffusion has been considered. It is found to be a strong
candidate for the driver of the instabilities of long latencies observed in the LHC. Diffusion
that can counteract the drilling in the stability diagram has not been studied in detail here.
The diffusion due to the first term on the RHS of Eq. (6.17) and due to IBS were included in [69],
and found to only marginally increase the latency in an LHC-like configuration. The effect
of IBS will depend on the ratio between the latency and the IBS driven emittance doubling
time, which is in the order of days in the horizontal plane of the LHC at flattop. The IBS is
essentially negligible in the vertical plane. If the latency, ignoring the IBS, is similar to the IBS
driven doubling time, it may be increased indefinitely. However, instabilities with that long
latencies are not a problem for operation of the LHC.

6.6 Conclusion

Transverse instabilities with latencies from a few to tens of minutes have been observed in the
LHC, both in regular operation and in dedicated experiments. In this chapter, the hypothesis
that such instabilities are due to a long-term evolution of the transverse distribution, which
leads to a loss of Landau damping have been considered. The mechanism that has been
studied in detail here, is that external sources of noise excite the beam, which then acts back
on itself through electromagnetic wakefields. The coherent response of the beam has been
modeled as a set of damped harmonic oscillators, representing the least stable wakefield
driven modes. The impact of the wakefields on the individual particles has been modeled as
a diffusion, which is narrow in frequency space around the real frequency of the least stable
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mode. Thus, the diffusion is also narrow in action space around the resonant action, causing a
local flattening of the distribution in 2D action space. Numerical calculations with PyRADISE
have shown that the distribution evolution efficiently drills a borehole in the stability diagram
at the frequency of the least stable mode, if the absolute value of the real tune shift of the
coherent mode is large compared to the imaginary part. This can cause an instability with
a latency. One of the most effective techniques to extend the latency, and thus mitigate
this instability mechanism, is to operate with a large stability margin, i.e. more detuning
than required to stabilize a Gaussian beam. An analytical expression for the latency has
been derived in Eq. (6.34) under strict assumptions, and found to consistently be a factor ∼2
longer than the latency found with PyRADISE. The predicted latency is sensitive to the input,
being proportional to the second or higher power of multiple parameters. Consequently,
the latencies of the configurations considered in this chapter vary by more than 8 orders of
magnitude.

The new theory has been compared with a dedicated latency experiment conducted in the
LHC [15, 60]. The latencies measured in the experiment have been reproduced, albeit with
large error bars, eventually causing instabilities with more than twice the required detuning
strength for a Gaussian distribution. The latencies in regular LHC operation are also in
agreement with the new theory. Thus, it can be concluded that the loss of Landau damping
observed in the LHC is most probably caused by noise excited wakefields driving a diffusion of
individual particles. One important result is the confirmation that the latency is approximately
an order of magnitude longer at an intermediate chromaticity Q ′ ≈ 5 with a feedback driven
damping time of 200 turns, than at Q ′ ≈ 15. This constitutes an alternative working point
for the LHC worth considering in view of relaxing intensity limits that may arise due to this
mechanism.
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7 COMBIp – Pipeline algorithm for
multi-beam multi-bunch simulations

Disclaimer: This chapter was adapted from the following article — with permissions
of the co-author and publisher:

[79] S. V. Furuseth and X. Buffat, “Parallel high-performance multi-beam multi-
bunch simulations”, Computer Physics Communications 244, pp. 180–186, 2019.
doi:10.1016/j.cpc.2019.06.006

It was published under CC-BY 4.0.
My contribution: All results presented here.

7.1 Introduction

Coherent multi-bunch interactions can cause severe impacts on the beams in circular collid-
ers [66]. To understand the dynamics of such interactions, the accelerator physics community
relies both on analytical models and high-performance tracking codes. Each beam consists of
multiple bunches. The bunches are affected by external electromagnetic fields, such as those
produced by the machine, and by interactions with each other. There are:

• Independent, intra-bunch effects, such as the forces from the various magnets.
• Intra-beam, inter-bunch interactions, such as the kicks from electromagnetic wakefields,

space charge forces, electron clouds, or feedback systems.
• Inter-beam, inter-bunch interactions close to the IPs, called beam-beam interactions.

The different effects, as they are modeled in simulations, will be referred to as calculations.

There exists a wide library of simulation codes developed specifically for circular particle
colliders, exploiting the parallel infrastructure of modern computers in different ways. How
a code is parallelized depends on what the code is designed to study. BeamBeam3D is a par-
allel particle-in-cell code designed to model beam-beam interactions in three dimensions
in detail [80]. Each bunch is represented by multiple macroparticles, and six phase space
coordinates represent each macroparticle. The parallelization is done with a particle-field
decomposition, slicing each bunch longitudinally, and distributing the slices on separate
processes. The impact of the slices of Beam 1 (B1) on the slices of Beam 2 (B2) is calculated
in order. PyHEADTAIL studies the interplay of a single multi-bunch beam with the machine
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through electromagnetic wakefields [81]. In the multi-bunch version, multiple bunches are
allocated to each process. The same calculation is performed for all bunches simultaneously.
The parallelization scheme in COMBI differs from BeamBeam3D and PyHEADTAIL as it was de-
signed for multi-bunch beam-beam interactions, and was later extended to study the interplay
with other effects, such as wakefields [7, 76, 77]. Each bunch is allocated to its own process,
and all bunches are controlled by a master process. The bunches are distributed on a circular
grid as in a collider, and synchronized at the end of each calculation to ensure causality.

An unbreakable rule of physics is causality. When simulating coherent multi-beam multi-
bunch effects, causality puts strict constraints on the order of the calculations. However, the
parallel algorithm in COMBI was more inefficient than necessary when considering various
types of interactions with different computing and communication requirements [7]. Based
on the analysis of the inherent constraints and the shortcomings of the original algorithm, a
new parallel algorithm has been designed and implemented in the code. It was inspired by
putting the calculations for each bunch in separate pipelines, and is referred to as COMBIp
(Coherent Multi-Bunch Interactions – Pipelined). Finally, the performance of COMBIp will be
analyzed and compared to that of the old parallel algorithm.
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Figure 7.1: A circular collider model where two beams (B1 in blue, B2 in red) move in opposite
directions. Both beams have 8 bunches in a row followed by two empty slots. There are twice
as many locations for calculations as bunch slots, to be able to model beam-beam interactions.

7.2 Causality caused challenges in simulations

A circular collider contains two beams that are moving in opposite directions, as shown in
Fig. 7.1. This example with 8 bunches per beam will be discussed repetitively in this chapter.
The locations must be traversed in order, meaning 19,0,1, ... for a bunch in B1, and 1,0,19, ...
for a bunch in B2, to ensure causality. At each location there may be a calculation to be
performed, or not. The different types of necessary calculations, and their impact on ensuring
causality, will now be discussed.
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Head-on

Long-range

Figure 7.2: Schematic of inter-beam calculations around an IP in a circular collider. Each
bunch may experience one head-on calculation in the center and a number of long-range
calculations on both sides. The number labels at the head of each bunch are the bunch
numbers, given that the IP is in location 0 in Fig. 7.1.

Independent, intra-bunch calculations only depend on the affected bunch, and require no
communication between the bunches. That is for example the bending and focusing from
the magnets around the machine. It can also be the case for simplified models of inter-
bunch calculations, such as the weak-strong model of beam-beam interactions [82]. These
calculations have to be done in order for each bunch separately, to ensure causality. However,
in a multi-bunch simulation, these calculations do not require any synchronization between
the bunches.

Intra-beam, inter-bunch calculations, from now on referred to as intra-beam calculations, can
be represented as in Fig. 2.5. A source charge traverses the machine and leaves some remnant
mark on its surroundings, either as remnant electromagnetic fields or as measurements by
the BPMs that lead to a kick from the feedback system. In the ultra-relativistic limit, a bunch
cannot affect bunches ahead of itself. From here on wakefields are referred to as an example
of these interactions. The effect of wakefields is typically weaker the greater the distance is
between the source and the witness. The wakefields produced by each bunch can numerically
be calculated simultaneously for all the bunches in the same beam. Then the wakefields
must be communicated to the trailing bunches, before the kicks from the wakefields can be
calculated. Hence, a bunch cannot overtake another bunch beyond this calculation. Without
inter-beam calculations, the individual bunches can easily be parallelized, by performing each
calculation simultaneously for every bunch. That is how it is done in PyHEADTAIL [81].

Inter-beam calculations can be represented as in Fig. 7.2. In modern circular colliders, the
two beams are kept separated except for close to the points where the beams are brought into
collision. For example, assume that there is a head-on calculation at location 0 in Fig. 7.1, and
a long-range calculation at locations 1 and 19. To preserved causality, bunch n of B1 (B1bn)
must first interact with bunch n −1 of B2 at location 19, then bunch n at location 0 and finally
bunch n +1 at location 1, given that these bunches exist. Extending this rule to all the bunches,
the calculations must be done in the following order:

1. B1b1 interacts with B2b1 at location 0. Every other bunch must wait.
2. B1b2 interacts with B2b1 at location 19 and B1b1 interacts with B2b2 at location 1.
3. B1b2 interacts with B2b2 at location 0.

And so on. With equal number of bunches per beam and beam-beam interactions, this can
be parallelized efficiently by letting the bunches do different calculations simultaneously.

91



Chapter 7. COMBIp – Pipeline algorithm for multi-beam multi-bunch simulations

That was the inspiration of the old algorithm in COMBI. With more bunches than beam-beam
interactions the calculations can still be parallelized efficiently by overlapping multiple turns.
If there is no intra-beam calculations, nor filling of every bunch slot in the collider model, the
third step above would then be:

3. B1b2 interacts with B2b2 at location 0 (turn 1), and B1b1 with B2b1 at location 0 (turn 2).

The bottleneck, preventing these parallel multi-beam multi-bunch simulations from being
efficient, arises when one includes both intra-beam and inter-beam calculations in the same
simulation. The intra-beam calculations prefer the bunches to do the same calculation in
parallel, while the inter-beam calculations prefer the bunches to do different calculations
in parallel. As a result, there is a sizable amount of empty time when no calculation can be
done for a given bunch, due to causality. To maximize the efficiency of a parallel multi-beam
multi-bunch simulation, these periods of waiting bunches must not correspond to the stalling
of processing units.

7.3 Parallel algorithms

7.3.1 COMBI

COMBI is implemented with a hybrid OpenMP-MPI parallelization. The MPI (Message Passing
Interface) parallelization employs a master-worker algorithm, with one master process overall,
and one worker process per bunch [83]. Each calculation is parallelized internally in each
worker process with OpenMP (Open Multi-Processing) [7]. The algorithm is shown in detail
in Algorithm 1. The bunches of each beam are fixed to a circular grid as in Fig. 7.1, and
rotated synchronously to their next locations in the collider model. The master process tells all
workers what the bunches have to do, whether it is a calculation or nothing. After the workers
are done, they send a completion confirmation each to the master. Therefore, all workers have
to wait for the slowest calculation to finish, before the bunch grids are rotated to their next
locations.

The Gantt charts for the bunches in B1 in Fig. 7.1 are shown for three illustrative examples
in Fig. 7.3: (i) Independent and intra-beam calculations; (ii) Independent and inter-beam
calculations; (iii) Intra-beam and inter-beam calculations. The charts on the left include the
synchronization in the COMBI algorithm, while the charts on the right display the optimal
flows that still ensure causality. Since there is only one bunch per worker process, these
are efficiently the Gantt charts for the worker processes. Therefore, the white gaps between
the calculations correspond to wasted Central Processing Unit (CPU) hours. Note that this
example only considers 8 bunches. The LHC holds up to 2808 bunches [1], for which the
efficiency would approach zero.

This algorithm was developed with beam-beam calculations in mind. It limits the efficiency
especially when the number of bunches outnumbers the number of calculations, or when the
calculations are of varying numerical complexity. The wall time per turn, assuming that the
number of bunches is larger than the number of calculations, is expected to be in the order of

tpar ∼max
i

{ti } ·max
j

{Nb j } · Nb1 +Nb2

Ncore
, (7.1)
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Algorithm 1 COMBI (old)

1: procedure MASTER(rank)
2: PARSE input files
3: SEND bunch details to Workers
4: CREATE collider
5: // list of calculations at location
6: for turn in numberOfTurns do
7: for step in numberOfLocations do
8: Rotate bunch grids one step
9: SEND calculations to Workers

10: RECEIVE confirmation from Workers
11: end for
12: end for
13: SEND Abort to Workers
14: end procedure

15: procedure WORKER(rank)
16: RECEIVE bunch details from Master
17: CREATE bunch
18: while TRUE do
19: RECEIVE message from Master
20: if message is calculation then
21: Perform calculation
22: SEND confirmation to Master
23: else if message is Abort then
24: BREAK
25: end if
26: end while
27: end procedure

Algorithm 2 COMBIp (new)

1: procedure PIPELINE(rank)
2: PARSE input files
3: CREATE bunches for this rank
4: SET bunch.step to 0
5: CREATE bunch.pipeline
6: // all calculations for one bunch
7: while all bunches are not done do
8: for bunch in bunches do
9: if bunch is done then

10: CONTINUE
11: end if
12: SET calculation to pipeline[step]
13: if need to send then
14: TEST if previous message is read
15: SEND new message (non-blocking)
16: else if need to receive then
17: PROBE if message is sent
18: RECEIVE message (non-blocking)
19: end if
20: if communication failed then
21: CONTINUE
22: end if
23: Perform calculation
24: INCREMENT step
25: Update whether the bunch is done
26: end for
27: end while
28: end procedure

where ti is the wall time of the calculation at location i with 1 core, Nb j is the number
of bunches in beam j , and Ncore is the total number of cores. This formula is meant for
comparison with the new algorithm, not for predicting the actual wall time.

7.3.2 COMBIp

The new parallelization algorithm, COMBIp, is detailed in Algorithm 2. The key advances from
the original algorithm are:

• The bunches are autonomous.
• All calculations for each bunch are put in individual pipelines.
• The communication between the bunches is asynchronous, and only done when infor-

mation is required.
• There can be multiple bunches per process.
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The processes are still parallelized with MPI. The communication between the bunches is
handled with MPI as well, even if the bunches are on the same process. Additional memory is
allocated for the messages, to prevent the memory from being overwritten before it is received.
The size of this additional memory is negligible compared to the memory required to store the
phase space coordinates of the macroparticles that constitute the bunches. Each calculation
handled by the processes is still parallelized with OpenMP. Hence, each bunch can maximally
exploit the cores on one full compute node.

Since the bunches are autonomous, the need for the master process is gone. Therefore, the
communication from and to the master is no longer needed. Since the bunches’ calculations
are in separate pipelines, the bunches are no longer waiting after each calculation for all the
other bunches to finish. Since the communication is asynchronous, the processes do not
have to stall while waiting for other processes to respond, freeing up the processing power. To
achieve this, the calculations that require communication with other bunches have been split
in two, first sending and then receiving the required information. This separation is especially
useful for the intra-beam calculations, where each bunch must communicate with all other
bunches in the same beam. Due to the first 3 advances, the Gantt charts for the bunches are
the most efficient ones shown on the right in Fig. 7.3.

It is still of utmost importance to ensure that causality is preserved. Because the calculations
are in separate pipelines, the independent calculations are automatically performed in the
correct order. Mistakes can only arise from the calculations that require communication
between the bunches. However, when a bunch arrives at a location where the calculation
requires communication, the bunch knows which bunch(es) it is supposed to communicate
with. First, it will test if the previous message(s), using the assigned memory buffer, has
been received with MPI_Test. If yes, it will non-blockingly send the new message(s) with
MPI_Isend to the bunch(es) it is interacting with. Then, the process allows the other bunches
on the process to do their next calculations. Next, the bunch will non-blockingly check with
MPI_Iprobe if the message(s) from the bunch(es) it is interacting with has been sent. If yes, it
will start receiving the message(s) with MPI_Recv. The bunch can and will wait till after it has
sent its message(s) and received the required message(s), before it performs the calculation.
Thus, the minimum required synchronization is achieved, and causality is preserved, due to
how the inter-bunch communication is implemented.

The main goal of this work was to make efficient simulations including both intra-beam and
inter-beam calculations. It was displayed in Fig. 7.3f that in such simulations, individual
bunches would have to wait due to causality, even if the synchronization was minimal. How-
ever, when bunch 1 has to wait in this example, bunch 5 can perform its calculations. Since
the new algorithm allows for having multiple bunches per process, a process does not have to
stall when a bunch has to wait. This last key advance, thus allows the simulation efficiency to
go beyond the most efficient flow of calculations shown on the right of Fig. 7.3. The wall time
per turn is expected to be in the order of

tpar ∼
∑

i
ti ·

Nb1 +Nb2

Ncore
. (7.2)

Hence, the new algorithm can be up to max j {Nb j } times faster than the old algorithm.
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(a) Independent and intra-beam calculations in COMBI.
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(c) Independent and inter-beam calculations in COMBI.
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(e) Intra-beam and inter-beam calculations in COMBI.
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Figure 7.3: Gantt charts [84] of the flow of calculations for 8 bunches (b1-b8) of one beam,
while still ensuring causality. The charts on the left, (a), (c), (e), include the synchronization
after each calculation in COMBI. The charts on the right, (b), (d), (f), are the most efficient flows
possible, including only the strictly necessary synchronization to ensure causality. The order of
the calculations for each bunch is read left to right. If there is a white gap, it means that the next
calculation cannot yet be initiated, because it requires input from another bunch. Green is
independent calculations, Light blue is the calculation of that bunch’s wakefields, Blue is
the impact of other bunches’ wakefields, Red is the head-on beam-beam calculation, and
Orange is a long-range beam-beam calculation. The numbers on the beam-beam calculation
blocks on the right refer to which bunch of the other beam the calculation is with, assuming
the head-on calculation is in location 0 in Fig. 7.1. The necessary calculations for 3 turns are
displayed. The time of the different types of calculation is set artificially. These charts are only
meant to show the inter-bunch dependencies.
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7.4 Timing results

The parallel algorithms have been tested in detail for their performance in relevant configura-
tions. All simulations have been run on the Deneb cluster at EPFL, with nodes containing 2
Ivy Bridge processors running at 2.6 GHz, with 8 cores each [85]. They have been run with 106

particles per bunch, for 100 turns. They were run 4 times, whereupon the average wall time
was calculated. The wall time per turn and efficiency will be presented. The efficiency is a
measure of how well a parallel algorithm exploits additional computing resources [86], and is
here defined as

Efficiency = tref

tpar
· Ncores,ref/sref

Ncores,par/spar
, (7.3)

where t , Ncore and s are the wall time, number of cores and problem size of a simulation. The
subscripts ref and par correspond to a reference simulation and the parallel simulation for
which the efficiency is sought after. Typically Ncores,ref = 1, but the more general definition in
Eq. (7.3) is more suitable for this study. For a perfectly scaling algorithm, the efficiency is 1.
The speedup from the reference simulation to a parallel simulation is here defined as

Speedup = tref

tpar
. (7.4)

The timings have been measured for models like the ones presented in Fig. 7.3. The models
consisted of various combinations of the following:

• A linear phase advance including linear chromaticity, independent for each bunch.
• A section with one head-on beam-beam calculation and one long-range beam-beam

calculation on each side.
• A wakefield calculation.

The relative wall times of the different types of calculations, neglecting the communication,
are presented in Table 1. These values are meant to show the ratio between the different
calculations, not to be compared to the integrated wall time per turn that will be presented.

Table 7.1: Relative time of different calculations in the scalings.

Calculation Time [tBB]
Independent 9.6
Beam-beam 1 1
Wakefield 0.84
Bunch moments 2 1.64

1 Head-on and long-range calculations have equal numerical complexity.
2 Calculated after each turn and prior to communication in beam-beam and wakefield calculations.

7.4.1 Strong scaling

The strong scaling of an algorithm is how the wall time varies with the number of cores for
a fixed total problem size. That is, sref = spar in Eq. (7.3) [86]. The reference simulation was
calculated with COMBIp with 1 core. In this case, the speedup of a perfectly scaling algorithm
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would be equal to Ncores,par. For the following simulations, the strong scaling will be presented
for three schemes, the first with the old algorithm and the last two with the new algorithm:

• COMBI: Start with (Nb1+Nb2)+1 processes of 1 thread, then add more threads.
• OpenMP→MPI: Scale 1 process up to 16 threads, then add more processes.
• MPI→OpenMP: Scale up to (Nb1 +Nb2) processes, then add more threads per process.

One exception will be noted in the text.
All simulations have 8 bunches per beam. Hyper-threading has been forced off to get reliable
scaling data. The reduction of wall time is fitted to Amdahl’s law, and the parallel part p is
given in the legends for the new algorithm [86]. The expected and actual scaling depend on
the required synchronization of the calculations in the collider model, as discussed in Sec. 7.2.

Consider first one beam requiring a single independent calculation per turn. The new algo-
rithm with one core is expected to finish slightly faster than the old algorithm with Nb1 +1
cores. This is because the master-worker algorithm requires communication for the synchro-
nization and work organization, and only one worker is computing at a time. The scaling is
presented in Fig. 7.4a. In this case, COMBI using 9 cores achieves a speedup of 0.89 (efficiency
of 0.099) from the serial version of COMBIp, approximately as expected. The results are rather
independent of how one increases the number of cores with the new algorithm, both schemes
show that the simulation has a parallel part of 99.7%. Because this collider model requires
neither communication nor synchronization between the bunches, this is assumed to be the
best performance achievable by the COMBIp-algorithm.

For simulations with one wakefield calculation and one independent calculation per turn, the
scaling is presented in Fig. 7.4b. It is slightly better to increase the number of processes before
the number of threads. That could be because these simulations require a substantial amount
of MPI communication, including organization of the incoming wakefield kicks, which is
performed by only one thread per process. COMBI using 9 cores achieves again a speedup of
0.89 (efficiency of 0.099) from the serial version of COMBIp. The efficiency of the new algorithm
for this collider model is close to the best performance found above, as expected.

For simulations with one head-on calculation and one long-range calculation on each side,
in addition to one independent calculation, the scaling is as in Fig. 7.4c. COMBI requires a
minimum of 17 cores, with which it achieves a speedup of 2.0 (efficiency of 0.12) from the
serial version of COMBIp. COMBIp scales equally well for the two schemes, independently of
how the cores are added. The efficiency of the new algorithm for this collider model is close to
the best performance found above, as expected.

For simulations with three beam-beam interactions, as above, and one wakefield calculation,
the scaling is as in Fig. 7.4d. The MPI→OpenMP scaling of this configuration was performed
in three ways, by initially going to 4, 8 and 16 MPI processes, before adding more threads per
process. This was done to emphasize the bottleneck introduced in Sec. 7.2, which limits the
performance in simulations with both intra-beam and inter-beam calculations, if there is only
1 bunch per MPI process. The 16 bunches were distributed evenly over the MPI processes.
With only 1 bunch per process, the efficiency dropped to 0.4 with only 16 cores. There is a
clear improvement by having multiple bunches on the same process. For this collider model,
it is sufficient to have 4 bunches per MPI process. By allowing for bunches to share a process,
the reduction of the performance due to the bottleneck has been avoided.
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(a) 1 beam (Nb1 = 8). 1 independent calculation.
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(b) 1 beam (Nb1 = 8). 1 wakefield calculation and 1 in-
dependent calculation, as in Fig. 7.3b.
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(c) 2 beams (Nb1 = 8 = Nb2). 3 beam-beam calculations
and 1 independent calculation, as in Fig. 7.3d.
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(d) 2 beams (Nb1 = 8 = Nb2). 1 wakefield calculation
and 3 beam-beam calculations, as in Fig. 7.3f.

Figure 7.4: Strong scaling with COMBI and COMBIp for different collider models, including
independent, beam-beam and wakefield calculations. In (d) “MPI → OpenMP” goes to 4 (+),
8 (x) and 16 (�) MPI processes, before it scales further with multiple threads per process.

7.4.2 Weak scaling

The weak scaling of an algorithm is how the wall time varies with the number of cores for a
fixed problem size per core [86]. Hence, the efficiency is equal to the speedup given by Eq. (7.4).
To test the weak scaling, the bunch sizes were kept constant, while the total number of bunches
were equal to the number of cores, subtracted 1 for the master process. It is typically easier to
achieve a good weak scaling than strong scaling, hence the names. However, in multi-beam
multi-bunch simulations it can be more challenging to keep a high efficiency as the number
of bunches increases, as will be shown. The collider models are the same as in Fig. 7.4, plus
one as in Fig. 7.4d also including two independent calculations per turn. The models with
beam-beam calculations have Ncore/2 bunches per beam, while the others have Ncore bunches
in the first beam only. As the beam-beam calculations do not make sense for one bunch, the
scalings start at a reference simulation for 8 bunches. The weak scaling is presented in Fig. 7.5.
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(a) 1 bunch per 1-core-process.
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Figure 7.5: Weak scaling with COMBIp for different collider models, with independent (Ind),
beam-beam (BB) and wakefield (Wake) calculations. The weak scaling was also calculated with
COMBI, but only with the independent calculation and only for 1 bunch per worker process.

Note that the efficiency of COMBI is calculated relative to a reference simulation that is also
run with COMBI, to better show the behavior as the problem size increases.

The weak scaling with 1 bunch per 1-core-process is presented in Fig. 7.5a. The efficiency of the
COMBI algorithm falls quickly as the number of bunches increases, due to the synchronization
after each calculation that was illustrated in Fig. 7.3. Note that the COMBI simulations were
run with only the independent calculation, and should be compared to the blue curve labeled
“Ind”, which was simulated with COMBIp. The bottleneck discussed in Sec. 7.2 for collider
models with both intra-beam and inter-beam calculations is clearly visible on the curves
labeled “BB,Wake” and “BB,Wake,Ind”, which both drop below an efficiency of 0.2. The
simulations with beam-beam calculations, but without wakefield calculations, become less
effective starting from 64 cores. This can partly be explained by the white triangles in the
beginning and end of Fig. 7.3d, because only 100 turns are simulated. A part of the work
required by the wakefield calculations scales with the number of bunches. This scaling is
negligible up to 128 bunches, according to these results.

The weak scaling with 8 bunches per 8-core-process is presented in Fig. 7.5b. There is a
clear improvement by having multiple bunches on the same process in COMBIp. The root
limitation, as discussed in Sec. 7.2 qualitatively and shown here quantitatively, is how many
bunches causality allows to be calculated in parallel. The solution is therefore to distribute
more bunches on each process, such that each calculation takes a shorter wall time, instead of
trying to calculate every bunch in parallel. That is what COMBIp does. By achieving better load
balancing in this manner, the impact of the bottleneck is pushed to a higher number of cores,
such that the achievable speedup is higher.
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7.5 Discussion

The goal of the new algorithm in this thesis is to study the long-term evolution of the beam
quality in collision in the LHC, requiring a machine specific noise and feedback model, as
well as beam-beam interactions. The solution to the inherent bottleneck was to distribute
the bunches over fewer processes, and instead parallelize maximally each calculation within
each process. The speedup of this method is limited by how many cores there are on each
node in the utilized cluster. One could go one step further by dividing each individual bunch
over multiple nodes on separate processes, but this would require a significant amount of
additional communication and implementation, and is expected to lead to an increased
efficiency only in marginal cases. Therefore, there is a limited, albeit large, speedup that can
be achieved by the new algorithm for a given simulation.

The scalings in Sec. 7.4 were calculated with a limited number of bunches, and simple collider
models. In realistic models for the LHC, there will be more independent calculations, up
to about 120 long-range and 4 head-on beam-beam calculations for each bunch, and up to
2808 bunches per beam [1]. Although the simulations will be computationally heavy, multiple
bunches can be calculated simultaneously. Hence, a large number of processes can be active
with good load balancing in COMBIp, and a significant speedup can be achieved.

7.6 Conclusion

The constraints due to causality in multi-beam multi-bunch simulations have been discussed
in this chapter. Simulations with either intra-beam or inter-beam calculations can easily be
performed efficiently. In simulations including both of them, causality leads to a bottleneck of
how many bunches that can be calculated in parallel.

A new parallel algorithm has been implemented in COMBI, named COMBIp, to improve the
efficiency. The key points of the new algorithm are that each bunch is autonomous, their
calculations are ordered in a pipeline, the required communication between bunches is
performed asynchronously, and there can be multiple bunches per process. The new algorithm
has achieved a speedup of up to the number of bunches per beam, compared to the previous
algorithm implemented in the code. The performance is close to independent of causality
constraints when simulating collider models with either only inter-beam calculations or intra-
beam calculations in the ultra-relativistic limit. The predicted bottleneck for collider models
with both inter-beam and intra-beam calculations is now a limit on the number of compute
nodes that can be used efficiently, instead of a limit on the number of bunches that can be
simulated efficiently. The new algorithm is designed to efficiently simulate realistic models of
the LHC.
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8 Optimal transverse feedback gain and
bandwidth for long-term beam quality

Disclaimer: This chapter was adapted from the following article — with permissions
of the co-authors and publisher:

[87] S. V. Furuseth, X. Buffat, J. S. Pereira-Cubillo, and D. Valuch, “Emittance growth
suppression with a multibunch feedback in high-energy hadron colliders: Nu-
merical optimization of the gain and bandwidth”, submitted for publication.

My contribution: All results presented here, except for: The module for generation
of non-white noise in COMBI and the generation of the peak-normalized response
functions for the ADT multi-bunch feedback.

8.1 Introduction

A transverse feedback system can effectively mitigate the emittance growth caused by external
noise sources. However, as its action on the beam depends on beam position measurements
(BPM) of finite accuracy, it introduces additional BPM noise on its own. The amplitudes of
the external noise and the BPM noise can be added in squares as in Eq. (3.15), assuming a
bunch-by-bunch feedback. The external noise is in general strongest at low frequencies. In the
LHC, this noise may be dominated by voltage ripples in PCs, which are currently understood
to be strongest at frequencies below 10kHz [38]. Such a low-frequency (LF) noise can only
excite multi-bunch modes of equally low frequencies, as was illustrated in Fig. 3.5. Hence, the
feedback is less needed at high frequencies. In this chapter, the two theories in Sec. 3.5, for
the suppression of the noise induced emittance growth rate with a bunch-by-bunch feedback,
will be extended to a multi-bunch feedback.

The ultimate goal is to find the optimal transverse feedback bandwidth and gain, determined
by the minimization of the total emittance growth rate while stile maintaining beam stability.
The optimum depends on the ratio between the amplitudes of the BPM error and the external
noise, the PSD of the external noise, the response of the feedback filters, and the magnitude
and details of the detuning. In this chapter, the optimum is found numerically. It was also at-
tempted to do so experimentally in the LHC as part of this study, but it was inconclusive due to
limited accuracy in the emittance measurement, as well as other experimental challenges [88].
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8.2 Theory

8.2.1 Active multi-bunch beam feedback system

A multi-bunch/low-bandwidth (LBW) feedback works by acting on multiple bunches based
on the measurement of one bunch, or equivalently acting on one bunch b based on the
measurements of multiple bunches b′. This can be denoted as

pb → pb − g
∑
b′
εb′wbb′pb′p , (8.1)

where the coefficient

εb′ =
{

1 ,bunch b′ exists

0 ,otherwise,
(8.2)

marks the bunches, wbb′ is the peak-normalized response function of the filter, and
pb′p = pb′ −δb′p is the predicted value of the momentum of bunch b′. The error δb′p in the
prediction is mainly due to the BPM error in the measurements, while the possible additional
error due to the prediction itself is assumed negligible. The error will be modeled as drawn
from a centered normal distribution, δb′p ∼N (0,σ2

BPM).

Response functions for two types of low-pass filters, with various cutoff frequencies fcutoff, are
visualized in Fig. 8.1a. The corresponding transfer functions are displayed in Fig. 8.1b. The
extended bandwidth (Ext. BW) is for all intents and purposes a bunch-by-bunch feedback.
The response function for the exponential filter (EXP) is the exponential function,

wEXP
bb′ = exp

(−2π fcutoff∆t
∣∣b −b′∣∣), (8.3)

where ∆t is the bunch-to-bunch separation. The response functions labeled “ADT” include all
the filtering in the digital signal processing and the analogue chain frequency response of the
LHC transverse feedback system, assuming known bunch measurements [23]. In addition to
the measured center bunch b, the response extends symmetrically over the 32 closest bunch
slots on both sides. The currently lowest reasonable cutoff frequency for the ADT is 0.5MHz.
The ADT also operates with a high-pass filter of lower cutoff frequency, required to make a
bandpass filter. However, it is not considered here as it affects frequencies far below the beam
oscillations frequencies.

The LBW feedback is most valuable when the beam oscillates with LF modes, as driven by an LF
noise. To appreciate the effect of an LBW feedback, the transverse beam oscillation at the BPM
can be decomposed into a single coherent mode pbm = Am cos

(
2π fm tb +φb0

)= Am cos
(
φb

)
and an incoherent momentum pbi ∼N (0,σ2

i ). Equation (8.1) can, with this decomposition,
be rewritten as

pb → pb − g
∑
b′
εb′wbb′(pb′m +pb′i −δb′p )

= pbm(1− gbm)+pbi (1− g )+ gδbΣi + gδbΣp + g Am sin
(
φb

)∑
b′
εb′wbb′ sin

(
φb′ −φb

)
,

(8.4)
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Figure 8.1: Normalized response functions of two types of filters, in time domain in (a)
and in frequency domain in (b), assuming a bunch separation of ∆t = 25ns. The sum of
the normalized response function in time domain, over all neighbors maximally 32 slots
away, is given in (c). The EXP filter is an exponential filter, while the ADT filter replicates the
transverse feedback in the LHC, both of which are fully symmetric in time domain in the range∣∣b −b′∣∣≤ 32, although only b′−b ≥ 0 is shown in (a).

where

gbm = g
∑
b′
εb′wbb′ cos[2π fm∆t (b′−b)] ≤ g Ñ , (8.5)

δbΣi =−
∑

b′ 6=b
εb′wbb′pb′i ∼N (0, (Ñb −1)σ2

i ), (8.6)

δbΣp =
∑
b′
εb′wbb′δb′p ∼N (0, Ñbσ

2
BP M ), (8.7)

Ñb =
∑
b′
εb′wbb′ , (8.8)

Ñ =
∑
b′

w0b′ . (8.9)

The incoherent motion of the individual bunches will be damped with the single-bunch
gain g as before. The coherent multi-bunch motion will be damped with an effective coherent
gain gbm . The incoherent motion results in an unwanted kick gδbΣi per turn and the BPM
noise results in a kick gδbΣp per turn, both acting as a noise with the same spectrum as the
feedback. The last term in Eq. (8.4) comes from the coherent multi-bunch motion of the beam.
It can lead to an emittance growth if not suppressed. It can be minimized by: (i) reducing g ;
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Chapter 8. Optimal transverse feedback gain and bandwidth for long-term beam quality

(ii) reducing Am , which requires a larger gbm ; (iii) reducing the summands, which requires
fm ¿ fcutoff, which is also required to get a large gbm ; (iv) using a symmetric filter so that the
summands cancel. If the bunches are gathered in trains of consecutively filled bunch slots,
separated by multiple empty slots for which εb′ = 0 [1], the last alternative does not work for
the bunches at either end of a train.

If the cutoff frequency is larger than the coherent frequency, fcutoff À fm , the effective coherent
gain will be larger than the single-bunch gain, gbm = g Ñb ≥ g . The sum of the peak-normalized
response function is illustrated for various cutoff frequencies with both considered filter types
in Fig. 8.1c. Since this is the maximum ratio between the effective coherent gain and the single-
bunch gain, max(gbm/g ), it can be seen from this figure that reducing from the Ext. BW to
standard operation of the ADT with fcutoff = 20MHz may already lead to a significant increase
of the effective gain. The same change will only have a marginal impact with the EXP filter.

8.2.2 Emittance growth suppression with a multi-bunch feedback

The motion of the beam can more accurately be modeled as a sum of M coherent modes, as
was introduced in Sec. 3.4. Mode m have coherent frequency fm , as given by Eq. (3.25). The
suppression of the emittance growth rate with incoherent detuning, which for a bunch-by-
bunch feedback is given by Eq. (3.28), becomes a sum over the multi-bunch modes

ε̇

ε0
=

∑
m

Snoise( fm)

2

〈 (
1− gm

2

)2
4π2∆̃Q2( gm

2

)2 + (
1− gm

2

)
4π2∆̃Q2

〉
Ψ

. (8.10)

Equivalently, one gets a new expression for the suppression of the emittance growth rate with
a beam-beam interaction in Eq. (3.29)

ε̇

ε0
= 1− s0

2

∑
m

Snoise( fm)

2

(
1+ gm

2πξBB,tot

)−2

. (8.11)

Here, gm is the effective coherent gain on mode m, which depends on fm as given by Eq. (8.5),
and Snoise is the PSD of the noise. Note that, although the subscript b has been omitted, the
sum must be taken for each bunch separately as the set of neighbors will be bunch dependent.

If the PSD of the external noise is flat up to an upper frequency fmax, it is, by the convention of
normalization adopted in this thesis, related to the kick variance per turn as

Sext( f ) =

σ
2
ext

f 2
rev

2 fmax
, f ∈ [0, fmax]

0 ,otherwise.

(8.12)

For a single-bunch (M = 1) affected by white noise, one has effectively fmax = frev/2, since the
bunch only samples the noise once per turn, returning Eq. (3.11). For M evenly spaced bunch
positions and white noise up to fmax = fb/2, the PSD is Sext( f ≤ fmax) =σ2

ext frev/M . Note that
only the external noise is considered in Eq. (8.12). The BPM noise will be filtered by the LBW
filter, and cannot therefore be included in this manner. However, for an Ext. BW feedback,
one can add g 2σ2

BPM to σ2
ext in Eq. (8.12) to get Snoise, and Eqs. (8.10)–(8.11) will reduce to
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Eqs. (3.28)–(3.29), respectively, as the sum will be over M coherent modes. Note that the
emittance growth from the BPM noise cannot be reduced by increasing the gain.

8.3 Results

Simulations have been run with the tracking code COMBI to study the emittance growth rate
driven by both LF external noise and BPM noise, while damped by feedback systems with
various filters. The default numerical setup is summarized in Tab. 8.1. Variations to this
setup is addressed in the text. The tune spread is caused by Landau octupoles, given by
Eq. (2.28), unless stated otherwise, in which case it is generated by head-on beam-beam
interactions [89]. The prediction of the momentum after the feedback group delay always
assumes the bare machine tunes (0.31,0.32). The LF noise has a flat PSD up to fmax, being an
integer multiple of frev. The signal has been generated by filtering the Fourier transform of
finite length noise signals, whereupon the signals have been concatenated in such a way as to
erase the transition [90, 91]. The strongest noise is typically at the lowest betatron sideband
frequency, which varies between machines. The specific choice of frev does not have a direct
impact on the results. The BPM error is added to the phase space measurements before the
measurements are used to calculate the responses on the various bunches. The emittance
growth rate will be presented in units of a reference emittance growth rate. Unless stated
otherwise, this reference is the emittance growth rate expected with full decoherence and no
BPM noise,

ε̇ref

ε0
= σ2

ext

2τrev
. (8.13)

Table 8.1: Numerical parameters used in the simulations.

Parameter Unit Value
Bunches per beam, Nb [1] 128
Macroparticles per bunch

[
p/b

]
106

Number of turns [1] 105

Bunch spacing, ∆t [ns] 25
Revolution frequency, frev [kHz] 11.245
Fractional transverse tunes, (Qx ,Qy ) (0.31,0.32)
Synchrotron tune, Qs

[
10−3

]
1.9

rms momentum spread, σδ [1] 10−4

Linear chromaticity, Q ′ [1] 0
Octupole in-plane coefficient, ax

1
[
10−3

]
1.09

Octupole cross-plane coefficient, bx
1

[
10−3

] −0.761
Total beam-beam parameter, ξBB,tot

[
10−3

]
7.9

Single-bunch gain, g [1/turn] 0.01
Feedback group delay [turn] 4

External noise amplitude, σext

[
σp turn− 1

2

]
10−3

Upper noise frequency, fmax
[

frev
]

1

1 Equal in the horizontal and vertical planes.
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8.3.1 Dependence on the feedback, noise, and source of detuning

The emittance growth rates of all 128 bunches, kicked by an LF noise and damped with a
single-bunch gain g = 0.01, are presented separately in Fig. 8.2. The agreement with the theory
in Eq. (8.10) is equally good for the Ext. BW feedback as after the extension of the theory to an
LBW feedback. The bunches at either end of the train do not benefit maximally from the LBW
configuration, due to the lack of neighbors, and thus have a smaller effective coherent gain.
Note that the ADT filter reduces the emittance growth rate significantly more than the EXP
filter when going from Ext. BW to fcutoff = 20MHz. This result was expected from the sum of
the normalized response functions displayed in Fig. 8.1c.

The emittance growth rate has been calculated with fcutoff ∈ {0.5,1,2,5,10,20} MHz, in addition
to the Ext. BW. The average emittance growth rate of all 128 bunches, affected only by either
LF noise or BPM noise, is displayed as a function of fcutoff in Fig. 8.3. For the cases with only
BPM noise, the reference emittance growth rate is ε̇ref/ε0 = (gσBPM)2/2τrev. The emittance
growth rate driven by LF noise is suppressed further by reducing fcutoff, and the difference
in the dependence on fcutoff for the two filter types is unmistakable. The emittance growth
rate driven by BPM noise also depends on fcutoff, but to a lesser extent. The main approach to
reduce the BPM noise driven emittance growth rate is to reduce the single-bunch gain or the
BPM error.

The average emittance growth rate with LF noise of various maximum frequencies, fmax, is
displayed in Fig. 8.4. As long as fmax ≤ 1MHz, there is only a marginal increase in the emittance
growth rate for the tested values of fcutoff. As a rule of thumb, reducing the cutoff frequency of
the feedback only suppresses the emittance growth rate further as long as it still covers the
power spectrum of the noise. Note that the PSD is flat for all values of fmax in these simulations.
The noise spectrum in a machine will in general be weaker at larger frequencies.

The average emittance growth rate with a beam-beam interaction, in comparison to octupole
detuning, is displayed in Fig. 8.5. The agreement with the theory for a beam-beam interaction
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Figure 8.2: Emittance growth rate for all 128 neighboring bunches affected by only LF noise,
using the EXP filter in (a) and the ADT filter in (b). The solid lines are the expected emittance
growth rates, calculated with Eqs. (8.5) and (8.10).
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Figure 8.3: Average emittance growth rate for 128 neighboring bunches, affected by either LF
noise or BPM noise, using the EXP filter and the ADT filter. The solid lines are the expected
emittance growth rates due to LF noise, calculated with Eqs. (8.5) and (8.10).
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Figure 8.4: Average emittance growth rate for 128 neighboring bunches affected by LF noise
of various fmax, using the EXP filter in (a) and the ADT filter in (b). The solid lines are the
expected emittance growth rates, calculated with Eqs. (8.5) and (8.10).
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Beaṁbeam⟨ Q ′ =15
Oct pole⟨ Q ′ =0
Oct pole⟨ Q ′ =15

(a)

0.5 1 2 5 10 20 Ext. BW
fc toff  [MHz]

0.0

0.1

0.2

0.3

0.4

0.5

⟨
̇ε⟩
⟩
̇ε r
ef
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Figure 8.5: Average emittance growth rate for 128 neighboring bunches affected by LF noise,
using the EXP filter in (a) and the ADT filter in (b). The solid lines are the expected emittance
growth rates, calculated with Eq. (8.5) and either Eq. (8.10) for octupole detuning or Eq. (8.11)
for beam-beam interactions.
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in Eq. (8.11) is equally good as with the theory for octupole detuning in Eq. (8.10). The emit-
tance growth rate with a beam-beam interaction and zero chromaticity Q ′ = 0 is significantly
lower than with octupole detuning. However, with the introduction of chromaticity, the emit-
tance growth rate increases substantially. In comparison, the emittance growth rate increases
more due to the introduction of chromaticity in addition to a beam-beam interaction, than in
addition to octupole detuning. This is due to a shift of the coherent beam-beam modes due to
chromaticity, as was discussed in greater detail in [41].

8.3.2 Optimal feedback in the LHC and HL-LHC

The goal of this section is to find the optimal cutoff frequency and gain for the LHC in collision,
both now and in the future. In the LHC as of 2018, the ratio between the BPM noise and LF
noise was in both planes of both beams σBPM/σext ≈ 50 [41]. In this section, the emittance
growth rate will be presented in units of ε̇ref/ε0 =σ2

ext/2τrev, the relative rate expected due
to the LF noise with full decoherence, also for the simulations with only BPM noise. The
source of detuning will always be beam-beam interactions, as the goal is to minimize the
emittance growth rate in the LHC in collision. For the same reason, all simulations are run
with the ADT filter. Note that a simplified model of the LHC is used, with a single head-on
interaction per turn, not multiple as was studied for the bunch-by-bunch feedback in [41],
and not including long-range interactions. This is an acceptable choice here, since the main
focus is the impact of the feedback bandwidth on the emittance growth rate, and the main
impact of the beam-beam interactions on the feedback efficiency is through the rms tune
spread. Until further notice, the total beam-beam parameter remains at ξBB,tot = 0.0079.

The simulated average emittance growth rate of 128 bunches with either only LF noise or BPM
noise or both, is presented as a function of both the feedback’s cutoff frequency and the single-
bunch gain in Fig. 8.6, with Q ′ = 0 on the left and Q ′ = 15 on the right. The emittance growth
rate caused by the LF noise is as expected suppressed further by either increasing g or reducing
fcutoff. The emittance growth rate caused by the BPM noise is strongly dependent on g , and
only weakly dependent on fcutoff. The trends are similar with and without chromaticity, except
for a larger emittance growth rate, as was also found in Sec. 8.3.1. Especially the emittance
growth rate driven by the LF noise alone is larger with chromaticity. Furthermore, some
configurations have been stabilized with the introduction of the chromaticity. The emittance
growth rates in the simulations with both types of noise are equal to the sum of the growth
rates found with each type of noise separately, with a STD of the relative error of 4.3% with
Q ′ = 0 and 3.0% with Q ′ = 15. The optimal gain with both types of noise is in general smaller
for a smaller cutoff frequency. The minimal emittance growth rate at the optimal gain for
cutoff frequencies 0.5MHz, 20MHz and Ext. BW are gathered in Tab. 8.2. It has been tested
experimentally to operate the LHC with Ext. BW, but it was found that this led to a significantly
increased emittance blow-up [92], in agreement with these results. Therefore, the LHC was in
run 2 operated with fcutoff = 20MHz when in collision.

An ongoing project at CERN is to reduce the BPM error. If one could halve the BPM error, the
BPM noise driven emittance growth rate would be divided by 4, leading to the total emittance
growth rates presented in Fig. 8.7, with both Q ′ = 0 and Q ′ = 15. The values are weighted sums
of the corresponding simulations with only one type of noise. The reduction of the BPM noise
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(a) LF noise and Q ′ = 0.
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(b) LF noise and Q ′ = 15.
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(c) BPM noise and Q ′ = 0.
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(d) BPM noise and Q ′ = 15.
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(e) LF and BPM noise and Q ′ = 0.
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(f) LF and BPM noise and Q ′ = 15.

Figure 8.6: Average emittance growth rate for 128 bunches separated by 25ns, in configura-
tions with a beam-beam interaction of ξBB,tot = 0.0079. (a,b) are run with only LF noise, (c,d)
are run with only BPM noise, and (e,f) are run with both such that σBPM = 50σext. (a,c,e) are
run with Q ′ = 0 and (b,d,f) are run with Q ′ = 15. Note the different color scales for the different
chromaticities. The black crosses mark the simulations. The area marked gray contains con-
figurations ( fcutoff, g ) for which the feedback loop is unstable. The configurations at the edge
of the gray area are stable. The white curves are contours of constant maximum coherent gain
g Ñ .
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Figure 8.7: Average emittance growth rate for 128 bunches separated by 25ns, with both
LF noise and half the current BPM noise in the LHC, σBPM = 25σext, in a configuration with
a beam-beam interaction and Q ′ = 0 in (a) and Q ′ = 15 in (b). The black crosses mark the
simulations. The area marked gray contains configurations ( fcutoff, g ) for which the feedback
loop is unstable. The configurations at the edge of the gray area are stable. The white curves
are contours of constant maximum coherent gain g Ñ .

allows for more optimal configurations with all bandwidths, and a larger single-bunch gain in
general, as seen by the minimal emittance growth rates and optimal gains gathered in Tab. 8.2.

The simulations have been rerun with ξBB,tot = 0.022 and Qs = 0.0021. This is the total head-on
beam-beam parameter in the HL-LHC. With a larger tune spread, a larger gain is required
to suppress the emittance growth rate. The minimal emittance growth rate and optimal
gain for Q ′ = 0 and Q ′ = 15 are gathered in Tab. 8.2. With Q ′ = 0 and the current noise ratio,
σBPM = 50σext, the Ext. BW is not able to suppress the emittance growth rate. Note that the
prediction without chromaticity by Eq. (3.29) is ε̇= 0.175ε̇ref. With this larger beam-beam
parameter, a chromaticity of 15 units increases the emittance growth rate less. For the initial
noise ratio as in the LHC, σBPM = 50σext, the emittance growth rate is approximately flat up to
g < 0.01, from where it increases due to the BPM noise. The feedback is barely able to suppress
the total emittance growth rate, as was also found experimentally [41], but is still needed to
keep the beam stable.

If the goal of reducing the BPM error toσBPM = 25σext is achieved in the HL-LHC, the feedback
does help, but less than with the smaller beam-beam parameter, as listed in Tab. 8.2. This
is because more noise energy will enter discrete beam-beam modes that do not lead to
emittance growth. Assuming the same external noise as in the LHC, the noise in collision in
the HL-LHC is σext = 4.65×10−5 in units of the beam size [5, 41], which causes a reference
emittance growth rate with full decoherence of ε̇ref/ε0 = 4.4%/h. Hence, with Q ′ = 15 in the
model simulated here, equivalent to two head-on beam-beam interactions with equal phase
advances between the IPs for the two beams, the optimal Ext. BW feedback, with g = 0.0163,
suppresses the emittance growth rate to 1.34%/h. The optimal LBW feedback, with g = 0.0125
and fcutoff = 0.5MHz, manages to suppress it further to 0.70%/h. With a more realistic model
of the machine, featuring in particular long-range interactions and different phases between
the IPs for the two beams, the discrete beam-beam modes are expected to reach the incoherent
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Table 8.2: Minimal emittance growth rate and corresponding optimal gain for a given cutoff
frequency, beam-beam parameter, noise ratio, and chromaticity.

ξBB,tot = 7.9×10−3

σBPM = 50σext σBPM = 25σext

Q ′ = 0 Q ′ = 15 Q ′ = 0 Q ′ = 15
fcutoff g [10−2] ε̇ [ε̇ref] g [10−2] ε̇ [ε̇ref] g [10−2] ε̇ [ε̇ref] g [10−2] ε̇ [ε̇ref]
Ext. BW 0.67 0.165 1.41 0.523 2.83 0.130 4.58 0.293
20MHz 0.92 0.095 0.94 0.225 2.07 0.049 2.01 0.105
0.5MHz 0.70 0.070 0.75 0.149 1.00 1 0.031 1.83 0.054

ξBB,tot = 2.2×10−2

σBPM = 50σext σBPM = 25σext

Q ′ = 0 Q ′ = 15 Q ′ = 0 Q ′ = 15
fcutoff g [10−2] ε̇ [ε̇ref] g [10−2] ε̇ [ε̇ref] g [10−2] ε̇ [ε̇ref] g [10−2] ε̇ [ε̇ref]
Ext. BW 0.33 0.200 0.76 0.358 1.79 0.179 1.63 0.306
20MHz 0.55 0.161 0.62 0.267 1.88 0.107 1.72 0.194
0.5MHz 0.37 0.147 0.39 0.245 1.00 1 0.085 1.25 0.161

1 Do not consider gains larger than the largest stable gain in simulations.

spectrum. In these conditions the emittance growth rate can be larger than predicted here by
a factor up to 2.5 [41].

8.4 Conclusion

Transverse feedback systems are required in modern hadron colliders to maintain beam
stability and a small beam emittance, and thereby a high luminosity. One main source of
emittance growth is the external noise. Analytical theories have been derived in the past to
calculate the suppression of the noise driven emittance growth rate with an Ext. BW/bunch-
by-bunch feedback. It still remains to accurately include a linear chromaticity theoretically,
even with the bunch-by-bunch feedback. In this chapter, these theories have been extended
to an LBW/multi-bunch feedback, for which a coherent gain gm has been found for each
coherent mode of frequency fm . The coherent gain will in general be larger than the single-
bunch gain g , and thus further suppress the external noise driven emittance growth rate, if the
cutoff frequency of the feedback is larger than the coherent mode frequency, fcutoff > fm . The
coherent gain does not fundamentally depend on the feedback cutoff frequency, but on the
discrete sum of the response function over the neighboring bunches. Thus, different feedback
filters with the same cutoff frequency can have different efficiencies gm/g . The extended
theories agree quantitatively with multi-beam multi-bunch multi-particle simulations.

The predicted emittance growth rates for various feedback systems depend on the noise model
used in the calculations and simulations. The PSD of the external noise is both expected by
theories and measured experimentally to be strongest at low frequencies in general. In the
LHC, the noise is currently believed to mainly be below the revolution frequency. Such a noise
spectrum will tend to drive coherent modes of low coherent frequencies, supporting the use of
an LBW feedback. There are currently several ongoing projects that aim at better describing the
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possible sources of noise in the LHC, both what they are and how much they affect the beams,
with the goal of getting a more accurate description of the PSD of the external noise. An update
of the noise model will naturally prompt an update of the predicted emittance growth rates.

In addition to the external noise, the feedback introduces additional noise on its own, due
to BPM errors. The corresponding emittance growth rate has been found to be only weakly
dependent on the feedback bandwidth, but increases for larger single-bunch gains g . When
the BPM error is non-negligible, LBW feedbacks are superior in limiting the total emittance
growth rate, as one can reduce fcutoff and g simultaneously, while keeping gm constant. This
has been found both in simulations and in experiments.

The ultimate goal of this study was to find the optimal configuration of a feedback, which is
the value pair ( fcutoff, g ) that minimizes the total emittance growth rate, while keeping the
beam stable. The optimum depends on the amplitudes of the noise sources, the feedback
type, the source and magnitude of the detuning, and thereby the machine. In the LHC in
collision in 2018, both the external noise and BPM noise were non-negligible. It was found
experimentally advantageous to operate with an LBW feedback with fcutoff = 20MHz, with
respect to the Ext. BW, a result which has been reproduced here with a simplified numerical
model of the LHC. Yet, the optimal feedback working point would have been an LBW feedback
with the lowest possible fcutoff = 0.5MHz and g = 0.0075. This optimum would have achieved
a reduction of the emittance growth rate of 72% compared to the optimal Ext. BW feedback,
and a reduction of 34% compared to the optimum with fcutoff = 20MHz. However, this working
point is close to the feedback stability limit, which must be considered in more detail, both
theoretically and experimentally. Thus, this study does not encourage efforts towards further
reducing the lowest possible cutoff frequency of the LBW feedback in the LHC. The linear
chromaticity did not strongly affect the optimal feedback working point. However, it was
found that reducing the chromaticity both suppresses the emittance growth rate further
and affects the loop stability. Whether the chromaticity should be changed in operation is
first and foremost a question of beam stability, and a possible reduction would have to be
investigated further with this in mind. By reducing the BPM error, the emittance growth rate
will be more dominated by external noise, and the LHC can be operated more optimally with
a larger gain. Without reducing the BPM error, the feedback in the HL-LHC will only be able
to marginally suppress the emittance growth rate. Nevertheless, the feedback will still be
valuable in maintaining beam stability.
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The bunched particle beams in high-energy hadron colliders are subject to many mech-
anisms that reduce or limit the beam quality, and thereby reduce the number of collisions
delivered to the experiments. The scope of this thesis has been to explain how noise impacts
the beam quality in high-energy hadron colliders, both in terms of beam instabilities and emit-
tance growth. A new diffusion mechanism, leading to a loss of Landau damping of coherent
instabilities with a latency, has been identified and described with an analytical model. In
addition, the improved suppression of the noise driven emittance growth of colliding beams
with a multi-bunch feedback system has been proposed and investigated.

Observations had been made in the past of instabilities developing in the LHC after prolonged
stays in configurations that were predicted to be stable by well-established linear Vlasov the-
ories, assuming Gaussian transverse bunch distributions. In Part II of this thesis, a detailed
explanation of a mechanism causing these observations have been put forward, and such
instabilities have been reproduced in a dedicated experiment in the LHC. The existence of
a nonzero latency suggested that the loss of Landau damping was driven by a slow change
of the bunch distribution. Such a distribution change cannot be explained by linear Vlasov
theories. By expanding to second order, the distribution change, and corresponding loss of
Landau damping, has been explained by a noise and wakefield driven diffusion. The diffusion
is narrow in frequency and causes a local flattening of the distribution, exactly at the critical
frequency of the least stable wakefield driven headtail mode. In most cases, the local flattening
corresponds to the drilling of a borehole in the stability diagram at the critical frequency,
which can cause a loss of Landau damping. Other mechanisms can cause a similar diffu-
sion, but not systematically at the critical frequency. An analytical formula for the latency
— Eqs. (6.34)–(6.36) — has been derived. The distribution evolution and corresponding stabil-
ity evolution has also been solved numerically with the PDE solver PyRADISE, which has been
developed for this specific purpose. The analytical formula and numerical solver agree well
with latencies measured in the dedicated experiment conducted in the LHC.

One of the most effective techniques found to increase the latency, and thereby mitigate the
loss of Landau damping, is to operate the machine with a large stability margin, i.e. with more
detuning than required to stabilize a Gaussian beam. Hence, this thesis explains why it in the
past has been found necessary to operate the LHC with approximately twice as high octupole
current as predicted to be sufficient by linear theories, initially implemented in operation
based on empirical evidence only. By exploring the parameter space in the light of this new
mechanism, alternative operational settings were found that would extend the latency in
the LHC by an order of magnitude, such that this mechanism would no longer be a concern
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for safe machine operation. Furthermore, the new theory also allows to investigate future
machines, such as the HL-LHC, including the estimation of the impact of new devices such as
crab cavities, which will be important in the design of these machines.

The BPM noise generated by the transverse feedback system itself, caused by BPM measure-
ments of finite accuracy, has in the past been identified as a potential performance limitation
for future colliders. Since the external noise content in the LHC is at low frequencies compared
to the bunch repetition frequency, a multi-bunch feedback, damping a bunch based on the
measurements of its neighbors as well as itself, has been suggested as a means to reduce
the overall emittance growth rate. In Part III of this thesis, the impact on the beams of a
multi-bunch transverse feedback system and low-frequency external noise has been studied
in general, and for the LHC in particular. To study the emittance growth rate in collision nu-
merically, a new parallel multi-beam multi-bunch algorithm was devised and implemented in
the particle tracking code COMBI. It has been found superior in terms of computing efficiency
compared to the previous algorithm. To study the emittance growth rate theoretically, two the-
ories for the suppression of the emittance growth rate with a bunch-by-bunch feedback have
been extended to a multi-bunch feedback. An expression for an effective gain per multi-bunch
mode has been derived — Eq. (8.5) — which is dependent on the single-bunch gain and cutoff
frequency of the feedback filter, as well as the coherent frequency of the multi-bunch mode.
As a rule of thumb, reducing the cutoff frequency reduces the emittance growth rate as long
as it still covers the power spectrum of the noise. In the LHC, where most of the noise power
is at frequencies in the order of kHz and the cutoff frequencies are in the order of MHz, this
condition is always fulfilled. When the BPM error is non-negligible, multi-bunch feedbacks
have been found superior to bunch-by-bunch feedbacks in limiting the total emittance growth
rate in theory, simulations, and experiments. The reason is that one can reduce the cutoff
frequency and single-bunch gain simultaneously, and thereby reduce the BPM noise, while
keeping the effective multi-bunch gain constant.

The ultimate goal of this study was to find the optimal working point of the transverse feedback
system, which has been defined as the cutoff frequency and single-bunch gain that minimizes
the total emittance growth rate due to dipolar noise, while maintaining beam stability. The
optimum depends on the amplitudes of the different noise signals, the feedback type, the
source and magnitude of the detuning, and thereby the machine. In the LHC in collision in
2018, both the external noise and BPM noise were non-negligible. It was experimentally found
advantageous to operate with a multi-bunch feedback with a cutoff frequency of 20MHz,
equal to half the bunch repetition frequency, with respect to a bunch-by-bunch feedback. Yet,
it has here been found numerically, with a simplified model of the machine, that the minimal
emittance growth rate would have been achieved with the currently lowest possible cutoff
frequency of 0.5MHz. This optimum would have achieved a reduction of the emittance growth
rate of 72% compared to the optimal bunch-by-bunch feedback, and it is achievable with the
currently implemented technology. By improving the BPM accuracy as planned, the emittance
growth rate will be more dominated by external noise, and the LHC can be operated more
optimally with a larger single-bunch gain. If one could halve the BPM error, it has been found
that the minimal emittance growth rate would be suppressed by another factor of about 2.
Without improving the BPM accuracy, the feedback in the HL-LHC would only be able to
marginally suppress the emittance growth rate, due to the increased beam-beam tune shift in
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comparison to the LHC. In that case, the beam quality will be limited by the BPM noise even
with a multi-bunch feedback.

Future development

In this thesis, various studies have been presented that has deepened the understanding of
how noise impacts the beam quality in high-energy hadron colliders. This work has opened
new paths for research and development, both in the understanding of the noise and its
impacts, and in improving the machine operation. For instance, investigations are currently
ongoing at CERN that aim at better describing the power spectrum of the noise in the LHC,
which will enable more precise predictions of the consequences of the noise. In addition, the
noise amplitude in the LHC will also be reduced thanks to e.g. upgrading the BPM hardware
and thereby reducing the BPM noise.

Regarding the noise and wakefield driven mechanism of loss of Landau damping due to
diffusion, there are various aspects that deserve further attention:

• Investigate alternative models of the beam response, compared to the current under-
damped stochastic harmonic oscillator with frequency found by a linear extrapolation.

• Study the impact of crab cavity amplitude noise, which gives a large noise moment ηm1

to headtail modes. This is critical to understand the consequences for the HL-LHC. It
may be found necessary to not crab the beams until they are brought into collision.

• Perform experiments showing the qualitative effect of the diffusion. The local flattening
in 2D action space is not resolvable with beam profile measurements, but the drilling of
a borehole in the stability diagram should be observable through measurements of the
beam transfer function.

• This mechanism explains why it is necessary to operate a machine with a stability
margin relative to the predicted linear stability threshold for a Gaussian bunch. The
new diffusive stability threshold should be used in operation instead, which predicts
stability also after a given latency.

Regarding the minimization of the emittance growth rate driven by external noise and BPM
noise with a multi-bunch feedback, there are also aspects that deserve further attention:

• Use the new parallel algorithm to study Landau damping of multi-bunch beam-beam
modes in the presence of wakefields. Including the wakefields will add stricter require-
ments to the stabilization of the beams and may affect the emittance growth rate.

• Use the new parallel algorithm to study more complex multi-bunch beam models,
including additional beam-beam interactions per turn. This will affect the discrete
beam-beam modes, and thereby the emittance growth rate.

• Understand better the role of chromaticity as a source of detuning in the suppression
of the emittance growth rate. This is still an open question also for a bunch-by-bunch
feedback.

• Based on the current knowledge of the noise in the LHC, it is suggested to operate the
transverse feedback system with a lower cutoff frequency than the standard 20MHz,
used in 2018, to reduce the emittance growth rate. The feasibility of this option should
be investigated experimentally and may, later on, prove beneficial also in operation.
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A The linearized Vlasov equation and
the stability diagram

In this appendix, the derivation of the stability diagram by J. S. Berg and F. Ruggiero [34] is
repeated, adapted to the notation in this thesis and including some additional comments and
results.

Consider a linear oscillator that is excited by impulses ∆p = ε fx (t ) as in Eq. (3.17). This can be
modeled with a perturbed Hamiltonian

H =H0(Jx , Jy )−
√

2Jx cos
(
φx

)
ε fx (t ), (A.1)

where H0(Jx , Jy ) is the equilibrium Hamiltonian, generating a 2D tune spread, and fx (t ) is a
weak impulse function acting in the horizontal plane. Similarly, the distribution is perturbed

Ψ(φx , Jx ,φy , Jy ) = 1

(2π)2

[
Ψ0(Jx , Jy )+εΨ1(φx , Jx , Jy , t )

]
, (A.2)

where the equilibrium distributionΨ0 is assumed to be uniformly distributed in the transverse
phases, and the perturbation Ψ1 is uniformly distributed in the vertical phase. The linear
Vlasov equation in action-phase coordinates can then be written as

∂Ψ1

∂t
+ωx0(Jx , Jy )

∂Ψ1

∂φx
−

√
2Jx sin

(
φx

)
fx (t )

∂Ψ0

∂Jx
= 0, (A.3)

where ωx0(Jx , Jy ) = ∂H0/∂Jx . The equilibrium terms, which are to zeroth order in ε, have
canceled each other by definition, and the second-order terms are negligible compared to the
first-order terms that make up Eq. (A.3).

The goal is to find the response of the distribution to the excitation fx (t ), which can be done
per frequency. Consider in general

ε fx (t ) = A exp(−iΩt ), (A.4)

with a (complex) frequency Ω. In the interesting regime when Ω is close to ωx0, it can be
assumed that the driven perturbation behaves like

Ψ1 = hx (Jx , Jy )exp
[−i (φx +Ωt )

]
. (A.5)
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Thus, the linearized Vlasov equation, after averaging over φx , gives

hx (Jx , Jy ) =
A

√
Jx

2

∂Ψ0

∂Jx

Ω−ωx0
. (A.6)

The offset of the COM can next be calculated as

〈x〉Ψ = 1

(2π)2

2π∫
0

dφx

2π∫
0

dφy

∞∫
0

dJx

∞∫
0

dJy x(Ψ0 +εΨ1)

= ε

(2π)2

2π∫
0

dφx

2π∫
0

dφy

∞∫
0

dJx

∞∫
0

dJy

√
2Jx cos

(
φx

)
hx (Jx , Jy )e−i (φx+Ωt )

= ε fx (t )

2

∞∫
0

dJx

∞∫
0

dJy

Jx
∂Ψ0

∂Jx

Ω−ωx0(Jx , Jy )

≡ ε fx (t )R(Ω),

(A.7)

where R(Ω) is defined in this thesis as the response to an excitation at frequencyΩ.

Now, it is time to consider different types of excitations. First, if the excitation is driven
by wakefields from rigid dipole oscillations, the excitation is proportional to the COM. The
frequency of the COM isω0 without the wakefields, andωcoh =ω0+∆ωcoh when including the
wakefields. The strength of the excitation can be found by rewriting the EOM in Eq. (3.17) as

¨〈x〉Ψ+ω2
0 〈x〉Ψ = (

ω2
0 −ω2

coh

)〈x〉Ψ ≈−2ω0∆ωcoh 〈x〉Ψ =−ω0ε fx (t ), (A.8)

where the approximation assumes a small frequency shift ∆ωcoh. This is equivalent to as-
suming that the wake force driving the instabilities is weak, known as the weak headtail
approximation. Hence,

ε fx (t ) =−2∆ωcoh 〈x〉Ψ . (A.9)

Combining Eqs. (A.7) and (A.9) gives

−1

∆ωcoh
= 2R(Ω), (A.10)

where ωcoh is the complex frequency of a rigid bunch (without a frequency spread), and Ω
is the complex frequency of the COM of a bunch that consists of linear oscillators with a
frequency spread. In the limit Im{Ω} → 0+, Eq. (A.10) is the stability diagram, the limit for how
strong impedance driven modes can be stabilized by Landau damping.

Secondly, if the excitation is independent of the beam, such as due to dipolar noise

ε fx (t ) = ξ(t ), (A.11)
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one finds the beam transfer function

〈x〉Ψ
ξ

= R(Ω), (A.12)

giving the response of the COM due to an excitation at frequencyΩ, which is assumed to have
an infinitesimal positive imaginary part.

Finally, if there is both a dipolar noise and impedance

ε fx (t ) = ξ(t )−2∆ωcoh 〈x〉Ψ , (A.13)

it has been suggested to model the response as [93]

〈x〉Ψ
ξ

= R(Ω)

1+2R(Ω)∆ωcoh
. (A.14)

This expression assumes dipolar kicks from both the noise and the wakefields. That is typically
not the case, and it should be verified whether this is correct for more realistic wakefields.
However, such a verification study did not fit within the scope of this thesis.
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B The Fokker-Planck equation

In this appendix, two different approaches are taken to derive the Fokker-Planck equation.
When the noise is coherent, an essential assumption in both derivations is that the phase
relaxation to a uniform distribution, due to e.g. detuning, is faster than the diffusion time.

B.1 Master equation

Disclaimer: This section was adapted from the following article — with permissions
of the co-author and publisher:

[52] S. V. Furuseth and X. Buffat, “Long-term evolution of Landau damping in the
presence of transverse noise, feedback, and detuning”, Phys. Rev. Accel. Beams
23, p. 034401, 2020. doi:10.1103/PhysRevAccelBeams.23.034401

It was published under CC-BY 4.0.
My contribution: All results presented here.

In this section, the goal is to derive the Fokker-Planck equation described by Eqs. (5.7)–(5.8).
To do so, one can write the master equation [94, 95], a convolution of the bunch distribution
before a kick,Ψ(t ), with the probability distribution of the action change due to the kick, ϕ(∆),

Ψ(J , t +τ) =
∞∫

−∞
Ψ(J −∆, t )ϕ(∆; J −∆,Ψ)d∆, (B.1)

where ∆ represents the change of action. The action will only change in the plane of the kick.
The particles are assumed uniformly distributed in the canonical phase φ. The dependence of
∆ on φ has been taken into account in the probability distribution ϕ(∆). By doing so, the 2D
problem has become a 1D problem. All terms on the RHS are evaluated at time t .

The next step is to Taylor expand the integrand around J , which to second order gives

Ψ(J , t +τ) =
∞∫

−∞

{
Ψ(J , t )ϕ(∆; J ,Ψ)−∆∂J

[
Ψ(J , t )ϕ(∆; J ,Ψ)

]+ ∆2

2
∂2

J

[
Ψ(J , t )ϕ(∆; J ,Ψ)

]}
d∆.

(B.2)
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Appendix B. The Fokker-Planck equation

The distributionΨ(J , t ) and the partial differentiation ∂J (·) do not depend on ∆, and can be
moved outside the integral, while the change magnitude ∆ is a variable that does not depend
on J , and can be moved inside the partial differentiations. The integral of the first term is the
normalization integral, which is equal to 1, giving

Ψ(J , t +τ)−Ψ(J , t )=−∂J

Ψ(J , t )

∞∫
−∞

∆ϕ(∆; J ,Ψ)d∆

+∂2
J

Ψ(J , t )

∞∫
−∞

∆2

2
ϕ(∆; J ,Ψ)d∆

 . (B.3)

Finally, divide by the short time τ between kicks to get a time derivative on the LHS. One then
arrives at the Fokker-Planck equation [63]

∂tΨ=−∂J (UΨ)+∂2
J

(
D̃Ψ

)
, (B.4)

with drift and diffusion coefficients given by

U (J ,Ψ) =
∞∫

−∞

∆

τ
ϕ(∆; J ,Ψ)d∆, (B.5)

D̃(J ,Ψ) =
∞∫

−∞

∆2

2τ
ϕ(∆; J ,Ψ)d∆, (B.6)

respectively. In most of this thesis, an alternative convention for the diffusion coefficient is
used: D ≡ D̃/J . This convention is more convenient, as a constant D corresponds to a uniform
diffusion in phase space.

B.2 Liouville theorem

In this section, the goal is to derive the Fokker-Planck equation described by Eqs. (6.20)
and (6.21). It will be derived for one transverse plane, based on the derivation in App. A of [74].
The dynamics is modeled by a stochastic Hamiltonian

H =H0 +εH1 +ε2H2 +O
(
ε3)

=H0(J )+εξ(t )V (φ, J )+O
(
ε3),

(B.7)

where a term of O (ε) is assumed to be weak. Note that ε is merely a tag denoting the size of the
term it is multiplied with, it carries no physical value and can be set to 1. The stochastic factor
ξ(t ) is assumed to have zero mean and finite correlation period

〈ξ(t )〉t = 0 , lim
τ→∞〈ξ(t )ξ(t +τ)〉t = 0. (B.8)

There is assumed no term in the Hamiltonian of O
(
ε2

)
, which is reasonable both for an external

noise source and a wake force, as will be checked later.

The evolution of the bunch distribution, when acted on by the perturbed Hamiltonian in
Eq. (B.7), is found by considering the Liouville theorem, given mathematically by Eq. (2.44). In
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B.2. Liouville theorem

1D, it can be written as
∂Ψ

∂t
+ ∂H

∂J

∂Ψ

∂φ
− ∂H

∂φ

∂Ψ

∂J
= 0, (B.9)

where also the distribution will be written as a perturbation

Ψ=Ψ0(J )+εΨ1(φ, J )+ε2Ψ2(φ, J )+O
(
ε3). (B.10)

Without the stochastic perturbation, the distribution is equal toΨ0, which is assumed uni-
formly distributed in φ due to the fast angular rotation frequency

Ω= lim
ε→0

φ̇= ∂H0(J )

∂J
, (B.11)

compared to the slow unperturbed change of action

lim
ε→0

J̇ =−∂H0(J )

∂φ
= 0. (B.12)

To O
(
ε0

)
, Eq. (B.9) reads

∂Ψ0

∂t
+Ω∂Ψ0

∂φ
= ∂Ψ0

∂t
= 0, (B.13)

where the assumption ofΨ0 being uniformly distributed in φ was used. Hence, without the
stochastic perturbation, the distribution does not change with time.

To O
(
ε1

)
, Eq. (B.9) reads

∂Ψ1

∂t
+Ω∂Ψ1

∂φ
= ξ(t )

[
∂V (φ, J )

∂φ

∂Ψ0(φ, J , t )

∂J

]
, (B.14)

which can be written as

∂

∂τ
Ψ1(φ+Ωτ, J , t +τ) = ξ(t +τ)

[
∂V (φ+Ωτ, J )

∂φ

∂Ψ0(φ+Ωτ, J , t +τ)

∂J

]
≡ ξ̃

[
∂Ṽ

∂φ

∂Ψ̃0

∂J

]
,

(B.15)

where the notation f̃ ≡ f (t +τ), as opposed to f ≡ f (t ), is introduced for brevity. By assuming
an unperturbed initial condition, Ψ1(t = 0) = 0, Eq. (B.15) can be solved by performing the
stochastic integral

Ψ1(φ, J , t ) =
0∫

−t

dτξ̃

[
∂Ṽ

∂φ

∂Ψ̃0

∂J

]
. (B.16)

This first-order distribution perturbation can reach a large oscillatory amplitude, but its
average value in time will be 〈Ψ1〉t = 0, due to the assumption of zero mean in Eq. (B.8).

To O
(
ε2

)
, Eq. (B.9) reads

∂Ψ2

∂t
+Ω∂Ψ2

∂φ
= ξ(t )

[
∂V

∂φ

∂Ψ1

∂J
− ∂V

∂J

∂Ψ1

∂φ

]
, (B.17)
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Appendix B. The Fokker-Planck equation

which after insertion of Eq. (B.16) becomes

∂Ψ2

∂t
+Ω∂Ψ2

∂φ
=

0∫
−t

dτξξ̃

[
∂V

∂φ

∂

∂J

(
∂Ṽ

∂φ

∂Ψ̃0

∂J

)
− ∂V

∂J

∂

∂φ

(
∂Ṽ

∂φ

∂Ψ̃0

∂J

)]

=
0∫

−t

dτξξ̃

[
∂

∂J

(
∂V

∂φ

∂Ṽ

∂φ

∂Ψ̃0

∂J

)
− ∂

∂φ

(
∂V

∂J

∂Ṽ

∂φ

∂Ψ̃0

∂J

)]
.

(B.18)

Additional steps can be taken to make Eq. (B.18) more readily solvable: (i) Due to the fast
angular rotation, it is reasonable to average over φ. As a consequence, the second term
on both sides of Eq. (B.18) vanishes due to the fundamental theorem of calculus; (ii) It was
found in Eq. (B.13) thatΨ0 was constant, meaning that Ψ̃0 =Ψ0; (iii) Since ξ is stochastic, it is
necessary to get an expectancy value over time; (iv) Unlike the stochastic evolution ofΨ1, of
zero expected value,Ψ2 will evolve systematically towards a non-negligible perturbation, given
enough time. Hence, a new distribution named the equilibrium distributionΨeq ≡Ψ0 +ε2Ψ2

is introduced. Combining all of this, the evolution of the equilibrium distribution can to
leading order be written as the Fokker-Planck equation

∂Ψeq

∂t
= ∂

∂J

[
JD

∂Ψeq

∂J

]
, (B.19)

where the action dependent diffusion coefficient is given by

D = lim
ttot→∞

1

J ttot

ttot∫
0

dt

0∫
−t

dτε2
〈
ξ(t )ξ(t +τ)

∂V (t )

∂φ

∂V (t +τ)

∂φ

〉
φ

= lim
ttot→∞

1

J ttot

ttot∫
0

dt

t∫
0

dsε2
〈
ξ(t )ξ(s)

∂V (t )

∂φ

∂V (s)

∂φ

〉
φ

= lim
ttot→∞

1

2J ttot

ttot∫
0

dt

ttot∫
0

dsε2
〈
∂H1(t )

∂φ

∂H1(s)

∂φ

〉
φ

= lim
ttot→∞

1

2J ttot

t0+ttot∫
t0

dt

t0+ttot∫
t0

ds
〈

J̇ (t ) J̇ (s)
〉
φ ,

(B.20)

where the initial time was generalized in the last step. Equations (B.19) and (B.20) describe
a diffusion mechanism. The evolution of the second-order distribution perturbation Ψ2

constitutes the slow-and-steady evolution of the equilibrium distribution. When returning
to the scope of this thesis, it can therefore be understood that Ψ2 will not drive wakefields,
and the second-order wakefield Hamiltonian H2 will therefore be zero, as was assumed here,
initially.
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C Change of action after a kick with
decoherence and feedback

Disclaimer: This appendix was adapted from the following articles — with permissions
of the co-author and publishers:

[62] S. V. Furuseth and X. Buffat, “Change of beam distribution due to decoherence
in the presence of transverse feedback”, in J. Phys.: Conf. Ser. 1350, May 2019,
p. 012118. doi:10.1088/1742-6596/1350/1/012118

[52] S. V. Furuseth and X. Buffat, “Long-term evolution of Landau damping in the
presence of transverse noise, feedback, and detuning”, Phys. Rev. Accel. Beams
23, p. 034401, 2020. doi:10.1103/PhysRevAccelBeams.23.034401

Both were published under a CC-BY, 3.0 and 4.0, respectively.
My contribution: All results presented here.

In this appendix, the expression in Eq. (5.2) for the change of action after an initial kick,
∆p = k, when the particles are influenced by both an incoherent source of detuning and a
transverse feedback system, is derived [52]. To do so, the transverse phase space coordinates
of a particle after the initial kick will be referred to as

ρ ≡ x + i p, (C.1)

while the position just prior to the kick will be denoted ρeq = x0 + i p0, such that ρ0 = ρeq + i k.
It follows that the COM of the bunch is referred to as〈

ρ
〉≡ 〈

ρ
〉
Ψ = 〈x〉Ψ+ i

〈
p

〉
Ψ , (C.2)

where the angle brackets in this appendix always refer to the average over the distribution.
Equivalently, the tune of the COM is denoted 〈Q〉 ≡ 〈Q〉Ψ. The transverse offset will be reduced
by the transverse feedback system towards the design trajectory by a factor called the gain g .
Assuming a perfect immediate feedback, the evolution of the COM from one turn to the next
is given by 〈

ρ1
〉= 〈

ρ0
〉

e−i 2π〈Q〉 (1− g
2

)
. (C.3)
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Appendix C. Change of action after a kick with decoherence and feedback

The initial COM offset,
〈
ρ0

〉= i k, will after n turns be〈
ρn

〉= 〈
ρ0

〉
e−i 2π〈Q〉n (

1− g
2

)n n→∞−−−−→ 〈
ρ0

〉
e−i 2π〈Q〉n e−

g
2 n , (C.4)

with a damping time of τg = 2/g turns. It is assumed that the reduction of the COM amplitude
due to the tune spread is negligible compared to the reduction due to the transverse feedback
system.

After many turns, the COM tends to the origin in the limit ng À 1. The position of an individual
particle, with a constant tune offset ∆̃Q =Q −〈Q〉 from the COM tune, will become

ρn = e
−i 2π

n−1∑
j=0

(〈Q〉+∆̃Q j )
ρ0−

〈
ρ0

〉 g
2

n−1∑
j=0

(
1− g

2

) j
e

i 2π
j−1∑
l=0
∆̃Ql


= e−i 2π(〈Q〉+∆̃Q)n

(
ρ0−

〈
ρ0

〉 g
2

1− (
1− g

2

)
e i 2π∆̃Q

)

= e−i 2π(〈Q〉+∆̃Q)n

ρeq+
〈
ρ0

〉 (
1− g

2

)(
1− e i 2π∆̃Q

)
1− (

1− g
2

)
e i 2π∆̃Q

 ,

(C.5)

where ρeq = ρ0 −
〈
ρ0

〉
is the position of the particle just prior to the kick. In going from line

1 to line 2, one has assumed that 〈Q〉 and ∆̃Q are constant during the process, and one has
taken the sum of the geometric series. Assuming the kicks are small, this expression can easily
be extended to include more kicks as

〈
ρ0

〉→∑m
j=0 i k j e i 2πQ j .

It follows from Eq. (2.23) that the action n turns after the kick is

2Jn = x2
n +p2

n = ρnρn =
∣∣ρn

∣∣2, (C.6)

where the horizontal line signifies a complex conjugation. Filling in, remembering that ρeq

and
〈
ρ0

〉
are complex numbers,

2Jn =e i 2π(〈Q〉+∆̃Q)n

(
ρeq+

〈
ρ0

〉(
1− g

2

)
(1−e−i 2π∆̃Q )

1−(
1− g

2

)
e−i 2π∆̃Q

)
e−i 2π(〈Q〉+∆̃Q)n

(
ρeq+

〈
ρ0

〉 (
1− g

2

)
(1−e i 2π∆̃Q )

1−(
1− g

2

)
e i 2π∆̃Q

)

=
∣∣ρeq

∣∣2+
∣∣〈ρ0

〉∣∣2

(
1− g

2

)2
(1−e−i 2π∆̃Q )(1−e i 2π∆̃Q )

1+(
1− g

2

)(
1− g

2 −e−i 2π∆̃Q−e i 2π∆̃Q
) +(

ρ0
〈
ρ0

〉 (
1− g

2

)
(1−e i 2π∆̃Q )

1−(
1− g

2

)
e i 2π∆̃Q

+c.c.

)

=2J0+
∣∣〈ρ0

〉∣∣2 f1+
(
ρ0

〈
ρ0

〉
f2+c.c.

)
,

(C.7)

where the factors depending on g and ∆̃Q have been renamed f1 and f2, and J0 is the action
prior to the kick.
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It will now be made use of the well-known expressions

2cos(θ) = e iθ+ e−iθ, (C.8)

2i sin(θ) = e iθ− e−iθ, (C.9)

cos(2θ) = 1−2sin2(θ), (C.10)

e iθ = cos(θ)+ i sin(θ). (C.11)

By insertion for f1 one finds that

f1 =
(
1− g

2

)2
(−4i 2)sin2

(
π∆̃Q

)
1+ (

1− g
2

)(
1− g

2 −2cos
(
2π∆̃Q

))
=

(
1− g

2

)2
4sin2

(
π∆̃Q

)
( g

2

)2 + (
1− g

2

)
4sin2

(
π∆̃Q

) .

(C.12)

For f2, first multiply and divide by the complex conjugate of the denominator to get

f2 =
(
1− g

2

)
(1−e i 2π∆̃Q )

1−(
1− g

2

)
e i 2π∆̃Q

·
1−(

1− g
2

)
e−i 2π∆̃Q

1−(
1− g

2

)
e−i 2π∆̃Q

= (
1− g

2

) (
2− g

2 −2cos
(
2π∆̃Q

)+( g
2

)
e−i 2π∆̃Q

)
1+(

1− g
2

)2−(
1− g

2

)
2cos

(
2π∆̃Q

)
= (

1− g
2

) (4−g )sin2
(
π∆̃Q

)−i
( g

2

)
sin

(
2π∆̃Q

)
( g

2

)2+(
1− g

2

)
4sin2

(
π∆̃Q

) .

(C.13)

To get an expression for the last parenthesis in Eq. (C.7), note that for a complex number c,
c + c = 2Re{c}, and that ρ0

〈
ρ0

〉= p0k + i x0k. Dividing by 2, and setting ∆J = Jn − J0, gives

∆J = k2

2

(
1− g

2

)2
4sin2

(
π∆̃Q

)
( g

2

)2 + (
1− g

2

)
4sin2

(
π∆̃Q

) +k
(
1− g

2

) x0
( g

2

)
sin

(
2π∆̃Q

)+p0(4−g )sin2
(
π∆̃Q

)
( g

2

)2+(
1− g

2

)
4sin2

(
π∆̃Q

) , (C.14)

where x0 + i p0 = ρeq is the position prior to the kick. This is identical to Eq. (5.2) when Taylor
expanding the sine functions to first order, which is valid in the limit ∆̃Q ¿ 1, and using the
expressions for x0 and p0 in Eq. (2.21).
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D PyRADISE – Radial diffusion and
stability evolution

Disclaimer: This appendix was adapted from the following article — with permissions
of the co-author and publisher:

[52] S. V. Furuseth and X. Buffat, “Long-term evolution of Landau damping in the
presence of transverse noise, feedback, and detuning”, Phys. Rev. Accel. Beams
23, p. 034401, 2020. doi:10.1103/PhysRevAccelBeams.23.034401

It was published under CC-BY 4.0.
My contribution: All results presented here.

In Part II of this thesis, the evolving single-bunch stability was studied as a consequence
to an evolving transverse bunch distribution. The distribution evolution was modeled by the
Fokker-Planck equation, and it was found to correspond to an action dependent diffusion
in transverse action space. In the general case, the distribution evolution has to be solved
numerically. Therefore, the code PyRADISE [96] has been developed to solve the Fokker-Planck
equation, which is done in three steps:

1. Change the amplitude variable to r =p
2J , the radius in (x, p)-phase space.

2. Solve the Fokker-Planck equation with a discrete PDE solver, using the Finite Volume
Method (FVM), to get the evolution of the transverse bunch distribution [97].

3. Calculate the evolving stability due to the evolving bunch distribution, by numerically
performing the integral in Eq. (2.45) with PySSD [35].

D.1 Change of independent variable

The change of the independent variables from J to r is achieved by using the chain rule,
∂J (·) = ∂J (r )∂r (·), where ∂J (r ) = 1/r . Thus, the two following expressions for the 2D Fokker-
Planck equation are equivalent

∂tΨ= ∂

∂Jx

(
Jx Dxx

∂Ψ

∂Jx
−UxΨ

)
+ ∂

∂Jy

(
Jy D y y

∂Ψ

∂Jy
−UyΨ

)
= 1

rx

∂

∂rx

(
rx

2
Dxx

∂Ψ

∂rx
−UxΨ

)
+ 1

ry

∂

∂ry

(
ry

2
D y y

∂Ψ

∂ry
−UyΨ

)
,

(D.1)
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Appendix D. PyRADISE – Radial diffusion and stability evolution

where D j j and U j are the diffusion and drift coefficients, respectively, in either transverse
plane. Any cross-plane diffusion was found negligible in Part II, and have therefore not been
included here. Note that the expressions for D j j and U j are equal in both lines of Eq. (D.1), as
they are known functions of r and J .

The independent variables have been changed first and foremost because it has been found
that a uniformly spaced grid in r =p

2J better represents a Gaussian bunch distribution, than a
uniformly spaced grid in J does. As a consequence, the FVM that will be introduced in Sec. D.2
converges faster with the number of grid cells when using a uniform grid in r than in J .

D.2 Finite volume method

A PDE solver using the FVM has been implemented to solve the diffusion-advection problem
represented by Eq. (D.1). The region of interest, and its discretization in a uniform Nx ×Ny cell
grid, is presented in Fig. D.1. The FVM has been applied because it ensures mass conservation
in the interior region by solving the differential problem in terms of fluxes across the cell
boundaries. The solver in PyRADISE has been made able to solve the differential problem
both in terms of r and J . In the following, it is assumed that the solver uses the transverse
actions as independent variables, but the principles are identical for both sets of independent
coordinates.

Figure D.1: Illustration of the FVM grid in PyRADISE. A uniform Nx ×Ny cell grid covers
the independent variables, either in the form of J or r , from 0 to their respective maximal
values. Each cell Ci , j in the grid has a center ci , j =

((
i + 1

2

) ·hx ,
(

j + 1
2

) ·hy
)

and four edge
points ei , j , wi , j , ni , j , si , j , which are half a cell width or height away from ci , j in the respective
compass directions. It follows that ei , j = wi+1, j , etc.

The FVM is based on integrating the differential equation across the cell area asÏ
Ci , j

dJx dJy∂tΨ=
Ï
Ci , j

dJx dJy

[
∂

∂Jx

(
Jx Dxx

∂Ψ

∂Jx
−UxΨ

)
+ ∂

∂Jy

(
Jy D y y

∂Ψ

∂Jy
−UyΨ

)]
. (D.2)
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D.2. Finite volume method

The density in a certain cell,Ψi , j , is considered independent of (Jx , Jy ). Due to the divergence
theorem, the density evolution in a cell depends on the diffusion and drift coefficients, as well
as the distribution function itself, at the four cell edges as

∂tΨi , j =
1

hx

[
Jx Dxx

∂Ψ

∂Jx
−UxΨ

]ei , j

wi , j

+ 1

hy

[
Jy D y y

∂Ψ

∂Jy
−UyΨ

]ni , j

si , j

, (D.3)

where the values of the bracketed expressions on the RHS are added at the locations of
the superscripts and subtracted at the locations of the subscripts. At the eastern edge, the
distribution is evaluated as the average of the closest cell densities

Ψei , j =
Ψi+1, j +Ψi , j

2
, (D.4)

and the derivative is evaluated by finite differences as

∂Ψ

∂Jx

∣∣∣∣
ei , j

= Ψi+1, j −Ψi , j

hx
, (D.5)

and equivalently for the other cell edges. Adding all the terms gives the following discretized
evolution of the density in the internal cell Ci , j :

∂tΨi , j =+ 1

h2
x

[
J

ei , j
x D

ei , j
xx

(
Ψi+1, j −Ψi , j

)− J
wi , j
x D

wi , j
xx

(
Ψi , j −Ψi−1, j

)]
+ 1

h2
y

[
J

ni , j
y D

ni , j
y y

(
Ψi , j+1 −Ψi , j

)− J
si , j
y D

si , j
y y

(
Ψi , j −Ψi , j−1

)]
− 1

2hx

[
U

ei , j
x

(
Ψi+1, j +Ψi , j

)−U
wi , j
x

(
Ψi , j +Ψi−1, j

)]
− 1

2hy

[
U

ni , j
y

(
Ψi , j+1 +Ψi , j

)−U
si , j
y

(
Ψi , j +Ψi , j−1

)]
.

(D.6)

From this expression, the conservation property of the FVM becomes clear. The flux out of cell
Ci , j through its eastern border is equal to the flux into cell Ci+1, j through its western border.

The BCs, the fluxes through the borders of the global volume, must be treated carefully. At J = 0,
physics dictates that there must be a reflective BC, i.e. with no flux through it. At the boundary
at J = Jmax, one can argue between using a homogeneous or inhomogeneous Neumann or
Dirichlet BC. However, it has been decided most correct to model it as an absorbing boundary
(homogeneous Dirichlet), representing an aperture in a real machine. This is achieved by
introducing virtual ghost cells with zero density outside the boundary, which consequently
have no impact on Eq. (D.6).

The time integration is performed by scipy.integrate.solve_ivp [98], using a method
based on a backward differentiation formula and a sparse Jacobian. Using an implicit scheme
ensures the numerical stability of the integration. In the cases when the diffusion and drift
coefficients depend on the distribution, the coefficients are calculated based on the distri-
bution at time ta , whereupon the distribution evolution from ta to tb is evaluated, before
the coefficients are recalculated ahead of the next time step. This is acceptable due to the
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small change of the distribution within each short time step. The output is an arrayΨ(i , j ,k),
containing the density in all cells Ci , j at the desired discrete times tk .

D.3 Stability evolution

The ultimate goal of PyRADISE is to calculate the stability evolution. Hence, the integral in
Eq. (2.45) must be calculated for the distribution at each discrete time tk , either to get the
stability diagram itself or the Landau damped mode frequency, as was explained in Sec. 6.2.2.
Therefore, PySSD is integrated in PyRADISE to numerically perform the integral, using a
uniform trapezoidal discretization in (Jx , Jy ).

Note that it is the derivative of Ψ with respect to the action that is needed to perform the
integral in Eq. (2.45). The bunch distribution can therefore no longer be assumed to be
piecewise constant, as it was in the FVM. First, the derivative with respect to Jx is taken at
the eastern and western edges as given by Eq. (D.5), and equivalently for the derivative with
respect to Jy at the northern and southern edges. Then, the derivatives are linearly interpolated
between the cell edges. Within the cell closest to the global boundary of J = 0, the horizontal
(vertical) derivative at the western (southern) boundary is set equal to the derivative on the
eastern (northern) boundary of the cell. At the other boundary, at J = Jmax, the derivative
is forced to be zero. Finally, the numerical integral is performed with Im{ΩLD} = ε, where
ε→ 0. The numerical non-zero value of ε is set proportional to the overall detuning magnitude.
For now, only a linear detuning is implemented in PyRADISE, as the one driven by Landau
octupoles that was described in Sec. 2.3.2.
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E Harmonically driven distribution
evolution

Disclaimer: This appendix was adapted from the following article — with permissions
of the co-author and publisher:

[50] S. V. Furuseth and X. Buffat, “Loss of transverse Landau damping by noise and
wakefield driven diffusion”, Phys. Rev. Accel. Beams 23, p. 114401, Nov. 2020.
doi:10.1103/PhysRevAccelBeams.23.114401

It was published under CC-BY 4.0.
My contribution: All results presented here.

In Ch. 6 of this thesis, headtail modes driven by wakefields are modeled as under-damped
stochastically driven harmonic oscillators. Due to their stochastic nature, the resulting impact
can be modeled as a diffusion. However, in the limit Im{∆Ωm} → 0, the force becomes a pure
harmonic excitation. In this appendix, the focus is the resulting distribution dynamics when a
bunch is affected by such a harmonic excitation.

Consider that a harmonic oscillator of angular frequency ω is harmonically driven by a real
impulse Ph cos(ωh t ), kicked once per turn, changing the one-turn Hamiltonian in Eq. (3.31)
to

H =H0 −
√

2J cos
(
φ

)
frevPh cos(ωh t ), (E.1)

where H0 models the free motion of a simple harmonic oscillator. In the simple case of no
amplitude detuning, H0 =ωJ , the motion of the harmonic oscillator will consist of the free
and the forced motion, as due to an AC dipole [99]. The amplitude of the forced motion is

A(ω) = ω frevPh∣∣ω2 −ω2
h

∣∣ , (E.2)

which is singular for a harmonic oscillator at exactly the driving frequency.

In an accelerator, the incoherent particle frequency is typically amplitude dependent, for
instance due to Landau octupoles as given by Eq. (2.29). Therefore, a particle’s amplitude
will no longer be singular, because the resonance condition is disrupted as the amplitude
grows. For a harmonic excitation in only one plane, only the amplitude detuning in that plane
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requires consideration. Hamilton’s equations of motion for φ and J then reads [11, 100]

H =ω0 J + ã

2
J 2 −

√
2J cos

(
φ

)
frevPh cos(ωh t ), (E.3)

φ̇=ω0 + ã J − frevPhp
2J

cos
(
φ

)
cos(ωh t ) (E.4)

=ω0 + ã J − frevPh

2
p

2J

[
cos

(
φ+ωh t

)+cos
(
φ−ωh t

)]
,

J̇ =−
√

2J sin
(
φ

)
frevPh cos(ωh t ) (E.5)

=−
√

J

2
frevPh

[
sin

(
φ+ωh t

)+ sin
(
φ−ωh t

)]
.

The harmonic frequency corresponds to a harmonic action Jh such that φ̇(Jh) =ωh . One can
find new conserved properties of the full Hamiltonian [100], but that is not the current goal.
Here, the motion of particles, starting at the harmonic action Jh and any initial phase φ0, will
be studied in terms of the original action corresponding to H0. The goal is to get an expression
for the width of the action oscillation and the period of this motion. The terms with the high
angular frequency φ̇+ωh will not produce a macroscopic change of action. The terms with the
potentially low frequency φ̇−ωh may have the same sign for an extended period of time, and
can cause a macroscopic change of action for particles close to the harmonic action Jh . The
beating excitation leads to a slowly oscillating action evolution of a certain width and period,
which will be estimated in the following by directly solving Eqs. (E.4) and (E.5) in multiple
limits.

In the limit of large harmonic excitation, frevPh/
p

J À ã(J − Jh), and neglecting the high-
frequency term, the equations of motion become

φ̇=ωh − frevPh

2
p

2J
cos

(
φ−ωh t

)
, (E.6)

J̇ =−
√

J

2
frevPh sin

(
φ−ωh t

)
. (E.7)

Regardless of the initial phase φ0, the phase will approach its one stable value at
φ−ωh t =−π/2+2πn, where n is an integer. The corresponding time derivative of the action
is positive. The action will grow until frevPh/

p
J ∼ ã(J − Jh), breaking the initial assumption.

Alternatively, if the harmonic excitation could be treated as a weak perturbation,
frevPh/

p
J ¿ ã(J − Jh), the last term in Eq. (E.4) can be neglected. If one also assumes small

phase offsets
∣∣φ−ωh t

∣∣¿ 1 and small action offsets |J − Jh |¿ Jh , the equations of motion read

φ̇=ωh + ã(J − Jh), (E.8)

J̇ =−
√

Jh

2
frevPh(φ−ωh t ). (E.9)

These are the equations of motion of a simple harmonic oscillator, but it is now the phase and
action that are oscillating. In the following it is assumed for simplicity, but without loss of
generality, that ã > 0 and that φ0 ∈ (−π,π). It can be verified by insertion that the equations of
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motion, combined with the initial conditions J (0) = Jh and φ(0) =φ0, are solved by

φ(t ) =ωh t +φ0 cos

(
2π

t

τhmin

)
, (E.10)

J (t ) = Jh −Whmin sin

(
2π

t

τhmin

)
, (E.11)

where the minimal period τhmin and action offset amplitude Whmin are given by

(τhmin frev)2 = (2π)2√
2JhPh aπ

, (E.12)

Whmin(φ0) = (2Jh)1/4
√

Phπ

2
p

a

φ0

π
, (E.13)

where the detuning coefficients have been rewritten with ã =ωreva. The initial phase φ0 is the
maximum phase offset, fulfilling the assumption of small

∣∣φ−ωh t
∣∣, as long as it was fulfilled

at t = 0. The maximum action offset |J − Jh | is small if the harmonic excitation is weak. The
action offset amplitude is proportional to φ0, which is assumed small.

The maximum action offset should occur for large initial phases
∣∣φ0

∣∣→π−, for which the
approximation sin

(
φ0

)=φ0 in Eq. (E.9) is wrong. In this case, both φ̇ and J̇ approaches 0
initially and there is almost an asymptotic motion with an infinite period τh →∞. This will,
however, be prevented by the last term in Eq. (E.4). The action offset amplitude will, on the
other hand, not grow until infinity. Since

∣∣sin
(
φ−ωh t

)∣∣≤ ∣∣φ−ωh t
∣∣, the maximum width in

action can be approximated by |Whmin(π)2/π| as

Wh = (2Jh)1/4
√

Php
aπ

. (E.14)

Due to different harmonic periods of different particles, the corresponding distribution oscil-
lation will decohere with time.

To test the analytical derivations, numerical tracking simulations have been run with
a = 5×10−3 for particles starting at the harmonic action Jh = 2 with phases φ0 uniformly
distributed on [−π,π]. The peak-to-peak action variation divided by two and the period of
the oscillation is presented in Fig. E.1. At small

∣∣φ0
∣∣, the expressions in Eqs. (E.12) and (E.13)

are shown to be correct. At large
∣∣φ0

∣∣, the action offset amplitude approaches Wh given by
Eq. (E.14), while the period grows substantially. For large Ph/a Jh , the motion is different, but
qualitatively similar. Note that the largest widths clearly breaks the assumption Wh ¿ Jh = 2.
For a < 0, the general picture is the same, but the particles oscillate around φ−ωh t =π+2πn
instead of 2πn.

To study how the harmonic perturbation affects the bunch distribution, a multi-particle
simulation has been run with Ph = 10−2, a = 5×10−3, and Jh = 2, equal to the curve labeled
Ph/a Jh = 1 in Fig. E.1. The bunch evolution is presented in Fig. E.2. The action oscillation
around Jh = 2 is clear. The full width is close to 2Wh = 2.2, given by Eq. (E.14). For this large
Wh/Jh , the amplitude is not symmetric around Jh , but slightly larger for J > Jh than for J < Jh .
The emittance period is, as expected, longer than the minimum incoherent action period,
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Figure E.1: Peak-to-peak (p-p) action variation in (a), and period of action oscillation in (b), for
particles starting at Jh = 2 with various initial phases φ0. The dashed diagonal and horizontal
lines in (a) correspond to Eq. (E.13) and Eq. (E.14), respectively. The dashed horizontal line in
(b) corresponds to Eq. (E.12).

0 1 2 3 4
J

10−1

100

Ψ

0.0

0.2

0.4

0.6

0.8

1.0

T 
[t
ur
ns
]

×103

(a)

0.0 0.5 1.0 1.5 2.0
T [turns] ×103

1.00

1.02

1.04

1.06

1.08

1.10

ε 
 [ε

0]

(b)

Figure E.2: Evolution of the distribution every 50 turns in (a) and emittance in (b) of a
bunch that is driven by a harmonic force Ph cos(ωh t ). The in-plane detuning coefficient is
a = 5×10−3, corresponding to a detuning of a J .

τhmin = 354 turns, given by Eq. (E.12). This process cannot be modeled as a diffusion because
it is deterministic and not stochastic. However, it may enhance the diffusion across Jh driven
by other stochastic processes. Furthermore, the harmonic excitation does lead to a local
flattening of the distribution on its own, similar to that driven by the wakefield driven diffusion
studied in Ch. 6, and should therefore have an impact on the stability diagram.
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