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Abstract
Hydraulic fracturing is a technique used to increase the productivity of deep wells in low-

permeability porous formations. It is extensively used in the oil and gas industry, but also

in several mining, civil and environmental applications. It consists of the injection of a

fluid from a wellbore at a sufficiently large rate to create and propagate a tensile fracture

inside the rock formation. The growth of a hydraulic fracture is a highly non-linear moving

boundary hydro-mechanical problem. Many physical processes are tightly coupled and

influence the fracture growth, notably the elastic deformation of the material, the creation

of new fracture surfaces, viscous fluid flow inside the propagating fracture, and fluid leak-off

into the surrounding medium. The theory of linear hydraulic fracture mechanics (LHFM) is

able to describe well the growth process, with adequate comparisons between predictions

and experimental observations in linear brittle elastic materials. However, deviations from

LHFM predictions have been reported at the laboratory and field scales in some cases, notably

a larger fluid pressure and a shorter fracture length. These deviations are often associated

with the non-linear nature of rock fracture deformation (notably its quasi-brittle behavior).

However, the impact of these material non-linearities on the coupled problem of hydraulic

fracture propagation is not yet fully understood.

In this context, this thesis investigates numerically and experimentally the effect of the quasi-

brittle nature of rocks on hydraulic fracture growth. We first solve the propagation of a

hydraulic fracture using a power-law fracture length-dependent fracture energy to model

macroscopically the effect of an enlarging fracture process zone. Numerically, the use of

Gauss-Chebyshev quadrature and barycentric Lagrange interpolation techniques reduces

the hydraulic fracture moving boundary problem to a set of non-linear ordinary differential

equations. We find that this increasing apparent toughness leads to a slower fracture growth,

larger net pressure, and larger fracture opening compared with constant toughness LHFM

solutions and a faster transition to the toughness dominated regime. We also show that

the solution can be approximated by the self-similar constant toughness solutions with the

instantaneous toughness value.

We then explore the impact of the quasi-brittle nature of rocks by using a cohesive zone model

coupled to elastohydrodynamic lubrication fluid flow to simulate HF growth. We notably

account for fluid cavitation at the fracture tip and the effect of fracture roughness on flow. By

dimensional analysis, we obtain a time-scale that characterizes the nucleation of the cohesive

zone and quantify three stages of fracture growth: a) a cohesive zone nucleation stage and

b) an intermediate stage where predictions can deviate significantly from LHFM solutions,
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and c) a late stage where the fracture growth finally converges toward the LHFM predictions.

The deviations in the first two stages include shorter fracture length, larger net pressure, and

larger fracture opening and indicate an increase of fracture resistance/energy dissipation.

The additional energy dissipation compared with LHFM comes mostly from the impact of

the rough fracture process zone on viscous fluid flow. This additional viscous dissipation

increases for a larger value of the ratio between the in-situ confining stress and the material

peak cohesive stress.

We finally discuss hydraulic fracture experiments performed on two impermeable rocks

(exhibiting different grain sizes) under different confinement and injection conditions. We

notably develop an inversion technique to reconstruct the fracture front geometry using

diffracted waves recorded via an array of 32 sources and 32 receivers piezo-electric transducers.

We find that transmitted waves attenuate before the arrival of the fracture front estimated from

diffracted waves, indicating the existence of a fracture process zone of centimeters extent in

these laboratory experiments. This fracture process zone is found to be comparable with the

fracture extent at the scale of decimeter sample sizes, thus implying an important limitation

of laboratory HF experiments performed in quasi-brittle rocks on finite-size samples.

Keywords: Fluid-driven fractures, Quasi-brittle materials, Fracture process zone, Cohesive

zone models, Fluid lag, Fracture roughness, Apparent toughness, Numerical modeling, Labo-

ratory experiments, Active acoustic monitoring, True tri-axial tests.
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Résumé
La fracturation hydraulique est une technique utilisée pour améliorer la productivité des

puits situés dans des formations poreuses faiblement perméables. Cette technique est utilisée

d’une manière routinière dans l’industrie pétrolière mais également dans le domaine minier,

génie civil et environnemental. Le processus consiste à injecter depuis le puits un fluide à

un débit suffisant pour créer et propager des fractures à l’intérieur de la formation rocheuse.

La propagation d’une fracture hydraulique est un problème hydromécanique hautement

non linéaire. De nombreux processus physiques sont étroitement couplés et influencent

la propagation de la fracture, tels que la déformation élastique du matériau, la création de

nouvelle surface de fracture, l’écoulement du fluide visqueux à l’intérieur de la fracture et la

fuite du fluide injecté dans la roche poreuse environnante. La théorie de la mécanique de la

fracture hydraulique linéaire (LHFM) décrit bien ce processus couplé, avec des comparaisons

satisfaisantes entre les prévisions et les observations expérimentales pour le cas de milieu

élastique fragile linéaire. Cependant, des écarts par rapport aux prévisions ont été signalés à

l’échelle du laboratoire et sur le terrain dans certains cas, notamment une pression de fluide

plus importante et une longueur de fracture plus courte. Ces différences sont souvent associées

au caractère non linéaire de la déformation des roches (notamment leur comportement quasi-

fragile). Cependant, l’impact des non-linéarités des matériaux sur la propagation des fractures

hydrauliques n’est pas encore entièrement compris.

Dans ce contexte, cette thèse étudie numériquement et expérimentalement l’effet de la nature

quasi fragile des roches sur la propagation des fractures hydrauliques. Nous résolvons d’abord

la propagation d’une fracture hydraulique en utilisant une énergie de fracture dépendante de

la longueur de fracture pour modéliser macroscopiquement l’effet d’agrandissement de la

zone de transition en bout de fissure. Numériquement, l’utilisation d’une quadrature de Gauss-

Chebyshev et des techniques d’interpolation barycentriques réduit le problème à un système

d’équations différentielles ordinaires non linéaires. Nous constatons que cette augmentation

de la ténacité apparente avec la longueur conduit à une croissance de fracture plus lente, une

pression de fluide et une ouverture de fracture plus élevés par rapport aux solutions LHFM

à ténacité constante. Une transition plus rapide vers le régime dominé par la ténacité est

également constatée. Nous montrons également que la solution peut être approximée par les

solutions à ténacité constante avec la valeur de ténacité instantanée correspondante.

Nous étudions ensuite l’impact de la nature quasi fragile des roches en utilisant un modèle

de zone cohésive en combinaison avec l’écoulement élastohydrodynamique pour simuler

la propagation d’une fracture hydraulique. Nous prenons compte l’évolution de la zone de
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cavitation du fluide en pointe de fracture et de l’effet de la rugosité des surfaces de la frac-

ture sur l’écoulement. Par analyse dimensionnelle, nous obtenons un temps caractéristique

gouvernant la nucléation de la zone cohésive et délimitons trois étapes de propagation de la

fracture : a) une étape de nucléation de la zone cohésive et b) une étape intermédiaire où les

prédictions peuvent s’écarter significativement des solutions LHFM, et c) une étape finale

où la propagation tend vers les prédictions de la théorie linéaire (LHFM). Les écarts dans

les deux premières étapes comprennent une longueur de fracture plus courte, une pression

de fluide et une ouverture de fracture plus élevées. Ils indiquent une augmentation de la

résistance globale à la fracturation. La dissipation d’énergie supplémentaire par rapport à la

théorie linéaire LHFM provient principalement de l’impact de la rugosité de la fracture sur

l’écoulement visqueux du fluide. Cette dissipation augmente pour un rapport plus élevé entre

la contrainte in situ et la cohésion maximale du matériau.

Nous présentons ensuite des expériences de fracturation hydraulique réalisées sur deux

roches imperméables (présentant des granulométries différentes) dans des conditions de

confinement et d’injection variées. Nous développons notamment une technique d’inversion

pour reconstruire la géométrie du front de fracture à l’aide d’ondes acoustiques diffractées

enregistrées via un réseau de 32 sources et 32 récepteurs piézoélectriques. Nous constatons

que les ondes transmises s’atténuent avant l’arrivée du front de fracture, qui est estimé à

partir des ondes diffractées. Cela indique l’existence d’une zone de transition de quelques

centimètres en bout de fissure. Cette zone non-linéaire est comparable à la longueur de la

fracture. Cela implique un artefact important des expériences en laboratoire effectuées dans

des roches quasi-fragiles sur des échantillons de taille décimétrique.

Mots clés : Fracturation hydraulique, Matériaux quasi-fragiles, Zone de transition, Modèle

de zone cohésive, Cavitation en bout de fissure, Rugosité de fracture, Ténacité apparente,

Monitoring acoustique active, Essais triaxiaux.
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1 Introduction

Hydraulic fracturing is the most commonly used technique to stimulate the production of

wells in all types of reservoir. It has notably allowed a dramatic increase in the hydrocarbon

production from tight reservoirs in the past two decades. Its process involves the injection of

a fluid at a given flow rate into a wellbore in order to propagate fractures in rocks and thus

ultimately increase the overall reservoir/wellbore hydraulic conductivity. Although predic-

tions of hydraulic fracture growth based on coupling linear elastic fracture mechanics and

lubrication flow are able to reproduce well some experiments performed in model/fine-grain

materials, deviations have been observed both at the laboratory and field scales for different

rock types. The non-linearities associated with the solid fracture behavior in quasi-brittle

rocks have been put forward to explain these deviations. The aim of this thesis is to perform

numerical simulations and laboratory experiments to investigate in details the effect of solid

non-linearity on hydraulic fracture (HF) growth and notably to decipher the interplay between

the process zone development and the fluid flow in the process zone.

1.1 Hydraulic fracturing

HFs are tensile fractures that propagate in a solid under initially compressive stresses. Their

growth is driven by internal pressurization due to fluid injection. They manifest naturally at

the geological scale as kilometer-long vertical dikes bringing magma from deep underground

chambers to the Earth’s surface (Spence et al., 1987; Lister and Kerr, 1991; Rubin, 1995; Roper

and Lister, 2005, 2007); subhorizontal fractures, known as sills, that divert magma from

dikes (Pollard and Holzhausen, 1979; Spence and Sharp, 1985; Bunger and Cruden, 2011);

and cracks propagating at glacier beds (Tsai and Rice, 2010). They are also engineered in

industrial applications, such as remediation projects of contaminated soils (Murdoch, 2002),

preconditioning of block cave mining (Van As and Jeffrey, 2002; Jeffrey et al., 2013), waste

disposals at depths, and in-situ stress measurement at depths. Among multiple applications,

HFs are most commonly adopted in the stimulation of hydrocarbon-bearing rock strata to

increase the production of oil and gas wells (Economides et al., 1989), known as hydraulic

fracturing, fracking, or hydrofracturing.
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In the industry, for production, we delineate reservoirs with respect to their permeability.

There are "unconventional reservoirs" such as shale rock or coal beds, where no sufficient

permeability or reservoir pressure allows the flow of natural gas and oil from the rock into the

wellbore at high economic return. In order to facilitate extraction from these unconventional

reservoirs, hydraulic fracturing is applied to create conductive fractures in the rock formations.

The process involves first the high-pressure injection of "fracturing fluid" (primarily water,

containing sand or high strength ceramic or others suspended with the aid of additives) into

a wellbore to create fractures. Then, the hydraulic pressure is removed from the well. Small

grains of hydraulic fracturing proppants (either sand or aluminum oxide) are adopted to

hold the fractures open. These open fractures increase the permeability of the formation and

ensure the flow of petroleum and natural gas.

As of 2012, 2.5 million "frac jobs" had been performed worldwide on oil and gas wells (King

et al., 2012) since its first commercially successful application in 1949. The decade-long

boom has increased a lot the oil and gas production and lowered prices for consumers, with

near-record lows of the share of household income going to energy expenditures (Elliot and

Santiago, 2019). The trend of global primary energy consumption (Fig. 1.1) indicates that oil

and gas still take a very important part of the current energy supply. Compared with coal, they

are characterized with cleaner burn and less CO2 emission, which will probably lead to an

increasing consumption demand of oil and gas in the following tens of years. This calls for

more efficient oil and gas extraction and of course a deeper understanding of the hydraulic

fracturing technique. However, the full investigation of hydraulic fracturing remains difficult

due to the interplay between multiple physical processes, the complex nature of rocks and

the fluid flow, the complicated fracture geometries, and in-situ conditions. In this thesis, we

mainly focus on the influence of the quasi-brittle nature of rocks on HF growth.

1.2 Motivations

Linear hydraulic fracture mechanics (LHFM) (Detournay, 2016) combine the linear elastic frac-

ture mechanics (LEFM) and lubrication flow (Poiseuille’s law) and have successfully predicted

the HF growth in transparent materials, such as PMMA and glass (Bunger and Detournay,

2008; Lecampion et al., 2017; Xing et al., 2017). However, deviations from LHFM have been

reported in rocks with inconsistent observations between the laboratory (Thallak et al., 1993;

Van Dam and de Pater, 1999) and field scales (Shlyapobersky, 1985; Shlyapobersky et al., 1988),

some of which indicate an underestimation of the fluid pressure and an overestimation of

the fracture length by LHFM. Papanastasiou (1999) argues that LHFM’s prediction on net

pressures (the difference between fracturing fluid pressure and far-field normal stress) were

found 33 to 50 percent lower than the net-pressures encountered in the field (according to a

worldwide survey on net-pressures by the Delft Fracturing Consortium). Chudnovsky et al.

(2008) reports a plateau of the net pressure during the HF growth rather than the monotonic

decrease predicted by LHFM. Makhnenko et al. (2010) points out that the fracture path de-

viates from the LHFM predictions in near-surface HF laboratory injections and that these

2
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a)

b)

Figure 1.1 – Illustration of a) the trend of global primary energy consumption (2019) and b) the
hydraulic fracturing process (http://www.oil-gasportal.com/technologies/unconventional-
oilgas/technologyapplications/?print=print, figure taken originally from Total). In this thesis,
we focus more on the mode I planar hydraulic fractures with simple geometries, which are
different from the fractures illustrated in b). 3
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deviations depend on the size of rock specimens.

These deviations have been owed to the solid non-linearity of rocks: a nonlinear zone (process

zone) exists around the fracture tip and removes the stress singularity predicted by LEFM.

This zone consists of a plastic hardening / perfect yielding part and a progressive softening

part (Bazant and Planas, 1997). Different approaches have been put forward in numerical

investigations depending on whether plastic deformations or material softening dominate

this non-linear zone. For ductile materials like some soft or unconsolidated rocks, plastic

deformations have been accounted for in previous investigations (van Dam, 1999; Papanas-

tasiou and Thiercelin, 1993; Papanastasiou, 1997, 1999; Papanastasiou and Atkinson, 2006;

Sarris and Papanastasiou, 2013), where they have shown that the presence of the plastic zone

results in an increase of the fracture growth resistance and a larger energy dissipation than

LHFM. For quasi-brittle materials like most crystalline rocks, cohesive zone models (CZM)

Barenblatt (1959); Dugdale (1960); Needleman (2014); Park and Paulino (2011) have been

adopted to characterize the progressive damage and material softening in the nonlinear zone.

Most numerical investigations (Chen et al., 2009; Chen, 2012; Lecampion, 2012; Yao et al.,

2015) neglect the possible existence and evolution of a fluidless cavity due to suction close

to the fracture tip (often referred to as a fluid lag). These CZM simulations are also limited

to the cases where the cohesive zone only takes a small fraction of the fracture. They show

that the HF growth can be well approximated with LEFM/LHFM solutions. However, when

accounting for a fluid lag and a cohesive zone model at the same time, the growing fluid lag

during the HF growth may perturb the stress field around the tip and leads to off-plane inelas-

tic deformation (Rubin, 1993). Recently, Garagash (2019) investigates the complete solution of

a steadily moving semi-infinite cohesive fracture with a fluid lag. He demonstrates that the

interplay between the fluid lag and the cohesive zone results in significant deviations from

LHFM predictions when the confining stress is larger than the peak cohesive strength (which

is the case in most practical configurations at depth). Moreover, Garagash (2015a) reports

that viscous fluid flow in rough apertures leads to extra viscous dissipation for a semi-infinite

HF. Laboratory and filed observations and theoretical predictions tend to indicate that the

solid non-linearity results in an increase in fracture resistance. No quantitative investigation

is yet available to decipher the effect of this increasing fracture resistance on the HF growth.

Moreover, the possible toughening mechanism due to solid non-linearity remains unclear.

The nucleation process of the process zone during HF growth needs further investigation. So

does the interplay between the fluid front evolution, fracture roughness and process zone, in

particular for a finite HF.

The existence of micro-cracking and crack bridging around the tip of a HF propagating have

been confirmed by post-mortem observations (see Lhomme (2005); Chen et al. (2015) for

example). Efforts have also been made experimentally to capture this process zone growth.

Indirect descriptions on the growth of process zone, such as the measurement of the crack re-

sistance (Hashida et al., 1993) and the HF tip bluntness (van Dam, 1999) have been conducted.

Ultrasonic waves act as another approach to directly detect the damage in rocks. Recording

the start of the attenuation of transmitted waves (Labuz et al., 1987), or detecting the arrivals of
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reflected waves from cracks (Glaser and Hand, 1998), gives a rough estimation of the process

zone size around the fracture tip. Passive acoustic emissions provide a clearer region of the

zone by showing a map of seismic events (Zietlow and Labuz, 1998; Zang et al., 2000; Stanchits

et al., 2014). To better locate the process zone with respect to the fracture tip, an accurate

description of the fracture geometry is necessary.

van Dam (1999) points out the strong correlation between the process zone size (estimated

from the near-tip stress field) and fracture roughness. Relations between the process zone

size and roughness have been reported for dry fractured surfaces (Morel et al., 2002; Nasseri

et al., 2010; Barak et al., 2019): the off-plane height variation may present different roughness

exponents above and below a "process zone" length scale (Mourot et al., 2005; Bonamy et al.,

2006; Ponson et al., 2007; Morel et al., 2008). Moreover, a cut-off length scale can be extracted

from the spatial correlations of the slopes of a rough fracture surface, which characterizes

the process zone size (Vernède et al., 2015). However, these fractal analysis have not been

performed for hydraulic fracture surfaces.

1.3 Key questions

The main question we want to address in this thesis is the effect of the solid non-linearity

on the hydraulic fracture growth. We will investigate both numerically and experimentally

the hydraulic fracture growth in quasi-brittle materials. More specifically, we will address the

following questions.

• Is the LHFM theory still valid to describe the fracture growth in quasi-brittle materials?

Does the solid non-linearity effect necessarily augment the apparent fracture toughness?

What if we approximate the effect of solid non-linearity with an increasing toughness

with fracture length using LHFM? What would be the corresponding time evolution

of fracture widths, fracture lengths and fluid pressures? Does the ratio between the

maximum width and the fracture length still remain the same as the constant toughness

case?

• How does the solid non-linearity influence the HF growth? How does the fluid flow in

small rough fractures change the hydraulic conductivity in the process zone? What is

the interplay between process zone development and fluid flow? Is the in-situ confining

stress involved in this interplay?

• Why different deviations from LHFM are reported at the lab and field scales? Does the

process zone exist in quasi-brittle rocks? What is its dimension and evolution? Is it

negligible compared to the fracture length? What are the relations between the process

zone size and grain size? What is the shape and location of the process zone? How does

the process zone evolve during the HF growth?

To answer these questions, we have developed hydro-mechanical models accounting for
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either a fracture length dependent apparent toughness or accounting for a cohesive zone

model and a fluid lag. We have performed both scaling analysis and numerical simulations to

understand their impact on the HF growth. We have also conducted HF experiments under

different stresses at the decimeter scale using low porosity/low permeability rocks exhibiting

different grain sizes. We have reconstructed the fracture geometry using acoustic diffracted

waves. We hope to understand the evolution of apparent fracture toughness and its associated

process zone during the HF propagation.

1.4 Outline of this thesis

This thesis is organized as follows.

Chapter 2 summarizes the current theoretical understanding of HF based on linear elastic

hydraulic fracture mechanics. We present time and length scales related to transitions between

the different physical process at play (elasticity, fracture creation, viscous flow). We report the

scaling of the fracture length, width, and net pressures for a finite fracture and different tip

asymptotics for a semi-infinite fracture. Informed readers may skip this chapter.

Chapter 3 macroscopically embeds the development of micro-cracking via an increase of

toughness with length. We discuss the time evolution of the fracture length, width, and net

pressure under the frame of LHFM. We point out that the HF growth can be well grasped by an

instant dimensionless toughness. We also discuss the emplacement scaling of magma dikes.

Chapter 4 investigates the growth of a finite plane-strain HF accounting for a rough cohesive

zone. We relax the assumptions of LHFM: we adopt a CZM to simulate the process zone effect

and account for the deviated fluid flow in small rough apertures. We quantify the impact of

the fluid lag, cohesive zone length evolution on the growth of a rough fracture from nucleation

to the late stage of growth. We notably show that the co-evolution of the fluid lag and cohesive

zone length is governed by a nucleation time-scale that can be significantly large. Moreover,

we also clarify the convergence of CZM models toward LHFM predictions at large times.

Chapter 5 demonstrates how we reconstruct the fracture geometry in nontransparent rocks

using active acoustic monitoring. We perform a Bayesian analysis to select different possible

geometrical models and estimate the errors of geometrical predictions. We test this reconstruc-

tion method in this chapter on two experiments performed in two different rocks (marble and

gabbro) under experimental conditions characteristic respectively of the fluid lag-viscosity

(marble) and toughness (gabbro) dominated HF propagation regimes.

Chapter 6 presents HF experiments conducted under different compressive stresses in rocks

exhibiting different grain sizes (a possible proxy for the size of the process zone). We show

that the attenuation of the transmitted waves occurs prior to the arrival of the fracture front

which indicates that a zone exists ahead of the measured front where the material properties

are modified (likely due to micro-cracking). Besides, we try to understand the evolution of the
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process zone during the HF growth via the apparent toughness and fracture surface roughness.

Conclusions and perspectives are reported in Chapter 7.

Different appendices cover respectively the material characterization of the two rocks (mar-

ble and gabbro), lag-dominated experiments performed in marble and gabbro, and other

information regarding the HF experiments.
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2 Linear hydraulic fracture mechanics
(LHFM)

The propagation of a hydraulic fracture is a highly non-linear hydro-mechanical problem. It

includes several physical processes: the creation of new fracture surfaces, the flow of viscous

fluid strongly coupled with the elastic deformation of the material, the leak-off of the fluid

out of the fracture and the possible existence of a fluid lag near the fracture tip to name a few

(Detournay, 2016). In this chapter, we review a number of important results of the theory of

linear hydraulic fracture mechanics (LHFM). This theory is developed based on a series of

simplified assumptions:

• linear elastic fracture mechanics (LEFM) models the creation and deformation of frac-

ture surfaces.

• the theory of thin-film lubrication models the flow of viscous fluid in the created fracture.

• the leak-off of the fracturing fluid in the surrounding media is approximated by a 1D

diffusion process under the assumption that the fluid pressure is roughly constant for

such a process - resulting in pressure independent model initially developed by Carter

(Howard and Fast, 1957).

• the fluid can not sustain any tensile stress and that its cavitation pressure is sufficiently

small that it can be neglected.

Predictions from LHFM have well described the HF propagation with simple geometries

(radial, plane-strain), in particular the competition between physical processes in terms

of dissipation (toughness / viscosity) and volume conservation (storage / leak-off). They

have also pointed out multiple length and time scales characterizing the transition between

different energy dissipation mechanisms where depending on conditions, some mechanisms

dominate over the others, and as a result, the fracture behavior is widely different. These

competing processes also result in a multi-scale structure of the solution near the moving

fracture tip: the tip region presents asymptotes associated with different physical processes:

the fracture creation closer to the tip, the formation of the cavity in the fluid lag, leak-off of the

fluid into the solid, and the viscous fluid flow.
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Chapter 2. Linear hydraulic fracture mechanics (LHFM)

In this chapter, we first recall tip asymptotes associated with different energy dissipation

mechanisms. We then discuss the case of a finite fracture and notably the transition between

different limiting solutions for simple geometries.

These tip asymptotes, length scales and time scales are functions of different material parame-

ters. For the sake of clarity and to keep in line with the previous contribution, we will use the

following material parameters

E ′ = E

1−ν2 , K ′ = 4

(
2

π

)1/2

K I c , µ′ = 12µ, C ′ = 2CL (2.1)

where E ′ is the plane strain modulus, and K ′, µ′ and C ′ are respectively effective parameters

characterizing the fracture toughness K I c , fluid viscosity µ and Carter’s leak-off. Note that

the mode I fracture toughness K I c can be also expressed as function of the fracture energy

Gc = K 2
I c /E ′.

2.1 Tip asymptotes of a semi-infinite hydraulic fracture

If we zoom into the tip region of an arbitrary finite hydraulic fracture, the elasticity and lubrica-

tion equation reduce to the ones governing a semi-infinite hydraulic fracture propagating at a

constant velocity V . The elasticity reduces to the singular integral equation for a semi-infinite

crack under plane-strain conditions by considering distances from the front that are small

compared to its local radius of curvature and by noting that any variation of the crack opening

near the tip takes place in the direction normal to the front (see Detournay (2016) and the

references therein). The asymptotic behavior presents a traveling wave solution and these

results imply that the dependence of the opening w and the net fluid pressure p = p f −σo on

the position and time reduces to a dependence on the distance from the crack front x̂, with

the current local-front velocity acting as a time-dependent parameter.

Notably, under the LHFM assumptions, the following asymptotic solutions for the fracture

opening an fluid net pressure p = p f −σo do appear (Garagash, 2019):

• k-asymptote: w =βk`
1/2
k x̂1/2, p = E ′

β2
k

`m

`k
ln(x̂)+const

• o-asymptote: w =βo
σo

E ′
x̂3/2

`1/2
o

, p =−σo

• m̃-asymptote: w = β̃o`
3/8
m̃ x̂5/8, p = β̃o

5cot(5π/8)

32
E ′ `

3/8
m̃

x̂3/8

• m-asymptote: w =βm`
1/3
m x̂2/3, p = E ′βm

cot(−π/3)

4

`1/3
m

x̂1/3

where different prefactors are respectively: βk = 4
p

2/π (Rice, 1968), βm = 21/335/6 (Desroches
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2.2. Propagation of a finite hydraulic fracture

et al., 1994), βo ≈ 1.796 (Garagash and Detournay, 2000), β̃o = 4/(151/4(
p

2−1)1/4) (Lenoach,

1995). The different lengthscales appearing in the asymptote above are functions of the

material parameters (Eq. (2.1)) and fracture velocity:

`m = µ′V
E ′ , `k = π

32

K ′2

E ′2 , `o =
(

E ′

σo

)3

`m , `m̃ =
(
C ′V 1/2 µ

′

E ′

)2/3

(2.2)

These length scales are associated with distinct processes (viscosity, toughness, leak-off). The

k and m asymptotes represent respectively the fracture propagation dominated by the dissi-

pation in creation of fracture surfaces and that in the lubricated fluid flow. The m̃ asymptote

indicates an important effect of the leak-off and fluid viscosity, while the o asymptote an

important effect of the fluid lag. Among these four asymptotes, the m asymptote is the only

dissipation process that is not localized to the fracture tip but realized at large enough dis-

tances from the tip. Thus, the near tip hydraulic fracture solution can be framed as a sequence

of nested asymptotes listed in the above realized over their corresponding length scales (as

long as those separate), transitions between them, and eventual transition to the far field m

asymptote. We obtain the transitional length scales

`km = `3
k

`2
m

, `ko = E ′

σo
`1/2

k `1/2
o , `om = `o , `mm̃ = `9

m̃

`8
m

(2.3)

for the toughness-viscosity (k → m), toughness-lag (k → o), viscosity-leak-off to viscosity

(m̃ →m) transitions. Two dimensionless parameters are defined related to these length scales

χ̃=
√

32

π

C ′E ′

K ′V 1/2
= `3/2

m̃

`m`
1/2
k

, κ= K ′

E ′

(
σo

µ′V

)1/2

=
√

32

π

E ′

σo

(
`k

`o

)1/2

(2.4)

where χ̃ permits discrimination (Garagash et al., 2011) between the two limits (C ′ = 0 and

C ′ →∞) by setting χ̃= 0 and χ̃→∞ (Garagash et al., 2011). κ represents the dimensionless

toughness which characterizes the energy dissipation between the creation of fracture surfaces

and viscous fluid flow, and determines the disappearance of the fluid lag (κ→∞). As shown

in Fig. 2.1, the classical linear elastic fracture mechanics asymptotic k-asymptote is valid at

the tip, and the effect of leak-off (m̃) and fluid lag (o) appears as an intermediate asymptotic

between the LEFM k-asymptote and m-asymptote as a function of the dimensionless numbers

χ̃ and κ.

2.2 Propagation of a finite hydraulic fracture

We discuss in this section the propagation of a finite hydraulic fracture driven by a constant

injection rate Qo provided that the material properties and initial stress are uniform over a

length scale large enough compared to the ultimate fracture dimension. We focus here on

the growth of hydraulic fractures in simple geometries (results of homogeneity) : a plane-

strain (KGD) and radial hydraulic fracture. Solving the fracture growth is to determine the
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Zero leak-off Zero fluid lag

Figure 2.1 – Schematic illustration of asymptotes, adapted from figure 2 in Garagash et al.
(2011).

evolution of the fracture extent, fluid extent, fracture opening and net pressure in function

of the time and fracture coordinate. We will not go into the details of the solutions but put

corresponding references of known solutions in Table. 2.1. In this section, we summarize

the evolution between the different limiting regimes and the corresponding time evolution

relation of fracture behaviors.

2.2.1 The plane-strain hydraulic fracture

For a fracture propagating in an impermeable medium, the fracture initiates with the fluid

front lagging behind the fracture front. The fluid front evolves with time and coalesces with

the fracture front over a time scale tom .

tom = E ′2µ′

σ3
o

(2.5)

When the fluid lag vanishes, the fracture growth is then only characterized by a dimensionless

toughness Km .

Km = K ′

E ′

(
E ′

µ′Qo

)1/4

, plane-strain (2.6)

This number characterizes the energy dissipation between the creation of fracture surfaces

and the viscous fluid flow. Km ¿ 1 and Km À 1 correspond respectively to the toughness K

and viscosity M dominated regimes.

When the medium is permeable, the fracture growth also depends on another tmm̃ related to

the leak-off of fluid into the solid.

tmm̃ = µ′Q3
o

E ′C ′6 (2.7)
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Plane-strain hydraulic fracture (KGD)
Storage/ K and near K (Garagash, 2006a)

Storage/ M (Adachi and Detournay, 2002; Spence and Sharp, 1985)
Storage/ near M (Garagash and Detournay, 2005)

Storage/ O, O-K edge, lag to zero-lag transition (Garagash, 2006b)
Leak-off/ K̃ (Bunger et al., 2005a)

Leak-off/ M̃ and near M̃ (Adachi and Detournay, 2008)
Complete numerical solutions (Hu and Garagash, 2010)

Radial hydraulic fracture
Storage-compressibility/ K̂ (Lhomme et al., 2005)

Storage/ near K (Abe et al., 1976)
Storage/ M and near M, K and near K (Savitski and Detournay, 2002)

Storage/ O (Bunger and Detournay, 2007)
Leak-off/ K̃ (Bunger et al., 2005a)
Leak-off/ M-M̃ (Madyarova, 2004)

Complete numerical solutions (Madyarova, 2004)

Table 2.1 – Known solutions for hydraulic fracture propagation with a simple geometry,
adapted from Lecampion et al. (2018).

Regime L W P
M, K ∼ t 2/3 ∼ t 1/3 ∼ t−1/3

M̃ , K̃ ∼ t 1/2 ∼ t 1/4 ∼ t−1/4

Table 2.2 – Power-law evolution of the fracture length L, width W and net pressure P with time
for a plane-strain hydraulic fracture corresponding to M, K, M̃ and K̃ vertexes.

In this case, the fracture growth will slowly transition to leak-off dominated regimes. As

shown in Fig. 2.2, the growth of a plane-strain hydraulic fracture in an infinite permeable

medium depends on two other time-dependent dimensionless numbers in addition to the

dimensionless toughness Km .

Tm =
(

t

tom

)1/3

, Cm =
(

t

tmm̃

)1/6

(2.8)

where Tm is related to the disappearance of the fluid lag, Cm is related to the fluid leak-off,

and t is the hydraulic fracture propagation time. We present the corresponding power-law

of the time evolution of the fracture length, net pressure and opening in different regimes in

Table. 2.2. It is interesting to notice that the power law of the time evolution is the same in

viscosity and toughness dominated regimes for a plane-strain HF, however their coefficient

depends on different material parameters. We show references of available analytic solutions

in Table. 2.1.
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Zero leak-off Zero fluid lag
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Figure 2.2 – Schematic illustration of the propagation of a plane-strain hydraulic fracture
in dimensionless space, adapted from figure 2 in Garagash (2006b) and figure 2 in Hu and
Garagash (2010)

2.2.2 The radial hydraulic fracture

A radial HF initiates with an important fluid lag (Bunger and Detournay, 2007). The fluid front

catches up with the fracture front over a time scale tom , which is the same as the case of a

plane-strain hydraulic fracture as shown in Eq. (2.5). As the fracture continues to grow, the

perimeter of the fracture front increases with the fracture extent, and more and more energy is

dissipated in the creation of fracture surfaces. The fracture growth transitions from a viscosity

dominated M regime to a toughness dominated K regime. The start of this transition from

energy dissipation in viscous fluid flow to fracture surface creation is characterized by a time

scale tmk :

tmk =
(

E ′13µ′5Q3
o

K ′18

)1/2

(2.9)

The fracture growth can be therefore characterized by a dimensionless toughness Km related

to tmk .

Km =
(

t

tmk

)1/9

, radial (2.10)

For Km ≤ 1, the fracture growth is dominated by the fluid viscosity and for Km > 3.5, the

fracture growth is dominated by fracture toughness (Savitski and Detournay, 2002).

When the medium is permeable, in addition to the two competing dissipative processes

associated with the fluid viscosity and fracture toughness, the fracture growth is also governed

by the competition between fluid storage in the fracture and leak-off in the surrounding

rock. Another time scale tmm̃ characterizes this transition between the storage- and the
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Figure 2.3 – Schematic illustration of the propagation of a radial hydraulic fracture in dimen-
sionless space, adapted from figure 3 in Lecampion et al. (2017) and figure 7 in Detournay
(2016).

Regime L W P
M ∼ t 4/9 ∼ t 1/3 ∼ t−1/3

K ∼ t 2/5 ∼ t 1/5 ∼ t−1/5

M̃ ∼ t 1/4 ∼ t 1/16 ∼ t−3/16

K̃ ∼ t 1/4 ∼ t 1/8 ∼ t−1/8

Table 2.3 – Power-law evolution of the fracture length L, width W and net pressure P with time
for a radial hydraulic fracture, corresponding to M, K, M̃ and K̃ vertices.

leak-off-dominated regime for zero toughness (Madyarova, 2004).

tmm̃ =
(
µ′4Q6

o

E ′4C ′18

)1/7

(2.11)

We summarize the corresponding power-law of the time evolution of the fracture length, net

pressure and opening in Table. 2.3 with references of available analytic solutions presented in

Table. 2.1.

The fracture growth can be strongly influenced by the compressibility when accounting for the

injection system compliance U . This compressibility effect cannot be ignored in lab experi-

ments - it plays a role at early time and results in an instability if the injection system is not stiff

enough. In this case, the injection rate is no longer constant and does not equal Qo . We depict

this early time evolution in a triangular diagram (as shown in Fig. 2.3) with each vertex corre-

sponding respectively to a Ô lag-compressibility dominated, a M̂ viscosity-compressibility

dominated, and a K̂ toughness-compressibility dominated regime. The transition from the

early-time compressibility/viscosity to the early-time compressibility/toughness regime is
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Chapter 2. Linear hydraulic fracture mechanics (LHFM)

governed by a different time scale:

tm̂k̂ =
(

E ′5Uµ′2

K ′6

)1/2

(2.12)

, which depends notably on the injection system compliance U . The wellbore radius a and

initial notch length `o also play a role at early time, especially on the value of the fracture

initiation pressure. Their influence is captured by their ratio with a length scale (E ′U )1/3

associated with the release of the fluid stored during the wellbore pressurization prior to

initiation: L = `o/(E ′U )1/3 and A = a/(E ′U )1/3. It is important to note that such a com-

pressibility length scale (E ′U )1/3 is typically larger than both the initial defect length `o and

the wellbore radius a (L < 1 and A < 1) in most practical situations as E ′U ≈ E ′c f Vi n j ≈
O(1010Pa)×O(10−10Pa−1)×Vi n j ≈Vi n j (where Vi n j denotes the volume of the injection line).

This indicates that the compressibility effect and the associated release of fluid after break-

down typically dominate the early stage of growth of a radial HF (Lecampion et al., 2017).

We show the complete transition in Fig. 2.3. For a radial hydraulic fracture propagating in an

infinite medium with a system compliance and wellbore, the fracture growth starts from the

Ô vertex and ends at the K̃ vertex. The trajectory between different vertexes is described by

three dimensionless parameters.

φ=
(

tmk

tmm̃

)14/9

, ψ= tmk

tom
, χ= tmk

tm̂k̂

(2.13)

where φ describes the trajectory in M −K − M̃ − K̃ , ψ the trajectory in O −M −K , and χ the

trajectory in Ô − M̂ − K̂ −O −M −K .

2.3 Laboratory HF injection design

In this thesis, we have performed HF injections in rocks that are isotropic and homogeneous

with very low permeability. We favor a planar fracture by setting the minimum confining stress

parallel to the wellbore. The hydraulic fracture propagates approximately in a radial shape,

and we use the LHFM theory for a radial HF driven by a constant injection rate to design the

laboratory HF tests.

Our experimental set-up is characterized with an important compressibility effect with L ∼
10−2 and A ∼ 10−2. We control the sudden release of the fluid due to the compressibility by

putting a needle value in the injection line. The needle value is slightly open and dumps the

increase of the flux after the fracture initiation. As a result, the inlet flux does not necessarily

equal the injection rate of the pump. For a given rock sample, we can design the HF experiment

with the fracture propagating under a certain regime by varying the fluid type, the confining

stresses, and the flux entering the fracture. The flux is controlled through the injection pump

together with the needle valve.
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Regime Requirements
M ψÀ 1, tom < tpr op < tmk L/Lmk < 0.06, L/Lom > 5.7
K ψÀ 1, tom < tmk < tpr op L/Lmk > 2.4, L/Lom > 5.7

Table 2.4 – Parameter requirements for viscosity-dominated regime and toughness-dominated
regime (Bunger et al., 2005b; Bunger and Detournay, 2008).

We consider the case of an impermeable rock and neglect the compressibility effect due to the

restraint of the valve. As a result, The propagation regime depends on the relation between

the propagation duration tpr op and the time scales tom , tmk or that between the characteristic

specimen size L (for example, the distance between the injection point to the nearest side of a

cubic sample) and the length scales Lom , Lmk , as shown in Table. 2.4. Lom and Lmk are length

scales associated with the large lag to zero lag transition and the large viscous dissipation to

zero viscous dissipation.

Lom = E ′µ′1/3Q1/3
o

σ4/3
o

, Lmk = E ′3µ′Qo

K ′4 (2.14)

Requirements of the typical HF propagation growth are presented in Table. 2.4. The idea is to

meet these requirements while ensuring a sufficiently long propagation duration (tpr op ∼O(1)-

O(10) minutes). However, we can not apply directly these requirements in our case. Due to the

maximum confining stress limits σo ≤ 20 MPa, we have always tmk < tom (see more details in

Chapter 6). As a result, it is difficult to design a viscosity-dominated experiment without a fluid

lag, which requires tmk > tpr op > tom . However, it is easier to perform a toughness-dominated

experiment, which requires only tpr op À tmk . This ensures that no fluid lag appears even

if tpr op ¿ tom . The requirement tpr op À tmk calls for a very good control of the inlet flux

through the injection pump and the needle valve. We summarize here different types of HF

experiments we have performed using the experimental set-up in the lab (see more details in

Chapter 5 and Chapter 6).

• O-regime and O-M regime experiments. They call for the use of a very viscous fluid,

and the propagation duration much smaller than the fluid lag disappearance time scale

tpr op ¿ tom .

• K-regime experiments. They call for the use of a less viscous fluid and the good control

of the inlet flux. The latter can be done through a small injection rate and a strong

restraint of the valve which damps the flux increase after the fracture initiation due to

the system compliance.

2.4 Conclusions

In this chapter, we have reviewed important results of LHFM. These theoretical results will offer

a basis for the design of HF experiments as well as its comparison with numerical results when
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investigating effects not accounted for by the theory of linear hydraulic fracture mechanics:

namely, the effect of solid non-linearity and fracture roughness on flow.
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3 HF growth with fracture length depen-
dent apparent toughness

This chapter investigates the growth of a hydraulic fracture assuming a power-law dependence

of material toughness with fracture length. Such a toughness fracture length dependence

models a toughening mechanism for rocks in a simple manner. We develop an efficient

numerical method for the hydraulic fracture growth problem combining Gauss-Chebyshev

quadrature and barycentric Lagrange interpolation techniques. Scaling and numerical results

demonstrate that the transition from the viscosity to the toughness dominated regime occurs

earlier. The toughness dominated regime always governs growth at large time for both plane

strain and radial fracture geometries. In all cases, larger net pressure and shorter length are

obtained. The solution is very well approximated by the existing constant toughness solutions

using the instantaneous value of toughness. If the apparent fracture toughness saturates

beyond a given length scale, the solution transitions back to the constant toughness solutions.

This chapter is a modified version of the following scientific article:

Liu, D., Lecampion, B., & Garagash, D. I. (2019). Propagation of a fluid-driven fracture with

fracture length dependent apparent toughness. Engineering Fracture Mechanics, 220, 106616.

Authors contributions

D. Liu comes up with the idea of adopting the fracture-length dependent apparent toughness

to investigate the effect of solid non-linearity under the frame of LHFM. He has formulated

the problem and performed the dimensional analysis under the guidance of B. Lecampion.

D. Liu has applied the Gauss-Chebyshev and Lagrange barycentric interpolation methods

developed by D. Garagash to the specific case of a finite HF growth with fracture length-

dependent apparent toughness. D. Garagash and D. Liu have written the numerical solver,

more specifically, D. Garagash has performed the numerical discretization, while D. Liu’s

contribution to the numerical solver lies mainly in the idea of adopting a simple Mathematica

built-in ordinary differential equation solver and approximating the initial solution of these

ordinary differential equations with the analytical solution of a viscosity-dominated radial HF

and that of a plane-strain HF. D. Liu has performed the validation and visualization. D. Liu, B.
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Chapter 3. HF growth with fracture length dependent apparent toughness

Lecampion, and D. Garagash have written the manuscript.

3.1 Introduction

The propagation of a hydraulic fracture (HF) in an impermeable elastic solid is relatively well

understood, with theoretical predictions matching laboratory scale experiments in model

material (e.g. PMMA, glass, cement) at least for simple planar fracture geometries (Lecampion

et al., 2017; Xing et al., 2016; Bunger and Detournay, 2008). In particular, the ratio between

the energy dissipated in the creation of fracture surfaces (fracture energy) versus the energy

dissipated in fluid flow (Garagash, 2009; Detournay, 2016) governs HF growth, leading to either

toughness dominated or viscosity dominated propagation.

Despite the relatively good agreement of hydraulic fracture mechanics predictions with labo-

ratory experiments performed in brittle/fine-grained materials, deviations from theoretical

predictions have been reported in field observations and micro-HF treatments in vertical wells

(Shlyapobersky et al., 1998; Shlyapobersky, 1985; Shlyapobersky et al., 1988; Thallak et al.,

1993). Apart from a possible increase of fracture energy1 in the field compared to the laboratory

scale, such deviations, in particular a larger propagation net pressure (the difference between

the fluid pressure and the confining stress) might also be explained by other factors such as

the additional frictional losses associated with near well-bore fracture tortuosity (Palmer and

Veatch Jr, 1990; Bunger and Lecampion, 2017). In any case, these field observations indicate a

higher energy demand for larger scale fractures, and hint to further study of the HF growth in

quasi-brittle materials.

A process zone develops around the fracture tip in quasi-brittle materials, where non-elastic

processes such as micro-cracking and plastic deformations are present. The size of the

process zone acts as a good indicator of the apparent fracture energy. Rubin (1993) has

investigated theoretically a propagating HF under high confining stress adopting a cohesive

zone model. He argues that the tip cavity (fluid lag) generated by viscous fluid flow grows

with the fracture and results in an increase of the process zone size and energy consumption

via the perturbation of the near-tip stress field. Numerical studies (Papanastasiou, 1999;

Papanastasiou and Thiercelin, 1993; Papanastasiou, 1997; Papanastasiou and Atkinson, 2006;

Sarris and Papanastasiou, 2013) accounting for plastic dissipation of a propagating hydraulic

fracture have shown a higher net pressure and wider inlet opening, implying an increase of

the apparent fracture toughness2 up to more than one order of magnitude (Papanastasiou,

1999, 1997). Hashida et al. (1993) have reported hydraulic fracturing experiments on Iidate

granite spanning fracture radius between a few millimeters up to 20 centimeters (on specimen

size up to metric scale). These tests clearly show an increase of the toughness with fracture

radius following approximately a power law (see Fig. 3.1-right). In plaster blocks, van Dam

1We define the fracture energy GR as the energy spent in the creation of unit (nominal) fracture surface.
2The fracture toughness KI c is calculated from Irwin’s equation using the fracture energy KI c =

√
GR E ′, where

E ′ is the plane-strain elastic modulus defined.
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Figure 3.1 – Sketch of a hydraulic fracture with fracture length dependent apparent toughness
(left) and the evolution of apparent toughness with fracture radius in hydraulic fracturing tests
in Iidate granite from Hashida et al. (1993) (right). The evolution of the apparent toughness
can be fitted by a power-law K I c ∝ `1/5 for `< 100 mm. The deviation for `> 150 mm might
be possibly due to multiple reasons, such as the full development of the non-linear zone
around the fracture tip and the restriction of the limited specimen size on the continuous
growth of the apparent toughness.

(1999) have reported a development of the fracture tip bluntness, indicating an increase of the

process zone size.

Another line of observations comes from the analysis of magmatic dikes. Dikes are natural

hydraulic fractures driven by magma, spanning a range of scale up to tens of kilometers. A

recent review on dike propagation (Rivalta et al., 2015) reports that apparent fracture toughness

values in the range 100-4000 MPa.m1/2 are often needed to reconcile field observations (Olson,

2003; Delaney and Pollard, 1981; Jin and Johnson, 2008; Rivalta and Dahm, 2006; Bunger

and Cruden, 2011). These ranges of toughness are larger by 2-3 orders of magnitude than

values O(1) MPa.m1/2 measured in the laboratory rock fracture (Atkinson, 1984; Atkinson and

Meredith, 1987). Moreover, field observations indicate that the process zone of dikes can be

much larger than those produced at the tips of tensile fractures at the laboratory scale and

exhibit a direct proportionality with fracture dimension (Rivalta et al., 2015; Delaney et al.,

1986; Pollard, 1987; Engvik et al., 2005). Such observations imply further a scale-dependent

or fracture length dependent characteristic of the apparent fracture energy. Scholz (2010)

analyses the emplacement of dikes (Schultz et al., 2008a) and finds that a linear displacement-

length scaling provides a better fit to the data rather than a square-root scaling (Delaney

and Pollard, 1981; Olson, 2003; Schultz et al., 2008a,b), from which he infers that the fracture

toughness scales with the square-root of fracture length instead of being a constant rock

property. The proposed linear scaling of mode I natural fractures happens to be consistent

with the well known linear relation between fault length and accumulated slip (and damage

zone) for shear type fractures (mode II/III) in the earth crust (Cowie and Scholz, 1992).

There is not yet a clear consensus among researchers regarding the evolution of fracture

toughness at large scales in quasi-brittle rocks in the upper earth crust (Scholz, 2010; Olson
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and Schultz, 2011). The complexity of various physical mechanisms contributes to multiple

possible explanations (Rivalta et al., 2015; Olson and Schultz, 2011): in-situ stress (Rubin,

1993; Bunger, 2008; Funatsu et al., 2004), rock tensile strength (Rubin, 1993), rock mass scale

(Pollard, 1987), temperature (Schultz et al., 2008a; Funatsu et al., 2004) and the enhanced

viscous losses due to roughness (Garagash, 2015b) are all reported more or less responsible for

higher apparent toughness in hydraulic fractures at a larger scale. The goal of this chapter is to

quantify the impact of an increase of fracture energy with fracture length on HF propagation

without presuming the exact toughening mechanism. We restrict ourselves to the case of an

impermeable material and the injection at a constant rate Qo of a Newtonian fluid of viscosity

µ.

3.2 A power-law-like fracture length dependent toughness with a

possible saturation

3.2.1 R-curve behaviour and its size effect

Numerous toughness measurements of quasi-brittle materials in the lab present a power-law

like evolution of the fracture growth resistance as the fracture advances. Such increase then

approaches a critical value – an evolution referred to as the "R-curve" (Anderson, 2017). This

critical fracture growth resistance is commonly considered as a material property, which is

presumed measurable when the specimen is large compared to the intrinsic material length

scale (e.g. process zone size, which may possibly be much larger than typical laboratory

samples). A size effect of the R-curve, though rarely mentioned in literature, has been reported

in some experiments with specimen dimensions much larger than the ones typically used

in the laboratory. Dempsey et al. (1999) report a series of toughness measurements on sea

ice plates, spanning from the common laboratory cm-m scale up to 80 m × 80 m, with the

same plate width of 1.8 m for all specimens. The authors report an increase of the apparent

fracture toughness with specimen dimensions up to 3 m × 3 m × 1.8 m with a value nearly

twice the one measured on smaller specimens (0.5 m × 0.5 m × 1.8 m). Findings on wood

(Morel et al., 2002) also report a size effect of the R-curve behaviour. They show that the critical

fracture resistance scales with the width of the cracked-through plate specimen and follows

a power-law-like evolution with specimen width. Different from the observations on sea

ice (Dempsey et al., 1999), no plateau value is reported in the evolution of the critical fracture

resistance with specimen width, with a maximum thickness of 60 mm for all the geometrically

self-similar specimens in their experiments. These findings, combined with observations

from lab HF tests (Hashida et al., 1993) and dikes (Scholz, 2010), imply a possible power-law

evolution of the apparent fracture toughness and an existence of a finite toughness value

beyond a certain length scale.
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3.2.2 A power-law dependence of apparent fracture toughness

In this chapter, we investigate the case where the apparent fracture energy follows a power-

law-like fracture length dependence. We assume that the underlying increase of the process

zone that results in the macroscopic increase of the apparent fracture toughness remains small

compared to the fracture length. This hypothesis of small scale yielding (Rice, 1968) allows

to approximate the fracture growth within the principles of linear elastic fracture mechanics

(i.e. a single fracture characterised by the apparent fracture toughness). In terms of material

toughness, we write

K I c = A`α, A = K∗
`α∗

(3.1)

where K∗ is the apparent fracture toughness measured at a given fracture length scale of `∗
and α the power-law scaling exponent. Such a power-law dependence does not introduce any

new length scale as the pair of `∗ and K∗ is selected so as to characterise the fracture length

dependence of the toughness. Noticeably, such fracture length dependence of the apparent

toughness is different from the one observed in a R-curve. In the R-curve, the evolution of the

fracture growth resistance does not depend on the initial fracture length `o but is a function of

the fracture extension length ∆`= `−`o (the difference of the fracture length ` with respect

to its initial value `o).

Different toughening mechanisms are embedded into such a power-law dependence model.

The scaling exponent α is most likely function of material properties and in-situ conditions.

According to Papanastasiou (1999); Papanastasiou et al. (2015), the increase of the apparent

toughness during the growth of a planar and smooth HF in weak formations is related to the

size of plastic zone and depends on the level of in-situ stress, the rock strength and elastic

modulus as well as the pumping parameters. It is therefore very likely that the power-law

scaling exponent is function of these parameters as there are practical implications that

the apparent fracture toughness will be higher when the fracture front propagates in the

vertical than the horizontal directions (Papanastasiou and Atkinson, 2006; Papanastasiou

et al., 2015; Papanastasiou and Atkinson, 2000; Papanastasiou et al., 2016). Such argument

is consistent with the findings of Funatsu et al. (2004) who report a dependence of the rock

toughness on confining stresses. Morel et al. (2002) also argue that the scaling exponent is

material-dependent and is closely related to self-affine fracture surfaces and their anomalous

roughening characteristic. The through-the-plate fracture in their experiments initiates at a

small length scale such that the initial fracture length in the propagation direction is much

smaller than the length (perimeter) `∥ of the fracture front (given by the plate thickness). In

this case, the magnitude of the roughness increases as a function of the fracture length `

(case a). This results in an increasing discrepancy between the real fracture surface area at

the micro scale and the nominal fracture surface at the macro scale. As a result, the fracture

energy increases with the fracture length and presents a relation similar to Eq. (3.1), where

α is function of self-affine scaling exponents of fracture surfaces. When the fracture length

becomes comparable to the specimen width `∥ in Morel et al. (2002), the magnitude of the

roughness saturates at a value dependent on `∥ (case b). The toughness scaling changes
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Table 3.1 – Power-law scaling exponents for the evolution of apparent fracture toughness for
different materials and geometries. The power-law exponents for plane-strain and axisymmet-
ric fractures are estimated by using Eq. (4.6) and Eq. (4.7) in Morel et al. (2002) respectively and
using the roughness self-affine scaling exponents in Morel et al. (2002) for pine and spruce,
López and Schmittbuhl (1998) for granite and Mourot et al. (2006) for mortar.

Material Plane-strain (α) Axisymmetric (αc )
Pine 0.062-0.183 0.365

Spruce 0.055-0.131 0.235
Granite 0.171 0.205
Mortar 0.039 0.275

to K I c ∝ `∥αc , where αc , also material-dependent and function of the self-affine scaling

exponents, characterises the fracture roughness growth within the length of the fracture front

`∥. These observations (a and b) suggest different power-law scaling exponents for different

fracture geometries. For a plane-strain hydraulic fracture in an infinite medium, the fracture

front is infinite (`∥ =∞), which suggests the apparent toughness scaling with the fracture

length K I c ∝ `α as in case (a). For a radial fracture, the fracture length (radius) is comparable

to the front length (`∥ = 2π`), suggesting the apparent toughness scaling with fracture radius,

K I c ∝ `∥αc , as in case (b). We compile different power-law scaling exponents of different

materials from the literature in Table 3.1. The exponents for granite and mortar are obtained

based on the argument of Morel et al. (2002) and roughness self-affine scaling exponents in

López and Schmittbuhl (1998); Mourot et al. (2006). Moreover, a power-law scaling exponent

of α≈ 1/2 is suggested (Schultz et al., 2008b) based on the field observations of emplacement

scaling on dikes and a value of α ≈ 0.1 for Nevada Tuff is also reported (Olson and Schultz,

2011) from laboratory measurements (Weisinger et al., 1980).

3.2.3 Possible appearance of a finite apparent toughness beyond a length scale

The exact evolution of apparent fracture toughness with fracture length remains an open ques-

tion. As reported in the previously mentioned experiments (Hashida et al., 1993; Dempsey

et al., 1999), the toughening effect is likely curtailed beyond a certain length scale `s (fracture

length beyond which the apparent toughness reaches an asymptotic value). Such an upper

limit of the increase of apparent toughness may result from different mechanisms. Papanas-

tasiou (1999, 1997) examines the apparent fracture toughness of a smooth plane-strain HF

in an infinite domain using a coupled elasto-plastic finite element model with cohesive in-

terface elements for propagation criterion. The author shows that the apparent toughness

increases initially with fracture length following approximately a power law, and then reaches

an asymptotic value. The author owes the observed plateau of the apparent toughness to the

full development of plastic(or process) zones that shield the tip. However, the appearance of

the finite toughness is also possibly due to the restraints of the specimen(or crust) dimensions.

If we account for the fracture roughness and extend the findings in Morel et al. (2002) to large

scale fractures, a potentially unabated fracture toughening with fracture growth is expected

26



3.3. Mathematical model

for an unbounded domain. However, when the fracture grows close to the specimen (or earth

crust) dimensions in the lab (or at depth), a finite apparent toughness may also appear due to

such dimension limit on the continuous growth of apparent toughness. It may be likely that

the saturation length scale `s can be potentially large given that the large toughness values

reported in dikes (Olson, 2003; Delaney and Pollard, 1981; Jin and Johnson, 2008; Rivalta

and Dahm, 2006; Bunger and Cruden, 2011) correspond to a fracture length of the order of

kilometers.

In the following, we investigate the growth of a fluid-driven fracture assuming a power-law

dependence of toughness with fracture length as described by Eq. (3.1) and also account for

a possible saturation of the fracture toughness above a given scale. We focus on both plane-

strain and axisymmetric (radial) fracture geometries. We first perform a dimensional analysis

to describe the solution structure as well as the governing dimensionless parameters. We then

solve the complete evolution problem numerically. We notably develop a scheme combining

a Gauss-Chebyshev quadrature with Barycentric Lagrange interpolation and differentiation

techniques (Viesca and Garagash, 2017). In Section 3.3, 3.4, 3.6, 3.7.1 and 3.7.2, we assume

that the saturation length scale `s is very large (`s →∞) so that the toughness follows a power-

law-like evolution without reaching the asymptotic value (`< `s). We then discuss the effect

of the plateau of apparent fracture toughness beyond a saturation length scale `s in Section

3.7.3.

3.3 Mathematical model

We introduce a parameter d in order to represent the governing equations for a plane-strain

(d = 1) and an axisymmetric hydraulic fracture (d = 2) simultaneously. In view of the problem

symmetry, we write the governing equations for the fracture half-length `(t ) in plane-strain,

and also denote the fracture radius as `(t ) for the axisymmetric / radial geometry. Following

Savitski and Detournay (2002); Detournay (2004), we use the following set of effective material

parameters for clarity:

K ′
∗ =

√
32

π
K∗, E ′ = E

1−ν2 , µ′ = 12µ (3.2)

where E is the solid elastic modulus, ν Poisson’s ratio, µ the fluid viscosity, and K∗ the reference

apparent fracture toughness measured at `= `∗.

3.3.1 Elasticity

For a strictly Mode I fracture, the elasticity equations reduce to a single boundary integral

equation relating the fracture opening w and the net pressure p defined as p = p f −σo where

σo is the in-situ compressive stress normal to the fracture plane (the minimum stress) (Hills
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et al., 2013):
1

4π

1

`

∫ 1

−1
Gd (ξ,ξ′)

∂w

∂ξ′
dξ′ = 1

E ′ p, ξ ∈ [−1,1] (3.3)

where ξ= x/` is the dimensionless spatial coordinate in the fracture. Gd is the elastic kernel,

representing the stress component normal to the fracture plane induced by a unit dislocation.

It is function of the fracture geometry:

• In plane-strain (d = 1)

G1(ξ,ξ′) = 1

ξ−ξ′ (3.4)

• and in axisymmetry (d = 2)

G2(ξ,ξ′) =


sign(ξξ′)

[
1

ξ−ξ′ E(k)− 1

ξ
K(k)

]
, |ξ′| < |ξ|

1

ξ−ξ′ E(1/k), |ξ′| > |ξ|
(3.5)

where k = ξ′/ξ and E(k) and K(k) denote the complete elliptic integrals. The axisymmetric

kernel is obtained from the solution for a ring dislocation at ξ′ ∈ [0,1] (Cleary and Wong, 1985;

Gordeliy and Detournay, 2011a), and the symmetric continuation onto ξ′ ∈ [−1,0].

3.3.2 Lubrication flow

The elastic compliance of an open fracture is much larger than the fluid compressibility

(Lecampion et al., 2018). As a result, under the assumption of an impermeable medium (zero

leak-off) and zero fluid lag, the width-averaged fluid mass conservation reduces to volume

conservation:
∂w

∂t
+ 1

xd−1

∂

∂x

(
xd−1q

)
= 0 (3.6)

Similarly, for laminar flow conditions, the width averaged fluid balance of momentum reduces

to Poiseuille law relating the local fluid flux q to the local pressure gradient (Batchelor, 2000):

q =−w3

µ′
∂p

∂x
(3.7)

where we have implicitly assumed that the in-situ compressive stress σo is uniform.

3.3.3 Boundary conditions

The fluid is injected at the fracture center x = 0 either as a line (d = 1) or a point (d = 2) source.

We assume a constant injection rate Qo in the following. A zero fluid flux and zero fracture

opening conditions apply at the fracture tip x = ` (Detournay and Peirce, 2014):

2 lim
x/`→0

(πx)d−1q =Qo , q(`) = 0, w(`) = 0 (3.8)
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3.3.4 Global continuity equation

The integration of the lubrication equation (3.6) combined with the previous boundary condi-

tions (3.8) yield a global fluid continuity equation:

2
∫ `

0
(πx)d−1wdx =Qo t (3.9)

3.3.5 Propagation criterion

Under the assumption of small scale yielding, the process zone size is much smaller than

the fracture length and linear elastic fracture mechanics is valid to describe the fracture

propagation. The propagation criterion of a quasi-static hydraulic fracture translates into

the classical square-root asymptote near the fracture tip (Rice, 1968), with the mode I stress

intensity factor K I equal to the fracture toughness K I c at all time: K I = K I c . In view of the

fracture length dependent evolution of the toughness described by the power law in Eq. (3.1),

the linear elastic fracture mechanics asymptote for fracture width near the tip becomes:

w ∼ K ′∗
E ′

(
`

`∗

)α
(`−x)1/2, `−x ¿ ` (3.10)

3.4 Scalings and Structure of the solution for a fracture-length-dependent

toughness

3.4.1 Viscosity and toughness scaling

The propagation of plane-strain and radial hydraulic fractures are well understood for the

case of fracture length independent fracture toughness. Solutions (Garagash and Detour-

nay, 2005; Garagash, 2006a; Savitski and Detournay, 2002) have been obtained in limiting

propagation regimes where either the dissipation associated with fluid viscous flow (viscosity

dominated - M−regime) or with the creation of new fracture surfaces (toughness dominated -

K−regime). For the case of a plane-strain hydraulic fracture in an impermeable medium, the

propagation is actually always self-similar and is defined by a single dimensionless parameter

characterising the relative importance of toughness versus viscous forces: e.g. a dimensionless

toughness K . The radial fracture geometry yields a different solution structure. Indeed, as

the perimeter of the fracture increases with time, the energy associated with the creation of

new surfaces increases and eventually dominates over viscous forces at large time. As a result,

for a radial fracture, the dimensionless toughness K increases with time: the propagation

transitions from the M−regime to the K−regime. In what follows, using similar procedures,

we investigate the scaling of the solution for both geometries in the case of a fracture length

dependent fracture toughness and discuss the corresponding modifications of the structure

of the propagation of a hydraulic fracture in an impermeable medium.
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Chapter 3. HF growth with fracture length dependent apparent toughness

We introduce a dimensionless fracture openingΩ, net pressureΠ, and fracture half-length or

fracture radius γ as follows:

`(t ) = L(t )γ(ξ,G ), w(x, t ) = ε(t )L(t )Ω(ξ,G ), p(x, t )−σo = ε(t )E ′Π(ξ,G ) (3.11)

In these definitions, ε(t ) is a small dimensionless number capturing the fact that the fracture

characteristic scale W (t) is much smaller than the characteristic length L(t). Similarly the

characteristic net pressure P (t ) = ε(t )E ′ is much smaller than the rock elastic modulus. G (t )

denotes additional dimensionless parameters of which the solution depends on. All yet to

be defined and possibly dependent on time to reflect the moving boundary nature of the

hydraulic fracture problem.

With such a scaling, we thus obtain the following dimensionless form of the governing equa-

tions.

• Elasticity
1

4π

1

γ

∫ 1

−1
Gd (ξ,ξ′)

∂Ω

∂ξ′
dξ′ =Π(ξ) (3.12)

• Lubrication flow (Reynold’s equation obtained combining fluid continuity and Poiseuille

law) written in the moving coordinates system (ξ= x/`(t )):(
ε̇t

ε
+ L̇t

L

)
Ω− L̇t

L
ξ
∂Ω

∂ξ
+ Ġ t

(
∂Ω

∂G
− ξ

γ

dγ

dG

∂Ω

∂ξ

)
= 1

Gm

1

γ2ξd−1

∂

∂ξ

(
ξd−1Ω3 ∂Π

∂ξ

)
(3.13)

• Global continuity equation

2πd−1γd
∫ 1

0
ξd−1Ωdξ=Gv (3.14)

• Propagation condition (in terms of the fracture width near-tip asymptote) for the case

of a power-law dependence of the fracture toughness on the fracture length (Eq. (3.1)):

Ω∼Gkγ
α+1/2(1−ξ)1/2, 1−ξ¿ 1 (3.15)

In these dimensionless equations, Gm , Gv and Gk are three independent dimensionless groups

emerging from lubrication flow, global continuity and propagation criterion respectively,

whose expressions are given by:

Gm = µ′

ε3E ′t
, Gv = Qo t

εLd+1
, Gk = K ′∗

εE ′L1/2

(
L

`∗

)α
(3.16)

In order to define a particular scaling, we set two of these dimensionless groups to unity

and solve for the corresponding ε(t) and L(t). For an impermeable medium, the fracture

volume always equals the injected volume, i.e. Gv = 1. Two scalings are therefore obtained by
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Table 3.2 – Viscosity and toughness scaling for plane-strain (d = 1) and radial (d = 2) hydraulic
fractures in the case of a power-law dependence of fracture toughness with fracture length.

Scaling Viscosity Toughness

ε(t ) εm =
(
µ′

E ′t

)1/3

εk =
(

K ′∗
d+1

E ′d+1Q1/2−α
o `∗α(d+1)t 1/2−α

)1/(α+d+1/2)

L(t ) Lm =
(

E ′Q3
o t 4

µ′

)1/(3(d+1))

Lk =
(

QoE ′`∗αt

K ′∗

)1/(α+d+1/2)

W (t ) Wm =
(
µ′dQ3

o t 3−d

E ′d

)1/(3(d+1))

Wk =
(

K ′∗
dQα+1/2

o tα+1/2

E ′d`∗αd

)1/(α+d+1/2)

P (t ) Pm =
(

E ′2µ′

t

)1/3

Pk =
(

K ′∗
d+1

E ′1/2−αQ1/2−α
o `∗α(d+1)t 1/2−α

)1/(α+d+1/2)

G (t )
Gm = 1 Gm =M = (t/tmk )−(d−1+4α)/(α+d+1/2)

Gk =K = (t/tmk )(d−1+4α)/(3(d+1)) Gk = 1

assuming that either viscous forces (Gm = 1) or toughness (Gk = 1) dominate. It results in a

viscosity and a toughness scaling respectively. Table 3.2 lists the different characteristic scales

and dimensionless parameters in these two scalings as functions of the material parameters,

injection rate, time and fracture geometry.

In the viscosity scaling, G = Gk is the only remaining dimensionless parameter appearing

in the set of governing equations which we rename as dimensionless toughness K . It char-

acterises the relative importance of the solid apparent toughness compared to viscosity on

the propagation of a hydraulic fracture. In the toughness scaling, we define similarly the

dimensionless viscosity M from G =Gm . The scalings are of course related to one another -

via the following relations:

K =
(

t

tmk

)(d−1+4α)/(3(1+d))

, M =K −3(1+d)/(α+d+1/2),
εm

εk
=K −(d+1)/(α+d+1/2),

Lm

Lk
=K 1/(α+d+1/2)

(3.17)

In the previous relation, we have introduced a timescale tmk , which corresponds to the time

when the characteristic fracture scales in the two scalings are equal, i.e. Lm = Lk at t = tmk .

Such a timescale quantifies the time of transition from the M−regime to the K−regime. We

can define the corresponding transitional characteristic scales Lmk = L(tmk ), Wmk =W (tmk ),

and Pmk = P (tmk ) :

tmk =
(
µ′d+α+1/2Q3/2−3α

o E ′2d−α+5/2
`3α(d+1)
∗

K ′∗
3(1+d)

)1/(4α+d−1)

, Lmk =
(
µ′QoE ′3`4α∗

K ′∗
4

)1/(4α+d−1)

,

Wmk =
(
µ′α+1/2Qα+1/2

o E ′5/2−d−α
`α(3−d)
∗

K ′∗
(3−d)

)1/(4α+d−1)

, Pmk =
(

K ′∗
d+1

µ′1/2−αQ1/2−α
o E ′3/2−3α`α(d+1)

∗

)1/(4α+d−1)

(3.18)

It is worthwhile to note that the viscosity scaling does not depend on fracture toughness.
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Chapter 3. HF growth with fracture length dependent apparent toughness

The expressions obtained are similar to the ones derived in Garagash and Detournay (2005);

Savitski and Detournay (2002). Only the toughness dominated scaling is modified compared to

the case of the fracture length independent toughness. By setting α= 0, we obviously recover

the well-known scalings for the case of the fracture length independent fracture toughness

(Garagash and Detournay, 2005; Garagash, 2006a; Savitski and Detournay, 2002). For example,

in a plane-strain fracture (d = 1), when the fracture toughness is fracture length independent

α= 0 , the dimensionless toughness K becomes time-independent

d = 1 : K (α= 0) = K ′∗
E ′

(
E ′

µ′Qo

)1/4

(3.19)

coincident with the expression obtained in Garagash and Detournay (2005); Garagash (2006a).

3.4.2 Zero-viscosity / toughness dominated solutions

The fracture propagation problem reduces to a self-similar problem at small (K ¿ 1) and

large time (K À 1). The early-time viscosity dominated solutions already available in the

literature are of course also valid for the case of fracture length dependent toughness ( frac-

ture toughness does not play a role in the viscosity dominated regime). We derive here

large-toughness solutions in a similar manner as in the case of fracture length independent

toughness (Garagash, 2000; Savitski and Detournay, 2002; Garagash and Detournay, 2005).

These zero viscosity solutions are expressed in the toughness scalings, and the corresponding

dimensionless opening, length and net pressure are referred with a subscript ko in reference

to the zero-viscosity solutions. As the viscosity is negligible, the net pressure is uniform in the

fracture. The governing equations reduce to the elastic solution for a uniformly pressurized

fracture, global volume balance and fracture propagation condition, i.e.:

Ωko = 4

(
2

π

)d−1

γkoΠko

√
1−ξ2 (3.20)

2γd
ko

∫ 1

0
(πξ)d−1Ωkodξ= 1 (3.21)

Ωko ∼ γα+1/2
ko (1−ξ)1/2, 1−ξ¿ 1 (3.22)

whereΩko , γko andΠko are the dimensionless fracture opening, fracture half-length (d = 1) or

fracture radius (d = 2), and net pressure. The solutions for a plane-strain fracture are thus

γko =
(

2
p

2

π

)1/(α+3/2)

,Πko = 1

2π

(
π

2
p

2

)2/(α+3/2)

,Ωko = 2

π

(
π

2
p

2

)1/(α+3/2) √
1−ξ2 (3.23)

and for an axisymmetric fracture:

γko =
(

3

π
p

2

)1/(α+5/2)

,Πko = 3

16

(
π
p

2

3

)3/(α+5/2)

,Ωko = 3

2π

(
π
p

2

3

)2/(α+5/2) √
1−ξ2 (3.24)
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3.4. Scalings and Structure of the solution for a fracture-length-dependent toughness

We recover the zero-viscosity solutions for fracture length independent fracture toughness

(Garagash, 2006a; Savitski and Detournay, 2002) when setting α= 0 in (3.23) and (3.24).

3.4.3 Effect of fracture length dependent toughness

One important difference brought by the fracture length dependent toughness (α> 0) is that

the dimensionless toughness increases with time in both geometries. This notably changes

the partition between the viscous and the fracture energy dissipation during the growth

of a hydraulic fracture even for a plane-strain fracture. In both geometries, as the fracture

toughness increases with length, the energy spent in the creation of new fracture surface

necessarily increases with time and ultimately dominates. This constitutes a qualitative

change in the evolution of plane-strain HF from the case with fracture length independent

toughness, when the dissipation partition is time-invariant. A plane-strain hydraulic fracture

will eventually transition to the toughness dominated regime for the case of unabated increase

of the apparent fracture toughness, even if it is initially dominated by viscosity.

For a radial fracture, the transition from the viscosity to the toughness dominated regime

is accelerated due to the increase of the fracture toughness with fracture length. Larger α

implies a faster increase of the energy dissipated in the solid and leads to a smaller value of the

transition timescale tmk . The increase of the fracture energy results in a higher net pressure

required to drive the fracture propagation. Smaller fracture length and wider fracture opening

are obtained for the same volume of the injected fluid.

It is interesting to note that when α= 1/2, K ∝ (t/tmk )1/3, for both geometries (Table 3.2).

Notably for that particular value of α, the characteristic pressure scale Pk (t ) becomes indepen-

dent of time, i.e. the propagation is driven by a constant pressure at large time: this pressure

exactly balance the toughness increase with length. For values of the power-law scaling ex-

ponent α larger than 1/2, we observe that the characteristic toughness dominated pressure

Pk (t ) increases with time for both geometries. This is a significant difference compared to the

fracture length independent toughness case. In other words, for α> 1/2, the increase of the

stress intensity with fracture length (in ∝ Pk`
1/2) is not sufficient to compensate the increase

of the toughness with length (in ∝ `α from Eq. (3.1)). Classically in hydraulic fracturing, a net

pressure increase with time is related to the propagation of a height contained / blade-like

fracture (also referred to as the PKN geometry) under the assumption of a fracture length

independent toughness (Economides et al., 1989). Existing field observations of net pressure

increases are usually relatable to contained-height hydraulic fracture growth (PKN fracture)

as monitored by micro-seismicity (Gulrajani et al., 1997). It is thus interesting to contrast

such a behaviour for very different fracture geometry (radial or plane-strain) for a power-law

dependent toughness with α > 1/2. We therefore see that in the field in order to decipher

between these two possible causes, independent measurements of fracture geometry and

pressure are required.
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Chapter 3. HF growth with fracture length dependent apparent toughness

3.5 Numerical algorithm

We now describe a numerical method for the solution of the complete evolution problem

from a given initial state - e.g. the viscosity dominated solution which is valid for time smaller

than tmk (α). Our method is based on a non-uniform moving mesh discretized using a Gauss-

Chebyshev quadrature and a collocation method (Erdogan et al., 1973; Viesca and Garagash,

2017).

Extrapolation, integration, and differentiation operations are simplified as matrix multiplica-

tions using Barycentric techniques (Berrut and Trefethen, 2004; Viesca and Garagash, 2017).

We turn the fully coupled hydraulic fracture propagation problem into a system of ordinary

differential equations in time that can be integrated with classical methods for ordinary

differential equations.

We first present the Gauss-Chebyshev quadratures associated with the discretization of the

elastic equation. We then select the corresponding Barycentric operators listed in Viesca

and Garagash (2017) and show how they can be applied to the discretization of a radial and

plane-strain fracture. The corresponding vector and matrix are denoted respectively by bold

type and blackboard bold type.

3.5.1 Gauss-Chebyshev quadrature

Gauss-Chebyshev quadrature methods for the solution of boundary integral equation arising

in fracture mechanics is a classical technique (Erdogan et al., 1973). The method makes

use of a primary s = {s j }, j = 1, ..., n, and a complimentary z = {zi }, i = 1, ..., m, sets of nodes,

discretizing the fracture interval (−1,1), which corresponds to the roots of the respective

Chebyshev polynomials denoted as φn(s) and ψm(z) respectively (Erdogan et al., 1973). The

choice of φn(s),ψm(z) and corresponding sets of nodes s and z stems from the type of the

dislocation density singularity at the fracture tips. Specifically, the square-root singularity

of linear elastic fracture mechanics can be directly embedded in the discretization. The

dislocation density is expressed as:

dw

ds
=ω(s)F (s), ω(s) = 1p

1− s2
(3.25)

where ω(s) is a weight function with the required tip singularity and F (s) an unknown non-

singular function.

For the type of singularity embedded in Eq. (3.25), the primary and complimentary polynomi-

als are the Chebyshev’s of the first φn(s) = Tn(s), and second ψm(z) =Um(z) (with m = n −1)

kinds respectively; and the two sets of spatial nodes are given by:

s j = cos

(
π( j −1/2)

n

)
, j = 1, ..., n; xi = cos

(
πi

n

)
, i = 1, ..., n −1, (3.26)
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3.5. Numerical algorithm

3.5.2 Hilbert transform operator for the dislocation density

The Hilbert transform

H [w](z) = 1

π

∫ 1

−1

1

z − s

∂w

∂s
ds (3.27)

is evaluated on the complimentary z−set of nodes using representation (3.25) of the dislocation

density on the s−set, {F (s j )}. This results in the following:

H [w](zi ) =
n∑

j=1
Hi j F (s j ), Hi j = 1

n

1

zi − s j
(3.28)

3.5.3 Operators for extrapolation, differentiation and integration

The unknown function F representing the unknown dislocation density as Eq. (3.25) can be

extrapolated from the Gauss-Chebyshev nodes to the fracture tip:

F (−1) =
n∑

j=1
P j F (s j ), F (1) =

n∑
j=1

Q j F (s j ) (3.29)

where, according to Table 3 of Viesca and Garagash (2017).

P j = (−1) j tan(arccos(s j )/2)

n
, Q j =−(−1) j cot(arccos(s j )/2)

n
(3.30)

Integration operators can be defined on either grid with the result of integration on the same

or the other grid. For example, consider the integration of a regular function g (s) defined on

the z−grid, {g (zi )}, with the result evaluated on the same grid:∫ zi

0
g (z)dz =

m∑
i ′=1

Ti i ′g (zi ′), Ti i ′ =
m−1∑
k=0

[Ψk (zi )−Ψk (0)]Bki ′ (3.31)

where, from Table 2 in Viesca and Garagash (2017), Ψk (z) is the indefinite integral of the

complimentary set of Chebyshev’s polynomials (i.e. ψk =Uk (z)),

Ψk (z) =
∫ z

ψk (z)dz = cos(k +1)θ

k +1
, θ = arccos(z) (3.32)

and

Bki ′ =
2

m +1
sin

(
πi ′

m +1

)
sin

(
π(k +1)i ′

m +1

)
(3.33)

For another example, consider integration of the dislocation density dw/ds =ω(s)F (s), with

F (s) defined on the s−grid, {F (s j )}, and results evaluated on the z−grid (Viesca and Garagash,

2017): ∫ +1

zi

∂w

∂s
ds =−

n∑
j=1

Si j F (s j ), Si j =
n−1∑
k=0

[Φk (zi )−Φk (1)]Bk j (3.34)
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where, from Table 2 in Viesca and Garagash (2017),

Φk (z) =
∫ z

φk (s)ds =−sinkθ

k
(3.35)

and

Bk j =


1

n
, k = 0

2

n
cos

(
πk( j −1/2)

n

)
, k > 0

(3.36)

Specifically, the integration matrix {Si j } simplifies to a vector {S A j } on the integration interval

[−1,1] and simplifies to {SH j } on [0,1].

∫ +1

−1

∂w

∂s
ds =

n∑
j=1

S A j F (s j ), S A j =
n−1∑
k=0

[Φk (1)−Φk (−1)]Bk j (3.37)

∫ +1

0

∂w

∂s
ds =

n∑
j=1

SH j F (s j ), SH j =
n−1∑
k=0

[Φk (1)−Φk (0)]Bk j (3.38)

A differentiation operator can be defined on either grid. In the following, we utilize differentia-

tion on the z−grid. For a regular function g (z), we obtain

g ′(zi ) ≈
m∑

i ′=1
Di i ′g (zi ); Di i ′ = ωi ′/ωi

zi − zi ′
, i 6= i ′; Di i =−

m∑
i ′=1,i ′ 6=i

Di i ′ (3.39)

where ωi = (−1)i sin2(πi /n) (see Table 3 in Viesca and Garagash (2017)).

3.5.4 Discretized governing equations

Using the previously defined operators, we discretize the governing equations of the problem

as follows.

Elasticity

The elasticity equation (3.3) after discretization reads:

4`

E ′ p(zi ) =
n∑

j=1

1

n
Gd (zi , s j )F (s j ) (3.40)

written in the matrix form as:
4`

E ′ p =Gd ·F (3.41)

where p = {p(zi )}, F = {F (s j )} are unknown vectors and Gd = {
1

n
Gd (zi , s j )} is the elasticity

quadrature matrix.
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3.5. Numerical algorithm

The quadrature (3.40) has spectral accuracy for the plane-strain fracture (Viesca and Gara-

gash, 2017; Erdogan et al., 1973), when kernel G1(z, s) = 1

z − s
is the Cauchy one, and the

corresponding quadrature matrix G1 =H= {
1

n

1

zi − s j
}.

For an axisymmetric fracture, the kernel is to the leading order of the Cauchy type, but it also

contains a weaker logarithm singularity. We therefore write it as:

G2(z, s) = 1

z − s
+ ln |z − s|

2z
+∆G(z, s) (3.42)

where ∆G(z, s) corresponds to the non-singular part of G2(z, s). In order to maintain the

accuracy of the quadrature in this case, we represent the logarithm-term as an integral of

the Cauchy-like term, ln|z − s| = ∫ z
0

dz

z − s
+ lns, where the latter term is inconsequential (i.e.

it gives zero contribution to the elasticity integral). Using integration on the z−grid for the

logarithm-term, the final elasticity matrix for the axisymmetric fracture case becomes:

G2 =H+ 1

2z
T ·H+∆G (3.43)

where T= {Ti i ′} is the z−grid integration matrix and ∆G= {
1

n
∆G(zi , s j )}.

Lubrication flow

We integrate the lubrication equation (3.6) from the z−grid nodes to the fracture tip accounting

for the tip boundary condition w(ξ= 1) = 0 (Eq. (3.8)):

−
(
∂wi

∂t

1

d
zd

i + ∂

∂t

1

d

∫ 1

zi

ξd ∂w

∂ξ
dξ

)
−

˙̀

`

∫ 1

zi

ξd ∂w

∂ξ
dξ=− 1

µ′`2 zd−1
i w3

i
∂p

∂ξ

∣∣∣∣
ξ=zi

(3.44)

where wi is the fracture opening evaluated at zi . The discretization of these terms is obtained

in the following by using the integration operator S= {Si j } and differentiation operator D=
{Di i ′} and by back-substituting the discretized elasticity equation (3.40).{

∂wi

∂t

1

d
zd

i

}
= 1

d
zd ∂

∂t
(S ·F) (3.45){

1

d

∫ 1

zi

ξd ∂w

∂ξ
dξ

}
= 1

d

(
−S ·

(
sd F

))
(3.46){

1

µ′`2 w3
i zd−1

i
∂p

∂ξ

∣∣∣∣
ξ=zi

}
= E ′

4µ′`3 (S ·F)3zd−1 (D ·Gd ·F) (3.47)

We then obtain the final discretized (n −1) lubrication equations:

− 1

d
zd ∂

∂t
(S ·F)+ 1

d

∂

∂t

(
S ·

(
sd F

))
+

˙̀

`

(
S ·

(
sd F

))
=− E ′

4µ′`3 (S ·F)3zd−1 (D ·Gd ·F) (3.48)
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3.5.5 Global continuity equation

The global continuity equation reduces to the following using the integration operators SA =
{S A j } or SH = {SH j } defined above:

• Plane-strain ∫ 1

−1
ξ
∂w

∂ξ
dξ+ Qo t

`
= SA · (s F)+ Qo t

`
= 0 (3.49)

• Axisymmetry ∫ 1

0
ξ2 ∂w

∂ξ
dξ+ Qo t

π`2 = SH · (s2 F
)+ Qo t

π`2 = 0 (3.50)

3.5.6 Propagation criterion

The opening asymptote near the tip (3.10) indicates a square root singularity of the dislocation

density at the tip as shown in Eq. (3.51), which is already embedded in the Gauss-Chebyshev

quadrature (3.25):

lim
z→1

dw

dz
= lim

z→1

dw

dξ

dξ

dz
=−K ′∗

E ′
`1/2

2

(
`

`∗

)α
lim
z→1

1p
1− z

(3.51)

lim
z→1

dw

dz
= lim

s→1
ω(s)F (s) = F (1)p

2
lim
s→1

1p
1− s

(3.52)

By setting the coefficients before the singularity in Eq. (3.51) and Eq. (3.52) equal to each other

and applying the extrapolation operator Q = {Q j }, the propagation condition for a fracture

length dependent toughness simplifies to

F (1) ≈ Q ·F =− 1p
2

K ′∗`1/2

E ′

(
`

`∗

)α
(3.53)

We therefore get a set of discretized equations (3.48), (3.49) or (3.50) depending on the geome-

try, and (3.53), all of which are function of ` and F. By differentiating Eq. (3.49) or (3.50), and

Eq. (3.53) with respect to t , we finally get a system of ODEs that can be schematically written

as:

M(Y, t )
dY

dt
=F (Y, t ) (3.54)

where Y = {`,F} is the unknown vector andM and F are the matrix and vector functions of Y

and t which follow from the above differentiation.

On the account of the problem symmetry for a plane-strain fracture, choosing an even n, we

set

F = {F1,F2, ...,Fn/2,−Fn/2, ...,−F2,−F1} (3.55)

The first (n/2−1) equations of Eq. (3.48) are thus equivalent to the last (n/2−1) equations. By

taking advantage of the symmetry, we account for the first (n/2−1) equations in Eq. (3.48)
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when building the ODEs of Eq. (3.54).

For a radial fracture, we select an odd n since the choice of an even n would result in infinite

values of the elasticity matrix (3.43). We therefore set:

F = {F1,F2, ...,F(n−1)/2,0,−F(n−1)/2, ...,−F2,−F1} (3.56)

Similarly, we take the first ((n −1)/2−1) equations of Eq. (3.48) to build the ODE system.

The final non-linear system of ODEs (3.54) can be solved using appropriate numerical al-

gorithms. We have used the built-in ODE solver of Mathematica 11.0 (Wolfram Research,

Inc., 2016). In terms of initial conditions, assuming a fracture length dependent toughness of

Eq. (3.1), the fracture propagation for both geometries starts from a viscosity dominated solu-

tion3. We therefore use the solutions of the self-similar problem with K ¿ 1 for a plane-strain

fracture (see 3.9 for more details) and the zero-toughness solution for a radial fracture (Savitski

and Detournay, 2002). In the latter, we initialize the fracture growth at time to ¿ tmk (α) with a

fracture radius of `o ¿ Lmk (α) and a fracture toughness of K∗(`o/`∗)α.

We use n = 100 for a plane-strain fracture and n = 101 for a radial fracture for all the simu-

lations presented in this chapter. The computational cost using the default settings of the

Mathematica ODE solver is of several seconds for a simulation spanning 6-15 decades of time

(e.g. two seconds for the case of Fig. 3.2, around 30 seconds for the case of Fig. 3.12)4 on a

personal computer (MacBook Pro, 2015, 2.9 GHz Intel Core i5).

3.5.7 Numerical verification - fracture length independent fracture toughness case

We first benchmark our numerical solver for the case of a fracture length independent fracture

toughness for which a number of (semi-) analytical solutions are known. The solver is able to

reproduce all propagation regimes for both geometries in a very efficient manner.

We present here comparisons for a radial fracture for which the solution evolves from viscosity

to toughness dominated regime with time for a fracture length independent toughness.

The fracture behaviour is characterised by different power laws in the M− and K−regime, as

illustrated in Fig. 3.2, where the departure from the viscosity dominated regime is observed

to start at tmk . The profiles of the fracture opening and net pressure for K = 0.32,2.7,5.0

are displayed in Fig. 3.3, showing an excellent match with the zero-toughness (K = 0) and

large-toughness (M ¿ 1) solutions (Savitski and Detournay, 2002) respectively.

3If we account for a non-zero toughness at initiation, the approximation of zero-toughness solutions for a radial
fracture is still valid at early time, since the energy dissipation in the solid is limited by the small geometry and
viscosity dominates the fracture growth. However, this may differ for a plane-strain fracture: any state between the
viscosity or toughness dominated regimes can serve as an initial condition, see Section 3.7.2 for more discussions.

4The computational cost is related to the complexity and non-linearity of the system. The system of Fig. 3.12 is
more non-linear due to a smoothed toughness saturation function and is thus more time-consuming than the
case of Fig. 3.2.
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Figure 3.2 – Evolution of the dimensionless fracture radius and inlet opening with dimen-
sionless time for the case of a fracture length independent toughness (α= 0). Dashed curves
indicate numerical solutions while the orange and gray lines correspond to zero-toughness
(K = 0) and zero-viscosity (M = 0) solutions respectively.
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Figure 3.3 – Profile of fracture opening and net pressure in a radial fracture for the case of a frac-
ture length independent toughness (α= 0) with K = (t/tmk (α= 0))1/9 = 0.32,2.7,5.0, scaled
separately by viscosity scalingΩm ,Πm and toughness scalingΩk ,Πk . The near M−vertex solu-
tion (K = 0.32 ≤ 1 (Savitski and Detournay, 2002)) can be approximated the by zero-toughness
solution which is indicated by the orange curve. The gray curves indicate the corresponding
large-toughness solutions (Savitski and Detournay, 2002) with K = 2.7,5.0 respectively.
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Figure 3.4 – Evolution of the dimensionless fracture half-length (up-left), inlet opening (up-
right) and net pressure at the inlet (down) with dimensionless time in a plane-strain fracture,
dashed curves indicate the numerical simulations while the blue solid lines indicate the frac-
ture length dependent zero-viscosity solutions and orange solid lines the viscosity dominated
solutions.

3.6 Results for fracture length dependent toughness

We now discuss the effect of a fracture length dependent toughness on the growth of hydraulic

fractures for α ∈ [0, 1].

We first discuss the plane-strain geometry. Fig. 3.4 displays the evolution of fracture half-

length, net pressure and width at the fracture inlet for different values of α. As observed from

the scaling considerations discussed in Section 3.4, the hydraulic fracture propagation evolves

from the viscosity to the toughness dominated regime. We observe from the simulation that

the transition starts at time larger than tmk (α) in line with the scaling arguments. At large

time, the numerical solutions approximately coincide with the large toughness / zero viscosity

asymptotes (blue lines on Fig. 3.4). A power-law dependence toughness leads to a shorter

fracture length and larger net pressure in the toughness dominated regime. We observe a

propagation under constant net pressure for α= 1/2 and even an increase of net pressure with

time for α> 1/2 as expected.

Similar evolutions are observed for a radial hydraulic fracture. The time evolution of the

fracture radius and inlet width are displayed in Fig. 3.5 for different α.
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Figure 3.5 – Evolution of the dimensionless fracture radius (left) and inlet opening (right) with
dimensionless time for a radial fracture. Dashed lines indicate the numerical simulations
while the blue solid lines indicate the fracture length dependent zero-viscosity solutions and
orange solid lines the zero-toughness solution.

It is interesting to re-scale these numerical results using the viscosity scaling and to redefine

the dimensionless toughness by using the current value of toughness K∗(`/`∗)α as function of

the current fracture length i.e.:

• Plane-strain (d = 1)

K̄1 =
K ′∗
E ′

(
E ′

µ′Qo

)1/4 (
`

`∗

)α
(3.57)

• Axisymmetric (d = 2)

K̄2 =
K ′∗
E ′

(
E ′5t 2

µ′5Q3
o

)1/18 (
`

`∗

)α
(3.58)

Such a definition explicitly embeds the fracture length dependence of the fracture toughness

in the same dimensionless parameter as the fracture length independent toughness case (Gara-

gash, 2000). After doing so, the dimensionless solution for any value ofα expressed as function

of K̄d approximately collapses on the same curve as the solution for fracture length inde-

pendent toughness - see Figs 3.6, 3.7 for the dimensionless length and inlet opening. Fig. 3.8

presents the relative difference of the dimensionless length between the fracture length depen-

dent and fracture length independent cases. The difference is null in both viscosity (K̄d = 0)

and toughness dominated (K̄d →∞) regimes. Both end-member regimes are described by

the fracture length independent solution with instantaneous value of toughness exactly, e.g.

at large time, from Eq. (3.23), Eq. (3.24) and Eq. (3.17), the evolution of dimensionless fracture

length with K̄d becomes independent of α:

Plane-strain, γm ≈
(

2
p

2

πK̄1

)2/3

; Axisymmetric,γm ≈
(

3

π
p

2K̄2

)2/5

(3.59)

The relative difference in the transient regime is not zero but remains very small with a
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Figure 3.6 – Dependence of the dimensionless half-length γm (left) and inlet opening Ωm

(right) in the viscosity scaling on the scale-related dimensionless toughness K̄1. Numerical
solutions of α= 1/4,1/2,3/4,1 approximately coincide with the small-toughness (Garagash
and Detournay, 2005) and small-viscosity (Garagash, 2006a) solutions (α= 0) with first-order
corrections, the previous numerical results (gray empty squares) (Garagash and Detournay,
2005) as well as the self-similar solutions (disks) calculated via the procedures in 3.9.
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Figure 3.7 – Dependence of the dimensionless fracture radius γm (left) and inlet openingΩm

(right) in the viscosity scaling on the scale-related dimensionless toughness K̄2. Numerical
solutions of α= 1/4,1/2,3/4,1 approximately coincide with the fracture length independent
toughness solution (α= 0) and the previous numerical solutions (gray empty squares) reported
in (Madyarova, 2004) for the case of a fracture length independent toughness.
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Figure 3.8 – Evolution of the relative difference of the dimensionless fracture length/radius
γm (between the fracture length independent and fracture length dependent cases) with
the instantaneous dimensionless toughness K̄d . At the same value of K̄d , a non-zero α

results in a shorter fracture radius in the axisymmetric geometry, but a longer fracture length
in the plane-strain geometry than the case of α = 0 (fracture length independent). Such a
discrepancy of a plane-strain fracture is due to the fact that K̄d (α= 0) stays constant during
the fracture growth instead of increasing as in the case of a radial fracture. Forα> 0, in order to
reach the same value of K̄1(>K ) for a plane-strain fracture in the fracture length dependent
and -independent cases, the fracture toughness increases in the fracture length dependent
cases before reaching such value of K̄1(>K ). During this period of toughness increase, the
instantaneous fracture toughness in the fracture length dependent case is smaller than that
of the fracture length independent case, therefore indicates less energy dissipation in the
creation of fracture surfaces and a longer fracture length.

maximum value of less than 2% as illustrated in Fig. 3.8.

For α ∈ [0,1], the change of apparent toughness has therefore a nearly instantaneous impact

on the propagation of a plane-strain or axisymmetric fracture. The propagation of a hydraulic

fracture can be therefore approximately dominated by one master curve, no matter how the

apparent fracture toughness evolves in different scales and all solutions can be obtained from

the fracture length independent toughness solution. It indicates that the solution obtained

here numerically could be obtained from the fracture length independent toughness solution

and a non-linear root finding scheme to determine the current length embedded in the

definition of K̄d .

3.7 Discussions

3.7.1 Emplacement scaling

The displacement to length or emplacement scaling is often used in geology to discuss the

physics of the fracture propagation of magmatic dikes and natural fractures. Field observations

of displacement-length scaling have nourished discussions about the fracture length depen-

dence of fracture toughness (Scholz, 2010; Olson and Schultz, 2011). In this section, we discuss
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Figure 3.9 – Evolution of displacement-length scaling in two geometries: plane-strain (left)
and axisymmetric (right) for different α values, scaled respectively by Wmk and Lmk .

the obtained displacement-length scaling for axisymmetric and plane-strain geometries for

the power-law fracture length dependent toughness model.

The dimensional analysis reveals that both fracture opening and fracture length evolve with

time and are related to the propagation regime associated with the principal source of energy

dissipation. From Table 3.2, we obtain

M − regime, W ∝ L(3−d)/4; K − regime, W ∝ Lα+1/2 (3.60)

At early time, when the fracture toughness has a negligible influence, the emplacement

scaling is only geometry-dependent. At large time, for toughness dominated fractures, the

emplacement scaling becomes independent of the geometry and is solely function of α: the

larger α is, the larger the emplacement scaling W /L.

Fig. 3.9 illustrates the complete evolution of the emplacement scaling from the early time

M−regime to the large time K−regime. For a plane-strain fracture with fracture length inde-

pendent toughness, the scaling parameter happens to remain the same in all propagation

regimes. For a fracture length dependent fracture toughness, the emplacement scaling in-

creases from a lower value in the M−regime to a geometry-independent value in the K−regime

at large time in both geometries. The displacement-length ratio reflects the evolution of the

partitioning of energy between viscous flow and the creation of fracture surfaces during

propagation.

A square-root emplacement scaling corresponds to the fracture length independent toughness

as reported in the literature (Olson, 2003; Schultz et al., 2008b,a). The linear emplacement

scaling W ∝ L reported from field studies (Scholz, 2010) corresponds to the case of a square-

root fracture length dependent toughness (α= 1/2). It is therefore interesting that, although

debate exists in regards to the emplacement scaling observed in the field (either 1/2 or linear),

emplacement scaling ratio larger than one have not been reported. This seems to indicate

that a power-law exponent larger than α= 1/2 for the fracture length dependent toughness is

unlikely.
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Chapter 3. HF growth with fracture length dependent apparent toughness

Table 3.3 – Time dependence of the difference ratio between the large toughness solutions for
fracture length dependent toughness and fracture length independent toughness, respectively.
Such difference ratios of inlet opening, net pressure and fracture length scale are power laws
of the dimensionless time (t/tmk (α = 0))β for an axisymmetric fracture and (t/t∗)β for a
plane-strain fracture, with the exponent β a function of the geometry index d and toughness
power-law scaling exponent α.

Geometry
Time power-law exponent β

Plane-strain (d = 1) Axisymmetric (d = 2)
w(0,α)/w(0,α= 0) 2α/(3α+9/2) 4α/(5α+25/2)
p(0,α)/p(0,α= 0) 4α/(3α+9/2) 6α/(5α+25/2)
`(α)/`(α= 0) −2α/(3α+9/2) −2α/(5α+25/2)

3.7.2 Difference brought by the fracture length dependent toughness

The apparent fracture toughness may exhibit a lower cut-off Kc within a cross-over length

scale `c . For most quasi-brittle materials, `c is of the same order of magnitude as specimen

dimensions in the lab. In order to grasp the difference brought by an increasing toughness, it

is natural to choose a reference state corresponding to a fracture toughness K∗ ≈ Kc measured

at a laboratory length scale `∗ ≈ `c . In this section, we analyse the difference brought by

the power-law dependence compared with the fracture length independent case assuming

`s →∞.

When `≤ `∗, the fracture energy reduces to a constant and does not vary with the fracture

length. The growth of hydraulic fractures is the same as the case of the fracture length inde-

pendent toughness with K I c = K∗. We define t∗ as the time for the fracture to propagate with a

constant toughness K∗ in order to reach a fracture length of `∗. When `> `∗, the apparent

toughness scales with the fracture length and the propagation transitions to large toughness

solutions as discussed in Section 3.6. The ratio between the large toughness solutions of the

fracture length dependent and independent cases are shown in Table 3.3, where the corre-

sponding power laws can be recovered at large time by the numerical solutions as illustrated

in Figs 3.10 and 3.11. The evolution of the difference ratio depends strongly on the reference

state where the apparent toughness starts to scale with the fracture length. Such a reference

state can be characterised by `∗/Lmk (α= 0) for a radial fracture and by K (`= `∗,α= 0) for a

plane-strain fracture. As shown in Fig. 3.10, a transition of principal energy dissipation from

viscosity to toughness appears if the viscosity happens to dominate the fracture growth at the

reference state. Both a smaller length scale for the initiation of the toughening effect and a

larger value of the power-law exponent α result in a more pronounced difference as illustrated

in Fig. 3.10 and Fig. 3.11.

Using values for material and injection parameters - representative of an industrial fracturing

treatment, we quantify the departure of the solution from the fracture length independent

toughness case for a radial fracture in Table 3.4. The characteristic net pressure increases

with α while the characteristic length, as well as, the characteristic transition time from the
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Figure 3.10 – Evolution of the difference ratio of net pressure at the inlet with dimensionless
time in a plane-strain fracture for K (` = `∗,α = 0) = 0.063(left),2.50(right), dashed lines
indicate the numerical simulations while the blue solid lines indicate the fracture length
dependent zero-viscosity solutions.
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Figure 3.11 – Evolution of the difference ratio of fracture radius (left) and inlet opening (right)
with dimensionless time in a radial fracture (`∗/Lmk (α= 0) = 0.008), dashed lines indicate
the numerical simulations while the blue solid lines indicate the fracture length dependent
zero-viscosity solutions.
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Table 3.4 – Characteristic scales and difference ratio values for different values of the tough-
ness power-law scaling exponent α in the axisymmetric geometry (E ′ = 20GPa, Qo = 2×
10−2 m3/s, µ′ = 3Pa.s, K∗ = 1.5MPa.m1/2, `∗ = 0.1m and `∗/Lmk (α= 0) = 1.03×10−8)

α= 0 α= 1/4 α= 1/2
tmk (α) (s) 3.56×1014 3.67×105 3.70×102

Lmk (α) (m) 9.84×106 9.97×102 46.5
Pmk (α) (kPa) 0.150 1.48×102 1.48×103

R/R(α= 0) (t = 90 min) 1 1.00 0.88
w(0)/w(α= 0) (t = 90 min) 1 1.00 1.14

R/R(α= 0) (t = 3 d) 1 0.98 0.60
w(0)/w(α= 0) (t = 3 d) 1 1.01 2.26

viscosity to the toughness dominated regime, decreases with α. The relative difference of the

fracture radius can go up to 40% after long injection duration for α= 1/2.

3.7.3 Effect of a finite apparent fracture toughness beyond a given length scale

The fracture toughness might reach an asymptotic value beyond a certain length scale `s ,

possibly due to the saturation of the process zone size or the limits of the constraints of the

medium dimensions (earth crust). In this section, we model such possible saturation of the

fracture toughness (`s <∞) as follows:

K I c = K∗ (`/`∗)α (1− f ((`−`s)/`∗))+Ks f ((`−`s)/`∗), Ks = K∗ (`s/`∗)α (3.61)

Here f is a smoothed Heaviside step function f (m) = 1/(1+exp(−2hm)), where h is a positive

dimensionless number controlling the smoothing of the approximation (a smaller value entails

a "smoother step" - we have used h = 130 here). Under the same assumption that `∗ ≈ `c as in

Section 3.7.2, the saturation length scale is comparable to or larger than the reference length

scale: `s ≥ `∗. (`s/`∗)α therefore describes the difference of apparent toughness between the

reference and final state whereas α characterises the slope of the power law branch. When

`s À `∗, the saturated apparent toughness Ks can be exceedingly large compared to K∗.

As illustrated in Fig. 3.12 (for α= 1/2 and different values of `s/Lmk (α)), the hydraulic fracture

evolves by first following the solution obtained previously for the power-law fracture length

dependent toughness and then transitions back to the fracture length independent toughness

solution (α= 0 with K I c = Ks) when the fracture reaches the saturation length scale `= `s . The

impact of the toughness evolution on fracture growth is nearly instantaneous for α ∈ [0,1] in

both geometries as previously shown in Figs. 3.6 and 3.7, however, the transition towards the

toughness dominated solution at large timescale with a fracture length independent toughness

(α= 0 with K I c = Ks) can be much more gradual for a radial fracture when `s/Lmk (α) ¿ 1 in

Fig. 3.12.

The effect of the toughness saturation on the propagation of a hydraulic fracture with fracture
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Figure 3.12 – Evolution of the difference ratio of dimensionless fracture radius (left) and
fracture half-length (right) with dimensionless time where α= 1/2. Dashed curves indicate
the numerical transition and blue solid lines refer to zero-viscosity solutions.

Figure 3.13 – Propagation diagram illustrating the propagation of a hydraulic fracture in a
material exhibiting a fracture length dependent toughness with a saturated length scale `s

for plane-strain and axisymmetric geometries. Kα signifies the fracture length dependent
toughness dominated regime.
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Chapter 3. HF growth with fracture length dependent apparent toughness

length dependent toughness up to `s can be summarized in the propagation diagram of

Fig. 3.13. A plane-strain hydraulic fracture evolves initially from the reference state which can

be either viscosity or toughness dominated towards the fracture length dependent toughness

edge (M −Kα) (see Fig. 3.13-left), and, as soon as the fracture half-length ` reaches `s , the

propagation switches to the fracture length independent toughness, plane-strain self-similar

solution characterised by a constant dimensionless toughness K̄1(` = `s) from Eq. (3.57).

Depending on the value of K̄1(`= `s), any state between the M− and K−regime is possible at

large time for a plane-strain hydraulic fracture. The effect of toughness saturation for the radial

hydraulic fracture is similar pending the fact that due to the geometry, the propagation always

ends up being toughness dominated at large time - with the final toughness Ks governing the

characteristic scales (see Fig. 3.13-right).

3.8 Conclusions

We have investigated theoretically the growth of a plane-strain and axisymmetric hydraulic

fracture, assuming a power-law dependence of the fracture toughness with fracture length

K I c ∝ `α. We have posed the hydraulic fracture propagation problem based on the usual

assumptions of linear elastic fracture mechanics, assuming that the small scale yielding

approximation remains always valid and that the fracture is much larger than the process zone

size.

In order to solve such a HF problem, we have developed a highly efficient and accurate

numerical scheme based on the combination of Gauss-Chebyshev quadrature with barycentric

differentiation and interpolation. Using such a spatial discretization allows to recast the non-

linear, non-local hydraulic fracture evolution problem into a system of non-linear ordinary

differential equations (ODEs) that can be solved by existing ODE integration schemes. The

scheme performs extremely well against the published hydraulic fracture growth solutions for

constant fracture toughness.

Our numerical results quantify precisely the impact of a power-law fracture length dependent

toughness on HF growth. The increase of fracture energy with fracture length yields shorter and

wider hydraulic fracture, and larger net fluid pressure. Our results demonstrate a shortening of

the viscosity dominated to toughness dominated propagation for a radial fracture and show the

existence of a viscosity to-toughness transition for a plane-strain fracture, a transition which

does not exist in the case of a constant fracture toughness. The hydraulic fracture growth with

a power-law toughness can be always very accurately approximated by the constant toughness

solution when using the instantaneous value of toughness (function of the current fracture

length), as per Eq. (3.57) and Eq. (3.58). If the fracture toughness saturates beyond a given scale

`s , the hydraulic fracture propagation transitions back to the constant toughness solution as

soon as `> `s - as depicted in Fig. 3.12.

Our results obviously depend on the value of the power-law scaling exponent α, with large

changes between α≤ 1/2 and α> 1/2. The predicted emplacement scaling (ratio of displace-
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ment to length) is geometry-dependent in the viscosity dominated regime: W ∝ L1/2 for

plane-strain, W ∝ L1/4 for axisymmetric geometry. It is however solely dependent on α in the

toughness dominated regime with W ∝ L1/2+α. Compared to these theoretical predictions,

emplacement W /L observations of dikes tend to indicate that the power-law scaling exponent

α should at most be equal to 1/2 (Scholz, 2010). Such a limit appears consistent with available

experimental evidences (Table 3.1) pointing to values of α lower than 1/2.

More field and experimental studies are needed in order to better quantify the importance

of a possible fracture length dependence of fracture energy in relation to industrial as well

as natural hydraulic fractures. The scalings and numerical results derived here could help

decipher the validity of the power-law dependence hypothesis of apparent fracture toughness

and guide further investigations.

51



Chapter 3. HF growth with fracture length dependent apparent toughness

3.9 Supporting information: discretization for the plane-strain self-

similar problem

For a plane-strain hydraulic fracture, the dimensionless toughness K determines the solution

of the self-similar problem. We rewrite the dimensionless governing equations in the viscosity

scaling by introducing a new dimensionless opening (Garagash and Detournay, 2005).

Ω̄=Ω/γ (3.62)

The governing equations becomes:

• Elasticity

4Π= 1

π

∫ +1

−1

∂Ω̄

∂ξ′
G1(ξ,ξ′)dξ′ (3.63)

• Lubrication flow ∫ 1

ξ

∂Ω̄

∂ξ
dξ+ 2

3
ξΩ̄+ Ω̄3 dΠ

dξ
= 0 (3.64)

• Global continuity equation ∫ 1

−1
Ω̄dξ= 1

γ2 (3.65)

• Propagation criterion

Ω̄∼ Kp
γ

(1−ξ)1/2 (3.66)

We select the Gauss-Chebyshev polynomials of the first type Tn for discretization.

∂Ω̄

∂s
=ω(s)F (s), ω(s) = 1p

1− s2
(3.67)

The discretized equations reduce to

4Π=G1 ·F (3.68)

−z(S ·F)+S · (s F)+ 2

3
z(S ·F)+ (S ·F)3(D ·Π) = 0 (3.69)

SA · (s F)+ 1

γ2 = 0 (3.70)

Q ·F+ 1p
2

Kp
γ
= 0 (3.71)

By back-substituting the elasticity (3.68) into the lubrication equations (3.69), we get (n +1)

equations including the global continuity (3.70) and the propagation criterion (3.71). On the

account of the problem symmetry as in Eq. (3.55), the first (n/2−1) equations of Eq. (3.48) are

52



3.9. Supporting information: discretization for the plane-strain self-similar problem

equivalent to the last (n/2−1) equations. We hence account for the first (n/2−1) equations

of Eq. (3.69) together with Eq. (3.70) and (3.71) and solve the solutions of {γ,F} using the

Mathematica built-in function F i ndRoot . As illustrated in Fig. 3.6, the numerical results

fit well the small-toughness and small-viscosity solutions (Garagash and Detournay, 2005;

Garagash, 2006a), and also the previous numerical solutions (Garagash and Detournay, 2005).
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4 Propagation of a plane-strain HF
accounting for a rough cohesive zone

This chapter aims to propose a mechanism for the extra energy demand of hydraulic frac-

ture growth in quasi-brittle materials. The quasi-brittle nature of rocks challenges the basic

assumptions of linear hydraulic fracture mechanics (LHFM): namely, linear elastic fracture me-

chanics and smooth parallel plates lubrication fluid flow inside the propagating fracture. We

relax these hypotheses and investigate in details the growth of a plane-strain hydraulic fracture

in an impermeable medium accounting for a rough cohesive zone and a fluid lag. In addition

to a dimensionless toughness and the time-scale tom of coalescence of the fluid and fracture

fronts governing the fracture evolution in the LHFM case, the solution now also depends on

the ratio between the in-situ stress and material peak cohesive stress σo/σc and the intensity

of the flow deviation induced by aperture roughness (captured by a dimensionless power

exponent). We show that the solution is appropriately described by a nucleation time-scale

tcm = tom × (σo/σc )3, which delineates the fracture growth into three distinct stages: a nucle-

ation phase (t ¿ tcm), an intermediate stage (t ∼ tcm) and late time (t À tcm) stage where

convergence toward LHFM predictions finally occurs. A highly non-linear hydro-mechanical

coupling takes place as the fluid front enters the rough cohesive zone which itself evolves

during the nucleation and intermediate stages of growth. This coupling leads to significant

additional viscous flow dissipation. As a result, the fracture evolution deviates from LHFM

predictions with shorter fracture lengths, larger widths and net pressures. These deviations

from LHFM ultimately decrease at late times (t À tcm) as the ratios of the lag and cohesive

zone sizes with the fracture length both become smaller. The deviations increase with larger

dimensionless toughness and larger σo/σc ratio, as both have the effect of further localizing

viscous dissipation near the fluid front located in the small rough cohesive zone. The conver-

gence toward LHFM can occur at very late time compared to the nucleation time-scale tcm

(by a factor of hundred to thousand times) for realistic values of σo/σc encountered at depth.

The impact of a rough cohesive zone appears to be prominent for laboratory experiments and

short in-situ injections in quasi-brittle rocks with ultimately a larger energy demand compared

to LHFM predictions.
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Chapter 4. Propagation of a plane-strain HF accounting for a rough cohesive zone

This chapter is a modified version of the following scientific article:

Liu, D., Lecampion, B. (2021), Propagation of a plane-strain hydraulic fracture accounting for

a rough cohesive zone, Journal of the Mechanics and Physics of Solids,104322.

Authors contributions

D. Liu and B. Lecampion have formulated the problem and performed the dimensional

analysis. D. Liu has developed the numerical scheme and validated the numerical solver

with linear elastic solutions. Under the guidance of B. Lecampion, D. Liu has visualized and

analyzed the numerical results. D. Liu and B. Lecampion have written the manuscript.

4.1 Introduction

The growth of a hydraulic fracture (HF) in an impermeable linear elastic solid is now relatively

well understood, in particular the competition between the energy dissipated in the creation

of new fracture surfaces and the one dissipated in viscous fluid flow. Such a competition leads

to distinct propagation regimes depending on the main dissipative mechanism (Detournay,

2016). Linear elastic fracture mechanics (LEFM) combined with lubrication theory (linear

hydraulic fracture mechanics - LHFM for short) have successfully predicted experimental

observations for the growth of a simple planar fracture in model materials such as PMMA

and glass (Bunger and Detournay, 2008; Lecampion et al., 2017; Xing et al., 2017). However,

some observations on rocks at the laboratory (Thallak et al., 1993; Van Dam and de Pater,

1999) and field scales (Shlyapobersky, 1985; Shlyapobersky et al., 1988) are not consistent,

and some indicate that linear hydraulic fracture mechanics (LHFM) underestimates the ob-

served fluid pressure and overestimates the fracture length. These observations hint toward

a possibly larger energy demand compared to LHFM predictions and challenge two of its

basic assumptions: i) fracture process governed by LEFM and ii) lubrication flow between two

smooth parallel surfaces resulting in Poiseuille’s law. A non-linear process zone always exists

in the vicinity of the fracture tip (Fig. 4.1). This is especially true for quasi-brittle materials like

rocks. The stresses are capped by a finite peak strength in the fracture process zone while the

aperture roughness is no longer negligible and decreases the fracture permeability. How such

non-linearities affect the solid-fluid coupling inside the fracture and as a result its growth is

the main goal of this chapter. We focus on the propagation of a plane-strain hydraulic fracture

from nucleation to the late stages of growth where the process zone is inherently much smaller

than the fracture length.

A number of previous investigations have dealt with the relaxation of the LEFM assumption

on HF growth: either using theories accounting for bulk plastic dissipation around the tip

(Papanastasiou, 1997, 1999; Papanastasiou and Atkinson, 2006; Sarris and Papanastasiou,

2013), or with an increasing apparent fracture toughness with length embedding different

toughening mechanisms (Liu et al., 2019b), or/and adopting cohesive zone models (CZM) as
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Figure 4.1 – Illustration of a) the length scale of solid non-linearity and b) deviated fluid flow
from Poiseuille’s law (cubic law). Figure b) is adapted from figure 5 in Renshaw (1995) with
additional data. The superscripts indicate the source of the image in figure a) 1. Lhomme
(2005), and the source of the data in figure b): 2. Schrauf and Evans (1986); 3. Witherspoon
et al. (1980); 4. Raven and Gale (1985); 5. Garagash (2015a); Breysse and Gérard (1997).

a propagation criterion (see Lecampion et al. (2018) for review). Among these approaches,

cohesive zone models are the most widely used due to their simplicity: the fracture growth is

simply tracked via a cohesive traction-separation law. Studies of hydraulically driven fracture

using CZM (Chen et al., 2009; Chen, 2012; Lecampion, 2012; Yao et al., 2015) all show that the

numerical solutions can be well approximated with LEFM/LHFM solutions. However these

conclusions just follow from the fact that these simulations fall in the small-scale-yielding limit

where the cohesive zone only takes up a small fraction of the whole fracture. In addition, in all

these contributions, the existence of a fluid lag is neglected as well as the effect of roughness

on flow. The assumption of a negligible fluid lag is often claimed to be valid for sufficiently

deep fractures (where the confining stress is large) on the basis of the LHFM results.

However, the existence of a fluid lag is to lubrication flow what the process zone is to fracture

mechanics. It removes the negative fluid pressure singularities at the fracture tip associated

with suction resulting from the elasto-hydrodynamics coupling (Desroches et al., 1994; Gara-

gash and Detournay, 2000). In fact, the presence of a fluid lag is necessary if accounting for

the presence of a cohesive zone in order to ensure that the stresses remain finite. Rubin (1993)

has pioneered studies accounting for a cohesive zone and a fluid lag by investigating the stress

field around a plane-strain HF. The obtained results are, however, restricted to the particular

case where the fluid lag is always larger than the cohesive zone. Rubin (1993) argues that the

fluid lag increases with the fracture length and thus possibly influences the off-plane inelastic

deformation. Recently, Garagash (2019) has derived the complete solution of a steadily moving

semi-infinite smooth cohesive fracture with a fluid lag. The results demonstrate the strong

influence of the ratio between the minimum in-situ compressive stress and the material peak

cohesive stress σo/σc on the near tip asymptotes. Such a semi-infinite fracture solution is
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Chapter 4. Propagation of a plane-strain HF accounting for a rough cohesive zone

obviously valid only when the process zone has fully nucleated and is smaller than the fracture

length. These investigations assume smooth fracture surfaces in the cohesive zone (and thus

Poiseuille’s law). The effect of roughness on the interplay between the fluid front and cohesive

zone growth still calls for further investigation.

In this chapter, we investigate the growth of a finite plane-strain hydraulic fracture from

nucleation to the late stage of growth accounting for the presence of both a cohesive zone and

a fluid lag. We also investigate the impact of a decreased hydraulic conductivity in the rough

cohesive zone using existing phenomenological approximations. After a description of the

model, we discuss the overall structure of the solution thanks to a scaling analysis. We then

explore the coupled effect of the fluid lag, cohesive zone and roughness numerically using

a specifically developed numerical scheme. We then discuss implications for the HF growth

both at the laboratory and field scales.

4.2 Problem Formulation

We consider a plane-strain hydraulic fracture of half-length ` propagating in an infinite

homogeneous impermeable quasi-brittle isotropic medium (Fig. 4.2). We denote σo as the

minimum in-situ compressive stress acting normal to the fracture plane. The fracture growth

occurs in pure tensile mode and is driven by the injection of an incompressible Newtonian

fluid at a constant rate Qo in the fracture center. We account for both the existence of a

cohesive zone (of length `coh) and a fluid-free cavity (of length `−` f ) near the tips of the

propagating fracture as described in Fig. 4.2.

4.2.1 Solid mechanics

Cohesive zone model

We adopt for simplicity a linear-softening cohesive zone model to simulate the fracture process

zone, where cohesive traction decreases linearly at the tip from the peak cohesive stress σc to

zero at a critical aperture wc , as illustrated in Fig. 4.2. Such a traction separation law can be

simply written as:

σcoh(w) =
σc (1−wc ) 0 ≤ w < wc

0 w > wc

(4.1)

where σc is the material peak strength (the maximum cohesive traction). The length of the

cohesive zone `coh is given by the distance from the fracture tip where the critical opening is

reached: w(`coh) = wc . For such a linear weakening model, the fracture energy is given by:

Gc = 1

2
σc wc (4.2)
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a)

Poiseuille’s law 

deviation due to roughness 

b) c)

Figure 4.2 – Illustration of a) a propagating plane-strain hydraulic fracture accounting for a
cohesive zone and a fluid lag, b) a linear softening cohesive zone model, and c) roughness-
induced deviation of the fluid flow inside the cohesive zone.
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Chapter 4. Propagation of a plane-strain HF accounting for a rough cohesive zone

Note that in linear elastic fracture mechanics in pure mode I, the fracture energy is related to

the material fracture toughness K I c by Irwin’s relation for co-planar growth GLEF M
c = K 2

I c /E ′,
where E ′ is the plane-strain elastic modulus. Equalizing the quasi-brittle fracture energy with

the LEFM expression allows to define an equivalent fracture toughness K I c = √
Gc E ′ thus

allowing comparison with known results for HF growth under the LEFM assumption.

Elastic deformation

For a purely tensile plane-strain fracture, in an infinite elastic medium, the quasi-static balance

of momentum reduces to the following boundary integral equation (see for example Hills et al.

(1996)):

E ′

4π

∫ `

−`
∂w(x ′, t )

∂x ′
dx ′

x −x ′ = p f (x, t )−σo −σcoh(w(x, t )), x, x ′ ∈ [−`,`] (4.3)

where E ′ = E/(1−ν2) is the plane-strain modulus, ν the Poisson’s ratio of the material. In view

of the problem symmetry, the previous integral equation can be conveniently written for on

one-wing of the fracture:

E ′

4π

∫ `

0

(
1

x −x ′ −
1

x ′+x

)
∂w(x ′, t )

∂x ′ dx ′ = p f (x, t )−σo −σcoh(w(x, t )), x, x ′ ∈ [0,`] (4.4)

Due to the presence of cohesive forces and the traction separation law, this boundary integral

equation is non-linear.

Using a cohesive zone model, the fracture advance `(t) is based on the stress component

σy y perpendicular to the fracture plane ahead of the current fracture tip. In other words, the

fracture propagates when

σy y (x = `) =σc (4.5)

It is worth pointing out that at any given time, the cohesive forces cancel the stress singularity

at the fracture tip that would be otherwise present. The stress intensity factor K I must thus be

zero at all times. For a pure mode I crack, the stress intensity factor is obtained via the weight

function approach directly from the profile of the net loading (Bueckner, 1970; Rice, 1972):

K I = 2
p
`p
π

∫ `

0

p f (x, t )−σo −σcoh(w(x, t ))

(`2 −x2)1/2
dx = 0 (4.6)

The requirement K I = 0 can be altenatively used as a propagation condition, or checked a

posteriori as an error estimate.

4.2.2 Laminar lubrication flow in a rough tensile fracture

Under the lubrication approximation, for an incompressible fluid and an impermeable

medium (negligible leak-off), the fluid mass conservation in the deformable fracture reduces
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4.2. Problem Formulation

to
∂w

∂t
+ ∂q

∂x
= 0 in the fluid filled part x ∈ [0,` f ] (4.7)

where q(x, t ) is the local fluid flux inside the fracture and ` f (t ) denotes the current fluid front

position.

As the aperture is small near the tip and especially in the cohesive zone, it can not be con-

sidered as much larger than its small scale spatial variation - i.e. its roughness. The rough

surfaces in possibly partial contact in the cohesive zone results in a decrease of the hydraulic

transmissivity of the fracture compared to the cubic law. This has been observed in a large

number of flow experiments under laminar condition in rock joints under different normal

stress (Fig. 4.1). A number of empirical approximations have been put forward in literature

to describe such a deviation from the cubic Poiseuille’s law observed in the laminar regime.

A typical approach consists in introducing a friction/correction factor f in Poiseuille’s law

relating fluid flux to the pressure gradient:

q =− w3

µ′ f

∂p f

∂x
, 0 < x < ` f , f = 1+αc ×

( wR

w

)αe

(4.8)

where µ′ = 12µ is the effective fluid viscosity. wR quantifies the fracture roughness, and is

for example, taken as the peak asperity height or the standard deviation of the aperture (see

Table. 4.1). It grasps the width scale characterizing the deviation from the cubic law. αc

and αe are experimentally determined parameters dependent on the fractal properties of

the self-affine rough fracture surfaces (Talon et al., 2010; Jin et al., 2017). Interestingly, the

fracture roughness properties are also related to the size of the process zone, above and below

which the off-plane height variation may present different roughness exponents (Mourot et al.,

2005; Bonamy et al., 2006; Ponson et al., 2007; Morel et al., 2008). Moreover, a process zone

length scale can be extracted from the spatial correlations of the slopes of a rough fracture

surface (Vernède et al., 2015). Fracture roughness therefore appears to correlate with both the

process zone wc and the fluid flow deviation wR width scales, yet the exact relation between

wc and wR has not been clearly deciphered to our knowledge. On the account that wR and

wc ∼ 1−500µm in most rocks (Renshaw, 1995; Garagash, 2015a, 2019), we assume wR ≈ wc .

One has to note, that αc and αe are fitted from experiments and αc is not independent of the

choice of wR - αc ×wαe
R is the controlling constant when expanding Eq. (4.8). αe governs the

power-law dependence of the friction factor with the mechanical width w . The number of

experiments dedicated to flow in rough fractures provide a guideline for αc and αe although

a significant scatter can be observed (see Table. 4.1). In the following, we assume αc = 1

(and wR = wc ) for simplicity in order to investigate the mechanism associated with fracture

roughness although we recognize that it may not be the case. The friction factor therefore

reduces to

f = 1+
( wc

w

)αe

(4.9)

where αe = 0 in the smooth fracture limit. For the case of a rough fracture, we will perform

simulations for αe = 2 which corresponds to the largest power-law exponent reported exper-
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Chapter 4. Propagation of a plane-strain HF accounting for a rough cohesive zone

wR definition Reference αe αc wR (µm)

Renshaw (1995) ∗ 2 1.5
Basalt (1.6), marble (13)

Standard deviation granite (0.63-320),
of the aperture granodiorite (500)

Zimmerman and Bodvarsson (1996) ∗ 2 1.5 Granite (34-295)
Garagash (2015a) 1 1 Concrete (150)

Lomize (1951) 1.5 6.0 Sand-coated glass
Peak asperity height

Zhang et al. (2015) 1.12 10−3 Granite (2320-3140),
limestone (4050)

Table 4.1 – Different empirical models suggested in literature for the friction factor (Eq. (4.8)).
The superscript ∗ indicates that the expression of the friction factor reported does not exactly
correspond to the functional form of Eq. (4.8). As a result, for those cases, we obtain αc , αe

from the two leading terms of a Taylor expansion of the reported expression.

imentally (and as such will lead to the largest impact of fracture roughness). The resulting

deviation between mechanical and hydraulic aperture for such a simplified fluid flow deviation

model (4.9) is illustrated in Fig. 4.2.

4.2.3 Boundary and initial conditions

The fluid is injected at the fracture center at a constant injection rate Qo (in m2/s under

plane-strain conditions), such that the flow entering one-wing of the fracture is:

q(x = 0+, t ) =Qo/2 (4.10)

which can be alternatively be accounted by the global fluid volume balance, integrating the

continuity equation (4.7) for the fluid:

2
∫ ` f (t )

0
w(x, t )dx =Qo t (4.11)

In the fluid lag near the fracture tip, the fluid is vaporized and its pressure is equal to the

cavitation pressure pcav , which is typically much smaller than the liquid pressure p f in the

fluid filled part and the in-situ confining stress σo . We thus have the following pressure

boundary condition in the lag:

p f (x, t ) = pcav ≈ 0, x ∈ [` f (t ),`(t )] (4.12)

The fluid front velocity ˙̀
f is equal to the mean fluid velocity q/w at that fluid front location

x = ` f (Stefan condition):

˙̀
f =− w2

µ′ f (w)

∂p f

∂x

∣∣∣∣
x=` f

(4.13)
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4.2. Problem Formulation

The fracture opening is zero at the fracture tip taken as the beginning of the cohesive zone:

w(x = `, t ) = 0 (4.14)

Initial conditions We model the nucleation process, and the coupled developments of the

cohesive zone and the fluid lag. We start from a negligibly small fracture in which cohesive

forces have not completely vanished: the fracture length equals the cohesive zone length

initially. Upon the start of injection, this initially static flaw is fully filled with fluid at a pressure

slightly larger than the in-situ stress σo .

4.2.4 Energy balance

The energy balance for a propagating hydraulic fracture can be constructed by combining

two separate energy balance equations, one for the viscous fluid flow and the other one for

the quasi-brittle medium deformation of an advancing crack (Lecampion and Detournay,

2007). The external power Pe = Qo p f 0 (where p f 0 = p f (x = 0, t) is the fluid pressure at the

inlet) provided by the injecting fluid is balanced by five terms:

• the rate of work done to overcome the in-situ confining stress: Ẇo =Qoσo

• the rate of change of the elastic energy stored in the solid Ẇe :

Ẇe =
∫ ` f

0
p
∂w

∂t
dx +

∫ ` f

0
w
∂p

∂t
dx −σo

∫ `

` f

∂w

∂t
dx (4.15)

• a power associated with the rate of the change of the fluid lag cavity volume times the

in-situ far-field stress Ẇl :

Ẇl = 2σo
d

dt

∫ `

` f

wdx (4.16)

• the viscous dissipation rate in the fluid filled region of the fracture Dv :

Dv =−2
∫ ` f

0
q
∂p

∂x
dx (4.17)

• the energy rate associated with the debonding of cohesive forces and the creation of

new fracture surfaces Dk :

Dk =−
∫ `

0
w
∂σcoh

∂t
dx +

∫ `

0
σcoh

∂w

∂t
dx. (4.18)

Accounting for the symmetry of the problem, we can define an apparent fracture energy

Gc,app = Dk

2 ˙̀
(4.19)
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Chapter 4. Propagation of a plane-strain HF accounting for a rough cohesive zone

In the coordinate system of the moving tip, we can rewrite Eq. (4.19) for the linear weakening

cohesive zone model as follows (see more details in Supplemental Materials):

Gc,app = 1

2
σc w(x̂ = `coh)+ 1

2 ˙̀
σc

∫ `coh

0

∂w

∂t

∣∣∣∣
x̂

dx̂, x̂ = `−x (4.20)

When the fracture has already nucleated and the cohesive zone size is negligible compared to

the fracture length (`À `coh), the first term in Eq. (4.20) equals the real fracture energy Gc with

w(x̂ = `coh) = wc . For a large fracture, where the cohesive zone is nearly constant, the second

term tends to zero as the material time derivative of width is negligible for fracture with slow

variation of velocity: more precisely, in the tip reference frame the convective derivative ˙̀ ∂·
∂x̂

(which leads when integrated to the first term) dominates over the material time derivative
∂·
∂t |x̂ . As a result, the apparent energy tends to equal to the real fracture energy Gc,app ≈Gc

at large time. However, it does not necessarily imply that the fracture width asymptote in

the near tip region follows the LEFM limit. It only results from the fact that the convective

derivative dominates - and as such the travelling semi-infinite fracture solution of Garagash

(2019) applies (where different tip asymptotes emerge as function of the ratioσo/σc ). However

the equivalence Gc,app = Gc does not hold when the fracture length is comparable to the

cohesive zone `≥ `coh . The first term increases with time until w(x̂ = `coh) reaches the critical

opening wc at nucleation while the second term results from the competition between the

fracture velocity and the material rate change of the volume embedded inside the cohesive

zone. As a result of this second term, the evolution of the apparent fracture energy may not

be necessarily monotonic in an intermediate phase as we shall see later from our numerical

simulations.

4.3 Structure of the solution

Before investigating the problem numerically, we discuss the evolution of such a quasi-brittle

HF in light of dimensional analysis. We notably highlight the difference brought upon the

existence of a process zone compared to the linear elastic fracture mechanics case (Garagash

and Detournay, 2005; Garagash, 2006b; Lecampion and Detournay, 2007). Following previous

work on hydraulic fracturing (Garagash, 2000; Detournay, 2004), we scale the flux q with

the injection rate Qo , and scale the fracture width w , net pressure p f −σo , fracture length `,

and the extent of the liquid filled part of the fracture ` f introducing corresponding width W ,

pressure P , fracture length L and fluid extent L f characteristic scales as:

w(x, t ) =W (t )Ω(ξ,P ), p f (x, t )−σo = P (t )Π(ξ,P ), q(x, t ) =QoΨ(ξ,P ) (4.21)

`(t ) = L(t )γ(P ), ` f (t ) = L f (t )γ f (P ) (4.22)

where ξ = x/` is a dimensionless coordinate. The dimensionless variables also depend on

one or more dimensionless number P (which may depend on time). Introducing such a

scaling in the governing equations of the problem allows to isolate different dimensionless
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4.3. Structure of the solution

groups associated with the different physical mechanisms at play (elasticity, injected volume,

viscosity, fracture energy) and define relevant scalings.

Before going further, we briefly list the dimensionless form of the governing equations and

the expression of the different dimensionless groups appearing in the governing equations

(4.1)-(4.14).

• The elasticity equation can be re-written as:

Π−Σcoh(Ω(ξ)) =Ge
1

4π

1

γ

∫ 1

0

∂Ω

∂ξ

(
1

ξ−ξ′ −
1

ξ+ξ′
)

dξ′, 0 < ξ,ξ′ < 1 (4.23)

with Ge = W E ′

PL
and the dimensionless traction-separation law as

Σcoh =Gt ×
(
1− Ω

Gw

)
, Ω<Gw (4.24)

with Gt =σc /P and Gw = wc /W .

• The dimensionless fluid continuity and roughness corrected Poiseuille’s law are better

expressed by scaling the spatial coordinate with the fluid front position - thus introduc-

ing the ratio of scales Gl = L f /L - ξ̂= x/` f = ξ× (γ/γ f )/Gl :

t
∂Ω

∂t
+ t

Ẇ

W
Ω+Gv

1

γ f

∂Ψ

∂ξ̂
= 0 (4.25)

Ψ=− 1

Gm

Ω3

f ×γ f

∂Π

∂ξ̂
(4.26)

with Gv = Qo t

W L f
related to the fracture volume, and Gm = µ′QoL f

PW 3 related to fluid

viscosity, while the friction roughness correction f can be simply re-written as f =
1+ (Gw /Ω)αe .

• the entering flux boundary condition becomes

Ψ(ξ= 0+, t ) = 1/2 (4.27)

while the dimensionless net pressureΠ in the fluid lag is

Π(ξ≤ ξ f = ` f /`) =−Go =−σo

P
(4.28)

It is worth noting that for the linear weakening law the dimensionless fracture energy is

simply Gc = (wcσc )/(2PW ) = 1

2
GwGt . In addition, in order to make the link with the LEFM

scalings that use a reduced fracture toughness defined as K ′ =p
32/πK I c , we use the equivalent

dimensionless fracture toughness: Gk =p
32/π

√
GeGc =

p
16/π

√
GeGwGt in the following.
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Chapter 4. Propagation of a plane-strain HF accounting for a rough cohesive zone

The well-known scalings under the LHFM assumptions for the case of negligible lag (Gl =
L f /L = 1) are obtained by recognizing that elasticity is always important (Ge = 1), and the fact

that without fluid leak-off the fracture volume equals the injected volume at all time (Gv = 1).

The viscosity and toughness scalings are then obtained by either setting Gm (M/viscous

scaling) or Gk (K/toughness scaling) to unity. Alternatively, the fluid lag dominated scaling

(O-vertex) is obtained by recognizing that viscous effects are necessary for cavitation to occur

(Gm = 1) and the lag covers a significant part of the fracture such that the pressure scale is

given by the in-situ stress (Go = 1). Similarly elasticity (Ge = 1) and fluid volume (Gv = 1) are

driving mechanisms. These well-known scalings for the different limiting propagation regimes

are recalled in Table 4.2.

Under the assumption of linear elastic fracture mechanics, as discussed in Garagash (2006b);

Lecampion and Detournay (2007), a plane-strain HF evolves from an early-time solution

where the fluid lag is maximum to a late solution where the fluid and fracture front coalesces

(zero lag case) over a time-scale

tom = E ′2µ′

σ3
o

(4.29)

This time-scale directly emerges as the time it takes for the dimensionless in-situ stress Go to

reach unity in the zero lag scalings. In addition, the solution also depends on a dimensionless

toughness Km (or alternatively dimensionless viscosity) independent of time. The fluid

lag is the largest for small dimensionless toughness and is negligible at all time for large

dimensionless toughness. The propagation can thus be illustrated via a triangular phase

diagram, whose three vertices (O-M-K) corresponds to three limiting regimes. The O-vertex

corresponds to the limiting case of a large lag / negligible toughness, the M-vertex corresponds

to viscosity dominated propagation with a negligible fluid lag while the K-vertex corresponds

to a toughness dominated propagation where viscous effects are always negligible and as a

result no fluid lag exists.

The introduction of a cohesive zone modifies partly this propagation diagram. One can define

a cohesive zone scaling (which will be coined with the letter C) by setting the pressure scales P

to the peak cohesive stressσc (Gt = 1), the opening scale W to the critical opening wc (Gw = 1).

We then readily obtain from elasticity (Ge = 1) that the fracture characteristic length L equals

the classical cohesive characteristic length scale (Rice, 1968; Hillerborg et al., 1976):

Lcoh = E ′wc

σc
(4.30)

Such a scaling is relevant at early time when the cohesive zone scale is of the order of the

fracture length. We know from the LHFM limit that the fluid lag is also important at early time.

From lubrication flow, combining fluid continuity and Poiseuille’s law to obtain the Reynolds

equation enables to define the corresponding fluid front scale L f as wc
√
σc t/µ′ (by setting the

resulting dimensionless group Gv /Gm in the Reynolds equation to one). Another time-scale

tcm thus emerges as the characteristic time for which the fluid front in that cohesive scaling is
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of the same order of magnitude than the characteristic fracture / cohesive length:

tcm = E ′2µ′

σ3
c

= tom ×
(
σo

σc

)3

. (4.31)

This time-scale quantifies the time required for the cohesive zone to develop in relation to the

penetration of the fluid. It is worth noting that the ratio of time-scales tcm/tom related to the

fluid lag in the cohesive (C) and LHFM (O) scalings is directly related to the ratio between the

in-situ confining stress and the peak cohesive stress.

Three stages of growth can thus be delineated as function of the evolution of the cohesive

zone.

• Stage I for early time (t ¿ tcm): the whole fracture length is embedded inside the

cohesive zone. The cohesive zone develops with time yet is not fully nucleated. We will

refer to this stage as the nucleation stage in the following.

• Stage II for intermediate times (of the order of tcm): the cohesive zone has now fully

nucleated and part of the fracture surfaces are completely separated without cohesion

(w > wc in the central part of the fracture). The cohesive zone remains important

compared to the whole fracture length and may be not yet stabilized. We will refer to

this stage as the intermediate propagation stage.

• Stage III (t À tcm): the cohesive zone now only takes up a very small fraction of the

whole fracture such that the small-scale-yielding assumption becomes valid. We will

refer to this stage as the late time propagation stage/small-scale-yielding stage.

From the different scalings in Table 4.2, we see that using tcm as a characteristic time-scale, the

evolution of a HF in a quasi-brittle material depends only on i) a dimensionless toughness Km ,

ii) the ratio between the confining stress and material strengthσo/σc and iii) the dimensionless

roughness exponent αe . Possibly, a value different than unity for the coefficient αc in relation

to the flow-roughness relationship (4.8) would also play a role.

For a quasi-brittle impermeable material, the propagation can be schematically grasped by the

propagation diagram depicted on Fig. 4.3. The propagation starts in a cohesive / nucleation

regime (vertex C) and ultimately ends up at large time on the M-K edge (LHFM / small-scale-

yielding limit) at a point depending on the (time-independent) dimensionless toughness Km .

How the fracture evolves from the nucleation (vertex C) stages to the large time LHFM limits

is function of the ratio σo/σc as well as the roughness exponent. When σo ¿σc (tcm ¿ tom),

the cohesive zone develops faster than the time required for the fluid front to coalesce with

the fracture front. In that case, the small-scale-yielding assumption may become valid early in

conjunction with the presence of a fluid lag (O-K edge) - the fluid front will lie outside of the

cohesive zone for some time. On the other limit, for σo >σc , the fluid front tends to remain

inside the cohesive zone which develops slower than the fluid front progress.
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Table 4.2 – Characteristic scales and dimensionless numbers governing the evolution of a
plane-strain quasi-brittle HF in the different limiting regimes: C - lag/cohesive/nucleation,
O - lag/viscous/ LHFM, M - fully filled/viscous/LHFM, K - fully filled/toughness/LHFM. The
evolution of the HF is also function of the dimensionless roughness exponent αe . The time-
scales tom and tcm defined in Eqs (4.29), (4.31) are related as tcm/tom = (σo/σc )3. The 16/π
factors appearing in the dimensionless numbers are due to the use of K ′ =p

32/πK I c in the
LHFM based scalings (Detournay, 2004; Garagash, 2006b) and the fact that for the linear
weakening cohesive law Gc = wcσc /2.

How exactly, the growth of the HF is influenced by the interplay between the cohesive zone and

lag evolution for different values of σo/σc , dimensionless toughness and fracture roughness

intensity will be now investigated numerically.

4.4 Numerical scheme

In order to decipher the interplay between the fluid front and cohesive zone, it is necessary to

account for the nucleation of both the cohesive zone and the fluid lag. Previous numerical

investigation using LHFM either tracks explicitly the fluid front in addition to the fracture

front (Lecampion and Detournay, 2007; Zhang et al., 2005; Gordeliy and Detournay, 2011b) or

uses a cavitation algorithm introducing a fluid state variable θ ∈ [0,1] (1 for the liquid phase, 0

for the vapour phase) (Shen, 2014; Mollaali and Shen, 2018) in a similar way than thin-film

lubrication cavitation models (see for example Szeri (2010)).

The cavitation approach enables the spontaneous nucleation of the fluid lag but adds another

variables and additional inequalities conditions (p f ≥ 0, 0 ≤ θ ≤ 1, p f (1−θ) = 0) in each ele-

ment. The computational cost of such cavitation schemes increases significantly as quadratic

programing problem needs to be solved at each time-step. We therefore propose here an

algorithm taking advantage of both the cavitation scheme at early time (when the fluid lag

nucleates from an initially fully liquid filled flaw) and a fluid-front-tracking scheme at later

68



4.4. Numerical scheme
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Figure 4.3 – Propagation diagram of a plane-strain hydraulic fracture with a rough cohesive
fracture tip. The bottom O−M −K triangle corresponds to the LHFM limit. Note that possibly,
a value of αc (see Eq. (4.8)) different than unity will impact the solution.

times.

Our algorithm consists of the use of two successive schemes, both based on a fixed regular grid

with constant mesh size. At the beginning of the simulation, we adopt an Elrod-Adams type

scheme similar to the one described in Mollaali and Shen (2018). This scheme automatically

captures the appearance of the fluid lag in the most accurate manner (Liu and Lecampion,

2019). In a second stage of the simulation, we use the results of the previous algorithm to

initialize a scheme similar to Gordeliy and Detournay (2011b) where the fluid front position is

tracked explicitly via the introduction of a filling fraction variable in the partly filled element

at the lag boundary. We discretize respectively the elasticity and fluid mass conservation using

a displacement discontinuity method with piece-wise constant elements and finite difference.

We use an implicit time-integration scheme to solve iteratively for the fluid pressure and the

associated opening. An additional outer loop solves for the time-step increment corresponding

to a fixed increment of fracture length. More details are given in 4.8.

Mesh requirements A sufficient number of cohesive elements is necessary to ensure the stress

accuracy ahead of the fracture tip and the resolution of the fracture propagation condition.

A minimum of three elements are suggested to mesh the cohesive zone to ensure sufficient

accuracy of the near tip stress field (Falk et al., 2001; Moës and Belytschko, 2002; Turon et al.,

2007). In dry fracture mechanics, the technique of artificially enlarging the cohesive zone

length while keeping the fracture energy constant is often used (increasing wc and decreasing

σc accordingly) (Bazant and Planas, 1997; Turon et al., 2007) thus allowing the use of coarser

meshes. Unfortunately, such a technique is not adequate for cohesive hydraulic fractures. It

is only valid when the confining σo is adjusted together with σc in order to keep the ratio of

time scales tcm/tom unchanged (see Eq. (4.31)). If not, this will change the physics of the fluid
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Figure 4.4 – Evolution of the size of the tensile zone ahead of the fracture tip with the cohesive
fraction for different confining to peak cohesive stress ratios. The pressure is uniform every-
where inside the fracture but no fluid is allowed to enter the cohesive zone (Dugdale cohesive
zone model).

front-cohesive zone coupling. Another important difference with dry fracture mechanics is the

fact that the fracture propagates in a medium under initially compressive state of stresses, as

such the tensile region ahead of the fracture shrinks as the confinement increases. Assuming a

fluid lag the same size as the cohesive zone, Fig. 4.4 displays the evolution of the tensile zone

ahead of the fracture tip as the uniformly pressurized HF grows under different confinements.

The tensile zone significantly shrinks as the confining stress increases, and therefore requires

for a finer mesh. Such a confinement-related mesh requirement has been seldomly discussed

in previous studies (Chen et al., 2009; Chen, 2012; Sarris and Papanastasiou, 2011; Carrier

and Granet, 2012; Salimzadeh and Khalili, 2015; Wang, 2015; Li et al., 2017) where the fluid

front-cohesive zone coupling is often neglected (zero fluid lag, small cohesive zone) and the

simulation performed under zero confinement. In this chapter, we release the confinement-

related requirement by adapting the time-step for a given fixed fracture increment to fulfill the

propagation stress propagation condition. We also check a posteriori that the stress intensity

factor is indeed null using Eq. (4.6). We obtain an absolute error on Eq. (4.6) of about 5% (in a

range between 0.1 and 8%) for all the reported simulations.

Apart from the tensile zone ahead of the fracture tip, one also needs to resolve the fluid lag

which shrinks tremendously as the fracture grows but still influences the solution (Garagash,

2019). At least one partially-filled (lag) element is necessary to account for the influence of the

fluid cavity on the tip stress field. At large time, the fluid lag becomes negligible compared to

the cohesive zone. This is ultimately the bottle-neck governing the computational burden due

to the mesh requirement of at minima one element in the fluid lag. For all the results presented

in the following, we actually stop the simulations when the fluid fraction ξ f = ` f /` reached

0.99 or when the fracture length was already within five percent of the LHFM solutions.
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Figure 4.5 – Evolution of a) the non-cohesive fraction 1−`coh/` and b) dimensionless cohesive
length `coh/Lcoh with t/tcm for Km = 1−4. The red, orange, and purple curves correspond to
σo/σc = 0.1,1.0,10 respectively. The dotted vertical lines indicate the cohesive zone nucleation
period for σo/σc = 0.1, Km = 1−4. The dashed horizontal line represents the small-scale
yielding asymptote (≈ 0.115π) of the cohesive zone length for the linear-softening cohesive
model (Dempsey et al., 2010).

4.5 Results

We now numerically explore the propagation diagram described in Fig. 4.3. We perform a series

of simulations covering dimensionless toughness from 1 to 4 and different level of confining

to peak cohesive stress ratio σo/σc from 0.1 to 10 for either a smooth (αe = 0) or rough (αe = 2)

fracture. These conditions span the transition from viscosity to toughness dominated growth

regimes, as well as laboratory (σo/σc = 0.1−1) and field conditions (σo/σc = 10).

4.5.1 A smooth cohesive fracture (αe = 0)

The three stages related to nucleation, intermediate and late time propagation are well visible

on the time evolution of the dimensionless cohesive length (Fig. 4.5), apparent fracture energy

(Fig. 4.6), fracture length (Fig. 4.9), as well as inlet width (Fig. 4.10) and net-pressure (Fig. 4.11).

Cohesive zone growth The scaled cohesive length `coh/Lcoh evolves non-monotonically with

time (Fig. 4.5). This evolution is dependent on both the dimensionless toughness Km and

σo/σc . At early time during the nucleation phase, when the fracture length is completely

embedded inside the cohesive zone (1−`coh/`= 0), the cohesive zone increases monotonically

(Fig. 4.5). We define the time tc as the end of the nucleation phase, when here after 1−`coh/`>
0. From our simulations, we found that tc follows approximately an exponential relation

tc /tcm ∼ K 5.17
m for Km ∈ [1− 4]. This exponent is consistent with the range of exponents

in the viscosity (tc /tcm ∼K 6
m) and toughness (tc /tcm ∼K 4

m) dominated regimes which can

be obtained by setting Gw =W /wc = 1 in respectively the M- and K-scaling in Table 4.2. In

addition, tc also slightly depends on the dimensionless confinement σo/σc , see the inset
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Figure 4.6 – Smooth cohesive fracture tip: evolution of the apparent fracture energy Gc,app /Gc

with t/tcm for Km = 1−4. The red, orange, and purple curves correspond toσo/σc = 0.1,1.0,10
respectively. The dotted vertical lines indicate the cohesive zone nucleation period forσo/σc =
0.1, Km = 1−4.

on Fig. 4.5. Larger confinement slightly reduces this nucleation period for a given Km . The

cohesive zone length at nucleation are larger for larger dimensionless toughness and then

decreases with time after nucleation.

At large time, we observe that - at least for low dimensionless confinement - the cohesive

zone length tends to a similar value for all dimensionless toughness. Unfortunately, this is less

observable for larger dimensionless confinement which leads to prohibitive computational

cost such that the simulations were stopped prior to stabilization of the cohesive zone length.

However, the trend for σo/σc = 1 hints that a similar behavior holds for larger confinement

albeit possibly much later in time.

Associated energy dissipation The energy spent in debonding cohesive forces (apparent frac-

ture energy) increases similarly to the growth of the cohesive zone length (Fig. 4.6). This is due

to the fact that ˙̀≈ ˙̀
coh during the nucleation stage. Interestingly, the apparent fracture energy

may even go above the fracture energy Gc at nucleation for large dimensionless toughness /

large dimensionless confinement as illustrated in Fig. 4.6. At large time, the apparent fracture

energy converges to the fracture energy Gc , confirming the fact that the material derivative

of width (in the moving tip frame) becomes negligible in Eq. (4.20). This confirms that at

large time (when 1−`coh/`∼ 1) one can use the solution of a steadily moving semi-infinite

hydraulic fracture solution accounting for cohesive forces (Garagash, 2019). However, care

must be taken to use such a semi-infinite fracture solution when the cohesive zone length is of

the same order than the overall fracture length. For example, the results obtained in Garagash

(2019) based on the use of an equation of motion and the semi-infinite cohesive HF solution

lead to cohesive zone length larger than the finite fracture length under the premises of the

constant apparent fracture energy. This ultimately leads to an over-estimation of fracturing

energy dissipation and larger deviation from LEFM solutions as it neglects the evolution of the
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apparent fracture energy associated with the nucleation phase.

Comparisons with linear hydraulic fracture mechanics (LHFM) The time evolution of di-

mensionless fracture length (scaled by the viscosity dominated LHFM growth length scale

Lm(t) - see Table. 4.2) is displayed as dashed curves on Fig. 4.9. The corresponding inlet

net-pressure and width evolution for the smooth cohesive zone are displayed as dashed curves

on Fig. 4.10 and 4.11 respectively. Our results indicate that the CZM solutions converge toward

the LHFM ones (for the corresponding dimensionless toughness) at large times t À tcm . The

exact dimensionless time for such a convergence toward the LHFM solution is larger for larger

dimensionless toughness, and smaller for larger σo/σc .

Interestingly, the fracture length is larger at the early stage of growth compared to the LHFM

estimate while the inlet opening and pressure are smaller. These differences directly result

from the fact that the cohesive forces greatly increases the fluid lag size and impacts its

evolution during the nucleation and intermediate stages of growth. Indeed, in the LHFM case,

the fluid lag is negligible at all times for dimensionless toughness Km larger than ∼ 1.5 as

reported in Garagash (2006b); Lecampion and Detournay (2007). For Km = 1, the fluid fraction

in the LHFM case is already small at early time: it evolves from 0.9 (when t ¿ tom) to 1 (for

t ≈ tom , see Fig. 4.18 in appendix). For the same dimensionless toughness, the fluid fraction

is lower than 0.6 at early time when accounting for the cohesive zone (see Fig. 4.12). The

large extent of the fluid lag is similarly found for larger dimensionless toughness - a striking

difference with the LHFM case for which no fluid lag is observed for Km > 1.5. The cohesive

forces significantly enhance the suction effect and thus lag size during nucleation. For the same

value of Km , a larger confinement compared to peak strength (larger σo/σc ) decreases the lag

size. Larger σo/σc results in steeper fluid pressure gradient and accelerates the penetration

of the fluid front into the cohesive zone during the nucleation and intermediate phase (see

Fig. 4.13) .

As the dimensionless toughness increases, the effect of σo/σc becomes limited to the nucle-

ation phase (see the length, inlet width and inlet net pressure evolution on Figs. 4.9, 4.10, 4.11).

After nucleation, the solutions appear independent of σo/σc for t > tcm for the Km = 3 and 4

cases. The fact that σo/σc does not influence the growth after nucleation for large toughness

can be traced back to the fact that the fluid lag cavity is very small in comparison to the

cohesive zone length as can be seen on Fig. 4.13.

Fig. 4.7 displays the dimensionless fracture length, fluid fraction, inlet width and pressure for

a small dimensionless toughness case (Km = 0.495). We have plotted these time evolution

as function of t/tom for better comparison with the LHFM solution accounting for a fluid

lag (Lecampion and Detournay, 2007). For low dimensionless toughness Km , the response

converges well to the LHFM lag solution (Lecampion and Detournay, 2007) relatively quickly

after nucleation (contrary to the case of large Km). On Fig. 4.7, the convergence occurs

earlier for smaller σo/σc in term of t/tom - actually later for smaller σo/σc in term of t/tcm =
t/tom × (σo/σc )−3 (in line with observations for larger Km).
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Figure 4.7 – Km = 0.495: evolution of a) the fracture half length, b) fluid fraction, c) inlet
width, and d) inlet net pressure with t/tom . The red, orange and purple curves correspond to
different confining stress σo/σc = 0.1,1,10 in a smooth cohesive HF with the dotted vertical
lines as their corresponding cohesive zone nucleation period. The gray dashed curves indicate
LHFM numerical results with a lag. The two gray horizontal lines correspond respectively to
the LHFM early-time solutions with a lag (Garagash, 2006b) and large-time solutions without
a lag (Garagash and Detournay, 2005). The time evolution of the cohesive zone length and the
ratio between the lag and cohesive zone sizes, fracture apparent energy and ratio of energy
dissipation in viscous flow to that in fracture surface creation is shown in Supplemental
Materials.
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Figure 4.8 – a) Dimensionless opening, and b) net pressure profiles at t/tom = 0.02 for Km =
1.009. “+” indicates the boundary of the cohesive zone and “×” indicates the fluid front
location. The red, orange, and purple curves represent different confining stress level σo/σc =
0.1,1.0,10. The gray curves represent the LHFM solutions with a lag at the same time t/tom =
0.02.

Tip asymptotes The width and net pressure profiles in the tip reference frame for Km = 1 is

displayed on Fig. 4.8 at time t/tom = 0.02 for different σo/σc (thus at different t/tcm for the

different σo/σc and different ratio `coh/`). On can observe different asymptotic behavior as

function of distance from the tip on Fig. 4.8. In the far-field, the 2/3 viscosity ’m’ asymptote

(Desroches et al., 1994) is visible in the low confinement case - for which at this time, the

fluid front is actually outside the cohesive zone. Closer to the tip, the 3/2 cohesive zone ’c’

asymptote is visible. These results are in line with the cohesive tip solution of Garagash (2019),

although here the cohesive zone is not necessarily small compared to the overall fracture

length. This induces a significant offset compared to the semi-infinite results reported in

Garagash (2019) (see Supplemental Materials for details).

4.5.2 A rough cohesive fracture (αe = 2)

The additional resistance to fluid flow associated with fracture aperture roughness has a

profound impact on growth both at the nucleation and intermediate stage. The effect is

amplified for larger σo/σc and larger Km . This can be well observed from the evolution of

length, inlet width and net pressures displayed on Figures 4.9, 4.10 and 4.11 respectively. In

particular the net pressure and width are significantly larger compared to the smooth cohesive

zone and LHFM cases, while the dimensionless length is shorter after nucleation.

The convergence toward the LHFM solutions with zero lag are in some cases not fully achieved

even at very large time (t À tcm especially for the large σo/σc cases. As mentioned earlier, we

actually stop these simulations when the fluid fraction ξ f = ` f /` reached 0.99 or the fracture

length was within five percent of the LHFM solutions.
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Faster nucleation of the cohesive zone As the fluid front is necessarily embedded in the cohe-

sive zone during the nucleation stage, the effect of roughness is significant during nucleation.

For the same stress ratio σo/σc and dimensionless toughness Km , roughness influences the

fracture growth by decreasing the fluid front penetration into the cohesive zone as illustrated

by the evolution of the ratio between the lag and cohesive zone sizes in Fig. 4.13.

The increase of the fluid flow resistance brought by roughness can also be observed on the

net pressure and width profiles (see Fig. 4.14). The steeper pressure gradient near the fluid

front results in a wider opening in the fluid-filled part of the fracture, ultimately making it

easier to completely debond the cohesive tractions (w > wc ) near the tip. The nucleation

process is therefore accelerated as shown in Figs. 4.15, 4.16. The cohesive length is shorter

at nucleation compared to the smooth case, but tends to converge to the same value as the

smooth case at late time at least for smaller dimensionless toughness. In spite of the lack of

stabilized cohesive zone length for the large dimensionless toughness / large σo/σc cases,

the trend for σo/σc = 1 hints a similar behavior for larger confinement albeit at a much later

dimensionless time.

Additional energy dissipation These observations indicate an increase of the overall energy

dissipated in the hydraulic fracturing process in the rough cohesive zone case. As shown in

Figs. 4.16, 4.17, the extra energy dissipation comes from viscous fluid flow inside the rough

cohesive zone and not from additional energy requirement to create new fracture surfaces. The

evolution Gc,app is not fundamentally different, with actually a smaller maximum at nucleation

compared to the smooth cohesive zone case (Fig. 4.16). The ratio Dv /Dk of the energies

dissipated in fluid viscous flow and in the creation of new fracture surfaces is significantly

larger than the smooth and LHFM cases in the nucleation and intermediate stages (Fig. 4.17),

especially for larger σo/σc . However, the Dv /Dk ratio converges toward the LHFM limit at

very large time (t À tcm).

Fracture aperture roughness has an impact on the fracture growth only when the fluid front

is located within the cohesive zone (`−` f < `coh). For small dimensionless toughness and

stress ratio, the fluid lag is larger or just slightly smaller than the cohesive zone length after

nucleation (see for example the Km = 1,σo/σc = 0.1 case). As a result roughness has little

effect and the growth is similar to the smooth case in the intermediate stage of growth. A

larger dimensionless confining stress level or/and larger dimensionless toughness facilitates

the penetration of the fluid front into the cohesive zone and results in additional fluid viscous

dissipation due to the roughness.

At large time, the cohesive zone and fluid lag size becomes much smaller than the overall

fracture length such that the effect of roughness on growth is significantly reduced. The large

time trend for σo/σc = 1 (for all toughness) both in terms of length, width, pressure (see

Figs. 4.9, 4.10, 4.11) as well as energy (Figs. 4.16) hints that the growth of a rough cohesive

fracture tends to LHFM limits at sufficiently large time, similarly than for the smooth case.

However, the time at which fracture growth finally follows the LHFM prediction appears much
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Figure 4.9 – Evolution of the dimensionless fracture half length `/Lm(t ) with t/tcm for Km =
1−4. The red, orange, and purple curves correspond respectively to σo/σc = 0.1,1.0,10 and
the solid and dashed curves correspond respectively to a rough (αe = 2) and smooth fracture
(αe = 0). The dotted vertical lines indicate the cohesive zone nucleation period of σo/σc = 0.1
for a smooth (gray) and a rough (black) fracture. The gray horizontal lines indicate the LHFM
solutions in the zero fluid lag limit.

larger than tcm especially for larger Km and σo/σc .

4.6 Discussions

4.6.1 Implications for HF at laboratory and field scales

To gauge the implications for real systems, we consider typical values relevant to laboratory

and field scales hydraulic fractures in oil/gas bearing shale/mudstone formation. These rocks

have a large range of reported tensile strength (2− 12 MPa - Rybacki et al. (2015)), elastic

modulus (4−30 GPa - Rybacki et al. (2015)) and fracture toughness (0.18-1.43 MPa.m1/2 -

Chandler et al. (2016)). We assume in what follows σc = 3 MPa, Gc = 45 N/m, wc = 30µm and

E ′ = 30 GPa. We report the corresponding characteristic scales and dimensionless numbers

for different type of injection in Table. 4.3.

Laboratory HF tests are performed on finite size samples Ls (typically with Ls at most half a

meter) with a minimum confining stresses either smaller or on par with the material cohesive
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Figure 4.10 – Evolution of the inlet width w(x = 0)/Wm(t ) with dimensionless time t/tcm for
Km = 1−4. The red, orange, and purple curves correspond respectively to σo/σc = 0.1,1.0,10
and the solid and dashed curves correspond respectively to a rough (αe = 2) and smooth
fracture (αe = 0). The dotted vertical lines indicate the cohesive zone nucleation period of
σo/σc = 0.1 for a smooth (gray) and a rough (black) fracture. The gray horizontal lines indicate
the LHFM solutions in the zero fluid lag limit.

Fracturing fluid µ′ (Pa.s) Qo (m2/s) σo Injection duration (s)
Lab injection (1) Silicone oil 12×1000 1.0×10−9 3 600-1800
Lab injection (2) Glycerol 12×0.6 1.0×10−9 0.3 30-1800

Micro-HF test Slick water 12×0.005 1.0×10−5 30 60-240
Well stimulation Slick water 12×0.005 1.0×10−3 30 1800-7200

Km σo/σc tcm (s) tc (s) Lcoh (m)
Lab injection (1) 0.88 1.0 4.0×105 ≈ 1.6×103 0.3
Lab injection (2) 5.6 0.1 2.4×102 > 1.1×103 0.3

Micro-HF test 1.8 10 2.0 ≈ 0.19 0.3
Well stimulation 0.6 10 2.0 < 4.9×10−3 0.3

Table 4.3 – Examples of characteristic scales for laboratory and field scale HF injection. We
report the corresponding time tc and length scale Lcoh for nucleation in the rough cohesive
zone case (αe = 2).
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Figure 4.11 – Evolution of the inlet net pressure p(x = 0)/Pm(t ) with t/tcm for Km = 1−4. The
red, orange, and purple curves correspond respectively toσo/σc = 0.1,1.0,10 and the solid and
dashed curves correspond respectively to a rough (αe = 2) and smooth fracture. The dotted
vertical lines indicate the cohesive zone nucleation period of σo/σc = 0.1 for a smooth (gray)
and a rough (black) fracture. The gray horizontal lines indicate the LHFM solutions in the zero
fluid lag limit.
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Figure 4.12 – Evolution of the fluid fraction ξ f = ` f /` with t/tcm for Km = 1−4. The red,
orange, purple curves correspond to σo/σc = 0.1,1.0,10 and the solid and dashed curves
correspond respectively to a rough (αe = 2) and smooth fracture (αe = 0). The dotted vertical
lines indicate the cohesive zone nucleation period of σo/σc = 0.1 for a smooth (gray) and a
rough (black) fracture.
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Figure 4.13 – Time evolution of the ratio between the lag and cohesive zone sizes (`−` f )/`coh

for Km = 1−4. The red, orange, and purple curves correspond to σo/σc = 0.1,1.0,10 respec-
tively and the solid and dashed curves correspond respectively to a rough (αe = 2) and smooth
fracture (αe = 0). The dotted vertical lines indicate the cohesive zone nucleation period of
σo/σc = 0.1 for a smooth (gray) and a rough (black) fracture.
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Figure 4.14 – a) Dimensionless opening and b) net pressure profiles at t/tcm = 50 for Km = 3.0.
“+” indicates the boundary of the cohesive zone and “×” indicates the fluid front location.
The red and orange curves correspond to σo/σc = 0.1,1.0 respectively. The solid and dashed
curves indicate respectively a rough (αe = 2) and smooth fracture (αe = 0).
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Figure 4.15 – Time evolution of the cohesive length `coh/Lcoh for Km = 1−4 . The red, orange,
and purple curves correspond respectively to σo/σc = 0.1,1.0,10 and the solid and dashed
curves correspond respectively to a rough (αe = 2) and smooth fracture (αe = 0). The dotted
vertical lines indicate the cohesive zone nucleation period of σo/σc = 0.1 for a smooth (gray)
and a rough (black) fracture. The dashed horizontal line represents the small-scale yielding
asymptote (≈ 0.115π) of the cohesive zone length for the linear-softening cohesive model
(Dempsey et al., 2010).
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Figure 4.16 – Time evolution of the apparent fracture energy Gc,app /Gc for Km = 1−4. The
red, orange, and purple curves correspond respectively to σo/σc = 0.1,1.0,10 and the solid
and dashed curves correspond respectively to a rough (αe = 2) and smooth fracture (αe = 0).
The dotted vertical lines indicate the cohesive zone nucleation period of σo/σc = 0.1 for a
smooth (gray) and a rough (black) fracture.
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Figure 4.17 – Time evolution of the ratio of the energies dissipated in fluid viscous flow and in
the creation of new fracture surfaces Dv /Dk for Km = 1−4. The red, orange, and purple curves
correspond respectively to σo/σc = 0.1,1.0,10 and the solid and dashed curves correspond
respectively to a rough (αe = 2) and smooth fracture (αe = 0). The dotted vertical lines indicate
the cohesive zone nucleation period of σo/σc = 0.1 for a smooth (gray) and a rough (black)
fracture. The gray horizontal lines are the corresponding LHFM limits with zero fluid lag.
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stress (σo/σc ≈ 0.1−2). In the case where the sample dimension Ls is smaller or of the order

of the characteristic scale of the cohesive zone Lcoh , laboratory HF tests will only span the

nucleation and intermediate stages of growth, and as a result will strongly deviate from LHFM

predictions. If Ls is sufficiently larger than Lcoh (Ls & 10Lcoh), the fracture growth will possibly

converge to LHFM solutions at late time for small Km (Lab injection (1) case in Table. 4.3).

Nevertheless, it will still present significant deviations from LHFM solutions in the inlet width

and net pressure (see Figs. 4.10, 4.11) for larger Km values (Lab injection (2) case in Table. 4.3).

In-situ HF operations are performed at depth (anything from 1.5 to 4 km), and as a result the

ratio σo/σc is always much larger than unity (σo/σc ∼ 10 or even larger). We evaluate the

characteristic scales by assuming injection of slick water in micro-HF tests and well stimulation

operations (see Table. 4.3). A micro-HF test (typically performed at a small injection rate) is

characterized by a dimensionless toughness Km around two. Based on the results presented

previously, significant deviations from LHFM predictions are expected in that case with a

fracture length shorter by about 15% (see Fig. 4.9), a fracture opening larger by about 20%

(Fig. 4.10), and a net pressure larger by about 40% (Fig. 4.11) after less than a minute of

propagation (t ∼ 100tcm). For well stimulation applications, the fracture growth will converge

toward the LHFM predictions after few minutes thanks to the smaller dimensionless toughness

resulting from the larger injection rate. This convergence will be delayed for deeper injections

/ larger σo/σc . One should bare in mind that very different responses can be encountered as

function of rocks properties (notably of wc , σc ) and in-situ stress conditions.

4.6.2 Limitations and possible extensions of the current study

We have used a simple linear-weakening cohesive zone model to simulate the fracture process

zone and a phenomenological correction to Poiseuille’s law (assuming wR = wc ) to account

for the effect of aperture roughness on fracture hydraulic conductivity. These choices are

actually the simplest possible ones, and may well be oversimplified. More advanced traction-

separation relations with both a non-linear hardening and softening branch are often found to

better reproduce experimental observations of fracture growth in quasi-brittle materials (Park

and Paulino, 2011; Needleman, 2014). Similarly, the precise relation between the width scale

of solid non-linearity wc and that of the one related to the flow deviation wR remains to be

better constrained from experiments. A better description of the details of both the traction-

separation law and the effect of roughness on fluid flow will likely modify quantitatively the

hydraulic fracturing growth at the early and intermediate stages. However, the scaling and

qualitative structure of HF growth presented here will remain similar. We also have to recall

that a difference between wc and wR , or similarly a value of αc different than unity is clearly

possible in view of the scatter of the available experimental data (Table 4.1). This would

add another dimensionless parameter (αc ) in addition to σo/σc , αe and the dimensionless

toughness Km .

Our results indicate a convergence of HF growth in quasi-brittle materials toward LHFM
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predictions at large time, even though the investigation of the parametric space reported here

is only partial due to the extremely significant numerical cost of the simulation in the vanishing

lag size limits as time increases. The numerical difficulty results from the requirement of a

sufficiently fine mesh to resolve the shrinking fluid lag at large time as well as the small tensile

zone ahead of the tip which significantly decreases for large σo/σc . An algorithm with an

adaptive mesh refinement must be developed to ensure a sufficiently fine resolution of the

process zone and fluid lag in order to further investigate fracture growth for large σo/σc cases.

We have assumed the flow to be strictly laminar in the rough fracture. In some specific cases

where very large injection rates are used, turbulence may appear in the fracture (Lecampion

and Zia, 2019; Zia and Lecampion, 2017; Dontsov, 2016). Interestingly, the deviation from

smooth laminar flow via the introduction of a friction correction bears similarity with the

case where turbulent flow is accounted for (Tsai and Rice, 2010; Lecampion and Zia, 2019).

The impact of turbulent flow in fractures is also captured via a friction correction albeit with

a different functional form. The effect of turbulence has been shown to be restricted to the

early time of fracture growth (Lecampion and Zia, 2019). As such it may possibly influence the

nucleation and intermediate phases of growth previously discussed for large injection rate

field conditions.

The discussions and results presented here pertain to a plane-strain geometry, but can be

extended to a radial hydraulic fracture (Liu et al., 2019a; Garagash, 2019). For a radial cohesive

HF, the energy dissipated in the creation of fracture surfaces increases with the fracture

perimeter. In particular, the dimensionless toughness Km increases with time as Km =
(t/tmk )1/9 (Savitski and Detournay, 2002), with

tmk = E ′13/2Q3/2
o µ′5/2

K ′9 (4.32)

This introduces another time-scale into the problem besides tom and tcm = tom × (σo/σc )3. As

a result, the exact growth of a radial cohesive HF will be impacted by the ratio tcm/tmk , or in

other words by the competition between hydro-mechanical effects associated with nucleation

and the overall transition toward the late-time toughness dominated regime. The results of

Garagash (2019) obtained using an equation of motion based on the solution of a steadily

moving HF provides an estimate of the propagation, but should be taken with caution as

this approach does not necessarily ensure that the cohesive zone length is smaller than the

fracture length. Additional quantitative investigation of the radial cohesive HF are left for

further studies.

4.7 Conclusions

We have investigated the growth of a plane-strain HF in a quasi-brittle material using a

cohesive zone model including the effect of aperture roughness on fluid flow in the simplest

possible manner. In parallel to the cohesive zone, it is necessary to account for the presence
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of a fluid lag to ensure that both the fluid pressure and stresses in the near tip region remain

finite. Resolving with sufficient accuracy these potentially small regions near the fracture tip

renders the problem extremely challenging numerically.

We have shown that a plane-strain cohesive HF presents three distinct stages of growth: a

nucleation phase, an intermediate phase during which the results slowly converge toward

linear hydraulic fracture mechanics (LHFM) predictions in a third stage. The overall solution

is characterized by a cohesive zone nucleation time scale tcm = E ′2µ′/σ3
c , a dimensionless

fracture toughness Km (whose definition is similar to the LHFM case) and the ratio between

in-situ and material cohesive stress σo/σc . In addition, the enhanced flow dissipation as-

sociated with fracture roughness significantly influences the solution as it re-inforces the

hydro-mechanical coupling in the near tip region.

After the nucleation stage, for large Km , the effect of σo/σc for a smooth cohesive zone case

is not significant when the solutions tend toward the LHFM predictions. This convergence

toward LHFM occurs at later t/tcm for larger Km . For small Km , the fluid lag diminishes faster

for larger σo/σc and the convergence to LHFM occurs for smaller t/tcm as a result.

Roughness significantly modifies the convergence toward LHFM notably for dimensionless

toughness larger than 1. In addition, for these large toughness cases, larger σo/σc results in

larger deviations and a much slower convergence toward the LHFM predictions (which now

occur for orders of magnitude of the nucleation time scale tcm). Fracture roughness leads to

additional energy dissipation in the viscous fluid flow associated with the fluid penetration

in the cohesive zone. This ultimately results in larger openings, larger net pressures, shorter

fracture extension and thus larger input energy. This additional viscous dissipation is further

amplified for larger σo/σc , which facilitates the penetration of the fluid in the rough cohesive

zone. It is also worth noting that counter-intuitively the effect is stronger and remains in effect

longer for larger dimensionless toughness: the viscous pressure drop localizes to an even

smaller region near the tip for larger Km such that viscous flow dissipation increases as a

result.

Different models for the impact of roughness on flow (such as different values for αc and the

power-law flow roughness exponent αe taken here equal to 1 and 2 respectively) will impact

quantitatively the fracture evolution although the structure of the solution described here will

remain. The same can be said with regards to the simple linear-weakening traction separation

law used which may be replaced by a more elaborate one if required.

The theoretical predictions presented here need to be tested experimentally on well character-

ized quasi-brittle materials. This is particularly challenging as one must ensure that the sample

size is at least ten times larger than the characteristic cohesive zone length Lcoh = E ′wc /σc

in order to hope capturing the convergence toward LHFM predictions. It is actually worth

noting that so far all the quantitative experimental validations of linear hydraulic fracture

mechanics have been obtained on transparent and/or model materials - all with very small

process zone sizes (see Lecampion et al. (2017) and references therein). HF experiments in
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rocks need to be performed with a quantitative measurement of the time evolution of the

fracture and fluid fronts, as well as fracture opening. This is achievable via active acoustic

imaging (Liu et al., 2020). However, the accurate spatiotemporal imaging of the process zone

of a growing hydraulic fracture under realistic stress and injection conditions remains truly

challenging.

4.8 Appendix: Numerical scheme accounting for the nucleation of

a cohesive zone and a fluid lag

As suggested in Liu and Lecampion (2019), the problem is solved numerically via a fully

implicit scheme based on the boundary element method. We automatically nucleate the fluid

lag using the Elrod-Adams lubrication cavitation model at the early stage of fracture growth

(Mollaali and Shen, 2018). We then switch to a level-set algorithm for computational efficiency

by precisely tracking the fluid front (Gordeliy and Detournay, 2011b).

4.8.1 Fluid-lag-nucleation algorithm

We initiate the fracture aperture from the solution of a static elastic fracture under a uniform

fluid pressure slightly larger than σo . For a given fracture length increment, the solution is

obtained using three nested iterative loops: we start from a trial time step and solve the fluid

pressure for all elements inside the fracture using a quasi-Newton method. Such a procedure

is repeated until each element in the fracture reaches a consistent state: either fluid or vapor.

A converged estimate of the cohesive forces is then updated using fixed-point iterations with

under-relaxation. The time step is finally adjusted in an outer loop using a bi-section and

secant method to fulfill the propagation criterion.

Elasticity

Aw = p f −σcoh(w)−σo (4.33)

whereA is the elastic matrix obtained via the discretization of the elastic operator using the

displacement discontinuity method with piece-wise constant elements, and p f ,σo ,σcoh are

respectively vectors of the fluid pressure, minimum compressive stress and cohesive forces.

Elrod-Adams lubrication A state variable θ is introduced in the mass conservation, charac-

terizing the percentage of liquid occupying the fracture within one element. All the elements

inside the fracture fulfil the condition p f (1−θ) = 0 and can be classified into three domains

according to the filling condition of the element: ηp (elements fully filled with fluid), ηθ
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Repeat solving for pressure p f i , θi for i ∈ ηp ∪ηθ using Newton’s method;
for i ∈ ηΓ do

if p f ,i < 0 then set p f ,i = 0, ηp ← ηp \ {i }, ηθ ← ηθ∪ {i }, ηex ← ηΓ \ (ηp ∪ηθ)
if θi > 1 then set θi = 1, ηθ ← ηθ \ {i }, ηp ← ηp ∪ {i }, ηex ← ηΓ \ (ηp ∪ηθ)
if θi < 0 then set θi = 0, ηθ ← ηθ \ {i }, ηex ← ηΓ \ (ηp ∪ηθ)

end
until all constraints p f ,i ≥ 0, 0 ≤ θi ≤ 1 for i ∈ ηΓ are satisfied, in other words, p f ,i (1−θi ) = 0.

Table 4.4 – Algorithm using the Elrod-Adams model (adapted from Mollaali and Shen (2018))
within one iteration with a given cohesive force vector

(elements partially filled with fluid) and ηex (empty or vapor elements).

ηp = {i ∈ ηΓ | θi = 1, p f i > 0}

ηθ = {i ∈ ηΓ | 0 < θi < 1, p f i = 0}

ηex = {i ∈ ηΓ | i 6∈ (ηp ∪ηθ), p f i = 0, θi = 0}

(4.34)

where ηp ∩ηθ =; and ηΓ = ηp ∪ηθ∪ηex . We integrate the lubrication equation over element

i : ∫
i

∂(θw)

∂t
dx︸ ︷︷ ︸

1

+
∫

i

∂

∂x

(
−w3

µ′
∂p f

∂x

)
dx︸ ︷︷ ︸

2

− Qo

2
δ(i ,1)︸ ︷︷ ︸
3

= 0 (4.35)

The first and the second terms are respectively discretized as follows,∫
i

∂θw

∂t
dx = 1

∆t
h(θi wi −θo

i wo
i ) (4.36)

∫
i

∂

∂x

(
− w3

µ′ f

∂p f

∂x

)
dx =

[
− w3

µ′ f

∂p f

∂x

]i+1/2

i−1/2

= 1

µ′ fi−1/2
w3

i−1/2

(
p f ,i −p f ,i−1

h

)
− 1

µ′ fi+1/2
w3

i+1/2

(
p f ,i+1 −p f ,i

h

)
,

wi−1/2 = wi +wi−1

2
, wi+1/2 = wi +wi+1

2

(4.37)

where h is the element size and the superscript o denotes the solution at the previous time

step.

We back-substitute the elasticity into the lubrication equation and use the quasi-Newton

method to solve the non-linear problem. We set the solution of the previous time step as an

initial guess and solve iteratively for p f ,i (i ∈ ηp ) and θi (i ∈ ηθ). The lag-nucleation algorithm

then updates the sets of ηp and ηθ as demonstrated in Table 4.4.
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Propagation condition In the context of a cohesive zone, we check the equality of the tensile

stress component ahead of the fracture tip with the material peak strength:

σy y,n+1 = An+1, j w j −σo =σc , j = 1...n (4.38)

where n is the number of elements inside the fracture at the current time step.

4.8.2 Fluid-front-tracking algorithm

The fluid-front tracking algorithm (Gordeliy and Detournay, 2011b) assumes a clear boundary

between the fluid and cavity. The n elements inside the fracture is divided into m fluid

channel elements fully-filled with fluid (p f > 0), (n−m−1) fluid lag elements with a negligible

cavitation pressure (p f = 0) and one partially filled element (p f = 0) where locates the fluid

front. By introducing a filling fraction φ, we estimate the fluid front position using the solution

of the lag-nucleation / Elrod-Adams based algorithm. We assume that fluid-front-tracking

algorithm initializes with a solution (wO , pO
f ,V O ,mO ,φO ,`O

f ) obtained from the lag-nucleation

/ Elrod-Adams based algorithm at a chosen time step k. mO is the number of elements in the

domain ηp . φO is the filling fraction obtained by gathering the fluid mass of all lag elements

from the lag-nucleation algorithm in the partially-filled element (the (mO +1)th element) of

the fluid-front-tracking algorithm.

φO =∑
i
θk

i wk
i /wmO+1, i ∈ ηθ (4.39)

We then obtain the fluid front position `O
f and the fluid front velocity V O for a chosen time

step k.
`O

f = (mO +φO)h,

V O = (` f ,k+1 −` f ,k−1)/(tk+1 − tk−1)
(4.40)

where tk−1 and tk+1 are respectively propagation time at the (k −1)th and (k +1)th time step in

the lag-nucleation algorithm.

Based on this initial estimation of the fluid front, we solve iteratively the increment of the

opening in the channel elements for a given fracture front through three nested loops in the

fluid-front-tracking algorithm. One loop tracks the fluid front, one updates the time step to

fulfill the propagation condition and another solves the non-linear system due to the cohesive

forces and lubricated fluid flow through a fixed-point scheme. We present in the following the

discretization of the non-linear system.

Elasticity

pc −σo −σcohc =Acw w+Aol (−σo −σcohl ) (4.41)

where pc is the vector net pressures in the channel part of the fracture; σcohc and σcohl
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cohesive forces applied in the fluid channel and fluid lag.

Acw =Acc −AclA
−1
l l Al c

Aol =AclA
−1
l l

(4.42)

Acc ,Acl ,Alc ,Al l are sub-matrix of the elastic matrix A associated with elements inside the

fluid channel and lag.

Lubrication flow For fluid channel elements (1 ≤ i ≤ m),

∆wi = ∆t

µ′h2

(
1

fi−1/2
w3

i−1/2pc,i−1 + 1

fi+1/2
w3

i+1/2pc,i+1

)
− ∆t

µ′h2 (
1

fi−1/2
w3

i−1/2 +
1

fi+1/2
w3

i+1/2)pc,i +δ(i ,1)
Qo∆t

2h

−δ(i ,m)Fm −H(i −mo)
m∑

k=mo+1
δ(i ,k)Fk

(4.43)

The second term on the second line represents the contribution due to a constant injection

rate and the two terms on the third line are mass corrections due to the partially-filled element

where the fluid front locates. H(·) is the Heaviside step function.

Fm =
φwm+1 −φo wo

m+1, m = mo

φwm+1 −φo wo
mo+1 −

∑mo

i=m+1 wi , m < mo
(4.44)

Fk =
(1−φo)wo

k , k = mo +1

wo
k , k > mo +1

(4.45)

where the superscript o refers to the solutions at the previous time step. The lubrication

equation can be thus arranged as

∆w = L ·pc +S1 −Sm −Smo (4.46)

Coupled system of equations We back-substitute the elasticity and write the coupled system

as in Eq. (4.47). For a given fracture front and a trial time step, we solve for incremental

apertures ∆w using fixed-point iterations. The tangent linear system reads:

(I−L(∆w(s−1))Acw )∆ws = L(∆w(s−1))Acw wo +L(∆w(s−1))Aol (−σo −σcohl (∆w(s−1))) (4.47)

where s refers to the solution at the previous iteration.
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Update of the fluid front position The fluid front position is estimated as

`(s)
f = (mo +φo)h +V (s−1)∆t ,m(s) = floor[`(s)

f /h],φ(s) = `(s)
f /h −m(s) (4.48)

where V is the fluid front velocity and it can be obtained through lubrication theories,

V = 1

2

(
V o − 1

µ′ fm
w2

m
∂p

∂x

)
,

∂p

∂x
=

(
pc,m − pc,m +σo

φ+1/2
−pc,m−1

)
/(2h), m > 1

(4.49)

The iteration starts with V (0) = V o and continues until |(`(s)
f −`(s−1)

f )/`(s−1)
f | is within a set

tolerance.

Control of overestimation of the fluid front position We may possibly overestimate the fluid

front position using Eq. (4.48) especially when the fracture front advances too much compared

to the previous time step. As a result, negative pressure may be detected in the channel

elements near the fluid front.

In order to better locate the fluid front, we adopt a strategy similar to the one in Gordeliy et al.

(2019). Once the scheme detects a negative fluid pressure in the channel elements (where the

elements are fully-filled with fluid) during the s th iteration at the current time step, we utilizes

the bi-section algorithm to estimate the fluid front position (Liu et al., 2019a). We set the fluid

front position at the previous time step as the lower bound ` f − = `o
f and the current position

obtained from the previous iteration as the upper bound ` f + = `(s−1)
f . As long as the fluid front

advances during the fracture growth, the trial fluid front position for the next iteration can be

estimated from

`(s)
f = (` f ++` f −)/2 (4.50)

We iterate on ` f until that |(`(s)
f −`(s−1)

f )/`(s−1)
f | is within a set tolerance and that all fluid

pressure in the channel elements remain positive.

4.8.3 Benchmark of the growth of a linear elastic fracture

We simulate the growth of a plane-strain HF in a linear elastic medium by adapting the

propagation condition as

wn = 2

3

K ′ph

E ′ (4.51)

where wn is the opening of the element closest to the fracture tip obtained by the integration

of the tip asymptote. We benchmark our scheme using different Km values and formulate

the problem with the viscosity scaling in the time-domain t/tom similar to Lecampion and

Detournay (2007). We show in Fig. 4.18 that our results (CZMLAG) are in good agreement with

the numerical solutions reported in Lecampion and Detournay (2007).
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Figure 4.18 – Time evolution of a) the half fracture length and b) fluid fraction in viscosity
scaling for different dimensionless toughness Km .

4.9 Supporting materials: Energy balance

Following Lecampion and Detournay (2007), we write the energy balance of a propagating

cohesive HF by combining the energy dissipation in the fluid and solid. The external power

provided by injecting fluid at a flow rate Qo , under the inlet pressure p f (x = 0, t ), is balanced

by the rate of work expended by the fluid on the walls of the fracture and by viscous dissipation.

Hence,

Qo p f (x = 0, t ) = 2
∫ ` f

0
p f

∂w

∂t
dx −2

∫ ` f

0
q
∂p

∂x
dx, q =− w3

µ′ f

∂p

∂x
(4.52)

where the cavity pressure in the lag zone is neglected in the above expression. By differentiating

the global continuity equation with time,

Qo = 2
∫ ` f

0

∂w

∂t
dx +2 ˙̀

f w(` f ) (4.53)

After multiplying the above expression by σo and subtracting it from Eq. (4.52), we obtain an

alternative form of the energy balance in the fluid,

Qo p f 0 =Qoσo +2
∫ ` f

0
p
∂w

∂t
dx −2

∫ ` f

0
q
∂p

∂x
dx −2σo ˙̀

f w(` f ) (4.54)

For a fracture propagating quasi-statically in limit equilibrium in the solid, the fracture energy

release rate is then written as the decrease of the strain energy rate and the work rate of the

external forces (Keating and Sinclair, 1996).

∫ ` f

0
p
∂w

∂t
dx −

∫ ` f

0
w
∂p

∂t
dx −

∫ `

` f

σo
∂w

∂t
dx +

∫ `

0
σcoh

∂w

∂t
dx −

∫ `

0
w
∂σcoh

∂t
dx = 0 (4.55)
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Eqs. (4.54) and (4.55) can be combined to yield an energy balance for the whole system.

Pe =Qo p f 0 = Ẇo +Ẇe +Ẇl +Dk +Dv (4.56)

where
Ẇo =Qoσo ,

Ẇe =
∫ ` f

0
p
∂w

∂t
dx +

∫ ` f

0
w
∂p

∂t
dx −σo

∫ `

` f

∂w

∂t
dx,

Ẇl = 2
∫ `

` f

σo
∂w

∂t
dx −2σo

˙̀
f w(` f ) = 2σo

d

dt

∫ `

` f

wdx,

Dk =−
∫ `

0
w
∂σcoh

∂t
dx +

∫ `

0
σcoh

∂w

∂t
dx

Dv =−2
∫ ` f

0
q
∂p

∂x
dx

(4.57)

Using the linear-softening cohesive traction-separation law, we rewrite Dk in the coordinates

of a moving tip

Dk =
∫ `

`−`coh

σc
w

wc

∂w

∂t
dx +

∫ `

`−`coh

σc

(
1− w

wc

)
∂w

∂t
dx =σc

∫ `

`−`coh

∂w

∂t
dx =σc

∫ `coh

0

∂w

∂t
dx̂

(4.58)

where

x̂ = `−x,
∂w

∂t
= ∂w

∂t

∣∣∣∣
x̂
− (− ˙̀)

∂w

∂x̂
(4.59)

The energy dissipation during the fracturing process Dk can be thus simplified as follows

Dk =σc

∫ `coh

0

∂w

∂t

∣∣∣∣
x̂

dx̂ +σc
˙̀
∫ `coh

0

∂w

∂x̂
dx̂ =σc

∫ `coh

0

∂w

∂t

∣∣∣∣
x̂

dx̂ +2 ˙̀(
1

2
σc w(x̂ = `coh)) (4.60)

4.10 Supporting materials: Complementary results for a smooth

cohesive hydraulic fracture with Km = 0.495

We show the time evolution of the cohesive zone length, the ratio between the lag and cohesive

zone sizes, the apparent fracture energy, and the ratio of the energies dissipated in fluid viscous

flow and in the creation of new fracture surfaces in Fig. 4.19 as complimentary information of

Fig. 7 in the main text.

4.11 Supporting materials: Tip asymptote comparison with solu-

tions for a semi-infinite cohesive hydraulic fracture

When the cohesive fraction is very small in a smooth HF, the tip asymptote tends to converge to

the semi-infinite cohesive hydraulic fracture solution as reported in Garagash (2019). We show

this trend in Fig. 4.20 for σo/σc = 0.1,1 with different values of the cohesive-to-lag fracture
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cohesive hydraulic fracture
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Figure 4.19 – Km = 0.495: evolution of a) the cohesive zone length `coh/Lcoh , b) the ratio be-
tween the lag and cohesive zone sizes (`−` f )/`coh , c) the apparent fracture energy Gc,app /Gc ,
and d) the ratio of the energies dissipated in fluid viscous flow and in the creation of new
fracture surfaces Dv /Dk with t/tom . The red, orange and purple curves indicate the smooth
cohesive hydraulic fracture with the confining stress σo/σc = 0.1,1,10 with the dotted vertical
lines as their corresponding cohesive zone nucleation period. The dashed horizontal line in
Figure a) represents the small-scale yielding asymptote (≈ 0.115π) of the cohesive zone length
for the linear-softening cohesive model (Dempsey et al., 2010). The dashed horizontal line in
Figure d) represents the LHFM limit with zero lag.
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Figure 4.20 – The crack opening normalized by the far-field ’m’-asymptote for σo/σc = 0.1,1
and various values of Γc =Gc /Go (see the definition in Eq. (4.61)) between 10−5/2 and 103/2

in 101/2 increments on the logarithm scale. The dashed curves are semi-infinite solutions
in Garagash (2019). The solid curves are results of a smooth plane-strain cohesive hydraulic
fracture whose corresponding cohesive fractions are shown in Table. 4.5. “+” indicates the
boundary of the cohesive zone and “×” the fluid front location.

energy ratio Γc which is defined as

Γc = Gc

Go
= Gc

woσo
= 1

2

wcσcσo

E ′µ′V
(4.61)

wo = σo

E ′ `o , `o = µ′V
E ′

(
E ′

σo

)3

(4.62)

where V represents the fracture front velocity and `o the lag length scale (Garagash, 2019).

The fracture opening in Fig. 4.20 is normalized by the far field ’m’ asymptote:

w∞ = 21/335/6
(
µ′V
E ′

)1/3

(`−x)2/3 (4.63)

The tip asympotote of a finte fracture shows an offset from the semi-infinite solution (Fig. 4.20).

This offset results from the finite size of the fracture dimension and a relatively important

fraction of the cohesive zone (see Table. 4.5).

Γc =Gc /Go 10−5/2 0.01 10−3/2 0.1 10−1/2 1 101/2 10 103/2

Color in Fig. 4.20 Cyan Magenta Pink Red Orange Purple Black Blue Gray
`coh/` (σo/σc = 0.1) (%) 5.0 33.7 6.90 44.0 5.57 11.5 11.4
`coh/` (σo/σc = 1) (%) 26.2 4.9 22.9 3.50 39.2 3.50 11.1 10.9

Table 4.5 – Cohesive fractions of finite fractures in Fig. 4.20.
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5 Time-lapse reconstruction of the
fracture geometry using acoustic
transmission and diffraction
4D acoustic imaging via an array of 32 sources / 32 receivers is used to monitor hydraulic

fracture propagating in a 250 mm cubic specimen under a true-triaxial state of stress. This

chapter presents a method based on the arrivals of diffracted waves to reconstruct the frac-

ture geometry (and fluid front when distinct from the fracture front). Using Bayesian model

selection, we rank different possible fracture geometries (radial, elliptical, tilted or not) and

estimate model error. The imaging is repeated every 4 seconds and provide a quantitative

measurement of the growth of these low velocity fractures. We test the proposed method on

two experiments performed in two different rocks (marble and gabbro) under experimen-

tal conditions characteristic respectively of the fluid lag-viscosity (marble) and toughness

(gabbro) dominated hydraulic fracture propagation regimes. In both experiments, about

150 to 200 source-receiver combinations exhibit clear diffracted wave arrivals. The results of

the inversion indicate a radial geometry evolving slightly into an ellipse towards the end of

the experiment when the fractures feel the specimen boundaries. The estimated modelling

error with all models is of the order of the wave arrival picking error. Posterior estimates

indicate an uncertainty of the order of a millimeter on the fracture front location for a given

acquisition sequence. The reconstructed fracture evolution from diffracted waves is shown to

be consistent with the analysis of 90◦ incident angle transmitted waves across the growing

fracture.

This chapter is a modified version of the following scientific article:

Liu, D., Lecampion, B., Blum, T. (2020), Time-lapse reconstruction of the fracture front from

diffracted waves arrivals in laboratory hydraulic fracture experiments, Geophysical Journal

International, 223, 180–196.

Authors contributions

B. Lecampion and T. Blum have designed the loading frame and the active acoustic measure-

ment system. D. Liu has designed the hydraulic fracture injection under the guidance of B.

Lecampion. D. Liu has performed the laboratory experiments under the guidance of T. Blum.
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B. Lecampion, T. Blum, and D. Liu have set up the methodology of the analysis. D. Liu has

written the numerical code to pick the diffracted arrivals. Based on these picked arrivals, D.

Liu and B. Lecampion have written the numerical code to reconstruct the fracture geometry.

D. Liu has analyzed the experimental results under the guidance of B. Lecampion. D. Liu and

B. Lecampion have written the manuscript.

5.1 Introduction

Hydraulic fractures (HF) are a class of tensile fractures that propagate in a material as a result

of fluid pressurization (Detournay, 2016). They are encountered in a number of industrial

applications such as oil and gas production, geothermal energy and block caving mining. HFs

also propagate naturally in the form of magmatic dikes (Rivalta et al., 2015), or at glaciers bed

due to the sudden release of surface melt water lakes (Tsai and Rice, 2010). Investigation of

the growth of such fluid-driven fractures under controlled conditions at the laboratory scale

plays an important role in order to validate theoretical predictions.

Since the early work of Hubbert and Willis (1957), the measurement of the hydraulic fracture

geometry has evolved from simple postmortem observations after the experiment to the use

of continuous monitoring techniques during fracture growth. These developments have been

slow and in most cases only post mortem observations are reported although sometimes

via high resolution X-ray CT (Liu et al., 2016). A photometry method based on the intensity

drop of a back-light source as it passes through a dyed fracturing fluid has been successfully

used to monitor hydraulic fractures in transparent materials (Bunger, 2006). Such an optical

technique has allowed to measure the evolution of both the fracture extent and the full field

of fracture opening. Combined with particle image velocimetry, it also allows to measure

the fluid velocity field in the growing fracture (O’Keeffe et al., 2018). These experimental

techniques have provided invaluable data sets and insights into hydraulic fracture growth

in transparent materials, such as PMMA, glass and hydrogel. They have notably helped in

validating important theoretical predictions of hydraulic fracture mechanics (Bunger and

Detournay, 2008; Wu et al., 2008; Bunger et al., 2013; Xing et al., 2017). However, by definition,

these optical methods can not be used in non-transparent materials. In rocks, acoustic

emission (AE) monitoring is the main technique used to track the evolution of rupture (Lockner

and Byerlee (1977); Zoback et al. (1977); Ishida (2001); Stanchits et al. (2014, 2015); Goodfellow

et al. (2015); Stoeckhert et al. (2015) to cite a few). AE events, however, do not provide a direct

measurement of fracture geometry as they are mostly associated with micro-slips around

the growing fracture (Rodriguez et al., 2016). The observations of self-potential (Moore and

Glaser, 2007; Haas et al., 2013) during HF experiments correlate with pressure evolution and

appear to highlight fluid flow patterns but do not provide an accurate measurement of the

growing fracture. Advanced imaging techniques such as Neutron imaging have been recently

attempted (Roshankhah et al., 2018) as well as 2D digital image correlation (DIC) (Jeffrey et al.,

2015; Zhao et al., 2020). Neutron imaging necessitates the use of relatively small specimen

(to achieve sufficient resolution) while the application of 2D DIC imposes the use of intricate
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specimen geometry and boundary conditions not suited to hydraulic fracturing.

We focus here on active acoustic imaging, a method akin to a 4D seismic survey at the labo-

ratory scale in the ultrasonic range. Earlier studies (Medlin et al., 1984; De Pater et al., 1996;

Glaser and Hand, 1998; van Dam, 1999; Groenenboom and van Dam, 2000) have shown its

capability to obtain quantitative information during laboratory hydraulic fracture experiments.

The wave-field interacts in different ways with the growing fracture. It can be diffracted by the

fracture tip (as well as the fluid front if a lag is present near the fracture tip) but also reflected

by and transmitted through the fluid-filled fracture. The evolution of transmitted waves has

notably allowed to identify a dry region near the fracture tip (fluid lag) (Medlin et al., 1984;

De Pater et al., 1996). Records of the arrival times of waves diffracted by the fracture have

enabled to estimate the evolving fracture tip position under the hypothesis of a horizontal

radial fracture centered on the injection point (Groenenboom and van Dam, 2000; Groenen-

boom and Falk, 2000). Opening of the fracture results in attenuation and delay of transmitted

waves. It thus allows to evaluate the fluid layer thickness by matching the spectrum of the

transmitted signals with the transmission coefficient of a three layers model (Groenenboom

and Fokkema, 1998). These two techniques (diffraction and transmission) have been shown

to provide results in agreement with optical methods (Kovalyshen, 2014).

In this chapter, we improve the imaging of a growing hydraulic fracture by using an un-

precedented amount of piezoelectric source/receiver pairs and relaxing the assumption of

a centered horizontal radial fracture. We test the method on two experiments performed in

quasi-brittle rocks (marble and gabbro) which may exhibit different fracture growth behavior

compared to PMMA, plaster or cement-based materials used in the previous studies cited

above. We first present our experimental set-up, the rocks and experimental conditions used.

After illustrating the type of diffracted waves measured in these experiments, we develop an

inverse problem for the fracture / fluid front reconstruction. This inversion is then performed

repeatedly in time for each acquisition sequence. We use different shapes (ellipse, circle with

or without tilt) to parameterize the fracture front geometry and use Bayesian model selection

to rank these different models. We finally compare the results obtained from the inversion of

diffracted waves with transmitted waves data.

5.2 Experimental methods

5.2.1 Experimental set-up and specimen preparation

Hydraulic fracture growth experiments are carried out in 250 mm cubic rock samples under a

true triaxial compressive state of stress as illustrated in Fig. 5.1. The confinement is applied

by symmetric pairs of flat jacks in the three axis of a poly-axial reacting frame. Compressive

stresses up to 20 MPa can be applied prior to injection. The fracturing fluid is injected

in a central wellbore by a syringe pump (ISCO D160) at a constant flow rate (in the range

0.001 mL/min to 107 mL/min) with a maximum injection pressure of 51 MPa. An interface
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Figure 5.1 – Schematic illustration of the rock sample showing the transducers disposition for
the GABB-001 experiment. Additional holes are available in the platens allowing the use of
various transducer dispositions. Two facing platens share the same transducers disposition
and source / receivers transducers are alternately located on opposite platens for robustness.

vessel in the injection line allows to inject a wide range of fluid type with viscosity ranging

from 1 mPa.s to 1000 Pa.s. Due to the compliance of the injection system (i.e. volume of fluid

in the injection line), upon fracture initiation the flow rate entering the fracture does not equal

the pump injection rate Qo during a transient phase (Lhomme, 2005; Lecampion et al., 2017).

A needle valve is thus placed in the injection line close to the well-head in order to control

the release of fluid compressed during the pressurization phase. Using volume conservation

within the injection system (pump to fracture inlet), it is possible to estimate the flow rate

Qi n(t ) entering the fracture by taking the derivatives of the fluid pressure measurements (see

Section 5.7.1 for details).

The rock sample is first rectified as a cube of 250 mm × 250 mm × 250 mm dimensions. We

polish the specimen surfaces to minimize friction and to ensure a good contact between the

piezo-electric transducers and the rock. A wellbore of 16 mm diameter is drilled through the

block and a horizontal axisymmetric notch (with a diameter of 21 mm ± 1 mm) is created in

the middle of the sample via a specifically designed rotating cutting tool. The resulting notch
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Table 5.1 – Material properties (Vp and Vs are measured directly on the cubic rocks during the
pressurization stage prior to any fracture growth).

Rock Vp (m/s) Vs (m/s) ρ (×103kg/m3) Grain size (mm)
Carrara marble 6249.8 ± 54.0 3229.9 ± 176.2 2.69 0.1-0.2

Zimbabwe gabbro 6679.0 ± 113.2 3668.5 ± 41.3 3.00 1-3

Table 5.2 – Sample configuration and experimental parameters for Zimbabwe gabbro and
Carrara marble.

Rock Block size σ3 σ1 =σ2 Location of the notch from
sample (mm) (MPa) (MPa) the sample bottom x3 (mm)

GABB-001 250×250×251 0.5 10.5 128.5
MARB-005 257×256×256 10 20 131

Fracturing fluid Viscosity Injection rate System compliance
µ (Pa.s) Qo (mL/min) U (mL/GPa)

GABB-001 Glycerol 0.6 0.2 217.3
MARB-005 Silicone oil 100 0.2 282.5

is axisymmetric and its plane perpendicular to the well axis. A completion tool connected to a

injection tubing is epoxied in the wellbore and allows to inject fluid only at the notch level.

Active acoustic monitoring is integrated within the poly-axial cell. 64 piezoelectric transducers

are included in the loading platens: 32 transducers act as sources and 32 as receivers. This array

of transducers consists of 10 shear-wave transducers and 54 longitudinal-wave ones. We use a

source function generator connected to a high-power amplifier to send a Ricker excitation

signal with a given central frequency that can be set between 300 and 750 kHz depending

on the material type. The source signal is routed to one of the 32 source transducers via a

multiplexer. The 32 receiver transducers are connected to a high-speed acquisition board

in order to record the signal simultaneously on all receivers with a sampling frequency of

50 MHz. As the switch between sources is limited by the multiplexer, the excitation of a given

source is repeated 50 times and the data stacked to improve signal to noise. Spanning of the

32 sources defines an acquisition sequence and takes about 2.5 seconds in total. In addition to

acoustic data, we record fluid injection pressure (upstream and downstream the needle valve),

volume and pressure of each flat-jack pairs at 1 Hz. All the measurements are synchronized

via a dedicated LabView application.

5.2.2 Laboratory hydraulic fracturing experiments

We discuss in this chapter two experiments performed respectively in Zimbabwe gabbro

and Carrara marble. Zimbabwe gabbro (plagioclase, mica, biotite and amphibole, quartz)

has a larger grain size than Carrara marble (calcite, mica) as illustrated in Fig. 5.2, which

usually implies a larger fracture process zone (Ouchterlony, 1982). Both rocks have isotropic

acoustic properties (see in Table. 5.1). We impose a bi-axial state of stress on the block setting
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Table 5.3 – Characteristic time-scales for a radial hydraulic fracture: viscosity-toughness
transition tmk , fluid lag disappearance time scale tom . We estimate these time-scales using
the averaged entering flow rate into the fracture <Qo > during the fracture duration tpr op and
the following material properties: a) for Zimbabwe gabbro, E = 68.4 GPa (Technologies, 2005),
ν= 0.3 (assumed), K I c = 3.03 MPa.m1/2 (Meredith and Atkinson, 1985); b) for Carrara marble,
E = 65 GPa, ν= 0.25 (Gulli et al., 2015), K I c = 1.38 MPa.m1/2 (Ouchterlony, 1990).

Rock <Qo > Propagation tmk tom

(mL/min) duration tpr op (s) (s) (s)
GABB-001 0.074 ≈ 410 4.0×10−4 3.3×105

MARB-005 0.046 ≈ 582 5.0×104 5.8×103

σ1 = σ2, while the minimum stress σ3 < σ1 = σ2 is set parallel to the wellbore in order to

favour a planar fracture initiating from the axisymmetric notch, in other words, promoting

a transverse fracture to the wellbore (as shown in Fig. 5.2). Glycerol (gabbro) or silicone oil

(marble) is used as fracturing fluids. The fluid is injected at a constant rate. All experimental

parameters are listed in Table 5.2. The active acoustic monitoring is conducted with a central

frequency of 750 kHz for the source excitation. This results in a wavelength of around 9 mm

for compressional waves in both rocks whose grain size is at most 3 mm in gabbro and 0.2 mm

in marble. In both experiments, acoustic acquisition is performed with a larger period during

the pressurization phase and then switched to every 4 seconds during fracture propagation as

shown in Fig. 5.3 and Fig. 5.4.

Injection Design

The propagation of a fluid-driven fracture is a multiscale physical process. For a radial hy-

draulic fracture propagating in a tight material, it is now well established that initially at early

time due to the injection of a viscous fluid, a fluid-less cavity (fluid lag) forms at the fracture

tip (see Detournay (2016) and references therein). The fluid front then catches up with the

fracture front over a characteristic time-scale

tom = E ′2µ′/σ3
3 (5.1)

where E ′ = E
1−ν2 is the plane-strain elastic modulus related to the Young’s modulus and Pois-

son’s ratio, µ′ = 12µ with µ the fluid viscosity and σ3 is the minimum applied stress (normal

to the fracture plane). In addition, as the perimeter of the radial fracture grows, the energy

spent in creating new fracture surfaces increases. The propagation switches from a regime

dominated by fluid viscosity to a regime dominated by fracture toughness. This evolution is

captured by a dimensionless toughness K = (t/tmk )1/9, where tmk is the transition time-scale

from the viscosity to toughness dominated regimes of growth:

tmk = E ′13/2Q3/2
o µ′5/2

K ′9 , K ′ =
√

32

π
K I c , (5.2)
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1mm 1mm
4cm 4cm

Fracture plane

Western viewSouthwestern view

Figure 5.2 – Thin section of Zimbabwe gabbro and Carrara marble and the postmortem
photos of the cut blocks after GABB-001 and MARB-005 experiments. The wet region around
the fracture in the gabbro block does not necessarily indicate a large leak-off during the
injection. The visible inhibition occurred mostly after the experiment as the block was cut and
photographed 25 days after the experiment.

where K I c is the mode I fracture toughness. More precisely, the fracture grows in the viscosity

dominated regime as long as K . 1 and strictly in the toughness dominated regime for

K & 3.5 (Savitski and Detournay, 2002). Moreover, the fluid lag vanishes at all time in the

toughness dominated regime (Lecampion and Detournay, 2007). In other words, if tmk ¿ tom ,

no fluid lag is observed.

Experimentally, for a given rock, one can adjust the injection rate Qo , fluid type (viscosity µ)

and the minimum stress perpendicular to the fracture plane σ3 to explore a given propagation

regime. We refer to Bunger et al. (2005b) for the proper scaling and experimental design of

laboratory hydraulic fracture experiments. The two experiments reported herein are charac-

teristic examples of two very different hydraulic fracture propagation regimes (toughness and

lag-viscosity dominated). Table 5.3 lists the corresponding time-scales estimated using values

of the rock properties from the literature and the averaged injection rate. In both experiments,

the compliance of the injection system is rather important. As a result, the flow rate entering

the fracture Qi n is not constant and equal to the pump rate. It can however be estimated

from the injection pressure and injection system compliance (see Section 5.7.1 for details).

The GABB-001 experiment is toughness dominated as the propagation time is much larger

than the viscosity - toughness transition time-scale and no fluid lag is expected during the

fracture propagation (tmk < tom). On the other hand, the MARB-005 experiment is such that

the propagation occurs in the so-called lag / viscosity dominated regimes (Lecampion et al.,

2017): the propagation duration is smaller than both tom and tmk > tom .

Toughness-dominated experiment GABB-001

The gabbro experiment (GABB-001) is a so-called toughness dominated experiment. For such

type of experiments, the fluid pressure downstream of the valve responds almost instantly

to fracture growth and the fracture propagation might be over in a few seconds due to the
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Figure 5.3 – GABB-001 experiment: evolution of the upstream and downstream pressure, and
the mapping relation between the number of acquisition sequence and experimental time
(left); and evolution of the entering flow rate of the fluid into the fracture, and the volume
change of the top-bottom flat-jacks (right). The yellow coloured time interval indicates the
propagation of the fracture through the block (from the notch to the end of the block).

sudden release of the compressed fluid following the fracture initiation (see Lecampion et al.

(2017) for discussion). It is therefore necessary to constrain the fluid flow with the needle

valve to obtain a steady and sufficiently long fracture growth. In this experiment, the needle

valve is open at the start of the pressurization. We then partly close the needle valve after

we observe a linear increase of the pressure with a rate of Qo/U (pending the fix of an initial

leak in the injection line) as can be seen in Fig. 5.3. To do so, we first completely close the

needle valve for several minutes during which the upstream pressure continues to increase.

We then slightly reopen the valve position to ensure that it sufficiently damps the entering

flux. We then keep it in that position for the remainder of the experiment. As shown in Fig.

5.3, in that experiment, the fracture initiates shortly after the adjustment. The needle valve

does prevent a complete sudden release of the fluid pressurized in the line. More fluid enters

into the upstream injection line from the pump rather than flows downstream of the needle

valve: the upstream pressure keeps rising whereas the downstream one drops due to the

fluid flow into the newly created fracture. The fracture initiation time is confirmed by the

response of the flat-jacks volume parallel to the fracture plane - as well as the acoustic data

as later presented. When the fracture front reaches the edges of the block, there are no more

constraints on its deformation and a sudden response of the flat-jacks is observed as well as a

kink in the downstream injection pressure (see Fig. 5.3).

Lag-viscosity experiment MARB-005

The marble experiment (MARB-005) is characterised by a large fluid lag and strong viscous

drop. A restriction tube with a diameter of 1 mm was placed in the injection line instead of

the needle valve. Silicone oil was used as a fracturing fluid. Due to the large viscous effect, it

takes time for the fluid to enter the fracture. The fracture initiation can be estimated from the

response of the top-bottom flat-jacks and the appearance of acoustic diffraction. It is however

indistinguishable from the pressure record - inline with previous observations (Zhao et al.,
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Figure 5.4 – MARB-005: evolution of the upstream and downstream pressure, and the mapping
relation between the number of acquisition sequence and experimental time (left); and
evolution of the entering flow rate of the fluid into the fracture, and the volume change of the
top-bottom flat-jacks (right). The volume change of the top-bottom flat-jacks in MARB-005 is
much smaller than for the GABB-001 experiment. This is most likely due to the presence of air
bubbles inside the flat-jacks. The yellow coloured time interval indicates the propagation of
the fracture through the block (from the notch to the end of the block).

1996; Lecampion et al., 2017). As can be seen from Fig. 5.4, the entering flow rate remains

limited after fracture initiation. A large fluid lag develops behind the fracture front (as can be

seen from the acoustic data on Fig. 5.5). The pressure in the injection line keeps increasing

until the fracture front almost reaches the edges of the block. The fluid front continues to

grow afterwards but the elastic deformation (and thus the hydro-mechanical coupling) is now

different. This results in an increase of the entering flow rate which correlates with a small

kink in the downstream pressure. We thus use this point to approximate the time at which

the fracture reaches the end of the block. It is worth noting that the maximum pressure (often

misleadingly denoted as the breakdown pressure) occurs just before that time.

5.3 Examples of acoustic diffraction data

As observed in previous laboratory experiments (Groenenboom and Falk, 2000; De Pater

et al., 2001), the initial notch, fracture front, and fluid front (Groenenboom and van Dam,

2000) may all serve as a source of diffraction. Each receiver may record its corresponding

compressional or shear component of both the compressional wave (P-wave) and shear wave

(S-wave) depending on the arriving incident angle. Following Groenenboom and Falk (2000),

we categorise different acoustic events. We denote the diffraction along the fracture or fluid

front with a ’d’ and the interactions (reflection or diffraction) at the notch with an ’n’. We recall

here some travel paths of diffracted waves observed in the two experiments presented here:

• direct diffraction of the body wave at the fracture or fluid front with or without mode

conversion: for example compressional waves diffracted by the fracture front without

mode conversion (PdP), or shear waves diffracted by the fracture front with mode

conversion (SdP).
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Figure 5.5 – Illustration of different diffracted waves pattern in GABB-001 and MARB-005
experiments. For MARB-005, a gray-scaled image of the data is shown combined with a wiggle
plot. The yellow coloured time interval represents approximately the propagation of the
fracture (from the notch to the end of the block).
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• diffraction of the head wave (P wave guided by the fracture interface, denoted as H

(Savic, 1995)) at the fracture tip with or without mode conversion. For example, PnHdP

represents a P wave that is guided along the fracture interface after interacting with the

notch. It is then diffracted at the fracture tip without mode conversion (see Fig. 5.5).

Previous studies (Groenenboom and Falk, 2000; De Pater et al., 2001) have observed more

events related to reflections of the wavefield at the borehole tube and generalized Rayleigh

waves propagating along the fracture. Such diffraction events arrive much later than the direct

diffraction of body waves. Their signal to noise is often not sufficient to allow a proper picking

of these later arrivals. We thus focus mainly on the diffracted body waves (PdP, PdS and SdP

here). As shown in Fig. 5.5, we are only able to observe PdP and PdS arrivals in GABB-001 for

the chosen transducer pair, while for most transducer pairs only PdP arrivals can be clearly

identified. In MARB-005, we are able to recognize more diffracted waves, notably by both the

fracture and the fluid fronts but also by the notch (PnHdP). In particular, the fluid front acts as

a strong diffractor.

There are multiple techniques to visualize the evolution of the diffracted waves, as shown in

Fig. 5.5. Groenenboom (1998) and Savic (1995) have proposed to remove the direct incident

wavefield by subtracting the signal recorded at a given time with the one recorded in the

absence of the fracture at the beginning of the experiment. This is sufficient to properly see the

first diffracted wave arrival PdP. However, we have found that for our experiments, subtracting

the signal recorded at a given acquisition sequence with the one of the previous sequence

provide a clearer image of the diffracted waves (notably the later ones). This is akin as a

high pass filter along the experimental time axis (dimension of the sequence number) on the

diffraction plots as in Fig. 5.5.

The reason why making the difference with the first sequence provides more blurry image is

likely due to the evolution of the scattering background associated with the fracture rough-

ness. The diffracted coda wave is much more noisy in the gabbro compared to the marble

experiment, in line with the difference of rock grain size and posterior fracture roughness

observed.

5.4 Reconstruction of the fracture and fluid fronts using Bayesian

inversion

From the picking of the diffracted wave arrivals (for different source-receiver pairs), we invert

for the geometry of the fracture or fluid front. We do so using different geometries for the

diffraction front. We use a Bayesian framework to rank these different geometrical models.

The inverse problem is performed for each acquisition sequence independently in order to

finally obtain the time evolution of the fracture geometry.
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Figure 5.6 – Illustration of the fracture front geometry and its corresponding diffractor position
for a given source-receiver pair. The diffractor position D (in green) characterises the shortest
travelling time between the source S (in red) and the receiver R (in blue) among all positions
along a given fracture front. The fracture geometry is assumed to be planar and is defined
in a local coordinate system (e′i, i = 1,2,3) with its geometric center C as the origin. The geo-
metric description in the global coordinate system (ei, i = 1,2,3) is obtained after coordinates
transformation (rotation and translation).

5.4.1 Forward models

In the case of the direct diffraction of a body wave by the fracture front, the theoretical arrival

t d
sr of the diffracted wave for a chosen source-receiver pair is simply given by

t d
sr =

‖xs −xd‖
Vsd

+ ‖xd −xr‖
Vdr

(5.3)

where Vsd and Vdr are respectively velocities of the incident wave and diffracted wave (P-wave

or S-wave). xs, xr represent the coordinates of the source and receiver transducers and xd

the coordinates of the diffractor, as illustrated in Fig. 5.6. For a given fracture front geometry,

xd is obtained as the point which gives the minimal diffracted wave arrival tsr for a given

source-receiver pair. We assume here that the diffraction front is planar. We parametrize it

using a simple shape. We consider a possible offset of the fracture geometric center C with the

injection point and denote xc = (x1, x2, x3) its coordinates. We also allow a possible tilt of the

fracture plane captured by the three Euler angles: the dip θ, azimuth φ, and precession ψ (see

Fig. 5.6).

We use an ellipse or a circle to describe the geometry of the diffraction front. In order to

account for a possible tilt of the fracture, we invert the data with four different forward

models having different number of parameters m as listed in Table 5.4. In the case of an

elliptical diffraction front, 8 parameters describe its geometry: the semi-lengths of the ellipse

a and b, xc = (x1, x2, x3) the position of the geometric center and three Euler angles φ,θ,ψ

characterising the fracture plane orientation (see Fig. 5.6).
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in GABB-001 and MARB-005 experiments. The corresponding acquisition time is indicated
at the top of the figures with one tick every 15 seconds for GABB-001 and every minute for
MARB-005.

For a given geometrical model of the fracture front, we relate the measured diffracted arrivals

for the different source-receiver pairs with the forward predictions as

d = G(m)+ε (5.4)

where d denotes the picked arrival time for the different source-receiver pairs, G(m) the arrival

time predicted by the forward model, and ε combines both measurement and modelling

errors. For simplicity (Tarantola, 2005), we will assume that ε follows a Gaussian distribution

with zero mean and variance of σ2. We will notably invert for σ here thus providing a measure

of the modelling error.

For a chosen source-receiver pair, we manually pick the arrival time of the diffracted waves for

different sequences using plots similar as Fig. 5.5. A spline is first drawn along the diffracted

arrival. The coordinates of the spline passing through the corresponding sequence numbers

are then collected as picked arrival time. It is worth noting that the number of picked source-

receiver pairs may vary with time, as notably the diffracted arrivals are less visible for some

pairs at early (close to initiation for small fractures) and late time (due to proximity of the

fracture front with the edges of the block). The number of picked arrivals and their types of

diffraction events for the different acquisition sequence is reported in Fig. 5.7.

5.4.2 Inverse problem

We seek to estimate both the model parameters m as well as the measurement/model error σ

(Lecampion and Gunning, 2007). The likelihood of the data being correctly predicted by the

model assumes a multivariate normal probability density function (PDF) for Eq. (5.5) with a

111



Chapter 5. Time-lapse reconstruction of the fracture geometry using acoustic
transmission and diffraction

Table 5.4 – Model description and model parameters. Np is the number of the parameters.
A = ln a, B = lnb, R = lnr are adjusted fracture size parameters accounting for the values of
original parameters, e.g. a,b,r , greater than zero. xc = (x1, x2, x3) characterises the offset of
the geometric center of the diffraction front with respect to the origin of the global coordinate
system.

Model Model description Np Model parameters m
M1 Elliptical shape 8 [A,B , x1, x2, x3,ψ,θ,φ]
M2 Circular shape (a = b = r , ψ= 0) 6 [R, x1, x2, x3,θ,φ]
M3 Horizontal elliptical shape (θ =φ= 0) 6 [A,B , x1, x2, x3,ψ]
M4 Horizontal circular shape (ψ= θ =φ= 0) 4 [R, x1, x2, x3]

Table 5.5 – Table of priors used for different models. Prior standard deviations are shown in
the parentheses.

Experiment A, B , R x1, x2 (m) x3 (m) ψ (rad) θ (rad) φ (rad)
GABB-001 ln(0.05) (-ln(0.125)) 0.125 (0.02) 0.1285 (0.006) 0 (π/4) 0 (π/60) 0 (π/2)
MARB-005 ln(0.05) (-ln(0.125)) 0.125 (0.02) 0.131 (0.013) 0 (π/4) 0 (π/40) 0 (π/2)

standard deviation σ:

p(d|m,σ) = 1

(2πσ2)Nd /2
exp

(
− 1

2σ2 (d−G(m))T (d−G(m))

)
(5.5)

where Nd is the number of measurements. The standard deviation σ encapsulates both

measurement and modelling errors and is determined here during the inversion. We refer to it

later as the estimated ’noise’ level. It has to be ultimately compared with the typical accuracy

of the picking of the diffracted waves arrival (denoted as σd ) to quantify the modelling error.

We assume independent the prior PDFs on the model parameters m and noise variance

σ: p(m,σ) = p(m)p(σ). The noise level can only be positive (Jeffrey’s parameter). We thus

invert of β= lnσ,β ∈ (−∞,∞) and assume a uniform prior PDF for β, p(β) = 1 (p(σ) = 1/σ -

Jeffrey’s prior (Tarantola, 2005)). We model the prior knowledge on the model parameters as a

multivariate Gaussian PDF:

p(m) = 1

(2π)Np /2 |Cp |1/2
exp

(
−1

2

(
m−mp

)T C−1
p

(
m−mp

))
(5.6)

mp are prior means for the Np model parameters (see Table. 5.4) where we use A = ln a,B =
lnb,R = lnr as the fracture dimensions (a,b,r ) must be strictly positive. We assume that the

different model parameters are a-priori un-correlated (Cp is diagonal). As shown in Table. 5.5,

the same priors standard deviations are taken for all the models and are chosen to be rather

uninformative. The vertical position of the fracture center x3 and the tilting angle of the

fracture plane θ are however more constrained than the other parameters according to post

mortem analysis of the fracture plane location inside the block.

Using Bayes theorem and considering the probability of the data being observed as a nor-
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malizing constant, introducing z = (m, β) we write the normalized posterior PDF asΠ(z|d) =
p(d|z)p(m)p(β). Several techniques can be used to quantify such a posterior PDF - e.g. from

global Markov-Chain Monte Carlo (MCMC) sampling, to local quasi-Newton searches. Our

aim here is to seek the most probable solution (PDF mode) and estimate the posterior uncer-

tainties around this solution. This is equivalent to finding the minimum of −lnΠ(z|d). The

posterior uncertainties can be grasped either via direct Monte Carlo sampling or in a cheaper

way by approximating the posterior PDF as a multivariate Gaussian near its mode:

Π(m,σm |d) =Π(z|d) ≈Π(z̃|d)exp(−1

2
(z− z̃)T C̃−1(z− z̃)) (5.7)

where z̃ represents the most probable model parameters and modelling noise and C̃ the

posterior covariance matrix at z̃.

We have applied different algorithms to estimate z̃ here. For robustness, although a simple local

quasi-Newton scheme is sufficient for most cases, we present results obtained using a global

minimization algorithm (direct differential evolution (Storn and Price, 1997)). The posterior

covariance matrix is estimated from the Hessian of −lnΠ(z|d) at z̃. We have notably compared

the posterior mode and uncertainties with the results obtained from MCMC sampling of the

posterior PDFΠ(m,σm |d). The results obtained are similar (see supporting information for a

detailed comparison).

5.4.3 Bayes factor

The data are inverted with the different geometrical models listed in Table 5.4. The selection

of the most suitable model is drawn not only from the quality of fit, but must also account

for model complexity. We use Bayes factor to rank between two possible models assuming

equi-probable models a-priori. The Bayes factor between model i and j is defined as the ratio

of the marginal probability of the data for the given model (Raftery, 1995):

Bi j = p(d|Mi)

p(d|Mj)
(5.8)

where the marginal probability of the data p(d|M ) is obtained by integrating the posterior

PDF for the given model over the complete model parameters space:

p(d|M ) =
∫

mk

∫
σk

Π(d|mk ,σk )dmk dσk (5.9)

To obtain such a probability by cheaper means than Monte Carlo sampling, we approximate

the posterior PDF around the most probable value as a multivariate Gaussian (see Eq.(5.7)).

We thus estimate the marginal probability of the model (5.9) as

p(d|M ) ≈Π(z̃|d)(2π)(Np+1)/2|C̃|1/2 (5.10)
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Figure 5.8 – Comparison of the measured arrival and predicted arrival time for model M2

- sequence 50 in GABB-001 experiment and illustration of diffractors (in green) along the
fracture front with its corresponding travel path (in gray) for acoustic diffraction. The red and
blue points represent respectively the sources and receivers.

As noted in Raftery (1995), for a Bayes factor Bi j > 10, the data clearly favours the model Mi

over the model M j (respectively M j over Mi for Bi j < 0.1). For a Bayes factor between 0.2

and 5, the models are equivalent.

5.5 Results and discussions

The number of source-receiver pairs with picked diffracted arrivals vary between acquisition

sequences, type of diffracted waves (fracture tip PdP, fluid front PdP and PdS) and experiments.

Except for early sequences, the data pair is always larger than 100 (see Fig. 5.7). For one

chosen model and a given sequence, we perform the inversion using all the picked diffracted

arrivals. Fig. 5.8 displays an example of the model predictions and data (left panel) as well as

the corresponding fracture front and diffracted waves ray path for that sequence (right panel).

We repeat the inversion procedure for each sequence and obtain the evolution of the fracture,

fluid front together with their posterior covariances. We do this for all four forward geometric

models in Table 5.4 and rank them using the estimated Bayes factors. We also compare the

noise level σ estimated with the picking accuracy of the diffracted wave arrivals σd . A large

difference between σ and σd (about one order of magnitude) indicates that the chosen model

is clearly not capable of properly reproducing the data.

5.5.1 Toughness dominated experiment GABB-001

The GABB-001 experiment presents a steady fracture growth throughout the block as illus-

trated in Fig. 5.9. This is in line with the steady increasing entering flux shown in Fig. 5.3 as

previously discussed. No fluid lag was observed from the acoustic diffraction data during the

fracture growth. Larger posterior uncertainties and estimated model noises (Fig. 5.10) are

found for early sequences due to the limited number of picked arrivals pairs (see Fig. 5.7).

All four geometrical models provide a good fit to the data with an estimated noise level of the
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Figure 5.9 – GABB-001 experiment: evolution of the fracture size (a), offset of the fracture
center (c) and tilt of the fracture plane (d). The figure (b) displays the footprint of the fracture
from a top view (from sequence 22 to sequence 82) shown every 10 sequences. The yellow
dots in (b) indicate the diffractors at the fracture front for the different source receiver pairs
picked.
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Figure 5.10 – GABB-001 experiment: evolution of estimated noise level (left, the estimated
picking error σd = 0.5 µs in GABB-001) and Bayes factor (right). The gray region characterises
0.1 < Bi j < 10, where Mi and M j can not be decisively ranked.

same order of magnitude as the estimated manual picking accuracy σd = 0.5 µs as shown in

Fig. 5.10. From the Bayes factor, the fracture shape appears to be better described by a radial

geometry than an elliptical one, particularly during the first half stage of the propagation as

B21,B23 > 10 (see Fig. 5.10). The strong posterior correlation between the two semi-lengths

for the elliptical model M1 (Fig. 5.11) and an aspect ratio around 1 (Fig. 5.14) confirms the

preference for the circular geometry. The latter stage of the fracture propagation presents

a slightly larger estimated noise level (Fig. 5.10) even though the number of picked arrival

remains large (see Fig. 5.7). This hints that the chosen models start to become inadequate at

later times. This is most likely due to the non-uniformity of the stress field near the bock edges

which results in a deviation of the fracture geometry from a circular / elliptical shape. Over

that period, a drop of B21,B23 in Fig. 5.10 can be observed. The inversion then slightly favours

the elliptical fracture models although their estimated noise level increase similarly than the

radial models (Fig. 5.10).

The fracture plane remains approximately horizontal during the whole fracture growth with a

dip fluctuating around zero. This horizontal geometry is further confirmed by the Bayesian

analysis. Given that B24 remains in the range 0.1−10 most of the time, the model (M2) allowing

for a possible tilt of the fracture plane is nearly equivalent to the strictly horizontal one (M4)

for the same radial fracture geometry. The fracture center deviates little in the vertical direction

through the entire propagation (Fig. 5.9). As a result, strong posterior correlations among

the different Euler angles as well as with the fracture center coordinates are observed for the

elliptical model (Fig. 5.11).

5.5.2 Lag-viscosity dominated experiment MARB-005

Fig. 5.12 shows a fast growth of the fracture front followed by a gradual evolution of the fluid

front. Due to the strong viscous effect, we observe a continuous increase of the fluid pressure

even after fracture initiation. The entering flow rate remains very small up to around 8 minutes
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after initiation (Fig. 5.4). It then increases significantly when the fracture reaches the edge of

the block.

During most of fracture growth, the fracture front geometry is better described by the circular

model M2 as B21,B23,B24 > 10 (see Fig. 5.13). The radial geometry is favoured for the fluid

front shortly after fracture initiation. The tilted models and particularly the elliptical tilted

model (for the fluid front) become more probable after 44 to 45 minutes of injection which

corresponds to the time when the fracture front reaches the end of the block (see Fig. 5.13).

The fracture plane does not remain horizontal during the fracture growth as illustrated in

Fig. 5.12. This is in line with the evolution of the Bayes factors with B23,B24 > 10 for most

sequences (Fig. 5.13). The tilt of the fracture plane has been confirmed by postmortem

observations with an averaged tilt of around π/50 (3.6◦). The fluid front however evolves

differently from the fracture front, characterised by a different size and center (Fig. 5.12). At

early time, no decisive discrimination can be made between the tilted plane models and

horizontal ones. After 44 to 45 minutes of injection when the fracture front reaches the edge,

the fluid flows much more freely between the fractured surfaces and the fluid front geometry

tends to favour the tilted models given the increase of B23 and B24.

The quality of the fit to data is acceptable. The estimated modelling noise is of the same order

of magnitude as the picking error σd = 1 µs in Fig. 5.14. The fluid front presents a lower noise

level even though less picked arrivals were used in the inversion (Fig. 5.7). This explains a

better fit of the predicted arrivals to the picked ones for the fluid front. In the latter half of

the fluid front propagation, we observe an important difference between models and their

noise level M1 <M2 <M3 <M4. This is consistent with the estimation of Bayes factors which

indicates also a preference for M1 over M2, M3, M4 (Fig. 5.13) during the same period.

5.5.3 Comparison with acoustic transmission data

We now compare our estimation of the fracture (and fluid for MARB-005) front position using

transmitted waves. Transmitted waves exhibit an increase in arrival time and attenuation

when passing through a fracture. The attenuation of transmitted waves appears when the

fracture front crosses the line between facing source receiver transducers located on opposite

platens. It can thus be compared with the estimation from diffracted waves.

We evaluate a transmitted "energy" by computing the signal strength E 1/2
i of a given wave

arrival (P or S) for the acquisition sequence i as

E 1/2
i =

√√√√ jmax∑
j= jmi n

u2
i (t j ) (5.11)

where ui (t) is a low-pass filtered (at 2MHz) waveform which is cropped by a tapered Ham-

ming window centered on the interest arrival with a size of (t jmax − t jmi n ) = 14µs. We then
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choose a reference signal obtained before fracture initiation and define the attenuation ratio

(Ei /Er e f )1/2.

An alternative is to follow the procedure presented in Groenenboom and Fokkema (1998) to

estimate the fracture width from transmitted waves. In the frequency domain, the transmitted

compressional signal û f r actur e can be compared to the prediction obtained by the product of

the transmission coefficient T (ζ, w) for a three layers model (rock-fluid-rock) and a reference

signal ûbase recorded before fracture initiation. The fluid layer thickness (fracture width) w

is estimated by minimizing the misfit for frequencies around the central frequency of the

source signal (ζmi n < ζ< ζmax ). In addition to frequency, the transmission coefficient T (ζ, w)

depends on both solid and fluid acoustic impedances and the thickness of the fluid layer (the

fracture width). The expression of T (ζ, w) is recalled in the supporting information. This

method has been shown to compare well with optical measurements for the case of waves

arriving at a 90 degree incident angle to the fracture (Kovalyshen, 2014). We apply it to the

toughness-dominated GABB-001 experiment for which the fracture is flat (thus ensuring a

90 degree incident angle for some source receiver-pairs) and do not exhibit any fluid lag (we

take ρ f = 1260kg/m3 and Vp, f = 1960m/s for the properties of glycerol). We set the lower and

upper frequency bounds to ζmi n = 500 kHz and ζmax = 1100 kHz given the central frequency

of 750 kHz of the source signal. We do not use such a method for the marble experiment

(MARB-005) which exhibits a very large fluid lag.

Lag-viscosity dominated experiment MARB-005

As illustrated in Fig. 5.15, both compressional and shear waves significantly lose their ampli-

tude in between the time when the fracture and fluid front passes through the corresponding

ray path. Following the arrival of the fluid front, the compressional wave regains its amplitude

but not the shear wave. Such a characteristic shear wave shadowing due to the lack of shear

stiffness of the fluid is consistent with previous observations (Groenenboom and van Dam,

2000).

We use the time evolution of the transmitted energy ratio defined in Eq. (5.11) for all the pairs

of compressional waves transducers in the opposite top and bottom platens (sub-parallel to

the created fractures) and compare it with the fracture and fluid front previously reconstructed

from diffracted waves (see Fig. 5.16). We use a threshold of 0.8 for (E/Er e f )1/2 to binarize the

loss (for value below the threshold) of the transmitted wave.

As shown in Fig. 5.16, we first clearly see that the transmitted signal is lost when the re-

constructed fracture front reaches the transducers location (black curve in the snapshot of

Fig. 5.16). The signal is then regained upon the arrival of the fluid front (blue curve in the

snapshot of Fig. 5.16), but eventually lost again due to the increase of the fracture width as the

viscous fluid front penetrates more into the fracture. Overall, we observe in Fig. 5.16 a good

agreement between the evolution of the signal strength ratio of the transmitted P waves and

the evolution of the fracture and fluid fronts reconstructed from diffraction data.

120



5.5. Results and discussions

Transmitted P wave

Injection time (min)
48 46 44 42 

Arrival of fracture front

Arrival of fluid front

Fracture front reaching 
the block edge

MARB-005

20 40 60 80 100 120
Sequence number

77

77.5

78

78.5

79

79.5

80

80.5

81

81.5

82
Tr

av
el

 ti
m

e 
(

 s
)

Injection time (min)
48 46 44 42 

Arrival of fracture front

Arrival of fluid front

Fracture front reaching 
the block edge

MARB-005

Transmitted S wave

Figure 5.15 – Evolution of the recorded signal for opposite source-receiver pair during the
MARB-005 experiment: attenuation of the compressional (left) and shear wave (right).
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Figure 5.17 – GABB-001 experiment: gradual attenuation of the compressional wave (left) and
shear wave (right).

Toughness-dominated experiment GABB-001

In the GABB-001 experiment, the fracture front coincides with the fluid front (no fluid lag).

The transmitted shear waves present a gradual attenuation after the arrival of the fracture front

as shown in Fig 5.17. Such a weak shear shadowing effect is probably due to the smaller width

of the fracture as well as the possible existence of solid bridges between fractured surfaces. In

order to separate apart the created fracture surfaces, we had to hammer a sub-sampled part

of the specimen in gabbro. On the other hand, it is worth noting that the marble block was

already completely separated after the experiment and exhibited smoother surfaces.

The compressional waves do not attenuate significantly during the fracture growth (Fig. 5.17)

but sufficiently to allow the reconstruction of the fracture width using the three layers model

described previously. The evolution of fracture extent grasped via the evolution of the fracture

widths inverted for all the top bottom platens P transducers pairs is shown in Fig. 5.18. It

agrees relatively well with the fracture front reconstructed from the diffracted waves although

a damage zone ahead of the reconstructed fracture tip may indeed exist. In addition, the order

of magnitude of the fracture widths is in line with the predictions of the toughness dominated

solution for a radial hydraulic fracture (Savitski and Detournay, 2002). By using the averaged

entering flow rate <Qo > for estimation and the properties listed in Table 5.3, the toughness

dominated radial solution predicts respectively a maximum width (at the fracture center) of

respectively 12 µm, 19 µm and 24 µm for the presented sequences.
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Figure 5.18 – GABB-001 experiment: top view of the extent of the hydraulic fracture. The
P-wave transducers turn yellow if the fracture opening goes above 6 µm with an error of
around 3 µm. This error on the fracture width estimation was obtained from the maximum
width obtained when no fracture was present in the block (using acquisition sequences prior
to fracture initiation).

The existence of a "tappered" width profile near the tip associated with the existence of the

process zone is not extremely clear (due to the resolution of the fracture width estimation).

Another line of evidence for the presence of a process zone relates to attenuation of trans-

mitted waves propagating parallel to the fracture plane (above and below it). We choose side

transmitted pairs with a good signal to noise ratio and evaluate their attenuation ratio using

Eq. (5.11). Transducers on the north-southern sides of the block which are located approxi-

mately 5 cm away from the fracture plane present a difference of signal strength of around

5% after fracturing. The transducer pairs on the west-eastern sides which are 2 cm from the

fracture plane, present a larger attenuation as shown in Fig. 5.19. It looks like a band of ±
2 cm above and below the fracture plane is influenced. Such an attenuation has two possible

explanations. First, the waves interact with the presence of the fracture thus decreasing the

received amplitude. Another possibility lies in the presence of micro-cracks surrounding the

growing fracture which are known to strongly attenuate transmitted waves (Zhang and Gross,

1993; Zang et al., 2000). Further analysis is required in order to decipher between these two

explanations.

5.6 Conclusions

We have improved the resolution of the monitoring of growing hydraulic fracture using diffrac-

tion data recorded by a large amount of piezoelectric source/receiver pairs. Using Bayesian

inversion, we have developed a workflow to select the most probable fracture geometry from a

finite number of simple models (circle, ellipse, horizontal or not). This model ranking allows
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Figure 5.19 – GABB-001 experiment: attenuation of the compressional waves propagating
parallel to the fracture surface with a location of around 2 cm away from the fracture.

to gain confidence in the important possible deviation of the fracture from the simplest radial

shape. Moreover, the inversion of the modelling error σ (which combines model and mea-

surement error) allows to quantify the ability of any chosen model to reproduce the data. The

method has been successfully tested on two experiments representative of two very different

HF propagating regimes (toughness and lag-viscous dominated). In both cases, the fractures

were mostly radial although a deviation towards a more elliptical shape is visible when the

fracture feels the edge of the specimen (where the applied stress field is likely less uniform).

Although it is difficult to precisely gauge the accuracy of the reconstruction, the resulting

posterior uncertainties of the fracture extent are around 1-2 mm for the gabbro experiment

(GABB-001) and 2-4 mm for the marble experiment (MARB-005). The fronts reconstructed

from diffracted waves agree well with the analysis of the attenuation of compressional waves

traversing the propagating fractures. It is also important to recall that in our analysis, the data

for one acquisition sequence is assumed to be acquired at the same time while an acquisition

lasts about 2.5 seconds (spanning of all the sources). As a result, this imaging technique is

appropriate only for low velocity fractures: the average fracture velocity is around 300 µm/s

for GABB-001, and 1 mm/s for the (faster) MARB-005 experiment.

The method presented here can be improved in a number of ways. First, instead of using

parametrized fracture shapes, a direct extension is to use a 3D spline curve to describe the

fracture front (at the expense of more model parameters). Secondly, in order to better quantify

the possible damage around the growing fracture, the hypothesis of a constant wave velocity

in the sample during fracture growth should be at least partly relaxed (to account for the

effect of possible micro-cracking around the fracture). It would be interesting to combine the

analysis of diffracted waves with recent acoustic tomography inversion that reconstructs such

velocity changes in the bulk using only direct wave arrivals but combining passive and active

acoustic data (Brantut, 2018; Aben et al., 2019). Full waveform inversion (likely in the frequency

domain) would ultimately allow to combine the information of diffracted, transmitted (and

reflected) waves, but this requires proper sensor calibration and the use of computationally

expensive models able to resolve the sharp discontinuities induced by the fluid-filled fracture.
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A more immediate/simpler improvement will likely come from the combination of the active

4D acoustic method presented here with passive listening for AE events (with localization

and moment tensor estimation, see for example Stanchits et al. (2015)). This will surely

enhance our understanding of hydraulic fracture growth, in particular with respect to a better

quantification of the fracture process zone in rocks. In particular, the interplay between the

evolution of the fluid lag and the process zone appears to be strongly influencing the overall

HF propagation according to recent theoretical predictions (Garagash, 2019).

Data availability

The raw and processed data of these two experiments as well as the inversion results will be

made available via the Zenodo platform with the identifier https://doi.org/10.5281/zenodo.3901193.

125



Chapter 5. Time-lapse reconstruction of the fracture geometry using acoustic
transmission and diffraction

5.7 Supporting information

5.7.1 Evolution of the entering flow rate into the fracture

The interface vessel introduces a non-negligible system compliance. As a result, the flow

rate entering into the fracture Qi n does not equal the pump injection rate Qo upon fracture

initiation. One can estimate Qi n based on the fluid pressure measurement and the estimation

of the system compliance, using the global mass balance of fluid in the injection line from the

pump to the fracture inlet. We thus obtain

Qi n(t ) =Qo − c f Vd
dpdownstream(t )

dt
− (U − c f Vd )

dpupstream(t )

dt
(5.12)

where pupstream and pdownstream represent respectively the fluid pressure upstream and down-

stream as shown in Fig. 5.1, and c f the fluid compressibility and Vd the fluid volume down-

stream (from needle valve to fracture notch). The system compliance U can be estimated from

the averaged pressurization rate before fracture initiation.

U =Qo/

(
dpupstream

dt

)
(5.13)

5.7.2 Estimation of the fracture opening using compressional transmission

We estimate the fracture opening based on the previous investigation on the compressional

transmission through a thin fluid layer following previous studies (Groenenboom and Fokkema,

1998; Kovalyshen, 2014). The fluid layer thickness (fracture width) w is obtained by minimising

an objective function f (w) around the central frequency of the transmitted compressional

signal (ζmi n ,ζmax ) in the frequency domain.

f (w) = ∑
ζmi n<ζ<ζmax

∣∣û f r actur e −T (ζ, w)ûbase
∣∣ (5.14)

where ûbase and û f r actur e are the Fourier transforms of the signals which pass through the

medium before (ubase ) and after the fracture crosses the line of sight between the source-

receiver pairs. (u f r actur e ). In the simplest case of normal incidence, the transmission coeffi-

cient T (ζ, w) describing the change in the spectrum can be written as (see e.g. Brekhovskikh

and Godin (1990) for details):

T (ζ, w) =
(1− r 2

f f )exp(iα)

1− r 2
f f exp(2iα)

, r f f =
zr −1

zr +1
, zr =

ρ f Vp, f

ρVp
, α= 2πζw

Vp, f
(5.15)

where ρ and ρ f are densities of the solid and the fracturing fluid respectively, Vp and Vp, f are

compressional wave velocities propagating in the solid and in the fluid.
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Figure 5.20 – MARB-005 experiment: footprint of the fluid front and and its geometric center
from the top view (from sequence 23 to sequence 43, shown every 4 sequences). The yellow
dots indicate the diffraction points at the fluid front for the different source receiver pairs
picked.

5.7.3 Footprint of the fluid front in MARB-005

The footprint of the fluid front in the MARB-005 experiment is displayed in Fig. 5.20 - in

complement of Fig. 12b of the main text.
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Table 5.6 – GABB-001 experiment - acquisition sequence 50: comparison of posterior model
parameters for the circular model allowing for a tilt (M2) and their uncertainties (standard
deviation in parentheses). Comparisons between the results obtained via differential evolution
maximising the posterior and a quadratic approximation at the most probable mode and
the one from a Gaussian fit of a Markov-Chain Monte Carlo (MCMC) sampling (ran for a
maximum step of 350000 after the burn-in period).

Quadratic approximation MCMC
at the most probable mode Gaussian fit

ln r (ln m) -2.869 (0.0055) -2.869 (0.0062)
x1 (m) 0.1222 (4.2710−4) 0.1222 (4.4210−4)
x2 (m) 0.1189 (4.4910−4) 0.1189 (4.6710−4)
x3 (m) 0.1228 (3.0110−4) 0.1228 (3.1510−4)
θ (rad.) 0.0143 (0.008) 0.0146 (0.007)
φ (rad.) 0.0041 (0.892) -0.0450 (0.792)

0

0.05

0.1

0.15

0.2

0.25

0.3

-2520 -2515 -2510 -2505

-ln ∏(z|d)

Figure 5.21 – GABB-001 experiment - acquisition sequence 50: normalized histogram of
the posterior PDF (CDF integrates to unity), more precisely we display minus log-posterior
(− lnΠ(z|d)) for the circular model allowing for a tilt (M2). The samples have been obtained
from a Markov-Chain Monte Carlo (MCMC) algorithm with 350000 steps after the burn-in
period. The grey curve indicates the log-Gaussian fit of the log-posterior. This demonstrates
that the posterior is well approximated by a normal PDF.

5.7.4 Posterior PDF via MCMC - GABB-001 - acquisition sequence 50 - model M2

We provide here a representative example for a given acquisition sequence of inversion results

obtained via an optimisation method (minimisation of − lnΠ(z|d) via differential evolution)

and a Markov-Chain Monte Carlo sampling. Fig. 5.21 displays minus log of the posterior -

confirming the normal shape of the PDF. Table 5.6 displays the obtained model parameters

and estimate variance by the two methods. Fig. 5.22 and Fig. 5.23 displays respectively the

posterior PDF of the different model parameters and their cross-correlation obtained by the

two methods. The results obtained are similar - and confirm that the posterior PDF can be

well approximated by a normal PDF.

128



5.7. Supporting information

ln r

-2.89 -2.88 -2.87 -2.86 -2.85
0

20

40

60

80
x1

0.121 0.122 0.123 0.124
0

500

1000
x2

0.117 0.118 0.119 0.12 0.121
0

500

1000

x3

0.122 0.123 0.124
0

500

1000

1500

0 0.02 0.04
0

20

40

60

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

Figure 5.22 – GABB-001 experiment - acquisition sequence 50: normalized histogram of the
posterior PDF of the model parameters for the circular model allowing for a tilt (M2) obtained
from a Markov Chain Monte Carlo (MCMC) ran for 350000 steps after the burn-in period.
The grey curve indicates the Gaussian fit of the MCMC sampling of the model parameter
distribution. The blue curve represents the quadratic Gaussian approximation near the PDF
mode obtained from the differential evolution algorithm. We refer to Table 5.6 for units of the
different parameters.
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Chapter 5. Time-lapse reconstruction of the fracture geometry using acoustic
transmission and diffraction

Figure 5.23 – GABB-001 experiment - acquisition sequence 50: posterior correlation between
model parameters for the circular model allowing for a tilt (M2) obtained from the MCMC
chain ran for 350000 steps after the burn-in period. The grey ellipses indicate the confidence
region obtained from the MCMC chain and the blue ellipses the ones obtained from the
quadratic approximation of the most probably mode reached by a differential evolution
algorithm. We refer to Table 5.6 for units of the different parameters.
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6 HF growth in quasi brittle rocks un-
der different confining stresses

A process zone exists around the tip of hydraulic fractures (HF) propagating in quasi-brittle

materials. Such a process zone removes the stress singularity otherwise present in linear

hydraulic fracture mechanics (LHFM), and is probably related to the toughening mechanism

in rocks. To better understand its impact on the HF growth, we perform HF injections in rocks

(marble and gabbro) exhibiting an order of difference in grain sizes and as a result possibly

different sizes of the process zone. Controlled HF experiments are performed on 250×250×250

millimeters rock samples under different level of confining stresses. The spatial-temporal

fracture geometry is reconstructed via acoustic diffraction with a spatial resolution of a few

millimeters. The transmitted acoustic energy attenuates prior to the arrival of the measured

fracture tip from diffracted waves. This indicates the existence of a process zone ahead of

the fracture front. Post-mortem observations show that solid bridging and crack branching

characterize the process zone. During the fracture growth, the process zone size first grows

with the fracture extent and then starts to feel the sample boundaries. This is associated

with a first increase and then a drop of the apparent toughness during these HF laboratory

experiments. The size of the process zone seems to be comparable to the fracture extent,

which indicates a non-negligible size effect for laboratory HF experiments in rocks.

The results reported here will provide the basis of a future publication.
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fractured surfaces. D. Liu has written the current version of the manuscript.
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Chapter 6. HF growth in quasi brittle rocks under different confining stresses

Plain Language Summary

Well completion for oil and gas, geothermal energy as well as CO2 storage sometimes require

hydraulic stimulation to achieve economical fluid flow rates (for both injector and producer

wells). Predicting the growth of fluid-driven fractures in geological systems is essential for the

sustainable and efficient engineering of those reservoirs. The quasi-brittle nature of rocks

complexifies the coupling between fluid flow and fracture growth – especially in the fracture

process zone. We are interested in the evolution of this non-linear zone during the growth of

a hydraulic fracture in rocks with different grain sizes and under different stress conditions.

We show that in both marble and gabbro, the attenuation of the transmitted wave implies

the presence of a process zone ahead of the diffracted fracture front. Moreover, we show that

the fracture resistance first increases and then decreases beyond a fracture radius, when the

growth of the process zone is probably limited by sample dimensions. This implies possibly

very different results at different scales for laboratory hydraulic fracturing experiments in

quasi-brittle materials.

6.1 Introduction

Hydraulic fracturing (HF) is a technique often used in the oil and gas industry to enhance the

production of tight reservoirs (Economides et al., 1989). It involves the process of the injection

of fluid into rocks to propagate the fracture to increase the permeability. Linear elastic fracture

mechanics (LEFM) combined with lubrication theory (linear hydraulic fracture mechanics

- LHFM for short) have successfully predicted such hydraulic fracture growth for a simple

planar geometry in model materials such as PMMA and glass (Bunger and Detournay, 2008;

Wu et al., 2008; Lecampion et al., 2017; Xing et al., 2016). However, deviations from LHFM

predictions have been reported at laboratory (Thallak et al., 1993; Van Dam and de Pater,

1999; Makhnenko et al., 2010) and field scales (Shlyapobersky, 1985; Shlyapobersky et al.,

1988). An educated guess for the source of these deviations is the quasi-brittle nature of rocks:

instead of a stress singularity predicted by LEFM, the fracture tip in rocks is characterized by a

process zone where micro-cracking or large deformations can not be neglected. Moreover,

the fracture roughness makes the fluid flow in small apertures deviate from the lubrication

theory. Previous theoretical investigations (Papanastasiou, 1999; Garagash, 2019; Liu and

Lecampion, 2021) point out a strong influence of the minmum confining stress perpendicular

to the fracture plane. For the same material, a larger confining stress possibly results in more

viscous dissipation inside rough apertures. Its influence is even stronger when the nonlinear

zone is comparable with the fracture dimension (Liu and Lecampion, 2021). It is therefore

interesting to know the size of this process zone in real rocks and how the fracture growth

differs from each other under different confining stresses.

Laboratory HF experiments in rocks date back to 1950s (Hubbert and Willis, 1957) where

proper measurements of fracture extent and width distribution are absent and only borehole

pressure and the postmortem fracture geometry are reported. Active acoustic monitoring
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has enabled the time-lapse reconstruction of the fracture geometry in rocks (Medlin et al.,

1984; Groenenboom and Fokkema, 1998; Groenenboom, 1998; Liu et al., 2020) and passive

acoustic monitoring provides a description of seismic events inside rocks and an indirect

measurement of the fracture extent (Lockner and Byerlee (1977); Stoeckhert et al. (2015) to

cite a few). However, very few in-depth analysis have been reported regarding the growth of

process zone during hydraulic fracturing of rocks.

Ultrasonic waves act as an important approach to detect the process zone in rocks. Previous

studies give a rough estimation of the process zone size around the fracture using active

acoustic waves by recording the start of the attenuation of transmitted waves (Labuz et al.,

1987), or detecting the arrivals of reflected waves from cracks (Glaser and Hand, 1998). The

same can also be done via passive acoustic emissions by showing a map of seismic events in

the process zone (Zietlow and Labuz, 1998; Zang et al., 2000; Stanchits et al., 2014). These two

approaches are sometimes combined with a visualization of the fracture path which is often

achieved by fluorescent / digital image correlation methods (Naoi et al., 2018; Lin et al., 2019).

This application on HFs in rocks is very limited due to the lack of accurate description for the

fracture geometry.

For HFs propagating in rocks, post-mortem observations have already confirmed the presence

of a process zone characterized by crack bridging (see Lhomme (2005); Chen et al. (2015) for

example). More efforts such as the measurement of the crack resistance (Hashida et al., 1993)

and the HF tip bluntness (van Dam, 1999) have also been made to describe the growth of

the process zone. van Dam (1999); Van Dam and de Pater (1999) pioneered the quantitative

investigation on the process zone growth in HFs by performing HF injections in cement,

plaster and diatomite. They calculate the plastic zone size based on the estimated stress

field around the tip and points out a strong correlation between the estimated plastic zone

size and fracture roughness. Interestingly, similar relations between the process zone size

and roughness have also been reported in dry fracture mechanics (Morel et al., 2002; Nasseri

et al., 2010; Barak et al., 2019): the off-plane height variation may present different roughness

exponents above and below a "process zone" length scale (Mourot et al., 2005; Bonamy et al.,

2006; Ponson et al., 2007; Morel et al., 2008). Moreover, a cut-off length scale representing

the process zone size has been extracted from the spatial correlations of the slopes of a rough

fracture surface (Vernède et al., 2015). Quantitative analysis of the fracture roughness have

only been recently conducted for HF fracture surfaces (Movassagh et al., 2020).

In this chapter, we aim to understand the HF growth in rocks with different levels of solid

non-linearity (grain sizes) under different confining stresses. We vary the confining stress,

injection rate and the fluid type (viscosity) to make the fracture growth either dominated by

the fluid lag and viscosity or fracture toughness. By reconstructing the fracture geometry using

active acoustic monitoring with a better accuracy (Liu et al., 2020), we try to understand the

process zone growth using the evolution of the transmitted energy and the fracture apparent

toughness. We also report the roughness profiles created hydraulically by these fractures.
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Chapter 6. HF growth in quasi brittle rocks under different confining stresses

6.2 Materials and methods

We select two rocks with very low permeability: Zimbabwe gabbro and Carrara marble. They

present an order of magnitude’s difference in grain sizes, and as a result possibly different

process zone sizes (see Table. 6.1). We present their mode-I fracture toughness values respec-

tively obtained from the tampered double cantilever beam (TDCB) test (Vasudevan et al.,

2021) and the semi-circular bend (SCB) test (Kuruppu et al., 2014) in Table. 6.2. The TDCB

method assumes a horizontal fracture path while the real fracture path oscillates a lot. This

oscillating fracture path leads to more energy dissipation than a horizontal one for the same

fracture length. This is probably the reason why TDCB method gives larger fracture toughness

values than the SCB method. Another possible explanation of the difference between these

two methods is the effect of T-stress (the second term of William’s series (Williams, 1997)),

which is known as the representative of the crack tip constraint level (Gupta et al., 2015; Aliha

et al., 2017).

We carry out HF injections in a 250 mm cubic rock sample using glycerol or silicone oil

as the injection fluid (see Table. 6.3). The confinement can be applied up to 20 MPa by

symmetric pairs of flat-jacks in the three axis of a poly-axial reacting frame as illustrated in

Fig. 6.1. A wellbore of 16 mm diameter is drilled vertically through the block and a horizontal

axisymmetric notch (with a diameter of 21±1 mm is created in the center of the sample to

facilitate the fracture initiation. A completion tool connected to a injection tubing is expoxied

in the wellbore and allows to inject fluid only at the notch level. Prior to the injection, we

apply a true triaxial stress state on the block through symmetric pairs of flat-jacks (respectively

connected with three GDS pumps) in the three axis of a poly-axial reacting frame up to 20 MPa.

The fluid is then injected through an interface vessel by a syringe pump (ISCO DC 160) with

a maximum pressure of 51 MPa at a constant flow rate (in the range of 0.001 mL/min to

107 mL/min). We put a needle valve in the injection line to avoid the sudden release of

pressurized fluid following the fracture initiation (Lhomme et al., 2005).

An active acoustic imaging system is integrated in the loading frame to monitor the fracture

geometry as shown in Fig. 6.2. We have 64 piezoelectric transducers with 32 as sources and

32 as receivers respectively. This array of transducers consists 10 shear wave transducers and

54 longitudinal wave ones. We use a source function generator connected to a high-power

amplifier to send a Ricker excitation signal at a central frequency of 750 kHz. The source signal

is routed to one of the source transducers via a multiplexer such that the signals received by the

32 receivers are recorded with a sampling frequency of 50 MHz. The switch between sources is

limited by the multiplexer such that it takes around 2.5 seconds to span all 32 sources. In this

chapter, we take 0.25 Hz as the maximum frequency of the active acquisition. In addition to

acoustic data, we record the fluid pressure upstream and downstream the valve, volume of

pressure of each flat-jack pairs or displacement of the tip surface near the wellbore at 1 Hz.

We synchronize different measurements via a dedicated LabView application.
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Figure 6.1 – Schematic illustration of the experimental setup.
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Chapter 6. HF growth in quasi brittle rocks under different confining stresses

Table 6.1 – Rock properties. Porosity represents the connected volume porosity measured
using the gas pycnometer. Elastic properties are measured from static tri-axial tests.

Rock E (GPa) ν ρ (×103kg/m3) Grain size (mm) Porosity (%)
Carrara marble 60.6 0.30 2.69 0.1-0.2 0.60

Zimbabwei gabbro 99.7 0.29 3.00 1-3 0.32

Table 6.2 – Mode-I fracture toughness K I c measured using the semi-circular bend (SCB) test
and tampered double cantilever beam (TDCB) test (see more details of these two methods in
A.2).

Rock SCB (MPa·m1/2) TDCB (MPa·m1/2) K I c in literature (MPa·m1/2)
Carrara marble 1.55±0.11 1.97±0.08 1.38 (Ouchterlony, 1990)

Zimbabwei gabbro 2.79±0.11 4.05±0.09 3.03 (Meredith and Atkinson, 1985)

Table 6.3 – Viscosity of fracturing fluid.

Fluid Glycerol Silicone oil A Silicone oil B
µ (Pa.s) 0.6 100 1000

1mm

1mm

Gabbro

Marble

250
 mm

25
0 

m
m

250 mm

P source
P receiver
S source
S receiver

unused holes in the platen to hold transducers
hidden transducers on the opposite platens

N E

T

Figure 6.2 – Schematic illustration of the rock sample showing the transducers’ disposition
(left) and thin sections of Zimbabwe gabbro and Carrara marble (right). Additional holes are
available in the platens allowing the use of various transducer dispositions. Two facing platens
share the same transducers disposition and source/receivers transducers are alternatively
located on opposite platens for robustness. This figure is adapted from Liu et al. (2020).
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Vertical transmission Side transmission

Figure 6.3 – Illustration of the vertical and side transmission.

6.2.1 Reconstruction of the fracture geometry

We reconstruct the fracture extent based on the time-arrival of the waves diffracted by the

fracture front. As the fracture extent grows, the propagation time of the diffracted wave for a

given pair of source and receiver also evolves. The time of these diffracted arrivals corresponds

to the shortest ray path connecting the fracture front and source-receiver pairs. We then locate

the diffracted positions along the fracture front knowing locations of source-receiver pairs and

wave velocities propagating inside the block (see Table. 6.4). Assuming an elliptical or circular

shape of the fracture, with or without tilts, we solve the inverse problem with four geometrical

models and rank them using Bayes factors (see more details in Liu et al. (2020)).

6.2.2 Vertical transmission analysis

We refer the vertical transmission analysis as the analysis for acoustic transmitted waves

obtained from the vertical facing source-receiver pairs, as shown in Fig 6.3. We refer those

obtained from the horizontal facing source-receiver pairs as the side transmission.

Transmitted energy Transmitted waves attenuate when passing through a process zone char-

acterized by micro-cracks and through the fluid-filled fracture. We estimate the size of the

process zone around the fracture tip by combining such transmission attenuation and the

fracture front geometry obtained from acoustic diffraction.

Following Liu et al. (2020), we compute the signal strength E 1/2
i of a given transmitted wave

arrival (P or S) for the acquisition sequence i as

E 1/2
i =

√√√√ jmax∑
j= jmi n

u2
i (t j ) (6.1)

where ui (t ) is a low-pass filtered (at 2MHz) waveform which is cropped by a tapered Hamming

window centered on the interest arrival with a size of (t jmax − t jmi n ) = 14 µs. We then choose

a reference signal obtained before fracture initiation and define the attenuation ratio as
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Chapter 6. HF growth in quasi brittle rocks under different confining stresses

(Ei /Er e f )1/2.

Fracture opening We estimate the fracture width based on compressional waves transmitted

across the fracture plane between two facing transducers (Groenenboom and Fokkema, 1998).

We set an interest region around the transmitted arrival and look at its frequency domain

after Fourier transform. The transmitted signal ûfracture can be expressed as the product of

a transmission coefficient T (ζ, w) and a reference signal ûbase recorded before the fracture

initiation. We then estimate the fluid layer thickness (fracture width) w by minimizing the

misfit for frequencies around the central frequency of the source signal (ζmi n < ζ< ζmax ).

f (w) = ∑
ζmi n<ζ<ζmax

|ûfracture −T (ζ, w)ûbase| (6.2)

We set ζmi n = 500 kHz and ζmax = 1100 kHz given the central frequency of 750 kHz of the

source signal. We assume the simplest case of normal incidence (a three-layer-model) and

write the transmission coefficient T (ζ, w) (see e.g. Brekhovskikh and Godin (1990) for details).

T (ζ, w) =
(1− r 2

f f )exp(iα)

1− r 2
f f exp(2iα)

, r f f =
zr −1

zr +1
, zr =

ρ f Vp, f

ρVp
, α= 2πζw

Vp, f
(6.3)

where ρ and ρ f are densities of the solid and the fracturing fluid respectively, Vp and Vp, f

are compressional wave velocities propagating in the solid and in the fluid (we take ρ f =
1260kg /m3 and Vp, f = 1960m/s for the properties of glycerol). This width estimation is only

valid for the fluid channel which do not exhibit any fluid lag. It has been shown to consist well

with optical measurements for fractures fully filled by injection fluids (Kovalyshen, 2014). In

the following, we estimate the fracture width assuming that the fracture is full of fluid.

The appearance of a fracture opening ahead of the fracture front indicates the presence of

a process zone. The width estimation utilizes both the amplitude and phase information of

transmitted signals, which possibly act as a more accurate approach to compare process zone

sizes between different experiments.

6.2.3 Visualization of hydraulic fractures

We cut the samples after HF the experiments and observe the fracture path by eye as shown

in C.3. We then choose a small part of the fractured sample and scan it using X-ray micro

tomograph after putting it into the contrast agent liquid.

6.2.4 Roughness measurement of the hydraulically fractured surfaces

We map the fractured surface using a laser scanning surface profiler (VR-3200, Keyence

Corporation, Japan). We measure the fracture roughness twice with different resolutions for

the same sample. We first focus on a larger area of around 90×90 mm2 with a spatial resolution
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Figure 6.4 – Illustration of the measured fracture roughness surfaces of GABB-003 and its
grooving pattern from the wellbore. The location of the measured area is shown in Fig. 6.24.

of 47.006µm for measurement, as shown in Fig. 6.4. We then focus on a smaller area of around

25×25 mm2 close to the wellbore, and measure the roughness using a higher resolution of

14.777µm.

It is worthy to notice that the samples are not automatically separated after the experiments

especially for gabbro experiments. We need to separate the fractured surfaces by applying a

load on the whole sample parallel to the fracture plane or tapping half of the fractured sample

with a hammer in the direction parallel to the fracture plane.

Following Van Dam and de Pater (1999), we use the root mean square roughness (RMS, a

measure for the deviation of the roughness profile from a detrended profile) to characterize

the roughness amplitude, and we use an average slope φs to characterize the tortuosity.

RMS =
(

1

n

n∑
i=1

(yprofile,i − ycenterline,i )2

)1/2

(6.4)

φs = 1

n −1

n∑
i=2

arctan

(∣∣∣∣ yprofile,i − yprofile,i−1

xprofile,i −xprofile,i−1

∣∣∣∣) (6.5)

where n is the number of points measured and yprofile,i and xprofile,i the height of the measured

profile and the position along the measuring interval at measuring point i . Before calculating

φs , the measured profile is tilted until a least-square linear fit through the profile has zero

slope.

The fracture surface roughness exhibits robust universal fractal statistical properties (Mandel-

brot et al., 1984; Bonamy and Bouchaud, 2011). In this chapter, we also look into the fractal

properties of these hydraulic fracture surfaces. We are interested in the scaling of the off-plane

height variation δh = h(x +δx)−h(x) with the observation scale δx. The variance of this

distribution shows a scaling law for a fractal surface

< δh2 >∼ δx2ζ (6.6)
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Figure 6.5 – Spatial correlations of ωε for the three materials considered (taken from Vernède
et al. (2015)). The correlations are represented forωε computed at different scales ε. The cutoff
length ξ is represented for each case.

where ζ is the so-called roughness exponent. It is related to the fractal dimension dF = 2−ζ
and the Fourier transform of < δh2 >, denoted as the power spectrum S( f ).

S( f ) ∼ f −2ζ−1 (6.7)

Following Vernède et al. (2015), we elicit different fracture mechanisms in two regimes. We

introduce ωε(x) to measure the intensity of the local height variations of the fracture surface

on a scale ε:

ωε(x) = 1

2
log(< δh(x,δx)2 >|δx |=ε)−Ωε (6.8)

whereΩε is chosen such that the average of ωε(x) = 0. We further calculate the spatial correla-

tions of ωε and average it over all directions.

Cε(δr ) =<ωε(x)ωε(x +δx) >x,|δx|=δr (6.9)

These correlations are zero within statistical noise at large δr but present a logarithmical decay

with the distance at small δr : Cε(δr ) ∼−log(δr /ξ) (Vernède et al., 2015). ξ is the cut-off length

scale at which Cε extrapolates to zero. ξ characterizes the process zone size (Fig. 6.5).

These roughness analysis are often performed on linearly detrended roughness profiles and

sometimes on profiles after removing the waviness (Movassagh et al., 2020). In this chapter,

we deal with the roughness profiles after a linear detrending of the surface.

6.3 Experimental configurations

We perform HF injections in different propagating regimes by varying the rock and fluid type,

the confining stresses, and the injection rate. As shown in Table. 6.5, we impose a bi-axial

state of stress on the blocks σ1 =σ2. We set the minimum stress σ3 parallel to the wellbore to

favor a planar horizontal fracture. We keep the same deviatoric stress σ1 −σ3 = 10 MPa for all

experiments except GABB-004 where σ1 −σ3 = 8 MPa.
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Table 6.4 – Sample dimensions and wave velocities for different experiments. Vp and Vs are
measured directly with the cubic rock samples during the pressurization stage prior to fracture
growth. The mean and standard deviation values are calculated based on the vertical and
horizontal ray paths for the first 10 acquisitions before the fracture initiation (16 vertical ray
paths for the calculation of Vp and 5 horizontal ray paths (in the north-south and east-west
directions) for that of Vs). The block size is indicated in the form of dimensions in north-south
(N-S) × east-west (E-W) × top-bottom (T-B) directions. The notch position represents the
vertical distance between the notch and the bottom surface of the rock. The fracture initiates
from the notch for all experiments except for GABB-006, in which the fracture initiates 9.5 mm
below the notch position as shown in C.3.

Rock Vp (m/s) Vs (m/s) Block size (mm) Notch position (mm)
MARB-005 6249.8 ± 54.0 3229.9 ± 176.2 257×256×256 131
MARB-007 6220.3± 45.4 3305.8 ± 36.9 258×258×256 127.5
MARB-008 6278.6 ± 24.1 3326.9 ± 34.8 250×250×251 126
MARB-009 6230.1 ± 20.0 3279.6 ± 12.0 250×251×252 126.5
MARB-010 6358.6 ± 24.8 3360.5 ± 14.3 252×250×251 124.9
GABB-001 6679.0 ± 113.2 3668.5 ± 41.3 250×250×251 128.5
GABB-002 6835.3 ± 18.5 3754.7 ± 23.2 255×255×255 125.5
GABB-003 6791.3 ± 14.2 3722.7 ± 43.2 250×249×250 125
GABB-004 5698.1 ± 69.1 3412.9 ± 54.2 250×251×245 123
GABB-005 6743.8 ± 149.5 3678.0 ± 122.8 250×250×251 126
GABB-006 6734.5 ± 168.4 3668.9 ± 196.5 250×250×249 124

We tune the number of turns of the needle valve in the injection line to dump the release of

the pressurized fluid after fracture initiation. This acts the key to control the flux in the case of

an important system compliance. The flux entering the fracture differs from the ISCO pump

injection rate Qo and needs to be estimated based on the the fluid pressure upstream and

downstream the valve (see more details in C.1). As a result, the real fracture propagating regime

might deviate from the designed one and needs to be re-evaluated after the experiments.

6.3.1 Estimation of the propagation regime

We estimate the dominant propagation regime based on the LHFM theory (see for example

Detournay (2016)) even though these materials likely exhibit a quasi-brittle fracture behavior.

The rocks are homogeneous and isotropic and present very low permeability. The fracture

growth can be approximated as a radial HF propagating in an impermeable medium due to

the notch, well completion and stresses applied. For such a radial HF, the fracture growth at

the early time exhibits an important fluid lag between the fluid and fracture front (O-regime).

The fluid front then slowly coalesces with the fracture front over a characteristic time scale

tom .

tom = E ′2µ′

σ3
3

(6.10)
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Table 6.5 – Sample configuration and experimental parameters for HF injections in gabbro
and marble. The system compliance U is calculated from the time evolution of the pressure
and the injection rate Qo (see more details in C.1).

Rock Fracturing σ3 σ1 =σ2 Injection rate System compliance
sample fluid (MPa) (MPa) Qo (mL/min) U (mL/GPa)

MARB-005 Silicone oil A 10 20 0.2 282.5
MARB-007 Silicone oil B 0 10 0.02 319.5
MARB-008 Glycerol 0 10 0.03 210.7
MARB-009 Glycerol 0 10 0.05 217.9
MARB-010 Glycerol 8 18 0.03 181.3
GABB-001 Glycerol 0.5 10.5 0.2 217.3
GABB-002 Silicone oil A 0 10 0.05 255.1
GABB-003 Glycerol 10 20 0.08 301.0
GABB-004 Glycerol 15 22 0.07 237.6
GABB-005 Glycerol 5 15 0.04 222.2
GABB-006 Glycerol 10 20 0.04 225.9

where E ′ = E/(1−ν2) is the plane-strain elastic modulus related to the Young’s modulus and

Poisson’s ratio, µ′ = 12µ the effective viscosity. As the fracture continues to grow, the increase of

the perimeter of the fracture front results in more energy dissipated in the creation of fracture

surfaces. The fracture growth starts to transition from a fluid viscosity dominated regime

(M-regime) to a fracture toughness dominated regime (K-regime) over a time scale tmk .

tmk = µ′5/2Q3/2
o E ′13/2

K ′9 , K ′ =
√

32

π
K I c (6.11)

where K I c is the mode I fracture toughness.

Most radial HF growth in laboratory spans part of the transition trajectory. Their propagating

regime depends on the relation between the propagation time t and these two time scales.

When there is no fluid lag (t À tom), the transition state is captured by a single dimensionless

toughness Km .

Km = (t/tmk )1/9 (6.12)

The fracture grows in the viscosity dominated as long as Km ≤ 1 and strictly in the toughness

dominated regime when Km ≥ 3.5 (Savitski and Detournay, 2002). Moreover, the fluid lag

vanishes at all time in the toughness-dominated regime (Bunger, 2005). In other words, when

t ≤ tom , no fluid lag is observed if Km > 3.5.

In this chapter, we calculate these two characteristic time scales and identify corresponding

regimes depending on the relation between tom , tmk and propagation duration tpr op , as

shown in Table. 6.6. Here, we estimate tpr op based on the fracture initiation time ti ni and
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Table 6.6 – Characteristic timescales for a radial hydraulic fracture: viscosity–toughness tran-
sition tmk , and fluid lag disappearance timescale tom . For experiments where the applied
minimum confining stress equals zero, we put weight on the top platen in some cases to ensure
the good contact between acoustic sensors and the top surface of the rock. We calculate tom

using the estimated σ3 from the self weight of the block and the added weight on the top
platen. We estimate tmk using the averaged entering flow rate into the fracture <Qo > during
the fracture duration tpr op , the elastic properties in Table. 6.1 and the fracture toughness
measured by the SCB method (Table. 6.2).

Rock <Qo > Propagation tmk tom Estimated propagation
sample (mL/min) duration tpr op (s) (s) (s) regime

MARB-005 0.046 ≈ 582 1.3×104 5.3×103 lag-viscosity
MARB-007 ≈0.005 ≈ 2711 1.5×105 2.5×1014 lag-viscosity
MARB-008 1.713 ≈ 25 8.5 1.5×1011 lag-viscosity
MARB-009 0.731 ≈ 92 2.3 4.9×1010 lag-viscosity
MARB-010 0.015 ≈ 534 7.0×10−3 62.4 lag-toughness
GABB-001 0.074 ≈ 410 9.4×10−3 3.3×105 toughness
GABB-002 5.6×10−4 ≈ 8199 2.2 5.5×1013 lag-viscosity
GABB-003 0.445 ≈ 158 1.4×10−1 85.3 toughness
GABB-004 2.434 ≈ 40 1.8 25.3 lag-viscosity
GABB-005 0.0253 ≈ 780 1.9×10−3 682.5 toughness
GABB-006 0.2769 ≈ 183 6.8×10−2 85.3 toughness

approximate Qo by the averaged injection rate during the propagation <Qo >.

<Qo >=
∫ t

t i ni

Qi n(t )dt (6.13)

where the method of determining Qi n and ti ni is shown in details in C.1.

As shown in Table. 6.6, we haveσ3 ≤ 15 MPa due to the maximum pressure limits of GDS pumps

(pumps connected to flat-jacks controlling the applied confining stresses). We therefore have

tom À tmk for all HF experiments in Table. 6.6. When tpr op ≤ tmk , a fluid lag always appears

and the fracture growth is in the transition between lag and viscosity dominated regime.

Otherwise tpr op À tmk , the fluid lag disappears at very early time and the fracture toughness

tends to dominate the HF propagation. However, in GABB-002, tmk ¿ tpr op ¿ tom implies

that fracture toughness dominates the HF growth. However, this estimation does not consist

with the observations in GABB-002: the injection fluid stays around the wellbore acting as a

point load. We observe a very important lag during the propagation, and the HF growth in

GABB-002 is actually dominated by the fluid lag.

We classify the experiments of Table. 6.6 into three groups depending on their propagation

regime, confining stresses, and material.

• GABB-001, GABB-003, GABB-005, and GABB-006 are toughness dominated experiments
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Chapter 6. HF growth in quasi brittle rocks under different confining stresses

in gabbro with no fluid lag observed. The deviatoric stress remains the same for all

experiments σ1 −σ3 = σ2 −σ3 = 10 MPa yet the minimum confining stress σ3 differs

significantly with GABB-003=GABB-006>GABB-005>GABB-001.

• MARB-009 and MARB-010 experiments are performed in marble with the same devi-

atoric stress but different injection flux and confining stresses. In both experiments,

a fluid lag appears at the early stage of the fracture propagation and then disappears

before the fracture front reaching the sample edge.

• MARB-005, MARB-007 and GABB-002 are lag dominated experiments with the same

deviatoric stress but different rocks/ fluids. An important fluid lag is detected through-

out the fracture propagation in all experiments. We discuss these experiments in the

Appendix. B.

In Table. 6.4, the GABB-004 block presents acoustic properties significantly different from the

other gabbro blocks. The MARB-008 experiment shows a very fast fracture propagation such

that very limited measurements are obtained during the growth. We therefore do not analyze

these two experiments in the following.

6.3.2 Post-mortem observations

Solid bridging and crack branching are observed both in marble and gabbro using X-ray

micro tomograph, as shown in Fig. 6.6. The crack branching deviates more from the main

fracture path in gabbro (around 103µm) than in marble (around 102µm). The solid bridges

are much easier to break in marble than in gabbro, with the former automatically detached in

some cases. The fracture path in gabbro does not present a clear preference for intra-grain or

inter-grain fracturing.

6.4 Toughness dominated experiments in gabbro under different

confining stresses

In this section, we analyze the HF growth in GABB-001, GABB-003, GABB-005 and GABB-006

by combining different measurements, such as the fracture extent, fracture opening, vertical

acoustic transmission, apparent toughness and fracture roughness.

6.4.1 Evolution of the fluid pressure and fracture radius

We show the time evolution of the fluid pressure, inlet flux and fracture radius in Figs. 6.7,6.8,

6.9, and 6.10. During the pressurization stage, we first adopt a larger injection rate to detect

possible leaks in the injection line, we then switch to the designed injection rate before the

fluid pressure reaching the minimum confining stress σ3. The valve is either adjusted during

the pressurization stage (in GABB-001, GABB-005 and GABB-006) or prior to the fluid injection
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Figure 6.6 – Micro-CT images of fracture paths in GABB-001 (a) and b)), GABB-002 (c) and d))
and MARB-008 (e) and f)). The fractures propagate upwards in these figures.

(GABB-003). The pressure increases linearly with time during the pressurization when there is

no leaks and the position of the needle valve remains unchanged. When the fracture growth

initiates from the notch, we observe an instant increase of volume in the top-bottom GDS

pumps and a drop of the downstream pressure. The upstream pressure may either increase

with time if the needle valve is over-constrained (GABB-001 and GABB-005) or decrease with

time when the valve is widely opened (GABB-003). As the fracture front reaches the end of the

block, the downstream pressure drops significantly and a kink is visible on the fluid pressure

record as shown in Figs. 6.7, 6.8, and 6.10. It is worth recalling that no fluid lag is observed in

these HF experiments.

Interestingly, we observe different maximum net pressures (peak of the downstream pressure)

and initiation pressures in these experiments. Such a difference is possibly related to the

different fracture toughness between samples and the notch sharpness (note that the fracture

in GABB-006 does not initiate from the notch). The variation of the valve restriction, different

injection rates will also play a role.

6.4.2 Evolution of the acoustic transmission across the fracture plane

Transmitted energy In the GABB-001 experiment, an attenuation of at most 10% is reported

for all P-wave transducers on the top and bottom platens. The appearance of P-wave atten-
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Figure 6.7 – GABB-001: time evolution of a) the injection pressure, b) the fracture radius and
estimated flux entering into the fracture. The vertical lines indicate respectively the fracture
initiation and fracture reaching the edge of the block, with both determined from the sudden
change of the difference between the upstream and downstream pressure.
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Figure 6.8 – GABB-003: time evolution of a) the injection pressure, b) the fracture radius and
estimated flux entering into the fracture. The vertical lines indicate respectively the fracture
initiation and fracture reaching the edge of the block, both determined by the volume change
of the top-bottom flat jacks. The oscillations in the downstream pressure are caused by the
silicone oil stuck in the restricting valve, as a result, oscillating the valve randomly during the
pressurization stage.
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Figure 6.9 – GABB-005: time evolution of a) the injection pressure, b) the fracture radius and
estimated flux entering into the fracture. The vertical lines indicate respectively the fracture
initiation (determined by the volume change of the top-bottom flat-jacks/GDS pumps) and
the disappearance of the detectable diffraction front due to the bad visibility. The dotted line
indicates the minimum confining stress. The pressure drop during the pressurization stage is
probably related to the debonding of the epoxy going downward. The pressure plateau prior to
the downstream pressure drop is related to a temporary loss of the connection of the pressure
gauges with the measurement system. This happens slightly prior to the fracture initiation.
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Figure 6.10 – GABB-006: time evolution of a) the injection pressure, b) the fracture radius
and estimated flux entering into the fracture. The vertical lines indicate respectively the
fracture initiation, fracture reaching the edge of the block, and the end of the injection,
with the former two determined by the change of the difference between the upstream and
downstream pressure. The oscillations in the downstream pressure are caused by small leaks
in the injection line close to the restricting valve.
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Figure 6.11 – GABB-001: time evolution of a) the transmitted compressional wave energy and
b) the fracture geometry at the start of transmission attenuation. Locations of the transducers
in figure a) are indicated by circles in figure b) using the same line style. The fracture extent
associated with the numbered vertical lines in figure a), is also shown in figure b) using the
same number.

uation corresponds well to the arrival of the fracture front (Fig. 6.11). However, the S-wave

attenuation occurs (even at the time of the fracture initiation) prior to the fracture front arrival

(Fig. 6.12).

This attenuation of transmitted energy (either in shear or compressional waves) ahead of

the fracture front is observed in all four toughness dominated experiments (see more details

in C.2). It implies the existence of a process zone ahead the fracture tip. This attenuation

ahead of the fracture front is more visible for transducers away from the wellbore. In Figs. 6.12,

C.2, C.5, C.8, we plot the fracture front geometry at the time where the attenuation of the

transmitted energy becomes visible. The distances between the transmitted wave transducer

pair and the the fracture front provides an estimation of the process zone size. We show these

estimated process zone sizes for four experiments in Table. 6.7. Interestingly, the process zone

size is always comparable to the fracture extent and the process zone size does not necessarily

increase with the fracture radius.

This transmission attenuation provides a very coarse estimation of the process zone size. The

ray paths are limited to a small number of source-receiver pairs. The criterion to determine

the moment of the attenuation can be not clearly defined for different experiments since the

transmitted energy depends a lot on materials, confining stresses and the state of the contact

between the transducers and the specimen (see C.4 for more details).

Fracture opening Fracture width estimation is based on the assumption of smooth parallel

fracture surfaces. Fracture roughness and solid bridging may influence a lot the estimation

when the roughness scale is comparable to estimated width. Moreover, the drying of the

couplant between the transducer and the rock surface during the pressurization stage may

also result in attenuation of transmitted waves and a slight overestimation of the fracture
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Figure 6.12 – GABB-001: time evolution of a) the signal strength of transmitted shear waves and
b) the fracture geometry at different times of the fracture growth. Locations of the transducers
in figure a) are indicated by circles in figure b) using the same line style. The fracture extent
associated with the numbered vertical lines in figure a), is also shown in figure b) using the
same number.

Rock σ3 Transducer Fracture radius Estimated process
sample (MPa) type (m) zone size (m)

GABB-001 0.5 b) 0.022 ± 0.0016 0.041
GABB-001 0.5 b) 0.046 ± 0.0028 0.021
GABB-003 10 a) 0.041 ± 0.0011 0.036-0.038
GABB-003 10 b) 0.043 ± 0.0012 0.013
GABB-003 10 b) 0.048 ± 0.001 0.022
GABB-005 5 b) ≈0.011 ≈0.054
GABB-005 5 a) 0.024 ± 0.0023 0.042-0.069
GABB-006 10 b) 0.010 ± 0.0017 0.047
GABB-006 10 b) 0.032 ± 0.0012 0.031
GABB-006 10 a) 0.032 ± 0.0012 0.034-0.049

Table 6.7 – Estimated process zone size based on the attenuation of the vertical transmitted
waves. The transducers used to identify the process zone are classified into two types: a)
P-wave transducers located farthest away from the wellbore and b) S-wave transducers.
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Figure 6.13 – GABB-001: time evolution of the fracture width. We have a maximum fracture
width around 3 µm prior to fracture initiation.
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Figure 6.14 – GABB-001: top view of the extent of the hydraulic fracture. The P-wave trans-
ducers turn yellow if the fracture opening goes above 3 µm. 3 µm is the maximum estimated
width prior to fracture initiation which is taken as the error of width estimation.

width. We estimate the error induced by the drying couplant or other acoustic noises using the

maximum fracture openings obtained from transmitted waves prior to the fracture initiation.

This error is around 2-3 µm for gabbro HF experiments (see Fig. 6.13 for example).

We observe in all four experiments the appearance of the fracture opening prior to the fracture

front arrival, as shown in Fig. 6.14 for example (We show similar plots for GABB-003, GABB-005

and GABB-006 in C.2). This is against the observation of the transmitted energy evolution

in GABB-001(Fig. 6.11), where no attenuation is observed prior to the fracture front arrival.

This implies that opening calculation tends to be more sensitive to the process zone and that

a process zone leads to both attenuation of the transmitted amplitude and a phase shift. If

we set the width estimation error (w = 3 µm) as an indicator of the process zone’s presence:

when the fracture opening at the location of one transducer goes beyond the width estimation

error, a process zone is considered to form at this location. The estimated process zone sizes

obtained using this method (Fig. 6.14, Figs. C.3, C.6, C.9) are smaller than those obtained
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using the evolution of transmitted energy (Table. 6.7). This estimation of the process zone size

of course depends a lot on the accuracy of the width estimation and the threshold width used.

6.4.3 Estimation of the stress intensity factor using the estimated fracture radius
and measured fluid pressure

The evolution of the apparent fracture toughness is probably associated with that of the

process zone. We approximate the apparent toughness using the opening-mode (mode I)

stress intensity factor (K I ) under the assumption of stable fracture propagation (K I = K I c ).

We estimate the stress intensity factor (Tada et al., 1973) using the analytic solution for the

opening of a uniformly pressurized circular crack (’Sneddon’s solution’):

K I c ≈ K I = 2p
π

(p f ,0 −σ3)
p

R (6.14)

where p f ,0 is the downstream fluid pressure at the inlet and R the fracture radius. This method

applies only when the pressure distribution is uniform inside the fracture. This corresponds to

the fracture growth dominated by fracture toughness, which requires Km > 3.5 for a radial HF

(Savitski and Detournay, 2002). This requirement is harsh yet can be relaxed since a borehole /

notch removes the pressure singularity at the inlet. For example, with a borehole of 4.2 mm in

radius and a notch of 6 mm in radius, the actual minimum value of Km for the application

of this method can be relaxed to Km ≥ 2.95 (Bunger, 2006). We investigate this requirement

more in details by calculating the dimensionless toughness Km of the CSIRO Block-4 test

(the wellbore radius of this test is 8.35 mm and the notch radius 9.8 mm), which has been

already been properly reproduced with a constant toughness linear elastic solver (Lecampion

et al., 2017). We evaluate the dimensionless toughness Km using the instant inlet flux Qi n . As

shown in Fig. 6.16, the instant stress intensity factor overestimates the fracture toughness after

the fracture initiation due to the large pressure gradient inside the fracture associated with an

important system compliance. It drops back approximately to the constant fracture toughness

by the time Km ≥ 2.5. For all experiments presented in this chapter, the wellbore radius is

around 8 mm and the notch radius is around 10.5 mm, which is either similar to or larger than

that in the CSIRO test. This larger ratio between the wellbore and fracture radius (larger values

of ρ in Fig. 6.15) should result in a even smaller difference between the inlet pressure and the

pressure elsewhere compared with the CSIRO test. We therefore conclude that this method

which assumes uniform pressure is valid only for dimensionless toughness Km ≥ 2.5.

This method also requires a good measurement of the minimum confining stress σ3. However,

this applied confining stress is probably not uniform on the fracture plane. It is often smaller

than the designed value due to the holes of platens and the imperfections of block dimensions

and flat-jacks. Friction may occur between the rock sample and the platens. As pointed out by

Moukhtari (2020), for a cubic block (with the same dimensions as our case) under a hydrostatic

loading condition with σ1 =σ2 =σ3 = 20 MPa, a radial area of around 60 mm is characterized

with a stress attenuation of around 15% (σ3 ≈17 MPa). Moreover, Moukhtari (2020) reports
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Figure 6.15 – Dimensionless pressureΠm = (p f −σ3)/(E ′2/3µ′1/3/t 1/3) distribution inside the
fracture (0 ≤ ρ = x/R ≤ 1) for different dimensionless toughness Km in a radial HF (taken from
Savitski and Detournay (2002)).

that the shear stress is around 0.2 MPa on the horizontal plane in the middle of the block. In

this chapter, we assume that σ3 is uniformly applied on the fracture plane and that there is no

friction. However, such an assumption may lead to the underestimation of the mode I stress

intensity factor.

We plot the evolution of the apparent toughness and its associated dimensionless toughness

(estimated using Qi n and the SCB toughness value or the median apparent toughness value) in

Fig. 6.16. We find that Km ≥ 2.5 for GABB-001 and GABB-005, and that Km > 2.5 for GABB-003

(if we estimate Km using the median apparent toughness) and GABB-006 most time of the

fracture propagation. This fulfills the conditions to approximate the apparent toughness using

the stress intensity factor obtained from Eq. (6.14). As illustrated in Fig. 6.16, the apparent

toughness differs a lot between experiments and seems to depend on the stress state and

material heterogeneity between blocks. However, it presents a similar evolution in all experi-

ments: the apparent toughness first increases with the fracture radius and then decreases as

the fracture front approaches the edge of the sample. This evolution is possibly associated with

a growing process zone with the fracture propagation with its size limited by the sample di-

mensions when feeling the edge of the sample. Moreover, we find that the apparent toughness

at the first half of the stage evolves with the fracture radius by approximately following a power

law K I ∼ Rα (Liu and Lecampion, 2019). As shown in Fig. 6.17, α = 0.2 ∼ 0.45 ≤ 0.5 which

indicates the same range as that pointed out by Liu and Lecampion (2019). We summarize the

maximum and median value of the stress intensity factor in Table. 6.9.

We plot in Fig. 6.18 the fracture front geometry at the moment which corresponds to the peak

value of the stress intensity factor. The shortest distance between the sample edge and the

fracture front can be considered as the maximum process zone size. This maximum process

zone size of 6.7 cm for GABB-001, 2.6 cm for GABB-003, 6.6 cm for GABB-005, and 5.1 cm for

GABB-006, as shown in Table. 6.8. It seems that the estimated process zone size decreases as

we increase the minimum confining stress.

We summarize the process zone sizes estimated using different approaches in Fig. 6.19. The
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Experiment σ3 (MPa) Fracture radius (m) Estimated process zone size (m)
GABB-001 0.5 0.051 ± 0.0003 0.067
GABB-003 10 0.092 ± 0.0009 0.026
GABB-005 5 0.037 ± 0.0014 0.066
GABB-006 10 0.032 ± 0.0007 0.051

Table 6.8 – Estimated process zone size corresponding to the peak value of the apparent
toughness (K I c from p and R).

Experiment Minimum confining Maximum value of Median value of K I c from tip asymptotes
stress σ3 (MPa) K I c

∗ (MPa·m1/2) K I c
∗ (MPa·m1/2) (MPa·m1/2)

GABB-001 0.5 4.63 4.41 2.78±0.48
GABB-003 10 4.04 3.74 3.87±1.03
GABB-005 5 2.36 2.14 2.95±0.48
GABB-006 10 3.61 2.97 2.78±0.94

Table 6.9 – Estimation of the fracture toughness K I c based on the stress intensity method
(K I c obtained from p and R, indicated with a superscript ∗) and the fracture opening tip
asymptotes method (K I c obtained from w(x̂)). We recall here that the fracture toughness
measured in dry fracture mechanics is K I c = 2.79±0.11 MPa·m1/2 using the SCB method and
K I c = 2.79±0.09 MPa·m1/2 using the TDCB method, as reported in Table. 6.2.

process zone sizes depend a lot on the adopted estimation approach, but in all cases they can

not be neglected compared to the fracture radius.

6.4.4 Estimation of the fracture toughness via width and near-tip asymptotics

For a radial HF propagating in a linear elastic solid, the fracture width presents a k-asymptote

near the fracture tip (Rice, 1968) characterized by the fracture toughness,

w ∼
(

32

π

)1/2 K I

E ′ x̂1/2,
x̂

R
¿ 1 (6.15)

and an m-asymptote away from the fracture tip characterized by the fluid viscosity w ∼
21/335/6

(
µ′V /E ′)1/3 x̂2/3. x̂ is the distance away from the crack tip, V = Ṙ the fracture front

velocity and R the fracture radius. The k-asymptote corresponds to the dissipation in creation

of fracture surfaces and m-asymptote the fracture propagation dominated by the dissipation

in the viscous fluid flow. A length scale `mk = K ′6/(E ′4µ′2V 2) characterizes the transition

from the near-tip k-asymptote to the far-tip m-asymptote. When `mk /R À 1, this k-asympote

prevails the whole width profile, otherwise, this square-root relation only prevails within the

length scale of `mk away from the fracture tip. For a radial HF propagating in a linear elastic

medium, Km ≥ 1.89 is necessary to estimate the fracture toughness using the k-asymptote

(Bunger, 2006).

In quasi-brittle materials, the k-asymptote may still appear during the HF growth (Garagash,
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Figure 6.16 – Time evolution of the estimated stress intensity factor K I c (in black) and dimen-
sionless toughness Km (in gray). The dotted horizontal line in the figure of CSIRO Block4 test
represents the fracture toughness fitted by the LHFM solver (Lecampion et al., 2017). Km

is evaluated using the instant inlet flux and the toughness measured using the SCB method
(Table. 6.2) or the median value of the estimated stress intensity factor (Table. 6.9).
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Figure 6.18 – Fracture radius before the decrease of the apparent toughness in a) GABB-001, b)
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Figure 6.20 – GABB-003: fracture width profile corresponding to a fracture radius of a) 0.032 m,
b) 0.071 m, and c) 0.113 m. The disks indicate the width obtained from the P-wave transducers
in the east-west direction and the squares that from the P-wave transducers in the north-south
direction. The solid curves indicate the k-asymptotes of the fracture opening plotted with
different toughness values using E ′ = 99.7/(1−0.292) GPa.

2019). For these four experiments, we only observe an obvious k-asymptote profile at different

time in GABB-003, as shown in Fig. 6.20. We plot the width at the locations of all P-wave

transducer pairs at all times in function of their distances to the fracture tips in Fig. 6.21.

In some experiements (GABB-001 for example), when we are interested in the width at the

location of one specific transducer pair i , we find that the width wi (t ) at this location seems

to evolve with time by approximately following a square-root relation of its distance from

the tip wi (t ) ∼ (x̂i (t ))1/2. For different transducer locations i , we plot the width profile using

k-asymptote solutions wi (t ) ∼ K ′(x̂i (t ))1/2/E ′ with different toughness values. These fracture

toughness values doe not change significantly with time but seems to depend on transducers.

Such an effect is more or less observed in all four experiments except in GABB-003.

We try to estimate the apparent toughness from the fracture width using Eq. (6.15). For

all four experiments, `mk /R ≥ 104 during most time of the HF growth, which, according to

LHFM, would lead to an accuracy of 3.5% of approximating the whole width profile with the

k-asymptote (Bunger and Detournay, 2008). Moreover, the presence of a process zone (process

zone) results in an overestimation of the fracture width. With a smaller fracture width near

the tip and a larger width away from the tip, this overestimation due to the process zone leads

to a more important relative error of the fracture width near the tip. We therefore estimate

the fracture apparent toughness using the width away from the tip taking the results Fig. 6.22

with x̂/R > 0.25. We obtain K I ≈ 2.78±0.48, 3.87±1.03, 2.95±0.48, and 2.78±0.94) MPa·m1/2

respectively for GABB-001, GABB-003, GABB-005 and GABB-006, as shown in Table. 6.7. The

toughness values are equivalent to those obtained the stress intensity factor method for GABB-

003, yet smaller for GABB-001 (by 63%) and GABB-006 (by 6%), larger for GABB-005 (by 38%).

We summarize the apparent toughness values obtained using different approaches in Fig. 6.23.
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Figure 6.21 – Fracture opening w obtained from all the vertical 16 P-wave transducers as a
function of their distance to the crack tip x̂ at all time. The blue dots indicate the fracture
opening data obtained before the stress intensity factor reaching its peak in Fig. 6.17. The gray
curves indicate k-asymptotes of the fracture opening plotted with different toughness values
using E ′ = 99.7/(1−0.292) GPa.

157



Chapter 6. HF growth in quasi brittle rocks under different confining stresses

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

x/R

K
I
(M

Pa
m

1/
2 )

GABB- 001

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

x/R

K
I
(M

Pa
m

1/
2 )

GABB- 003

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

x/R

K
I
(M

Pa
m

1/
2 )

GABB- 005

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

x/R

K
I
(M

Pa
m

1/
2 )

GABB- 006
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Figure 6.24 – Top view of a) GABB-001, b) GABB-003, and c) GABB-005 with fracture footprints.
The larger scanned area corresponds to a resolution of 47.006µm indicated by the photo and
the smaller interest area indicated by a red rectangle corresponds to a resolution of 14.777µm.

6.4.5 Hydraulic fracture surface roughness

The roughness results from the creation of fractures by the fluid injection as well as the

splitting of the connected surfaces/solid-branching/solid-bridging after the injections. A

rougher surface indicates a larger real fracture energy within the same nominal area, implying

a larger apparent fracture toughness. In the following, we analyze the roughness of fractured

surfaces in all experiments to characterize the apparent toughness during the HF growth and

its associated process zone size.

Post-mortem observations A grooving pattern is observed on the surface of GABB-001 and

GABB-003 (Fig. 6.4 for example), which has been reported in previous works (Van Dam and

de Pater, 1999) for hydraulically fractured samples. However, such a pattern is not observable

for GABB-005. In addition, a "mirror" zone at the origin of the crack and a "mist" zone away

from the fracture center reported in (Van Dam and de Pater, 1999) are not observed in our

experiments.

Statistical analysis of roughness profiles We show in Table. 6.10 the roughness analysis of

different fractured areas for three experiments. The measurement region and the resolution

shows a significant influence on the roughness: larger measurement region tends to lead

to larger RMS, and smaller resolution tends to lead to smaller average slopes. If we are

interested in roughness measured with a resolution of 14.771µm, we find that larger stresses

σ3 lead to rougher surfaces (larger φs and RMS). This dependency on the stress is consistent

with observations of the near-wellbore roughness reported in Van Dam and de Pater (1999).

However, no obvious correlation is found between the roughness (φs and RMS) and the

apparent toughness.

We focus in the following on the calculation of roughness exponents of the hydraulic fracture
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Experiment σ3 Position Scanned area RMS φs,x φs,y

(MPa) (mm2) (µm) (rad) (rad)
GABB-001 0.5 SWB 94.996 × 83.153 656.4 0.256 0.239
GABB-001 0.5 NEB 84.375 × 90.486 753.1 0.248 0.240
GABB-003 10 SEB 94.622 × 83.153 773.7 0.261 0.238
GABB-005 5 SWB 90.486 × 84.375 933.9 0.266 0.244
GABB-001 0.5 SWB 26.14 × 29.745 446.0 0.337 0.317
GABB-001 0.5 NEB 26.509 × 28.445 502.4 0.345 0.328
GABB-003 10 SEB 26.509 × 28.445 585.6 0.370 0.338
GABB-005 5 SWB 30.750 × 23.288 631.8 0.352 0.331

Table 6.10 – Characterization of the fracture roughness. The larger scanned area corresponds
to a resolution of 47.006µm and the smaller scanned area corresponds to a resolution of
14.777µm.

and its corresponding cut-off length scale ξ (process zone length scale). The roughness

exponents ζ are obtained from the power spectrum S( f ) ∼ f −2ζ−1 (Fig. 6.26). The process

zone length scales are obtained from the cut-off length of Cε(δr ) as shown in Fig. 6.25. We

summarize these exponents and the process zone sizes in Table. 6.11 and Table. 6.12.

The roughness exponents and the associated cut-off length scales depend a lot on the scanned

region and the spatial resolution. A larger scanned area with a lower spatial resolution often

leads to a larger cut-off length scale (Fig. 6.25). It is interesting to notice that the obtained

process zone length scale is even smaller than the grain size. It is thus likely that the cut-off

length scale in our analysis actually characterizes the grain size. Moreover, the correlation Cε

does not always present a logarithm decay with δr , especially when ε is taken as the spatial

resolution, as shown in Fig. 6.25.

The roughness exponent is reported to be ζ = 0.4 − 0.5 for purely brittle failure and ζ =
0.75−0.85 for materials that undergo damage during failure (Bonamy and Bouchaud, 2011).

It has been conjectured that this difference results from the signature of the fracture mech-

anism above and below the size of the process zone (Bonamy et al., 2006). In our case, the

roughness exponents present more the ductile characteristic ζ= 0.65−0.7 for a larger scanned

area measured with a lower spatial resolution (Table. 6.11). They present more the brittle

characteristic with ζ= 0.45−0.55 for a smaller scanned area measured with a higher spatial

resolution (Table. 6.12).

We also perform the same analysis accounting for the radial propagation direction of the

hydraulic fracture. We assume a fixed fracture center during the propagation and select it

as the averaged fracture center coordinates at different sequences. The roughness profile

radiating from the fracture center is then obtained through interpolation.

As shown in Table. 6.13, the roughness exponent here spans a large range from 0.45 to 0.8,

reflecting both brittle and quasi-brittle/ductile characteristics. As shown in Table. 6.13, this
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Figure 6.25 – Illustration of dependence of the cut-off length scale on measurement region
and resolution. The results are obtained form the northeastern part of the bottom fractured
surface in GABB-001 as shown in Fig. 6.24, with a spatial resolution of 47.006 µm in a) and
14.777 µm in b). NEB represents the northeastern part of the bottom fractured surface.
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Figure 6.26 – Illustration of the roughness exponent ζ obtained from the power spectrum S( f )
using the roughness profiles measured for the lower northeastern part of GABB-001. The
spatial resolution of the roughness measurement is of 47.006µm.
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Experiment σ3 (MPa) Position ξ (mm) ζ

GABB-001 0.5 NEB 0.8-0.9 0.7
GABB-003 10 SEB 0.9-1.0 0.65
GABB-005 5 SWB 0.9-1.0 0.675

Table 6.11 – Fractal analysis of fractured surfaces without accounting for the radial propagation
direction. The roughness profiles used in this table corresponds to a larger scanned area
around 90× 90mm2 measured with a spatial resolution of 47.006µm. NEB represents the
northeastern part of the lower fractured surface.

Experiment σ3 (MPa) Position ξ (mm) ζ

GABB-001 0.5 NEB 0.30 0.5
GABB-003 10 SEB 0.20 0.45
GABB-005 5 SWB 0.25 0.55

Table 6.12 – Fractal analysis of fractured surfaces without accounting for the radial propagation
direction. The roughness profiles used in this table corresponds to a smaller scanned area
around 25×25mm2 measured with a spatial resolution of 14.777 µm. NEB represents the
northeastern part of the bottom fractured surface.

exponent and its associated cut-off length scale still depend a lot on the scanned region and

the spatial resolution. The correlation Cε may present a one or two-branch logarithm decay,

implying the appearance of other length scales, as shown in Fig. 6.27.

The obtained results do not seem conclusive. The analysis depends a lot on the region and

resolution of the roughness measurement. When accounting for the radial propagation

direction the hydraulic fracture, the results further depend on the fracture front geometry, and

the location of the averaged fracture center. Moreover, the process zone size is around ξ∼
1 mm if we focus on a smaller measurement region with a higher resolution for all toughness

dominated experiments in gabbro. This is much smaller than that predicted by the previously

mentioned methods. This possibly indicates that the roughness method we apply does not

characterize the process zone size in our case but the grain size.

6.5 HF experiments in marble under O-M and O-K regimes

In this section, we are interested in the comparison between lag-viscosity (MARB-009) and

lag-toughness (MARB-010) dominated experiments in marble. We show the evolution of the

pressure, inlet flux and the fracture radius in Figs. 6.29 and 6.30. The fracture growth in

MARB-009 is faster due to the insufficient control of the entering flux with the restriction valve

too widely open. This results in a more important effect of the compressibility and the viscous

fluid flow. In these two experiments, the diffracted arrival of the fluid front is visible in some

source-receiver pairs shortly after the fracture initiation. The fluid front coalesces with that of

the fracture font at later time of the propagation. However, the picked diffracted arrivals are

not sufficient to correctly reconstruct the fluid front and we therefore do not report its time
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Experiment σ3 Position Scanned area ξ φs,r ζs ζh

(MPa) (mm2) (mm) (rad)
GABB-001 0.5 NEB 94.996 × 83.153 0.9 0.6 0.8
GABB-001 0.5 SWB 26.14 × 29.745 1 0.274 0.6 0.45
GABB-001 0.5 NEB 26.14 × 29.745 2 0.337 0.5 0.55
GABB-003 10 SEB 94.622 × 83.153 10 0.7 0.6
GABB-003 10 SEB 26.509 × 28.445 0.8 0.371 0.45 0.45
GABB-005 5 SWB 90.486 × 84.375 1 0.8 0.6
GABB-005 5 SWB 30.750 × 23.288 0.9 0.328 0.5 0.55

Table 6.13 – Fractal analysis of fractured surfaces accounting for roughness profiles along the
radial propagation direction. The larger scanned area corresponds to a resolution of 47.006 µm
and the smaller scanned area corresponds to a resolution of 14.777 µm. ξ represents the cut-
off length scale characterizing the process zone size. ζs and ζh represents respectively the
roughness component obtained from the power spectrum (Eq. (6.7)) and from the height-
height correlation function (Eq. (6.6)).
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Figure 6.27 – Illustration of different patterns of the logarithm decay of Cε(hr ) with the distance
hr (µm) along the radial direction. The results shown in this figure are based on the roughness
measurement using a spatial resolution of 14.777 µm.
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Figure 6.28 – Illustration of different patterns of the logarithm decay of Cε(hr ) with the distance
hr (µm) along the radial direction. The results shown in this figure are based on the roughness
measurement using a spatial resolution of 47.006 µm.
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Figure 6.29 – MARB-009: time evolution of the a) injection pressure, b) fracture front and
estimated inlet flux. The vertical lines indicate respectively the fracture initiation (determined
by the change of near wellbore displacement) and fracture reaching the edge of the block
(determined by the evolution of the downstream pressure). No stress is applied in the vertical
direction.

evolution.

As shown in Figs. 6.31, 6.32, shear waves attenuate prior to the fracture front arrival both in

MARB-009 and MARB-010 experiments. We show the corresponding predicted process zone

in Table. 6.14. The process zone size is comparable to the fracture extent even though the

grain size is very small (0.1-0.2 mm) in marble.

In addition, after the coalescence of the fluid front and fracture front in MARB-010, we observe

the regain of the shear transmitted shear energy– a typical phenomenon when the fluid front

passes the location of the transducer pair following the fluidless cavity. We observe twice the

attenuation followed by the regain of transmitted P waves during the fracture growth in both

experiments, note that the drop and regain of the signal strength appears only once in the lag

dominated experiment MARB-005 (Fig. B.7). We do not have a good explanation for this yet.

There is a strong viscous effect during the HF propagation in MARB-009 and MARB-010. The

pressure distribution is probably not uniform inside the fracture during most time of the
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6.5. HF experiments in marble under O-M and O-K regimes

0 20 40 60 80 100 120 140
0

5

10

15

20

Time (min)

Fl
ui

d
Pr

es
su

re
(M

Pa
)

MARB- 010

Valve adjusted

Fr
ac

tu
re

 in
iti

at
io

n

En
d 

of
 fr

ac
tu

re
 g

ro
w

th

126 128 130 132 134 136 138
0.00

0.01

0.02

0.03

0.04

0.05

0.06

-0.01
0.00
0.01
0.02
0.03
0.04
0.05
0.06

Injection time (min)

F
ra
ct
u
re
ra
d
iu
s
(m

)

MARB-010

In
le
t
fl
u
x
(m
L
/m
in
)

Fr
ac

tu
re

 in
iti

at
io

n

St
op

 o
f i

nj
ec

tio
n

a) b)

Figure 6.30 – MARB-010: time evolution of the a) injection pressure, b) fracture and fluid
front and estimated inlet flux. The vertical lines indicate respectively the fracture initiation
(determined by the change of the difference between the upstream and downstream pressure)
and stop of the injection. The dotted line indicates the minimum confining stress.
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Figure 6.31 – MARB-009: time evolution of a) the signal strength of transmitted shear waves,
and b) the fracture geometry at different times of the fracture growth. Locations of the
transducers in figure a) are indicated by circles in figure b) using the same line style. The
fracture extent associated with the numbered vertical lines in figure a), is also shown in figure
b) using the same number.
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Figure 6.32 – MARB-010: time evolution of a) the signal strength of transmitted shear waves,
and b) the fracture geometry at different times of the fracture growth. Locations of the
transducers in figure a) are indicated by circles in figure b) using the same line style. The
fracture extent associated with the numbered vertical lines in figure a), is also shown in figure
b) using the same number.
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Figure 6.33 – Time evolution of the estimated stress intensity factor K I c (in black) and dimen-
sionless toughness Km (in gray) for a) MARB-009 and b) MARB-010. Km is evaluated using
the instant inlet flux and the toughness measured using the SCB method (Table. 6.2).

propagation. As a result, the stress intensity factor estimated using Eq. (6.14) overestimates

the fracture apparent toughness. Moreover, as the fracture growth transitions from viscosity to

toughness dominated regime, one would expect a drop of the stress intensity (Figs. 6.33, 6.34).

It is therefore inappropriate to estimate the process zone size using the distance between

the fracture geometry at the peak of the apparent toughness and the closest boundary of the

sample, otherwise it may overestimate the process zone size (Fig. 6.35).

We measure part of the fractured surfaces as shown in Fig. 6.36. Compared with the gabbro

samples, the fractured surfaces in marble are very easily separated and the fracture roughness

is much smaller. In the MARB-010 experiment which has a larger minimum stress σ3 than

MARB-009, we observe larger oscillations of the heights (larger φs) but a smaller RMS (see

Table. 6.15). As shown in Table. 6.16, marble presents a smaller cut-off length scale similar
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Figure 6.35 – Fracture front geometry before the decrease of the apparent toughness in a)
MARB-009 and b) MARB-010.

Experiment σ3 (MPa) Transducer type Fracture radius (m) Estimated process zone size (m)
MARB-009 0 S-wave 0.021 ± 0.0023 0.043-0.049
MARB-010 8 S-wave 0.035 ± 0.0024 0.015

Table 6.14 – Estimated process zone size based on the attenuation of the vertical transmitted
waves. We use here the S-wave transducers to identify the process zone. The time-evolution of
the P-wave transducers do not present a clear start time of the signal strength attenuation.
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Figure 6.36 – Top view of a) MARB-009 and b) MARB-010 with fracture footprints. The larger
scanned area corresponds to a resolution of 47.006µm and the smaller scanned area corre-
sponds to a resolution of 14.777µm indicated by a red rectangle.

Experiment σ3 Position Scanned area RMS φs,x φs,y

(MPa) (mm2) (µm) (rad) (rad)
MARB-009 0 NWB 94.622×83.153 334.1 0.189 0.179
MARB-009 0 NWB 32.967×23.835 237.3 0.314 0.277
MARB-010 8 NEB 22.667×25.15 123.9 0.341 0.278

Table 6.15 – Fracture roughness, the larger scanned area corresponds to a spatial resolution of
47.006µm and the smaller scanned area corresponds to a spatial resolution of 14.777µm as
indicated in Fig. 6.36.

to its grain size. It is likely that the roughness analysis here measures the grain size rather

than the process zone size. Moreover, the cut-off length scale of marble is smaller that that of

gabbro, which is consistent with their relation of the grain size.

6.6 Conclusions

We have investigated the growth of hydraulic fractures in marble and gabbro in different

propagation regimes and under different stress states. We find that solid bridging and crack

branching exist in both rocks, with the crack band of gabbro wider than that of marble. The

transmission attenuation and the appearance of the fracture width prior to the fracture front

arrival, indicate the presence of a process zone ahead of the fracture tip.

Experiment σ3 (MPa) Position ξ (mm) ζ

MARB-009 0 NEB 0.15 0.5
MARB-010 8 NEB 0.15 0.55

Table 6.16 – Fractal analysis of fractured surfaces without accounting for the radial propagation
direction. The roughness profiles used in this table corresponds to a smaller scanned area
around 25×25mm2 measured with a spatial resolution of 14.777 µm.
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6.6. Conclusions

For toughness-dominated experiments in gabbro, the apparent toughness, which is associated

with the process zone size, develops as the fracture grows and is finally limited by sample

dimensions. The peak value of this apparent toughness during the HF growth corresponds to

a process zone size of several centimeters. This results in a large ratio between the process

zone size and the fracture radius, however the fracture width still follows the k-asymptote

as predicted in LHFM. The apparent toughness estimated from this k-asymptote consists

more or less well with that obtained from the stress intensity factor calculation. However, the

estimated apparent toughness differs a lot between four experiments. No obvious correlation

is found between the apparent toughness and the confining stress. The difference in appar-

ent toughness results more from the difference of material properties between blocks, and

probably the stress states.

Fracture roughness depends a lot on the material type (grain size), the loading condition inside

the fracture and the applied confining stresses. A larger grain size or less uniform distribution

of the fluid pressure, as in the case of a lag-dominated experiment in gabbro, often results

in rougher fractured surfaces. However, the effect of the confining stress does not remains

very clear and calls for further investigation. The method of process zone size estimation

using roughness (Vernède et al., 2015) seems to give a length scale of the grain size in our case.

The fracture path does not present an obvious preference for intra-grain failure or inter-grain

failure. A more quantitative study on solid bridges between fractured surfaces is necessary.

We have investigated the process zone growth in different HF experiments by combining

acoustic measurement, X-ray micro tomograph, stress intensity factor, and fracture roughness.

However, all these approaches present limited precision. A better description of the process

zone evolution requires a more accurate description of the fracture and fluid front. Geometri-

cal models such as closed splines can be adopted to reconstruct the fracture geometry. A better

estimation for the fracture width is also required especially when the fracture surfaces are

rough and not parallel and when there is a fluid lag. Passive acoustic monitoring is encouraged

to apply together with the active measurement in order to give a more direct image of the

process zone.
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7 Conclusions and perspectives

Summary

This thesis investigates the growth of hydraulic fractures (HF) in quasi-brittle rocks using a

combination of theoretical, numerical, and experimental approaches. We aim to understand

the possible toughening mechanism due to the solid non-linearity and its impact on HF

growth. We also perform HF injections in quasi-brittle rocks at the laboratory scale, hoping to

decipher the evolution of the non-linear zone (process zone) during the HF propagation.

For the theoretical and numerical investigation, we discuss the growth of a plane-strain /

radial HF in a homogeneous, isotropic, and impermeable medium. We assume that the

fracture is driven by a Newtonian fluid under a constant injection rate. We first aim to investi-

gate quantitatively the toughening effect associated with the solid non-linearity during HF

growth. In Chapter 3, we propose a macroscopic model assuming an increase of apparent

toughness with fracture length. Such a model approximates macroscopically the reported

increase of energy spent in some lab and field scales observations. We perform simulations

under the framework of LHFM for sufficiently deep fractures (such that the fluid lag can be

neglected). We find that this apparent toughness leads to shorter fracture lengths, larger

fracture openings, net pressures, and emplacement ratios compared with LHFM solutions.

When the apparent toughness reaches a stable state and no longer increases with fracture

length, the solution slowly transitions back to the constant toughness solution. The fracture

growth solution can be approximated by the self-similar constant toughness solution using the

instantaneous toughness. From a computational perspective, we have developed an efficient

numerical solver with spectral accuracy. It elegantly combines Gauss-Chebyshev quadrature

and barycentric Lagrange interpolation techniques to solve the growth of a finite planar HF in

simple geometries (plane-strain and axisymmetry).

We then explore a possible toughening mechanism in Chapter 4. We investigate the growth of a

plane-strain HF by relaxing some of the underlying assumptions of LHFM. We adopt a cohesive

zone model to simulate the process zone effect and account for fracture roughness’ impact

on fluid flow inside the created fracture. We show that the cohesive HF growth consists of
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three stages: a nucleation stage of the cohesive zone, an intermediate stage, and a small-scale-

yielding stage. The fracture growth first deviates from LHFM solutions during the first two

stages and then slowly converges to LHFM solutions at late times. This evolution results from

a decreasing fraction of the cohesive zone compared to the fracture length and an interplay

between the fluid front and cohesive zone. We show that the fracture growth depends on a

dimensionless toughness and a time scale characterizing the fluid lag disappearance similar to

LHFM. It further depends on the ratio of in-situ stress and peak material cohesive stress: larger

in-situ-to-cohesive stress ratios result in larger deviations from LHFM solutions during the

first two stages. This deviation is mostly limited to the nucleation stage for a smooth cohesive

zone. However, it can be much more significant for a rough cohesive zone, even when the

cohesive zone takes a small fraction of the fracture length. In a rough cohesive HF, we report an

increase of the fracture resistance with shorter fracture lengths, larger fracture openings, and

net pressures. We show that this toughening effect results from the viscous energy dissipated

inside the rough cohesive zone. Similar conclusions can be drawn for a radial HF using the

scaling analysis and numerical scheme presented in this chapter after slight adaptions.

On the experimental front, we first develop a method in Chapter 5 using diffracted acoustic

waves to reconstruct the fracture geometry in nontransparent rocks. We perform a Bayesian

analysis to select different possible geometrical models and estimate their errors of prediction.

It provides the basis to locate the position of the process zone with respect to the fracture

front.

We report in Chapter 6 a series of HF experiments in rocks exhibiting different grain sizes

(different levels of solid non-linearity), most of which are in toughness-dominated regimes

or lag-viscosity/toughness regimes. We show through CT images that a process zone exists

around the diffracted fracture front. Attenuation of the transmitted waves perpendicular to the

fracture plane also indicates a change of the material properties ahead of the reconstructed

fracture front from diffracted waves. We estimate the apparent toughness associated with

this process zone using the fluid pressure and fracture radius. The apparent toughness first

increases and then drops with fracture radius during the fracture growth. Such an apparent

toughness evolution implies that sample dimensions possibly limit the growth of the process

zone. This refers to an important size-effect for laboratory HF tests in these rocks. In the end,

we perform fractal analysis on the roughness of these HFs to extract length scales related to

the process zone. However, the roughness is not necessarily created by HFs, and its statistical

properties show a strong dependence on the measurement resolution.

The theoretical and experimental investigations performed in this thesis are closely related to

each other. Chapter 3 provides the theoretical basis for the apparent toughness estimation

in Chapter 6: fracture growth is influenced almost instantly by the change of the apparent

toughness. It is thus possible to use the apparent toughness to describe the instant growth

of the process zone. Moreover, Chapter 6 gives experimental evidence for the assumptions

adopted in Chapter 4: a process zone characterized by crack branching and bridging effect

exists ahead of the fracture front.
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Future perspectives

We have explored different techniques to investigate the HF growth in quasi-brittle materials,

some of which can be extended to solve other problems. In the following, we briefly discuss

some possible directions for future work.

• Chapter 3 offers a very efficient method to solve problems related to the growth of a

finite fracture. One can use it after slight adaptions to investigate the shut-in of a finite

HF, the effect of shear-thinning/ power-law fluids on the growth of a finite HF, and the

effect of sub-critical propagation conditions.

• Chapter 4 investigates the growth of a plane-strain cohesive hydraulic fracture via a

simple linear-weakening cohesive zone model and a phenomenological correction to

Poiseuille’s law. A better description of the details of both the traction separation law and

the effect of roughness on fluid flow is necessary and will likely modify quantitatively

the hydraulic fracturing growth at the early and intermediate stages. An algorithm

with an adaptive mesh refinement needs to be developed to ensure a sufficiently fine

resolution of the process zone and fluid lag to further investigate fracture growth under

large confining stresses at large times. To better understand the results of our numerical

simulations and compare them with laboratory experiments, we can extend this work

on the plane-strain hydraulic fracture to the case of a radial hydraulic fracture.

• We adopt a rough cohesive zone model to investigate the possible toughening mech-

anism during the hydraulic fracture growth. However, this cohesive zone model is

over-simplified and reflects only two main characteristics of the hydraulic fracture

growth in quasi-brittle materials: the zero-singularity of the tip stress field and the crack

bridging effect. It would be interesting to account for the interaction between the main

hydraulic fracture and the inelastic deformations or micro-cracks around the tip.

• The reconstruction of the hydraulic fracture geometry in Chapters 5 and 6 is based on a

series of assumptions: a) we assume that the diffraction results from the fracture and

fluid front. This assumption is intuitive and may not be valid in particular for quasi-

brittle rocks due to the difficulty to locate the physical fracture tip with the presence of

the process zone. Further investigation is necessary to find out the exact location of the

diffraction source. b) We estimate the fracture width based on a three-layer model with

parallel and smooth fracture surfaces with zero fluid lag. More accurate methods are

necessary to estimate the fracture width for non-parallel rough fractures with a fluid

lag. c) We assume that the acoustic wave propagates at a constant velocity in the rock

samples. It is necessary to account for the influence of the material heterogeneity, the

possible appearance of micro-cracks, and the possible fluid diffusion inside the rocks

on the acoustic wave propagation.

• We reconstruct the fracture front using active diffracted waves and estimate the process

zone size combining the diffraction front and transmitted waves. The location of trans-
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ducers limits a lot the estimation accuracy of the process zone size. Passive acoustic

monitoring is highly encouraged to perform in combination with active acoustic moni-

toring to directly demonstrate the locations of micro-cracks or micro-slips inside the

process zone. Besides, a more quantitative study via CT images or other postmortem

observations is necessary to investigate the microstructure around the fracture tip/pro-

cess zone, such as the solid bridging, crack branching, and the location of the fracture

path with respect to that of the grains.
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A Material characterization

A.1 Mineralogy

The mineralogy composition and organic content of the gabbro and marble are determined

through powder X-ray diffraction analysis (XRD). The intensity of the diffraction presented

as the peak height and as the integrated intensity at peak angle is given in Fig. A.1. The

concentration of different minerals is shown in Table. A.1.

A.2 Fracture toughness characterization in dry fracture mechanics

We test the mode I fracture toughness K I c using the ISRM-suggested semi-circular bend (SCB)

method (Kuruppu et al., 2014). We show the specimen geometry and one of the test loading

curve in Fig. A.2, and we calculate K I c using the observed peak load Pmax.

K I c = Y ′ Pmax
p
πa

2RB
(A.1)

Y ′ =−1.297+9.516(s/2R)− (0.47+16.457(s/2R))(a/R)

+(1.071+34.401(s/2R))(a/R)2
(A.2)

Rock type Phyllosilicates Quartz Feldspath-K Plagioclase-Na Calcite Residual
Gabbro 18.88 3.05 11.06 45.69 0 21.33
Marble 0.30 0.58 0 0 98.23 0.89

Table A.1 – Mineral concentration for gabbro and marble. The dosage of gabbro is indicative
due to the lack of mineral component standard for gabbro in the laboratory. This can be seen
from its very high value of the residual. The value of plagioclase (soilide solution) for gabbro is
probably incorrect.
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Figure A.1 – Mineralogical composition of gabbro and marble in intensity using X-ray diffrac-
tion analysis (XRD).
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Figure A.2 – Illustration of a) the fracture toughness test specimen and b) the loading curve
(the point load F vs the cracking tip opening δ) during the fracture toughness for gabbro.

Specimen test Rock type R (mm) B (mm) S (mm) a (mm) Number of tests
SCB_1 Gabbro 39.8 32.0 44 17.8 5
SCB_2 Gabbro 39.8 19.6 44 17.8 1
SCB_3 Marble 29.7 31.1 44 17.2 7

Table A.2 – Dimensions for SCB specimens adopted in Chapter 6.
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Figure A.3 – Illustration of a) the fracture toughness test specimen and b) the loading curve
during the fracture toughness for gabbro. L = 10 cm, h1 = 3 cm, h2 = 4.5 cm, lx = 1.28 cm,
ly = 1.4 cm and R = 0.25 cm. The values of the initial notch/crack length ci ni and sample
width b are shown in Table. A.3.

Specimen test Rock type ci ni (mm) b (mm) Number of tests
TDCB_1 Gabbro 27.5 10.0 3
TDCB_2 Marble 37.5 10.0 2

Table A.3 – Dimensions for TDCB specimens.

We also test the fracture toughness using the tampered double cantilever beam (TDCB)

method (Vasudevan et al., 2021). We show the specimen geometry and the loading curve in

Fig. A.3, where we apply the load using the displacement control, and we measure the fracture

opening δ using an extensometer.

Gc = area of OBB’

∆cb
(A.3)

where ∆c is the increment of the fracture length and b the sample width. Knowing the

compliance λ at one point, for example point B, we have its corresponding crack length

c = ln

(
Eb

λ

λo

)
co , λo =β c2

o

h1lx
(A.4)

where co = 0.389L−0.0229 (in meters). However, this method is valid only for 1/3 < c/L < 2/3,

and it may overestimate the fracture toughness when the fracture path is not horizontal. In

our case, the fracture paths in marble are more or less straight and horizontal while those in

gabbro present more oscillations (Fig. A.4).
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a) b)

Figure A.4 – Illustration of the fracture path in a) gabbro and b) marble tests.
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B Lag dominated experiments

GABB-002, MARB-005 and MARB-007 experiments (tpr op ¿ tom) are characterized with

an important lag between the fracture and fluid front. We show in Figs. B.1, B.2 and B.3

the evolution of the pressure, inlet flux, fracture and fluid front. In these experiments, the

downstream pressure may still increase after the fracture initiation due to the strong viscous

effect in the fluid. The growth of the fluid front is characterized by the increase of inlet flux

and can occur much later than the fracture initiation.

As shown in Fig. B.3, we observe a post-shut-in growth of the fracture and fluid front in

MARB-007. This results from the redistribution of the fluid pressure inside the fracture after

shut-in, which leads to a stress-intensity factor large enough to continuously drive the fracture

propagation. In addition, post mortem observations of the fracture surface indicate a a

reasonable assumption of a circle or an ellipse for the fluid front (Fig. B.10).

B.1 Evolution of the acoustic transmission across the fracture plane

These three experiments present a larger fracture opening and a fluid lag compared to the

previous toughness-dominated experiments. The assumption of the fracture width estimation

– a single fluid layer between two smooth surfaces– is no longer valid. We focus here on the

evolution of the transmitted energy to understand the growth of the fracture front, fluid front

and process zone.

As shown in Figs. B.5, B.6, B.7, B.8, B.9, transmission attenuation occurs before the fracture

front arrival, same as in toughness dominated experiments. Such attenuation ahead of the

fracture front is more obvious for transducers farther away from the wellbore and shear waves

indicate a larger process zone than compressional waves (see Fig. B.5 and B.6).

In MARB-005, the signal strength of transmitted waves decreases upon the arrival of the

fracture front and regains its amplitude following the arrival of the fluid front. It finally

decreases with time as the fracture width increases and results in more loss in transmitted

energy (Fig. B.7). Similar evolution is also observed in GABB-002 and MARB-007, however the
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Figure B.1 – GABB-002: time evolution of the a) injection pressure, b) fracture (black) and
fluid front (blue), and estimated inlet flux. The vertical lines indicate respectively the time
of fracture initiation (determined by the start of the visible diffraction), start of fluid front
growth (determined by the increase of the inlet flux), and fracture front reaching the edge of
the block (determined by the very fast increase of the inlet flux). No stress is applied in the
vertical direction.
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Figure B.2 – MARB-005: time evolution of the a) injection pressure, b) fracture (black) and
fluid front (blue), and estimated inlet flux. The vertical lines indicate respectively the time of
fracture initiation (determined by the volume change of the top-bottom flat-jacks), fracture
front reaching the edge of the block (determined by the downstream pressure evolution) and
the stop of the injection. No stress is applied in the vertical direction.
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B.2. Visualization of hydraulically fractured surfaces
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Figure B.3 – MARB-007: time evolution of the a) injection pressure, b) fracture (black) and
fluid front (blue), and estimated inlet flux. The vertical lines indicate respectively the time of
fracture initiation (determined by the sudden vertical displacement near the wellbore on the
top surface), and the stop of the injection. No stress is applied in the vertical direction.

regain of the transmitted energy occurs prior to the diffracted fluid front arrival (see Figs. B.8

and B.9 for example).

B.2 Visualization of hydraulically fractured surfaces

We adopt silicone oil as injection fluids for these three experiments. Since it is difficult to clean

the silicone oil left on the fractured surface without destroying the roughness. We therefore

do not report the real roughness profile but show some photos of the fractured surface. As

shown in Fig. B.10, a grooving pattern is visible in MARB-007 but can not be clearly observed

in GABB-002 and MARB-005. The roughness seems to depend both on the grain size of the

material and loading conditions during the fracture growth. The fracture roughness in gabbro

is much larger than that in marble from the eye observation. For the two experiments in the

same material MARB-005 and MARB-007, MARB-007 presents a more important effect of

the lag/viscous flow (tprop/tom). As a result, the fluid pressure distribution is less uniform

in MARB-007 and this non-uniform loading condition contributes to a larger roughness in

MARB-007.
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Figure B.4 – Lag-dominated experiments: top view of a) the fracture and b) fluid front in
GABB-002, c) the fracture and d) fluid front in MARB-005, and e) the fracture and f) fluid front
in MARB-007.
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Figure B.5 – GABB-002: time evolution of a) the signal strength of transmitted compressional
waves and b) the fracture geometry at different times of the fracture growth. Locations of
the transducers in figure a) are indicated by circles in figure b) using the same line style. The
fracture extent associated with the numbered vertical lines in figure a), is also shown in figure
b) using the same number. The fluid front enters into the fracture nearly at the end of the
fracture propagation and is therefore not shown here.
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Figure B.6 – GABB-002: time evolution of a) the signal strength of transmitted shear waves, and
b) the fracture geometry at different times of the fracture growth. Locations of the transducers
in figure a) are indicated by circles in figure b) using the same line style. The fracture extent
associated with the numbered vertical lines in figure a), is also shown in figure b) using
the same number. The fluid front enters into the fracture nearly at the end of the fracture
propagation and is therefore not shown here.
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Figure B.7 – MARB-005: time evolution of the signal strength of transmitted compressional
waves, and b) the fracture geometry at different times of the fracture growth. Locations of
the transducers in figure a) are indicated by circles in figure b) using the same line style. The
fracture (in black) and fluid (in blue) extent associated with the numbered vertical lines in
figure a), is also shown in figure b) using the same number.
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Figure B.8 – MARB-007: time evolution of the signal strength of transmitted compressional
waves, and b) the fracture geometry at different times of the fracture growth. Locations of
the transducers in figure a) are indicated by circles in figure b) using the same line style. The
fracture (in black) and fluid (in blue) extent associated with the numbered vertical lines in
figure a), is also shown in figure b) using the same number.
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B.2. Visualization of hydraulically fractured surfaces
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Figure B.9 – MARB-007: time evolution of the signal strength of transmitted shear waves, and
b) the fracture geometry at different times of the fracture growth. Locations of the transducers
in figure a) are indicated by circles in figure b) using the same line style. The fracture (in black)
and fluid (in blue) extent associated with the numbered vertical lines in figure a), is also shown
in figure b) using the same number.

a) b)

c)

Figure B.10 – Fractured surface of a) the southwestern lower part of GABB-002, b) the south-
western lower part of MARB-005 and c) the southwestern part of MARB-007. Note that the
MARB-007 is created by two injections with the second one performed under a much larger
rate one day after the first injection reported in Fig. B.3.
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C Complementary information on HF
experiments

C.1 Estimation of the inlet flux and fracture initiation time

Estimation of the inlet flux The inlet flux Qi n differs from that of the ISCO pump Qo due to

the restriction value put in the injection line. We estimate Qi n using the global mass balance

of fluid in the injection line from the pump to the fracture inlet.

Qi n(t ) =Qo −Ud
dpdownstream(t )

dt
− (U −Ud )

dpupstream(t )

dt
(C.1)

where pupstream and pdownstream represent respectively the fluid pressure upstream and down-

stream the valve as shown in Fig. 6.1, and Ud the downstream compliance representing the

contribution from the valve to the inlet. We estimate this downstream compliance Ud either

by the product of the fluid compressibility c f and the volume downstream Vd (Ud = c f Vd ),

or by the difference between the compliance of the system U and that of the upstream Uu

(Ud =U −Uu).

U =Qo/

(
dpupstream

dt

)
(C.2)

where Uu is estimated exactly the same way as U (Eq. (C.2)) but with the pressure measured

while keeping the valve completely closed during the pressurization.

Determination of the time of fracture initiation We determine the time of fracture initiation

ti ni using the following events.

• Decrease of the volume in the top-bottom pair of flat-jacks; or increase of the dis-

placement of the top block surface near the wellbore measured by the linear variable

differential transformer (LVDT) when there is no confining stress applied on the top

platen.

• Increase of the inlet flux or change of the pressure difference between the upstream

and downstream. This is only valid for toughness-dominated experiments, otherwise it

189



Appendix C. Complementary information on HF experiments

64.0 64.5 65.0 65.5 66.0 66.5 67.0
0.85

0.90

0.95

1.00

1.05

Injection time (min)

(E
/E

re
f)

1/
2

GABB- 003

(1) (2)

0 0.05 0.1 0.15 0.2
Easting (m)

0

0.05

0.1

0.15

0.2

0.25

N
or

th
in

g 
(m

)

(1)

(2)0.036m

0.038m

a) b)

Figure C.1 – GABB-003: time evolution of a) the signal strength of transmitted compressional
waves and b) the fracture geometry at different times of the fracture growth. Locations of
the transducers in figure a) are indicated by circles in figure b) using the same line style. The
fracture extent associated with the numbered vertical lines in figure a), is also shown in figure
b) using the same number.

represents the moment of the fluid starting entering into the fracture.

• Deviation of the downstream pressure from the linear pressurization. This is valid for

toughness-dominated experiments, otherwise the deviation might not occur or occurs

with an important delay after the initiation time.

• Start of the visible diffraction by the growing fracture front. This depends a lot on the

quality of the active acoustic measurement. It possibly leads to a delay in the estimation

compared with the exact initiation time.

C.2 Supplementary information on vertical transmission for gab-

bro tests

GABB-003 P waves attenuation indicates a process zone of around 2-4 cm (Fig. C.1) while S

wave attenuation corresponds well to the diffracted fracture front arrival with some oscilla-

tions/drops reported prior to the fracture front arrival (Fig. C.2).

GABB-005 Transmission attenuation occurs in all compressional and shear transducers

shortly after the fracture initiation (Figs. C.4, C.5). This implies a process zone of around

7 cm. However, this attenuation is at most 5% for all compressional transducers, which is

much less than that of GABB-001 and GABB-003 (Fig. C.4).

GABB-006 Attenuation is reported in both P and S wave transmission (Fig. C.7, C.8), indicating

a process zone size of around 5 cm.

190



C.2. Supplementary information on vertical transmission for gabbro tests
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Figure C.2 – GABB-003: time evolution of a) the signal strength of transmitted shear waves and
b) the fracture geometry at different times of the fracture growth. Locations of the transducers
in figure a) are indicated by circles in figure b) using the same line style. The fracture extent
associated with the numbered vertical lines in figure a), is also shown in figure b) using the
same number.
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Figure C.3 – GABB-003: top view of the extent of the hydraulic fracture. The P-wave transducers
turn yellow if the fracture opening goes above 3 µm. 3 µm is the maximum estimated width
prior to fracture initiation which is taken as the error of width estimation.
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Figure C.4 – GABB-005: time evolution of a) the signal strength of transmitted compressional
waves and b) the fracture geometry at different times of the fracture growth. Locations of
the transducers in figure a) are indicated by circles in figure b) using the same line style. The
fracture extent associated with the numbered vertical lines in figure a), is also shown in figure
b) using the same number.
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Figure C.5 – GABB-005: time evolution of a) the signal strength of transmitted shear waves and
b) the fracture geometry at different times of the fracture growth. Locations of the transducers
in figure a) are indicated by circles in figure b) using the same line style. The fracture extent
associated with the numbered vertical lines in figure a), is also shown in figure b) using the
same number.
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C.2. Supplementary information on vertical transmission for gabbro tests
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Figure C.6 – GABB-005: top view of the extent of the hydraulic fracture. The P-wave transducers
turn yellow if the fracture opening goes above 3 µm. 3 µm is the maximum estimated width
prior to fracture initiation which is taken as the error of width estimation.
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Figure C.7 – GABB-006: time evolution of a) the signal strength of transmitted compressional
waves and b) the fracture geometry at different times of the fracture growth. Locations of
the transducers in figure a) are indicated by circles in figure b) using the same line style. The
fracture extent associated with the numbered vertical lines in figure a), is also shown in figure
b) using the same number.
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Figure C.8 – GABB-006: time evolution of a) the signal strength of transmitted shear waves and
b) the fracture geometry at different times of the fracture growth. Locations of the transducers
in figure a) are indicated by circles in figure b) using the same line style. The fracture extent
associated with the numbered vertical lines in figure a), is also shown in figure b) using the
same number.
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Figure C.9 – GABB-006: top view of the extent of the hydraulic fracture. The P-wave transducers
turn yellow if the fracture opening goes above 3 µm. 3 µm is the maximum estimated width
prior to fracture initiation which is taken as the error of width estimation.
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C.3. Visualization of the fracture geometry

Figure C.10 – Toughness dominated experiments: GABB-001, GABB-003, GABB-005 and GABB-
006. Note that the fracture in GABB-006 initiates at a position 9.5 mm below the notch. Two
fractures initiate from the wellbore in GABB-006, which probably results from the complex
injection history: we perform other injections with a much larger rate following the injection
process shown in Fig. 6.10. This may lead to the creation of the second fracture.

Figure C.11 – Lag dominated experiments: GABB-002, MARB-005 and MARB-007.

Fracture opening also indicates the presence of a process zone in all these three experiments,

but the real process zone size depends a lot on the precision of the width estimation.

C.3 Visualization of the fracture geometry

We present here the post-mortem observation of the fracture plane after cutting the samples.

We show the fracture path for toughness dominated experiments (GABB-001, GABB-003,

GABB-005, GABB-006) in Fig. C.10, that for lag dominated experiments (GABB-002, MARB-005

and MARB-007) in Fig. C.11, and that for the transient experiments in marble (MARB-009

and MARB-010) in Fig. C.12. We show also the fracture path of GABB-004 and MARB-006 in

Fig. C.13.

In addition, we present here the footprint of the fracture and fluid fronts for GABB-002, MARB-

005 and MARB-007 in Fig. B.4, which are not illustrated in the main text.

C.4 Sensitivity of the transmission to the contact condition and stresses

The signal strength of transmitted waves depends on the stress field inside the rock and

the contact condition between transducers and the rock surface. Moreover, it is difficult

to completely separate the transmitted component from the diffracted component. In this
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Appendix C. Complementary information on HF experiments

Figure C.12 – HF experiments in marble under different propagation regimes: MARB-009 and
MARB-010.

Figure C.13 – Fracture path of GABB-004 and MARB-008. We stop the injection before the
fracture front reaches the specimen edge in GABB-004 so that no fracture is observed on the
side.
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Figure C.14 – Effect of the drying couplant (σ1 = σ2 = σ3 = 5 MPa) on the signal strength,
taking the block of GABB-005 for example. The transducer disposition is shown in Fig. C.15.
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C.4. Sensitivity of the transmission to the contact condition and stresses
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Figure C.16 – Effect of the confining stress (σ1 = σ2 = σ3) on the signal strength taking the
block of GABB-005 for example. The transducer disposition is shown in Fig. C.15.

Figure C.17 – Illustration of the diffracted energy compared to the transmitted energy taking the
example of a shear wave transducer pair in the vertical direction in GABB-001 (corresponding
to the S-wave transducer pair on the top-bottom platens which is not indicated with any text
in Fig. C.15).
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section, we try to understand how these effects influence the transmitted energy.

As shown in Fig. C.17, the diffraction front first goes into the interest time window (we apply a

tapered hamming filter on this time window with only 1/3 of the signal in the center of the

window not attenuated, corresponding to a period of around 5 µs) and leaves again at a time

much later than the start of the transmission attenuation. If this diffracted energy is important

compared with the transmitted energy, one would expect a first increase and then a decrease

of the transmitted energy. This is however not the case in GABB-001, implying that the energy

of the diffracted arrival is smaller than that of the direct transmitted arrival.

We then apply a confining stress of 5 MPa on GABB-005 and run the acoustic measurement

for more than 10 hours without the injection. As shown in Fig. C.14, the strength of most

transmitted waves attenuates slowly due to the drying or absorption of the couplant. Side

transducers present a more significant attenuation than vertical transducer pairs and the

attenuation of shear waves is larger than that of compressional waves. In real experiments, this

attenuation is most likely negligible or insignificant with the fracture propagation duration

of several minutes, which is much shorter than the test time (> 10h) here. We also vary the

confining stress applied on GABB-005 within a much shorter time assuming that the contact

change due to the drying couplant is negligible. As shown in Fig. C.16, the signal strength of

side transmitted waves presents a strong dependence on the confining stress: it evolves in a

similar way as we change the confining stress (σ1 =σ2 =σ3) from 5, to 10, 15 MPa and finally

to 0.5 MPa. Moreover, for the side transmission, shear waves are more sensitive to the change

of the confining stress than the compressional ones. This dependence on the confining stress

is however not obvious for vertical transmitted energy.

In Chapter 6, we are interested in the analysis of vertical transmitted waves which do not seem

to depend on the confining stress. However, we show some side transmission evolution in C.5

for the sake of curiosity.

C.5 Evolution of the acoustic transmission parallel to the fracture

plane

In this section, we discuss the evolution of side transmitted energy (calculated using Eq. 5.11)

in different experiments.

GABB-001 Attenuation occurs prior to the fracture initiation for side transducer pairs located

2 cm away from the fracture plane (denoted as close transducers), yet amplification occurs

for transducer pairs located 5 cm away from the fracture plane (denoted as far transducers)

(Fig. C.18).
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C.5. Evolution of the acoustic transmission parallel to the fracture plane
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Figure C.18 – GABB-001: time evolution of the signal strength of transmitted compressional
waves on the E-W side. The vertical lines in the left figure correspond to the fracture radius
reconstructed from the diffracted waves shown in the right figure.

GABB-003 Larger attenuation are observed in close transducers than those in GABB-001.

Amplification are detected for far transducers (Fig. C.19).

GABB-005 Smaller attenuation are observed in close transducers than those in GABB-001 and

GABB-003. Amplification are detected for far transducers.

GABB-006 Smaller attenuation are observed in close transducers than those in GABB-001 and

GABB-003. No obvious changes are detected for far transducers.

MARB-009 Attenuation occurs both in close and far transducers during the fracture growth

(Fig. C.21).

MARB-010 Attenuation occurs in far transducers while for close transducers amplification

occurs during the fracture growth (Fig. C.22).

MARB-005, MARB-007 and GABB-002 There exists a ringing source on the side platens. It

sends acoustic waves with a time shift compared with the other sources. This strongly affect

the calculation of the side transmitted energy. We therefore do not go further on the side

transmission analysis for these three experiments.

The evolution of transmitted energy results from the process zone around the fracture tip,

the stress state of the block, the contact condition of transducers and the fracture-wave

interactions. Further investigation is necessary to explain better the evolution of the side

transmitted energy.
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Figure C.19 – GABB-003: time evolution of the signal strength of transmitted compressional
waves on the side. The vertical lines in the left figure correspond to the fracture radius
reconstructed from the diffracted waves shown in the right figure.
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Figure C.20 – GABB-006: time evolution of the signal strength of transmitted compressional
waves on the side. The vertical lines in the left figure correspond to the fracture radius
reconstructed from the diffracted waves shown in the right figure.
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C.5. Evolution of the acoustic transmission parallel to the fracture plane
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Figure C.21 – MARB-009: time evolution of the signal strength of transmitted compressional
waves on the side. The vertical lines in the left figure correspond to the fracture radius
reconstructed from the diffracted waves shown in the right figure.
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Figure C.22 – MARB-010: time evolution of the signal strength of transmitted compressional
waves on the side. The vertical lines in the left figure correspond to the fracture radius
reconstructed from the diffracted waves shown in the right figure.
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