
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Spatiotemporal patterns of urbanization during the 
last four decades in Switzerland and their impacts on 
urban heat islands

Martí BOSCH PADROS

Thèse n° 8141

2021

Présentée le 20 mai 2021

Prof. D. Licina, président du jury
Dr J. Chenal, Dr S. Joost, directeurs de thèse
Dr S.-E. Rabe, rapporteur
Dr M. Schlaepfer, rapporteur
Dr K. Javanroodi, rapporteur

Faculté de l’environnement naturel, architectural et construit
Communauté d’études pour l’aménagement du territoire
Programme doctoral en génie civil et environnement 





The playground, asphalted and fenced in, is nothing but a pictorial acknowledgment of the

fact that ’play’ exists as an isolated concept in our minds . . . .

In a natural city [ . . . ] play takes place in a thousand places [ . . . ] How can children become

filled with their surroundings in a fenced enclosure! They cannot.

— Christopher Alexander, “A city is not a tree” (1965)
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Abstract
Urbanization is nowadays a global phenomenon which is increasingly concentrating the

world’s population in cities. In Switzerland, recent decades have seen an unprecedented loss

of arable land due to urbanization, which has triggered amendments in the spatial planning

laws with the aim of promoting urban densification. Nevertheless, despite remarkable efforts,

the environmental impacts of distinctive urban patterns such as compact cities and urban

sprawl remain poorly understood. One of the most remarkable environmental impacts of

urbanization is the urban heat island effect, a phenomenon by which urban temperatures are

warmer than in its rural surroundings. Central Europe, and therefore Switzerland, is among

the regions in the world where temperatures are rising faster and the urban heat island effect

is most prominent, which represents a central challenge for spatial planning. Most studies

suggest that the urban heat island effect can be aggravated in compact cities, especially when

considering the larger share of urban dwellers that are exposed to the highest temperatures.

At the same time, the literature on the subject has seen a growing development of mitigation

strategies, which suggest that the urban heat island effect can be significantly alleviated by an

adequate planning of the building materials and urban green spaces.

This doctoral dissertation intends to address the issues expressed above by performing a

quantitative evaluation of the spatiotemporal patterns of urbanization in Switzerland and

their impact on the urban heat island effect. To that end, the thesis adopts a landscape ecology

perspective to quantify urban patterns and to spatially simulate the biophysical processes

that underpin the urban heat island effect. The first article presents PyLandStats, an open-

source library to compute landscape metrics in a repeatable and reproducible manner. In the

second article, such a library is used to evaluate the spatiotemporal patterns of urbanization

observed in the urban agglomerations of Bern, Lausanne and Zurich from 1980 to 2016.

The results reveal that the outer zones of Bern and Lausanne are still undergoing diffusive

urban expansion, whereas infill development is the dominant growth mode in both the inner

and outer zones of Zurich. The thesis follows with the development of a spatially-explicit

method to simulate urban heat mitigation using a recent model of urban cooling based on

three biophysical mechanisms, namely tree shade, evapotranspiration and albedo. The study

introduces an automated procedure to calibrate the parameters of the model, and shows that

the proposed approach can outperform regression models based on remote sensing features.

Then, in the fourth article, such an approach is applied to Lausanne in order to evaluate heat

mitigation in a variety of urban greening scenarios which modify both the abundance and

spatial configuration of the tree canopy cover. The simulations suggest a potential alleviation
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of the maximum nighttime temperatures of 2°C, which represents a major reduction of the

human exposure to the urban heat island effect.

Finally, a concluding chapter summarizes the main contributions of the dissertation and

reviews key implications for urban planning in Switzerland. Overall, rather than prescribing

urban densification as the customary strategy for spatial development, land use regulations

and local plans should incorporate spatially-explicit evaluations of the ecosystem services

provided by urban green spaces. Future research should extend the proposed approach to

include further ecosystem services and explore trade-offs and spatially design solutions.
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1 Introduction

The world’s population is undergoing an unprecedented trend of migration to urban areas.

While, in 1800 roughly 5% of the world population lived in cities (United Nations, 1980, Table

3, page 7), recent estimates (United Nations, 2015) state that currently one out of two people

lives in cities, and this proportion is expected to reach 60% by 2030. Although such trend

seems to indicate that at a global scale human activity is becoming increasingly concentrated,

the local densities of most urban agglomerations have been decreasing (Angel et al., 2005; Seto

et al., 2011, 2012; Fragkias et al., 2013). At the same time, the degree and timing of such urban

density downturn varies considerably among different regions of the world. By the end of the

twentieth century, densities in cities of developing countries were found to be around three

times lower than their counterparts in industrialized countries, with significant differences

in the rate of density decline. However, many of such countries have recently experienced

abrupt economic development accompanied by urbanization at declining densities, which

suggests a global connection between these phenomena (Seto et al., 2014).

The first large-scale manifestations of urban migrations can be attributed to the industrial

revolutions in Great Britain, where the poorest segment of the rural population migrated

to the emerging industrial settlements (Hall and Tewdwr-Jones, 2010, pages 12-18). The

rapid densification and posterior suburban expansion were actually closely linked, since “the

same factories that helped create wealth for a rapidly expanding middle class also created

pollution and overcrowding” (Bruegmann, 2006, pages 25-27). Consequently, the concurrent

development of cheaper modes of transportation allowed such middle class to migrate towards

the outskirts. Such pattern is commonly referred to as urban sprawl, and was first observed in

London around 1870, and replicated then in Paris, and shortly after in North-American cities,

in an even more abrupt way. Despite the fact that it lacks an accepted definition (Burchell

et al., 1998; Galster et al., 2001), urban sprawl has been a persistent feature of post-industrial

urbanization. As noted by Bruegmann (2006) “as cities have become economically mature

and prosperous, they have tended to spread outward at a decreasing densities” (page 18).

Between 1940 and 1969, urban sprawl transformed in the United States three times the amount

of converted land during the previous 30 years. Throughout the following decade, the suburbs

1



Chapter 1. Introduction

became undoubtedly the main population hosts of the U.S. as 95% of its demographic growth

took place in suburban areas (Gillham, 2002). This situation, is nevertheless not exclusive to

North America but rather a global challenge. In the begining of the 21st century the amount

of land occupied by cities roughly accounted for a 3% of the world’s arable land, but with

current demographic prospects at decreasing urban densities it might rise to as much as

5-7% by 2030 (Angel et al., 2005, 2011; Seto et al., 2011, 2012; Fragkias et al., 2013). Although

the numbers might still appear relatively small, the environmental footprint of cities has

significant implications at the global scale, for their functioning produces 78% of the earth’s

greenhousegases (Grimm et al., 2008).

One of the major impacts of urbanization is the urban heat island effect, a phenomenon by

which urban temperatures are warmer than in its non-urbanized surroundings (Oke, 1973,

1982; Arnfield, 2003; Voogt and Oke, 2003; Grimmond, 2007; Phelan et al., 2015). Although

the term urban heat island (UHI) first appeard in the 1940s (e.g., Balchin and Pye, 1947),

evidence of higher air temperatures in the city than in the surrounding countryside was first

introduced by Luke Howard in the first half of the nineteenth century (Howard, 1818). The

main physical explanations for the UHI effect are a combination of the increased absorption of

solar radiation of artificial surfaces, reduced evapotranspiration, anthropogenic heat releases

and low ventilation (Oke, 1982; Taha et al., 1988; Taha, 1997; Phelan et al., 2015).

Recent estimates show that annual mean air temperatures in urban areas are up to 4 °C warmer

than in its rural surroundings (Oleson et al., 2011). In European cities, the maximum UHI

intensity ranges from 1 to 10 °C, with an average maximum value of 6 °C (Santamouris, 2016).

With the ongoing global rise of temperatures and expansion of urban areas, the magnitude of

the UHI effect is expected to intensify, which will increase extreme heat risks for a large share

of the future urban population (Meehl and Tebaldi, 2004; Huang et al., 2019). Therefore, the

mitigation of urban heat has become a key research and planning priority (Arnfield, 2003; Gago

et al., 2013; Akbari and Kolokotsa, 2016; Kabisch et al., 2016; Deilami et al., 2018; Grădinaru

and Hersperger, 2019; Geneletti et al., 2020).

1.1 Context and motivation: urban sprawl, spatial planning and ur-

ban heat islands in Switzerland

Likewise many developed countries, urbanization has been a major force of landscape change

in Switzerland, especially in the Central Plateau region. Between 1985 and 2009, the extent

of urban areas expanded by 23.4%, which represents an increase from 6.0% to 7.5% of the

proportion of total surface area in Switzerland (SFSO, 2013). During the same period, the

average surface of built-up area per inhabitant has increased to 407 m2, exceeding the target

of 400 m2 per inhabitant set by the Swiss Federal Council to ensure an efficient use of land

resources (Swiss Federal Council, 2012). Overall, the urban growth observed since the second

half of the twentieth century in Switzerland has been characterized by a dispersed and low-

density expansion of urban areas, matching most of the connotations of urban sprawl (Jaeger
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and Schwick, 2014).

In line with the federalist government structure, the Swiss spatial planning system is dis-

tributed between the federal state, the 26 cantons and 2495 municipalities. The federal state

specifies the framework legislation and coordinates the spatial planning activities of the can-

tons, while cantons check the compliance of municipal development plans with cantonal and

federal laws. With some exceptions, municipal administrations are in charge of their local

development plans, namely the land use plan and building ordinance, and might therefore

be viewed as the most important spatial planning entities. In order to prevent urban sprawl

and ensure that land is used economically, the Swiss Federal Act on Spatial Planning of 1979,

municipalities were required to provide land use plans, which specify the boundaries between

building and non-building zones. While the designation of building zones have generally been

able to effectively manage the spatial development of the largest Swiss urban agglomerations

(Gennaio et al., 2009), the Federal Act has not prevented the extension of built-up areas in

Switzerland, mainly because small and mid-sized municipalities with enough available farm-

land can designate new building zones almost entirely autonomously (Mann, 2009; Jaeger and

Schwick, 2014; Rudolf et al., 2018). Forecasts based on the current urbanization trends predict

significant increases of urban land use demands over the next decades, mostly at the expense

of agricultural land located at the fringe of existing urban agglomerations (Price et al., 2015),

which might result in a reduction of recreation opportunities, crop production, biodiversity

and increased flooding risk and heat island effects (Gerecke et al., 2019). Nonetheless, the

foregoing predictions might be challenged by a major revision of the Federal Act in 2013, which

limits the amount of building zones that municipalities can designate and encourages infill

development and densification by means of tax incentives (ARE, 2013).

Central Europe, and therefore Switzerland, is among the regions where extreme heat events

have become more frequent in recent decades (Swiss Academy of Sciences, 2018; National

Center for Climate Services, 2018). Future climate scenarios for Swiss urban areas forecast a

notable increase in the number of tropical nights, i.e, where the temperature does not sink

below 20 °C (Burgstall, 2019). In view of such a situation, many Swiss municipalities and

cantons have started incorporating adaptation strategies in their planning framework (FOEN,

2018). However, most of the hitherto measures correspond to generic recommendations to

raise awareness among the population, urban planners and decision makers. Therefore, little

is known about how the urban densification promoted by the new Swiss regulations might

impact the UHI effect or urban ecosystem services in general.

1.2 Thesis goal and research objectives

The main goal of this thesis is to spatially evaluate the impacts of urban form on the UHI effect.

Such an endeavor is divided into three key objectives:

1. Quantify the landscape changes associated to urbanization that have taken place in
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Switzerland, and most importantly, in the main Swiss urban agglomerations. This is a

required preliminary step to have a quantifiable basis against which variations in the

observed UHI effect can be assessed.

2. Develop reusable methods to spatially model the UHI effect and map the potential

urban heat mitigation that can be attained in a given urban agglomeration.

3. Based on the outputs of the first two, is to formulate distinct future urbanization scenar-

ios and spatially evaluate how each might affect the UHI effect as well as the urban heat

mitigation potential.

These inquiries are of major relevance to the urbanization context of Switzerland reviewed

above. More precisely, the results are expected to map the heat mitigation provided by the

existing urban green infrastructure, and therefore estimate the potential effects of replacing

urban green patches by artificial surfaces. Additionally, the methods and tools developed to

attain the results are intended to support urban planning, by allowing planners and decision

makers to spatially quantify the impacts of potential interventions, explore alternatives and

select the most desirable configurations. Altogether, in line with the foregoing endeavors, this

thesis intends to test the central hypothesis that the urban patterns that have the greatest heat

mitigation potential are incompatible with severe densification and infill development of the

existing Swiss urban agglomerations.

1.3 State of the art and research gaps

1.3.1 Characteristics and impacts of urban sprawl

The first reference to the term urban sprawl was made by Earle Draper, as part of a conference

of urban planners of the southeastern United States in 1937. The topic acquired striking

relevance during the second half of the twentieth century, and ever since then, it has been

continuously spreading to a wide range of domains. In one of the early efforts to characterize

urban sprawl, Harvey and Clark (1965) criticized the lack of accepted definitions of the term

and delineated three physical patterns of sprawl, namely continuous low density, ribbon devel-

opment and leapfrog development. However, besides a set of archetypes, “sprawl is a matter

of degree” (Ewing, 1995, page 520). For instance, to what extent polycentric urban forms might

be considered sprawl is not clear (Gordon and Wong, 1985). On the other hand, sprawl has

also been associated to a dysfunctional spatial segregation of land uses (Burchell et al., 1998).

Despite remarkable efforts to assemble different acceptations of sprawl (Galster et al., 2001),

the research community still fails to agree on a common definition of urban sprawl, especially

since the term can be heard from very diverse practitioners and its interpretation is likely to

depend on the discipline and the context of application. Be that as it may, some prominent

characteristics of sprawl reappear often in the literature, such as scattered development, low

density, decentralization to the urban periphery, segregation of land uses and low accessibility.
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From the semantic ambiguity of urban sprawl follows a lack of consensual methods to measure

it. In consonance with the preceding traits, the prevalent approach is to treat sprawl as a

multidimensional phenomena, and several dimensional decompositions have been proposed

throughout the literature. Some of them are rather simple, such as the four dimensions pro-

posed by Ewing et al. (2002), i.e., density, land use mix, centering and accessibility, whereas

Galster et al. (2001) unravel sprawl further and identify eight dimensions, i.e., density, continu-

ity, concentration, clustering, centrality, nuclearity, land use mix and proximity. Nevertheless,

such decompositions seem fuzzy, even for the simplest cases, e.g., the accessibility to a given

facility is related to the density, the number of activity centers and the land use mix. In point

of fact, when computing the dimensions of sprawl for the largest metropolitan areas of the

United States, concentration, proximity clustering and centrality are significantly correlated in

Galster et al. (2001), and the same holds for density and connectivity in Ewing et al. (2002).

When calculating aggregate indices, such intricateness might result in overemphasizing cer-

tain features of sprawl. In the discussion between different views towards urban sprawl of

Ewing et al. (2014), some authors argue that many of the research results rely heavily on how

the sprawl indices are constructed, which is “highly subjective and depend upon very specific

and not necessarily generally accepted definitions of sprawl” (page 15).

While the multiplicity of perspectives adopted to investigate urban sprawl highlights the

relevance of the topic, the involved ambiguity paves the way for incomplete assessments,

endogenous biases and premature claims, which are often accused to be politically motivated.

The vast report of the Real Estate Research Corporation (RERC, 1974) has been a noteworthy

source of controversy. For instance, Altshuler et al. (1979) accounted that it includes few

rigorous calculations on the car use decrease, while Windsor (1979) concluded that the claimed

energy savings in their alternative scenarios are more a result of their assumptions rather than

of the density. Also as response to the report, Gordon and Wong (1985) pointed to the evidence

of reduced trip lengths of the suburban residents of large polycentric cities to suggest that as

cities grow, travel demands are accommodated through decentralization of the employment

centers. More broadly, Haines (1986) determined that studies that consider only centralization

and sprawl resolve that centralization is the most energy-efficient option, whereas studies

that additionally consider polycentric urban forms favor the latter. Similar controversies arose

from the global strong correlations between density and gasoline consumption established

empirically by Newman and Kenworthy (1989), mainly because density alone neglected the

complexity and diversity of the analyzed urban patterns. Overall, in a thorough review of

empirical studies, Hall (2001) discerned that literature findings relating transportation and

urban form when compared with each other are equivocal, and resolved that travel is globally

more linked to income than density.

Although the sprawl debate has focused more on transportation issues, additional environ-

mental implications of urban form require careful consideration. Urban areas exert significant

influence on its surrounding ecosystems and the services that they provide to humans and

other living beings (Bolund and Hunhammar, 1999). While many studies have reported

empirical correlations between environmental indicators and aggregate measures of urban-
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ization such as density or the extent of the built-up area, such an approach presents two key

methodological shortcomings (Alberti, 1999). On the one hand, disagreement in the planning

literature on the environmental impacts of alternative urban development patterns can be

attributed to how environmental performance is defined and measured. The environmental

performance of cities concerns the effects of their functioning on the surrounding environ-

ment, which includes direct transformations of the physical landscape patterns, the use of

natural resources, the release of emissions and wastes as well as impacts on human health and

well being (Alberti, 1996). On the other hand, aggregate measures do not reflect the complexity

and diversity of existing urban forms, and are strongly affected by the different definitions of

city boundaries. For instance, the comparative study of five UK cities of Tratalos et al. (2007)

associated higher density to poorer urban biodiversity and environmental services such as

carbon sequestration, storm water interception or alleviation of maximum temperatures, yet

sites with similar densities show substantial variability on the environmental performance,

even within the comparable conditions among the UK. Overall, the effects of urban density

and form are hard to isolate since their impact on environmental performance is mediated by

the local environmental characteristics of the site.

1.3.2 The effects of urban patterns and environmental performance

The approach to quantifying urban sprawl and its costs reviewed above, which is characteristic

of the viewpoints of urban economics and the regional sciences, has been prevalent among the

early studies of urban sprawl (Bosch et al., 2019). In order to assess the impacts of urban sprawl,

such studies often explore the empirical correlations between the alleged sprawl indices and

a variety of indicators of travel behavior, environmental performance and public health.

Nevertheless, such an approach presents two main drawbacks when it comes to evaluating

the environmental impacts of urban sprawl. On the one hand, as discussed above, many of the

aggreagate measures of urban form used in the literature of urban economics and sprawl do

not reflect the spatial complexity of contemporary cities. On the other hand, the way in which

environmental systems respond to the disturbances of urbanization shows complex nonlinear

dynamics, such as thresholds, reciprocal feedback loops, time lags, resilience, heterogeneity,

surprises and legacy effects (Alberti, 1999; Collins et al., 2000; Liu et al., 2007). Therefore

complexity of such interactions can hardly be apprehended by means of statistical methods.

Quantifying urbanization with spatial metrics from landscape ecology

Landscape ecology is the study of how the spatial pattern of landscapes influences the ecologi-

cal processes that occur upon them (Forman and Godron, 1981; Forman et al., 1986; Turner,

1989). Urban landscapes can be characterized as a mosaic of land use patches. From this

perspective, measuring urban sprawl can benefit from a set of spatial metrics from landscape

ecology (Torrens and Alberti, 2000), which serve to quantify two main characteristics of the

urban landscape, namely the geometric configuration of patches and their functional com-

position. From the reviewed definitions, an urban landscape might be considered sprawling
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when its configuration is irregular and fragmented and its land use composition is segregated

(Frenkel and Ashkenazi, 2008).

Urbanization throughout the world has happened under very different geographical con-

straints, historical periods and available technologies, resulting in distinctive spatial signatures.

However, despite the apparent complexity and diversity of cities and regions, spatial metrics

from landscape ecology suggest that remarkable regularities exist among the spatio-temporal

evolution of their land use patterns. In a comparative study of four Chinese cities, Seto and

Fragkias (2005) determined that in spite of significant differences on the initial urban struc-

tures, economic context and local policies, synergies exist in terms of shape, size and growth

rates of land use patches. Similarly, Jenerette and Potere (2010) explored a global set of 120

cities and resolved that while individual cities show continued increases in complexity and

fragmentation of land use patches, the inter-city diversity of patterns diminishes, suggesting a

tendency towards global urban homogenization. After a thorough comparison of hypotheses

regarding the spatio-temporal patterns of urban land use change, Liu et al. (2016) determined

that under the contemporary Western socioeconomic context, urbanization globally leads to

increasing dispersion of land use, structural fragmentation and shape complexity. Notably,

such urban landscape significantly matches many of the connotations of sprawl.

Unlike many of aggregate indices of urban sprawl reviewed above, landscape metrics are

inherently conceived to represent complex and fractal spatial patterns, such as those observed

in contemporary cities (Frankhauser, 1990; Batty and Longley, 1994; Frankhauser, 1994).

Furthermore, while multidimensional indices of sprawl are often hard to interpret and relate

to environmental performance, a key advantage of spatial metrics is that they are also good

predictors of the ecosystem’s ability to support important ecosystem functions (Turner and

Gardner, 2015).

Characteristics of the spatial and temporal scales in urban ecosystems

Urban ecosystems are governed by the same ecological laws as rural and natural environments,

with the main difference being the relative importance of anthropogenic processes (Niemelä,

1999). Nevertheless, the study of urban landscapes has received little attention among ecolo-

gists throughout most of the 20th century. In the context of rapid rates of land use change due

to urbanization, the urge to understand such interactions has recently fostered the emergence

of the field of urban ecology, which integrates the theory and methods of both natural and

social sciences to study urban ecosystems (Collins et al., 2000; Grimm et al., 2008; Wu, 2014;

McPhearson et al., 2016). Like other ecosystems, urban ecosystems constantly exposed to

changes. Urbanization results in major disturbance of the resource flows by altering the land

use and cover, biogeochemical cycles, local climatic conditions, hydrological processes and

biodiversity. Therefore, anthropogenic changes in urban areas are likely to occur in much

shorter time scales (Collins et al., 2000).

When modeling cities as ecosystems, two central issues arise regarding the spatial scale. On
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the one hand, as urban areas expand, the demarcation between urban and rural spaces is

better characterized by a continuum than by a dichotomy, which can result in equivocal

comparison of environmental impacts of cities (Stewart and Oke, 2006). The reliance upon

the definitions of metropolitan areas and administrative boundaries is also problematic, since

they are constructed manually based on subjective criteria that does not necessarily match

the actual spatial extent of cities, and can thus lead to misleading outcomes (Rozenfeld et al.,

2008; Tannier and Thomas, 2013; Oliveira et al., 2014; Liu et al., 2014). In order to address the

issue of the spatial extent, the environmental gradient paradigm can be applied to study the

urban-rural continuum by evaluating the spatial variation of the environmental characteristics

as one moves progressively from the highly-developed urban cores to the less intense suburbs

until the rural and natural hinterlands (McDonnell and Pickett, 1990). On the other hand,

when compared to natural landscapes, urban areas tend to show greater patchiness and spatial

heterogeneity. Land cover maps often rely on coarse-scale classifications aimed at separating

the human and natural components of systems, yet such an scheme fails to characterize how

human and natural components are strongly interspersed in urban areas. For instance, some

classifications distinguish residential land uses according to the density of buildings but ignore

the associated abundance and variety of vegetation types and building materials, which can

have a strong influence on the flux of water, carbon, nutrients, and energy (Band et al., 2005).

With the aim of better understanding how urban landscapes interact with ecological processes,

urban ecologists have devised frameworks to quantify the fine-scale heterogeneity of the

built and natural components of cities. The work of Ridd (1995) suggests representing the

biophysical composition of urban cover in terms of its proportion of vegetation, impervious

and soil components, and shows how these can be mapped using remote sensing. Similarly,

Cadenasso et al. (2007) propose a reconceptualization of urban land use which consists of six

main features, namely coarse-textured vegetation (trees and shrubs), fine-textured vegetation

(herbs and grasses), bare soil, pavement, buildings, and the building typology. Finally, Zhang

et al. (2013) highlight the importance of a multiscale perspective and present hierarchical

model of the structure of urban landscape pattern. By considering six nested hierarchical

levels (i.e., individual plant, plant population, land-cover (or local ecosystem), land-use,

landscape and region), multiple natural and anthropogenic processes can be modeled at

their appropriate level, which allows assessing how multiple anthropogenic controls from

different scales modify the environmental factors that constrain ecosystem functions, and

thus facilitate linking ecosystem processes and socioeconomic drivers.

Spatial modeling of urban ecosystem services

As reviewed above, ecological research in cities is concerned with how anthropogenic changes

affect the ecological processes that take place in urban environments. Understanding the links

between spatial landscape patterns and ecosystem processes is crucial in order to develop

planning strategies that maximize the provision of beneficial ecosystem services at the urban

scale, which include (among others) reduction of air pollution, alleviation of maximum tem-

peratures, absorption of storm water, noise reduction, carbon sequestration, improvement of
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aesthetic and cultural values as well as the preservation of ecological habitats and biodiversity

(Bolund and Hunhammar, 1999; Gómez-Baggethun and Barton, 2013).

Given the drawbacks of using aggregate measures to evaluate complex phenomena such as

urban ecosystems, using integrated and spatially-explicit models becomes crucial in order to

understand the links between landscape patterns, biophysical and socioeconomic processes

(Bagstad et al., 2013; Haase et al., 2014; Turner et al., 2016; Costanza et al., 2017). While there

exists a wide range of models to evaluate ecosystem services, very few have been implemented

in a spatially-explicit manner. Available open source platforms of spatially-explicit models

of ecosystem services include the ARIES (Villa et al., 2014), MIMES (Boumans et al., 2015)

and InVEST (Sharp et al., 2020) platforms. The latter is being adapted into the Urban InVEST

platform, which focuses on modelling the ecosystem services that are most relevant at the

scale of urban agglomerations. In the beginning 2020, NatCap released the first two urban

models, which focus on urban flood risk mitigation and urban cooling respectively. The study

of Kadaverugu et al. (2020) applied the flood risk mitigation model to spatially quantify the

flood risk mitigation provided by the urban green spaces of Hyderabad, India, and found that

they retain 44-50% of the precipitation. Nonetheless, slight additional increases of rainfall

intensity can result in major water run-off generation with potential major economic damages,

which highlights the importance of mitigation measures such as the promotion of urban

green infrastructure, open space as well as the preservation of urban water bodies and their

connectivity. In the study of the impacts of urban form on heat mitigation in Milan, Italy,

Ronchi et al. (2020) use the urban cooling model to 13 urban districts characteristic of four

different historical planning periods, with distinct characteristics in terms of green areas,

permeability, built-up footprint, and tree density and cover. Their results suggest that the

proportion of permeable surfaces, size of green areas and the proportion of tree cover have the

most significant positive effects in the cooling capacity of the district, whereas the footprint

and volume of buildings have the most notable negative influence. Finally, Kadaverugu et al.

(2021) apply the urban cooling model to evaluate the heat mitigation in the present and future

plausible scenarios for Nagpur City, India. Their simulations suggest that promoting urban

green spaces results in a 0.5 °C decrease of the average temperature of the study area, with

important impacts on the energy demand for cooling indoor environments.

1.3.3 Urban green infrastructure and heat mitigation

Urban green infrastructure has been identified as a flexible, cost effective and broadly applica-

ble approach to provide urban cooling as well as other benefitial ecosystem services to urban

dwellers (Gill et al., 2007; Bowler et al., 2010; Young, 2010; Block et al., 2012; Gago et al., 2013;

Zardo et al., 2017; Koc et al., 2018; Santamouris et al., 2018). However, the contribution of

urban green spaces to urban heat mitigation is complex and is affected by both its abundance

and spatial configuration (Kong et al., 2014; Li et al., 2017; Zhou et al., 2017; Jiao et al., 2017;

Yan et al., 2019; Yu et al., 2020). While increasing the abundance of urban green spaces shows

a very consistent relationship with reduced temperatures, contradicting results have been
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reported regarding the cooling effects of spatial configuration. In fact, several studies have

found that patterns with patches with complex shapes and further edge density between

natural and artificial patches lead to greater heat mitigation (Zhou et al., 2011; Rhee et al.,

2014; Maimaitiyiming et al., 2014; Estoque et al., 2017), whereas other studies resolve the

opposite (Li et al., 2012; Connors et al., 2013; Fan et al., 2015; Myint et al., 2015). Similarly,

larger patches of urban green spaces are usually associated with increasing heat mitigation,

yet such a relationship is poorly understood as it displays scale dependencies and nonlinear

thresholds (Chang et al., 2007; Bowler et al., 2010; Kong et al., 2014; Jaganmohan et al., 2016;

Ziter et al., 2019; Yu et al., 2020; Jung et al., 2021). Additionally, some results suggest that the

cooling effect of the patch shapes depends on their size, as smaller patches with increased

edge provide a longer interface through which the cool air can be transported, yet larger green

spaces can form stable microclimates that also have a positive cooling effect (Chang et al.,

2007; Jaganmohan et al., 2016; Yu et al., 2020). Overall, as suggested by Zhou et al. (2017), the

foregoing contradicting results are related to how the cooling mechanisms of trees, namely

shading and evapotranspiration, operate in urban areas, which strongly depends on the exist-

ing urban fabric and canopy cover as well as the local climatic context (Li et al., 2017; Yu et al.,

2018; Sun et al., 2019; Yu et al., 2020; Wang et al., 2020a,b).

The effects of the intensity and configuration of urban patches on the UHI effect and human

exposure to such additional heat also present complex trade-offs that require considering the

specific circumstances of each region of study. In the case study for the Strasbourg-Kehl urban

region (France-Germany), Kohler et al. (2017) determine that realistic planning scenarios of

urban sprawl and compact cities show no significant differences in the predicted UHI intensity.

Nonetheless, as noted by Lemonsu et al. (2015), this might be largely due to the fact that

such scenarios do not change the morphology of the historic city center, where maximum

temperatures are usually observed. In the study of distinct urban sprawl and compact city

scenarios in Paris, Lemonsu et al. (2015) resolve that urban sprawl results in lower nighttime

UHI because of the abundance of low-density vegetated outskirts, while the daytime UHI is

lower in the compact city scenario because of the limited penetration of solar radiation. In

a similar case study for Beijing, Yang et al. (2016) determine that the compact city scenario

can enhance the UHI magnitude while sprawl scenario can reduce it. While both studies

conclude that human exposure to the UHI effect is aggravated in the compact city scenarios

because of the large share of urban dwellers residing at the city center, Yang et al. (2016)

further find that urban sprawl produces a larger regional warming effect with greater thermal

perturbation in the vertical extent, which results in higher potential for increased instability at

the planetary boundary layer height. Overall, the design of urban heat mitigation solutions

requires place-based awareness that takes into account the existing urban fabric as well as the

larger synoptic climate context (Georgescu et al., 2015).
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Planning the urban green infrastructure for ecosystem services and heat mitigation

The effects of the spatial pattern of urban green infrastructure on heat mitigation highlight

the importance of spatial planning for urban resilience and climate adaptation. As reviewed

above, the complexity of such a relationship is evidence that such a planning endeavor cannot

be addressed with aggregate measures and thus requires an explicit consideration of space.

The work of Locke et al. (2010) presents a spatially-explicit model to prioritize tree planting

sites based on multiple criteria, which includes the alleviation of air pollution, flood risks,

maximum temperatures as well as the improvement of the biodiversity, public health and

neighborhood beautification. Similarly, Bodnaruk et al. (2017) use the i-Tree suite of tools

Hirabayashi et al. (2011) to explore the tradeoffs between ecosystem services and benefits

between different tree planting schemes in Baltimore, which comprise the reduction of air pol-

lution and air temperature as well as metrics of heat risk based on the exposure to maximum

temperatures of the urban dwellers, weighted by age groups to account for their different

vulnerabilities to extreme heat. In another application of the i-Tree suite, Lin (2020) propose a

composite index to prioritize tree planting and protection locations based on environmental

and human indicators and design three distinct scenarios that target at optimizing a weighted

combination of such indicators. Their results show that small differences in the weightings can

lead to substantial changes in the spatial distribution of the priority areas, stressing the need

for transparency, as well as engagement and communication among stakeholders, the public

and policy makers (Müller and Burkhard, 2012; Kabisch et al., 2016). Finally, Werbin et al.

(2020) present heat vulnerability index specific to the city of Boston to support and inform

decision-making for planting new trees. Such an index is based on sociodemographic and

land cover data, and is implemented as part of an interactive web application that includes ad-

ditional information of potential tree pests and diseases, suitability of species, land ownership,

maintenance tips, and alternatives to tree planting.

Nevertheless, the foregoing studies overlook the effects of spatial configuration reviewed

above, and thus might prevent the achievement of more efficient greening strategies. For

instance, Jaganmohan et al. (2016) find that increasing the complexity of smaller green spaces

has a negative effect on their cooling efficiency but a positive effect in larger green spaces. Such

a threshold effect is in consonance with the detailed study of the UHI in Madison, Wisconsin,

by Ziter et al. (2019), which reveals that canopy cover in excess of 40% has larger cooling

effects of the daytime urban heat. Accordingly, neighborhoods with intermediate amounts

of impervious surfaces and 40% canopy cover could offer the greatest marginal increase in

climate mitigation for urban residents. Moreover, the results of Ziter et al. (2019) reveal that

the cooling effect of the tree canopy is lower at fine scales, likely because very small canopy

areas cannot be isolated from the surrounding meteorological conditions. Finally, the study

of the UHI of Seattle and Baltimore by Jung et al. (2021) also confirm the existence of such

a threshold but further reveal that the relationship between patch size and its cooling effect

might be hump-shaped, which suggests that an increase of canopy cover of the same area in

moderate canopy cover areas might be less effective at mitigating heat than the same increase
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of canopy cover area in either a low or a high canopy cover area.

1.4 Conceptual framework and theoretical background

The conceptual framework adopted in this thesis is concerned with how a set of features X

influences a set of targets Y . Following the scientific method, the aim of the framework is the

search for empirical regularities between X and Y . From this perspective, the central question

of this thesis can be expressed as how urban form, represented by a set of the features X ,

influences the UHI effect, measured by a set of targets Y .

Such an inquiry belongs to the more general quest of evaluating the environmental perfor-

mance of distinct urban forms. Based on the literature reviewed above, three key methodolog-

ical considerations arise, which are addressed as follows:

• Contemporary cities are complex spatial entities. In order to be able to assess their

spatial complexity, and to avoid the semantic ambiguity regarding the definitions and

indices of urban sprawl, spatial metrics from landscape ecology are adopted in this

thesis as the main tool to quantify the spatial patterns of urban areas.

• The choice of an appropriate spatial scale is central to the study of cities. The ecolog-

ical concept of spatial scale encompasses both extent and grain (Forman et al., 1986;

O’Neill et al., 1986; Wiens, 1989; Turner, 1989). To select the appropriate spatial extent

to evaluate the environmental performance of urban areas, the approach in this thesis is

inspired by the environmental gradient paradigm, evaluating the spatial variation of the

environmental characteristics along the urban-rural continuum without assuming any

predefined administrative boundary. Regarding the issue of spatial grain, most of the

available land use and land cover classifications fail to represent the fine-scale hetero-

geneity of the built and natural components of cities. To overcome such a shortcoming,

this thesis builds upon several schemes to classify urban structures have been developed

with the specific purpose of studying the UHI effect (Stewart and Oke, 2012; Larondelle

et al., 2014; Hamstead et al., 2016), which define composite classes that represent com-

binations of built and natural features such as the building volume, abundance of trees

or fraction of pervious/impervious surfaces. Finally, cities influence and are influenced

by environmental processes operating at multiple scales. Therefore, understanding

such interactions requires crossing spatial and hierarchical scales (Wu and Loucks, 1995;

Alberti, 1999; Zhang et al., 2013)

• Models are the central tools to scientific inquiry used in this thesis. The phenomena that

they intend to represent, namely how biophysical and socioeconomic processes operate

in urban areas, show complex behaviors in space and time. Therefore, the employed

models must fulfill two major requisites. First, in view of the spatial complexity of urban

landscapes, aggregate models and results cannot properly address the relationship

between the spatial patterns and its environmental performance, which highlights the
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Figure 1.1 – Conceptual framework to scientific inquiry used in this thesis. Illustration of the
urban transect by Dover, Kohl & partners, downloaded from the Center for Applied Transect
Studies (transect.org).

need for an explicit representation of space in the inputs, functioning and outputs of

the models. Secondly, the models need to be able to advance the domain knowledge

and ultimately inform urban planning and decision making. From this perspective,

models that incorporate an explicit representation of the underlying biophysical and

socioeconomic processes present a major advantage with respect to statistical and black-

box approaches such as artificial neural networks or similar machine learning models,

which is that the parameters of the models can be straightforwardly interpetedin terms

of their biophysical and socioeconomic meaning. Such an aspect of the models is crucial

to improve the understanding of the complex couplings between the human and natural

components of urban systems.

A schematic illustration of the conceptual framework to scientific inquiry of this thesis is

shown in Figure 1.1.

1.5 Outline

The remainder thesis is organized in five main chapters, which are outlined below:

• Chapter 2 presents PyLandStats, an open-source library developed with the aim of

computing landscape metrics in a reusable and reproducible manner, which can be

straightforwardly included as part of complex and automated computational workflows.

• In Chapter 3, the PyLandStats library is used to evaluate the spatiotemporal patterns of

13
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urbanization in the Swiss urban agglomerations of Bern, Lausanne and Zurich over the

period from 1980 to 2016. Fractal analysis of the area-radius relationship of the urban

agglomeration is employed to separate it into two characteristic extents, namely the

inner and outer zone. The computed landscape metrics and growth modes suggest that

the two extents show very distinct urbanization patterns. More precisely, the inner zone

of all agglomerations is dominated by infilling, whereas the outer zones of Bern and

Lausanne are undergoing a diffusive urban expansion.

• Chapter 4 develops a reusable spatially-explicit approach to simulate urban heat mit-

igation with the InVEST urban cooling model, which is based on three biophysical

mechanisms, namely tree shade, evapotranspiration and albedo. An automated pro-

cedure is proposed to calibrate the parameters of the model to best fit temperature

measurements from monitoring stations. The simulations performed in the urban

agglomeration of Lausanne show that the calibrated model can outperform regression

approaches based on remote sensing features. Additionally, a key advantage of the pro-

posed approach is that the calibrated model can be used to evaluate synthetic scenarios

such as master land use plans, urbanization prospects and the like.

• In Chapter 5, the foregoing workflow to simulate urban cooling is exploited to evaluate

the potential heat mitigation that can be achieved by increasing the tree canopy cover

in the urban agglomeration of Lausanne. The approach couples the cadastral land

use/land cover map with a high-resolution tree canopy map to discern locations of the

current urban fabric where the tree canopy can be increased, and then makes use of

the calibrated InVEST urban cooling model to assess the potential heat mitigation. The

results suggest a potential alleviation of the maximum nighttime temperatures at the

city center of 2 °C, with substantial impact on the human exposure to extreme heat.

• Chapter 6 summarizes the research contributions and concludes by reviewing implica-

tions for urban planning as well as perspectives for future research.
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2 Quantifying spatial patterns of land-
scapes

As reviewed in the introductory chapter, landscape metrics have been widely applied to

quantify the spatial patterns of urban areas and evaluate the landscape transformations

associated to urbanization. Nevertheless, at the time when the study of the urbanization

patterns of this thesis was conceived, none of the available tools to compute landscape metrics

fulfilled key operational requirements in terms of their use in interactive computational

environments and their inclusion as part of automated computational workflows. In order

to address such a shortcoming, this chapter presents PyLandStats, an open-source library

to compute landscape metrics using the Python programming language, which has been

published in the following article:

Bosch, M. (2019a). PyLandStats: An open-source Pythonic library to compute landscape

metrics. PLoS One, 14(12)

The canditate designed and developed the library and wrote the manuscript.

2.1 Introduction

Landscape ecology is based on the notion that the spatial pattern of landscapes strongly

influences the ecological processes that occur upon them (Turner, 1989). From this perspec-

tive, quantifying the spatial patterns of landscapes becomes a central prerequisite to the

study of the pattern-process relationships. Landscape ecologists often view landscapes as

an heterogeneous spatial mosaic of discrete patches, each representing a zone of relatively

homogeneous conditions, where the size, shape and configuration of patches significantly

affects key ecosystem functions such as biodiversity and fluxes of organisms and materials

(Pickett and Cadenasso, 1995).

Recent decades have seen the development of a series of landscape metrics that quantify

several aspects of the spatial pattern of landscapes (O’Neill et al., 1988; Turner, 1990; McGarigal

et al., 2012). In a context of significant advances in geographical information systems (GIS) and

increasing availability of land use/land cover (LULC) datasets, landscape metrics have been

15



Chapter 2. Quantifying spatial patterns of landscapes

implemented within a variety of software packages (Steiniger and Hay, 2009). The present

article introduces PyLandStats, an open-source library to compute landscape metrics, which

represents an advance over previously available software because of its implementation within

the most popular libraries of the scientific and data-centric Python stack. Additionally, its

modular and object-oriented design allows it to be efficiently used in interactive environments

such as Jupyter notebooks as well as in automated computational workflows, and eases the

maintainability and extensibility of the code.

The remainder of the article describes the structure and use of PyLandStats by presenting

a thorough example analysis case for a sequence of three raster landscape snapshots of the

Canton of Vaud (Switzerland) for the years 2000, 2006 and 2012, which have been extracted

from the Corine Land Cover (Heymann et al., 1994) inventory. The code snippets and materials

to reproduce the figures of the following four sections can be found in the appendices A.1.3,

A.1.4, A.1.5 and A.1.6 respectively.

2.2 Analysis of a single landscape

The basic unit of the PyLandStats library is the Landscape class, which represents the LULC

mosaic of a particular region at a given point in time. A Landscape instance mainly consists

of an array where each position represents the LULC class at the corresponding pixel of the

lanscape.

Since LULC data is most often stored in raster files (e.g., GeoTiff), the easiest way to instantiate

a Landscape object is by passing a path to a raster file as first argument, as in:

> ls = Landscape('path/to/raster.tif')

The above call will use the rasterio Python library in order to read the raster files, and will

extract the pixel resolution and no-data value from the file metadata. Alternatively, Landscape
instances might also be initialized by passing a NumPy array (Van Der Walt et al., 2011) as first

argument, which also requires specifying the x and y coordinates of pixel resolution as a tuple

in the res keyword argument. By default, PyLandStats assumes that zero values in the array

represent pixels with no data. Otherwise, the no-data value can be specified by means of the

nodata keyword argument. A Landscape instance can be plotted at any moment by using its

plot_landscape method. Note that all the plotting methods of PyLandStats make use of the

matplotlib library (Hunter, 2007).

2.2.1 Computing data frames of landscape metrics

Landscape metrics might be classified into two main groups (see the section “List of imple-

mented metrics” of appendix A.1.2 for the list of metrics implemented in PyLandStats, their

classification and their description). The first concerns metrics that provide a scalar value for
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each patch of the landscape, which are often referred to as patch-level metrics. The second

consists of metrics that provide a scalar value that aggregates a characteristic of interest over a

set of the patches. This second group allows for an additional distinction between class-level

metrics, which are computed over all patches of a given LULC class, and landscape-level

metrics, which are those computed over all the patches of a landscape.

For a given Landscape instance, the patch-level metrics can be computed by means of the

compute_patch_metrics_df method as in:

# `ls` is a given `Landscape` instance
> ls.compute_patch_metrics_df()

which will return a pandas data frame (McKinney, 2010) as depicted in Table 2.1, where each

row corresponds to a patch of the landscape with its associated LULC class value and the

computed metrics.

Table 2.1 – Example data frame of patch-level metrics.

patch_id class_val area perimeter perimeter_area_ratio shape_index fractal_dimension euclidean_nearest_neighbor

0 1 115.0 10600.0 92.173913 2.409091 1.129654 1431.782106
1 1 13.0 2600.0 200.000000 1.625000 1.100096 223.606798
2 1 2.0 600.0 300.000000 1.000000 1.011893 223.606798
...

...
...

...
...

...
...

...

203 2 11.0 1800.0 163.636364 1.285714 1.052571 223.606798
204 2 2.0 800.0 400.000000 1.333333 1.069990 223.606798
205 2 14.0 2400.0 171.428571 1.500000 1.079705 282.842712

Similarly, metrics can be computed at the class level by using the compute_class_metrics_df
method as in:

> ls.compute_class_metrics_df()

which will return a pandas data frame as depicted in Table 2.2, where each row corresponds to

a LULC class and each column represents a metric computed at the row’s class level.

Table 2.2 – Example data frame of class-level metrics.

class_val total_area proportion_of_landscape number_of_patches patch_density largest_patch_index total_edge . . .

1 24729 7.701939 193 0.060111 2.069921 1431600 . . .
2 296346 92.298061 13 0.004049 89.451374 1431600 . . .

Lastly, the landscape-level metrics can be computed by using the compute_landscape_metrics_df
method as in:

> ls.compute_landscape_metrics_df()
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which will return a pandas data frame as depicted in Table 2.3, where the only row features the

values of the metrics computed at the landscape level.

Table 2.3 – Example data frame of landscape-level metrics.

total_area number_of_patches patch_density largest_patch_index total_edge edge_density landscape_shape_index . . .

0 321075 206 0.064159 89.451374 1431600 4.458771 9.716931 . . .

2.2.2 Customizing the landscape analysis

While a vast collection of metrics have been proposed over the literature of the last decades,

many of them are highly correlated with one another. As a matter of fact, Riitters et al. (1995)

found that the characteristics represented by 55 prevalent landscape metrics could be reduced

to only 6 independent factors. Therefore, analysis cases tend to consider a limited subset of

metrics. To that end, the three methods that compute data frames of metrics showcased above

can be customized by means of the metrics keyword argument as in:

> ls.compute_class_metrics_df(
metrics=['proportion_of_landscape', 'edge_density'])

which will return a pandas data frame where only the specified metrics will appear as columns.

On the other hand, certain metrics allow for some customization concerning the way in which

they are computed. In PyLandStats, each metric is defined in its dedicated method in the

Landscape class, which includes metric-specific keyword arguments that allow controlling

how the metric is computed. For instance, when computing the edge density (ED), the

user might decide whether edges between LULC pixels and no-data pixels (e.g., landscape

boundaries) are considered, or whether the area should be converted to hectares. By default,

PyLandStats computes the metrics according to the definitions specified in FRAGSTATS v4

(McGarigal et al., 2012) (see also the appendix A.1.7), and therefore does not consider edges

between LULC pixels and no-data pixels, and converts areas to hectares. Nevertheless, the

user might decide to change that by providing the count_boundary and hectares keyword

arguments to the edge_density method as in:

> ls.edge_density()
4.4587713151132915
> ls.edge_density(count_boundary=True)
6.863816865218407
> ls.edge_density(count_boundary=True, hectares=False)
0.0006863816865218407

Similarly, the compute_patch_metrics_df, compute_class_metrics_df, and compute_landscape_metrics_df
accept the metrics_kws keyword argument in the form of a dictionary, which allows set-
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ting the keyword arguments that must be passed to each metrics’ method when comput-

ing the data frames. For instance, in order to compute a class-level data frame with the

proportion_of_landscape as a fraction instead of a percentage, and include the landscape

boundaries in edge_density, the metrics_kws keyword argument must be provided as in:

> ls.compute_class_metrics_df(
metrics_kws={

'proportion_of_landscape': {'percent': False},
'edge_density': {'count_boundary': True}

})

In the above example, the columns of the returned data frame will feature not only the

proportion of landscape and edge density, but all the available metrics instead. In order to

compute a reduced set of metrics, some of which with non-default arguments, both metrics
and metric_kws keyword arguments must be defined. For instance, in the code snippet

below:

> ls.compute_class_metrics_df(
metrics=[

'proportion_of_landscape', 'edge_density', 'fractal_dimension_am'
],
metrics_kws={

'proportion_of_landscape': {'percent': False},
'edge_density': {'count_boundary': True}

})

the returned data frame will be of the form depicted in Table 2.4.

Table 2.4 – Example of a data frame of class-level metrics computed with custom metrics and
metrics_kws keyword arguments.

class_val proportion_of_landscape edge_density fractal_dimension_am

1 0.077019 4.502998 1.129561
2 0.922981 6.819590 1.204003

Note that the metrics and metric_kws keyword arguments work in the same way for the

compute_patch_metrics_df and compute_landscape_metrics_df methods. Addition-

ally, a list of LULC class values might be provided to the classes keyword argument of

compute_class_metrics_df in order to compute the metrics for the specified subset of

classes only. The three keyword arguments are complimentary and might therefore be used in

conjunction. For instance, adding a classes=[1] to the foregoing code snippet would return

a data frame of the form depicted in Table 2.4 but featuring only the first row.
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2.3 Spatiotemporal analysis

Landscape metrics are often applied to assess the spatiotemporal patterns of LULC change

for a given region by computing landscape metrics over a temporally-ordered sequence of

landscape snapshots. To this end, PyLandStats features the SpatioTemporalAnalysis class,

which is instantiated with a temporally-ordered sequence of landscape snapshots.

> input_filepaths = [
'snapshot00.tif', 'snapshot06.tif', 'snapshot12.tif'

]
> dates = [2000, 2006, 2012] # the dates of each snapshot
> sta = pls.SpatioTemporalAnalysis(input_filepaths, dates=dates)

When initializing a SpatioTemporalAnalysis instance, a Landscape instance will be created

for each of the landscape snapshots provided as first argument. The dates argument might

also be provided as string or datetime objects (see appendix A.1.4).

2.3.1 Computing spatiotemporal data frames

Similarly to Landscape instances, the data frames of class and landscape-level metrics of a

SpatioTemporalAnalysis instance can be computed by means of the compute_class_metrics_df
and compute_landscape_metrics_dfmethods respectively. For instance, following the snip-

pet above, the data frame of class-level metrics can be obtained as in:

> sta.compute_class_metrics_df()

which will return a data frame indexed by both the class value and date, as depicted in Table 2.5.

Table 2.5 – Example data frame of class-level metrics for a spatiotemporal analysis.

class_val dates total_area proportion_of_landscape number_of_patches patch_density largest_patch_index total_edge . . .

1 2000 24729 7.70194 193 0.0601106 2.06992 1.4316e+06 . . .
2006 24599 7.66145 200 0.0622907 2.02227 1.436e+06 . . .
2012 24766 7.71346 201 0.0626022 2.02227 1.4459e+06 . . .

2 2000 296346 92.2981 13 0.0040489 89.4514 1.4316e+06 . . .
2006 296476 92.3386 8 0.00249163 89.1318 1.436e+06 . . .
2012 296309 92.2865 8 0.00249163 89.0916 1.4459e+06 . . .

Similarly, the data frame of landscape metrics can be obtained as follows:

> sta.compute_landscape_metrics_df()

where the resulting data frame will be indexed by the dates as depicted in Table 2.6.
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Table 2.6 – Example data frame of landscape-level metrics for a spatiotemporal analysis.

dates total_area number_of_patches patch_density largest_patch_index total_edge edge_density landscape_shape_index . . .

2000 321075 206 0.0641595 89.4514 1.4316e+06 4.45877 9.71693 . . .
2006 321075 208 0.0647824 89.1318 1.436e+06 4.47248 9.73633 . . .
2012 321075 209 0.0650938 89.0916 1.4459e+06 4.50331 9.77998 . . .

Note that PyLandStats does not compute data frames for spatiotemporal analyses at the patch

level, given that new patches emerge and others disappear over the years and therefore there

is no common index upon which the data frames of patch-level metrics for different snapshots

could be assembled.

2.3.2 Customizing the spatiotemporal analysis

As with the Landscape class, the compute_class_metrics_df and compute_landscape_metrics_df
methods of the SpatioTemporalAnalysis class also allow customizing how each metric is

computed by means of the metrics and metric_kws arguments. Additionally, the classes
keyword argument might be provided to compute_class_metrics_df in order to compute

the metrics for the specified subset of classes only. For instance, the code snippet below:

> sta.compute_class_metrics_df(
metrics=['proportion_of_landscape', 'edge_density',

'fractal_dimension_am', 'landscape_shape_index',
'shannon_diversity_index'],

classes=[1],
metrics_kws = {

'proportion_of_landscape': {'percent': False},
'edge_density': {'count_boundary': True}})

will return a data frame of the form depicted in Table 2.7.

Table 2.7 – Example of a data frame of class-level metrics for a spatiotemporal analysis com-
puted with custom classes, metrics and metrics_kws keyword arguments.

class_val dates edge_density fractal_dimension_am landscape_shape_index proportion_of_landscape

1 2000 4.503 1.12956 22.9492 0.0770194
2006 4.51608 1.12336 23.0892 0.0766145
2012 4.54847 1.12347 23.181 0.0771346

Note that although provided within the metrics keyword argument, the Shannon’s diversity

index does not appear in the data frame of Table 2.7 since it can only be computed at the

landscape level. Analogously, the proportion of landscape would not appear in the data frame

of landscape-level metrics.
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2.3.3 Plotting the evolution of metrics

One of the most important features of the SpatioTemporalAnalysis class is plotting the

evolution of the metrics. To that end, the class features the plot_metric method, which takes

the snake case label of the respective metric name as first argument, e.g., for proportion of

landscape, the argument becomes ’proportion_of_landscape’ (see see the section “List

of implemented metrics” of appendix A.1.2 for the list of metrics implemented in PyLandStats

and their respective snake case labels). In order to plot the evolution of a metric at the class

level, the value of the LULC class must be passed to the class_val keyword argument as in:

# a class value of 1 represents "urban" LULC in this example
> sta.plot_metric('proportion_of_landscape', class_val=1)

which will produce a plot for the metric at the class level as depicted in Figure 2.1.
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Figure 2.1 – Example of a plot for a class-level metric in a spatiotemporal analysis.

If the class_val keyword argument is ommited, the metric will instead be plotted at the

landscape level. For instance, the following snippet will plot both the class and landscape-

level area-weighted fractal dimension in the same matplotlib axis:

> ax = sta.plot_metric('fractal_dimension_am', class_val=1,
plot_kws={'label': 'class level (urban)'})

> sta.plot_metric(
'fractal_dimension_am', ax=ax, plot_kws={'label': 'landscape level'})

> ax.legend()

producing a plot as depicted in Figure 2.2.

In order to customize the resulting plot, the plot_metric method accepts, among other

keyword arguments, a plt_kws keyword argument that will be forwarded to the matplotlib’s

plot method (see the section “Spatiotemporal analysis” of appendix A.1.2).
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Figure 2.2 – Example with a metric plotted at both the class and landscape level in a spatiotem-
poral analysis.

2.4 Zonal analysis

Landscape metrics are very sensitive to scale, that is, to the pixel resolution and especially to

the spatial extent of the considered map (Meentemeyer and Box, 1987; Turner, 1989; Saura

and Martinez-Millan, 2001). To overcome such shortcoming, landscape ecologists often turn

to methods of multiscale analysis which explicitly consider multiple scales, both in terms of

resolution and map extents (Wu et al., 2000).

The PyLandStats library features two classes that might be used for such purpose. The first is

BufferAnalysis, which segments a given landscape based on a series of buffers of increasing

distances around a feature of interest, whereas the more generic ZonalAnalysis allows the

user to freely choose how the landscape is segmented by providing a list of NumPy masks.

2.4.1 Buffer analysis around a feature of interest

In line with the classic concentric models of location and land use, evaluating the spatial

variation of the environmental characteristics across the urban-rural gradient has become

one of the central topics of landscape ecology (McDonnell and Pickett, 1990).

Consider a LULC raster file featuring a city and its rural hinterlands. Then, given a coordinate

that represents the center of the feature of interest (e.g., a Shapely point with its coordi-

nate reference system) and a list of buffer distances (in meters), a BufferAnalysis can be

instantiated as follows:

> from shapely.geometry import Point
# latitude and longitude of the center of Lausanne in the OpenStreetMap
> base_mask = Point(6.6327025, 46.5218269)
> base_mask_crs = '+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs'
# buffer distances (in meters)
> buffer_dists = [10000, 15000, 20000]
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# instantiation of `BufferAnalysis`
> ba = pls.BufferAnalysis(

path_to_raster, base_mask, buffer_dists, base_mask_crs=base_mask_crs)

where the BufferAnalysis instance will generate the landscape of interest for each buffer

distance by masking the pixels of the input raster, as illustrated in Figure 2.3.

4020000 4040000 4060000 4080000 4100000
2570000

2580000

2590000

2600000

2610000

2620000

2630000

2640000

2650000

10000
1
2

4020000 4040000 4060000 4080000 4100000
2570000

2580000

2590000

2600000

2610000

2620000

2630000

2640000

2650000

15000
1
2

4020000 4040000 4060000 4080000 4100000
2570000

2580000

2590000

2600000

2610000

2620000

2630000

2640000

2650000

20000
1
2

Figure 2.3 – Landscapes generated by instantiating a BufferAnalysis with a raster of urban
and non-urban LULC classes (values of 1 and 2 respectively), the coordinates of the city center
as base mask, and buffer distances of 10000, 15000 and 20000m (corresponding to the three
subplots from left to right).

On the other hand, the base_mask argument might also be a polygon geometry (e.g., adminis-

trative boundaries) instead of a point. In such case, note that the list of buffer distances might

start from zero in order to start computing the metrics for the region defined by the polygon

geometry itself.

Like in the other classes, the data frames of class and landscape-level metrics can be obtained

through the compute_class_metrics_df and compute_landscape_metrics_df methods

respectively. For instance, the following snippet:

> ba.compute_class_metrics_df()

will return a data frame indexed by both the class value and buffer distance, as depicted in

Table 2.8.

Table 2.8 – Example data frame of class-level metrics for a buffer analysis.

class_val buffer_dist total_area proportion_of_landscape number_of_patches patch_density largest_patch_index total_edge . . .

1 10000 7261 24.9648 20 0.068764 21.5472 223900 . . .
15000 9630 16.7106 46 0.0798223 11.5326 395200 . . .
20000 12149 13.3476 76 0.0834981 7.30169 565200 . . .

2 10000 21824 75.0352 4 0.0137528 74.3614 223900 . . .
15000 47998 83.2894 4 0.00694107 82.9493 395200 . . .
20000 78871 86.6524 5 0.0054933 86.3151 565200 . . .

Again, the metrics that are considered in the analysis and how they metrics are computed can

be customized by providing the metrics and metrics_kws keyword arguments respectively to
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the compute_class_metrics_df and compute_landscape_metrics_dfmethods, while the

considered classes can be set as the classes keyword argument of compute_class_metrics_df.

On the other hand, and analogously to the SpatioTemporalAnalysis class, the metrics

computed for each buffer distance in a BufferAnalysis instance can be plotted by means

of the plot_metric method. Again, plot_metric takes an optional class_val keyword

argument that if provided, plots the metric at the class level, and otherwise, plots the metric at

the landscape level. For instance, the following snippet:

> ba.plot_metric('proportion_of_landscape', class_val=1)

will produce a plot for the metric at the class level as depicted in Figure 2.4.
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Figure 2.4 – Example of a plot for a class-level metric in a buffer analysis. The x axis corresponds
to the buffer distances.

Another approach to examine how landscape patterns change across the urban-rural gradient

is to compute the metrics for each buffer ring that defined between each pair of distances. For

instance, for the buffer distances considered in latter example, i.e., 10000, 15000 and 20000,

the metrics would be computed for the buffer rings that go from 0 to 10000 m, 10000-15000 m

and 15000-20000 m. Such analysis can be performed in PyLandStats by setting the keyword

argument buffer_rings to True, as in the snippet below:

> ba = pls.BufferAnalysis(
input_filepath, base_mask, buffer_dists, base_mask_crs=base_mask_crs,
buffer_rings=True)

where BufferAnalysis will generate the landscapes as depicted in Figure 2.5.

Under such circumstances, the buffer distance of each in the data frame of class and landscape-

level metrics will be strings that represent the buffer distances that correspond to the start and

end of each ring, as depicted in Table 2.9.
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Figure 2.5 – Landscapes generated by instantiating a BufferAnalysis with a raster of urban
and non-urban LULC classes (values of 1 and 2 respectively), the coordinates of the city center
as base mask, and buffer distances of 10000, 15000 and 20000m (corresponding to the three
subplots from left to right) and buffer_rings set to True.

Table 2.9 – Example data frame of class-level metrics for a buffer analysis computing the
metrics for the buffer rings.

class_val buffer_dist total_area proportion_of_landscape number_of_patches patch_density largest_patch_index total_edge . . .

1 0-10000 7261 24.9648 20 0.068764 21.5472 223900 . . .
10000-15000 2369 8.29976 37 0.129629 1.68518 168600 . . .
15000-20000 2519 7.54372 37 0.110805 3.11152 169100 . . .

2 0-10000 21824 75.0352 4 0.0137528 74.3614 223900 . . .
10000-15000 26174 91.7002 3 0.0105105 83.6282 168600 . . .
15000-20000 30873 92.4563 8 0.0239578 76.117 169100 . . .

Accordingly, the plot_metric method of a BufferAnalysis will produce a figure as depicted

in Figure 2.6, where the x axis represents the buffer distances of the rings.
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Figure 2.6 – Example of a plot for a class-level metric in a buffer analysis that computes the
metrics for the buffer rings. The x axis delineates three discrete points, each corresponding to
a buffer ring, and whose label represents the ring’s start and end buffer distance.

2.4.2 Generic zonal analysis

In certain analysis cases, the user might consider more appropriate to compute the metrics

along a decomoposition of the landscape different than concentric buffers, for example,

rectangular transects. To that end, PyLandStats features the ZonalAnalysis class, which

instead of a base mask, accepts a list of boolean arrays of the same shape of our landscape
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2.4. Zonal analysis

as masks to define our transects (or any other type of subregion). Consider the code snippet

below:

# this reads the input raster landscape and creates a boolean base mask
# of the same shape of the landscape and filled with `False` values
with rasterio.open(input_filepath) as src:

base_mask_arr = np.full(src.shape, False)

masks_arr = []
# for a pixel resolution of 100m, this corresponds to transects of 30km
transect_len = 300
# this will iterate over three transects (0-30km, 30-60km, 60-90km)
for transect_start in range(0, 900, transect_len):

mask_arr = np.copy(base_mask_arr)
# the 400 and 600 serve to slice the landscape vertically along the
# 20km where the feature of interest is located
mask_arr[400:600,transect_start:transect_start+transect_len] = True
masks_arr.append(mask_arr)

where the variable masks_arrwill be a list of three NumPy boolean arrays, each corresponding

to a distinct rectangular transect, as plotted in Figure 2.7.

Figure 2.7 – Example of a list of three boolean mask arrays that delineate three rectangular
transects of a landscape

The instantiation of ZonalAnalysis requires the list of mask arrays (e.g., the masks_arr vari-

able created above) as second argument. Additionally, the keyword argument attribute_values
might be used to map an identifying value or label to each of our landscapes. In this example,

a list of strings will be provided in a form which denotes that each landscape corresponds to

the transect from kilometers 0 to 30, 30 to 60 and 60 to 90 respectively:

> attribute_values = ['0-30', '30-60', '60-90']
> za = pls.ZonalAnalysis(

input_filepath, masks_arr, attribute_values=attribute_values)
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Chapter 2. Quantifying spatial patterns of landscapes

where ZonalAnalysis will generate the landscapes as depicted in Figure 2.8.

Figure 2.8 – Landscapes generated by instantiating a ZonalAnalysis for three rectangular
transects.

In ZonalAnalysis instances, the data frames of metrics are indexed by the values provided to

the keyword argument attribute_values as depicted in Table 2.10.

Table 2.10 – Example data frame of class-level metrics in a zonal analysis of three transects.

class_val attribute_values total_area proportion_of_landscape number_of_patches patch_density largest_patch_index total_edge . . .

1 0-30 2641 5.0768 37 0.0711251 0.707407 216700 . . .
30-60 9577 17.6965 40 0.0739126 12.2806 370500 . . .
60-90 1761 9.27281 9 0.0473909 6.90854 71900 . . .

2 0-30 49380 94.9232 2 0.0038446 94.9194 216700 . . .
30-60 44541 82.3035 6 0.0110869 81.8859 370500 . . .
60-90 17230 90.7272 6 0.0315939 53.2199 71900 . . .

Again, the data frames of metrics ZonalAnalysis can also customized by providing the

metrics and metrics_kws keyword arguments to the compute_class_metrics_df and

compute_landscape_metrics_df methods, and additionally by the classes keyword ar-

gument in compute_class_metrics_df.

In order to plot a metric’s computed value for each subregion, the class ZonalAnalysis fea-

tures a plot_metricmethod which works in the same way as its counterpart in SpatioTemporalAnalysis
and BufferAnalysis. For instance, the following snippet:

> za.plot_metric('proportion_of_landscape', class_val=1)

will produce a plot for the metric at the class level as depicted in Figure 2.9.

2.5 Spatiotemporal buffer analysis

The zonal analysis methods presented above are themselves multiscale analysis approaches

since they explicitly consider multiple map extents. Accordingly, the BufferAnalysis and

ZonalAnalysis classes might be employed to obtain scalograms, namely, response curves of

the metrics to changing the map extent (Wu et al., 2002).

Nevertheless, when performing spatiotemporal analyses, it might also be useful to evaluate

how the computed time series of metrics responds to changes in the map extent. To that
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Figure 2.9 – Example of a plot for a class-level metric in a zonal analysis of three transects.
The x axis corresponds to the values provided to the keyword argument attribute_values
provided to the initialization of ZonalAnalysis

end, PyLandStats features an additional SpatioTemporalBufferAnalysis class, which is

instantiated like a BufferAnalysis except that the first argument is a temporally-ordered

list of landscape raster snapshots — like in the SpatioTemporalAnalysis class — instead

of a single raster landscape. In addition, like the SpatioTemporalAnalysis class, a list

with the dates that correspond to each of the landscape snapshots can be passed to the

keyword argument dates. Putting it all together, SpatioTemporalBufferAnalysis can be

instantiated as in:

# Note: `input_filepaths` is a list (like in `SpatioTemporalAnalysis`)
> stba = pls.SpatioTemporalBufferAnalysis(

input_filepaths, base_mask, buffer_dists,
base_mask_crs=base_mask_crs, dates=[2000, 2006, 2012])

Like BufferAnalysis, a SpatioTemporalBufferAnalysis can also be instantiated from a

polygon geometry. The data frame of class and landscape-level metrics can be computed

by means of the the compute_class_metrics_df and compute_landscape_metrics_df
methods respectively, which again, might also be customized by providing the metrics
and metrics_kws keyword arguments, and additionally by the classes keyword argument

in compute_class_metrics_df. In SpatioTemporalBufferAnalysis instances, the data

frames are indexed by the buffer distances and the snapshot dates (and also by the LULC class

values in the class-level data frame, as depicted in Table 2.11).

The SpatioTemporalBufferAnalysis class features a plot_metric method with the same

signature of its counterparts in SpatioTemporalAnalysis, BufferAnalysis and ZonalAnalysis.

For example, the snippet below:

> stba.plot_metric('fractal_dimension_am')
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Table 2.11 – Example data frame of class-level metrics in a spatiotemporal buffer analysis.

buffer_dist class_val dates total_area proportion_of_landscape number_of_patches patch_density largest_patch_index total_edge . . .

10000 1 2000 7261 24.9648 20 0.068764 21.5472 223900 . . .
2006 7205 24.7722 20 0.068764 21.0211 226600 . . .
2012 7205 24.7722 20 0.068764 21.0211 227000 . . .

2 2000 21824 75.0352 4 0.0137528 74.3614 223900 . . .
2006 21880 75.2278 4 0.0137528 74.5539 226600 . . .
2012 21880 75.2278 4 0.0137528 74.5539 227000 . . .

15000 1 2000 9630 16.7106 46 0.0798223 11.5326 395200 . . .
2006 9278 16.0998 49 0.0850281 11.2671 391300 . . .
2012 9320 16.1727 50 0.0867634 11.2671 395500 . . .

2 2000 47998 83.2894 4 0.00694107 82.9493 395200 . . .
2006 48350 83.9002 4 0.00694107 83.5601 391300 . . .
2012 48308 83.8273 4 0.00694107 83.4872 395500 . . .

20000 1 2000 12149 13.3476 76 0.0834981 7.30169 565200 . . .
2006 11827 12.9938 78 0.0856955 7.1336 566200 . . .
2012 11882 13.0543 79 0.0867941 7.1336 571400 . . .

2 2000 78871 86.6524 5 0.0054933 86.3151 565200 . . .
2006 79193 87.0062 6 0.00659196 86.6678 566200 . . .
2012 79138 86.9457 7 0.00769062 86.604 571400 . . .

will plot the temporal evolution of the area-weighted fractal dimension at the landscape level

for the three buffer distances in the same axis, producing an output as depicted in Figure 2.10.

Figure 2.10 – Example of a plot for a landscape-level metric in a spatiotemporal buffer analysis.

Although this is beyond the scope of this article, the above plot suggests that the area-weighted

fractal dimension shows a predictable response to changing the spatial extent of the considered

landscape (Wu et al., 2002; Wu, 2004).

2.6 Improvements of PyLandStats over existing software packages

There have been many other freely-available software packages to compute landscape metrics

(Steiniger and Hay, 2009) (see Table 2.12). By far, the most popular one has been FRAGSTATS

(McGarigal and Marks, 1995), yet as a stand-alone software, its functions cannot be directly

integrated into advanced computational workflows. Furthermore, FRAGSTATS is not open-

source software. Recently, the open-source R package landscapemetrics (Hesselbarth et al.,

2019) has been developed to overcome such shortcomings by relying on a well-established

spatial framework in R. On the other hand, the only available tool to compute landscape

metrics in Python is the LecoS package (Jung, 2016), which is designed as a QGIS plugin.
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Table 2.12 – Comparison of FRAGSTATS, landscapemetrics, LecoS and PyLandStats.

Characteristic FRAGSTATS landscapemetrics LecoS PyLandStats

open source no yes yes yes

programming language ? R Python Python

cross-platform compatibility no yes yes yes

integration into advanced workflows no yes QGIS only yes

Benchmark Vaud [s] 0.61 14.27 - 0.91

Benchmark Bern and Valais [s] 33.31 553.45 - 32.2

The two benchmarks consist in the computation of the 95 metrics implemented in PyLandStats for the landscape snapshots of
the canton of Vaud (889x916 pixels of 2 LULC classes) and the cantons of Bern and Valais (1640x1319 pixels of 28 LULC classes)
respectively (see appendix A.1.8 for more details). Both landscapes have been derived from the Corine Land Cover (Heymann
et al., 1994) dataset for the year 2000. Note that LecoS has been excluded from the benchmarks since only features 20
landscape metrics.

The computed values for the landscape metrics in PyLandStats are the same as in FRAGSTATS,

with a maximum relative difference of 0.1% (see appendix A.1.7). Furthermore, the perfor-

mance of both packages is very similar. Nevertheless, unlike FRAGSTATS, PyLandStats is

open source and it is therefore straightfoward for users to contribute to its development on

its GitHub repository. On the other hand, PyLandStats is an alternative to landscapemetrics

for those users that prefer to write their computational workflows in Python rather than R.

Additionally, the cache mechanisms included within PyLandStats lead to significantly better

performance and make it more suitable for experimentation in interactive environments

such as Jupyter notebooks (Kluyver et al., 2016), since it ensures that the marginal cost of

subsequent calls to compute a metric are minimal (see appendix A.1.8).

Finally, although LecoS is based on the NumPy and SciPy stack (like PyLandStats), only 20

metrics have been implemented, and its design as a QGIS plugin forces the users to adapt

the computational workflows to QGIS. In sharp contrast, PyLandStats is designed as a Python

package which can be directly used in Python scripts, Jupyter notebooks and in other Python

packages including QGIS plugins.

In view of the growing popularity of Jupyter notebooks and continuous releases of new Python

packages to visualize geospatial data interactively, it is reasonable to expect that geospatial

scientists, including landscape ecologists, will increasingly turn to the Jupyter environments

for their analyses. From this perspective, PyLandStats intends to offer a Python package that

geospatial scientists can use in order to compute landscape metrics, and whose modularity

and object-oriented design allows it to evolve and adapt to new developments in the Python

and Jupyter ecosystem.
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3 Spatiotemporal patterns of urbaniza-
tion in three Swiss urban agglomera-
tions
Switzerland has undergone important landscape changes during the last decades, especially in

the form of urbanization in the Central Plateau region. In the scope of this thesis, quantifying

the characteristics of such physical transformations is crucial in order to evaluate its impacts

on the UHI effect and identify which urbanization patterns can exacerbate its magnitude.

To that end, this chapter presents a study of the spatiotemporal patterns of urbanization

that have occurred during the last four decades in the Swiss urban agglomerations of Bern,

Lausanne and Zurich, which has been published as a scientific article in:

Bosch, M., Jaligot, R., and Chenal, J. (2020a). Spatiotemporal patterns of urbanization in

three swiss urban agglomerations: insights from landscape metrics, growth modes and fractal

analysis. Landscape Ecology, pages 1–13

The candidate contributed by designing the study, performing the processing and analysis of

the data and writing the manuscript.

3.1 Introduction

The last centuries have seen an unprecedented growth of urban areas, which has resulted

in dramatic conversion of natural land and profound changes in landscape patterns and

the ecosystem functions that they support (Alberti, 2005). The combination of current de-

mographic prospects and the observed trends of decreasing urban densities suggest that

the global amount of land occupied by cities might increase threefold by 2030 (Angel et al.,

2005). Although the land use and land cover changes associated to urbanization have occurred

on less than a 3% of the earth’s terrestrial surface, the environmental footprint of cities has

significant implications at the global scale, for their functioning produces 78% of the earth’s

greenhouse gases (Grimm et al., 2008). Given that urbanization will continue to be a major

form of landscape change in the next decades, quantifying urban landscape patterns in space

and time is crucial to understand the driving forces and ecological impacts of urbanization

(Wu, 2014).
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Recent decades have witnessed an increasing number of studies of the spatiotemporal patterns

of land use change associated to urbanization (Dietzel et al., 2005; Seto and Fragkias, 2005;

Schneider and Woodcock, 2008; Jenerette and Potere, 2010; Wu et al., 2011; Li et al., 2013a;

Liu et al., 2016; Nong et al., 2018). Building upon previous ideas of urban growth phases

and wave-like urban development, initial attempts to synthesis suggested that urbanization

can be characterized as a two-step alternating process of diffusion and coalescence (Dietzel

et al., 2005; Schneider and Woodcock, 2008). Nonetheless, subsequent studies challanged

the empirical validity of such hypothesis. The thorough study of Jenerette and Potere (2010)

examined the spatiotemporal patterns of land use change of a sample of 120 cities distributed

throughout the world from 1990 to 2000, and determined that overall, urbanization leads

to fragmented landscapes with more complex and heterogeneous structures. Similarly, in a

comparative analysis of the metropolitan regions of Phoenix and Las Vegas, Wu et al. (2011)

revealed that throughout the 20th century, the two agglomerations did not display signs

of distinct urban growth phases, but instead showed a strikingly similar trend towards a

landscape that is more diverse in land use, fragmented in structure and complex in shape.

Subsequently, Li et al. (2013a) determined that the two-phase diffusion and coalescence

model can be over-simplistic and that urbanization might be better characterized by means

of three growth modes, namely infilling, edge expansion and leapfrogging, which operate

simoultaneously while alternating their relative dominance. Such results were confirmed by

the thorough study of 16 world cities over the 1800-2000 period by Liu et al. (2016), who further

resolved that urbanization generally leads to an increasingly diverse and complex landscape.

Nevertheless, such models of urbanization missappreciate the way in which contemporary

cities are multi-scaled systems, organized in different levels that show its own characteristic

spatiotemporal patterns (Batty, 2005, 2008; White et al., 2015). While both the diffusion and

coalescence model of Dietzel et al. (2005) and the three growth modes model of Li et al. (2013a)

make use of a hierarchical framework and evaluate the spatial patterns at different extents,

the choice of such extents is not based on quantitative criteria and neglects the characteristic

scales of complex systems such as urban patterns. Despite the apparent complexity and diver-

sity of urban forms, cities comply with well-defined principles of spatial organization, which

can be characterized quantitatively by means of fractal geometry. A remarkable regularity is

found in the relationship between the total built-up area and the distance from the city center,

which has been shown to empirically follow a scaling law with very stable exponents for a wide

variety of cities (Frankhauser, 1994; Batty and Longley, 1994). In a thorough examination of a

global sample of cities, Frankhauser (1994) noted the existence of a kink in the area-radius

relationship, which reveals a change on the spatial structure of cities at a certain distance from

their center. The same pattern was found in the urban cellular automata simulations of White

and Engelen (1993), suggesting that the area-radius scaling could be better approximated

throguh two scaling exponents, a first steeper one for small distances to the city center, reflect-

ing an inner zone where urbanization was essentially complete, and a second lower slope for

the outer zone that is still undergoing urbanization.

The objective of this study is therefore to build upon fractal analysis in order to enlighten
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the current hypotheses of the spatiotemporal patterns of urbanization. More precisely, the

area-radius relationship will be used to detect characteristic extents in urban agglomerations,

such as the inner and outer zones reviewed above. Thereupon, the time series of landscape

metrics and growth modes will be computed at such extents in order to evaluate the degree

to which the spatiotemporal patterns of urbanization operate differently at each scale. The

results will serve assess the validity of the diffusion and coalescence and three growth modes

hypothesis and provide critical insights into how they could be revised from a multi-scale

perspective.

3.2 Materials and Methods

3.2.1 Study area

Switzerland is a highly developed country in central Europe, with a population distributed into

several interconnected mid-sized cities and a large number of small municipalities. Mainly

because of the country’s topography, most urban settlements are located in its Central Plateau

region, which accounts for about one third of the total Swiss territory, (42,000 km2) and is

highly urbanized (450 inhabitants per km2). The Central Plateau is characterized by elevations

that range from 400 to 700m, a continental temperate climate with mean annual temperatures

of 9-10 ◦C and mean annual precipitation of 800-1400 mm, and a dominating vegetation of

mixed broadleaf forest.

In line with the country’s federalist government structure, the Swiss spatial planning system

is distributed between the federal state, the 26 cantons and 2495 municipalities. The federal

state specifies the framework legislation and coordinates the spatial planning activities of the

cantons, while cantons check the compliance of municipal development plans with cantonal

and federal laws. With some exceptions, municipal administrations are in charge of their local

development plans, namely the land use plan and building ordinance, and might therefore be

viewed as the most important spatial planning entities. While the Federal Statue on regional

planning of 1979 limited the number of new buildings constructed outside the building

zones, built-up areas have since increased continuously, mainly because the municipalities

can designate new building zones almost entirely autonomously (Jaeger and Schwick, 2014).

A major revision of the Federal Statue was accepted in 2013, which limits the amount of

building zones that municipalities can designate and encourages infill development and

densification by means of tax incentives. Forecasts based on the current urbanization trends

predict significant increases of urban land use demands over the next decades, mostly at the

expense of agricultural land located at the fringe of existing urban agglomerations (Price et al.,

2015).

Given that a significant part of the cross-border urban agglomerations of Geneva and Basel

(the second and third largest in Switzerland) lie beyond the Swiss boundaries (SFSO, 2014), in

order to ensure coherence of the land use/land cover data, this study comprises only three
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of the five largest Swiss urban agglomerations, namely Bern, Lausanne and Zurich (SFSO,

2018). As shown in Figure 3.1, the three agglomerations have undergone important population

growth over the last 30 years, especially during the most recent years and at the agglomeration

extent. With a total population over 1.3 million and land area of 1305 km2 (1038 hab/km2),

Zurich is the largest Swiss urban agglomeration. As a leading global city and one of the world’s

largest financial centers, Zurich has the country’s largest airport and railway station, and

also hosts the largest Swiss universities and higher education institutions. Bern is the capital

of Switzerland and fourth most populous urban agglomeration in Switzerland, with a total

population of 410000 inhabitants and occupying a land area of 783 km2 (531 hab/km2). As the

fifth largest Swiss urban agglomeration and the second most important student and research

center after Zurich, the Lausanne agglomeration has a total population of 409000 inhabitants

over a land area of 773 km2 (537 hab/km2). Given its larger population growth rate, Lausanne is

likely to soon surpass Bern and become the fourth largest urban agglomeration in Switzerland.

Overall, the three urban agglomerations are characterized by a pervasive public transportation

system and a highly developed economy, with a 85% of the employment devoted to the tertiary

sector.
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Figure 3.1 – Population change of the three regions of study at the city core (left) and agglom-
eration extent (right) over the periods of 1990-2000, 2000-2010 and 2010-2017. Data from the
Urban Audit collection (SFSO, 2018).

3.2.2 Data sources

The Swiss Federal Statistical Office (SFSO) provides an inventory of land statistics datasets

(SFSO, 2017), namely a set of land use/land cover maps for the national extent of Switzerland,

which comprise 72 base categories. Four datasets have been released for 1979/85, 1992/97,
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2004/09 and 2013/181, at a spatial resolution of one hectare per pixel. The pixel classification is

based on computer-aided interpretation of satellite imagery, which includes special treatment

and field verification of pixels where the category attribution is not clear.

The SFSO land statistics datasets have been used to produce a series of categorical maps

for each urban agglomeration and time period. In order to process the SFSO datasets in an

automated and reproducible manner, an open source reusable toolbox to manage, trans-

form and export categorical raster maps has been developed in Python (Bosch, 2019b). The

boundaries of each urban agglomeration have been adopted from the definitions provided

also by the SFSO (2014), which comprise multiple municipalities and have been established

in consideration of population density, proximity between centers, economic activities and

commuting behavior. As stated above, Geneva and Basel are excluded from this study because

a significant portion of their urban agglomeration lies beyond the extent covered by the SFSO

land statistics inventory, namely the administrative boundaries of Switzerland. The spatiotem-

poral evolution of the urban footprint for the three selected urban agglomerations (i.e., Bern,

Lausanne and Zurich) over the study period (i.e., 1980-20161) is displayed in Figure 3.2.

3.2.3 Area-radius scaling in urban agglomerations

In order to quantitatively detect characteristic spatial extents of urban agglomerations, the

relationship between the built-up area and the distance form the main city center will be

evaluated from the perspective of fractal geometry. If cities are to be considered fractal objects,

such relationship should follow a scaling rule of the form (Mandelbrot, 1983):

A(r ) ∼ r D (3.1)

where A denotes the total area of the urban built-up extent that lays within a distance r from

the city center, and D corresponds to the radial dimension, analogous to the fractal dimension

of two-dimensional complex objects such as Sierpinski carpets.

With the aim of assessing whether the urban agglomerations follow the bi-fractal city model

suggested by White and Engelen (1993), a piecewise linear regression with two segments will

be compared to that of a simple linear regression. The optimal breakpoint of the two-segment

regression, namely, the breakpoint location that minimizes the sum of squared residual will

be computed with the pwlf Python library2, which is based on the differential evolution

optimization algorithm (Storn and Price, 1997). In this context, such breakpoint corresponds

to the kink in the area-radius scaling noted by Frankhauser (1994), namely the radial distance

to the city center at which cities show a distinct spatial structure that is less space-filling.

1The exact dates of each surveying period 1979/85, 1992/97, 2004/09 and 2013/18 are determined according to
the production process of the national maps and vary accross the Swiss territory (SFSO, 2017)

2See https://github.com/cjekel/piecewise_linear_fit_py
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Figure 3.2 – Evolution of urban patches of the three urban agglomerations throughout their
respective periods of study. The times t0, t1, t2 and t3 correspond to 1981, 1993, 2004 and 2013
for Bern; 1980, 1990, 2005 and 2014 for Lausanne and 1982, 1994, 2007 and 2016 for Zurich.

Thereupon, three spatial extents will be considered in the analysis of the spatiotemporal

patterns of urbanization. The first extent corresponds to the whole urban agglomeration

defined by the SFSO (SFSO, 2014), which is described in the foregoing section. The second

and third extents will be derived from the location of the kink, i.e., the breakpoint of the

two-segment regression of the area-radius relationship. More precisely, in line with White and

Engelen (1993), the second extent will be defined as the inner zone, i.e., a circle with with the

city core as center and the breakpoint distance as radius, while the third extent will be defined

as the outer zone, i.e., the area that lies outside the inner zone circle and the agglomeration

boundaries.
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3.2.4 Quantifying spatiotemporal patterns of urbanization

Time series of landscape metrics

While a plentiful collection of landscape metrics can be found in the literature, many of them

are highly correlated with one another. As a matter of fact, Riitters et al. (1995) found that

the characteristics discerned by 55 prevalent landscape metrics could be reduced to only

6 independent factors. On the other hand, landscape metrics can be very sensitive to the

resolution and the extent of the maps. However, several metrics empirically exhibit consistent

responses to changing scales that conform to predictable scaling relations (Wu et al., 2002;

Wu, 2004). Based on such remarks, and in order to enhance comparability with other studies,

ten landscape metrics have been selected for the present study, whose details are listed in

Table 3.1.

Table 3.1 – Selected landscape metrics to quantify the spatiotemporal patterns of urbanization.
A more thorough description can be found in the documentation of the software FRAGSTATS
v4 (McGarigal et al., 2012)

Metric name Category Description

Percentage of landscape
(PLAND)

Area and edge Percentage of landscape, in terms of area, occupied
by patches of a given class

Patch density (PD) Aggregation The number of patches per area unit

Edge density (ED) Area and edge Sum of the lengths of all edge segments per area unit

Area-weighted mean fractal di-
mension (AWMFD)

Shape Mean patch fractal dimension weighted by relative
patch area

Mean euclidean nearest neigh-
bor distance (ENN)

Aggregation Mean patch shortest edge-to-edge distance to the
nearest neighboring patch of the same or different
class

While complying with the FRAGSTATS v4 definitions (McGarigal et al., 2012), the landscape

metrics have been computed with the open source library PyLandStats (Bosch, 2019a). Like

in most of the related studies, the categorical maps have been reclassified into urban and

natural classes, and the metrics have computed at the urban class level, namely aggregating

their values across all the urban patches of the landscape. Pixels that correspond to land

unavailable for development, such as water bodies, have been excluded from the computation

of the metrics.

Modes of urban growth

In addition to the conventional landscape metrics, which are computed over a single snapshot

of a landscape, Liu et al. (2010) proposed a quantitative method to classify the types of urban

growth occurring between two time points. To that end, for each new urban patch, the
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Landscape Expansion Index (LEI) is computed as3:

LE I = Lc

P
(3.2)

where Lc denotes the length of the interface between the new urban patch and pre-existing

urban patches, and P is the perimeter of the new urban patch. Then, the type urban growth

attributed to a new urban patch will be identified as infilling when LE I > 0.5, edge-expansion

when 0 < LE I ≤ 0.5 and leapfrog when LE I = 0.

3.3 Results

3.3.1 Area-radius relationship

The area-radius relationship of the three urban agglomerations at each temporal snapshot is

plotted in Figure 3.3.
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Figure 3.3 – Area-radius relationship of the three urban agglomerations at each temporal
snapshot. The plot is produced by computing the total area occupied by urban land uses
laying within a series of radius values (noted by the dot-shaped markers) from 1000 to 20000m,
successively increasing by a step of 500m. The reference center points correspond to the
town hall location of each urban agglomeration, and have been manually retrieved from
the OpenStreetMap4. The upper inset shows the evolution along the temporal snapshots
of the breakpoint rb (in meters) for the two-segment regression that minimizes the sum of
squared residuals, while the lower inset shows the evolution along the temporal snapshots of
the coefficient of determination R2 of the single-segment fit (blue) and of the two-segment
piecewise fit (orange). See appendix A.2.1.

On the one hand, the urban agglomerations of Bern and Lausanne show an area-radius

relationship that is significantly better approximated by two line segments in a log-log scale

(as suggested by the R2 values of the ordinary linear regression and the piecewise regression

3The LEI definition of (3.2) is taken from Nong et al. (2018) and is equivalent to the initial formula proposed by
Liu et al. (2010)

4https://www.openstreetmap.org/
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with two line segments respectively, see appendix A.2.1), hence consistent with the bifractal

city model suggested by White and Engelen (1993). In the two urban agglomerations, the

breakpoints that separate the inner and outer zones are located around a 3 km distance of the

city center and remain very stable through time in the case of Bern, while a slight tendence

to increase might be noted in Lausanne, from 2.7 km in 1980 to 3.3 km in 2014. On the

other hand, area-radius relationship of Zurich is significantly steeper than its counterparts.

Considering the R2 of the simple and the piecewise regressions, such relationship might also

be approximated by a single straight line in the log-log scale (see appendix A.2.1). Nonetheless,

the two-segment fit for Zurich yields a breakpoint that is initially located at 5.2 km from the

city center in 1982 and increases to 6.7 km in 2016.

Overall, the results suggests that Zurich fills a higher proportion of the available space, espe-

cially at large radial distances from the agglomeration center. At the same time, the area-radius

relationship becomes steeper through time in the three urban agglomeration — a trend that is

more notable in the outer zones. This suggests that as the two agglomerations become more

urbanized, their area-radius relationship could tend towards the almost straight line in the

log-log scale observed in Zurich (see appendix A.2.1).

3.3.2 Time series of landscape metrics

The computed time series of landscape metrics for Bern, Lausanne and Zurich at the extents

of the whole agglomeration, the inner zone and outer zone are displayed in Figure 3.4 (see

appendix A.2.2).

The proportion of landscape occupied by urban patches has increased monotonically for the

three agglomerations and at the three extents. At the agglomeration extent, Bern and Lausanne

show almost indistinguishable trends, starting from a 13% in the early 1980s and surpass the

16% in the last snapshot of 2013 and 2014 respectively, while Zurich shows a parallel tendence

with the percentage of urbanized land increasing from 22% in 1982 to a 27% in 2016. The

inner zones of Bern and Lausanne are strongly urbanized, with the proportion of urbanized

landscape showing a steady increase and surpassing the 70% and 80% respectively, whereas

the inner zone of Zurich shows a smaller proportion of urbanized land, gradually increasing

from a 54% in 1982 to a 58% in 2016. In the outer zone, Bern and Lausanne show a limited

degree of urbanization, increasing from an initial 11% to 14% and 16% respectively, while in

the outer zone of Zurich, the proportion of urbanized landscape is initially at almost 20% and

surpasses the 25% in the last survey period.

The number of urban patches per area unit, namely the patch density, shows the most irregular

pattern. At the agglomeration extent and in the outer zone, none of the urban areas exhibit a

discernable trend. In the inner zone, an overall decrease is observed in the three urban areas,

nonetheless, such a trend is only monotonic in Zurich. On the other hand, the density of edges

between urban and natural patches displays at the three extents similar trends for Bern and

Lausanne, which differ significantly from those observed in Zurich. Bern and Lausanne show
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Figure 3.4 – Time series of landscape metrics, computed at the urban class level.

a monotonic increase at the agglomeration extent as well as in the outer zone, which contrasts

with the monotonic decrease exhibited by Zurich. In contrast, the three urban agglomerations

show a clear decrease in the inner zone, which is more notable in Lausanne.

Regarding the shape complexity of urban patches, represented by the area-weighted mean

fractal dimension, the three urban agglomerations show distinctive patterns. In Bern, an

overall increase might be noted at the agglomeration extent and in the outer zone, in both

cases with a slight decline in the latter period which is reminiscent of an unimodal pattern. In

Lausanne, a clearer unimodal pattern is observed also at the agglomeration and outer zone
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extents. At the inner zone, the three urban agglomerations display a monotonic decrease,

which likewise for the edge density, is most pronounced in Lausanne.

Finally, the distance between urban patches, reflected by the mean euclidean-nearest neighbor

metric, shows an overall decrease at the agglomeration extent for Bern and Lausanne, while an

unimodal pattern is observed in Zurich. The latter suggests that urban patches in the Zurich

agglomeration became more distant between the first and second temporal snapshots and

became more connected throughout the third and fourth temporal snapshots. In the inner

zone, a monotonic decrease is observed in Lausanne whereas Bern and Zurich do not exhibit

any discernable trend. In the outer zone, the three urban agglomerations show a monotonic

decrease, suggesting that at that extent, urban patches are becoming more connected on

average.

3.3.3 Growth modes

The changes in the relative dominance of the three growth modes, namely infilling, edge

expansion and leapfrog, are displayed in Figure 3.5 (see appendix A.2.3).
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Figure 3.5 – Changes in the relative dominance of infilling, edge expansion and leapfrog
over the three time periods in terms of the area of the new urban patches, for the urban
agglomerations of Bern (upper row), Lausanne (middle row) and Zurich (bottom row) and at
the extents of the whole agglomeration (left), inner zone (center) and outer zone (right). See
appendix A.2.3.
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The relative dominance of the three growth modes shows almost indistinguishable trends

at the agglomeration extent and in the outer zone, while a completely different pattern is

observed in the inner zone. As with the time series of several landscape metrics, similar

patterns might be noted in Bern and Lausanne. At the agglomeration extent and in the outer

zone, edge-expansion is the most dominant mode of growth in the two urban areas, although

its influence decreases throughout the period of study from a 62% to a 53% in Bern and

from a 58% to a 55% in Lausanne (at the agglomeration extent). Such decrease is mostly at

the expense of an increase on the relative dominance of infilling, which grows from 26% to

32% in Bern and from 30% to 35% (at the agglomeration extent). A similar trend is observed

at the agglomeration extent and outer zone of Zurich, yet in this case the dominance of

infilling surpasses that of edge expansion in the last period (47% of infilling versus a 44% of

edge expansion at the agglomeration extent). Lastly, at the agglomeration extent and in the

outer zone, leapfrog is by far the least dominant growth mode albeit there is no observable

diminishment of its influence.

The inner zones of Bern and Lausanne are clearly dominated by infilling, with the evolution

of its influence exhibiting a slight decline in Bern from 81% to 77% that contrasts with the

noticeable increment from 61% to 90% observed in Lausanne. In the inner zone of Zurich,

infilling is also the most dominant growth mode with a dominance that remains between

60% and 70% without a discernable trend. Additionally, the influence of edge expansion in

the inner zone of Zurich, i.e., 35% in the last period, is significantly above its counterparts in

Bern and Lausanne, i.e., 23% and 10% respectively in the last period. Lastly, in the three urban

agglomerations, the influence leapfrog is practically irrelevant in the inner zone.

3.4 Discussion

3.4.1 Testing hypothesis of urbanization patterns

The results of this study can be used to explore whether there exist generalities and regularities

in the spatiotemporal patterns of urbanization. In this respect, a central question is to what

extent the observed tranformation of the landscapes conform to the prominent models of

urbanization defined by the diffusion and coalescence hypothesis and the three growth mode

hypothesis.

The idea of urban growth as a two-phase alternating process of diffusion and coalescence was

formulated by Dietzel et al. (2005) as a testable temporal pattern of landscape metrics: during

the diffusion stage, the patch density, edge density, area-weighted mean fractal dimension and

mean euclidean nearest-neighbor distance of urban patches should increase at first, reach

an apex at different times and then decrease as patches start to coalesce, showing an overall

unimodal pattern. The time series of landscape metrics of this study show mixed support for

the diffusion and coalescence hypothesis. At the agglomeration extent, the trends of the edge

density and the area-weighted mean fractal dimension, which reflect the structural complexity
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of the landscape, suggest that Zurich is already at the coalescence stage, whereas Bern and

Lausanne are seemingly undergoing a transition between diffusion and coalescence. Never-

theless, the irregular pattern exhibited by the density of urban patches is in strong dissonance

with the unimodal pattern supposed by the diffusion and coalescence model. Examining the

time series of landscape metrics in the inner and outer zones provides additional insights that

enlighten the peculiarities of the undergoing urbanization patterns. In Bern, the decreases of

the patch density, edge density and area-weighted mean fractal dimension in the inner zone

suggest that such extent is undergoing a coalescence process which contrasts with the pattern

observed in the outer zone, where the increases of the edge density and area-weighted mean

fractal dimension are characteristic of the diffusion stage. A similar pattern might be noted in

Lausanne, however, the area-weighted mean fractal dimension at the outer extent does not

show an increase but rather an unimodal pattern, which reflects that the shape complexity

of urban patches in the outer zone has reached an apex after the first period and then pro-

gressively started to decline. This suggests that the inner zone of Lausanne is undergoing a

coalescence process while the outer zone is seemingly at the transition between diffusion and

coalescence. Finally, with the modest exception of the increase in the last period of the patch

density in the agglomeration and outer extents of Zurich, the three metrics show monotonic

decreases at the three considered extents, which indicates that both the inner and outer zone

of Zurich show the characteristics of the coalescence stages.

The irregular trend of the patch density observed in the three urban agglomerations is evidence

that new urban patches might emerge at any period. Such a remark is reminiscent of the

critique to the diffusion and coalescence model by Li et al. (2013a), who suggested that such

dichotomy can be misleadingly over-simplistic because, in reality, the three growth modes of

infilling, edge-expansion and leapfrog operate simultaneously, and thus “it is more plausible

to view urbanization as a spiraling process that involves three growth modes of leapfrogging,

edge-expanding and infilling [where] leapfrog and infilling tend to alternate in their relative

dominance while edge-expansion is likely to remain its importance throughout much of the

urbanization process” (pages 1885-1886). The results of this study are primarily consistent

with such model, nevertheless, a thorough examination allows for further clarifications. On the

one hand, at the agglomeration extent, the importance of leapfrog growth does not necessarily

decrease over time, instead it seems that infilling is becoming increasingly influent at the

expense of edge-expansion. On the other hand, the influence of the three growth modes

changes dramatically when inspecting the results in the inner zone, which is mostly dominated

by infilling, and the presence of leapfrog growth is either completely inexistent or practically

insignificant. This challenges the overall validity of the three growth modes hypothesis,

especially since the alleged simultaneous action of the three growth modes does not hold for

the inner zone extent. Overall, the results of this study suggest that both the diffusion and

coalescence as well as the three growth modes models of urbanization should be extended by

clarifying the patterns that are to be expected at each extent — and that such extent should

be systematically defined according to quantitative criteria, as for example, the breakpoint

location in the area-radius relationship.
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3.4.2 Identifying characteristic extents in urban agglomerations

In the present study, a fractal analysis of the area-radius relationship has been exploited to

define the extents at which the landscape metrics and growth modes have been computed.

More precisely, the employed approach is based on the bifractal city model suggested by

White and Engelen (1993), which is characterized by the existence of a kink in the area-radius

relationship that separates an urban agglomeration into a inner zone where urbanization is

essentially complete, and an outer zone that is still undergoing active development of natural

land into urban uses. Although the existence of such a kink is also noted in the extensive

fractal analysis of a number of cities around the world by Frankhauser (1994), the bifractal

city model lacks an established method to validate it quantitatively. In consonance with the

area-radius plots, comparing the coefficients of adjustments of the simple and piecewise

regressions suggests that Bern and Lausanne can be significantly better approximated by

two curves. However, it is trivial to show that increasing the number of segments in such a

piecewise regression will always lead to a greater or equal coefficient of adjustment. In this

study, the bifractal model has been assumed by exogenously fixing the number of segments to

two before the piecewise regression, yet further deliberation is required in order to develop

methods to properly identify distinct scaling regimes in urban area-radius curves.

Another issue of concern arises from the assumption of a monocentric organization that

underlies the bifractal city model. While such assumption is statistically confirmed in the

three urban agglomerations by the way in which the slope of the area-radius relationship

decreases with increasing radius, this might be largely attributable to how the extents of

the urban agglomerations adopted in this study have been constructed, i.e., based on func-

tional criteria such as employment and commuting behavior (SFSO, 2014). Furthermore,

the boundaries between neighboring urban agglomerations in the Swiss Plateau are start-

ing to permeate — for instance, the urban agglomerations of Lausanne and its neighboring

Vevey-Montreux practically configure an urban continuum, and the same might be noted for

the urban agglomerations of Zurich and Baden-Brugg. Therefore, it might be appropriate to

employ other quantitative approaches to detect urban agglomeration boundaries based on

land use/land cover characteristics, such as those based on percolation theory (Rozenfeld

et al., 2008) or fractal analysis (Tannier and Thomas, 2013), which would likely yield more

polycentric patterns.

3.5 Conclusion

The present study combines three different approaches to study the spatiotemporal patterns

of land use change associated to urbanization in three of the main Swiss urban agglomerations

over four surveys in the period from 1980 to 2016. Fractal analysis of the area-radius relation-

ship of urban land is employed to separate the urban agglomeration into two characteristic

extents, the inner and outer zones, in which the landscape metrics and the growth modes

are computed. The results show that the three urban agglomerations can show very distinct
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spatiotemporal patterns in the inner and outer zones. On the one hand, Bern and Lausanne

present most characteristics of the coalescence stage in the inner zone, whereas the outer zone

displays many traits of the diffusion stage. On the other hand, leapfrog growth is practically

nonexistent in the inner zone, which is mainly dominated by infilling. Therefore, spatiotem-

poral hypotheses of urban land use change should be revised to consider the way in which

contemporary cities are configured by a different characteristic extents where urbanization

exhibits distinct spatial signatures.

47





4 Spatially-explicit simulation of urban
heat islands

At the scale of an urban area, the UHI effect is strongly related to the spatial composition and

configuration of the urban landscape. In order to understand how the landscape transfor-

mations occured in the Swiss urban agglomerations influence the UHI effect, this chapter

presents a reusable and spatially-explicit approach to simulate the UHI effect from LULC

features based on three key biophysical mechanisms, i.e., shade, evapotranspiration and

albedo. The work of this chapter has been submitted for publication and has been accepted

for publication to the Geoscientific Model Development journal and is currently in press:

Bosch, M., Locatelli, M., Hamel, P., Remme, R. P., Chenal, J., and Joost, S. (in press). A spatially-

explicit approach to simulate urban heat mitigation with InVEST (v3.8.0). Geoscientific Model

Development

Contributions of the candidate include the design of the study, the conduction of the analysis

and wrote the manuscript.

4.1 Introduction

Since the industrial revolution, the earth has seen a global increase of temperature which

has been especially prominent in urban areas (Oke, 1973; Arnfield, 2003; Clinton and Gong,

2013). Such a trend concurs with an unprecedented growth of urban areas, making con-

temporary cities a major source of landscape changes and greenhouse gas emissions (Angel

et al., 2005; Grimm et al., 2008; United Nations, 2015). By modifying the energy and water

balance processes and influencing the movement of air, urban surfaces alter local climatic

characteristics, often resulting in warmer temperatures than its rural surroundings (Oke, 1982).

This phenomenon is known as the urban heat island (UHI) effect.

The quantification of UHIs can be broadly divided into two main approaches (Schwarz et al.,

2011), namely the canopy-layer UHI, measured by the air temperature, usually at 2 m height

(Stewart, 2011), and the surface UHI, measured by land surface temperatures (LST) derived

from remote sensing data (Voogt and Oke, 2003). The increasing availability of satellite
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raster datasets has fostered a large body of research on the spatial distribution of LST and

its relationship with the spatial composition and configuration of urban landscapes (Voogt

and Oke, 2003; Zhou et al., 2019), which contrasts with the spatial sparsity of meteorological

stations that measure air temperature. Despite exhibiting some correlations, air temperature

and LST are essentially different physical quantities. Air temperature is closer to thermal

comfort felt by humans, and can therefore be employed to evaluate the influence of UHIs

on key matters such as energy demand for air conditioning or human health. Additionally,

depending on the satellite overpass time, the differences between air temperature and LST

can range from a few degrees (°C) up to tens of degrees (Jin and Dickinson, 2010; Sobrino et al.,

2012), which calls for special caution when employing satellite-derived LST data for the study

of UHIs.

Although notable studies have explored the relationship between satellite-derived LST raster

data and air temperature measurements to provide high-resolution insights of the canopy-

layer UHI (Fabrizi et al., 2010; Schwarz et al., 2012; Anniballe et al., 2014; Sheng et al., 2017;

Shiflett et al., 2017), they have mostly focused on finding statistical relationships between UHIs

and the spatial distribution of terrain features such as vegetation indices, without exploring

how the observed patterns relate to the biophysical mechanisms that explain canopy-layer

UHI. Such a limitation is important when models are used in simulations, for example to

examine the effect of urban planning scenarios on air temperatures. As part of the Integrated

Valuation of Ecosystem Services and Tradeoffs (InVEST) software, a suite of spatial models

to quantify and value the goods and services from nature that sustain and fulfill human life

(Sharp et al., 2020), an urban cooling model has been developed following recent research

on the effects of surface materials and vegetation cover on UHI (Phelan et al., 2015; Zardo

et al., 2017). The aim of the urban cooling model is to simulate the spatial distribution of UHIs

based on three key mechanisms, namely the shade provided by trees, the evapotranspiration

of urban vegetation and the albedo of the urban surface. In a preliminary application of the

model, Hamel et al. (2020) showed its capability to represent the spatial pattern of nighttime

air temperature of the 2003 heatwaves in the Île-de-France region.

The main objective of this study is to extend such preliminary experiments by proposing a

reusable computational workflow to apply the InVEST urban cooling model to predict the

spatial distribution of air temperature in a given study area. The validity of the simulated

results is optimized by calibrating some key parameters to best fit a set of air temperature

measurements from monitoring stations. Additionally, the simulated spatial pattern of air

temperature is compared with the one obtained with an alternative approach, namely a spatial

regression over features extracted from satellite data.
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4.2 Materials and methods

4.2.1 Study area

Situated at the western end of the Swiss Plateau and on the shores of the Lake Léman, Lau-

sanne is the fourth largest Swiss urban agglomeration with 420757 inhabitants as of January

2019 (Swiss Federal Statistical Office, 2018). As the second most important student and

research center in Switzerland (after Zurich), the urban agglomeration of Lausanne has experi-

enced substantial growth during recent decades, which has mostly occurred in the form of

suburbanization (Bosch et al., 2020a).

A notable geographic feature of Lausanne is its elevation difference of about 500 m between the

lake shore at 372 m.a.s.l. and the northeastern part of the agglomeration (see Figure 4.1 below).

The area is characterized by a continental temperate climate with mean annual temperatures

of 10.9 °C and mean annual precipitation of 1100 mm, and a dominating vegetation of mixed

broadleaf forest.

Spatial extent of the study

In line with urban economics and regional sciences, many works rely on administrative

boundaries to define the spatial extent of the study. However, the way in which boundaries are

constructed overlooks the characteristic scales in which landscape changes and environmental

processes unfold, and might thus lead to equivocal results (Liu et al., 2014; Oliveira et al.,

2014). In consideration of such issues, the spatial extent for this study has been determined

quantitatively by following the method employed in the Atlas of Urban Expansion (Angel

et al., 2012). The core idea is that a pixel is considered part of the spatial extent depending

on the proportion of built-up pixels that surround it. In this study, a pixel is considered part

of the spatial extent when more than 15 % of the pixels that lay within a 500 m radius are

built-up. Additionally, in order to evaluate how temperatures change across the urban-rural

gradient, the spatial extent has been extended by a 1000 m buffer. The above procedure has

been applied to the rasterized LULC map by means of the Python library Urban footprinter

(Bosch, 2020c). The obtained spatial extent, displayed in Figure 4.1, has a surface of 112.46

km2.

4.2.2 Data

Land use/land cover data

The land use/land cover (LULC) maps have been obtained by rasterizing the vector geometries

of the official cadastral survey of August 2019 to the 10 m resolution. Such dataset is provided

and maintained (i.e., weekly updated) by the cantonal administration of Vaud, and features

the whole spatial extent of the canton of Vaud (Association pour le Système d’information du

Territoire Vaudois, 2018). The classification distinguishes 25 LULC classes which are relevant
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(A) Spatial extent and urban pixels (B) Monitoring stations
Bourg-en-Lavaux
Bussigny
Chandel M/13
Lausanne César-Roux
Lausanne Freiland
Lausanne Plaines-du-Loup
Marcelin
Morges (ASTRA)
Morges (DGE)
Pully (Agrometeo)
Pully (MeteoSwiss)
Sorges

(C) Tree canopy (D) Digital elevation model (DEM)
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Figure 4.1 – Study area. The upper left plot (A) shows the computed spatial extent (in orange)
over the repartition of urban pixels (in black) derived from the rasterized cadastral survey
(Association pour le Système d’information du Territoire Vaudois, 2018). The upper right plot
(B) shows the locations of the air temperature measurement stations (see Appendix A.3.1).
The bottom row shows, for the computed spatial extent of the study, (C) the tree canopy map
derived from the SWISSIMAGE orthomosaic (Federal Office of Topography, 2019) and (D) the
altitude map derived from the free version of the digital height model of Switzerland (Federal
Office of Topography, 2004). The basemap of plots A, C and D is based on the World Shaded
Relief (Copyright: ©2009 Esri). The basemap tiles of plot B have been provided by Stamen
Design, under CC BY 3.0, with data from OpenStreetMap, under ODbL.
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to the urban, rural and wild landscapes encountered in Switzerland (Conference des Services

Cantonaux du Cadastre, 2011). On the other hand, a 1 m binary tree canopy mask has been

derived from the SWISSIMAGE orthomosaic (Federal Office of Topography, 2019), by means

of the Python library DetecTree (Bosch, 2020a), which implements the methods proposed by

Yang et al. (2009). The tree canopy mask of the spatial extent of the study is shown in Figure 4.1.

Elevation data

The elevation map for the study area, which is displayed in Figure 4.1, is extracted from the

free version of the digital height model of Switzerland (Federal Office of Topography, 2004),

provided at the 200 m resolution by the Federal Office of Topography.

Satellite data

The satellite dataset consists of the 8 Landsat 8 images in 2018 and 2019 which do not feature

clouds over the study area and for days in which the maximum observed air temperature is

over 25 °C (see the list of selected image tiles in Appendix A.3.1). Data from Landsat 7 has been

excluded because of the scan line corrector malfunction.

Air temperature data

A dataset of consistent air temperature measurements in the study area has been assembled

by combining data from 11 stations operated by various governmental and research sources,

which are shown in Figure 4.1. The temporal resolution of the stations ranges from 10 minutes

to 30 minutes. Given that the UHI effect in Switzerland reaches its maximal intensity around

9 p.m. (Burgstall, 2019), the remainder of this study evaluates it based on the air temperature

observations of that hour.

4.2.3 Simulation with the InVEST urban cooling model

The simulation of the spatial distribution of UHI employs the InVEST urban cooling model,

version 3.8.0 (Sharp et al., 2020), which is based on the heat mitigation provided by shade,

evapotranspiration and albedo. The main inputs are a LULC raster map, a reference evap-

otranspiration raster and a biophysical table containing model information of each LULC

class of the map. Each row of the biophysical table represents a LULC class, and features the

following columns:

• lucode the LULC class code as represented in the LULC raster map

• Shade a value between 0 and 1 representing the proportion of tree cover in such LULC

class
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• Kc the evapotranspiration coefficient

• Albedo a value between 0 and 1 representing the proportion of solar radiation directly

reflected by the LULC class

• Green_area whether the LULC class should be considered a green area

• Building_intensity a value between 0 and 1 representing the ratio between floor

area and land area (for nighttime simulations)

Model description

The data inputs described above are used to compute the cooling capacity index, which is

based on the physical mechanisms that contribute to cooling urban temperatures. More

precisely, the cooling capacity index used in InVEST urban cooling model builds upon the

indices proposed by Zardo et al. (2017), which are based on shading and evapotranspiration,

and extends them by adding a factor to account for the albedo. For each pixel i of the LULC

raster map, the cooling capacity index is computed as in:

CCi = wS ·Si +w AL ·ALi +wET ·ETIi (4.1)

where Si , ALi and ET Ii respectively represent the tree shading, albedo and evapotranspiration

values of pixel i as defined in the biophysical table, and wS , w AL and wET represent the weights

attributed to each component respectively. The values of Si and ALi are retrieved from the

biophysical table according to the LULC class k of the pixel i (see Appendix A.3.1). The tree

shading is computed by overlaying the binary tree canopy mask with the rasterized LULC map

so that for each LULC class k, the shade coefficient Sk corresponds to the average proportion

of tree cover over all the LULC pixels of class k, as in:

Sk = 1

|Ωk |
∑

j∈Ωk

x j (4.2)

where Ωk is the set of pixels of the tree canopy mask whose location corresponds to class

k in the LULC raster, and x j is the value of pixel j of the the tree canopy mask, i.e., 1 if j

corresponds to a tree and 0 otherwise. The albedo coefficients are based on the local climate

zone classification by Stewart and Oke (2012).

The evapotranspiration index ET I is computed as a normalized value of the potential evapo-

transpiration as in:

ET I = Kc ·ETr e f

ETmax
(4.3)

where Kc is the evapotranspiration coefficient, ETr e f is the reference evapotranspiration

raster for the period and area of interest and ETmax is the maximum evapotranspiration value

observed in the area of interest.
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In line with the studies of Nistor et al. (Nistor and Porumb, 2015; Nistor et al., 2016; Nistor,

2016), the evapotranspiration coefficients are attributed to each LULC class by distinguishing

four cases, namely the crop coefficient for single crops for vegetation LULC classes, the water

evaporation coefficient for surface water, the rock and soil evaporation coefficient for bare

soils and rocks, and evaporation coefficients for artificial LULC classes (e.g., urban areas). The

evapotranspiration coefficients attributed to the LULC classes of the Swiss cadastral survey

are listed in subsection A.3.1.

Following the recommendations of Allen et al. (1998), the daily evapotranspiration ETr e f (in

mm/d ay) has been estimated for each pixel using the Hargreaves equation (Hargreaves and

Samani, 1985) as in:

ETr e f = 0.0023 · (Tav g +17.8) · (Tmax −Tmi n)0.5 ·Ra (4.4)

where Tav g , Tmax and Tmi n respectively correspond to the average, maximum and minimum

Tai r (in °C) of each day and Ra is the extraterrestrial radiation (in mm/d ay), which is in turn

estimated for the latitude of Lausanne (i.e., 46.519833°) for each date following the methods

of (Allen et al., 1998, Equation 21). The temperature values of each day have been extracted

from the inventory of gridded datasets provided by the Federal Office of Meteorology and

Climatology (MeteoSwiss), which feature the minimum, average and maximum daily Tai r

for the extent of the whole country at a resolution of 1 km. Such a dataset is obtained by

interpolating 100 Tai r stations across Switzerland (including the MeteoSwiss Pully station of

Figure 4.1) based on non-linear thermal profiles of major basins and non-Euclidean distance

weighting that accounts for terrain effects (Frei, 2014).

In order to account for the cooling effect of large green spaces, the computed cooling capacity

index of pixels that are part of large green areas (> 2 ha) is adjusted as in:

CC g r een
i = ∑

j∈Ωi

gi ·CC j ·e
− d(i , j )

dcool (4.5)

where gi is 1 when the pixel i is a green area and 0 otherwise (as defined in the biophysical

table), d(i , j ) is the distance between pixels i and j , dcool is a parameter that defines the

distance over which a green space has a cooling effect, and Ωi is the set of pixels whose

distance to i is lower than dcool .

Then, a heat mitigation index is computed as:

H Mi =
CCi i f i is part of a large green area or CCi >CC g r een

i

CC g r een
i other wi se

(4.6)

In order to simulate the spatial distribution of Tai r , the model requires two additional inputs.

The first is the rural reference temperature Tr e f , where the UHI effect is not observed, e.g., in

the rural surroundings of the city. The second is the magnitude of the urban heat island effect
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U H Imax , namely the difference between the rural reference temperature and the maximum

Tai r observed in the city center. The two parameters are combined with H Mi to compute the

Ti for each pixel i of the study area as in:

T no mi x
i = Tr e f + (1−H Mi ) ·U H Imax (4.7)

Finally, the Tai r values of each pixel T no mi x
i are spatially averaged using a Gaussian function

with a kernel radius r defined by the user.

Calibration and evaluation of the model

To compare the InVEST urban cooling model with the spatial regression based on satellite

features, the urban cooling model is used to simulate the spatial distribution of Tai r for the

same 8 dates used to train the spatial regression model, i.e., the dates of the selected Landsat

images. It is implicitly assumed that no significative LULC changes have occurred throughout

study period (i.e., from May 2018 to August 2019), and therefore all simulations depart from

the same LULC raster, i.e., the rasterized cadastral survey of the canton of Vaud as described

above. Given the rugged terrain of the study area, the Tr e f has been set as the minimum

average Tai r observed among the monitoring stations, while U H Imax has been set as the

difference between the maximum average Tai r observed among the monitoring stations and

Tr e f . The values of Tr e f and U H Imax for the 8 days considered in this study are displayed in

Figure A.1.

Although the documentation of the InVEST urban cooling model (Sharp et al., 2020) provides

some suggested values for several parameters of the model, their suitability depends strongly

on the local geographic conditions of the study area. Therefore, calibration of the parameters is

required in order to better understand how the physical mechanisms beyond the emergence of

UHIs take place in the context of Lausanne. Following the manual calibration approach drafted

by Hamel et al. (2020), the target parameters are the weights attributed to the tree shading wS ,

albedo w A and evapotranspiration wET , the distance over which green spaces have a cooling

effect dcool and the Tai r mixing radius r . As an additional contribution, this article implements

an automated calibrated procedure based on simulated annealing optimization (Kirkpatrick

et al., 1983) that aims at the minimization of the R2 between the Tai r values observed in the

monitoring stations and those predicted by the model1. The parameter values suggested in the

documentation of the model are set as the initial state of the simulation annealing procedure,

which corresponds to a Tai r mixing radius of r = 500 m, a green area cooling distance of

dcool = 100 m, and weights attributed to tree shading, albedo and evapotranspiration of

wS = 0.6, w A = 0.2 and wET = 0.2 respectively. The number of calibration iterations is set to

100.

1The calibration module has been designed as a reusable open-source Python package, see https://github.com/
martibosch/invest-ucm-calibration
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Given that the Tr e f and U H Imax parameters were here obtained from observations from each

simulated day, metrics such as the mean absolute error (MAE) and the root mean squared error

(RMSE) are effectively constrained to the [0, U H Imax ] range, which affects the interpretation

of these metrics. Therefore, in order to evaluate the ability of the InVEST urban cooling

model to spatially simulate UHIs, the coefficient of adjustment R2, MAE and RMSE of the

calibrated model are compared with those computed in two additional experiments. The first

experiment consists in randomly sampling the Tai r values from a uniform distribution over

the [Tr e f , U H Imax ] range of each date. In the second experiment, the Tai r values of each date

are randomly sampled from a normal distribution with the mean and standard deviation of

the Tai r measurements of the monitoring stations. For both experiments, the three evaluation

metrics are reported as their average over 10 runs.

4.2.4 Spatial regression of air temperature based on satellite data

The spatial regression to predict Tai r from features derived from satellite data is performed

over a raster dataset on a per-pixel basis. A regression model is then trained to fit the observed

Tai r measurements by minimizing the error at the pixels that correspond to the locations of

the monitoring stations.

The regression operates in each pixel with the Tai r as the target variable, and the elevation, the

LST and the normalized difference water index (NDWI) (Gao, 1996) as independent variables.

Additionally, to account for the influence of temperature and moisture surface conditions of

each pixel, the LST and NDWI are spatially averaged over a series of circular neighborhoods

with radii 200, 400, 600 and 800 m, thus reckoning 8 supplementary features. Based on

previous research on the sensitivity of the landscape patterns-UHI relationships to the spatial

resolution (Weng et al., 2004; Song et al., 2014), the target resolution has been set to 200 m.

Computation of satellite-derived features

The estimation of LST from Landsat 8 images follows the methods of Avdan and Jovanovska

(2016). On the one hand, the data from the near-infrared (NIR) and red bands of Landsat 8 (i.e.,

bands 4 and 5 respectively) to compute the normalized difference vegetation index (NDVI),

which is then used to estimate the ground emissivity ελ. On the other hand, following the

Landsat 8 data users handbook (Zanter, 2015), the data from the thermal band of Landsat

8 (i.e., band 10) is first converted to top of atmosphere spectral radiance Lλ, from which

brightness temperature BT is estimated (in °C) as in:

BT = K2

ln((K1/Lλ)+1)
−273.15 (4.8)

where the K1 and K2 are band-specific thermal conversion constants embedded in the Landsat
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image metadata. Finally, the ground emissivity ελ and the brightness temperature BT are

used to compute the LST by inversion of Planck’s Law as in:

LST = BT

1+λ · (BT /ρ) · ln(ελ)
(4.9)

where ρ = 1.438 ·10−2 m K is a constant computed as a product of Boltzmann constant and

Planck’s constants divided by the velocity of the light, and λ= 10.895 ·10−9 is the average of

the limiting wavelengths of the thermal band.

The NDWI is computed from the green and near infrared (NIR) bands of Landsat 8 (i.e., bands

3 and 5 respectively) as in:

N DW I = Xg r een −XN I R

Xg r een +XN I R
(4.10)

Model selection and evaluation

Based on the work of Ho et al. (2014), three regression models have been considered, namely a

multiple linear regression, support-vector machine (SVM) and random forest. The accuracy

of each regression model is assessed by means of a k-fold cross-validation procedure, where

the regression samples are first shuffled and partitioned into 3 folds. Then, for each fold k, a

regression model is trained using the other 2 folds and validated using the samples of such

k fold. Finally, the model that shows the best validation score (i.e., the R2 averaged over 10

repetitions of the k-fold procedure) is selected. Additionally, the MAE and RMSE are computed

in order to evaluate the deviations between the observed Tai r and the predictions of each

model.

On the other hand, the importance of each feature is evaluated by computing its permutation

importance (Breiman, 2001), namely the average decrease of the regression accuracy when

such feature is randomly shuffled. The training of the regression models, cross-validation and

permutation feature importance described above have been implemented by means of the

Scikit-learn library (Pedregosa et al., 2011).

4.3 Results

4.3.1 Spatial regression of air temperature based on satellite data

When including all the samples, the R2 for the linear regression, SVM and random forest

are respectively 0.832, 0.014 and 0.960, with MAE of 1.198, 2.671 and 0.580 °C, and RMSE of
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Figure 4.2 – Scatter plot of the spatial regression residuals (vertical axis) against the elevation
of the monitoring station (horizontal axis of the left plot) and the observed Tai r (horizontal
axis of the right plot), colored by the sample date. See Appendix A.3.2.

1.508, 3.652 and 0.738 °C respectively. The coefficients suggest that SVM is not well suited for

such a regression in this study area, whereas the linear regression and random forest models

obtain a very strong fit — the latter achieving the best performance. Nevertheless, the average

cross-validation scores suggest that the linear regression (average score R2 = 0.733) is more

robust to missing data and also less likely to over-fit the observations than the random forest

regressor (average score R2 = 0.658). The remainder of the article thus considers only the

results obtained with a linear regression model trained with all the samples.

The feature importances of the chosen linear regression model can be evaluated by means of

an F-test (as implemented in the Python library statsmodels (Seabold and Perktold, 2010), see

A.1. With a significance level of p = 0.05, the results of the F-test suggest that the significant

variables for the linear regression are the NDWI when spatially averaged over a 800m, 600m

and 400m radius (in decreasing order of significance). The following most significant variable

is the NDWI spatially averaged over a 200m radius (p = 0.071) and without spatial averaging

(p = 0.231), and the LST spatially averaged over a 400m radius (p = 0.277). With a p = 0.420, the

does not appear to be significant in this particular regression. The low significance obtained

for the LST features in this study might be attributable to the large time lag between the

acquisition time of the Landsat images (which ranges from 11:15 to 11:23 CET) and the time

of the Tai r measurements (i.e. 21:00 CET).

The relationship between the predicted and the observed values is displayed in Figure A.2.

The MAE and RMSE of 1.198 and 1.508 °C respectively demonstrate a stronger fit than the 1.82

and 2.31 °C obtained in the study of Ho et al. (2014) in Vancouver. The two plots of Figure 4.2

show the relationship between the elevation and Tobs of each sample and the regression

errors. While there is no discernable relationship regarding the elevation of the samples

(i.e., the elevation of the monitoring stations), the regression errors seem to be negatively

correlated with Tobs . This pattern, which was also noted by Ho et al. (2014), indicates that high

temperature samples are systematically underestimated by the regression model whereas low

temperature samples are consistently overestimated.
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Figure 4.3 – Maps of the Tai r predicted by the spatial regression for the 8 dates. The points in
the map correspond to the location of the monitoring stations, and are colored according to
the regression errors.

The series of predicted Tai r maps for the 8 dates as well as the prediction errors at the locations

of the monitoring stations are displayed in Figure 4.3. While the range of temperatures exhibits

important differences throughout the dates, the spatial distribution of Tai r is seemingly

consistent. The highest temperatures persistently occur in the most urbanized areas, whereas

the lowest temperatures are take place in the higher elevations located east and north-east of

the map. Finally, there seems to be no discernable pattern in space nor time regarding the

prediction errors at the monitoring stations.

4.3.2 Simulation with the InVEST urban cooling model

The parameters of the model that result in the best fit of the station measurements are a

Tai r mixing radius of r = 236.02 m, a green area cooling distance of dcool = 89.21 m, and the

weights attributed to tree shading, albedo and evapotranspiration of wS = 0.59, w A = 0.24 and

wET = 0.17 respectively (see Appendix A.3.2). The R2, MAE and RMSE of the calibrated model

are respectively 0.903, 0.955 °C and 1.144 °C, which suggest a better model performance than

randomly sampling from the station measurements. The latter yields a R2, MAE and RMSE

of 0.573, 1.947 °C and 2.405 °C when sampling from a uniform distribution and 0.550, 1.952

°C and 2.468 °C when sampling from a normal distribution. Furthermore, the values of R2,

MAE and RMSE obtained with the calibrated parameters reveal a stronger fit than the spatial

regression reported above.
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Figure 4.4 – Scatter plot of the differences between the Tai r simulated by the InVEST urban
cooling model and the ones observed in the monitoring stations (vertical axis) against the
elevation of the monitoring station (horizontal axis of the left plot) and the observed Tobs

(horizontal axis of the right plot), colored by the sample date.

The relationship between the Tai r values at the monitoring stations simulated with the cal-

ibrated parameters and the actual observed measurements is shown in Figure A.3. The

differences between Tai r simulated at the monitoring stations and the observed values are

plotted against the elevation and the observed temperatures Tobs in Figure 4.4. The pattern of

such relationships is very similar to that observed in the spatial regression. On the one hand,

there is no clear relationship between the prediction error of the urban cooling model and

elevation. On the other hand, the prediction errors exhibit a negative correlation with the

observed temperature, denoting a systematic tendency to both underestimate high tempera-

tures and overestimate low temperatures — the former being more prominent in this case, as

noticeable from the asymmetry of the vertical axis in Figure 4.4.

The simulated Tai r maps for the 8 dates and the prediction errors at the monitoring stations

are shown in Figure 4.5. As in the spatial regression, the temperature ranges show important

differences across dates yet the same spatial pattern of Tai r persists. The simulated distribu-

tion of Tai r shows its highest values in the center of Lausanne and along the most urbanized

(and hence less forested) zones along the main transportation axes, whereas the lowest tem-

peratures are found in the forested areas located in the eastern and western extremes of the

upper-half of the study area.

4.3.3 Model comparison

A comparison of the maps predicted by the spatial regression and the urban cooling model is

displayed in Figure 4.6. In line with the temporal consistency of the spatial patterns predicted

by the two approaches respectively, the comparison maps also show a spatial distribution

of Tai r that persists throughout the dates. Such spatial pattern is strongly reminiscent of

the elevation maps (see Figure 4.1 above) and reflects the fact that the elevation is explicitly

considered in the spatial regression but not in the urban cooling model. The overall distribu-

tion of the Tai r pixel differences between the two approaches follows a normal distribution
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Figure 4.5 – Maps of the Tai r simulated by the InVEST urban cooling model for the 8 dates.
The points in the map correspond to the location of the monitoring stations, and are colored
according to the simulation errors.

that ranges from -9.620 °C to 11.929 °C (respectively reflecting lower and higher temperatures

predicted in the spatial regression), which is considerably large range when compared to the

small overall MAE and RMSE of both approaches. Nonetheless, the way in which the histogram

is centered around 0 °C suggests that the differences between the two approaches follow no

particular correlation other than the spatial regression predicting more extreme Tai r values,

which is not surprising considering that the range of Tai r is systematically bounded in the

urban cooling model by the Tr e f and U H Imax parameters.

4.4 Discussion

The results obtained of this study suggest that both the spatial regression based on satellite

data and the InVEST urban cooling model are capable of predicting the spatial distribution of

air temperature with a large degree of statistical determination. Furthermore, the fact that a

similar spatial pattern is predicted by both models suggests that the biophysical mechanisms

embedded in the urban cooling model are well represented. If that is the case, the urban

cooling model presents two central advantages with respect to the spatial regression.

Firstly, unlike regressions and black-box approaches, the fact that the biophysical mechanisms

that drive the emergence of UHIs are represented explicitly allows for a physical interpretation

of the parameters of the model. For example, in a comparative study of the relationship

between the LST and the spatial configuration of trees in Baltimore and Sacramento, Zhou
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Figure 4.6 – Maps comparing the difference between the Tai r predicted by the spatial regres-
sion T̂sr and the InVEST urban cooling model T̂ucm for the 8 dates. See Figure A.3.2.

et al. (2017) suggest that the distinctive results observed in each city might be related to

how the shading of trees and evapotranspiration contribute differently to urban cooling

in the climatic context of each city. More precisely, they suggest that in the dry climate

of Sacramento, large patches of trees ameliorate the efficiency of the evapotranspiration,

whereas with the humid climate of Baltimore, the gains from the tree shading are likely more

important. The urban cooling model provides a suitable mean to quantitatively address

such matters, i.e., by calibrating the model in the two cities, we can explore the weights

obtained for each factor support such hypothesis. In the case study of Lausanne reported

above, the weight attributed to the tree shading wS = 0.59 is higher than the one attributed to

the evapotranspiration wET = 0.17. This is consistent with the local climatic conditions being

more similar in Lausanne and Baltimore than in Sacramento, yet the weights obtained in this

study might be partly determined by the initial solution provided. Nonetheless, to further

understand this issue, validation and calibration of the InVEST urban cooling model in a

broader variety of cities is required. Overall, the way in which the calibrated parameters differ

from the recommendations in the documentation of the model are in consonance with the

particular characteristics of Lausanne. More precisely, the smaller mixing radius and cooling

distances are consistent with the uneven relief of the study area.

The second major advantage of the urban cooling model is that once the model is calibrated

for a given city, it can be used to evaluate synthetic scenarios such as those stemming from

master plans, urbanization prospects or the like, and to spatially design solutions. This kind of
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spatially-explicit evaluation of the impacts of alternative scenarios on ecosystem services is

in fact one of the central purposes of the InVEST suite of models (Tallis and Polasky, 2009).

Statistical models like the spatial regression are not well suited to such a purpose since they

rely on features such as the LST that are hard to obtain other than empirically.

The approach proposed in this article is nevertheless subject to some limitations that merit

thoughtful consideration. On the one hand, as acknowledged in its user guide (Sharp et al.,

2020), the design of the InVEST urban cooling model presents a number of limitations, the

most relevant to this study being the simplified and homogeneous way in which the air is

mixed and the cooling effects of large green spaces. In complex terrains such as the Lausanne

agglomeration, models with uniform weighting of space show considerable deviations from

the observed distribution of air temperature (Frei, 2014). On the other hand, the relationship

between the calibration parameters and the resulting R2 is likely to define a complex opti-

mization landscape with multiple local optima. As a metaheuristic that strongly depends

on random decisions, the simulated annealing procedure is susceptible to convergence to

local optima, arbitrarily leading to different solutions in each run. A sensitivity analysis of the

parameters of the urban cooling model as undertaken preliminarily by Hamel et al. (2020) for

the Île-de-France region could serve as a basis to improve the simulated annealing procedure

by careful design of appropriate neighborhood search and annealing schedule. Finally, the

approach of the present study based on observations at the moment of maximal UHI intensity

(i.e., 9 p.m. in Switzerland), however the factors that influence UHIs are likely to operate

differently across the diurnal UHI cycle. In fact, several studies point to distinct relationships

between the spatial patterns of vegetation and daytime and nighttime UHIs (Anniballe et al.,

2014; Sheng et al., 2017; Shiflett et al., 2017; Hamel et al., 2020). Considering the nature of the

implications of UHI, e.g., energy consumption, work productivity or human health (Koppe

et al., 2004; Santamouris et al., 2015; Zander et al., 2015), a sound understanding of the full

diurnal UHI cycle becomes crucial towards the design of robust solutions.

Nevertheless, the limitations on how the urban cooling model represents the spatial air mixing

and the cooling effects of green spaces seem hard to overcome with the current spatial sparsity

of monitoring stations. Such major shortcoming, which contrasts with the growing availability

of high-resolution LST datasets, is one of the main reasons why most of the UHI studies

have focused on the latter (Jin and Dickinson, 2010; Zhou et al., 2019). As illustrated in this

article, spatial regressions based on remote sensing features such as LST and NDWI do not

necessarily replicate the air temperature measurements better than biophysical models such

as the InVEST urban cooling model. Therefore, improving the spatial density of the monitoring

network becomes an imperative for further enlightening of the UHIs phenomena.

4.5 Conclusion

The present article presents a spatially-explicit approach to simulate UHIs with the InVEST

urban cooling model, which is based on three biophysical mechanisms, namely tree shade,
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evapotranspiration and albedo. The proposed approach shows how LULC and air temperature

data can be combined to calibrate the parameters of the model to best fit measurements from

monitoring stations by means of an automated procedure. The simulations performed for the

urban agglomeration of Lausanne show that the InVEST urban cooling model can outperform

spatial regressions based on satellite-derived features such as LST, NDWI and elevation. The

way in which both approaches consistently predict the highest temperatures in the most

urbanized parts of the agglomeration suggests that the enhancement of green infrastructure

can be an effective heat mitigation strategy, yet further exploration in other climatic contexts

is required to fully understand this issue. To that end, the reusability of the computational

workflow paves the way for further application of the urban cooling model to a broad variety

of cities, which can serve to improve the understanding of the UHI phenomena and support

the design of heat mitigation strategies.
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5 Urban greening scenarios for urban
heat mitigation

The model of the UHI effect presented in the foregoing chapter can be used to simulate

the urban heat mitigation provided by altering the abundance and spatial configuration of

urban elements such as buildings or green infrastructure. In this chapter, such an approach is

applied to the urban agglomeration of Lausanne with the aim of mapping the heat mitigation

potential that can be achieved within the current urban fabric. The study of this chapter has

been submitted for publication to the Royal Society Open Science journal, where it is currently

under review:

Bosch, M., Locatelli, M., Hamel, P., Jaligot, R., Chenal, J., and Joost, S. (2020b). Evaluating

urban greening scenarios for urban heat mitigation: a spatially-explicit approach. Preprint

under review in Royal Society Open Science

The candidate contributed by designing the study, developing of the code and executing the

analysis workflow, and finally writing the manuscript.

5.1 Introduction

Urbanization is a global phenomenon that increasingly concentrates the world’s population

in urban areas, with the latter expected to grow in both the number of dwellers and spatial

extent over the next decades (Seto et al., 2011; Angel et al., 2012; United Nations, 2018). As a

major force of landscape change, urbanization is characterized by the conversion of natural to

artificial surfaces, which alters the energy and water exchanges as well as the movement of

air. Such changes often result in the urban heat island (UHI) effect, a phenomenon by which

urban temperatures are warmer than its rural surroundings (Oke, 1973, 1982; Arnfield, 2003;

Voogt and Oke, 2003; Grimmond, 2007; Phelan et al., 2015). The negative impacts of UHI have

been widely documented and include increased energy and water consumption (Akbari et al.,

2001; Golden et al., 2006; Santamouris et al., 2015), reduced workplace productivity (Kjellstrom

et al., 2009; Zander et al., 2015) and aggravation of health risks (Chestnut et al., 1998; Kovats

and Hajat, 2008; Laaidi et al., 2012). As urban areas grow and global temperatures rise, the
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UHI effect is expected to become more intense (Meehl and Tebaldi, 2004; Huang et al., 2019),

which makes urban heat mitigation a major priority for urban planning and policy-making

(Geneletti et al., 2020).

Increasing urban green space, especially the urban tree canopy, has been one of the most

widely advocated strategies of urban heat mitigation. Nevertheless, the impacts of the urban

tree canopy on air temperature show a complex spatial behaviour that remains poorly un-

derstood (Bowler et al., 2010; Phelan et al., 2015; Koc et al., 2018). While many case studies

have reported evidence of the cooling effects of urban green areas, the relationship between

their size and their cooling capacity is non-linear (Zardo et al., 2017), and little is known about

how the overall spatial configuration of urban green spaces affects the heat mitigation at the

urban agglomeration scale (Lin and Fuller, 2013; Jim, 2013; Haaland and van Den Bosch, 2015;

Artmann et al., 2019). Therefore, the extent to which cities can use green infrastructure to

reduce heat stress remains uncertain, largely because of the lack of fine-grained approaches to

evaluate the cooling effects of the spatial pattern of the tree canopy at the urban agglomeration

scale.

With the aim of addressing the above shortcomings, the present work introduces a novel

spatially-explicit method to evaluate the heat mitigation potential of altering the abundance

and spatial configuration of the urban tree canopy cover in realistic settings. The proposed

method consists of two major parts. First, synthetic scenarios are generated by increasing the

tree canopy cover in candidate locations where the existing urban fabric permits it. Then, the

spatial distribution of air temperature of each synthetic scenario is estimated with the InVEST

urban cooling model, which simulates urban heat mitigation based on three biophysical

processes, namely shade, evapotranspiration and albedo. Finally, the simulated temperature

map is coupled with a gridded population census in order to evaluate the human exposure

to urban heat in the scenario. By applying such a procedure in the urban agglomeration

of Lausanne, Switzerland, this study aims to map the heat mitigation potential that can be

achieved starting from the existing urban fabric. With the aim of quantifying the effects of the

abundance and spatial configuration of the tree canopy cover on urban heat mitigation, a set

of synthetic scenarios are generated by increasing different proportions of tree canopy cover

in distinct spatial configurations.

5.2 Materials and Methods

5.2.1 Study area

Lausanne is the fourth largest Swiss urban agglomeration with 420757 inhabitants as of January

2019 (Swiss Federal Statistical Office, 2018). The agglomeration is located at the Swiss Plateau

and on the shore of the Lake Léman, and is characterized by a continental temperate climate

with mean annual temperatures of 10.9 °C and mean annual precipitation of 100 mm, with

a dominating vegetation of mixed broadleaf forest. The spatial extent of the study has been
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selected following the recent application of the InVEST urban cooling model to Lausanne by

Bosch et al. (ress), and covers an area of 112.46 km2.

In order to evaluate the human exposure to UHI, the population data for the study area

has been extracted from the population and households statistics (STATPOP) (Swiss Federal

Statistical Office, 2020) provided at a 100 m resolution by the Swiss Federal Statistical Office

(SFSO) with the Python library swisslandstats-geopy (Bosch, 2019b).

5.2.2 Simulation with the InVEST urban cooling model

The spatial distribution of air temperatures is simulated with the InVEST urban cooling

model (version 3.8.0) (Sharp et al., 2020), which is based on the heat mitigation provided by

shade, evapotranspiration and albedo. The main inputs are a land use/land cover (LULC)

raster map, a reference evapotranspiration raster and a biophysical table containing model

information of each LULC class of the map. The LULC maps have been obtained by rasterizing

the vector geometries of the official cadastral survey of the Canton of Vaud (Association pour

le Système d’information du Territoire Vaudois, 2018) as of August 2019 to a 10 m resolution.

Such a dataset distinguishes 25 LULC classes which are relevant ot the urban, rural and wild

landscapes encountered in Switzerland. The reference evapotranspiration pixel values are

estimated with the Hargreaves equation (Hargreaves and Samani, 1985) based on the daily

minimum, average and maximum air temperature values of the 1 km gridded inventory of by

the Federal Office of Meteorology and Climatology (MeteoSwiss) (Frei, 2014). The biophysical

table used in this study is shown in Table A.2. A more thorough description of the model and

the data inputs can be found in Bosch et al. (ress).

The parameters of the model are set based on its calibration to the same study area in previous

work (Bosch et al., ress). Finally, the rural reference temperature (Tr e f ) and UHI magnitude

(U H Imax ) values are derived from the air temperature of 11 monitoring stations in the study

area (see Figure A.4). More precisely, Tr e f is set as the 9 p.m. air temperature measurement

— the moment of maximal UHI intensity in Switzerland (Burgstall, 2019) — of the station

showing the lowest temperature value, and U H Imax is set as the difference between the 9

p.m. temperature measurement of the station showing the highest temperature value and

Tr e f . With the above definitions, a reference day for the simulations has been selected from

the 2018-2019 period as the day showing the maximum U H Imax with Tr e f > 20. Such a date

corresponds to July 27th 2018, with Tr e f = 20.60°C and U H Imax = 7.38°C .

5.2.3 Refining LULC classes based on tree cover and building density

A procedure to redefine the LULC classes from the cadastral survey has been designed to dis-

tinguish the LULC classes depending on their proportional cover of both trees and buildings.

The reclassification is achieved by combining the 10 m raster LULC map with two 1 m binary

raster masks, one for the tree canopy raster and another for the buildings. The 1 m binary
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tree canopy mask has been derived from the SWISSIMAGE orthomosaic (Federal Office of

Topography, 2019), by means of the Python library DetecTree (Bosch, 2020a), which imple-

ments the methods proposed by Yang et al. (2009). The estimated classification accuracy of

the tree canopy classification is of 91.75%. On the other hand, the 1 m binary building mask

has been obtained by rasterizing the buildings of the vector cadastral survey (Association pour

le Système d’information du Territoire Vaudois, 2018).

The reclassification procedure consists of three steps. Firstly, each 10 m pixel is coupled with

the tree canopy and building masks in order to respectively compute its proportion of tree

and building cover. Secondly, the set of 10 m pixels of each LULC class are grouped into a

user-defined set of bins to form two histograms, one based on their proportion of tree cover

and the other analogously for the building cover. Lastly, the two histograms are joined so

that each LULC class is further refined into a set of classes. For example, if two bins were

used for both the tree and building cover, the “sidewalk” LULC code might be further refined

into “sidewalk with low tree/low building cover”, “sidewalk with low tree/high building cover”,

“sidewalk with high tree/low building cover” and “sidewalk with high tree/high building cover”.

In the present work, four equally spaced bins (i.e., distinguishing 0-25%, 25-50%, 50-75% and

75-100% intervals) have been used to reclassify each LULC class according to both the tree and

building cover. Following the advice given by the directorate of resoures and natural heritage

in the Canton of Vaud (DGE-DIRNA), the threshold over which a pixel is considered to have a

high tree canopy cover has been set to 75%, which corresponds to placing trees of a spheric

crown with a 5 m radius spaced 10 m from one another so that they form a continuous canopy.

Therefore, adjacent pixels with a tree canopy cover over 75% can Finally, in order to adapt

the biophysical table of the InVEST urban cooling model to the reclassified LULC classes,

the shade coefficients are computed as the midpoint of the bin interval of each level of tree

cover (i.e., 0.125, 0.375, 0.625 and 0.875), whereas the albedo coefficients have been linearly

interpolated based on the level of building cover (see Table A.2).

5.2.4 Generation of urban greening scenarios

Starting from the refined LULC map, a set of urban greening scenarios are generated by

altering the LULC classes of certain candidate pixels in a way that corresponds to reasonable

transformations that could occcur in urban areas. More precisely, pixels whose base LULC

class corresponds to “building”, “road, path”, “sidewalk”, “traffic island”, “other impervious”

and “garden” are changed to the LULC code that has the same base class but with the highest

tree cover, e.g., pixels of a post-refinement class “sidewalk with low tree/low building cover”

are be changed to “sidewalk with high tree/low building cover”. In order to ensure that such

an increase of the tree canopy cover is performed only where the existing urban fabric permits

it, pixels might only be transformed when two conditions are met. First, the proportion of

building cover in the candidate pixels must be under 25%, i.e., there is a 75% of the pixel area

which could be occupied by a tree crown. Secondly, pixels of the “road, path” class might only
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be transformed when they are adjacent to a pixel of a different class, which prevents increasing

the tree canopy cover in pixels that are in the middle of a road (e.g., a highway).

After mapping the candidate pixels where the tree canopy cover can be increased, scenarios

are generated based on two key attributes: the extent of tree canopy conversion (expressed as a

proportion of the total number of candidate pixels), and the selection of pixels to be converted.

A set of scenarios is generated by transforming a 12.5, 25, 37.5, 50, 62.5, 75 and 87.5% of

the candidate pixels respectively. For each of these canopy areas, three distinct selection

approaches are used. The first consists in randomly sampling from the candidate pixels until

the desired proportion of changed pixels is matched. In the second and third approaches,

the candidate pixels are sampled according to the number of pixels with high tree canopy

cover (i.e., greater than 75%) found in their Moore neighborhood (i.e., the 8 adjacent pixels).

In the second approach, pixels with higher number of high tree canopy cover neighbors are

transformed first, which intends to spatially cluster pixels of high tree canopy cover. The

third approach intends to spatially scatter pixels of high tree canopy cover by prioritizing

pixels with lower number of high tree canopy neighbors. Given that the three sampling

approaches are stochastic, for each scenario configuration, i.e., each pair of proportion of

transformed candidate pixels and sampling approach, the corresponding temperature maps

will be computed by averaging a number of simulation runs. After observing little variability

among the simulation results, the number of runs of a each configuration has been set to 10.

Lastly, the set of scenarios is completed with a configuration where a 100% of the candidate

pixels are transformed, which is independent of the sampling approach or scenario run

since there exists a single deterministic way to transform all the candidate pixels. The final

number of scenarios simulated scenarios is 211, i.e., 10 scenario runs for 3 different sampling

approaches and 7 proportions of transformed candidate pixels, plus a last scenario where all

the pixels are transformed.

For each scenario, the spatial pattern of the tree canopy is quantified by means of a set of

spatial metrics from landscape ecology (O’Neill et al., 1988; McGarigal et al., 2012), which

are computed for the pixels whose post-refinement LULC class has a tree canopy cover over

75% 1. Based on other studies that explore the relationship between the spatial of tree canopy

and UHIs, four spatial metrics have been chosen to quantify both the composition and

oconfiguration of the tree canopy, which are listed in Table 5.1. The proportion of landscape

(PLAND) of pixels with high tree canopy cover serves to quantify the composition aspects,

while the configuration is quantified by means of the mean patch size (MPS), edge density

(ED) and the mean shape index (MSI) of patches of high tree canopy cover. The four metrics

have been computed with the Python library PyLandStats (Bosch, 2019a).

1Following the advice given by the directorate of resoures and natural heritage in the Canton of Vaud (DGE-
DIRNA), the threshold over which a pixel is considered to have a high tree canopy cover has been set to 75%, which
corresponds to placing trees of a spheric crown with a 5 m radius spaced 10 m from one another so that they form
a continuous canopy.
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Table 5.1 – Selected landscape metrics. A more thorough description can be found in the
documentation of the software FRAGSTATS v4 (McGarigal et al., 2012)

Category Metric name Description

Composition Percentage of land-
scape (PLAND)

Percentage of landscape, in terms of area, occupied by pixels with
high tree canopy cover

Configuration Mean patch area
(AREA_MN)

Average size (in hectares) of the patches formed by pixels with high
tree canopy cover

Mean shape index
(SHAPE_MN)

Average shape index of the patches formed by pixels with high tree
canopy cover

Edge density (ED) Sum of the lengths of all edge segments between pixels with high
tree canopy cover an other pixels, per area unit (in m/hectare)

5.3 Results

5.3.1 Proportion of transformed pixels by their original LULC class

The relationship between the number of transformed candidate pixels by their original LULC

class and the overall proportion of transformed candidate pixels is shown in Figure 5.1. Chang-

ing a 25, 50, 75 and 100% of the candidate pixels corresponds to a total number of pixels

changed of 118880, 237760, 356640 and 475520, which account for a total area of 1188.8,

2377.6, 3566.4 and 4755.2 hectares respectively. In the latter case, i.e., increasing the tree

canopy in all the possible pixels, 61.50% of the pixels correspond to the “garden” LULC class,

followed by “road, path”, “building”, “other impervious”, (18.01, 10.81 and 7.69%, respectively).

Finally, the LULC classes of “sidewalk” and “traffic island” constitute only 1.67 and 0.3% of the

pixels where the tree canopy can be increased. The differences when considering the sam-

pling approaches separately are small relative to the total number of transformed candidate

pixels. The largest differences between sampling approaches can be noted in the number

of transformed pixels that originally belong to the “garden” class. When transforming 25, 50

and 75% of the candidate pixels, clustering respectively transforms (on average among the

simulation runs) a 0.90, 0.38 and 0.12% more garden pixels than random sampling, and 1.28,

0.76 and 0.43% more garden pixels than the scattering approach (Figure 5.2).
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Figure 5.1 – Number of transformed pixels by its original LULC class for an overall proportion
of transformed pixels of 25, 50, 75 and 100%. The lines at the top of the bars represent the 95%
confidence intervals. The bar heights and the confidence intervals are computed out of all the
simulation runs and sampling approaches. See the Jupyter Notebook at section S2.1 for the
detailed numbers of the figure.
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Figure 5.2 – Comparison of between the number of transformed pixels by its original LULC
class with the random sampling approach and the scattering (Nr andom −Nscat ter , left subplot)
and the clustering (Nr andom −Ncluster , right subplot) selection approaches, for an overall
proportion of transformed pixels of 25, 50 and 75%. The lines at the top of the bars represent
the 95% confidence intervals. The bar heights and the confidence intervals are computed out
of all the simulation runs. See the Jupyter Notebook at section S2.1 for the detailed numbers
of the figure.

5.3.2 Simulated LULC, temperature and heat mitigation maps

The LULC, temperature and heat mitigation maps for the scenarios generated by transforming

a 25, 50, 75 and 100% of the candidate pixels are shown in Figure 5.3. When changing 25, 50,

75 and 100% of the candidate pixels, the maximum temperature T for the reference date, i.e.,

26.05°C , is progressively reduced to 25.77, 25.30, 24.82 and 24.49°C respectively, while the

magnitude of maximum heat mitigation (T −Tobs) increases from 0.49, 1.17, 1.81 and 2.22°C

respectively. The largest heat mitigation magnitudes occur in the most urbanized parts, which
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Figure 5.3 – Simulated LULC (top), temperature (middle) and heat mitigation (bottom) maps
by transforming a 25, 50, 75 and 100% of the candidate pixels to its corresponding LULC
code with high tree canopy cover. The pixel values of each map are aggregated out of all the
sampling approaches and simulation runs, i.e., the LULC maps show the mode, whereas the
temperature and heat mitigation maps show the average. The axes tick labels display the Swiss
CH1903+/LV95 coordinates. See the Jupyter Notebook at section S2.1 for the detailed numbers
of the figure.

20 30 40 50
PLAND

22.4

22.6

22.8

23.0

23.2

T
[°

C]

0.0 0.5 1.0 1.5
AREA_MN

1.2 1.3 1.4 1.5
SHAPE_MN

200 300 400 500
ED

Approach
random
cluster
scatter

Figure 5.4 – Relationship between landscape metrics and the simulated average temperature
T for each scenario run, colored to distinguish the sampling approaches. See the Jupyter
Notebook at section S2.2 for the detailed numbers of the figure.

are located along the main transportation axes. The relationship between the proportion

of candidate pixels transformed and the simulated distribution of air temperature can be

approximated as a linear relationship with a negative slope (see Figure A.5 and Figure A.6 for

more details about this relationship).

5.3.3 Spatial patterns of tree canopy cover

The relationships between the landscape metrics of each scenario run and the corresponding

simulated average temperature T (over all the pixels) are displayed in Figure 5.4. The propor-

tion of landscape (PLAND) occupied by pixels with high tree canopy cover range from 17.26 to

53.37%. As a composition metric, PLAND is directly related to the proportion of transformed

candidate pixels, and the extreme values of the PLAND range correspond to transforming 0

and 100% of the candidate pixels respectively. The relationship between PLAND and the aver-
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age simulated temperature of each scenario T shows a sharp monotonic decrease. However,

for the same PLAND values, clustering the transformed pixels to other pixels with high tree

canopy cover consistently leads to higher T than scattering or randomly sampling — the latter

approaches show almost indistinguishable PLAND and T relationship.

Regarding the configuration metrics, the values of the mean patch area (AREA_MN) show that

the clustering and random sampling approaches lead to larger patches of high tree canopy

cover than the scattering approach. When transforming a 12.5 and 25% of the candidate pixels,

clustering them to other pixels of high tree canopy cover increases AREA_MN from 0.14 to

0.54 hectares respectively (on average over the simulation runs). For 37.5% of transformed

candidate pixels in the clustering approach, AREA_MN shows a sudden decline to 0.20 hectares,

followed by a monotonic increase that reaches 1.52 hectares when all the candidate pixels are

transformed. Such a discernable kink in the computed AREA_MN reveals characteristics of

the existing urban fabric, and describes the point after which all the candidate pixels that are

adjacent to other pixels of high tree canopy have been transformed and hence new pixels have

to be allocated as part of new (and smaller) patches. The same kink is even more notable for

the mean shape index (SHAPE_MN), yet the computed values show a very irregular pattern

accross the different scenario configurations, and it is the only metric where differences

can be noted among scenario runs with the same configuration. The only consistency is

that the scattering approach tends to lower SHAPE_MN values than randomly sampling the

transformed pixels, which is likely due to the larger abundance of simple single-pixel patches

in the former approach. Finally, the clustering approach results in lower edge density (ED)

values than in the scattering and random sampling approaches, which show a very similar

trend. The observed pattern is consistent with the notion that growing existing patches by

clustering the new pixels to them accounts for less total edge length than scattering the

same amount of new pixels in a leapfrog manner. In the three approaches, the ED increases

monotonically at first until an apex is reached when the proportion of transformed pixels is

between 50% and 60%, and then declines monotonically.

The average simulated temperature T is overall negatively correlated with AREA_MN, which

suggests that for the same amount of high tree canopy pixels, large patches provide lower heat

mitigation. On the other hand, configurations with the same proportion of high tree canopy

pixels show lower T for larger values of ED, which suggests that edge effects between artificial

patches and patches of high tree canopy contribute to greater heat mitigation. Nonetheless,

as higher proportions of candidate pixels are transformed and the locations of the remaining

candidate pixels force the overall ED to decrease, the simulated average temperatures continue

to decline. This highlights how the cooling effects of the abundance of tree canopy overshadow

those of the spatial configuration, which is consistent with many related research.
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5.3.4 Effects on human exposure

The relationship between human exposure to air temperatures higher than 21, 22, 23, 24, 25

and 26°C and the proportion of pixels transformed to their respective high tree canopy cover

class is shown in Figure 5.5. The number of dwellers exposed to temperatures higher than 21°C
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Figure 5.5 – Population exposed to temperatures higher than 21, 22, 23, 24, 25 and 26°C
respectively for an overall proportion of transformed pixels of 0, 25, 50, 75 and 100%. The bar
heights and the confidence intervals are computed out of all the simulation runs and sampling
approaches. See the Juptyer Notebook at section S2.3 for the detailed numbers of the figure.

does not show a significant decrease (even when converting all the candidate pixels), whereas

for temperatures higher than 22°C, it diminishes from 269254 to 268601, 267683, 266518 and

264125 when the proportion of transformed pixels is of 25, 50, 75 and 100% respectively, which

represents a relative share of 97.25, 97.02, 96.69 96.27 and 95.41% of the population of the

study area. Such a decline progressively becomes more notable as temperatures increase, e.g.,

the share of the population exposed to temperatures over 24°C declines from an initial 78.4%

to 72.39, 59.57, 37.53 and 11.52% when transforming a 25, 50, 75 and 100% of the candidate

pixels respectively. Finally, the share of dwellers exposed to temperatures over 25°C, which is

initially of 47.91%, is diminished to a 24.98 and 5.74% when transforming a 25 and 50% of the

pixels respectively, and becomes 0 after that, whereas the 2508 dwellers originally exposed to

temperatures over 26°C do no longer meet such temperatures after transforming a 25% of the

candidate pixels.

The way in which the transformed pixels are sampled has significant effects on the human

exposure to high temperatures (Figure 5.6). Overall, scattering the transformed pixels to avoid

forming a continuous tree canopy appears as the most effective approach to reduce the human

exposure to the highest temperatures, followed by random sampling. When transforming

a 25 and 50% of the candidate pixels with the scattering approach, the number of dwellers

exposed to temperatures over 25°C decreases from 124073 to 65108 and 4498 respectively.

Such a reduction is larger than its random sampling counterpart by 3125 and 8223 dwellers

respectively, and larger than its clustering approach counterpart by 9359 and 21388 dwellers
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Figure 5.6 – Comparison of between the population exposed to temperatures higher
than 21, 22, 23, 24, 25 and 26°C with the random sampling approach and the scattering
(Nr andom −Nscat ter , left subplot) and the clustering (Nr andom −Ncluster , right subplot) selec-
tion approaches, for an overall proportion of transformed pixels of 25, 50 and 75%. The lines at
the top of the bars represent the 95% confidence intervals. The bar heights and the confidence
intervals are computed out of all the simulation runs. See the Jupyter Notebook at section S2.3
for the detailed numbers of the figure.

respectively (Figure 5.6).

5.4 Discussion

5.4.1 Validity and applicability of the proposed approach

The scenarios simulated in this study map locations where the tree canopy cover in the urban

agglomeration of Lausanne can be increased, and suggests that such changes can result in

urban nighttime temperatures that are up to 2°C lower. The results indicate that given the same

proportion of tree canopy cover, a scattered configuration might lead to more effective urban

heat mitigation than a clustered one, which is in line with previous studies in humid climates

(Zhou et al., 2011; Kong et al., 2014; Estoque et al., 2017; Zhou et al., 2017; Yu et al., 2018;

Nastran et al., 2019). Nevertheless, the results suggest that effect of the spatial configuration

(measured by the metrics AREA_MN, SHAPE_MN and ED) is secondary when compared to the

effect of the composition (measured by the PLAND metric). Overall, the effect of the spatial

configuration of trees on its urban heat mitigation depends on how it affects the shading and

evapotranspiration processes. Such a relationship is known to be strongly mediated by the

tree species, background climatic and environmental conditions as well as the spatial scale (Li

et al., 2013b; Estoque et al., 2017; Zhou et al., 2017; Jiao et al., 2017; Yu et al., 2018; Yan et al.,

2019; Wang et al., 2020a; Terfa et al., 2020).

The spatial effects observed in the results are due to the InVEST model equations representing

air mixing and the effect of parks. In order to ascertain these effects, the InVEST urban cooling

model must be further validated with experiments at the neighborhood scale to ensure that it

provides an appropriate city-scale depiction of how the urban heat mitigation mechanisms
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operate at finer scales. In fact, the InVEST urban cooling model presents limitations regarding

the simplified and homogeneous way in which the air is mixed, as well as the cooling effects

of large green spaces (Sharp et al., 2020; Bosch et al., ress). As a result, the relationship

between the proportion of tree canopy cover and the magnitude of the urban heat mitigation

reported in this work is practically linear, and the temperature differences between spatially

clustering or scattering the new tree canopy cover are limited. Nonetheless, in complex

terrains such as the Lausanne agglomeration, models with uniform weighting of space show

considerable deviations from the observed spatial patterns of air temperature (Frei, 2014;

Labedens et al., 2019). Moreover, the cooling effects of large green spaces have been found to

be non-proportional to their area and shape complexity (Chen et al., 2014; Bao et al., 2016;

Du et al., 2017). Improving how these non-linear components are represented in the InVEST

urban cooling model could enhance not only its validity, but also its value to urban planning by

identifying thresholds and regime changes in the cooling efficiency of additional tree planting.

Despite the limitations noted above, a major advantage of the proposed approach is that it can

be used to evaluate urban heat mitigation of synthetic scenarios. The simulations presented

in this article focus on spatially exploring the effects of an increase of the tree canopy cover,

yet there is room for much more experimentation of this kind. On the one hand, the generic

sampling approaches explored above can be extended to consider ad-hoc characteristics

such as the spatial distribution of the population, and design optimization procedures with

specific goals. For instance, the candidate pixels can be selected with the aim of minimizing

the exposure of the most vulnerable populations to critical heat thresholds. More broadly, the

approach can be used as part of decision support system to explore the trade-offs between

ecosystem services provided by trees, perform weighted optimizations and map priority

planting locations (Bodnaruk et al., 2017). On the other hand, in line with recent studies

(Lemonsu et al., 2015; Yang et al., 2016; Trimmel et al., 2019), the approach could be applied

to examine the impact of distinct urbanization scenarios such as densification and urban

sprawl on air temperature and human exposure to extreme heat, under current conditions as

well as future climate estimates, e.g., by changing the Tr e f or U H Imax parameters. Similarly,

InVEST urban cooling model might be coupled with models of LULC change such as cellular

automata in order to assess not only which scenarios are most desirable in terms of urban

heat mitigation, but also which planning strategies might lead to them (Silva et al., 2008; White

et al., 2015; Bosch et al., 2019).

5.4.2 Implications for urban planning in Lausanne

The spatiotemporal patterns of LULC change observed during the last 40 years in the Lau-

sanne agglomeration have been characterized by infilling development and a progressive

coalescensce of artificial surfaces in its inner ring (Bosch et al., 2020a). Such an infilling trend

urges for careful evaluation of the beneficial ecosystem services provided by urban green

spaces, which should be balanced against the adverse consequences of urban sprawl (Haaland

and van Den Bosch, 2015; Artmann et al., 2019).
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5.5. Conclusion

The approach proposed in this study maps locations in the current urban fabric where the tree

canopy cover can be increased. While part of this urban greening might occur in impervious

surfaces (e.g., in sidewalks, next to roads and in other impervious surfaces), most of the

candidate locations currently correspond to urban green space (i.e., the “garden” LULC class).

Therefore, the potential heat mitigation suggested by the results study is not attainable in a

scenario of severe infill development. Additionally, densification strategies should consider

that newly created urban green space might result in less provision of ecosystem services than

remnant natural patches (Jim, 2013; Sun and Chen, 2017; Wang et al., 2019). Finally, infilling

might exacerbate the unevenness of the accessibility to green areas by depriving dwellers

of the most dense parts in city core from their few remaining urban green spaces. Spatial

heterogeneity of this kind, which are encountered in many socioeconomic and environmental

aspects of contemporary cities, are often hard to represent with aggregate indicators and

highlight the importance of spatially explicit models to urban planning and decision making.

The explicit representation of space is also crucial when considering the impacts of urban

green space on human exposure to extreme heat. Although the simulated scenarios suggest

that the impact of the spatial pattern of tree canopy on the air temperature is practically linear,

the implications on human exposure to critical temperatures exhibit important thresholds.

For example, by increasing the tree canopy cover of a 25% of the candidate pixels, the number

of dwellers exposed to nighttime temperatures over 25°C can be reduced from 124073 to

74466, which respectively represents a 45.08 and 27.06% of the total population in the study

area. Furthermore, the results suggest by selecting such pixels to prioritize a spatial scattering

of the tree canopy cover, such a population can be reduced by an additional 3125 or 6234

dwellers when respectively compared to random sampling such pixels or clustering them to

the existing tree canopy cover. In Switzerland, the excess mortality associated to the heat wave

of 2003 occurred over-proportionally to urban and sub-urban residents of its largest urban

agglomerations (Grize et al., 2005). Furthermore, the association between temperature and

mortality in extreme heat events in the largest Swiss urban agglomerations are exponential

(Ragettli et al., 2017), which indicates that reducing temperatures by even fractions of a degree

can have a dramatic impact on death rates.

5.5 Conclusion

The scenarios simulated in this study represent a new way of spatially exploring the heat

mitigation potential provided by modifications of the urban fabric, and allow evaluating the

cooling effects of both the abundance and spatial configuration of the tree canopy cover. The

results map locations where the existing tree canopy cover of the urban agglomeration of

Lausanne can be increased, and show an urban cooling potential for urban nighttime temper-

atures of more than 2°C. Additionally, the simulations suggest that the spatial configuration in

which the tree canopy is increased influences its heat mitigation effects. The configuration

effects become more significant when considering the impacts on the urban population, and

small increases in the tree canopy can result in important reductions in the number of dwellers
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exposed to the highest temperatures. Overall, the presented approach provides a novel way to

explore how the urban tree canopy can be exploited to reduce heat stress. Future studies can

extend the analyses by assessing the provision of other ecosystem services in the various tree

canopy strategies presented here.
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6 Synthesis and outlook

6.1 Summary of main contributions

This thesis presents important contributions to understand the spatiotemporal patterns of

urbanization and its relationship with the UHI effect. Although the staged results are restricted

to three Swiss urban agglomerations and only one aspect of environmental performance,

namely the UHI effect, the proposed methods are reusable and can thus easily be applied to

other regions. Additionally, the overall approach of relating the spatiotemporal patterns of

urbanization to the UHI effect can easily be extended to assess other ecosystem services such

as flood risk mitigation, air pollution control or recreation opportunities, and more broadly to

evaluate further criteria of environmental performance such as the alteration of material and

energy flows, the fragmentation of natural habitats or biodiversity indicators.

The first key contribution is the development of PyLandStats (chapter 2), an open-source

reusable library to compute landscape metrics in categorical raster maps. Such an accomplish-

ment provides improvements upon the FRAGSTATS software, which hitherto has been the

prevalent approach to compute landscape metrics in the literature. In chapter 3, PyLandStats

is used to assess the spatiotemporal patterns of urbanization in Bern, Lausanne and Zurich. As

noted in the introduction of this thesis, such an endeavor is required in order to quantitatively

associate the changes in urban patterns to the observed variations of environmental perfor-

mance, e.g., the UHI effect. The area-radius scaling of urban patches suggest that the three

agglomerations, and especially Bern and Lausanne, are better described by two characteristic

spatial extents, i.e., an inner zone where urbanization is essentially complete and an outer

zone that is still undergoing intense urbanization. The proposed distinction of two character-

istic extents is then exploited to revisit two prominent hypotheses of urbanization patterns,

namely the diffusion and coalescence hypothesis and the three growth modes hypothesis. The

results suggest that both hypothesis are over-simplistic because urbanization exhibits distinct

spatiotemporal patterns in each of the characteristic extents. In the inner zone of the three

agglomerations, urban patches are coalescing, and their growth corresponds mostly to infill

development. In the outer zone, Lausanne and Bern are seemingly at the transition between
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the diffusion and coalescence stages, with urban patches growing mainly by edge expansion

yet the influence of infilling increases over time. On the other hand, the outer zone of Zurich

also shows the characteristics of coalescence, with an urban growth that is governed by both

edge expansion and infilling — yet the latter gains influence over time. Lastly, this article

represents an advance over similar studies in terms of the repeatability and reproducibility of

the results. The computational workflow to reproduce the results and figures of the manuscript

is available at a GitHub repository at https://github.com/martibosch/swiss-urbanization, and

can be executed interactively in the browser with the Binder web service (Matthias Bussonnier

et al., 2018). Additionally, the tool to process the geodata from the SFSO has been packaged

into an open-source Python library that has been reviewed and published separately (Bosch,

2019b). The contributions of chapters 2 and 3 serve to achieve the first research objective of

this thesis outlined in the introductory chapter, namely quantifying the landscape changes

due to urbanization so that they can be linked to variations in the UHI effect.

After the quantitative evaluation of urbanization in Switzerland, chapter 4 is devoted to the

spatially-explicit modeling of the UHI effect. To that end, the approach builds upon the InVEST

urban cooling model Sharp et al. (2020), which simulates heat mitigation based on three bio-

physical mechanisms, i.e., shading, evapotranspiration and albedo. An automated calibration

procedure based on the simulated annealing algorithm is used to tune the parameters of

the model in order to best fit temperature measurements observed in monitoring stations.

In the example application in the urban agglomeration of Lausanne, the calibrated model

outperforms regression models based on remote sensing features. Besides the performance

improvements, the proposed workflow presents two key advantages with respect to the re-

gression models or supervised learning approaches in general. First, the parameters of the

InVEST urban cooling model are directly related to the biophysical mechanisms that underpin

the UHI effect, which permits their straightforward physical interpretation. Secondly, the

calibrated model can be used to simulate urban heat mitigation in synthetic LULC maps such

as master plans and urbanization prospects. Supervised learning models based on remote

sensing features are not well suited for such an enterprise, since they require inputs such as

LST which are hard to obtain other than empirically. Since the ultimate objective is to propose

a reusable computational workflow that can be calibrated and applied to any given region,

the code materials used to obtain the results and figures are available at a GitHub repository

at https://github.com/martibosch/lausanne-heat-islands. Furthermore, the automated cali-

bration routine has been released as an open-source Python package, with the source code

hosted at a GitHub repository at https://github.com/martibosch/invest-ucm-calibration.

In the last part of the thesis, the approach to simulate urban cooling described above is applied

to evaluate potential heat mitigation in a variety of greening scenarios in Lausanne (chapter 5).

The scenarios are generated by increasing the abundance of the tree canopy cover in distinct

spatial configurations. Then, the InVEST urban cooling model is applied to the synthetic LULC

map of each scenario in order to simulate the corresponding heat mitigation. The results

show an cooling potential for urban nighttime temperatures of more than 2°C, and suggest

that scattered configurations of the tree canopy cover mitigate urban heat more efficiently
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6.2. Implications of the key findings

than clustered ones. When considering the impacts on the urban popuation, small increases

in the tree canopy can result in important reductions in the number of dwellers exposed to

the highest temperatures, which can in turn have major impacts on human health and well

being. Like in the previous articles, the computational workflow of the study is available at a

GitHub repository at https://github.com/martibosch/lausanne-greening-scenarios. Overall,

chapters 4 5 accomplish the second research objective of the thesis, which is the development

of a reusable approach to model the UHI effect in urban areas and to map the heat mitigation

potential. The work of these chapters also addresses the third research objective of the thesis,

as they provide a reusable method to evaluate the UHI effect in future urbanization scenarios

and map the heat mitigation potential of urban green infrastructure. However, the presented

results only assess the urban cooling potential in the current urban fabric of Lausanne, and

thus do not consider scenarios based in urbanization forecasts or land use plans. Future work

should apply the approach to alternative future scenarios in order to explore which urban

patterns provide the most desirable heat mitigation outcomes and use that information to

support urban planning and decision making.

6.2 Implications of the key findings

The analysis of the spatiotemporal patterns of urbanization from 1980 to 2016 presented in

chapter 3 sets the stage for reasonable guesstimation of the future urbanization trends in

the main Swiss urban agglomerations. On the one hand, urban growth in Zurich has been

characterized by a coalescence of urban patches and an increasing dominance of infilling,

which is the dominant growth mode in the inner core as well as in the outer zone during

the most recent period of study (i.e., from 2007 to 2016). On the other hand, while the same

trend is observed in the inner zones of Bern and Lausanne, their outer zones are seemingly

at the transition between diffusion and coalescence of their urban patches. Under these

circumstances, urban growth is dominated by edge-expansion of urban patches, yet such a

growth mode is losing influence to infilling. From the diffusion and coalescence model of

urbanization (Dietzel et al., 2005), the outer zones of Bern and Lausanne can be expected to

undergo increasing infilling development, approaching the pattern observed in Zurich. The

way in which the outer zones of Bern and Lausanne show a tendence towards the pattern of

Zurich can also be noted in the area-radius curves, since the kink that separates the inner

and outer zones of Bern and Lausanne is losing prominence as the curve become steeper at

larger radii (i.e., the outer zones) — hence approaching the straight-line area-radius scaling

encountered in Zurich. Therefore, there are plausible grounds that indicate that significant

urbanization will occur in the outer zones of Bern and Lausanne in the following years, which

is in line with Swiss urbanization scenarios developed in related studies (Price et al., 2015;

Gerecke et al., 2019). Nevertheless, the scenarios reviewed above are all based upon the the

LULC change trends occured before the major revision of the Swiss Federal Act on Spatial

Planning in 2013, which might mediate future urbanization differently, e.g., fostering further

intensification of the inner zones (Weilenmann et al., 2017; Rudolf et al., 2018; Gerecke et al.,
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2019).

The study of the UHI effect in Lausanne presented in chapters 4 and 5 shows that the highest

tempratures occur in the inner core of the urban agglomeration, which concentrates the

largest share of urban dwellers. In the greening scenarios evaluated in chapter 5, most of the

locations where the tree canopy can be increased correspond to urban green space. These

findings reveal that the scenarios that provide the greatest heat mitigation are incompatible

with severe urban intensification, hence supporting the central hypothesis of the thesis. This

urges for a careful assessment of the potential impacts of further intensification of the main

Swiss urban agglomerations, especially regarding the beneficial ecosystem services provided

by remnant green space of the urban cores as well as the potential impacts of transforming

them to impervious surfaces.

6.3 Methodological aspects and outlook for future research

Improvement of the urban heat island simulation

When compared to the approaches to select tree planting locations with highest urban cooling

effectiveness reviewed in the introductory chapter, the application of the InVEST urban

cooling model presented in this thesis is the first that implicitly account for the effects of

spatial configuration, namely by including the well-documented effect of large green areas.

However, the proposed approach is also subject to important limitations that require careful

consideration and must be addressed in future work.

Firstly, the study of the UHI effect with the InVEST urban cooling model presented in this thesis

only considers the effects at the scale of the urban agglomeration, where the UHI is presumed

to be most notable. Nonetheless, the variety of processes that unfold upon urban landscapes

operate accross multiple spatial and temporal scales, which stresses the importance of multi-

scale approaches in the study of urban and ecological systems (Forman, 1995; Pickett et al.,

1997; Alberti, 1999; Collins et al., 2000; Zipperer et al., 2000; Pickett et al., 2001; Alberti, 2005;

Liu et al., 2007; Wu, 2008; Zhang et al., 2013; Alberti et al., 2018). A variety of micro-scale

models of urban climate can be found in the literature, which can be broadly classified

into computational fluid dynamics models and energy balance models of the urban canopy

(Mirzaei, 2015; Toparlar et al., 2017; Mauree et al., 2019). While computational fluid dynamics

can model the urban microclimate at the street and neighborhood scales with great detail, due

to their substantial computational requirements, they are not suitable for studying the UHI

at the scale of the urban agglomeration. Instead, to reduce the computational costs, energy

balance models of the urban canopy do not represent buildings and other features of the

urban canyon explicitly, but rather parametrize their effects on a grid where the atmospheric

and thermodynamic interactions are represented. In fact, the initial formulations of energy

balance models (Masson, 2000; Martilli et al., 2002) have been extended to account for the

shadow effects, water and energy exchanges of trees by representing their three-dimensional
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features, which include the height of their trunk and canopy, their cover fraction of the urban

canyon as well as their foliage by means of the leaf area index (Krayenhoff et al., 2014; Redon

et al., 2017; Krayenhoff et al., 2020; Redon et al., 2020).

When compared to the aforementioned approaches, the InVEST urban cooling model provides

a simplified representation of the characteristics of the urban canyon. While such a simplicity

is a valuable asset that permits applying the model to a variety of cities and scenarios with

results that can be easily interpreted physically, the ability of the model to accurately repre-

sent physical processes associated with the heat mitigation should be demonstrated before

resolving planning recommendations (Krayenhoff et al., 2021). Therefore, as suggested in

the discussion of chapter 5, it is crucial to validate the InVEST urban cooling model against

energy balance models with more detailed representations of the urban canyon to ensure that

it provides an appropriate city-scale representation of how the urban cooling mechanisms

operate at finer scales — or else see how to improve the model by means of more detailed

parametrizations.

On the other hand, the distinction between tree species is not addressed explicitly in the

InVEST urban cooling model nor in the energy balance models. Some extensions of the

latter partly account for these differences when considering the leaf area index, which is

characteristic to the tree species and is a key determinant of the shading properties, yet there

are large differences in evapotranspirational cooling between species (Peters et al., 2010;

Rahman et al., 2015; Gillner et al., 2015; Rahman et al., 2019). Additionally, tree species very

different stress tolerance to urban environments (Bassuk, 2003; Swoczyna et al., 2010), and a

misappreciation of these factors can lead to adverse outcomes such as reduced heat mitigation,

increased tree mortality, as well as excessive maintainance and irrigation costs (Pincetl et al.,

2013; Ko et al., 2015; Roman et al., 2020).

However, the research directions outlined above cannot be properly validated with the current

spatial sparsity of official monitoring stations. Available means to overcome such a drawback

include setting up high-density observation networks (Matte et al., 2013; Chen et al., 2018;

Šećerov et al., 2019; Johnson et al., 2020), as well as a variety of crowdsourcing techniques

(Muller et al., 2015) such as mobile measurements (Leconte et al., 2015; Tsin et al., 2016;

Shi et al., 2018; Ziter et al., 2019; Cao et al., 2020), or citizen weather stations (Wolters and

Brandsma, 2012; Schatz and Kucharik, 2015; Meier et al., 2017; Scott et al., 2017; Fenner et al.,

2017; Dejmal et al., 2019; Fenner et al., 2019). Furthermore, data from the official monitoring

stations can be complemented by measurements from citizen weather stations in order to

achieve reliable high-resolution maps of air temperature (Zumwald et al., 2020).

Towards an integrative and long-term approach to urban planning

The importance of incorporating principles from landscape ecology and ecosystem services

to the spatial planning of urban agglomerations has long been recognized (McDonnell and

Pickett, 1990; Hersperger, 1994; Forman, 1995; Medley et al., 1995; Pickett et al., 1997; Bol-
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und and Hunhammar, 1999; Ahern, 1999; Collins et al., 2000; Grimm et al., 2000; Zipperer

et al., 2000; Pickett et al., 2001; Leitao and Ahern, 2002). The key goal of such an ecological

perspective is to optimize the patch sizes, shapes and connectivity of green areas so that

the resulting urban agglomeration provides adequate spaces to accommodate a variety of

habitats and species, support ecosystem functioning and enhance the provision of benefitial

ecosystem services to urban dwellers (Hersperger, 1994; Forman, 1995; Ahern, 1999; Zipperer

et al., 2000; Leitao and Ahern, 2002; Breuste et al., 2008; Ahern, 2013; Jim, 2013). Nevertheless,

the practical integration of these principles into urban planning decision making remains a

challenge (Ahern, 2013; Haase et al., 2014; Green et al., 2016; Costanza et al., 2017; Hersperger

et al., 2018). This thesis proposes an approach to spatially quantify the urban heat mitigation

provided by trees that considers the effects of its spatial pattern, and can be easily applied

to current urban areas as well as to synthetic LULC maps representing future or alternative

scenarios. Altogether, the presented results constitute a cross-sectional evaluation of a single

ecosystem service (i.e., urban heat mitigation), which future work should extend in three

primary directions.

First, the conceptual framework of this thesis must integrate further models urban ecosystem

services so that multiple aspects of environmental performance can be assessed. Ecosystems

provide multiple services and can involve trade-offs that increase the provisioning of one

service while reducing the provisioning of another, which highlights the importance of consid-

ering multiple ecosystem services in planning and decision making (Rodríguez et al., 2006;

Raudsepp-Hearne et al., 2010; Seppelt et al., 2011; Haase et al., 2012, 2014; Demuzere et al.,

2014; Holt et al., 2015; Kremer et al., 2016; Baró et al., 2017; Turkelboom et al., 2018; Jaligot

et al., 2019b,a). Therefore, although chapter 5 might serve to explore spatial patterns of the

tree canopy that enhance the urban heat mitigation, the same spatial pattern might have

adverse effects in the provision of other ecosystem services. Ensuring an adequate provision of

multiple urban ecosystem services is a major challenge for spatial planning that is particularly

accentuated in cities undergoing densification, which requires a systematic spatial evaluation

of the urban green infrastructure, preventing its degradation during infill development and

including guidelines for multifunctionality at the urban agglomeration scale (Jim, 2004; Byrne

et al., 2010; Haaland and van Den Bosch, 2015; Hansen et al., 2019)

The second direction for future research concerns extending the cross-sectional assessment of

chapter 4 by applying the same approach to other points in time in order to obtain longitudinal

trend of the UHI effect. Such an endeavor is complementary to the inclusion of further ecosys-

tem services suggested above, and is also a central requirement to understand the complex

temporal synergies and trade-offs of ecosystem services, which are strongly influenced by

legacy effects and time lags of historical management (Rodríguez et al., 2006; Haase et al., 2012,

2014; Mouchet et al., 2014; Dallimer et al., 2015; Renard et al., 2015; Tomscha and Gergel, 2016;

Tomscha et al., 2016; Hein et al., 2016; Jaligot et al., 2019b,a). Additionally, these proposed

extensions would allow a thorough evaluation of the relationships between the spatiotemporal

dynamics of ecosystem services and the spatiotemporal patterns of urbanization reported in

chapter 3.
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Finally, a third extension consists in integrating the approach of this thesis to assess the

environmental performance of synthetic scenarios with LULC change models, which would

pave the way not only for the evaluation of potential future scenarios of urbanization, but

also to explore which policies and interventions can lead to the most desirable outcomes. A

notable example is the integrated fractal planning approach (Tannier et al., 2012; Yamu and

Frankhauser, 2015; Frankhauser et al., 2018), which simulates urban development at multiple

spatial scales based on a set of rules that allow improving the accessibility to amenities and

open space while preventing the fragmentation of green spaces . To that end, fractal structures

have the key property that their border is over-proportionally lengthened with respect to their

area. Fractal geometry can therefore be exploited in order to satisfy the residential demand

for green environments while explicitly considering planning objectives such as protecting

natural habitats and improving accessibility to urban and natural amenities. Coupling such

an approach with the spatially-explicit evaluation of heat mitigation and other ecosystem

services shows great potential to further understand the edge effects between natural and

artificial patches and assess how these should be spatially interspersed (Lin and Fuller, 2013;

Stott et al., 2015). Another integrated approach consists in coupling cellular automata and

agent-based models of urbanization with additional constraining rules that allocate the land

conversion in a way that predefined landscape planning goals are met (Silva et al., 2008;

Mitsova et al., 2011; Yin et al., 2016). Such goals are determined according to the values of a set

of landscape spatial metrics, which can be prescribed to reflect planning strategies aimed at

protecting natural habitats and ecosystems. Incorporating the approach of this thesis into such

a framework would provide additional grounds to explore how future urbanization might affect

the UHI effect (and in turn other ecosystem services), and assess how this might influence the

residential behavior, e.g., whether the densification prescribed in Switzerland might prompt

dwellers of the urban cores to relocate to suburban areas or nearby municipalities where

the UHI effect is of lesser magnitude. Feedback effects of this kind stress how ecosystem

services are not simply a benefit of ecosystem functioning but instead are co-produced by

humans and ecosystems (Andersson et al., 2015). When dealing with the complex social,

ecological, and technological couplings of urban systems, the central advantage of cellular

automata and agent-based models with respect to other black-box approaches (e.g., machine

learning algorithms) is their ability to explicitly represent socioeconomic principles into their

interactions and transition rules, which allows them to not only reproduce the observed

patterns but also to explore alternative forms that might emerge when such interactions are

mediated by different planning strategies (White et al., 2015; Bosch et al., 2019).

Overall, the high complexity of urban landscapes and their relationships with the socioeco-

nomic and environmental processes that occur upon them highlights the need for a holistic

understanding of cities (Wu, 2008, 2014; McHale et al., 2015; McPhearson et al., 2016; Alberti

et al., 2018; Artmann et al., 2019). Cities are complex adaptive systems, with coupled human

and natural components that co-evolve and adapt to changes in the environment, technology

and life modes (Jacobs, 1961; Alexander, 1965; Portugali, 2000; Batty and Torrens, 2001; Batty,

2005; Manson and O’Sullivan, 2006; Irwin et al., 2009; de Roo and Silva, 2010; White et al.,
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2015; Bosch et al., 2019). Accoridngly, the inability to fully predict or control their evolution

is not a shortcoming of the current urban and ecological knowledge but rather an inherent

feature of cities. As expressed by Popper (1992) “we cannot predict, scientifically, results which

we shall obtain in the course of the growth of our own knowledge” (page 62). From this per-

spective, the novel insights into the spatiotemporal patterns of urbanization and their impact

on the UHI effect provided in this thesis should not be used to predict the evolution of cities

and their corresponding UHI effect, but instead be exploited to influence and guide urban

development towards more desirable pathways through urban planning and decision-making.

Informational networks and technological advances change the urban life modes and thus

the physical infrastructure needed to support the functioning of cities. Ecosystems show

nonlinear responses to anthropogenic disturbances, such as thresholds, feedback loops, time

lags, legacy effects, resilience and multiple modes of stable behavior. Therefore, the only

way that urban and environmental knowlege can progress is by continuously monitoring the

envionmental impacts of cities and updating the urban and ecological knowledge accondingly.
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A Appendix

A.1 Quantifying spatial patterns of landscapes

A.1.1 The PyLandStats library

Availability and installation

The source code of PyLandStats is available in a GitHub repository at https://github.com/

martibosch/pylandstats, and is licensed under the open source GNU General Public License

3 (GNU GPLv3) to ensure that any derivative work is kept as open source. The easiest way

to install PyLandStats is by installing the dedicated conda recipe hosted on the conda-forge

channel at https://anaconda.org/conda-forge/pylandstats, as in:

$ conda install -c conda-forge pylandstats

The above command will install all the necessary requirements to run all the features of

PyLandStats. Alternatively, a dedicated Python package is hosted on the Python Package Index

(PyPI) at https://pypi.org/project/pylandstats/, and can be readily installed with pip as in:

$ pip install pylandstats

Nevertheless, the BufferAnalysis and SpatioTemporalBufferAnalysis classes have de-

pendencies that cannot be installed with pip, namely the Geospatial Data Abstraction Library

(GDAL) and the Geometry Engine Open Source (GEOS). In order to use these two PyLandStats

classes, GDAL and GEOS must be present at the time of installing PyLandStats, which in this

case will further require specifying the geo extra requirements as in:

$ pip install pylandstats[geo]
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Unit tests are run within the Travis Continuous Integration (Travis CI) platform at https:

//travis-ci.org/martibosch/pylandstats every time that new commits ar pushed to the GitHub

repository. Additionally, test coverage is reported on Coveralls at https://coveralls.io/github/

martibosch/pylandstats?branch=master.

The documentation of PyLandStats is hosted in Read the Docs at https://pylandstats.readthedocs.

io/ (see also appendix A.1.2). Additionally, a collection of example notebooks with a thor-

ough overview of PyLandStats’s features is provided at a dedicated GitHub repository at

https://github.com/martibosch/pylandstats-notebooks, which can be executed interactively

online by means of the Binder web service (Matthias Bussonnier et al., 2018). Such repository

includes unit tests which ensure the correctness of the computations (see appendix A.1.7).

Finally, an example application of PyLandStats in an academic article can be found in the

analysis of the spatiotemporal patterns of urbanization of three Swiss urban agglomerations

by Bosch and Chenal (2019), and all the code and materials necessary to reproduce the

results are available in a dedicated GitHub repository at https://github.com/martibosch/

swiss-urbanization.

Dependencies and implementation details

The PyLandStats package is fully implemented in Python, and requires the Python packages

NumPy, SciPy, pandas, matplotlib, rasterio. The first four are among the most popular packages

for scientific and data-centric Python and are used for a wide-variety of scientific needs,

whereas rasterio is a popular library to read and write geospatial raster data. In PyLandStats,

NumPy arrays are used to represent landscapes and patch-level metrics. In addition, NumPy

functions are used in the computations of all the implemented landscape metrics. The SciPy

library is used to segment the patches in the landscape arrays, compute the inter-patch

nearest-neighbor distances, and to compute the coefficient of variation of the patch-level

landscape metrics. The pandas data frames are used to build the data frames of landscape

metrics, matplotlib is used to produce the plots and rasterio is used to read raster data, plot

the landscapes as well as to rasterize the vector geometries used in BufferAnalysis and

SpatioTemporalBufferAnalysis. As noted above, the foregoing two classes further require

the GeoPandas and Shapely Python packages.

The implementation of PyLandStats is organized in Python modules, where the classes de-

scribed throughout this paper are defined. Such object-oriented design offers many advan-

tages. On the one hand, it allows both for a conceptual separation and reusability of the

functionalities, which enhances the maintainability and extensibility of PyLandStats. On the

other hand, Python properties serve to cache results that are computationally expensive to

obtain, which can later be accessed in constant (almost immediate) time. This mechanism

is exploited to cache intermediate results that are later used to compute the metrics (see

appendix A.1.8). More precisely, instances of the Landscape class cache the list of patches,

each with its respective LULC class, area, perimeter and nearest-neigbhor distance, as well as
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the pixel adjacency matrix, i.e., the number of adjacencies between pixels of each landscape

class (including adjacencies between pixels of the same class). Furthermore, such mechanism

eases the task of implementing new metrics, since the vast majority of landscape metrics

found throughout the academic literature can be straight-forwardly computed out of such

cached properties (see the section “List of implemented metrics” of appendix A.1.2 as well as

McGarigal et al. (2012)). Finally, as follows from the cache mechanism described above, the

memory size of a Landscape instance scales linearly with the number of patches present in

the respective raster landscape.

Regarding the performance, the most expensive operations of PyLandStats are the compu-

tation of the adjacency matrix, and more importantly, the computation of the inter-patch

nearest-neighbor distances. The code for the former is transformed from Python to C++ by

means of the Pythran ahead-of-time compiler (Guelton et al., 2015), which achieves speed-ups

of an order of magnitude of three. The code for the latter consists of a slow nested Python loop

that iterates over each patch of each class and employs SciPy’s implementation of the K-d tree

in Cython (Behnel et al., 2011) in order to find the nearest neigbor of each patch. The compu-

tation of the inter-patch nearest-neighbor distances is by far the main performance bottleneck

of PyLandStats (see appendix A.1.8), and it is therefore recommended that in analysis cases

that do not require computing euclidean nearest-neighbor metrics avoid its computation by

making use of the metrics keyword argument as explained above.

A.1.2 S1 Text

PyLandStats Documentation. https://pylandstats.readthedocs.io/en/published

A.1.3 S1 Code

Landscape analysis with PyLandStats for the canton of Vaud (Switzerland), as Jupyter Notebook

(IPYNB). https://github.com/martibosch/pylandstats-notebooks/tree/published/notebooks/

01-landscape-analysis.ipynb

A.1.4 S2 Code

Spatiotemporal analysis with PyLandStats for the canton of Vaud (Switzerland), as Jupyter

Notebook (IPYNB). https://github.com/martibosch/pylandstats-notebooks/tree/published/

notebooks/02-spatiotemporal-analysis.ipynb

A.1.5 S3 Code

Zonal analysis with PyLandStats for the canton of Vaud (Switzerland), as Jupyter Notebook

(IPYNB). https://github.com/martibosch/pylandstats-notebooks/tree/published/notebooks/

03-zonal-analysis.ipynb
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A.1.6 S4 Code

Spatiotemporal buffer analysis with PyLandStats for the canton of Vaud (Switzerland), as

Jupyter Notebook (IPYNB). https://github.com/martibosch/pylandstats-notebooks/tree/published/

notebooks/04-spatiotemporal-buffer-analysis.ipynb

A.1.7 S5 Code

Comparison of the metrics computed in FRAGSTATS v4 and PyLandStats for the canton of Vaud

(Switzerland), as Jupyter Notebook (IPYNB). https://github.com/martibosch/pylandstats-notebooks/

tree/published/notebooks/A01-fragstats-metrics-comparison.ipynb

A.1.8 S6 Code

Performance notes and benchmarks comparing FRAGSTATS v4, landscapemetrics and PyLand-

Stats, as Jupyter Notebook (IPYNB). https://github.com/martibosch/pylandstats-notebooks/

tree/published/notebooks/A02-performance-notes.ipynb

A.2 Spatiotemporal patterns of urbanization in three Swiss urban

agglomerations

A.2.1 Code S1

Exploration of the area-radius scaling of each urban agglomerations over the whole period

of study, as Jupyter Notebook (IPYNB). https://github.com/martibosch/swiss-urbanization/

tree/published/notebooks/area_radius_scaling.ipynb

A.2.2 Code S2

Computation of the time series of landscape metrics and exploration of their correlations over

all the urban agglomerations and the whole period of study, as Jupyter Notebook (IPYNB).

https://github.com/martibosch/swiss-urbanization/tree/published/notebooks/metrics_time_

series.ipynb

A.2.3 Code S3

Computation of the relative dominance of the three growth modes over all the urban agglom-

erations and the whole period of study, as Jupyter Notebook (IPYNB). https://github.com/

martibosch/swiss-urbanization/tree/published/notebooks/growth_modes.ipynb
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A.3 Spatially-explicit simulation of urban heat islands

The code materials used in the article of chapter 4 are available at https://doi.org/10.5281/

zenodo.3970608 (Bosch, 2020b) and are maintained in a GitHub repository at https://github.

com/martibosch/lausanne-heat-islands.

A.3.1 Data

Landsat tiles

The list of product identifiers of the Landsat image tiles are available as comma-separated

value (CSV) file at https://github.com/martibosch/lausanne-heat-islands/blob/master/data/

raw/landsat-tiles.csv

Monitoring stations

Monitoring stations with their operator and their elevation in meters above sea level. The

operators are: Agrometeo, Federal roads office (ASTRA), Federal office for the environment

(BAFU), General directorate for the environment of the Canton of Vaud (DGE), and the Federal

Institute of Forest, Snow and Landscape Research (WSL) (Rebetez et al., 2018). The source

CSV file used in the computational workflow is available at https://github.com/martibosch/

lausanne-heat-islands/blob/master/data/raw/tair-stations/station-locations.csv.

Biophysical table

The crop and water coefficients are based on Allen et al. (1998), while rock, soil and urban

coefficients are derived from the results of Grimmond and Oke (1999) in the city of Chicago.

Given that the evapotranspiration of the vegetation and crops is subject to seasonal changes

in temperate zones such as Switzerland (Allen et al., 1998), the values that correspond to the

mid-season estimation (June to August) in Nistor (2016). The albedo values are based on

the work of Stewart and Oke (2012). The shade column, which represents the proportion of

tree cover of each LULC class, has been computed with a high resolution tree canopy map of

Lausanne and is therefore specific to the study area. Rows with a hyphen sign - in the shade

column denote that the corresponding LULC class is not present in the study area. The source

CSV file used in the computational workflow is available at https://github.com/martibosch/

lausanne-heat-islands/blob/master/data/interim/biophysical-table-shade.csv.
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Reference temperatures and UHI magnitude
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Figure A.1 – Reference temperatures Tr e f (i.e., minimum Tai r at 9 p.m. among the monitoring
stations) and magnitude of the UHI U H Imax (i.e., difference between Tr e f and the maximum
Tai r at 9 p.m. among the monitoring stations) of the 8 dates considered in this study.

A.3.2 Results

Spatial regression

The code of the spatial regression of air temperature from satellite data is available as a Jupyter

Notebook (IPYNB) at https://github.com/martibosch/lausanne-heat-islands/blob/master/

notebooks/spatial-regression.ipynb.

Feature Coef. Std. error t P>|t| [0.025 0.975]

const 1.1760 3.369 0.349 0.728 -5.534 7.886

lst_0 0.4944 0.584 0.846 0.400 -0.669 1.658

ndwi_0 -6.1852 5.127 -1.206 0.231 -16.396 4.026

lst_200 -0.3267 0.885 -0.369 0.713 -2.089 1.435

ndwi_200 -28.5531 15.581 -1.833 0.071 -59.585 2.479

lst_400 -1.9332 1.765 -1.095 0.277 -5.449 1.583

ndwi_400 124.2456 46.749 2.658 0.010 31.138 217.353

lst_600 1.0526 2.963 0.355 0.723 -4.849 6.955

ndwi_600 -156.7220 55.931 -2.802 0.006 -268.119 -45.325

lst_800 1.7306 1.685 1.027 0.308 -1.626 5.087

ndwi_800 85.4412 22.732 3.759 0.000 40.167 130.715

elev -0.0026 0.003 -0.810 0.420 -0.009 0.004

Table A.1 – F-test of variable significance of the linear regression.
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Figure A.2 – Scatter plot of the Tai r predicted by the linear regression model trained with all
the samples (vertical axis) versus the observed measurements (horizontal axis).

Simulation with the InVEST urban cooling model

The code of the spatial simulation of air temperature with the InVEST urban cooling model is

available as a Jupyter Notebook (IPYNB) at https://github.com/martibosch/lausanne-heat-islands/

blob/master/notebooks/invest-urban-cooling-model.ipynb

16 18 20 22 24 26 28 30 32
Tobs

16

18

20

22

24

26

28

30

T

R2 = 0.9033
MAE = 0.9545°C
RMSE = 1.144°C

Figure A.3 – Scatter plot of the Tai r values simulated with the InVEST urban cooling model
(vertical axis) versus the observed measurements (horizontal axis).

Comparison

The code used for the comparison of the spatial regression and simulation of air temperature is

available as a Jupyter Notebook (IPYNB) at https://github.com/martibosch/lausanne-heat-islands/

blob/master/notebooks/comparison.ipynb
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A.4 Urban greening scenarios for urban heat mitigation

The data materials to required to reproduce the results of the article are available in a dedicated

Zenodo repository at https://zenodo.org/record/4316572.

A.4.1 Data

Biophysical table

The biophysical table for the LULC codes (before the reclassification) is shown in Table A.2.

The crop and water coefficients are based on Allen et al. Allen et al. (1998), while rock, soil

and urban coefficients are derived from the results of Grimmond and Oke Grimmond and

Oke (1999) in the city of Chicago. Given that the evapotranspiration of the vegetation and

crops is subject to seasonal changes in temperate zones such as Switzerland Allen et al. (1998),

the values that correspond to the mid-season estimation (June to August) in Nistor (2016).

The albedo values are based on the work of Steward et al. Stewart and Oke (2012). The shade

column, which represents the proportion of tree cover of each LULC class, is computed after

the reclassification procedure described in section “Refining LULC classes based on tree cover

and building density”.

Monitoring stations

The locations of the monitoring stations used to get the Tr e f and U H Imax parameters of

the InVEST urban cooling model are shown in Figure A.4. The operators of the stations

are: Agrometeo, Federal roads office (ASTRA), Federal office for the environment (BAFU),

General directorate for the environment of the Canton of Vaud (DGE), and the Federal Insti-

tute of Forest, Snow and Landscape Research (WSL) Rebetez et al. (2018). The source CSV

file with the operator, location and elevation in meters above sea level of the monitoring

stations used in the computational workflow is available at https://github.com/martibosch/

lausanne-greening-scenarios/blob/master/data/raw/tair-stations/station-locations.csv. The

code to produce Figure A.4 is available as a Jupyter Notebook (IPYNB) at https://github.com/

martibosch/lausanne-greening-scenarios/blob/master/notebooks/stations.ipynb.
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Table A.2 – Biophysical table (before the reclassification). The source comma-separated value
(CSV) file used in the computational workflow is available at https://github.com/martibosch/
lausanne-heat-islands/blob/master/data/raw/biophysical-table.csv.

LULC code Description Case Kc Albedo Green area

0 building artificial 0.4 0.1-0.25 0
1 road, path artificial 0.35 0.15 0
2 sidewalk artificial 0.35 0.15 0
3 traffic island artificial 0.35 0.15 0
4 rail artificial 0.35 0.15 0
5 airfield artificial 0.4 0.2 0
6 pond water 0.45 0.15 0
7 other impervious artificial 0.36 0.15 0
8 field, meadow, pasture vegetation 0.9 0.2 1
9 vineyards vegetation 0.7 0.2 1

10 other intensive farming vegetation 1.05 0.2 1
11 garden artificial 0.32 0.2 1
12 wetland water 0.45 0.1 1
13 other green vegetation 0.45 0.2 1
14 backwater water 0.65 0.05 1
15 water course water 0.65 0.05 0
16 reed water 0.45 0.1 1
17 dense forest vegetation 1.5 0.15 1
18 densely wooded pasture vegetation 1.15 0.15 1
19 open wooded pasture vegetation 1.15 0.2 1
20 other wooded vegetation 1.15 0.15 1
21 bare rocks rock and soil 0.2 0.25 0
22 glacier water 0.52 0.1 0
23 sand rock and soil 0.3 0.25 0
24 gravel pit artificial 0.36 0.25 0
25 other non-vegetated artificial 0.36 0.15 0

Figure A.4 – Locations of the monitoring stations used to get the Tr e f and U H Imax parameters.
The axes tick labels display the Swiss CH1903+/LV95 coordinates. The basemap tile is provided
by StamenDesign, under CC BY 3.0, with data from OpenStreetMap, under ODbL. 123
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A.4.2 Results

Scenario LULC, temperature and heat mitigation

The code to produce the figures 5.1, 5.3, A.5 and A.6, as well as tables describing the data of

the figures, are available as a Jupyter Notebook (IPYNB) at https://github.com/martibosch/

lausanne-greening-scenarios/blob/master/notebooks/scenarios.ipynb.
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Figure A.5 – Relationship between the proportion of candidate pixels transformed and the
average simulated temperature T for each scenario sample. The translucent bands around
the regression line represent the 95% confidence intervals estimated using a bootstrap.
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Figure A.6 – Histogram of raster temperature values for a 25, 50, 75 and 100% of the candidate
pixels transformed. The temperature rasters for each histogram are computed by averaging
the 10 simulations with the same proportion of candidate pixels transformed.

Scenario metrics

The code to produce Figure 5.4 is available as a Jupyter Notebook (IPYNB) at https://github.

com/martibosch/lausanne-greening-scenarios/blob/master/notebooks/scenario-metrics.ipynb.
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Scenario human exposure

The code to produce Figure 5.5 is available as a Jupyter Notebook (IPYNB) at https://github.

com/martibosch/lausanne-greening-scenarios/blob/master/notebooks/human-exposure.ipynb.
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