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Abstract
Database workloads have significantly evolved in the past twenty years. Traditional database

systems that are mainly used to serve Online Transactional Processing (OLTP) workloads

evolved into specialized database systems that are optimized for particular types of workloads.

Data warehousing applications have led to Online Analytical Processing (OLAP) workloads and

real-time analytical processing applications have led to Hybrid Transactional and Analytical

Processing (HTAP) workloads.

Similarly, modern hardware has significantly evolved in the past twenty years. Unicore, simple

processors with megabytes of main memory have evolved into multi-core, power-limited

processors with hundreds of gigabytes of main memory. Furthermore, the processors have

complex micro-architectural features such as Single Instruction Multiple Data (SIMD) instruc-

tions and complex branch predictors. Advancements in processor technology have led to

further evolution of database systems with novel system architectures and query processing

paradigms.

We present the micro-architectural behavior of modern database workloads on a modern pro-

cessor for various categories of workloads and generations of database systems. We examine

three main categories of database workloads and study them separately: OLTP, OLAP, and

HTAP. We show that OLTP systems spend most of their execution time waiting for instruction-

cache or data-cache misses, where the data-cache misses are due to the random data-accesses

during the index lookup operation. While using an efficient index structure can significantly

reduce the number of data-cache misses, the main micro-architectural bottleneck remains

the data-cache misses due to the costly random data-accesses. Hence, OLTP systems should

adopt techniques that mitigate the random data-accesses.

OLAP systems spend most of their execution time in data-cache misses, where the data-cache

misses are due to high pressure on the memory bandwidth for sequential-scan-heavy queries,

and are due to random data-accesses for join-intensive queries. OLAP systems that follow

tuple-at-a-time execution models efficiently use the CPU cycles. However, they require execut-

ing a significantly larger number of instructions hence are significantly slower than the systems

that follow vector-at-a-time and compiled execution models. Therefore, OLAP systems should

use efficient execution models and adopt techniques that mitigate data-cache misses.
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Abstract

HTAP systems combine OLTP and OLAP systems into a single, unified system, where the OLTP

and OLAP systems run on the same hardware and on the same data. Running on the same

hardware results in hardware-level interference, where the OLTP throughput significantly

drops due to the OLAP side sharing the hardware resources. Running on the same data results

in increased OLAP query execution time due to the need for the OLAP side to process the

fresh tuples generated by the OLTP side. Therefore, HTAP systems should adopt techniques

that mitigate the hardware-level interference and should make sure that the OLAP side uses

enough resources to minimize the increased query execution time.

Keywords: Database management systems, micro-architecture, micro-architectural behav-

ior, performance characterization, modern hardware, hardware-software co-design, bench-

marking, transactional processing, analytical processing, hybrid transactional and analytical

processing.
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Résumé
Les charges de travail des bases de données ont considérablement évolué au cours des vingt

dernières années. Les systèmes de base de données traditionnels qui sont principalement

utilisés pour servir les charges de travail de traitement transactionnel en ligne (OLTP) ont

évolué vers des systèmes de base de données spécialisés qui sont optimisés pour des types

particuliers de charges de travail. Les applications d’entreposage de données ont conduit à des

charges de travail de traitement analytique en ligne (OLAP) et les applications de traitement

analytique en temps réel ont conduit à des charges de travail de traitement transactionnel et

analytique hybride (HTAP).

De même, le matériel moderne a considérablement évolué au cours des vingt dernières années.

Unicore, des processeurs simples avec des mégaoctets de mémoire principale ont évolué vers

des processeurs multicœurs à puissance limitée avec des centaines de gigaoctets de mémoire

principale. En outre, les processeurs ont des caractéristiques micro-architecturales complexes

telles que des instructions SIMD (Single Instruction Multiple Data) et des prédicteurs de

branche complexes. Les progrès de la technologie des processeurs ont conduit à une nouvelle

évolution des systèmes de bases de données avec de nouvelles architectures système et des

paradigmes de traitement des requêtes.

Nous présentons le comportement micro-architectural des charges de travail de base de don-

nées modernes sur un processeur moderne pour différentes catégories de charges de travail et

générations de systèmes de base de données. Nous examinons trois catégories principales

de charges de travail de base de données et les étudions séparément : OLTP, OLAP, et HTAP.

Nous montrons que les systèmes OLTP passent la majeure partie de leur temps d’exécution à

attendre les échecs du cache d’instructions ou du cache de données, où les échecs du cache de

données sont dus aux accès aléatoires aux données pendant l’opération de recherche d’index.

Bien que l’utilisation d’une structure d’index efficace puisse réduire considérablement le

nombre d’échecs de cache de données, le principal goulot d’étranglement micro-architectural

reste les échecs de cache de données en raison des accès aléatoires coûteux aux données.

Par conséquent, les systèmes OLTP devraient adopter des techniques qui atténuent les accès

aléatoires aux données.

Les systèmes OLAP passent la majeure partie de leur temps d’exécution dans des échecs de

cache de données, où les échecs de cache de données sont dus à une pression élevée sur
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Résumé

la bande passante de la mémoire pour les requêtes lourdes d’analyse séquentielle, et sont

dus à des accès aléatoires aux données pour les requêtes à jointure intensive . Les systèmes

OLAP qui suivent des modèles d’exécution tuple à la fois utilisent efficacement les cycles du

processeur. Cependant, ils nécessitent l’exécution d’un nombre beaucoup plus important

d’instructions et sont donc beaucoup plus lents que les systèmes qui suivent des modèles

d’exécution vectoriels à la fois et compilés. Par conséquent, les systèmes OLAP doivent utiliser

des modèles d’exécution efficaces et adopter des techniques qui atténuent les erreurs de cache

de données.

Les systèmes HTAP combinent les systèmes OLTP et OLAP en un système unique et unifié,

où les systèmes OLTP et OLAP fonctionnent sur le même matériel et sur les mêmes données.

L’exécution sur le même matériel entraîne des interférences au niveau matériel, où le débit

OLTP diminue considérablement en raison du partage des ressources matérielles du côté

OLAP. L’exécution sur les mêmes données entraîne une augmentation du temps d’exécution

de la requête OLAP en raison de la nécessité pour le côté OLAP de traiter les nouveaux tuples

générés par le côté OLTP. Par conséquent, les systèmes HTAP doivent adopter des techniques

qui atténuent les interférences au niveau matériel et doivent s’assurer que le côté OLAP uti-

lise suffisamment de ressources pour minimiser l’augmentation du temps d’exécution des

requêtes.

Mots clés : Systèmes de gestion de base de données, micro-architecture, comportement

micro-architectural, caractérisation des performances, matériel moderne, co-conception

matériel-logiciel, benchmarking, traitement transactionnel, traitement analytique, traitement

transactionnel et analytique hybride.
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1 Introduction

1.1 Database Management Systems

Today’s world is data-driven. Regular media sources, social media sources, individual people,

as well as industrial and community organizations all produce and consume data. This leads

to an enormous size for the data and demand to produce and consume the data [1, 36, 37, 38].

Database Management Systems (DBMS) have been at the centre of storing, managing and

processing data. As the data size and the demand to produce and consume the data is ever-

growing, researchers and developers from academia and industry have proposed numerous

techniques and novel DBMS architectures to cope with the ever-growing size of the data and

the speed that the data is produced and consumed [8, 34, 40, 54, 105].

One of the most important driving-forces behind novel DBMS architectures has been the

advancements in the modern hardware [4]. Modern hardware advancements include the

growing-sized main memories and the main-memory bandwidths, complex micro-architectural

features such as strong branch prediction features and deep cache hierarchies features, and

wide data-parallel execution units such as Single Instruction Multiple Data (SIMD) execution

units. The novel hardware-aware DBMS architectures allowed DBMS to use their hardware

resources more efficiently, and hence deliver orders of magnitude higher performance [2, 71].

In addition to the modern hardware, the evolving workload demands and characteristics

have been the other major driving-force behind novel DBMS architectures. Early relational

database systems were mostly driven by Online Transaction Processing (OLTP) workloads,

where the workloads are composed of several short-lived transactions that read or write to

small amount of records [21, 22]. During the late 1990s, data warehousing applications gained

significant attention, where Online Analytical Processing (OLAP) workloads have emerged.

OLAP workloads are composed of read-only, long-running queries that process large number

of records. Due to the significant differences between the OLAP and OLTP workloads, a

specialized set of DBMS have been designed and developed to serve for OLAP workloads [19].

In the past five years real-time analytical processing applications have gained a significant
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attention. Real-time analytical processing applications aimed to perform complex OLAP

queries on fresh, transactional data. As a result, Hybrid Transactional and Analytical Processing

(HTAP) workloads have emerged. HTAP workloads are mix of OLTP and OLAP workloads and

are served by HTAP systems designed to efficiently support both OLTP and OLAP workloads

[14, 83]. Having designed and developed DBMS that efficiently use their hardware resources

and specialized for individual types of workloads allowed DBMS to deliver high performance

and cope with the ever-growing size of the data and demand to produce and consume the

data.

1.2 Evolution of Modern Processors

Commodity processors have been continuously evolving over the past five decades, in the

light of Moore’s Law. Initial processor technology focused on improving the single-threaded

performance by providing wider instruction-level parallelism (ILP) (through wider-issue super-

scalar execution), higher clock frequency rates, and complex micro-architectural features such

as highly-accurate branch prediction units and aggressive pipelined execution. During the

late 1990s, multiprocessor technology has gained a rise due to the scalability limitations in

providing higher ILP and the dissipated heat [82].

Multiprocessor technology has widely been adopted. Numerous applications, such as transac-

tion processing and scientific processing applications, benefited the thread-level parallelism

that the multiprocessor technology provides. As a result, multiprocessor technology has lead

to popular multi-core processors, where a single Central Processing Unit (CPU) contains

multiple communicating cores sharing a coherent main memory. The processor designers

gradually increased the number of cores per processor to supply the increasing demand for

the thread-level parallelism. Moore’s Law coupled with Dennard scaling allowed to have

more and more cores on the same CPU. Moore’s Law stated that the number of transistors

on chip doubles every 18 months. Whereas, Dennard scaling stated that the reduced-sized

transistors also consume proportionally reduced power per transistor. As a result, processors

accommodated an increasing number of transistors within a similar power budget [24, 77].

In the past five years, the increased core counts have slowed down due to the failure of Dennard

scaling. While the number of transistors kept increasing according to Moore’s Law, the amount

of heat dissipated per transistor failed to decrease. As a result, the increased number of

transistors’ heat dissipation has hit the maximum level of dissipated heat that the processor

silicon can accommodate. The number of cores per processor is more and more flattened,

and the applications have stopped benefiting from the exponentially increasing performance

freely provided by the hardware [27].

Having hit the power wall, the processor vendors and application developers have considered

alternative micro-architectures. In particular, beefy, power-hungry multi-core processors are

compared with wimpy, low-power multi-core processors. The goal has been using relatively

larger number of low-power cores compared to the number of power-hungry cores, and
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benefiting from high thread-level parallelism that the applications exhibit. While this idea

has led to several important system architectures [6], wimpy cores failed to gain a wide

adoption. The reason has been that, despite the applications exhibit high degree of thread-

level parallelism, the scalability of an application is more and more limited as the number

of parallel threads it uses is increased. By following Amdahl’s law, even a small serialization

point has become a performance bottleneck for the system. This required careful and explicit

parallelization of many applications, putting a prohibitive software development cost on the

programmers [78].

As a result, today’s commodity servers are evolved into power-hungry multi-core chips with

dozens of cores, where each core contains complex micro-architectural features such as com-

plex branch predictor, deep pipelines, superscalar out-of-order execution units, and deep

cache hierarchies. As the processors have evolved into a particular micro-architecture with

modest performance improvements over the new generations, software has gained a signifi-

cant importance in exploiting the modern hardware features to deliver a high performance,

and cope with the ever-growing size of the data and the demand to produce and consume the

data [4].

1.3 Database Management Systems on Modern Processors

Database systems have long been optimized to efficiently use modern hardware features.

Initial work has concentrated on multi-core scalability of traditional, disk-based transaction

processing systems, where centralized database system components such as lock and log man-

agers have become bottlenecks inhibiting the multi-core scalability [48, 84, 110]. Later work

has concentrated on exploiting large main memory sizes, and eliminating heavy-weight com-

ponents of disk-based transaction processing systems. This has lead to popular in-memory

transaction processing systems that are tightly optimized for modern hardware, providing

orders of magnitude higher performance than traditional disk-based systems [25, 54, 106].

Simultaneously, column-stores have gained a significant attention, where specialized an-

alytical processing engines serve for read-only, complex queries over column-wise stored

data. Column-stores keep the two-dimensional relational tables column-by-column, rather

than traditionally-adopted row-by-row (i.e., record-by-record). This way, column-stores pro-

cess only the necessary columns, i.e., attributes such as age and name, which allows more

efficiently using disk/memory bandwidth and significantly reducing the data processing over-

heads. Column-stores gained a wide adoption. Most of the major DBMS vendors has now

their specialized column-store engines to serve for read-only, analytical processing workloads

[2, 17, 40].
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1.4 Micro-architectural Behavior of Database Workloads

Micro-architectural behavior defines where the CPU cycles are spent within the core micro-

architecture when running a particular workload. The core micro-architecture components

include the instruction fetch and decoding units, branch prediction unit, instruction execution

units and data load and store units. Early work on understanding the micro-architectural

behavior of database management systems have focused on architectural features that are

useful for commercial database systems, such as out-of-order execution, on-chip cache sizes

and size of the instruction queue [11, 32, 53, 90, 103]. The studies examined the architectural

features for a single, commercial, well-established system, when running the two major types

of database workloads, OLTP and OLAP, on a hardware simulation environment.

A later work took a step further and examined micro-architectural behavior of several com-

mercial DBMS to identify the micro-architectural behavioral trends that hold across different

DBMS running on real hardware [3]. This was the first work that examined micro-architectural

behavior across different DBMS and focused on general trends across the DBMS. Later on,

several studies have concentrated on traditional, disk-based transaction processing systems

running on real hardware, and associated micro-architectural behavioral components, such

as instruction-cache stalls, with particular transaction processing system components, such

as lock manager [109, 112, 116].

Despite the large body of micro-architectural characterization work for database workloads,

existing work has only focused on either single class of a DBMS, e.g., a well-established

commercial DBMS, or a single type of database workload, such as OLTP workloads. However,

both DBMS and database workloads have gone through a significant evolution over the

past 20 years, by following the advancements in the hardware and the application demands.

Furthermore, the commodity processor micro-architecture has significantly advanced over

the past twenty years. Hence, the micro-architectural behavior of state-of-the-art database

workloads remains unclear.

As the processor performance is stagnating due to power limitations, it has been ever more

important to understand the micro-architectural behavior in order to efficiently use the

micro-architectural resources and extract maximum performance out of the server hard-

ware. This thesis presents micro-architectural analysis of database workloads across different

generations of DBMS and categories of database workloads. Its goal is to understand the

micro-architectural behavior of the state-of-the-art database workloads, identify general

trends and main performance bottlenecks at the software- and hardware-levels, and highlight

investigation directions for future database management systems to deliver high performance

and efficiently use their hardware resources.

1.5 Thesis Statement and Contributions

The statement of this thesis is as follows.
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Thesis Statement

Understanding a database system’s interaction with compute and memory resources is key to

efficiently using hardware. Database systems spend most of their execution time waiting for

instruction-cache or data-cache misses, where data-cache misses are due to high pressure on

the memory bandwidth if the data access pattern is sequential, and due to random

data-accesses if the data access pattern is random. Workloads with mixed sequential and

random data-access patterns also suffer from interference. Hence, database system architects

should design and develop data structures and algorithms that are aware of the data access

pattern and cache behavior to efficiently use the hardware resources.

Below, is a summary of our contributions in this thesis:

• We examine state-of-the-art micro-architectural analysis methodologies. We com-

pare and contrast conventional cache-miss-based methodology with Intel’s recently-

proposed Top-down Micro-architecture Analysis Methodology (TMAM). We observed

that cache-miss-based methodology under- or over-estimates the execution time due to

under- or over-estimating the instruction or data-cache stalls. We adopt Intel’s TMAM

methodology in our analyses.

• We show that Online Transaction Processing (OLTP) systems spend more than half of

the execution time waiting for instruction-cache or data-cache misses. The disk-based

OLTP systems suffer mainly from instruction-cache misses, whereas the in-memory

OLTP systems suffer from either instruction-cache or data-cache misses. The data-cache

misses are due to the random data-accesses during the index lookup operation. While

using an efficient index structure can significantly reduce the number of data-cache

misses, it does not change the main micro-architectural bottleneck due to the costly

random data-accesses.

• We show that, if the system follows vector-at-a-time or compiled execution model,

Online Analytical Processing (OLAP) systems spend most of their execution time waiting

for data-cache misses. The data-cache misses are due to high pressure on the memory

bandwidth for sequential-scan-heavy queries, and are due to random data-accesses

for join queries. The OLAP system that follows the tuple-at-a-time execution model

efficiently uses the CPU cycles. However, it requires executing a significantly larger

number of instructions hence is 1.7 to 5 times slower than the systems that follow the

vector-at-a-time and compiled execution models.

• Hybrid Transactional and Analytical Processing (HTAP) systems combine OLTP and

OLAP systems into a single, unified system, where the OLTP and OLAP systems run

on the same data and on the same hardware. We show that running the OLTP and

OLAP systems on the same hardware results in hardware-level interference. The OLTP
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throughput is decreased by 22 to 40% due to the OLAP side sharing the hardware

resources. Running the OLTP and OLAP systems on the same data results in software-

level interference. The query execution time at the OLAP side is increased due to the

additional work processing the fresh tuples generated by the OLTP side. We show that, to

minimize the increase in the OLAP query execution time, the OLAP component should

be allocated enough resources to be able to process the fresh tuples faster than the OLTP

component generates them.

1.6 Roadmap

In this section, we present the organization of the thesis.

• Chapter 2 presents the background for this thesis. It presents the micro-architectures

of today’s server processors, and the workload characteristics for the state-of-the-art

database workloads: OLTP, OLAP and HTAP workloads. It describes the performance

monitoring units (PMU) of today’s modern processors, and how to profile performance

of a modern processor. Lastly, it presents the related work on the micro-architectural

analysis of data-intensive workloads.

• Chapter 3 compares and contrasts the state-of-the-art micro-architectural analysis

methodologies: the popular cache-miss-based methodology and Intel’s recently-proposed

Top-down Micro-architecture Analysis Methodology (TMAM). It concludes that, while

the two methodologies provide similar high-level micro-architectural behavior, Intel’s

TMAM is more powerful as it provides end-to-end execution time breakdown and also

accounts for non-memory-stalls. Based on our conclusions in this chapter, we chose

Intel TMAM as our micro-architectural analysis methodology, and use it in the rest of

this thesis.

• Chapter 4 presents the micro-architectural analysis of OLTP workloads. It presents

micro-benchmark as well as standard TPC-C benchmark evaluation. It uses micro-

benchmarks for sensitivity analyses that vary the size of the data and the amount of

work per transaction. It uses the standard TPC-B and TPC-C benchmarks to confirm

that the conclusions drawn using the micro-benchmark apply for a standard benchmark.

It further presents the impact of index, transaction compilation, data type and multi-

threading on the micro-architectural behavior. It examines the effect of hardware

acceleration features and also compares and contrasts the micro-architectural behavior

of different Intel micro-architectures. The chapter concludes that OLTP workloads

spend most of their execution time in instruction-cache or data-cache misses, where the

data-cache misses are due to the random-data-access-heavy nature of OLTP workloads.

• Chapter 5 presents the micro-architectural analysis of OLAP workloads. Unlike OLTP

workloads, OLAP workloads are read-only, have highly iterative nature in their computa-

tion, and also exhibit both random and sequential data access patterns. The chapter
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performs sensitivity analyses by using micro-benchmarks, and also presents standard

TPC-H benchmark analysis to confirm that the findings by the micro-benchmark anal-

yses apply to the standard benchmark. The chapter further performs mixed query

workload evaluation where workloads with heterogeneous data access patterns are

evaluated. The chapter examines software-level optimzations, such as predication, and

hardware-level acceleration features, such as SIMD and hyper-threading. The chap-

ter concludes that OLAP workloads spend most of their execution time in data-cache

misses, where the data-cache misses are due to either high pressure on the memory

bandwidth or to random data-accesses. Although OLAP systems that follow the tuple-

at-a-time execution model efficiently use the CPU cycles, they are 1.7 to 4.5 times slower

than the OLAP systems that follow vector-at-a-time and compiled execution models

due to executing a significantly larger number of instructions.

• Chapter 6 presents HTAP workloads evaluation. HTAP workloads are composed of mixed

OLTP and OLAP workloads, where the OLTP and OLAP workloads share both data and

hardware. In this chapter, we examine how data and hardware sharing affects the OLTP

and OLAP throughput of an HTAP system. The chapter performs micro-benchmark

evaluation with workloads that mix basic data-access patterns: sequential and random,

as well as the complex CH benchmark evaluation. In this chapter, we examine last-level

cache, memory-bandwidth and hyper-thread sharing. We conclude that, while the

OLAP throughput does not drop, the OLTP throughput drops by 22 to 40% when OLTP

and OLAP workloads share hardware resources. When OLTP and OLAP workloads share

data, the OLAP query execution time is minimally affected by the OLTP workload if the

OLAP workload is allocated enough resources to process the fresh tuples faster than the

OLTP workload generates them.

• Chapter 7 finally presents the conclusions and highlights future investigation directions

for modern database systems to efficiently use the hardware resources and deliver a

high performance.
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2 Background

This chapter covers the necessary background for the thesis and the related work on micro-

architectural analysis of data-intensive workloads. The background includes description of

the modern processor micro-architectures, and the descriptions of the modern database

workloads: Online Transactional Processing (OLTP), Online Analytical Processing (OLAP), and

Hybrid Transactional and Analytical Processing (HTAP) workloads. Lastly, the background

describes how to profile a modern processor micro-architecture.

2.1 A Modern Processor Micro-architecture

This section outlines the micro-architecture of today’s modern processors. Figure 2.1 shows

the simplified block diagram of the Intel Sandy/Ivy Bridge micro-architecture [42]. The left-

hand side of the figure presents the multi-core processor organization, whereas the right-hand

side of the figure presents the core micro-architecture. The multi-core processor includes

multiple cores with private L1 and L2 level of caches, and a shared L3 level of cache. The L3

level of cache is connected to the main memory. The number of clock cycles needed to access

to the caches is increased as the level in the cache is increased in the memory hierarchy. For

the Intel Sandy/Ivy Bridge micro-architecture, it takes ∼4, 12, 30 and 200 clock cycles to access

to L1, L2, L3 and main memory, respectively.

The right-hand side of Figure 2.1 zooms into a single core, and presents the core micro-

architecture. The core micro-architecture contains two major building blocks, the front-end

(FE) and the back-end (BE). FE contains the micro-architectural structures to fetch, decode

and issue instructions, which are L1 instruction (L1I) cache, a multi-issue instruction-to-micro-

operation(µOp) decoder and a small (1.5KB [42]) µOp cache. The L1I cache is responsible

for keeping the instructions that the processor will execute next. The decoder decodes the

fetched instructions into µOps. As Intel uses complex instruction set architecture, i.e., CISC, it

needs to decode complex instructions into simpler µOps. The decoder is multi-issue, i.e., it is

able to decode and deliver multiple instructions in one cycle. Delivering multiple instructions

in one cycle enables exploiting instruction-level parallelism, and using the resources of the BE
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Figure 2.1 – An out-of-order processor model based on Intel Sandy/Ivy Bridge micro-
architecture [42]. FE: front-end, BE: back-end.

more efficiently. Lastly, the µOp cache is responsible for keeping the most recently decoded

µOps to avoid re-decoding them.

BE contains the micro-architectural structures to execute the issued µOps, which are a reser-

vation station (RS), several execution units and L1 data (L1D) cache. When a µOp arrives to

BE, BE registers the µOp to the RS. RS is then responsible for tracing the operands and depen-

dencies of the µOp, and delivering the µOp to the relevant execution unit. The execution units

are responsible for executing the instruction, e.g., adding two integers, or loading an integer

to a register. All execution units operate in parallel unless there is a dependency. Parallel

execution enables exploiting instruction-level parallelism, and therefore, executing multiple

instructions in one cycle. An out-of-order processor can theoretically execute as many instruc-

tions as issued in one cycle. Furthermore, every execution unit has its own private buffer. For

example, the Sandy/Ivy Bridge micro-architecture contains a 64-entry load and a 36-entry

store buffer, which enables buffering up to 64/36 load/store operations. Buffering allows to

overlap the same kinds of µOps when some are not ready to complete. For example, if a load

operation misses from L1D cache, another load operation can start its execution without

waiting for the former load operation to finish. Lastly, L1D cache is incorporated to BE and

works cooperatively with the load and store execution units to deliver data from/to memory

hierarchy to/from processor. The L1D cache of today’s processors contains a set of registers for

tracking the outstanding cache misses, i.e., miss status handling registers (MSHRs). MSHRs

allow processors to continue their execution when there is a cache miss, and further improve

parallelism.

2.2 Online Transactional Processing

A transaction is an indivisible unit of work that should atomically be executed over a database.

A transaction can read or write to the database. The atomic execution implies that either all

or none of the actions of the transaction should be executed. Online Transaction Processing
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(OLTP) systems are used for consistently maintaining a database across multiple, concurrently

executing transactions. OLTP systems are responsible for maintaining the ACID features,

where A stands for Atomicity, C stands for Consistency, I stands for Isolation, and D stands for

Durability. Below we briefly describe each ACID property.

• Atomicty: A transaction is an indivisible unit of work. It should either be fully executed,

or not executed at all.

• Consistency: A transaction should start its execution over a consistent database and

finish its execution by leaving the database in another consistent state.

• Isolation: Concurrently executing transactions should perform their actions as if each

transaction performs its actions alone in the database.

• Durability: Transactional modifications should be durable, i.e., should be persisted to a

durable medium such as a disk.

Online Transaction Processing (OLTP) systems are composed of four main components: (i)

Buffer manager, (ii) lock manager, (iii) log manager, and (iv) access methods. These compo-

nents are tightly intertwined to be able to satisfy the ACID properties and also provide fast

access to the database [35]. We briefly describe each component below.

• Buffer manager: Traditional OLTP systems keep the data on persistent disk. However,

disk access time is orders of magnitude higher than main memory access time. Buffer

manager’s goal is to keep most frequently used disk pages in main memory to minimize

the time needed to access the data.

• Lock manager: Traditional OLTP systems use a centralized lock manager. The lock

manager is responsible for granting the lock acquire/release requests. It maintains the

list of worker threads and acquired/released locks, and manages which transactions

should be actively executed or blocked based on the lock acquire/release requests.

• Log manager: Log manager is responsible for logging the transactional modifications

to the database to be able to satisfy the durability property. In case of a system failure,

e.g., a power outage, the system can recover the database to a consistent state thanks to

having the transactional modifications logged to a durable medium such as a disk.

• Access methods: Access methods are used to access the data fast. An index structure,

e.g., a B+tree index, is a commonly used access method in OLTP systems.

2.2.1 In-memory Online Transaction Processing

Commodity servers of the last decade follow two fundamental trends: (1) main-memory

becoming cheaper and (2) number of cores increasing exponentially. Simply increasing the
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buffer pool size and the number of worker threads in the system to exploit the large main-

memory and all the available cores, respectively, lead to marginal gains. Therefore, these

two hardware trends have triggered alternative design opportunities for the new generation

database systems.

As DRAM prices become cheap enough to buy 1TB main-memory for ∼$30K, today it is

possible for most OLTP applications to keep all of their data working set in main-memory

while running on a commodity server hardware. This has led to the development of various in-

memory or main-memory optimized OLTP systems. These systems either manage all the data

in main-memory or make sure that the hot data resides in main-memory. Since they manage

to eliminate/minimize the disk I/O for the data page accesses, the overheads associated with

managing the buffer pool overweigh its benefits [33]. Therefore, the in-memory OLTP systems

omit the buffer pool component even though it is essential for the traditional disk-based

database systems as it gives the illusion of an infinite main-memory to the system.

On the other hand, in step with Moore’s law, the hardware vendors keep providing more

and more opportunities for parallelism. Modern servers tend to have multiple multicore

processors in the same machine and allow OLTP systems to handle increasing number of

transactional requests in parallel. However, the traditional concurrency control mechanisms

that ensure isolation among concurrent transactions using a centralized lock manager and

two-phase locking are designed at an era where the server hardware were uniprocessors.

Therefore, they do not scale on multicores preventing OLTP systems from exploiting the sheer

number of cores available to them [84, 120].

In order to achieve better scalability on multicore architectures, in-memory OLTP systems

adopt alternative concurrency control mechanisms. These mechanisms can be broadly

grouped into two categories based on whether they partition the data or not. The ones

that partition the data choose an extreme form of physical partitioning where there is a data

partition for each core and a single worker thread for each partition. Systems like VoltDB [107]

(or its ancestor H-Store [104]) and the initial version of HyPer [55] deploy this approach. As a

result, they can avoid any form of locking within a partition and need to coordinate worker

threads only when a transaction requires data from multiple partitions (i.e., in the case of

distributed transactions). On the other hand, the systems that prefer avoiding any kind of

data partitioning, like Hekaton [61], SAP HANA [64], or the latest version of HyPer [81], rely on

optimistic and multiversion concurrency control [13].

In addition to alternative concurrency control mechanisms, in-memory database systems also

deploy cache-conscious index structures. They align the index page sizes to the size of a cache

line as opposed to the size of a disk page and/or adopt lock-free index page access mechanisms

rather than using traditional page latches [67, 114]. Moreover, the in-memory OLTP systems

tend to depend on pre-determined stored procedures instead of ad-hoc queries [55, 61, 107]

and apply efficient compilation optimization techniques that optimize the instruction stream

for a particular transaction [61, 80]. Finally, the new-age in-memory OLTP systems have
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codebases that are implemented from scratch. Therefore, they are expected to have a cleaner

codebase compared to the traditional disk-based systems where the codebase consists of

many branch statements and obsolete code paths due to different release versions spanning

several decades of development.

Overall, in-memory OLTP engines deploy lighter storage manager components compared

to the traditional disk-based systems aiming to utilize the resources of the modern server

hardware in a more effective way.

2.3 Online Analytical Processing

OLTP applications were the main driving force for the invention of relational database systems

[21, 22]. During late 90s, data warehousing applications have gained a significant attention

and led to Online Analytical Processing (OLAP) systems specialized for OLAP workloads. OLAP

workloads are composed of read-only, complex, analytical processing queries that aim to

extract valuable information out of the data.

Data warehouses are implemented separately from the transactional databases. Transactional

databases usually keep the fresh, up-to-date data. However, executing data warehousing

applications on a transactional database would result unacceptably high response time due

to the additional work that transactional systems require to keep the data consistent, such

as locking and logging. As OLAP workloads are read-only, they are fined-tuned on a separate

database to provide fast access to the masses of collected data.

Figure 2.2 presents how data warehouses are typically built. Transactional data is collected

from various sources and goes through a procedure called Extract, Transform and Load (ETL).

At the end of the ETL procedure the data is ready for the data warehousing applications. Data

warehousing applications run complex OLAP queries over the data warehouse. The OLAP

queries can be executed on Relational OLAP, i.e., ROLAP servers, or Multi-dimensional OLAP,

i.e., MOLAP servers. Both ROLAP and MOLAP servers provide multi-dimensional view of

the data, which is useful for data warehousing applications. While ROLAP servers extend

traditional relational databases (RDBs) by using an intermediate layer to provide efficient

multi-dimensional view of the data, MOLAP servers directly support the multi-dimensional
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storage of the data. Both ROLAP and MOLAP servers use materialized views and optimized

indices to provide fast access to massive amounts of data [19].

2.3.1 Column-stores

In early 2000s, column-stores have gained a significant attention. Column-stores relied on the

observation that most OLAP queries require accessing only a subset of the attributes of the

relational tables that the queries process. Hence, column-stores stored the data column-by-

column, as opposed to traditional row-by-row storage. Furthermore, column-stores adopted

numerous optimizations such as late materialization, predication and vectorization. Re-

searchers have shown that column-stores can provide orders of magnitude faster performance

than traditional OLAP servers thanks to their lean storage layout and the adopted optimiza-

tions [2, 17, 18]. As a result, column-stores have gained a wide adoption and become standard

for OLAP workloads. Most of the major database system vendors today have a column-store

offering as a specialized engine embedded in the main database system [60, 89].

2.3.2 Query Processing Paradigms

When a query is submitted to a database system, the query optimizer parse the query and

produce an optimized query execution plan. The query plan is usually expressed in the form

of a tree, where every node represents a particular operator, such as a project, select, or join

operator. Query processing engine executes the query plan to produce the desired output.

There are three main query processing paradigms that modern database systems use: (i)

tuple-at-a-time, (ii) vector-at-a-time, and (iii) compiled query processing.

Tuple-at-a-time query processing: In tuple-at-a-time query processing, all query operators

use the same abstract class, usually called the Iterator class, that exposes three main methods:

open(), next(), and close(). The open() method starts the operator’s processing. The

next() method fetches the next tuple to process. And, the close() method finalizes the

processing of the operator. The open() and close() functions are called once per operator,

whereas the next() function is called for every single tuple processed for every operator in

the query plan. The tuple-at-a-time query processing paradigm is simple and intuitive as it

uses the same abstract class to implement all the query operators. However, it suffers from the

high cost of the next() function calls, as the next() function is called once per tuple, which

can be of millions. Most early database systems used the tuple-at-a-time query processing

paradigm [29].

Vector-at-a-time query processing: Vector-at-a-time query processing aims to mitigate the

high cost of the next() function calls. To do so, instead of fetching a single tuple per next()
function call, vector-at-a-time processing fetches a vector of tuples per next() function call.

As a result, it significantly reduces the number of time the next() function is called and

hence reduces the high cost of the next() function calls. A vector of tuples is usually an array
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of values that is passed from one operator to another. The vector size is a tunable system

parameter and is usually in the orders of a few thousands. VectorWise has been the pioneering

system that follows the vector-at-a-time query processing paradigm, which later on evolved

into a commercial system [2, 17].

Compiled query processing: Compiled query processing also aims to mitigate the high cost

of the next() function calls of the tuple-at-a-time query processing. It fuses multiple query

operators into a single meta-query-operator and makes one function call for processing the

whole meta-query-operator. As the query plan, which specifies the query operators that are

needed to execute the query, is only know at run-time, compiled query processing relies on

run-time code generation. After the query optimizer produces the query plan, the compiled

query processing paradigm generates the code that will be run to execute the query and

compiles the generated code down into the machine code at run-time. The generated and

compiled code is run to execute the query and produce the desired output. HyPer has been the

pioneering system that follows compiled query processing paradigm, which later on evolved

into a commercial system [54, 79].

Quickstep: In traditional tuple-at-a-time query processing, the base class is abstract. Hence,

the next() function calls are a virtual function calls, which is costlier than regular function

calls. A recently proposed system, Quickstep, argues that using aggressive function inlining to

mitigate the high cost of the next() function calls coupled with using efficient parallelization

techniques and several filtering-based optimizations enable delivering a similar level of per-

formance to that of the vector-at-a-time query processing paradigm. We examine how costly

the next() function calls and how useful the filtering-based optimizations for Quickstep in

Chapter 5 in more detail [85].

2.4 Hybrid Transactional and Analytical Processing

Traditionally OLAP queries run on the data that is collected from various sources as shown

in Figure 2.2. This requires an expensive Extract, Transform, Load (ETL) operation on the

transactional data. ETL is an expensive operation, and usually is performed once a day/week.

Hence, the OLAP queries run on data that is stale. Recently, there is an increasing demand

on running real-time analytical queries on fresh, transactional data. Fraud detection, risk

analysis, financial trends tracking applications are examples that demand real-time analytical

processing [14, 83].

Real-time analytics applications have led to Hybrid Transactional and Analytical Process-

ing (HTAP) systems. HTAP systems combine OLTP and OLAP systems into a single unified

framework to run OLAP queries on fresh OLTP data. Hence, HTAP workloads contain both

transactional and analytical requests performed on the same database.

There has been several proposed HTAP architectures. The most popular HTAP architecture

is the two-copy, mixed format (TCMF) architecture. TCMF architecture keep two copies of
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the data, one for OLTP and one for OLAP component. To keep the data consistent across

the OLTP and OLAP components, TCMF architecture uses an intermediate data structure,

delta, that keeps track of the recently modified, fresh tuples. Periodically, TCMF architecture

flushes the delta to the OLAP-side to make the OLAP-copy of the data consistent with the

OLTP-copy. The OLTP-copy is usually kept in row format as row-wise storage is more optimized

for OLTP, whereas the OLAP-copy is usually kept in columnar format as columnar format is

more optimized for OLAP. Microsoft SQL Server [62], Oracle [59], and BatchDB [73] use TCMF

architecture.

Another popular architecture is single-copy, mixed-format (SCMF) architecture. SCMF archi-

tecture keeps a single copy of the data. Furthermore, it keeps an intermediate data structure

called delta (similar to the TCMF architecture) to keep the fresh, recently-modified OLTP

data. OLTP transactions only modify the delta, whereas OLAP queries read both delta and

the main copy of the data. The main copy of the data usually kept in columnar format to

largely serving for OLAP workloads, whereas the delta structure keeps the data usually in row

format. The architecture trades off OLTP performance for reduced memory consumption

thanks to keeping a single copy of the data. SAP HANA [95] and MemSQL [100] follow this type

of architecture.

Lastly, single-copy, single-format (SCSF) architecture keeps a single-copy of the data and uses

only single format, i.e., only row or columnar, both for OLTP and OLAP workloads. It relies

on copy-on-write snapshotting or multi-version concurrency control mechanisms to keep

multiple versions of the data, through which analytical queries can access to the fresh-most

transactional data. HyPer [81] and Caldera [7, 91] follow this type of architecture.

2.5 Profiling A Modern Processor Micro-architecture

Today’s processors contain a Performance Monitoring Unit (PMU). PMUs contain a set of

registers that the PMU can configure and collect certain types of hardware events such as

number of L1 instruction-cache misses. Today’s processors feature large number of hardware

events. We have observed 422 events on the Ivy Bridge machine that we used in Chapter 3.

VTune is Intel’s popular micro-architectural analysis tool that allows accessing the hardware

event and defining micro-architectural analysis methodologies. VTune requires the user to

identify the set of hardware events that the user is interested in. VTune, then, runs together

with the application and collects how many times the identified event has occurs during the

application run. Having the application stopped, VTune reports the final numbers for each

identified event [44].

Hardware has only a fixed number of registers to collect the event numbers. If the number of

events is larger than the number of registers, VTune uses its internal multiplexing algorithm,

where VTune collects every event during different periods of the application, and for statisti-

cally significant many times. VTune has predefined duration types: very short, short, medium
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and long. Having specified the duration type, VTune uses its internally optimized multiplexing

algorithm to provide statistically significant times. We have observed that short and medium

duration types provide statistically significant results [45].

VTune has a low overhead. It affects the performance of the application, which it concurrently

runs with, less than 5% [43].

VTune has several built-in micro-architectural methodologies such as general-exploration
that adopts Intel’s published Top-down Micro-architecture Analysis Methodology (TMAM)

[117] and provides end-to-end execution time breakdown inside the core micro-architecture,

or memory-access that provides memory bandwidth consumption values. The built-in anal-

ysis methodologies use a set of events and a set of formulas that uses the set of events to

produce a meaningful micro-architectural analysis component, such as the amount of time

spent for L1 instruction-cache misses. We study VTune’s built-in general-exploration in

Chapter 3.

2.6 Related Work on Micro-architectural Analysis of Data-Intensive

Workloads

There is a large body of related work analyzing the micro-architectural behavior of data-

intensive workloads. Barrosso et al. [11] investigate the memory system behavior of OLTP

and OLAP style workloads both on a real machine and with a full-system simulation. They

argue that these two types of workloads would benefit from different architectural designs in

terms of the memory system. Ranganathan et al. [90] perform a similar analysis. However,

they only focus on the effectiveness of out-of-order execution on SMPs while running these

workloads in a simulation environment. On the other hand, Keeton et al. [53] and Stets et al.

[103] experiment only with OLTP benchmarks (TPC-B and TPC-C) on real hardware. These

studies agree that OLTP workloads utilize the underlying micro-architectural resources very

poorly, wasting most of the execution cycles on memory stalls and exhibiting a low IPC value.

Ailamaki et al. [3] examine where the time goes on four commercial database systems using

a micro-benchmark to have a fine-grain understanding of the memory system behavior

on multiprocessors, whereas Hardavellas et al. [32] analyze TPC-C and TPC-H on both in-

order and out-of-order machines in a simulation environment. These studies focus on the

implications for the database systems rather than the hardware to achieve better hardware

utilization.

More recent workload characterization studies [111] analyze the OLTP benchmark, TPC-E,

and show that micro-architecturally TPC-E behaves very similarly to the TPC-B and TPC-C

benchmarks. Ferdman et al. [28] present micro-architectural analysis of a suite of cloud

workloads, by concluding that there is a fundamental mismatch among what today’s server

processors provide and what the cloud workloads demand. These studies corroborate the

findings of the previous studies in terms of the inefficient use of the memory hierarchy when
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running OLTP. They highlight that the L1-I stalls are the dominant factor in the overall stall

time followed by the long-latency data misses.

Yasin et al. [117] introduce Top-Down Micro-architecture Analysis Methodology (TMAM)

deployed by Intel VTune as general-exploration. Yasin et al. [118] examine Naive Bayes

algorithm and its hardware behavior in an Hadoop execution environment. The study shows

that software stack, such as the used JVM, and application code efficiency has a significant

impact on the overall performance. Kanev et al. [50] examine collective of machines in a

Google datacenter running collective of Google datacenter applications. The study shows that

the datacenter workload collection spends most of the time waiting for dependent data-cache

accesses due to the data-intensive nature of the datacenter workloads. Beamer et al. [12]

presents a graph workload analysis and highlights that graph workloads severely under-utilize

the memory bandwidth. Sridharan and Patel [102] examine the evaluation of workloads on

the popular data analysis language R, over a commodity processor. Awan et al. [9, 10] present

a micro-architectural analysis of Spark.

Harizopoulos et al. [33] demonstrate that traditional OLTP systems spend more than half

of their execution time inside the buffer pool, latching, locking, and logging components.

On the other hand, Wenisch et al. [116] and Tozun et. al [108] tie the micro-architectural

behavior of the disk-based OLTP into specific code modules by presenting the breakdown of

the cache misses into specific code parts of the traditional OLTP software stack at different

code granularities.

Kersten et al. [56] examine vectorized and compiled OLAP engines without getting deep

into the micro-architectural behavior. Sompolski et al. [101] present a comparison between

vectorized and compiled engines in terms of particular optimizations, such as predication

and SIMD.

Despite the large body of existing work on the micro-architectural analysis of data-intensive

workloads, the existing work falls short on evaluation the micro-architectural behavior of

state-of-the-art database workloads that are composed of different categories of workloads,

such as OLTP, OLAP and HTAP, and different generations of machines, such as traditional, well-

established systems, ground-up designed, new-generation systems, and academic prototypes.

This thesis aims to fill the gap for the micro-architectural analysis of state-of-the-art database

workloads by considering each category of the database workloads running on different

generations of database systems, separately.
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3 Micro-architectural Analysis Method-
ologies

Today’s out-of-order processors provide a rich set of hardware events for micro-architectural

analyses. However, database workload characterization studies usually use a simple cache-

miss-based micro-architectural analysis methodology (CMBM), which uses only a simple set of

events that count the number of cache misses. Intel has recently announced Top-down Micro-

architecture Analysis Method (TMAM). TMAM provides instruction-issue-slot-level breakdown

by using new hardware events. Hence, it is able to account for an end-to-end execution time

breakdown.

In this chapter, we compare the conventional CMBM with TMAM. Our goal is to see whether

CMBM is successful enough to account for end-to-end execution time breakdown. The results

show that CMBM is inadequate to account for the end-to-end execution time breakdown. CMBM

under/over-estimates the number of stall cycles due to not accounting for all types of stalls and/or

not being able to account for the overlapping capability that today’s out-of-order processors

have.

3.1 Introduction

Modern processors provide a performance monitoring unit (PMU) exposing hundreds of

hardware events to examine the hardware-software interaction. The hardware events can

be used to understand how efficiently a workload uses the processor resources [28]. On the

other hand, modern processors are aggressively optimized for speed featuring wide-issue, out-

of-order execution engines, deep cache hierarchies, deep pipeline stages and large pipeline

buffers. While these features allow processors to exploit instruction- and memory-level

parallelism, the increasing complexity of the micro-architecture makes the micro-architectural

analysis harder.

Intel has recently announced its Top-down Micro-architecture Analysis Methodology (TMAM)

proposing a hierarchical CPU cycles breakdown based on a set of new performance events

[117]. TMAM examines every instruction issue slot independently. Hence, it provides an
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accurate slot-level breakdown. Although TMAM is an ambitious methodology, it has not been

adopted by the studies characterizing the micro-architectural behavior database workloads.

The database workload characterization studies usually use a cache-miss-based methodology

(CMBM) [98]. While it is conventional knowledge that database workloads spend most of their

time in cache misses, it is not clear whether this assumption still holds, and if not what the

other reasons for the stalls are when running database workloads.

In this chapter, we compare CMBM with TMAM for Online Transaction Processing (OLTP)

workloads. We use one traditional disk-based system, Shore-MT [93], and two in-memory

systems, VoltDB [115] and HyPer [39], running the standard TPC-C benchmark. Our goal is to

estimate how well CMBM represents the micro-architectural behavior on today’s aggressive

out-of-order processors compared to TMAM. This chapter shows that:

• CMBM under-estimates stalls at the front-end due to: (i) not being able to account

for the true penalty of instruction starvation, and (ii) not being able to account for

instruction decoding stalls.

• CMBM under-estimates the back-end stalls for the disk-based system due to not being

able to account for L1 hit stalls that cover the stalls due to complex micro-architectural

features such as load-store forwarding and 4K aliasing. CMBM slightly over-estimates

the back-end stalls for the in-memory systems due to not being able to account for the

overlapping capability of today’s out-of-order processors.

The rest of the chapter is organized as follows. Section 3.2 describes the micro-architectural

analysis methodologies we examine. While Section 3.3 presents the experimental setup and

methodology, Section 3.4 compares the analysis methodologies we discuss. Finally, Section

3.5 concludes.

3.2 Micro-architectural Analysis Methodologies

In this section, we explain the two methodologies we compare: CMBM and TMAM. We firstly

cover how to estimate the fraction of the time spent for retiring instruction without any stalls,

i.e., Retiring cycles. Retiring cycles is part of TMAM, but not part of CMBM. Hence, we cover

it separately in the first section below. We, then, explain in detail how CMBM and TMAM

estimates the stalls.

3.2.1 Retiring

In this section, we describe the Retiring time component. Retiring time represents the fraction

of the time that CPU spends retiring instructions without any stalls.

Retiring time is found based on the hardware events that count the number of retired µOps
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and that count the number of clock cycles. The used formula for Retiring time is as follows.

Reti r i ng = Number O f Reti r edµOps

I ssueW i d th ×Number O f C l ockC ycl es

The number retired µOps is divided by the multiplication of the issue width and the number

of clock cycles. This is because the out-of-order processors can retire up to issue-width many

µOps in one cycle. As a result, the Retiring time component describes how many number of

µOps are retired, out of the maximum possible number of retired µOps given a certain number

of clock cycles.

3.2.2 Cache-Miss-Based Methodology

Component Description

FE Stalls at front-end
L1I Stalls due to L1I misses
L2I Stalls due to L2I misses
L3I Stalls due to L3I misses

BE Stalls at back-end
L1D Stalls due to L1D misses
L2D Stalls due to L2D misses
L3D Stalls due to L3D misses

Branch mispredictions Stalls due to branch mispredictions

Table 3.1 – Stall cycles breakdown for CMBM for a three-level of cache hierarchy.

This section covers the cache-miss-based methodology (CMBM). Table 3.1 presents stall cycles

breakdown for CMBM. CMBM decomposes stall cycles into three main components: front-end

(FE) stalls, back-end (BE) stalls and stalls due to the branch mispredictions. It approximates FE

stalls by the sum of L1, L2 and L3 instruction (L1I, L2I, L3I) cache miss stalls. It approximates

BE stalls by the sum of L1, L2 and L3 data (L1D, L2D, L3D) cache miss stalls1. CMBM uses the

conventional hardware events that count the number of instruction-/data-cache misses for

every level of caches2. CMBM uses an estimated cache miss penalty for every level of caches,

and multiplies the number of misses with the estimated penalty to obtain how many cycles

the processor would stall due to the cache misses for each level of caches. The cache miss

penalties are usually available at the optimization reference manual of the profiled processor.

For example, Intel’s cache miss penalties can be found in page 2-24 and B-42 of [42]. CMBM

assumes L1I and L1D hits do not cause any stalls.

Lastly, CMBM estimates branch misprediction stalls based on the conventional hardware

1Based on a three level of cache hierarchy.
2Note that only L1 cache is split for instruction and data, whereas L2 and L3 caches are unified. However, Intel

provides performance events counting the instruction and data misses separately for all the three levels of caches.
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Component Description

FE Stalls at front-end
Icache Stalls due to instruction fetch starvation

Decoding
Stalls due to inefficiencies at FE units such as
decoder and µOp cache

BE Stalls at back-end
Dcache Stalls due to memory accesses

L1 Stalls due to L1D hits
L2 Stalls due to L1D misses w/ L2 hit
L3 Stalls due to L2D misses w/ L3 hit
DRAM Stalls due to L3D misses
Store Buffer Stalls due to store buffer overflow

Resource/dependency
Stalls due to instruction dependencies or
resource saturation

Branch misprediction Stalls due to branch mispredictions

Table 3.2 – Stall cycles breakdown for TMAM for a three-level of cache hierarchy.

event counting the number of branch mispredictions. It uses an estimated penalty for a single

branch misprediction. It multiplies the number of branch mispredictions with the estimated

penalty to estimate how many cycles the processor would stalls for the mispredicted stalls.

Branch misprediction penalty is usually available at the optimization reference manual of the

profiled processor. For example, Intel’s branch mispredicton penalty can be found in page

B-47 of [42].

CMBM has been widely used by database workload characterization studies. However, today’s

wide-issue, out-of-order processors use sophisticated techniques to extract instruction- and

memory-level parallelism, and have large pipeline buffers to overlap the stall cycles. Moreover,

the true cache miss penalties may vary based on the way that instruction stream interacts with

the micro-architecture. For example, if the total number of outstanding misses is larger than

the total number of outstanding miss status handling registers, a cache miss can cost more

than the estimated penalty. Therefore, simply counting the number of misses per cache level,

and multiplying it by a constant pre-estimated penalty can potentially over/underestimate

the number of stall cycles. Moreover, stall cycles due to reasons that are other than cache

misses, such as resource/data dependencies, might constitute a significant portion of the

execution time for different system, workload and configurations. Hence, it is quantify how

realistic CMBM is compared to end-to-end execution time breakdown. In the next section, we

examine Intel’s TMAM which provide end-to-end execution time breakdown.

3.2.3 Top-down Micro-architectural Analysis Methodology

This section describes Top-down Micro-architectural Analysis Methodology (TMAM) [117].

Table 3.2 presents the stall cycles breakdown. TMAM decomposes the stall cycles into three

main components at top-level: Front-End (FE) stalls, Back-End (BE) stalls and branch mis-
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prediction stalls. TMAM uses Intel’s new performance events to count the FE, BE and branch

misprediction stalls in slot domain. At every CPU cycle, TMAM categorizes every instruction

issue slot either used for retiring an instruction (described in Section 3.2.1), or stalled due to a

FE-related issue, or stalled due to a BE-related issue, or stalled due to a branch misprediction.

TMAM breaks FE stalls down into two main components: Icache and decoding stalls. Icache

stalls are the stalls due to instruction-cache misses. Decoding stalls are due to the ineffi-

ciencies at the FE units such as instruction decoder and µOp cache. TMAM breaks BE stalls

down into two main components: Dcache and resource/dependency stalls. Dcache stalls

are the stalls due to data-cache misses. Resource/dependency stalls are the stalls due to the

dependencies in the instruction stream or saturation of a micro-architectural unit, such as an

arithmetic/logic unit. Similar to the FE, BE and branch misprediction stalls, TMAM uses Intel’s

new performance events to count the Icache, decoding, Dcache and resource/dependency

stalls in slot domain to provide a slot-level breakdown. Hence, Retiring, and Icache, decoding,

Dcache, resource/dependency and branch misprediction stalls constitute slot-level break-

down of the CPU cycles that are used during the execution of the program. For example, if the

processor is 4-issue, then TMAM provides the breakdown of the 4×Number O f C l ockC ycl es

CPU cycles.

TMAM further breaks Dcache stalls down into L1, L2, L3 and DRAM hit, and store buffer

overflow stalls. L1 hits are usually free of charge. However, there can be L1 hit stalls due to

issues at L1 data cache such as store to load forwarding, 4K aliasing and DTLB misses. L2, L3

and DRAM hit stalls represent the stalls due to L1, L2 and L3 data-cache misses that hit L2,

L3 and DRAM, respectively. Store buffer overflow stalls are due to having extensive number

of store operations, which overflows the micro-architectural structure called store buffer. In

today’s processors, store operations are buffered as they are mostly not on the critical path of

the program. Store buffer overflow represents the stalls when the store buffer is full and is not

able to buffer any more store operations.

3.3 Setup and methodology

This section presents the experimental setup and methodology.

Hardware: We run our experiments on an Intel Xeon processor Ivy Bridge micro-architecture.

Table 4.1 shows the details of the micro-architecture. To collect hardware event numbers, we

use Intel VTune Amplifier XE 2018 [44]. We use VTune’s built-in general-exploration analy-

sis that performs TMAM explained in this chapter. In Table A.1, Section A.1 of the Appendix, we

provide how each individual component that general-exploration analysis reports maps

to the component that we use. We disable hyper-threading to obtain more precise hardware

sampling values and increase predictability in measurements.
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Processor
Intel(R) Xeon(R)

CPU E5-2640 v2 (Ivy Bridge)
#Sockets 2

#Cores per Socket 8
Hyper-Threading Off

Clock Speed 2.00GHz
Memory 256GB

L1I / L1D (per core)
32KB / 32KB

8-cycle miss latency

L2 (per core)
256KB

19-cycle miss latency

L3 (shared)
20MB

167-cycle miss latency

Table 3.3 – Server parameters.

OS: We run all the experiments using RHEL 6.5 with Linux kernel version 2.6.32.

Benchmarks: We use standard TPC-C benchmark [113] with a database of size 20GB for all

the experiments.

Analyzed database management systems: We focus on Online Transaction Processing (OLTP)

workloads. We analyze one traditional disk-based system, Shore-MT [93], and two in-memory

OLTP systems, VoltDB [115] (Community Edition Version 4.8), and HyPer [39] (online demo-

version). For all the systems, we use asynchronous logging so that there is no delay due to I/O

in the critical path of the execution. We choose these three systems as they are well-known

in the community and their design characteristics represent a good variety of today’s OLTP

systems. Shore-MT is a disk-based system possessing large amount of overheads such as

buffer pool and disk-oriented index structures. VoltDB and HyPer are in-memory systems

eliminating most of the overheads the disk-based systems possess. Both VoltDB and HyPer

rely on physical data partitioning. While VoltDB uses a traditional B-tree with node size tuned

to the last-level cache line size [104], HyPer implements adaptive radix tree with adaptive

compact node sizes [66]. Furthermore, while HyPer compiles transactions into the machine

code [80], VoltDB uses stored procedures without compiling the stored procedures into the

machine code.

Measurements: We populate the databases from scratch before each experiment and the data

remains memory-resident throughout the experiments. We use memory-mapped I/O for log

flushing. Both the worker threads executing the transactions and the client threads generating

the transactions run on the same machine. We first start the server process, populate the

database, and then start the experiment by launching the clients that generate and submit

transactional requests to the database server. For a client submitting transactional requests
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Figure 3.1 – Stall cycles breakdown at top level for CMBM and TMAM. FE: front-end, BE:
back-end.

there is one OLTP worker thread satisfying the requests. Less than 1% of the execution time

is spent for the client threads, whereas the remaining 99% of the time is spent for the server

threads. We profile the database server process by attaching VTune to it during a 120-second

benchmark run following a 60-second warm-up period. We repeat every experiment three

times and report the average result. We observe a standard deviation of less than 5% for the

three repeats.

We run only single-threaded experiments as it has been shown that micro-architectural behav-

ior of OLTP workloads does not change significantly across single- and multi-threaded runs

[98].

3.4 Experimental Evaluation

This section presents the experimental evaluation. We firstly compare the high-level micro-

architectural behavior that CMBM and TMAM provide. Then, we compare CMBM and TMAM

at their front-end (FE) and back-end (BE) breakdowns.

3.4.1 High-level analysis

In this section, we compare CMBM and TMAM at their top-level breakdowns. Our goal is to

investigate how well CMBM represents the high-level micro-architectural behavior compared

to TMAM.

Figure 3.1 compares the number of stall cycles of CMBM and TMAM. As TMAM provides

instruction-issue-slot-level breakdown, the number of stall cycles calculated out of TMAM’s

formulas are normalized with respect to the number of issue slots times the number of clock

cycles, i.e., I ssueW i d th×Number O f C lockC ycl es. CMBM, however, provides a cycle-level

breakdown. Therefore, the number of stall cycles calculated out of CMBM’s formulas are

normalized with respect to the number of clock cycles.
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Figure 3.2 – Stall cycles breakdown at FE for TMAM and CMBM.

The figure shows that, for Shore-MT and VoltDB, CMBM significantly under-estimates the

number of stall cycles. This shows that CMBM is not sufficient to represent all the stalls.

CMBM slightly over-estimates the number of stall cycles for HyPer. To understand the reasons

behind these differences, we examine FE and BE breakdowns for CMBM and TMAM in the

next two sections.

3.4.2 Front-end stalls

This section compares the FE breakdowns of CMBM and TMAM. Our goal is to identify the

reasons for the differences between the two methodologies. We focus on level 2 of TMAM

breakdown, where level 1 is the top-level breakdown. Figure 3.2 shows the results. Figure 3.2

contains two bars for each OLTP system we profile: one bar for the breakdown of CMBM and

one bar for the breakdown of TMAM. As the two breakdowns have different stall components,

the two bars have different legends. We present the legend only for a single system (Shore-MT)

as it is the same for the other systems.

The figure shows that TMAM’s Icache stalls are significantly higher than the sum of the L1,

L2 and L3 instruction stalls of CMBM for all the three systems. This shows that CMBM

underestimates the instruction starvation stalls. This can be due to several reasons such as

that the instruction prefetcher might not be working optimally such that the L1 instruction

hits have a certain amount of penalty rather than being a zero-penalty operation as CMBM

assumes. Furthermore, CMBM is not able to account for about 10% of Decoding time. As a

result, CMBM significantly underestimates the overall time spent at FE.
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Figure 3.3 – Stall cycles breakdown at BE for CMBM and the optimized TMAM. FE: front-
end, BE: back-end, misc: miscellaneous.

3.4.3 Back-end stalls

This section compares CMBM with TMAM at the BE. Figure 3.3 presents the results. We focus

on level 2 of TMAM breakdown, where level 1 is the top-level breakdown. Figure 3.3 follows

the same format Figure 3.2 follows. It has two bars per system, presenting the legend only

once (for Shore-MT). The figure shows that TMAM’s Dcache stalls are higher than the sum of

L1, L2 and L3 data-cache misses of CMBM for Shore-MT. The reason is that CMBM does not

include the L1 hit stalls component that covers the stalls due to complex micro-architectural

features such as load-store forwarding and 4K aliasing.

TMAM’s Dcache stalls are a little lower than the sum of L1, L2 and L3 data-cache stalls of

CMBM for VoltDB and HyPer. The reason is that TMAM accounts for the overlapping capa-

bility of today’s processors. L1 hit stalls constitute a smaller fraction of the Dcache stalls for

VoltDB and HyPer. Shore-MT is a traditional disk-based system, whereas VoltDB and HyPer

in-memory optimized OLTP systems with significantly higher throughput than Shore-MT.

Hence, VoltDB and HyPer’s data access patterns are less complicated as they do not deal with

heavy-weight disk-based meta-data such as centralized lock manager’s lock table and complex

buffer manager meta data. Hence, L1 hit stalls are less of a problem for VoltDB and HyPer.

Nevertheless, as we aim to profile different generations of database system, it is important for

the micro-architectural methodology we use to be robust against profiling different categories

of systems, which renders TMAM more suitable for our goal.

3.5 Conclusion

This chapter compares the micro-architectural analysis methodologies: conventional cache-

miss-based methodology (CMBM) and Intel’s recently announced Top-down Micro-architecture
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Analysis Methodology (TMAM). The results show that CMBM under-estimates the stalls at

front-end due to: (i) not being able to account for the true penalty of instruction starvation,

and (ii) not being able to account for instruction decoding stalls. CMBM under- or over-

estimates the back-end stalls. CMBM under-estimates the back-end stalls for the disk-based

system due to not being able to account for L1 hit stalls. CMBM slightly over-estimates the

back-end stalls for the in-memory systems due to not being able to account for the overlapping

capability of modern processors.

As CMBM under-estimates the stalls at front-end stalls, and is not robust against different

database management systems at back-end, we conclude that CMBM is inadequate to repre-

sent the end-to-end execution time breakdown for different generations of database manage-

ment systems. Hence, we choose TMAM as our micro-architectural analysis methodology for

the rest of the thesis.

28



4 Online Transactional Processing
Workloads

Micro-architectural behavior of traditional disk-based online transaction processing (OLTP)

systems has been investigated extensively over the past couple of decades. Results show that

traditional OLTP systems mostly under-utilize the available micro-architectural resources. In-

memory OLTP systems, on the other hand, process all the data in main-memory, and therefore,

can omit the buffer pool. Furthermore, they usually adopt more lightweight concurrency control

mechanisms, cache-conscious data structures, and cleaner codebases since they are usually

designed from scratch. Hence, we expect significant differences in micro-architectural behavior

when running OLTP on platforms optimized for in-memory processing as opposed to disk-based

database systems. In particular, we expect that in-memory systems exploit micro architectural

features such as instruction and data caches significantly better than disk-based systems.

This chapter sheds light on the micro-architectural behavior of in-memory database systems

by analyzing and contrasting it to the behavior of disk-based systems when running OLTP

workloads. The results show that despite all the design changes, in-memory OLTP exhibits

very similar micro-architectural behavior to disk-based OLTP systems: more than half of the

execution time goes to memory stalls where instruction-cache misses or the long-latency data

misses from the last-level cache (LLC) are the dominant factors in the overall execution time.

Even though ground-up designed in-memory systems can eliminate the instruction-cache

misses, the reduction in instruction stalls amplifies the impact of LLC data misses. As a result,

only 30% of the CPU cycles are used to retire instructions, and 70% of the CPU cycles are spent

for stalls for both disk-based and in-memory OLTP.

4.1 Introduction

Recent years have witnessed the rise of in-memory or main-memory optimized OLTP systems

[25, 76, 115]. Traditional OLTP engines are disk-based since they are designed in an era where

the server hardware had a main-memory size in megabytes. Today, however, a server hardware

with 1TB main-memory is a commodity. Therefore, the database management systems

(DBMSs) are able to process the data working set of most OLTP applications in memory. This
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has led various vendors and researchers to design brand new OLTP engines optimized for the

case where the hot dataset resides in memory [55, 61, 64, 107].

In-memory OLTP systems have significant differences compared to disk-based systems. First,

since the data working set resides mostly in memory, in-memory OLTP systems omit the buffer

pool component, which acts as the virtual memory of a DBMS and is, therefore, essential

for the disk-based systems. Then, they tend to adopt more lightweight concurrency control

mechanisms to avoid the scalability bottlenecks that arise due to traditional centralized

locking. They also opt for cache-conscious indexes instead of the disk-optimized B-trees.

Finally, since their codebases are written from scratch, they tend to have lighter storage

engines.

OLTP benchmarks are famous for their suboptimal micro-architectural behavior. There is

a large body of work that characterizes OLTP benchmarks at the micro-architectural level

[11, 28, 53, 90, 103, 108, 111]. They all conclude that OLTP exhibits high stall time (> 50% of the

execution cycles), and a low instructions-per-cycle (IPC) value (< 1 IPC on machines that can

retire up to 4 instructions in a cycle) [28]. The instruction-cache misses are the main source

of the stall time, while the next contributing factor is the long-latency data misses from the

last-level cache (LLC) [108].

All the previous workload characterization studies, however, run the OLTP benchmarks on a

disk-based OLTP engine. Considering the lighter components, cache-friendly data structures,

and cleaner codebase of in-memory systems, one expects them to exhibit better cache locality

(especially for the instruction cache) and less memory stall time. Due to the distinctive design

features of the in-memory systems from the disk-based ones, however, it is not straightforward

to extrapolate how OLTP benchmarks behave at the micro-architectural level when run on an

in-memory engine solely by looking at the results of previous studies.

In this chapter, we perform a detailed analysis of the micro-architectural behavior of the

in-memory OLTP systems. More specifically, we compare three in-memory OLTP systems

(an in-memory OLTP engine of a popular commercial vendor, a ground-up designed in-

memory OLTP system, and an open source OLTP engine, Silo [114]) to two disk-based OLTP

systems (a popular commercial DBMS and an open source OLTP engine, Shore-MT [93]).

We examine execution time breakdown at the hardware-level, normalized throughput, and

memory bandwidth consumption while running simple micro-benchmarks as well as the

more complex TPC benchmarks (TPC-B and TPC-C) [113]. Our analysis demonstrates the

following:

• Despite all the design differences, in-memory OLTP spends more than half of the execution

time waiting for instruction-cache or data-cache misses, similar to disk-based OLTP.

• The disk-based OLTP system and its in-memory OLTP engine suffer mainly from instruction-

cache misses. Even though the in-memory optimized OLTP engine delivers significantly

higher throughput due to the optimizations it uses, the main micro-architectural bottle-

30



4.2. Setup and Methodology

neck remains the instruction-cache misses both for the disk-based OLTP system and its

in-memory OLTP engine.

• Ground-up designed in-memory OLTP systems do not suffer from instruction-cache misses.

However, they spend more than half of their execution time in data-cache misses due

to the random data-accesses the OLTP workloads do. As a result, their CPU utilization

characteristics remain close to the disk-based OLTP system.

The rest of the chapter is organized as follows. Section 4.2 describes the experimental method-

ology. Section 4.3 and Section 4.4 present the analysis results with a micro-benchmark and

TPC benchmarks, respectively. Section 4.5 analyzes the effects of transaction compilation,

index structures, and data types, whereas Section 4.6 investigates the impact of multithreading

on the micro-architectural behavior. Section 4.7 present the analysis of the memory band-

width consumptions. Section 4.8 analyzes the acceleration features such as hyper-threading,

turbo-boost and hardware prefetchers. Section 4.9 compares two latest generations of Intel’s

successive micro-architectures. Finally Section 4.10 concludes.

4.2 Setup and Methodology

The experiments presented in this chapter are executed on real hardware and performance is

measured using event counters as opposed to hardware simulators since we are not investi-

gating the impact of changing some of the hardware parameters on the micro-architectural

behavior. The rest of this section details the setup and methodology for our study.

Hardware: We run experiments on a modern commodity server with Intel’s Broadwell proces-

sors. Table 4.1 shows the architectural details of this server. To collect numbers about various

hardware events and break down the time spent in specific code modules, we use Intel VTune

Amplifier XE 2018 [44], which provides an API for lightweight hardware counter sampling. We

disable hyper-threading and turbo-boost to obtain more precise hardware sampling values

and increase predictability in measurements.

OS & Compiler: We use Ubuntu 16.04.6 LTS and gcc 5.4.0 on the Broadwell server.

Benchmarks: We run two types of benchmarks: micro-benchmarks and TPC benchmarks

[113]. Our goal is to perform sensitivity analysis and have a more detailed understanding of

the systems using the micro-benchmark, while the experiments using the TPC benchmarks

serve to give an idea about the behavior of the systems when running well-known real-world

applications.

The micro-benchmark uses a randomly generated table with two columns (key and value) of

the type Long. It has two versions: read-only and read-write. The read-only version reads N

random rows from the table, whereas the read-write version updates N random rows. Both

versions use an index lookup operation on the randomly picked key value to reach the row to

be read or updated. We also use a modified version of the micro-benchmark where we use
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Processor
Intel(R) Xeon(R) CPU

E5-2680 v4 (Broadwell)
#Sockets 2

#Cores per Socket 14
Hyper-threading Off

Turbo-boost Off
Clock Speed 2.40GHz

Bandwidth (per socket) 66 GB/s

L1I / L1D (per core)
32KB / 32KB

16-cycle miss latency

L2 (per core)
256KB

26-cycle miss latency

LLC (shared)
35MB

160-cycle miss latency
Memory 256GB

Table 4.1 – Server Parameters

strings of 50 bytes for both columns to quantify the impact of data type on micro-architectural

utilization in Section 4.5.2. As for the TPC benchmarks, we use TPC-B and TPC-C. We do not

study range lookups as we focus on TPC-B- and TPC-C-like random point queries.

Analyzed Systems: We analyze three in-memory OLTP systems: the in-memory OLTP engine

of a closed-source commercial vendor (DBMS M), an open-source commercial OLTP system

(DBMS N) and an open-source OLTP engine (Silo [114]).

We pick these three systems as they are well-known in the community and their design

characteristics represent a good variety among today’s in-memory OLTP systems. While DBMS

M adopts multiversioned concurrency control, DBMS N uses physical data partitioning, and

Silo uses optimistic concurrency control. DBMS M implements both hash index and a variant

of cache-conscious B-tree index similar to [67, 68]. DBMS N uses a variant of a self-balancing

binary search tree, red-black tree. Silo implements Masstree, a highly parallel in-memory

index structure [75]. For DBMS M, we use the B-tree index. Moreover, DBMS M use transaction

compilation techniques for the stored procedures, whereas DBMS N and Silo do not.

In order to gain better insights about the differences between the in-memory and disk-based

OLTP systems, we also include two disk-based systems: a popular, commercial system (DBMS

D) and the open-source Shore-MT [93] storage manager.

To implement benchmarks, we use the SQL frontend of the commercial systems, DBMS

D, DBMS M and DBMS N, and Silo’s benchmarks in C++, Shore-MT ’s Shore-Kits suite that

provides an environment to implement benchmarks for Shore-MT in C++.

For all the systems, we use asynchronous logging. Therefore, there is no delay due to I/O in

the critical path of the transaction execution.
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Measurements: We populate the databases from scratch before each experiment and the

data remains memory-resident throughout the experiment. In the following sections, we

indicate the database sizes used in each experiment before discussing the results. In our

experiments, both the database server process executing the transactions and the client

processes generating the transactions run on the same machine. We first start the server

process, populate the database, and then start the experiment by simultaneously launching

all clients that generate and submit transactional requests to the database server.

We profile the database server process by attaching VTune to it during a 120-second benchmark

run following a 60-second warm-up period. We repeat every experiment three times and report

the average result.

In terms of micro-architectural efficiency, our goal is to observe how well each system exploits

the resources of a single core regardless of the parallelism in the system. Therefore, all the

experiments except for the ones in Section 4.6 and Section 4.7, use a single worker thread

executing the transactions of the corresponding benchmark.

The choice of a single worker thread also eliminates contention due to several threads trying

to access the shared data in the case of non-partitioned systems and distributed transactions

in the case of partitioning-based systems. This way we avoid possible misleading micro-

architectural conclusions. For example, high contention for a shared data page could lead to

multiple threads spinning on a latch for that data page, thus artificially increasing the cache

hit ratio.

We use one client to generate request in the single-threaded experiments. Shore-MT, DBMS D,

Silo, and DBMS M assign one worker thread per client. DBMS N, on the other hand, generates

one worker thread per data partition, so we configure it to have only one partition. From

VTune, we filter the hardware counter results particularly for the identified worker thread

excluding the other threads that are responsible for background tasks, e.g., communication

between the server and client, parsing transactions, etc.

In multi-threaded experiments (Section 4.6 and Section 4.7), we use multiple clients to gen-

erate requests for all systems. For DBMS N, we also use multiple data partitions and ensure

that all transactions access only a single partition. For each system, we gradually increase the

number of clients, and profile the execution with the number of clients that give the highest

aggregate throughput. From VTune, we filter hardware counter results for each worker thread

separately and report their average.

VTune: We use Intel VTune 2018. We use VTune’s built-in general-exploration analysis that

performs Intel’s Top-down Micro-architectural Analysis Methodology (TMAM) explained

in Chapter 3. We use VTune’s built-in memory-access analysis to measure the consumed

memory bandwidth. As we numa-localize our experiments on a single socket, we report

average bandwidth per-socket values. We use VTune’s built-in advanced-hotspots analysis to

perform function call trace breakdown.
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We provide an overview of Intel’s TMAM explained in Chapter 3. Each instruction issue slot

is categorized into one of two components: retiring and stalling. A retiring slot is a slot

where the slot is used for retiring an instruction. A stalling slot is a slot where the slot stalls,

i.e., has to wait due to a particular issue. Ideally, all issue slots would be used for retiring.

Stalling slots are further decomposed into five components: (i) branch misprediction, (ii)

Icache, (iii) decoding, (iv) Dcache and (v) resource/dependency stalls. Branch misprediction

stalls are the slots that stall due mispredicted branch instructions. Today’s processors use a

hardware unit called branch predictor; it predicts the outcome of a branch instruction (i.e.,

an if() statement) and speculatively executes instructions per the predicted branch direction

and/or target. If the processor then realizes the prediction is not correct, it undoes whatever

it has been doing and starts executing the correct set of instructions. This cost is defined

as the branch misprediction stalls and can be very costly, as it requires canceling a large

amount of work. Icache stalls are the slots that stall due to instruction-cache and instruction

translation lookaside buffer misses. Decoding stalls are the slots that stall due to sub-optimal

micro-architectural implementation of the instruction decoding unit. Dcache stalls are the

slots that stall due to data-cache misses. Resource/dependency stalls are the slots that stall

due to resource and/or data dependencies. For example, if two instructions require using

the same arithmetic-logic unit, one has to wait for the other. This time is identified as the

resource/dependency time. Or, if an instruction’s operand depends on the result of another

instruction, the instruction with the dependent operand has to wait for the other instruction

to finish. This time is identified as the resource/dependency time.

4.3 Micro-benchmark

Before performing an analysis using the community standard TPC benchmarks, we devise a

sensitivity study on the micro-architectural behavior of in-memory OLTP systems using the

micro-benchmark. The goal of this study is to answer the following questions:

• Where do CPU cycles go when running in-memory OLTP? Are they wasted on memory

stalls or used to retire instructions?

• Where do memory stalls come from? Are they mainly due to instructions or data for

in-memory OLTP?

• What is the impact of the database size on the above metrics?

• Does the amount of work done per transaction affect the results and, if yes, how?

To answer these questions, we break the analysis into two parts. The first part (Section 4.3.1)

varies the database size by varying the number of rows in the table while keeping the amount

of work done per transaction constant. On the other hand, the second part (Section 4.3.2)

varies the amount of work done per transaction by increasing the number of rows read in a

transaction while keeping the database size constant.
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Figure 4.1 – Execution time breakdowns as we increase the database size when running the
read-only micro-benchmark.

Both parts examine execution time breakdowns at the hardware-level and normalized through-

put values as explained in Section 4.2.

4.3.1 Sensitivity to Data Size

To investigate the impact of database size on the micro-architectural behavior, we populate

databases of size 1MB, 10MB, 10GB, and 100GB. DBMS M has the limitation of 32GB on the

maximum size of a database. Hence, we use maximum of 10GB of database for DBMS M. As

the micro-architectural and performance behavior of DBMS M do not change significantly as

the database size varies (see Figure 4.1 and Table 4.2), we rely on the results for 10GB of data to

interpret DBMS M’s micro-architectural and performance behavior for a large data size. Then,

we collect hardware events as the systems run the micro-benchmark with a single transaction

type that just reads/updates one random row after an index probe operation. While the results

for the read-only version of the micro-benchmark are in the following sub-sections, the results

for the read-write version of the micro-benchmark are in Section A.2.1 of the Appendix.

Execution Time Breakdown at the Hardware-Level

Figure 4.1 shows the breakdown of the execution times, as the database size is increased. The

retiring cycles ratios are similar for databases of sizes 1MB and 10MB since the data working

set mainly fits in the last-level cache (LLC), which is 35MB (see Table 4.1). As we increase the

database size to 10GB and 100GB, the retiring times are decreased since the data working set

no longer fits in caches and the long-latency data misses become more significant. All the

retiring times are less than 30% for a database of size 10GB and 100GB for all the systems.

Hence, in-memory OLTP systems spend most of their time in stalls similar to disk-based

systems.

Shore-MT is bound by Dcache and resource/dependency stalls. Shore-MT is a disk-based

system. Existing work on Shore-MT has long shown that Shore-MT is Icache-stalls-bound

[98, 99, 108, 111]. We have examined the existing work on Shore-MT and observed that all

machines used in the existing work is Intel’s, version 2, Ivy Bridge micro-architecture. We, on
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Figure 4.2 – Normalized execution time breakdowns (left) and execution time breakdowns
streched to 100% (right) for 10GB of data when running the read-only micro-benchmark.

the other hand, use a later-generation version 4 micro-architecture, Broadwell, which is the

slightly improved version of the version 3 Haswell micro-architecture. Intel has announced an

important micro-architectural improvement on the instruction fetch unit of the Haswell micro-

architecture [31]. As Hammarlund et al. [31] specifies, “State-of-the-art advances in branch

prediction algorithms enable accurate fetch requests to run ahead of micro-operation supply

to hide instruction TLB and cache misses.”. Hence, instruction fetch unit keeps supplying

instructions even though there is an instruction-cache miss, which allows overlapping the

instruction-cache miss latency with useful work. As a result, Shore-MT, being a long-standing-

Icache-stalls-bound system has become Dcache- and resource/dependency-stalls-bound. We

compare Ivy Bridge and Broadwell for all the systems we analyze in Section 4.9.

Shore-MT spends 40% of its time in Dcache and resource/dependency stalls even when the

data size is small. We examine Shore-MT ’s call stack and observe that most of the Dcache and

resource/dependency stalls are due to meta-data processing such as looking into the hash

table that keeps track of the buffer pool pages and acquiring a lock. As the data size exceeds

the LLC size, Shore-MT becomes more and more Dcache-bound due to its working set not

fitting into the LLC and suffering from expensive LLC misses.

DBMS D and DBMS M suffer from high Icache stalls. However, DBMS M’s throughput is three

times that of DBMS D’s (see Table 4.2). Hence, the optimizations that DBMS M adopts help in

delivering a throughput higher than DBMS D delivers. Figure 4.2 (left) shows the breakdown of

the normalized execution time, where the execution times are normalized to Silo’s execution

time. The figure shows that DBMS M is faster than DBMS D for several reasons. First, it

retires significantly fewer instructions than DBMS D. Second, it suffers significantly less from

Icache stalls. Lastly, it suffers from Dcache stalls significantly less than DBMS D. Overall, these

improvements enable an execution time that is 3x lower. Nevertheless, both DBMS D and M

suffer mainly from Icache stalls. Figure 4.2 (right) presents the breakdown of the execution

times stretched to 100%. Both DBMS D and M spend 30% of their time waiting for Icache stalls,

thus showing the severe effects of instruction-cache misses for the commercial disk-based

system and its in-memory OLTP engine.
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Figure 4.2 (left) shows that DBMS D spends 7.2 units of time executing instructions and 8.2

units of time waiting for Icache stalls. DBMS M spends 2.7 units of time executing instructions

and 2.8 units of time waiting for Icache stalls. Hence, though DBMS M spends less time waiting

for Icache stalls than DBMS D spends, DBMS D and M spend a similar amount of time waiting

for Icache stalls per instruction executed: 8.2/7.2 = 1.14 for DBMS D and 2.7/2.8 = 1.04 for

DBMS M. This finding corroborates with the finding in Figure 4.2 (right), where both DBMS D

and M spend a similar percentage of their time waiting for Icache stalls.

DBMS N suffers from high Dcache and resource/dependency stalls. DBMS N is an in-memory

system, which eliminates the heavy weight disk-based system components such as buffer

pool and lock manager. Nevertheless, it suffers significant amount of Dcache and resource/de-

pendency stalls for small data sizes, similar to Shore-MT. We examine DBMS N ’s call stack

and observe that the Dcache and resource/dependency stalls are largely due to the meta-data

processing that DBMS N uses for setting up and instantiating the transactions. As the data

size is increased, DBMS N becomes more and more Dcache-stalls-bound due to its working

set not fitting into the LLC and suffering from expensive LLC misses.

DBMS N is ∼2x faster than DBMS M as shown by Figure 4.2 (left). This is due to the reduced

number of executed instructions and to the elimination of the Icache stalls. DBMS M spends

2.7 units of time executing instructions, whereas DBMS N spends 1.1 units of time executing

instructions. DBMS M spends 2.8 units of time waiting for Icache stalls, whereas DBMS N

spends 0.14 units of time waiting for Icache stalls. Hence, DBMS N executes ∼60% fewer

instructions and spends time waiting for Icache stalls 95% less than DBMS M spends. As a

result, DBMS N delivers ∼2x higher throughput than DBMS M delivers.

Silo has high retiring time for small data sizes. Silo is an in-memory system eliminating the

meta-data processing that disk-based systems would require. Moreover, Silo is a kernel OLTP

engine that has transactions hard-coded in C++. Hence, it does not suffer from the meta-data

that would require instantiating and scheduling user requests as DBMS N does. As a result, it

does not suffer from Dcache stalls when the data size is small, and it has high retiring time

for small data sizes. As the data size exceeds the LLC size, Silo becomes mostly Dcache-stalls-

bound such that Silo’s retiring time is the lowest among all the systems we analyze. The reason

is, once again, that Silo eliminates the meta-data processing that Shore-MT and DBMS N do.

As a result, Silo’s data access pattern mostly includes what the micro-benchmark dictates. As

the micro-benchmark randomly reads one row per transaction, it results in large number of

LLC misses, and hence the Dcache stalls.

Silo also suffers, in addition to the Dcache stalls, from a significant amount of branch mispre-

diction. This is due to the in-node searches that Silo performs during the index traversal 1.

Although DBMS N also performs an index traversal during its transaction processing, branch

misprediction stalls only surface up on Silo due (i) to Silo being a kernel OLTP engine that

does not perform the meta-data processing to setup and instantiate transactions that DBMS N

1Silo uses linear search as its in-node search algorithm.
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1MB 10MB 10GB 100GB
DBMS D 1 1 1 1

Shore-MT 3.0 2.9 2.1 1.6
DBMS M 2.8 3.0 3.0 -
DBMS N 7.8 7.8 6.4 3.9

Silo 75.4 62.9 27.5 19.3

Table 4.2 – Normalized throughput as we increase the database size. Throughputs are nor-
malized with respect to the throughput of DBMS D for each database size individually.

performs, and (ii) to Silo using an efficient index structure. We examine DBMS N ’s call stack

and observe that DBMS N spends 35% of its time setting up and instantiating transactions.

It makes function calls such as processInitiateTask(), xfer() (dequeues user requests)

and coreExecutePlanFragments(). DBMS N spends most of the remaining 65% of its time

performing the index lookup. We examine DBMS N and Silo’s index structure in Section 4.3.2.

Figure 4.2 shows that Silo uses significantly fewer instructions than DBMS N uses and suffers

from significantly fewer Dcache stalls. As a result, it is 5x faster than DBMS N is. This shows that

new-generation in-memory systems can be even faster by reducing the number of instructions

they use and by reducing the amount of Dcache stalls. We examine Silo and DBMS N ’s call

stacks and observe that Silo’s reduced Dcache stalls are mostly due to the fact that Silo uses a

more efficient index structure. We compare the index structures used by DBMS N and Silo in

Section 4.3.2 in more detail.

We observe that all the systems suffer 10-15% decoding stalls. Decoding stalls are the penalties

in the instruction decoding unit of the processor. As Intel relies on a Complex Instruction Set

Computer (CISC) type of microprocessor design, it decodes instructions into micro-operations.

A small amount of decoding stalls show that decoding stalls do not constitute a significant

problem for OLTP workloads.

Normalized Throughput

Table 4.2 shows normalized throughputs for each system as the database size is increased. The

throughput values are normalized with respect to the throughput of DBMS D for each database

size individually. The relative performance between DBMS D and M remains stable. This is

because both DBMS D and M are Icache-stalls-bound, and hence the increased data size does

not significantly affect their performance. Shore-MT, DBMS N and Silo’s relative performance,

on the other hand, is decreased as the data size is increased. This is because Shore-MT, DBMS

N and Silo are Dcache and resource/dependency-stalls-bound. The increased data size results

in a more substantial drop in their throughput than DBMS D and M. As a result, Shore-MT,

DBMS N and Silo’s throughput get close to DBMS D and M as the data size is increased.

All the in-memory systems are faster than the disk-based systems for all the data sizes. This

shows that the optimizations that in-memory systems implement significantly help improving

the throughput. DBMS M, despite suffering from Icache stalls is faster than Shore-MT for 10GB
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Figure 4.3 – Execution time breakdowns as we increase the amount of work done per trans-
action with a database of size 100GB (10GB for DBMS M).

of database. As Shore-MT mainly suffers from Dcache stalls, this shows the severe negative

effects of disk-based systems’ index structure overhead, such as large index and buffer pool

pages.

DBMS M is 50% slower than DBMS N is. This is because DBMS M executes larger number

of instructions and suffers from significantly larger amount of Icache stalls than DBMS N. As

shown by Figure 4.2 (right), DBMS M executes 2.5x larger number of instructions and spends

20x more time waiting for Icache stalls. Hence, DBMS M can improve its performance by

reducing the number of executed instructions, and by using the instruction caches more

efficiently. Silo is the fastest system we have profiled. One reason for that is Silo is a kernel

OLTP engine that hard-codes transactions in C++. Hence, it does not suffer from the cost of

setting up and instantiating the transactions. DBMS N, on the other hand, is an end-to-end

SQL-based OLTP system. Another reason is that Silo uses an efficiently implemented index

structure, Masstree [75]. As a result, it is 4.9x faster than DBMS N for 100GB of database. We

examine the inefficient index structure issue of DBMS N in Section 4.3.2 in more detail.

Summary

Relative throughput of OLTP systems widely vary among different categories of OLTP systems.

However, CPU cycles utilization of all the OLTP systems are low. DBMS D and M suffer from

Icache stalls. Shore-MT, DBMS N and Silo eliminate the Icache stalls. The reduced Icache stalls

cause Dcache stalls to surface up, which Shore-MT, DBMS N and Silo suffer from. The Dcache

stalls are mostly due to the random-data-access nature of the workload, in addition to the

meta-data processing overhead for Shore-MT and DBMS N. As a result, Shore-MT, DBMS N

and Silo spend only 30% of the CPU cycles retiring instructions similar to DBMS D and M.

4.3.2 Sensitivity to Work per Transaction

To investigate the impact of the amount of work per transaction on the micro-architectural

behavior, we increase the number of rows that a transaction accesses from 1 to 10 and then to

100. We perform these experiments with 100GB dataset for all the systems except DBMS M.
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1 row 10 rows 100 rows
DBMS D 1 1 1

Shore-MT 1.6 0.7 0.7
DBMS M 3.0 3.7 3.9
DBMS N 3.9 2.1 1.7

Silo 19.3 8.0 6.0

Table 4.3 – Normalized throughput as we increase the amount of work done per transac-
tion with a database of size 100GB (10GB for DBMS M). Throughputs are normalized to
DBMS D.

We use 10GB of database for DBMS M due to its 32GB of maximum database size limitation.

In the following sub-sections, we present the results for the read-only version of the micro-

benchmark. The results for the read-write version of the micro-benchmark can be found in

Section A.2.2 of the Appendix.

Figure 4.3 shows the breakdown of the execution times for each system, as the amount of work

per transaction is increased. As we increase the amount of work per transaction, DBMS D and

M suffer less and less from Icache stalls. The repetitive behavior within a transaction leads to

a better instruction-cache locality. As a result, Icache stalls are decreased as the amount of

work per transaction is increased. As we increase the work done per transaction, DBMS D’s

and M’s Dcache stalls are increased. As the transactions access more distinct rows, they make

larger number of random data-accesses. This leads to a higher data-miss rate hence to higher

Dcache stalls.

Shore-MT, DBMS N and Silo have slightly increased Dcache stalls as the amount of work

per transaction is increased. Shore-MT, DBMS N and Silo are Dcache-stalls-bound even for

reading 1 row per transaction. Hence, the increased instruction locality does not make a

significant difference in terms of the micro-architectural behavior of Shore-MT, DBMS N

and Silo. Nevertheless, Dcache stalls are slightly increased as the number of rows read per

transaction is increased, similarly to the DBMS D and M.

Table 4.3 shows the normalized throughputs. DBMS M’s relative throughput is increased as

the number of rows per transaction is increased. DBMS M becomes even faster than DBMS N,

as the number of rows per transacton is increased to 10 and 100. This is due to the increased

instruction locality that DBMS M benefits from. As the number of rows read per transaction is

increased, DBMS M suffers from Icache stalls less and less. As a result, DBMS M outperforms

DBMS N. This shows the severe negative effect of instruction-cache misses for DBMS M and

how highly DBMS M benefits from the increased instruction locality.

DBMS M spends ∼30%, ∼15% and ∼3% of its time waiting for Icache stalls for reading 1, 10

and 100 rows. Hence, DBMS M’s Icache stalls are reduced by 50% when the number of rows

per transaction is increased from 1 to 10, and further reduced by 80% when the number of

rows per transaction is increased from 10 to 100. DBMS N spends ∼5%, ∼1.5% and ∼1% of its

time waiting for Icache stalls. Hence, DBMS N ’s Icache stalls are reduced by 70% when the
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Figure 4.4 – Function call trace breakdown for DBMS N and Silo when running the micro-
benchmark that reads 100 rows per transaction.

number of rows per transaction is increased from 1 to 10, and further reduced by 35% when the

number of rows per transaction is increased from 10 to 100. Therefore, DBMS N also benefits

from the increased instruction-cache locality, similar to DBMS M. However, as the percentage

of the time DBMS N spends on Icache stalls is small (≤ 5%), its delivered throughput is not

increased as much as DBMS M’s throughput is increased.

Shore-MT, DBMS N and Silo’s relative throughput to DBMS D is decreased as the number

of rows per transaction is increased. This is because DBMS D benefits from the increased

instruction locality as the number of rows is increased, similar to DBMS M.

DBMS N ’s relative throughput with respect to Silo is decreased as the number of rows is

increased. DBMS N ’s relative throughput with respect to Silo is: 4.9, 3.8 and 3.5 for 1, 10

and 100 rows, respectively. This is because DBMS N executes less and less the code to setup

and instantiate the transactions as the amount of work per transaction is increased. As a

result, its throughput gets closer and closer to Silo, which minimally suffers from the work

required to setup and instantiate the transactions. Nevertheless, Silo is 3.5x faster than DBMS

N even when DBMS N mostly eliminates the transaction setup overheads. We examine this

throughput difference in more detail in the following section, Section 4.3.2.

Execution Time Breakdown at the Software-Level

As discussed in the previous section, DBMS N is 3.5x slower than Silo, even when probing 100

rows per transaction (see Table 4.3). We break down the execution time of DBMS N and Silo at

the software-level when probing 100 rows. Figure 4.4 shows the results. Both OLTP systems

have four main categories of functions: (i) transaction setup, (ii) lookup, (iii) post-lookup and

(iv) rest. The transaction setup component includes the work that requires setting up and

instantiating the transaction. The lookup category is usually a single function that performs

the index traversal. The post-lookup is the work that requires the value from the found leaf-

level node to be returned. This requires type-checking for DBMS N as it performs different
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tasks for different data types such as BIGINT or BYTEARRAY. Silo’s post-lookup work decodes

the values found after the lookup, as it encodes all the keys and values in a string and uses

string as the universal key and value type. The rest category is the rest of the work that the

system requires be performed such as sending the result back to the transaction, obtaining

the target table, achieving the target index, etc.

The figure shows that both systems spend the largest portion of their time performing the

index traversal. This shows that the main reason for the performance difference between

DBMS N and Silo is the inefficient index structure that DBMS N uses. We further examined

DBMS N ’s index data structure and index traversal algorithm. We saw that DBMS N uses a

red-black tree as its index structure. Red-black trees are self-balancing binary search trees,

where the number of elements per node is 1. Hence, at every level of the tree, red-black tree

performs a single comparison. As every node of the tree resides in a random memory location,

red-black tree is subject to a data-cache miss at every level during the index traversal.

Silo, on the other hand, uses Masstree, which is a variant of B-tree. As all the B-trees, Masstree’s

nodes have a particular node size and fanout. It is 15 for Silo. Hence, instead of 1, it keeps

15 elements per node. As the tree depth drops exponentially with the node size, Silo’s index

is much more shallow than DBMS N ’s red-black tree. Therefore, Masstree is subjected to a

significantly fewer data-cache misses. Furthermore, Masstree software prefetches the node’s

data blocks by injecting a software prefetch instruction during the index traversal. As a result,

Silo is subject to a single data-cache miss for the entire node it accesses at every level of the

tree, making Silo significantly faster than DBMS N. This shows that, despite the overheads of a

real-life system, the efficiency of the used index structure is still one of the most critical factors

in defining the performance characteristics of an in-memory OLTP system.

Finally, DBMS N ’s rest component is significantly higher than that of Silo. This is because

DBMS N, being a real-life system, executes more functions to provide the end-to-end response.

The used data type for keys is important for the index lookup operation, as the index lookup

operation performs a significant number of key comparisons during the traversal of the index.

Silo uses string-encoded keys. Silo’s used index structure, Masstree, combines B-tree and

trie index structures, where every node of the trie structure is a separate B-tree. Masstree

slices the string-encoded keys into pieces of eight bytes and performs a separate B-tree search

for every eight bytes of the key. Silo uses the the <, > and == operators to perform the key

comparisons between the eight-byte-long pieces of the keys. DBMS N stores the keys based

on the data types specified by the schema. For the integer keys, it uses its internal IntsKey
key type. For string keys, it uses its internal GenericKey key type. Different key types use

different comparison operators. For integers, DBMS N uses the <, > and == operators. For

strings, it uses the C library function strncmp.
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Figure 4.5 – Execution time breakdowns while running TPC-B.

TPC-B TPC-C
DBMS D 1 1

Shore-MT 1.7 1.2
DBMS M 2.2 3.1
DBMS N 5.4 2.7

Silo 18.5 20.0

Table 4.4 – Normalized throughput for TPC-B and TPC-C with a database of size 100GB
(32GB for DBMS M). Throughputs are normalized to DBMS D.

4.4 TPC Benchmarks

Section 4.3 performs a sensitivity analysis using a simple micro-benchmark to gain a fine-

grained understanding of the in-memory OLTP systems compared to the disk-based ones

at the micro-architectural level. This section investigates the behavior of the same systems

while running the more complex and community standard TPC-B (Section 4.4.1) and TPC-C

(Section 4.4.2) benchmarks. All the experiments in this section use a database of size 100GB,

except DBMS M for which we use the maximum allowed database size of 32GB. Similar to

Section 4.3, we analyze the execution time breakdowns and normalized throughput values.

4.4.1 TPC-B

TPC-B is an update-heavy benchmark that simulates a banking system. AccountUpdate is

its only transaction type, which updates one row each in three tables, Branch, Teller, and

Account, and appends a row to the History table.

Figure 4.5 shows the execution breakdowns and Table 4.4 shows normalized throughputs

for TPC-B. DBMS D, Shore-MT, DBMS N and Silo all suffer less from Dcache stalls compared

to the micro-benchmark that reads 1 row per transaction (see Figure 4.1). This is mainly

because TPC-B has better data locality compared to the micro-benchmark. When running the

micro-bench- mark, we randomly probe rows from a 100GB table, which includes more than

one billion rows. On the other hand, TPC-B first probes one of the ∼ 20K Branches randomly.
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Figure 4.6 – Execution time breakdowns while running TPC-C.

Then, it probes one of the ∼ 200K Tellers and one of the ∼ 2 billion Accounts. Finally, it

inserts on row into the History table. Hence, the probability of re-accessing the same branch

or teller as well as the same History table page is quite high compared to re-accessing a row

from the micro-benchmark’s single large table.

DBMS M suffers less from Icache stalls and more from Dcache stalls for TPC-B compared to the

micro-benchmark. DBMS M relies on a multi-version concurrency control mechanism, where

updates create new versions. As TPC-B is an update-heavy benchmark, DBMS M requires

creating new version for every transactions and hence perform more random data-accesses

during the traversal of the version chain. This results in higher degree of Dcache stalls for TPC-

B compared to the read-only micro-benchmark. We confirm this hypothesis by the read-write

version of the read-only micro-benchmark discussed in Section A.2.1 in the Appendix.

The normalized throughput values follow a similar trend to the micro-benchmark. All the

in-memory systems are faster than the disk-based systems. Among the in-memory systems,

DBMS N is faster than DBMS M thanks to not suffering from Icache stalls, and Silo is faster

than DBMS N thanks to its efficient engine components and not performing the work required

to set up and instantiate the transactions.

4.4.2 TPC-C

After investigating the micro-architectural behavior of the systems using TPC-B, this section

focuses on the more complex TPC-C benchmark. TPC-C models a wholesale supplier with

nine tables and five transaction types (2 of which are read-only and form 8% of the benchmark

mix). In terms of the database operations, the TPC-C transactions contain probes, inserts,

updates, and joins covering a richer set of operations than TPC-B. Therefore, we expect a

different behavior for TPC-C than TPC-B.

Figure 4.6 shows the breakdown of the execution times and Table 4.4 shows normalized

throughputs for TPC-C. The micro-architectural behavior follows a similar trend to the micro-

benchmark and TPC-B. While DBMS D and M are Icache-stalls-bound, Shore-MT, DBMS N

and Silo are Dcache- and resource/dependency-stalls-bound. All the systems suffer less from
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Figure 4.7 – Execution time breakdowns for different index structures with and without
compilation optimizations while running the micro-benchmark.

the Dcache stalls compared to the micro-benchmark thanks to the workload locality that

TPC-C has. As a result, they have slightly higher retiring time than the micro-benchmark.

The normalized throughput values follow a similar trend to the micro-benchmark. All the

in-memory systems are faster than the disk-based systems. Among the in-memory systems,

Silo is faster than DBMS M and DBMS N.

DBMS N ’s relative throughput is less for TPC-C compared to the micro-benchmark and TPC-B.

We examined DBMS N ’s call stack and observed that DBMS N ’s time spent in serializing/de-

serializing tuples is significantly increased for TPC-C compared to the micro-benchmark.

DBMS N keeps every tuple in its own format (byte array) and deserializes/serializes the data

during transaction processing. As TPC-C requires in-transaction processing of the tuples,

such as incrementing the order ID for the new order transaction, DBMS N ’s relative through-

put is decreased when running complex benchmark compared to when running a simple

micro-benchmark.

Shore-MT ’s relative throughput is less for TPC-C compared to the micro-benchmark and

TPC-B. We examined Shore-MT ’s call stack and observed that Shore-MT ’s time spent on

B-tree search and lock manager are significantly increased for TPC-C than it is for the micro-

benchmark. This highlights Shore-MT ’s index structure and meta-data processing overheads

becoming more prominent for a complex benchmark. This is also visible in Table 4.3, where

Shore-MT ’s throughput is lower than DBMS D for probing 10 and 100 rows per transaction.

4.5 Index and Compilation Optimizations, and Data Types

This section analyzes the impact of index and compilation optimizations the in-memory

systems adopt, as well as the impact of the data types, at the micro-architectural level. Among

the systems used in this study, DBMS M is the only one that allows enabling/disabling the

compilation optimizations and using two different index structures; hash index and a variant

of cache-conscious B-tree index similar to [67, 68]. Therefore, while we use DBMS M for
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Micro-bench. TPC-C
B-tree w/ comp. 1 1

B-tree w/o comp. 0.2 0.2
Hash w/ comp. 1.8 1

Hash w/o comp. 0.3 0.2

Table 4.5 – Normalized throughput for different index structures with and without compi-
lation. Throughputs are normalized to using B-tree w/ compilation.
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Figure 4.8 – Execution time breakdown for different index structures with and without
compilation while running TPC-C.

analyzing the impact of index and compilation optimizations, we experiment with all the three

in-memory systems (DBMS M, DBMS N, and Silo) to quantify the effect of different data types.

4.5.1 Impact of index type and compilation

To quantify the impact of the type of index and compilation on the micro-architectual uti-

lization, we start with the read-only variant of the micro-benchmark. Figure 4.7 presents the

breakdown of the execution times and Table 4.5 presents the normalized throughput values.

The results for the read-write version of the micro-benchmark can be found in Section A.2.3

of the Appendix. We use the version of the micro-benchmark where we access 10 rows per

transaction from the 10GB dataset. Transaction compilation has a significant effect on the

Icache stalls, which results in ∼ 50% reduction in the Icache stalls regardless of the index

type. Transaction compilation enables many optimizations in the instruction stream. It can

eliminate the virtual function calls. It can inline templated function calls. It can eliminate type

checkings and certain branches. Lastly, it allows the compiler to employ its own optimizations

more aggressively as it reduces the whole task into a generated code file.

Table 4.5 shows that transaction compilation improves the throughput by 5-6x. B-tree has

more Dcache stalls than the Hash index when transactions are not compiled. This is expected

as B-tree requires multiple levels of random lookups, whereas Hash index usually requires one

or two random lookups. When the transactions are compiled, B-tree and Hash index have

similar ratios of Dcache stalls; even though Hash index is 80% faster than B-tree.
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Figure 4.9 – Execution time breakdowns for String and Long data types while running the
micro-benchmark.

Long String
DBMS N 1 1

Silo 1 0.7

Table 4.6 – Normalized throughput for String and Long data types while running the micro-
benchmark. Throughputs with string data type is normalized to throughputs with long
data type.

We repeat the experiment above using the TPC-C benchmark. Figure 4.8 shows the breakdown

of the execution times and Table 4.5 shows the normalized throughput values. Once again,

compilation optimizations reduce Icache stalls significantly for both index types. Moreover,

transaction compilation improves DBMS M’s throughput by 5x for both B-tree and Hash

index types. For Dcache stalls, since the TPC-C benchmark requires fewer random data reads

compared to the micro-benchmark, we do not observe a significant difference in Dcache stalls

for B-tree and Hash index.

4.5.2 Impact of data type

To quantify the impact of different data types on micro-architectural utilization, we use the

read-only version of the micro-benchmark where we probe 1 row per transaction over a 100GB

database. The results for the read-write version of the micro-benchmark can be found in

Section A.2.3 of the Appendix. We modify the micro-benchmark to use two 50 bytes string

columns instead of two long columns in the table and compare the two versions.

Figure 4.9 presents the breakdown of the execution times. DBMS N suffers less from Dcache

stalls for string compared to long. This is expected as string processing operations usually

have high spatial locality. We examined DBMS N ’s function call stack, and observed that string

comparison code constitutes a larger fraction of the execution time with less Dcache stalls.

Silo has a similar micro-architectural behavior for long and string data types. This is because

Silo’s index structure, Masstree combines B-tree and trie index structures, where every node
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Figure 4.10 – Execution time breakdowns for the multi-threaded experiments while run-
ning the micro-benchmark (left) and TPC-C (right).

of the trie structure is a separate B-tree. Masstree slices the keys into pieces of eight bytes and

does a separate B-tree search for every eight bytes of the key, while traversing the overall trie

structure. As a result, using a long, 50-byte of string key does not make a significant difference

in terms of the data access pattern during the key comparisons, except that a 50-byte key

is sliced into a larger number of pieces and hence require more work to perform the index

search.

Keeping B-tree within a trie structure allows skipping the upper levels of the trie structure for

keys with long common prefixes (such as http URLs). The keys we use, however, do not have

such a feature. Hence, Masstree search boils down to multiple levels of B-tree searches.

Table 4.6 presents the throughput values for the string data type that is normalized to the long

data type. The results show that Silo delivers lower throughput for string than it delivers for

long, whereas DBMS N ’s throughput remains the same for the long and string data type. This

is because, unlike Silo, DBMS N is able to exploit the spatial locality of string processing. As a

result, the increased work due to using strings is balanced out with the higher spatial locality

of string search.

4.6 Impact of Multi-threading

This section analyzes the effect of running multiple server side threads on the micro-architectural

behavior. The single-threaded experiments aim to present an idealized case for all the systems

since it avoids cache invalidations due to data sharing across different worker threads or

misleading artificially high IPC values due to threads spinning under possible contention. On

the other hand, multi-threaded experiments aim to investigate a more realistic scenario where

systems are loaded with multiple threads executing transactions from multiple clients.

Figure 4.10 shows the breakdown of the execution times, and Table 4.7 presents the normalized

throughput values while running the read-only version of the micro-benchmark when reading

1 row (left) and TPC-C (right) benchmark. We use a database of size 100GB in both of the
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Micro-bench. TPC-C
DBMS D 1 1

Shore-MT 2.3 1
DBMS M 3.3 1.5
DBMS N 4.7 2.8

Silo 27.8 26.7

Table 4.7 – Normalized throughput for the multi-threaded experiments. Throughputs are
normalized to DBMS D.

experiments for all the systems except DBMS M. We use 10GB of database for the micro-

benchmark, and 32GB of database for the TPC-C benchmark for DBMS M. We observe that

normalized throughput values and the micro-architectural behavior of the individual systems

is similar to the single-threaded executions when running the micro-benchmark. DBMS D

mainly suffers from the Icache stalls, whereas Shore-MT, DBMS N and Silo mainly suffer from

the Dcache stalls. DBMS M suffers less from Icache and more from Dcache stalls when running

multi-threaded than when running single-threaded execution. Therefore, when the system is

loaded with multiple threads, Dcache stalls and the sources of Dcache stalls, such as the index

lookup operation, gain more importance for DBMS M.

Micro-architectural behavior follows similar trends for TPC-C for the multi-threaded execution

compared to the single-threaded execution. DBMS D largely suffers from Icache stalls, and

Shore-MT, DBMS N and Silo mainly suffer from the Dcache stalls. DBMS M, once again, suffers

less from the Icache and more from the Dcache stalls than it does for the single-threaded

execution, showing that Dcache stalls and sources of Dcache stalls gain more importance

DBMS M for the multi-threaded execution.

4.7 Memory Bandwidth Consumption

This section presents the consumed memory bandwidth for the five OLTP systems we examine

for the sensitivity to data size and work per transaction micro-benchmarks and TPC-C bench-

mark. We measured both single-threaded and multi-threaded consumed memory bandwidth.

We observed that the consumed single-threaded bandwidth is always less than 1 GB/s for

all the systems. Hence we omit the single-threaded bandwidth results, and focus on the

multi-threaded ones.

4.7.1 Data Size Micro-benchmark

Table 4.8 presents the consumed bandwidth for the increasing data size. We observe that

all the systems consume significantly less memory bandwidth than the maximum available

bandwidth. While the maximum available bandwidth is 66GB/s, the maximum consumed

bandwidth is 8.3GB/s by Silo for 100GB of data size.

DBMS D, Shore-MT and DBMS M consume significantly less amount of bandwidth than DBMS
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1MB 10MB 10GB 100GB
DBMS D 0 0 0 0

Shore-MT 0 0 2 2
DBMS M 0 0 1 -
DBMS N 5.2 5.1 6.2 6.2

Silo 0 0 8.2 8.3

Table 4.8 – Consumed bandwidth in GB/s as we increase the database size for multi-
threaded execution when reading 1 row per transaction.

1 row 10 rows 100 rows
DBMS D 0 2 3

Shore-MT 2 2 2.5
DBMS M 1 7 11
DBMS N 6.2 8.5 8.4

Silo 8.3 8.3 8.4

Table 4.9 – Consumed bandwidth in GB/s as we increase the amount of work per transac-
tion for multi-threaded execution for a database of size 100GB.

N and Silo. DBMS D and M suffer from Icache stalls, which prevents them from stressing the

memory bandwidth. As a result, their consumed bandwidth values are very low. Shore-MT

suffers from Dcache stalls for 10GB and 100GB. As being a disk-based system, it nevertheless

is significantly slower (see Table 4.2) than DBMS N and Silo. As a result, it stresses the memory

bandwidth only modestly.

DBMS N has relatively high bandwidth consumption for 1 and 10MB of data. This is due

to DBMS N ’s meta-data processing for setting up and instantiating the transactions. As the

data size is increased the consumed bandwidth is also increased. Silo consumes no memory

bandwidth for 1 and 10MB of data as the data is mostly cache-resident. Silo consumes the

highest bandwidth among the systems we analyze for 10 and 100GB of data. This is expected as

Silo does not perform the work that disk-based systems perform and the meta-data processing

during the transaction setup and instantiation. As a result, it delivers the highest relative

throughput (see Table 4.2) and stresses the memory bandwidth the highest. Nevertheless, Silo’s

maximum consumed bandwidth is significantly less than the maximum available bandwidth

of 66GB/s. This shows that OLTP systems generate only modest amount of memory traffic,

and hence severely under-utilize the memory bandwidth.

4.7.2 Work per Transaction Micro-benchmark

Table 4.9 shows the consumed bandwidth as we increase the amount of work per transaction.

We use 100GB of database for all the systems, except DBMS M and 10GB of database for DBMS

M. The consumed bandwidth is increased as the amount of work per transaction is increased

for all the systems. This increase is more pronounced for DBMS M. This follows DBMS M’s

significantly increased throughput as the amount of work per transaction is increased (see
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TPC-C
DBMS D 0

Shore-MT 2.6
DBMS M 0
DBMS N 2.6

Silo 5.3

Table 4.10 – Consumed bandwidth in GB/s for TPC-C benchmark for multi-threaded exe-
cution.

Table 4.3). As the amount of work per transaction is increased, DBMS M suffers less and less

from Icache stalls. As a result, its relative throughput and consumed bandwidth is significantly

increased.

The increase is also observable for DBMS D and DBMS N : They both stress the memory

bandwidth increasingly higher, as the amount of work per transaction is increased. The

consumed bandwidth is significantly less for DBMS D than it is for DBMS N. DBMS D is

significantly slower than DBMS N ; hence, even when probing 100 rows per transaction, it

lightly stresses the memory bandwidth.

Shore-MT and Silo’s consumed bandwidths are only modestly increased. This is because

Shore-MT and Silo are OLTP engines that hard code transactions in C++. Hence, the increased

amount of work per transaction stresses the memory bandwidth at a similar level per unit of a

time. As a result, the consumed bandwidth remains mostly stable as the amount of work per

transaction is increased.

Overall, despite the increased amount of work per transaction, all the OLTP systems we

examine consume only a modest fraction of the maximum available bandwidth. While the

maximum available bandwidth is 66GB/s, the maximum consumed bandwidth is 11GB/s by

DBMS M when reading 100 rows per transaction.

4.7.3 TPC-C

In this section, we examine the amount of consumed bandwidth for TPC-C benchmark for

a database of size 100GB, except for DBMS M. We use 32GB of database for DBMS M. Table

4.10 shows the results. The consumed bandwidth values are less for all the systems compared

to the micro-benchmark. This is expected as TPC-C transactions are more complex and has

more workload locality, and hence require more on-chip computation rather than stressing

memory bandwidth.

DBMS D and M, being Icache-stalls-bound systems, consume very low memory bandwidth.

Shore-MT, DBMS N and Silo, being Dcache- and resource/dependency-stalls-bound, con-

sume certain amount of memory bandwidth. Silo, being the fastest OLTP system we analyze,

consumes the highest amount of memory bandwidth. Nevertheless, all the systems we analyze

consumes bandwidth that is significantly below the maximum available bandwidth. While
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Micro-bench. TPC-C
ST MT ST MT

DBMS M 1.2 1.3 1.2 1.3
Silo 1.4 1.6 1.4 1.7

Table 4.11 – Normalized throughput values for hyper-threading evaluation. ST: The
throughput of running two hyper-threads on the same physical core is normalized to the
throughput of running one hyper-thread on the physical core. MT: The throughput of run-
ning 28 hyper-threads on 14 physical cores of a same socket is normalized to the through-
put of running 14 hyper-threads on the same 14 physical cores.

Micro-bench. TPC-C
ST MT ST MT

DBMS M 1.3 1.1 1.2 1.2
Silo 1.2 1.1 1.2 1.1

Table 4.12 – Normalized throughput values for turbo-boost evaluation. Hyper-threading
is turned off. ST: The throughput of running single thread having turbo-boost turned on
is normalized to the throughput of running single thread having turbo-boost turned off.
MT: The throughput of running 14 threads on a same socket having turbo-boost turned on
is normalized to the throughput of running 14 threads on the same socket having turbo-
boost turned off.

the maximum available bandwidth is 66GB/s, the highest consumed bandwidth is 5.3GB/s by

Silo.

4.8 Acceleration Features

In this section, we examine three acceleration features that today’s processors provide: hyper-

threading, turbo-boost and hardware prefetchers. We present normalized throughput num-

bers.

We use DBMS M and Silo when running the read-only micro-benchmark while probing 1

row per transaction, and when running the TPC-C benchmark for single- and multi-threaded

executions. We use 10GB of database for the micro-benchmark and 32GB of database for

TPC-C when profiling DBMS M. We use 100GB of database for Silo.

4.8.1 Hyper-threading

Table 4.11 shows normalized throughput values for hyper-threading evaluation. For single-

threaded execution, the normalized throughput shows the throughput improvement when

running two threads on the same physical core compared to running a single thread on a

single physical core. For multi-threaded execution, the normalized throughput shows the

throughput improvement when running 28 threads on 14 physical cores compared to running

14 threads on 14 physical cores (assuming that 14 threads deliver the highest throughput). We
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Micro-bench. TPC-C
ST MT ST MT

DBMS M 1.0 1.0 1.0 1.0
Silo 1.0 1.0 1.0 1.0

Table 4.13 – Normalized throughput values for prefetcher evaluation. Hyper-threading
and turbo-boost is turned off. ST: The throughput of running a single thread having
prefetchers turned on is normalized to the throughput of running a single thread having
prefetchers turned off. MT: The throughput of running 14 threads on a same socket hav-
ing prefetchers turned on is normalized to throughput of running 14 threads on the same
socket having prefetchers turned off.

use the DBMS’s and/or OS’s relevant configuration interface to bind the threads to a single

socket and allocate memory locally.

We observe that hyper-threading is modestly useful for DBMS M, whereas it is significantly

useful for Silo. Hyper-threading is the most useful when there is long latency data stalls that

can easily be overlapped. As Silo highly suffers from Dcache stalls, hyper-threading provides a

more significant speedup for Silo. We also observe that the improved throughput is higher

for multi-threaded execution than it is for single-threaded both for DBMS M and Silo. This is

likely due to the increased sharing of the data structures at the last-level cache when running

concurrently on the multiple cores.

4.8.2 Turbo-boost

Table 4.12 shows normalized throughput values for turbo-boost evaluation. We present the

throughput values with turbo-boost turned on normalized to the ones with turbo-boost turned

off.

We observe that both DBMS M and Silo modestly benefit from turbo-boost. Turbo-boost

provides the highest speedups when the computation is arithmetic-operation-heavy rather

than memory-access-bound as it is the case for OLTP. As a result, both systems only modestly

benefit from turbo-boost feature.

4.8.3 Hardware prefetchers

Table 4.13 shows normalized throughput values for data prefetchers evaluation. We present the

throughput values with prefetchers enables normalized to the ones with prefetchers disables.

There are four hardware prefetchers that today’s server processors provide: L1 next line, L1

streamer, L2 next line and L2 streamer prefetchers [42]. We disable them all and enable them

all.

We observe that prefetchers have no visible effect on the OLTP system performance. OLTP

workloads are random-data-access-heavy and have low spatial locality. As a result, the

streamer prefetchers might not be providing a visible performance gain when enabled. DBMS
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Figure 4.11 – Execution time breakdowns for successive Intel micro-architectures when
running the read-only microbenchmark where every transaction randomly reads 1 row.
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Figure 4.12 – Execution time breakdowns for successive Intel micro-architectures when
running TPC-C.

M mainly suffers from Icache stalls. Hence, the improvement that the next line prefetchers

bring is likely to be negligible. Silo uses software prefetching to prefetch consecutive cache

lines that belongs to the same index node, during its index traversal. Hence, the disabled next

line prefetcher is likely not creating an observable effect on Silo’s throughput.

4.9 Ivy Bridge vs. Broadwell

In this section, we compare two Intel generations in terms of their micro-architectural behavior

when running the microbenchmark that randomly reads 1 row from a database of 100GB and

the TPC-C benchmark. We use 10GB of a database for the micro-benchmark, and 32GB of a

database for TPC-C when profiling DBMS M. We examine the Intel Xeon v2 line Ivy Bridge

micro-architecture and Intel Xeon v4 line Broadwell micro-architecture. We choose these two

generations as there is a major micro-architectural change from Intel Xeon v2 line Ivy Bridge

to Intel Xeon v3 line Haswell micro-architecture, especially in the instruction fetch unit of the

processors [31] (see Section 4.3.1, paragraph 2). As OLTP systems are known to severely suffer

from Icache stalls, we examine how effective the instruction fetch unit improvement for OLTP

systems. We use Broadwell micro-architecture in this analysis. Broadwell is slightly improved

version of the Haswell micro-architecture.

Figure 4.11 and 4.12 show the results. We observe that there is a significant change in the micro-
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Micro-bench. TPC-C
DBMS D 2.0 1.6

Shore-MT 1.6 1.6
DBMS M 2.5 1.4
DBMS N 1.6 1.5

Silo 1.1 1.3

Table 4.14 – Throughput on Broadwell normalized to throughput on Ivy Bridge.

architectural behavior of the OLTP systems across the two processor generations. On the Ivy

Bridge micro-architecture, all the systems except Silo mainly suffer from Icache stalls. On the

Broadwell micro-architecture, Shore-MT and DBMS N ’s main micro-architectural bottlenecks

shift from Icache stalls to Dcache stalls. Similarly, DBMS D and M suffer significantly less

from the Icache stalls on the Broadwell micro-architecture compared to the Ivy Bridge micro-

architecture. This shows that the advances in the instruction fetch unit of the processor

significantly help in reducing the Icache stalls.

Our finding on Ivy Bridge vs. Broadwell corroborates the recent work of Yasin et al. [119]

where SPEC benchmarks are evaluated across Ivy Bridge and Skylake (the generation after

Broadwell) micro-architectures. Yasin et al. also show that the improvement on the Skylake

micro-architecture, which inherits the improvements from the Broadwell micro-architecture

significantly reduces the Icache stalls.

Table 4.14 shows the throughput values on the Broadwell machine normalized to the through-

put values on the Ivy Bridge machine. As expected, the Broadwell machine delivers sig-

nificantly higher throughput than the Ivy Bridge machine thanks to its micro-architectural

improvements.

Existing work on micro-architectural analysis of OLTP systems has mostly used an Ivy Bridge

or an earlier micro-architecture generation. As a result, their conclusions were mostly referring

to the high Icache stalls of disk-based and in-memory OLTP systems [98, 99, 108, 111]. We take

the existing work one step ahead, and provide conclusions on one of the latest generations of

Intel micro-architectures.

4.10 Conclusion

In this chapter, we perform a detailed micro-architectural analysis of the in-memory OLTP

systems contrasting them to the disk-based OLTP systems. The results demonstrates that

in-memory OLTP systems spend most of their time in stalls similarly to the disk-based OLTP

systems despite all the design differences and lighter storage manager components of the

memory-optimized systems. The disk-based and the in-memory engine of the disk-based

OLTP systems suffer mainly from Icache stalls. Although the optimizations that the in-memory

engine uses are helpful in significantly improving the delivered throughput, the main micro-

architectural bottleneck remains the same. Ground-up designed in-memory OLTP systems
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eliminate the Icache stalls; however, due to the random data-accesses during the index traver-

sal, they spend more than half of their execution time waiting for Dcache stalls. While using

an efficient index structure can significantly reduce the amount of Dcache stalls, Dcache stalls

remain the main micro-architectural bottleneck due to the costly random data-accesses.

56



5 Online Analytical Processing Work-
loads

In Chapter 4, we have shown that online transaction processing (OLTP) systems spend most

of their execution time waiting for instruction-cache or data-cache misses. Online analytical

processing (OLAP) workloads exhibit a completely different computing pattern. OLAP workloads

are read-only, bandwidth-intensive, and include various data access patterns. With the rise of

column-stores, they run on high-performance engines that are tightly optimized for modern

hardware. Consequently, the micro-architectural behavior of modern OLAP systems is unclear.

In this chapter, we present a micro-architectural analysis of OLAP workloads. Unlike the OLTP

workloads, the OLAP workloads do not suffer from instruction-cache misses. The commercial

row-store and its column-store extension efficiently use the CPU cycles; however, they require

executing a significantly larger number of instructions hence are 2 to 56 times slower than the

column-stores that follow tuple-at-a-time, vector-at-a-time, and compiled execution models.

The column-store that follows the tuple-at-a-time execution model also efficiently uses the

CPU cycles; however, it also requires a significantly larger number of instructions than the

column-stores that use vector-at-a-time and compiled execution models, hence they are 1.7 to 5

times slower than.

Column-stores that use vector-at-a-time and compiled execution models spend most of their

execution time waiting for data-cache misses. The data-cache stalls are due to the stress on the

memory bandwidth for sequential-scan-heavy queries, and are due to long-latency data-cache

misses caused by random data-accesses for join-intensive queries. Concurrently executing scan-

intensive and join-intensive queries can improve the utilization, but it creates interference in

the shared resources, which results in sub-optimal performance.

5.1 Introduction

Online analytical processing (OLAP) is an ever-growing, multi-billion dollar industry. To extract

valuable information from their data, many industrial and community organizations rely on

fast and efficient analytical processing. Micro-architectural behavior reveals the limitations of

57



Chapter 5. Online Analytical Processing Workloads

and opportunities for efficiently using modern hardware resources, hence enables delivering

high performance. Research has shown that OLAP systems can improve performance by

orders of magnitude by more efficiently using the modern hardware resources [74].

Chapter 4 has shown that, despite being aggressively optimized for modern hardware, in-

memory OLTP systems spend most of the time in instruction-cache and/or data-cache misses.

OLAP workloads exhibit a completely different computing pattern. Unlike the update-heavy

OLTP workloads, OLAP workloads are read-only. Therefore, they do not require a concurrency

control and logging mechanism or a complex buffer pool for synchronizing the modified

pages on disk. OLAP workloads are arithmetic-operation- and bandwidth-intensive. They

process large amounts of data with various data access patterns including both sequential

and random data-accesses.

With the rise of column-stores [2, 40], researchers proposed a diverse set of query processing

paradigms (vectorized [15, 85] vs. compiled query processing [79]), and system prototypes

(Proteus [52], Typer, and Tectorwise [56]). Many database systems, such as SQL Server, Oracle,

and DB2, support a column-store extension [59, 60, 89]. column-stores operate only on the

columns that are necessary for the query, thus utilize memory bandwidth more efficiently.

They process columns in tight, hardware-friendly execution loops that are optimized for the

efficient use of the CPU cycles.

Hence, the micro-architectural behavior of modern OLAP systems is unclear. This chapter

performs a detailed micro-architectural analysis of OLAP workloads running on modern

hardware. We profile six OLAP systems: a commercial row-store, the column-store extension

of the commercial row-store, a column-store that follow tuple-at-a-time execution model, two

column-stores that follow vector-at-a-time execution model, and a column-store that follows

compiled execution model. We evaluate the execution time breakdown at the hardware-level,

memory bandwidth consumption, and normalized execution time. In this chapter, we show

the following:

• The commercial row-store and its column-store extension efficiently use the CPU cycles.

However, they require a significantly larger number of instructions than the column-

stores that use tuple-at-a-time, vector-at-a-time and compiled execution models. As a

result, they are 2 to 56 times slower than the column-stores that use these models.

• The column-store that follows the tuple-at-a-time execution model efficiently uses CPU

cycles; however, it requires a significantly larger number of instructions than the column-

stores that follow vector-at-a-time and compiled execution models. As a result, it is 1.7

to 5 times slower than the column-stores that follow vector-at-a-time and compiled

execution models.

• The column-stores that follow vector-at-a-time and compiled execution models spend

most of their execution time waiting for data-cache misses due to either the stress on

the memory bandwidth or random data-accesses. The scan-intensive queries stress the
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memory bandwidth, and the join-intensive queries make a large number of random

data-accesses.

• The column-stores that follow vector-at-a-time or compiled execution model saturate

the memory bandwidth before saturating the number of cores when running a scan-

intensive query, whereas saturate the number of cores before saturating the memory

bandwidth when running a join-intensive query. Concurrently executing scan- and

join-intensive queries enables the saturation of both the number cores and the memory

bandwidth. However, this creates interference in the shared last-level cache and memory

bandwidth and hence results in a sub-optimal performance.

The rest of the chapter is organized as follows. In Section 5.2, we present the experimental

setup and methodology. In Section 5.3, 5.4 and 5.5, we present the projection, selection and

join micro-benchmark analyses. In Section 5.6, we present the analysis of TPC-H queries. In

Section 5.7, we present mixed query workload analysis. In Section 5.8, 5.9, 5.10 and 5.11, we

present the analyses of predication, SIMD, hardware prefetchers and hyper-threading/turbo-

boost. Lastly, in Section 5.12, we present the conclusions.

5.2 Setup & Methodology

In this section, we present the experimental setup and methodology.

Benchmarks: We use micro-benchmarks and TPC-H queries [113]. We use projection, selec-

tion, and join micro-benchmarks as they constitute the basic SQL operators. All the systems

use the hash join algorithm when running the join micro-benchmark.

All the micro-benchmarks use the TPC-H schema. The projection micro-benchmark does a

single SUM() over a set of columns from the lineitem table. Hence, it performs aggregation

after projecting the relevant columns. We vary the number of columns from one to four. We

use l_extendedprice, l_discount, l_tax and l_quantity columns. We add the projected columns

inside the SUM(). We call the projection micro-benchmark that does a SUM() over n columns

a projection query with the degree of n.

The selection micro-benchmark extends the projection query with the degree of four with

a WHERE clause of three predicates over three columns of the lineitem table: l_shipdate,

l_commitdate and l_receiptdate. It varies the selectivity of each individual predicate from

10% to 50% and 90%. The join micro-benchmark does a join over two tables, followed by a

projection. The small-sized join micro-benchmark joins the supplier and nation tables, it and

does a SUM() over the addition of s_acctbal and s_suppkey. The medium-sized join joins the

partsupplier and supplier tables, and it does a SUM() over the addition of ps_availqty and

ps_supplycost. The large-sized join joins the lineitem and orders table, and it does a SUM()

over the addition of the four columns that the projection query with the degree of four uses.

The joins cover the common case of having a join followed by an aggregation.
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Processor
Intel(R) Xeon(R) CPU

E5-2680 v4 (Broadwell)
#sockets 2

#cores per socket 14
Hyper-threading Off

Turbo-boost Off
Clock speed 2.40GHz

Per-core bandwidth
12GB/s (sequential)

7GB/s (random)

Per-socket bandwidth
66GB/s (sequential)

60GB/s (random)

L1I / L1D (per core)
32KB / 32KB

16-cycle miss latency

L2 (per core)
256KB

26-cycle miss latency

L3 (shared)
(inclusive) 35MB

160-cycle miss latency
Memory 256GB

Table 5.1 – Broadwell server parameters.

We profile a large subset of TPC-H queries on DBMS V. We chose DBMS V for this purpose, as

DBMS V is the highest performing real-life system we use. We categorize the TPC-H queries

based on their micro-architectural behavior. We then choose six representative queries and

continue with the cross-system analysis. Our selection of the queries corroborates with the

queries used by [56].

The TPC-H queries cover a large set of use cases that are common across the OLAP workloads:

For example, Q3 has joins with selections over the dimension tables; and Q4 has joins with

low hit-rate which enables bloom filters to be used. Our examinations have shown that the

cost of a join operation is orders of magnitude higher than the cost of projection, aggregation,

and selection operations. Hence, the execution times of the queries with joins are usually

dominated by the execution time of the join. The categorization of TPC-H queries also shows

that the execution times of most TPC-H queries are dominated by joins, where the size of

the build-side table and the hit-rate of the join operation are the determining factors on the

micro-architectural behavior of the queries.

Hardware: We conduct our experiments on an Intel Broadwell server. Table 5.1 presents the

server parameters. As the Broadwell micro-architecture does not support AVX-512 instructions,

we conduct the SIMD experiments on a separate Skylake server. The Skylake server has a

similar execution engine but a different memory hierarchy from the Broadwell server. The

Skylake server has a significantly larger L2 cache (1 MB), a smaller non-inclusive L3 cache

(16MB), a smaller per-core (10 GB/s) and a larger per-socket (87 GB/s) sequential access

bandwidth. It has a similar per-core and per-socket random access bandwidth.

We use Intel’s Memory Latency Checker (MLC) [47] to measure cache access-latencies and
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maximum single/multi-core and random/sequential-access bandwidth.

OLAP systems: We examine (i) a commercial row-store, DBMS R, (ii) the column-store ex-

tension of the commercial row-store, DBMS C, (iii) an open-source column-store that follow

tuple-at-a-time execution model, Quickstep [85], (iv) a closed-source column-store that follow

vector-at-a-time execution model, DBMS V, (v) an academic column-store prototype that

follow vector-at-a-time execution model, Tectorwise [56], (vi) an academic column-store pro-

totype that follow compiled execution model, Typer [56]. We chose these six systems as each

represents a different category of a system and execution model.

OS & Compiler: We use Ubuntu 16.04.6 LTS and gcc 5.4.0 on the Broadwell server, and Ubuntu

18.04.2 LTS and gcc 7.4.0 on the Skylake server.

VTune: We use Intel VTune 2018 on the Broadwell server, and VTune 2019 on the Skylake server.

We use VTune’s built-in general-exploration (uarch-exploration on VTune 2019) analysis for

the execution time breakdown at the hardware-level, which performs Intel’s Top-down Micro-

architectural Analysis Methodology (TMAM) that is covered in Chapter 3. We use VTune’s

built-in memory-access analysis to measure the consumed memory bandwidth. As we numa-

localize our experiments on a single socket, we report average bandwidth per-socket values.

We use VTune’s built-in hotspots and advanced-hotspots analyses to perform function call

trace breakdown.

We provide an overview of Intel’s TMAM explained in Chapter 3. Each instruction issue slot

is categorized into one of two components: retiring and stalling. A retiring slot is a slot

where the slot is used for retiring an instruction. A stalling slot is a slot where the slot stalls,

i.e., has to wait due to a particular issue. Ideally, all issue slots would be used for retiring.

Stalling slots are further decomposed into five components: (i) branch misprediction, (ii)

Icache, (iii) decoding, (iv) Dcache and (v) resource/dependency stalls. Branch misprediction

stalls are the slots that stall due mispredicted branch instructions. Today’s processors use a

hardware unit called branch predictor; it predicts the outcome of a branch instruction (i.e.,

an if() statement) and speculatively executes instructions per the predicted branch direction

and/or target. If the processor then realizes the prediction is not correct, it undoes whatever

it has been doing and starts executing the correct set of instructions. This cost is defined

as the branch misprediction stalls and can be very costly, as it requires canceling a large

amount of work. Icache stalls are the slots that stall due to instruction-cache and instruction

translation lookaside buffer misses. Decoding stalls are the slots that stall due to sub-optimal

micro-architectural implementation of the instruction decoding unit. Dcache stalls are the

slots that stall due to data-cache misses. Resource/dependency stalls are the slots that stall

due to resource and/or data dependencies. For example, if two instructions require using

the same arithmetic-logic unit, one has to wait for the other. This time is identified as the

resource/dependency time. Or, if an instruction’s operand depends on the result of another

instruction, the instruction with the dependent operand has to wait for the other instruction

to finish. This time is identified as the resource/dependency time.
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Figure 5.1 – Execution time breakdown for the projection micro-benchmark for single-
threaded execution.

Measurements: For every experiment, we first populate the database. We use a one-minute

warmup period, followed by a three-minute VTune profiling period. We disable hyper-

threading (HT) and turbo-boost (TB), as they jeopardize VTune counter values [45]. We

examine HT and TB separately, in Section 5.11.

We numa-localize every experiment by using Linux’s numactl command. We do single- and

multi-threaded experiments. For the multi-threaded experiments, we use the number of

threads that provides the lowest execution time. We choose a scaling factor of 70 (the database

of 70GB) for all the experiments as it makes 5GB/core to process; this is large enough for

out-of-cache experiments. We normalize execution times to DBMS V ’s execution time as

DBMS V is the highest performing real-life system we use.

We generate statistics before profiling each database. For a more fair comparison, we disable

compression for all the systems. We test the compression on DBMS V when it runs the TPC-H

benchmark, and we see that it increases the execution time for 18 of the 22 queries. For the

remaining 4 queries, it decreases the execution time less than 15%.

We do hardware prefetcher experiments in Section 5.10 by modifying the relevant model-

specific register (msr) of the processor [41].

5.3 Projection

We present the projection micro-benchmark. Figure 5.1 and 5.3 show the breakdown of

the execution times, Table 5.2 presents normalized execution times, and Table 5.3 presents

consumed memory bandwidth values for single- and multi-threaded executions.
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Single-threaded Multi-threaded
p1 p2 p3 p4 p1 p2 p3 p4

R 56 39.3 35.5 32.8 43 30.1 24.5 22
C 13.6 14.4 15.4 15.3 9 10.1 10.3 10

Qs 2.7 2.7 2.7 2.8 1.7 1.8 1.7 1.8
V 1 1 1 1 1 1 1 1

Tw 0.5 0.6 0.7 0.8 0.6 0.7 0.7 0.7
Ty 0.5 0.4 0.5 0.5 0.6 0.7 0.7 0.7

Table 5.2 – Normalized execution times for projection micro-benchmark for single- and
multi-threaded executions. The execution times are normalized to DBMS V.
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(a) Normalized execution time breakdowns. The exe-
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Proj4.2

0

5

10

15

20

25

30

35

DBMS R DBMS C Quickstep DBMS V Tw ise Ty per

No
rm

al
ize

d 
ex

ec
ut

io
n 

tim
e

Ret iring Branch misp. Icache Decoding Dcache Res/Dep.

1x
0%

20%

40%

60%

80%

100%

DBMS R DBMS C Quickstep DBMS V Tw ise Ty per

Ex
ec

ut
io

n 
tim

e

Ret iring Branch misp. Icache Decoding Dcache Res/Dep.
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Figure 5.2 – Normalized execution time breakdowns (left) and execution time breakdowns
streched to 100% (right) for the projection query with projectivity of degree 4 for single-
threaded execution.

DBMS R & C spend most of their execution time retiring instructions. They are also 10 to 56

times slower than DBMS V is. As the retiring time is proportional to the number of retired

instructions, it shows that, to execute the same workload, DBMS R and C require a number of

instructions significantly larger than DBMS V requires. Figure 5.2 presents the breakdown of

the normalized execution times (left) and the breakdowns of the execution times stretched

to 100% (right) for each system for the projection query with a projectivity of degree 4. The

figure shows that DBMS R and C are slower than DBMS V is, mainly due to the large number

of instructions they execute.

Quickstep spends most of its execution time retiring instructions. It is also 1.7 to 2.8 times

slower than DBMS V is. Hence, similarly to DBMS R and C, Quickstep is slower than DBMS V

is, mainly due to using a larger number of instructions. We examine Quickstep’s function-call

trace for the projection query of degree four to understand the reasons for executing a larger

number of instructions. Quickstep spends 50% of its time in getUntypedValue() and 8.1%

of its time in next() function. It spends the remaining time inside a functor that performs ag-

gregation. getUntypedValue() function performs null/boundary checking, whereas next()
is used to increment the processed tuple ID.

Quickstep follows tuple-at-a-time execution model with aggressive function inlining, where

63



Chapter 5. Online Analytical Processing Workloads

0%

20%

40%

60%

80%

100%

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

DBMS R DBMS C Quickstep DBMS V Tectorwise Typer

Ex
ec

ut
io

n 
tim

e

Projectivity degree

Retiring Branch misp. Icache Decoding Dcache Res/Dep.

0%

20%

40%

60%

80%

100%

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

DBMS R DBMS C Quickstep DBMS V Tectorwise Typer

Ex
ec

ut
io

n 
tim

e

Projectivity degree

Retiring Branch misp. Icache Decoding Dcache Res/Dep.

Projectivity

Figure 5.3 – Execution time breakdowns for the projection micro-benchmark for multi-
threaded execution.

Single-threaded Multi-threaded
p1 p2 p3 p4 p1 p2 p3 p4

R 0 0 0 0 44.6 34.7 27.3 23.6
C 0 0 0 0 0.9 0.6 0.3 0.3

Qs 0 0.1 0.9 0.7 21.6 23.5 24 24.2
V 2.8 2.6 2.4 2.2 38.6 43.2 43.8 45.6

Tw 7 6.8 5 4.9 62.9 62.4 61.5 61.1
Ty 8.6 10.5 9.6 10.1 62.8 63 62.9 62.8

Table 5.3 – Consumed bandwidth in GB/s for projection micro-benchmark for single- and
multi-threaded executions.

at every iteration of the aggregation it makes inlined function calls of getUntypedValue()
and next() per tuple. Although inlined function calls are not as expensive as regular or

virtual function calls, they require extra work. getUntypedValue() makes five further in-

lined function calls, getAttributeValue(), getAttributeId(), hasAttributeWithId(),

IdInRange() and elementIsNull(), which requires even more work, hence making the

aggregation 1.7 to 2.8 times slower than DBMS V.

DBMS V is twice as slow as Tectorwise at the projectivity of degree one for single-threaded

execution. As DBMS V and Tectorwise implement a similar execution model, the difference

highlights the work that a full-fledged, real-life system need to perform compared to an

academic prototype.

Tectorwise & Typer have the same performance at the projectivity of degree one. As the

projectivity increases, Typer outperforms Tectorwise at single-threaded execution. This is

because, as the projectivity increases, Tectorwise suffers more from the materialization over-
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head. Whereas, Typer follows a compiled execution model that does not suffer from the

materialization overhead.

Typer’s and Tectorwise’s relative execution times are the same at the multi-threaded execution,

as they are both memory-bandwidth-bound. Table 5.3 shows that both Tectorwise and Typer

saturate the memory bandwidth at the multi-threaded execution. We also examine Typer’s

and Tectorwise’s function-call traces. They both spend almost 100% of their time inside the

aggregation function.

Single vs. Multi-threaded Execution: DBMS C and Quickstep have the same execution time

breakdowns for the single- and multi-threaded executions. Table 5.3 shows that DBMS C

has very low single- and multi-threaded bandwidth consumption, which explains the similar

micro-architectural behavior. Quickstep has a low single-threaded, yet significant multi-

threaded bandwidth consumption. Nevertheless, its bandwidth stress is not sufficiently high

to change the micro-architectural behavior.

DBMS V, Tectorwise and Typer have higher Dcache stalls when running multi-threaded com-

pared to when running single-threaded. DBMS V consumes a large fraction of the memory

bandwidth, which results in the higher Dcache stalls. Tectorwise and Typer fully consume the

memory bandwidth, which results in the highly pronounced Dcache stalls.
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Retiring Branch misp. Icache Decoding Dcache Res/Dep.Figure 5.4 – Execution time breakdown for the selection micro-benchmark for single-
threaded execution.

5.4 Selection

We present the selection micro-benchmark. Figure 5.4 and 5.6 show the breakdown of the

execution times, Table 5.4 shows normalized execution times, and Table 5.5 shows consumed

memory bandwidths for single- and multi-threaded executions. We use the highest performing

version of the branched vs. branch-free implementations for Tectorwise and Typer. This version
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Single-threaded Multi-threaded
10% 50% 90% 10% 50% 90%

R 33.1 18.9 18.5 21.1 13.1 14.6
C 0.6 3.9 10.9 0.7 2.6 8.2

Qs 7.1 5.5 6.4 3.4 3.4 4.4
V 1 1 1 1 1 1

Tw 0.7 0.7 0.7 0.4 0.7 0.7
Ty 0.8 0.7 0.4 0.4 0.9 0.7

Table 5.4 – Normalized execution times for selection micro-benchmark for single- and
multi-threaded executions. The execution times are normalized to DBMS V.
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(a) Normalized execution time breakdowns. The execu-
tion times are normalized to DBMS V.
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Figure 5.5 – Normalized execution time breakdowns (left) and execution time breakdowns
streched to 100% (right) for the selection query with 10% selectivity for single-threaded
execution.

is the branched version for Typer at 10% selectivity and the branch-free version for all the

other cases.

DBMS R is 13.1 to 33.1 times slower than DBMS V is. It spends 50% of its time retiring

instructions. To understand the relationship between the execution time and the number of

retired instructions, we plot the breakdown of the normalized execution times (left) and the

breakdown of the execution times stretched to 100% (right) in Figure 5.5 for 10% of selectivity

and single-threaded execution. The figure shows that DBMS R is slower than DBMS V is,

mainly due to the execution of a significantly larger number of instructions than DBMS V.

DBMS C is 40% faster than DBMS V and consumes a large amount of memory bandwidth

at 10% selectivity. As the selectivity is increased, DBMS C becomes significantly slower than

DBMS V and consumes less and less bandwidth.

DBMS C keeps its columns in 1MBs of blocks together with some meta-data information per

block such as minimum, maximum and count values. In the case of low selectivities, it simply

scans the meta-data and skips the blocks that are not necessary to scan. Hence, it has a very

low execution time for 10% selectivity. We confirm our hypothesis by using micro-benchmarks

that use only meta-data information and by obtaining similar results.
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Figure 5.6 – Execution time breakdowns for selection micro-benchmark for multi-
threaded execution.

Single-threaded Multi-threaded
10% 50% 90% 10% 50% 90%

R 0.7 0 0 46 36.4 23.2
C 3 0 0 34 12.8 2.6

Qs 0 0 0 9.2 18.3 10.8
V 0.6 1.9 1.9 12.6 44.6 39.7

Tw 3 6.8 4.7 50.4 62.7 58.7
Ty 3 9 8.4 51.7 62.8 62.8

Table 5.5 – Consumed bandwidth in GB/s for selection micro-benchmark for single- and
multi-threaded executions.

Quickstep is 3.4 to 7.1 times slower than DBMS V is. It spends 40% of its time retiring instruc-

tions, and 20% of its time waiting for Dcache stalls for 10% and 50% of selectivities. Hence,

Quickstep is slower than DBMS V is, due to the execution of a significantly larger number

of instructions and to inefficiencies in its data-access primitives. We examine Quickstep’s

function-call trace to understand the reasons for using large number of instructions. Quickstep

spends 40.8% of its time in BitVector::firstOne(), and 15.5% in BitVector::setBit().

Quickstep uses these two functions to avoid processing the tuples that are already filtered

out by the previous predicates in a conjunctive condition. BitVector::firstOne() relies

also on a C++ construct __builtin_clz() to count leading zero bits of an integer. As the

predicate evaluation, by itself, is a simple condition-check operation, a library function-call

together with bitvector manipulations take a large fraction of Quickstep’s time on selection

processing.

Tectorwise uses selection vectors to avoid processing already filtered tuples. A selection vector

keeps the IDs of the tuples that should be evaluated for the second and onwards predicates.

As selection vectors require a single cache-resident lookup, they are likely to be more efficient

than bitvectors. Quickstep could benefit from it.
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The breakdown of Dcache stalls shows that ∼70% of the stalls are due to 4K Aliasing that

comes from DateLit:< operator, which is used for date comparison. 4K Aliasing occurs when

the memory addresses of successive load and store operations are aliased by 4K. In this case,

hardware fails to perform the store-to-load forwarding optimization. This causes a five-cycle

penalty and can be significant if it happens frequently. 4K Aliasing can be solved by aligning

the data blocks to 32 bytes, or by changing offsets between input and output buffers [46].

DBMS V & Tectorwise have a 30% performance gap, except for 10% selectivity at the multi-

threaded execution. DBMS V scales the worst at 10% selectivity. This is due to the scalability

limitations of the exchange operator that DBMS V relies on. The exchange operator statically

creates a number of producer and consumer threads and, in the case of uneven distribution

of the tuples, suffers from load imbalance. As, at lower selectivities, the uneven load is likely

higher, DBMS V scales worse at lower selectivities. Tectorwise uses morsel-driven parallelism

that scales better under uneven loads [65].

We also examine Typer’s and Tectorwise’s function-call traces. They both spend almost 100%

of their time inside the filter and aggregation functions.

Single vs. Multi-threaded Execution: At 10% selectivity, DBMS C stresses the memory band-

width thanks to its fast meta-data processing technique. As a result, DBMS C has higher

Dcache stalls for multi-threaded execution than single-threaded execution. For 50% and 90%

selectivities the micro-architectural behavior is similar for the single- and multi-threaded

executions due to low bandwidth stress. Similar to DBMS C, Quickstep’s micro-architectural

behavior is the same for single- and multi-threaded executions. DBMS V, Tectorwise, and

Typer all suffer significantly higher from Dcache stalls at the multi-threaded execution than

the single-threaded execution, as they all highly stress the memory bandwidth.
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Figure 5.7 – Execution time breakdown for the join micro-benchmark for single-threaded
execution.
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Single-threaded Multi-threaded
Sm. Md. Lr. Sm. Md. Lr.

R 7.2 6.8 6.1 2.0 5.3 4
C 7.8 3.8 4.8 2.1 4.5 3.5

Qs 1.9 1.7 1.1 0.4 1.3 0.8
V 1 1 1 1 1 1

Tw 0.2 0.7 0.6 0.1 0.4 0.5
Ty 0.3 0.7 0.6 0.1 0.5 0.5

Table 5.6 – Normalized execution times for join micro-benchmark for single- and multi-
threaded executions. The execution times are normalized to DBMS V.
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(a) Normalized execution time breakdowns. The exe-
cution times are normalized to DBMS V.
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(b) Execution time breakdowns streched to 100%.

Figure 5.8 – Normalized execution time breakdowns (left) and execution time breakdowns
streched to 100% (right) for the large-sized join query for single-threaded execution.

5.5 Join

We present the join micro-benchmark. Figure 5.7 shows the breakdown of the execution times

for single-threaded execution. Table 5.6 shows normalized execution times, and Table 5.7

shows consumed memory bandwidths for single- and multi-threaded executions. We omit

the breakdown of the execution times for multi-threaded execution as it is the same as that of

single-threaded. All systems use the hash join algorithm.

DBMS R & C are 2 to 7.2 times slower than DBMS V is. They spend most of the execution

time retiring instructions. To understand the relationship between the execution time and

the number of retired instructions, in Figure 5.8, we plot the breakdown of the normalized

execution times (left) and the breakdown of the execution times stretched to 100% (right) for

the large-sized join. As the figure shows, DBMS R and C are slower than DBMS V is, mainly

due to the execution of a significantly larger number of instructions.

Quickstep is 10% slower and 20% faster than DBMS V for single- and multi-threaded execu-

tions for the large-sized join. The reason is that Quickstep converts the hash join into a Filter

Joins (FJ) if (i) the probe-side join key is unique, and (ii) if no attribute is required from the

probe side in the result of the join. In this case, FJ builds an Exact Filter (EF), rather than a

hash table, on the build side. An EF is a bitvector where every build key corresponds to a single
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Single-threaded Multi-threaded
Sm. Md. Lr. Sm. Md. Lr.

R 0 0 0 2.6 30.2 12.1
C 0 0 0 0.4 18.6 3.1

Qs 0 0 0 0 9.6 13.8
V 0 1 0.9 0 8.5 17.3

Tw 0 0 1.3 0 15.4 23.1
Ty 0 0 1.2 0 11.5 21.3

Table 5.7 – Consumed bandwidth in GB/s for join micro-benchmark for single- and multi-
threaded executions.

bit. FJ then probes the EF to decide whether a tuple from the probe side should pass the join.
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Figure 5.9 – Normalized execution time breakdowns at the hardware- (left) and software-
levels (right) for Quickstep when it runs the large join micro-benchmark query, as single-
threaded, with and without using Filter Join (FJ). The execution times are normalized to
without using FJ.

In Figure 5.9, we examine the breakdown of the normalized execution time at the hardware-

(left) and software-level (right), with and without using FJ. We make a best effort categorization

of Quickstep’s methods. To illustrate this, the intermediate-result materialization category

(Int. res. mat) includes methods such as bulkInsertTuplesWithRemappedAttributes()
and appendUntypedValue(). Data-access methods (Data acc. meth.) include methods such

as getUntypedValue(), getTypedValue(), and next(). The rest of the categories are all

single-method categories, and includes the method that does what the category implies, e.g.,

HT Build method (BuildHashWorkOrder::execute()) builds a hash table.

FJ improves the execution time by ∼50%. Quickstep does not suffer from Dcache stalls, even

without using FJ. This is due to Quickstep’s materialization overhead. Quickstep spends (with

and without FJ) half of its time in intermediate-result materialization. Quickstep does not

implement late materialization, and hence suffers from intermediate result materialization of

the join results. Intermediate materialization is known to be a major performance bottleneck

70



5.6. TPC-H

for OLAP systems [2].

DBMS V, Tectorwise & Typer spend most of their time in Dcache stalls for both middle-sized

and large-sized joins. This is because the build-side tables do not fit into last-level cache for

middle- and large-sized joins. Hence, the build and probe phases of the hash join algorithm

are dominated by the last-level cache misses, which makes them Dcache-stalls-bound. We

examine Typer’s and Tectorwise’s function-call traces. They both spend almost 100% of their

time inside the join and aggregation functions.

Build vs. Probe Phases: Hash join is composed of two phases: build and probe. Both phases

compute a hash value given a key. Then, they make a hash table lookup for an insertion

purpose while building, and for a read purpose while probing. We observe that the micro-

architectural behavior of both build and probe phases are largely Dcache-stalls dominated.

Hence, the random data-accesses dominate both phases.

Probe phase dominates the execution time for single-threaded execution (61% of the time),

while build phase dominates the execution time for multi-threaded execution (53% of the

time), both for Typer and Tectorwise. This is due to the scalability bottlenecks of build phase

that relies on atomic exchange instructions for concurrent hash-table inserts.

5.6 TPC-H
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Figure 5.10 – Execution time breakdown for a large subset of TPC-H queries for single-
threaded execution.

We present TPC-H benchmark evaluation. We first profile a large subset of TPC-H queries

when they are run on DBMS V. We then choose six representative queries, and continue with

the cross-system comparison.

We identify two main dimensions in the categorization of the TPC-H queries: join size and

hit rate. Join size is defined by the size of the probe-side hash table, as it defines how cache-
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Q1 Q6 Q3 Q5 Q9 Q18
R 25.7 16.7 9.3 10.4 4.7 2.7
C 21 4.5 3.4 5 3.4 1.9

Qs 5 6.4 1.8 4.6 1.8 0.3
V 1 1 1 1 1 1

Tw 1.1 0.6 1.1 1 0.7 0.3
Ty 0.7 0.7 1.5 1.4 0.9 0.3

Table 5.8 – Normalized execution times for TPC-H queries for single-threaded execution.
The execution times are normalized to DBMS V.

resident the hash join is. Hit rate is defined by the number of times that the probe side finds a

matching entry at the build side. If this value is less than 10%, we identify the join as a low

hit-rate join. Low hit-rate enables us to use bloom filters to reduce the number of hash probes

[16]. The smaller the join size is and the lower the hit rate is, the less the Dcache stalls the join

suffers from.

Figure 5.10 presents the breakdown of the execution times for single-threaded execution.

Based on their micro-architectural behavior, there are four main classes of queries. Q1 and Q6

are the non-join queries and have relatively high retiring time. Q4, 8 and 12 are queries with

small-sized joins or large-sized joins, both with low hit-rates. They suffer from Dcache stalls at

∼25%. Q3, 5, 7, 14, 15 and 16 are queries with large joins mixed with low hit-rate large joins or

small joins. These queries suffer from Dcache stalls at ∼35%. Lastly, Q9, 13, 17, 18 and 20 are

joins with large sizes with high hit-rates. These queries suffer from Dcache stalls at ∼45%.
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threaded execution.

We choose Q1, 6, 3, 5, 9 and 18 to continue with the cross-system evaluation. Our selection

of the queries corroborates with the used TPC-H queries by [56]. Figure 5.11 shows the

breakdown of the execution times for single-threaded execution. Table 5.8 and 5.9 show

normalized execution times, and Table 5.10 and 5.11 show consumed bandwidth values for

single- and multi-threaded executions. We present the breakdown of the execution times for

multi-threaded execution only for Q6 in Figure 5.13, as they are the same as the single-threaded

breakdowns for all the other queries and systems.

Q1 is an aggregation-heavy query with high temporal-locality. All the systems have high
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Figure 5.12 – Normalized execution time breakdowns (left) and execution time break-
downs streched to 100% (right) for TPC-H, Q1 for single-threaded execution.

Q1 Q6 Q3 Q5 Q9 Q18
R 23.1 16.7 4.9 11.6 4.8 1.9
C 18.9 4.1 2.3 6.5 6.7 1.2

Qs 4.4 4.9 0.8 4.3 1.4 0.3
V 1 1 1 1 1 1

Tw 1 0.6 0.4 0.9 0.6 0.3
Ty 0.6 0.7 0.5 1.1 0.7 0.3

Table 5.9 – Normalized execution times for TPC-H queries for multi-threaded execution.
The execution times are normalized to DBMS V.

retiring times. DBMS R and C are 25.7 and 21 times slower than DBMS V is. In Figure 5.12,

we present the breakdown of the normalized execution times (left) and the breakdown of the

execution times stretched to 100% (right) for Q1. As the figure shows, DBMS R and C are slower

than DBMS V is, mainly due to the execution of a significantly larger number of instructions.

Quickstep is 5 times slower than DBMS V, due to its aggregation overhead as explained in

Section 5.3. DBMS V and Tectorwise have close performances, which shows that the addi-

tional work that DBMS V needs to perform as being a real-life system is compensated in an

aggregation-heavy query. Typer is 30% faster than DBMS V and Tectorwise, as Typer does not

suffer from materialization overhead that systems following vector-at-a-time execution model

suffer.

Q6 is a scan-intensive query that scans three columns and evaluates five predicates over them.

We use Typer’s branched and Tectorwise’s branch-free versions. As the selectivity of the query

is very low (1.9%), most of the time is spent in predicate evaluations.

DBMS C is 4.1 times slower than DBMS V. As the selectivity of the first predicate of Q6 is

high, DBMS C is less likely to use its block-skipping optimization on the evaluation of the first

predicate. However, for the subsequent columns, it can largely benefit from it. In addition,

DBMS C suffers largely from branch mispredictions, suggesting that it does not predicate

the conditional expressions. Quickstep is 4.9 times slower than DBMS V. It suffers from
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Figure 5.13 – Execution time breakdowns for TPC-H, Q6 for single- (ST) vs. multi-threaded
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Figure 5.14 – Normalized execution time breakdowns (left) and execution time break-
downs streched to 100% (right) for TPC-H, Q3 for single-threaded execution.

its selection operator overhead and Dcache stalls due to 4K Aliasing that are similar to the

selection micro-benchmark shown in Section 5.4.

DBMS V, Tectorwise, and Typer have high retiring time at single-threaded execution, but

significantly suffer from Dcache stalls at multi-threaded execution (see Figure 5.13). This is

because all the three systems approach the bandwidth limits (see Table 5.11). DBMS C’s and

Quickstep’s execution time breakdowns are similar at single- and multi-threaded executions

due to their low bandwidth stresses.

Q3 is a join-intensive query where three large tables of TPC-H, lineitem, orders and customer

are joined, with cardinalities of 240M, 51M and 2.1M. The query firstly joins orders and

customer tables, and then joins the lineitem table with the result of former join. It finally

performs a group by operation over 2.1M tuples into 792K groups.

DBMS R and C are significantly slower than DBMS V is. In Figure 5.14, we present the break-

down of the normalized execution times (left) and the breakdown of the execution times
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Q1 Q6 Q3 Q5 Q9 Q18
R 0 0 0 0 0 0
C 0 0 0 0 0.1 0.1

Qs 0 0 0 0 0 0.2
V 0.4 2.2 0.4 0.1 0.4 1

Tw 0 5 0.9 0.2 1.1 0.6
Ty 1 5 0.1 0.1 0.3 1.3

Table 5.10 – Consumed bandwidth in GB/s for TPC-H queries for single-threaded execu-
tion.

stretched to 100% (right) for Q3. The figure shows that DBMS R and C execute a number in-

structions significantly larger than DBMS V executes, which makes them slower than DBMS V

is. Quickstep is 1.8 times slower and 20% faster than DBMS V, at the single- and multi-threaded

executions, respectively. Quickstep implements two important join optimizations: Filter Joins

(FJ) and Lookahead Information Passing (LIP) filters. FJ replaces the build-side hash table with

a bitvector, as explained in Section 5.5. LIP filters are bloom filters that are passed down in the

query plan so that a join can drop rows that would satisfy the current join, but not a future

join.

We turn on/off FJ and LIP filter, and we measure how useful they are for Q3. FJ improves

Q3’s execution time by 47%, and LIP filters further improve it by 28%; overall, providing a

65% reduction in the execution time. Despite eliminating the major costs of hash joins in Q3,

Quickstep still spends a significant amount of time retiring instructions, which shows that it

nevertheless suffers from overhead that is identified in Section 5.3, 5.4 and 5.5.

Tectorwise and Typer are slower than DBMS V, because DBMS V, as the hit rate is low (1%),

uses bloom filter on its join with lineitem and the result of the orders and customer join. To

test our hypothesis, we perform a subquery analysis for Q3 by excluding, and then including,

the lineitem join. We see that the Dcache stalls are DRAM-dominated without the lineitem

join, whereas L2- and L3-dominated with the lineitem join, which supports our conclusion.

Tectorwise is faster than Typer. Tectorwise separates hash computing from hash probing by sav-

ing computed hashes in an intermediate vector. This enables the overlapping of costly random

data-accesses at the hash probing phase. Typer, on the other hand, performs hash computa-

tion and hash probing one-after-the-other. It also combines the filtering condition and hash

table probe operation in a single if condition. This mixes the random data-access further with

a sequential scan of a column, which is used to filter the data (such as: if(o_orderdate[i]
< c1 & ht1.contains( o_custkey[i]))). As a result, Typer is not able to overlap the ran-

dom data-accesses as much as Tectorwise does. This shows that materialization overhead of

the vectorized engine pays off for the hash join operation unlike the case for projection and

selection. DBMS V, Tectorwise and Typer are all Dcache-stalls-dominated in their execution

time due to hash join’s large number of random data-accesses.

Q5 is a join-intensive query similar to Q3. DBMS R and C are 10.4 and 5 times slower than
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Q1 Q6 Q3 Q5 Q9 Q18
R 7.4 41.9 30.4 22.8 21.3 24.2
C 0 5.9 12.8 11.2 8.2 7.4

Qs 4.9 6.7 8.5 7.6 7.8 10.4
V 22.9 40.8 12.1 9.7 16.2 21.7

Tw 18.9 56.2 22.4 20.7 27.7 17.8
Ty 29.1 57.9 16.7 14.4 21.9 21.1

Table 5.11 – Consumed bandwidth in GB/s for TPC-H queries for multi-threaded execu-
tion.

DBMS V, similar to Q3. Quickstep is 4.6 times slower than DBMS V. Unlike Q3, Quickstep is

not able benefit from FJ and only partially benefits from LIP filters when running Q5. This is

because the orders and customer join in Q5 requires attributes from both from the probe and

build sides. Similarly, it is not able to benefit from LIP filters as much as Q3 does as it can only

filter out rows from the customer table while joining with the small nation and region tables,

which are already not costly.

DBMS V and Tectorwise have a comparable performance, as DBMS V uses a bloom filter while

joining the lineitem table. The join’s hit-rate is 3%. Similarly, DBMS V spends less time in

Dcache stalls compared to Tectorwise. Tectorwise is faster than Typer as Tectorwise can overlap

random data-accesses. Nevertheless, all three high-performance systems spend most of their

time in Dcache stalls.

Q9 is a join-intensive query with large joins and high hit-rates. DBMS R and C are 4.7 and

3.4 times slower than DBMS V, similar to Q3 and Q5. Quickstep is only 1.8 times slower than

DBMS V. LIP filters improve Q9’s time by 55% thanks to filtering out lineitem tuples in its join

with the sub-tree of joins of partsupp, part and supplier.

DBMS V is not able to benefit from bloom filters for Q9 as the hit rate is high for all the joins.

Hit rate is 20% for the join between the orders and lineitem table, and 50% for the join between

the partsupp table and the sub-tree of joins of the rest of the tables. Tectorwise is once again

faster than Typer thanks to its random data-access overlapping ability. DBMS V, Tectorwise

and Typer all spend most of their time in Dcache stalls as Q9 is join-intensive.

Q18 contains a large group by on the lineitem table based on l_orderkey, without any filter

on top of the lineitem table. It creates 105M groups out of the 420M-sized lineitem table (the

scaling factor is 70). For each group, it requires doing a simple sum(l_quantity) aggregation.

DBMS V is 3.3x times slower than Tectorwise and Typer. This is because DBMS V ’s query

optimizer produces a sub-optimal plan. The optimal plan does a single group by over the

lineitem table, filters it based on the having condition, and feeds the result into a series of

joins with orders, customer and another lineitem. This way, the amount of data fed to the

upper levels of the query is reduced by orders-of-magnitude as the number of groups that

satisfy the having condition is four orders of magnitude less than the total number of groups.

DBMS V, however, is not able to push the large group by down the tree. It requires a full join
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Proj.+Q3 Q6+Q3
Proj. Q3 Q6 Q3

Qs 1 1.1 1 1
V 1.1 1.6 1.1 1.5
Ty 1.1 1.9 1.0 1.4

Table 5.12 – Normalized execution times for mixed query workload evaluation. Mixed pro-
jection and Q3: Numerator is execution time when concurrently running projection and
Q3. Denominator is execution time when running projection or Q3 alone on the server.
Mixed Q6 and Q3 follows the same normalization scheme.

among the lineitem, orders and customer tables, which it further joins with the filtered group

by. This results in high execution time, together with high Dcache stalls. As a result, it produces

3.3x higher execution time. Similarly, it spends significantly larger portion of its execution

time in Dcache stalls compared to the other systems.

Quickstep is as fast as Tectorwise and Typer thanks to using LIP filters, which reduces Quick-

step’s execution time by 30%. Furthermore, Quickstep does not suffer from the intermediate

result materialization, as the intermediate results are small (due to the having condition) for

Q18.

Tectorwise and Typer have relatively high retiring time for Q18 compared to other join-intensive

queries. Typer does thread-local pre-aggregations for each data block, i.e., morsel, it processes.

Then, Typer globally combines the local pre-aggregations for the final group by. Similarly,

Tectorwise creates local groups per vector. Then, it combines the groups globally at the end.

Hence, they both work with smaller-sized hash tables that are more cache-resident, which

results in high retiring times.

5.7 Mixed Query Workload

We present mixed query workload evaluation. Scan-intensive queries are bandwidth-bound,

hence do not scale after a certain number of cores. Join-intensive queries do not create enough

memory traffic, hence leave the bandwidth underutilized. In this section, we concurrently run

a scan- and join-intensive query, where we create enough memory traffic and also use all the

cores on the chip.

We examine the following two scenarios: (i) projection micro-benchmark query with the

degree of four running with TPC-H, Q3, and (ii) TPC-H, Q6 running with TPC-H, Q3. We use

Quickstep, DBMS V and Typer to evaluate the concurrency scenarios. We choose these three

systems, as they stress the memory bandwidth at different levels.

We use eight threads for projection and Q6, and use six threads for Q3 on Typer, as projection

does not scale after eight cores on Typer. We use ten threads for projection and Q6, and use

four threads for Q3 on DBMS V, as Q3 does not scale after four cores on DBMS V 1. We use the

1We micro-benchmarked Q3 on DBMS V by varying the selectivity of the filter on the lineitem table from 100%
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same configuration for Quickstep as for Typer.

Table 5.12 presents concurrent execution times normalized to the corresponding non-concurrent

execution times. For DBMS V and Typer, Q3’s execution time is significantly higher when it

runs with the projection and TPC-H, Q6, whereas, for Quickstep, Q3’s execution time does not

change significantly. Because DBMS V and Typer sufficiently stress the memory bandwidth

to interfere with Q3, while Quickstep does not. On the other hand, projection’s and Q6’s

execution times do not change significantly. Hence, concurrent execution enables us to use

the underutilized cores left by the scan-intensive query. However, it causes interference in the

shared memory bandwidth, hence results in a decreased execution time for the join-intensive

query.

We also examine the micro-architectural behavior. The results are as expected. Q3’s Dcache

stalls are increased substantially when running with projection/Q6 on Typer and DBMS V,

whereas remain same on Quickstep. The total consumed bandwidth of a concurrent execution

is the sum of the individual bandwidth consumptions unless the sum reaches to the maximum

bandwidth.

1 // branched version

2 i f ( ( a < v 1) & (b < v 2) & ( c < v 3) )

3 r e s u l t += (d + e ) ;

4 // branch−free , predicated version

5 bool decision = ( a < v 1) & (b < v 2) & ( c < v 3) ;

6 r e s u l t += ( decision * (d + e ) ) ;

Listing 5.1 – Predication example.

5.8 Predication

We present predication evaluation. Listing 5.1 presents an example of predication. Line 1 to

3 present regular branched execution, whereas Line 4 to 6 present the predicated execution.

Predication takes the conditional expression out of the if() statement and assigns the expres-

sion to the variable decision. Then, it uses the decision variable to compute the final result.

If the decision is zero, it will not affect the final result, whereas if the decision is one, it will

update the final result as in the branched execution. Predication requires more computation

but allows for avoiding costly branch mispredictions.

The conditional expression uses bitwise and as opposed to logical and. Compiler generates a

branch instruction for each logical and. Hence, a logical and triggers branch predictor even if

it is not in an if() statement. However, bitwise and translates into a set of bitwise operations

followed by a single conditional branch, which can be eliminated by taking the expression out

of the if() statement.

to 50%. We realized that Q3 starts not scaling when the selectivity drops below 70%. This suggests that the reason
for not scaling is the load imbalance issue of the exchange operator that creates uneven loads at lower selectivities.
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(a) Single-threaded.
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(b) Multi-threaded.

Figure 5.15 – Normalized execution time breakdowns for predication for single- (left) and
multi-threaded (right) executions. The execution times are normalized to Tectorwise using
branched implementation with 10% selectivity (left-most bar in each graph).

Figure 5.15 (left) shows the breakdown of the normalized execution times for single-threaded

execution where all values are normalized to the left-most bar. We see that branch mispre-

dictions are a major source of cost. Predication reduces the execution time for all the cases

except for Typer at 10% selectivity.

Typer improves performance the highest at 90%, although branch misprediction cost is the

highest at 50%. This is because the computation overhead that predication brings is less at

90% compared to 50%, as the unpredicated query computes the aggregation for most of the

tuples at 90%.

Typer suffers significantly from branch mispredictions at 90% selectivity. Because Typer uses

bitwise and to implement the conjunction, hence suffers from the overall selectivity of the

conjunction rather than the individual predicate selectivities. In this case, it is 90%×90%×
90% = 73%, which is less predictable than 90%.

Figure 5.15 (right) presents the breakdown of the normalized execution times for multi-

threaded execution. It shows that the majority of the performance gains are lost due to

bandwidth limitations for all the queries. Hence, while predication can significantly reduce

the execution time, its multi-core benefits are limited by the maximum memory bandwidth.

We also profiled predicated TPC-H, Q6 on Typer and Tectorwise, and we reached similar

conclusions.

5.9 SIMD

We present SIMD evaluation. SIMD instructions perform multiple arithmetic/logic operation

in a single instruction. We test Tectorwise when running the projection, selection and join

micro-benchmarks, with and without using SIMD. As our Broadwell server does not support

AVX-512 instructions, we do all the SIMD experiments on a Skylake server supporting AVX-512
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(a) Single-threaded.
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(b) Multi-threaded.

Figure 5.16 – Normalized execution time breakdowns for SIMD for single- (left) and multi-
threaded (right) executions. The execution times are normalized to without using SIMD.

Proj. Sl.10% Sl.50% Sl.90% Join
W/o SIMD 6 4 8 6 2.8
W/ SIMD 8 8 8 8 4.5

Table 5.13 – Consumed bandwidth in GB/s for SIMD for single-threaded execution.

instructions.

The Skylake server has a different memory hierarchy than that of the Broadwell server. As a

result, the reported values that do not use SIMD do not exactly match with the values reported

earlier in the chapter (see Section 5.2, Hardware subsection for more details).

5.9.1 Projection & Selection

Figure 5.16 (left) shows the breakdown of the normalized execution times. Table 5.13 presents

single-core bandwidth consumption values. We use the predicated, branch-free versions of

the selection queries as SIMD is more effective when branch mispredictions are eliminated.

The figure shows that there is a 70% to 87% decrease in the amount of retiring time for all

four cases. As the retiring time is correlated to the number of retired instructions, SIMD

successfully reduces the number of retired instructions.

While the number of retired instructions is reduced, Dcache stalls are increased by 20% to

2.3x. Hence, overall SIMD gains are limited by the increased Dcache stalls. Table 5.13 shows

that the projection and selection queries are single-core-bandwidth bound when using SIMD,

as the maximum per-core bandwidth is 8GB/s. Hence, per-core SIMD gains are limited by

per-core bandwidth.

Figure 5.16 (right) shows breakdown of the normalized execution times, and Table 5.14

presents the bandwidth consumption for multi-threaded execution. SIMD gains are less

at the multi-threaded execution due to approaching the bandwidth limits.

We also run projection and predicated selection without SIMD on Typer on the Skylake server.

80



5.10. Hardware Prefetchers

Proj. Sl.10% Sl.50% Sl.90% Join
W/o SIMD 71.4 49.9 76.2 63.7 34.8
W/ SIMD 79.4 73.1 81.4 79.2 40.4

Table 5.14 – Consumed bandwidth in GB/s for SIMD for multi-threaded execution.

Typer saturates the per-core and multi-core bandwidth and does not scale after 8 cores. Hence,

its SIMD gains would be less than that of Tectorwise that, without SIMD, is not able to saturate

per-core or per-socket bandwidths.

5.9.2 Join

Figure 5.16 shows that SIMD significantly reduces the number of retired instruction and does

not increase the Dcache stalls. Table 5.13 shows that single-core bandwidth consumption is

well below the maximum (7GB/s), without and with SIMD. Hence, SIMD is able to exploit the

available core bandwidth and reduce the execution time, without increasing the Dcache stalls

time. SIMD gains are less pronounced at the multi-threaded execution, due to the stress on

the memory bandwidth. As Table 5.14 shows, join consumes 40GB/s of the 60GB/s random

access bandwidth.
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Figure 5.17 – Normalized execution time breakdowns for hardware prefetcher for single-
and multi-threaded executions. The execution times are normalized to having all prefetch-
ers disabled.

5.10 Hardware Prefetchers

We present the hardware prefetcher evaluation. We study four hardware prefetchers that

today’s server processors provide: L1 next line (L1 NL), L1 streamer (L1 Str.), L2 next line

(L2 NL) and L2 streamer (L2 Str.) prefetchers. We turn on each prefetcher individually and

examine its effect on the micro-architectural behavior.
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All dis. L1 NL L1 S L2 NL L2 S All en.
ST 1 3 3 3 8.4 10.1
MT 32.9 42.4 43.2 41.2 62.5 62.8

Table 5.15 – Consumed bandwidth in GB/s for hardware prefetcher for single- (ST) and
multi-threaded (MT) executions.

DBMS V Twise Typer
2H 28H 2H 28H 2H 28H

Proj. 0.95 1.03 0.82 1.00 0.92 1.00
Join 0.80 0.84 0.78 0.83 0.77 0.82
Q6 0.82 1.03 0.78 0.93 0.76 0.95
Q3 1.03 1.01 0.85 0.90 0.66 0.71

Sel.50%-Br. - - 0.66 0.96 0.68 0.94
Sel.50%-BF - - 0.83 1.01 0.87 1.01

Table 5.16 – Normalized execution times for hyper-threading. 2H: The throughput of run-
ning two hyper-threads on the same physical core is normalized to the throughput of run-
ning one hyper-thread on the same physical core. 28H: The throughput of running 28
hyper-threads on 14 physical cores of a same socket is normalized to throughput of run-
ning 14 hyper-threads on 14 physical cores of the same socket.

Figure 5.17 shows the breakdown of the normalized execution times, and Table 5.15 shows the

consumed bandwidth values when running the projection query of degree four on Typer for

single- and multi-threaded executions.

Prefetchers reduce the execution time by 75% for single-threaded execution. This shows that

hardware prefetchers are highly useful for a sequential-scan-heavy query. For multi-threaded

execution, prefetchers reduce the execution time less than single-threaded execution. Hence,

the benefits of the prefetchers are limited by the maximum bandwidth.

We also examine the projection on Tectoriwse and the branched and branch-free selection on

Typer and Tectorwise. The results agree with our findings for the projection query on Typer.

We also examined the join micro-benchmark. Prefetchers reduce the execution time modestly

by ∼ 20% for the large-sized join both for Typer and Tectorwise.

5.11 Hyper-threading and Turbo-boost

We present the hyper-threading (HT) and turbo-boost (TB) evaluation. We first compare

single-core performance only having TB enabled. We examine DBMS V, Tectorwise and Typer

for the projection (of degree four) query, the large join query, branched and branch-free

versions of the selection query (at 50% selectivity), TPC-H, Q1, Q6, and Q3. The maximum

speedup we observe is by 27% for TPC-H, Q1 that runs on Typer. As Q1 is arithmetic-operation-

heavy, and Typer does not suffer from the materialization overhead, turbo-boost worked the

best. The other improvements were modest and were 10 to 20%. TB’s benefits are less as the
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Proj. Join
2H 28H 2H 28H

All dis. 0.66 0.74 0.75 0.80
L1 NL 0.91 0.94 0.78 0.81
L1 Str. 0.92 0.93 0.76 0.81
L2 NL 0.80 0.86 0.75 0.81
L2 Str. 0.93 1.01 0.75 0.81
All en. 0.92 1.00 0.77 0.82

Table 5.17 – Normalized execution times for hyper-threading for different hardware
prefetcher configurations on Typer. 2H: The throughput of running two hyper-threads on
the same physical core is normalized to the throughput of running one hyper-thread on
the same physical core. 28H: The throughput of running 28 hyper-threads on 14 physi-
cal cores of a same socket is normalized to throughput of running 14 hyper-threads on 14
physical cores of the same socket.

Proj. Sel.10%-BF Join
2H 28H 2H 28H 2H 28H

W/o SIMD 0.72 0.94 0.71 0.76 0.77 0.83
W/ SIMD 0.82 0.96 0.71 0.93 0.74 0.74

Table 5.18 – Normalized execution times for hyper-threading with and without SIMD on
Tectorwise. 2H: The throughput of running two hyper-threads on the same physical core
is normalized to the throughput of running one hyper-thread on the same physical core.
28H: The throughput of running 28 hyper-threads on 14 physical cores of a same socket is
normalized to the throughput of running 14 hyper-threads on the 14 physical cores of the
same socket.

number of cores is increased. Hence, the single-core results provide the best case. Hence,

TB-alone provides only modest performance improvements.

Next, in addition to TB, we enable HT. We examine how much HT improves the performance.

We examine two scenarios: 2H and 28H. 2H shows the execution time of using 2 HTs that share

a physical core normalized to the execution time of using one physical core. 28H shows the

execution time of using 28 HTs that share 14 physical cores normalized to the execution time

of using 14 physical cores. All the queries scale well across 2 physical cores.

Table 5.16 presents the results for a selection of queries we have covered up to now. Proj. is the

projection query with the degree of four, and Join is the large-sized join query. 2H reduces

the execution time maximum by 34%, for Typer when running Q3. As Typer is not able to

effectively overlap the random data-accesses at the software-level, HT enables overlapping

them. Similarly, branched selection query at 50% selectivity benefits 34% on Tectorwise and

32% on Typer as it can overlap the branch misprediction stalls. For the rest of the cases, 2H

improve the performance modestly by 20% on average. 28H improves performance less than

that of 2H due to the increased stress on memory bandwidth.

Table 5.17 shows how useful HTs are for different prefetcher configurations, for the projection
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(of degree four) and large join query on Typer. The less aggressive the prefetchers are, the

more benefits HTs provide. Hence, while prefetchers significantly improve the performance,

it limits the benefit of HTs. For join, HT benefits do not change much, as prefetchers are not

very useful for join.

Table 5.18 presents the case for SIMD, for the projection query (of degree four), selection query

at 10% selectivity (branch-free), and large join query on Tectorwise (using the Skylake server).

It shows that HT is less useful when using SIMD, though the difference usually is not high.

5.12 Conclusion

In this chapter, we have presented micro-architectural analysis of OLAP workloads. The results

show that the commercial row-store and its column-store extension efficiently use the CPU

cycles; however, they require the execution of a significantly larger number of instructions

hence are 2 to 56 times slower than the column-stores that follow the tuple-at-a-time, vector-

at-a-time, and compiled execution models. The column-store that follows the tuple-at-a-time

execution model also efficiently uses the CPU cycles; however, it requires a significantly larger

number of instructions hence is 1.7 to 5 times slower than the column-stores that follow the

vector-at-a-time and compiled execution models.

The column-stores following the vector-at-a-time and compiled execution models spend most

of their execution time waiting for data-cache misses. The stalls due to the data-cache misses

are caused by the high pressure on the memory bandwidth, or by random data-accesses.

Concurrently executing scan-intensive and join-intensive queries enable the saturation of

both memory bandwidth and the number of cores. However, the concurrent executions create

interference in the shared memory-bandwidth and result in a sub-optimal performance.
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6 Hybrid Transactional and Analytical
Processing Workloads

Application requirements and workload characteristics have evolved in the past five years.

Customers today require running real-time analytical queries on the fresh transactional data.

This demand gave rise to Hybrid Transactional and Analytical Processing (HTAP) systems and

workloads. HTAP systems combine individual OLTP and OLAP systems into a single, unified

system and concurrently serve for OLTP and OLAP workloads. An important problem the HTAP

systems face is the interference problem. The individual OLTP and OLAP components interfere

with each other due to sharing the fresh, transactional data and also sharing the hardware

resources.

In this chapter, we present the performance characterization of HTAP systems with a focus on

interference. The results show that the OLAP query execution time is exponentially increased

if the OLTP component generates fresh tuples faster than the OLAP component can process

them. Hence, the OLAP component should be allocated enough resources to process the fresh

tuples faster than the OLTP component generates them. The OLTP and OLAP components of the

real-life systems do not interfere with each other in the shared hardware resources, whereas the

OLTP and OLAP components of the academic prototype interfere with each other in the shared

hardware resources. Although the OLAP throughput is not affected by the concurrently running

OLTP workload, the OLTP throughput drops by 22 to 40%.

6.1 Introduction

As workload characteristics and requirements evolve, data management system architectures

evolved into separate transactional and analytical processing systems. Online Transactional

Processing (OLTP) systems run update-intensive point queries with strong consistency and

durability guarantees. Online Analytical Processing (OLAP) systems run read-only, arithmetic-

operation- and bandwidth-intensive queries with tight, hardware-friendly execution loops

processing large amounts of data. Using separate transactional and analytical processing

systems enabled system designers to specialize to a particular type of workload, and hence,

design systems delivering orders of magnitude higher performance than using a single system
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both for transactions and analytical queries [18].

On the other hand, there has been an increasing demand for running real-time, analytical

queries on fresh, transactional data. Hybrid Transaction and Analytical Processing (HTAP)

systems combine OLTP and OLAP engines into a single, unified system, and allow running

OLTP and OLAP systems concurrently on the same data, and on the same server. Thereby, the

OLAP system can access to the fresh-most, transactional data, and provide real-time insights

on the fast changing transactional data. OLTP and OLAP systems running on the same data

creates software-level interference. As the OLTP and OLAP components access the same data,

the components interfere with each other at the software-level. OLTP and OLAP systems

running on the same server creates the challenge of hardware resource sharing. While an

individual OLTP system can scale well on a dedicated server, an OLTP engine embedded in an

HTAP system competes with the OLAP engine for the shared hardware resources such as CPU

caches and memory bandwidth, and hence faces scalability limitations.

Micro-architectural analysis is important in understanding the main performance bottlenecks,

and hence designing high-performant database systems. As we have shown in Chapter 4

and 5, while in-memory OLTP systems mainly suffer from long-latency data-cache misses,

column-stores, i.e., OLAP systems using a column-oriented storage, suffer from long-latency

data-cache misses as well as saturated memory bandwidth. HTAP systems combine OLTP

and OLAP systems into a single, unified engine, and hence create a novel scenario in terms of

hardware-software interaction due to the shared data and hardware resource challenges they

face.

In this chapter, we present a performance characterization of a breadth of HTAP systems.

We use two real-life HTAP systems and one academic prototype that we build based on

existing open-source OLTP and OLAP systems. We quantify the level of interference for HTAP

workloads both for real-life systems and the academic prototype. In this chapter, we show the

following:

• Software-level interference depends on how rapidly the OLTP component generates

fresh data and how fast the OLAP component consumes the fresh data. We empirically

and theoretically characterize the query execution time in the face of continuous fresh-

data ingestion. We show that OLAP query execution time is exponentially increased if

the OLTP component generates fresh tuples faster than the OLAP component processes

them. Hence, the OLAP component should be allocated enough resources to process

the fresh tuples faster than the OLTP component can generate them.

• The OLTP and OLAP components of the real-life HTAP systems do not interfere with

each other in the shared hardware resources. Both the OLTP and OLAP components

of the HTAP systems only lightly stress the memory bandwidth with a less than 15%

memory-bandwidth consumption.

• The OLTP and OLAP components of the academic prototype interfere with each other
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in the shared hardware resources. Although the OLAP throughput is not affected by

the concurrently running OLTP workload, the OLTP throughput drops by 40% when

running with a sequential-scan-heavy projection query, and by 22% when running

with a random-access-intensive join query. The OLTP component lightly stresses the

memory bandwidth with a less than 15% memory bandwidth consumption, whereas

the OLAP component significantly stresses memory bandwidth with up to 90% memory

bandwidth consumption.

The rest of the chapter is organized as follows. Section 6.2 presents the setup and methodology.

Section 6.3 and 6.4 present the hardware- and software-level interference analysis of the

real-life systems. Section 6.5 presents the analysis of the academic prototype that we built

based on existing open-source OLTP and OLAP engines, where we examine the interference

deeper by providing a theoretical formulation of query execution time for the software-level

interference, and study the hardware-level interference for the individual micro-architectural

resources. Finally, Section 6.6 concludes.

6.2 Setup and Methodology

In this section, we present the experimental setup and methodology.

Software- and hardware-level interference: We define interference as the amount of through-

put drop for the OLTP or OLAP component. We first run OLTP and OLAP concurrently for the

given configuration. We, then, run OLTP and OLAP separately alone on the server with the

same configuration. We divide the former to the latter and use it to quantify the interference.

For software-level interference, running alone means to run OLTP or OLAP on an isolated

database without having the other component (OLTP for OLAP, OLAP for OLTP) using the

same database. For hardware-level interference, running alone means to run OLTP or OLAP

alone on the NUMA node (i.e., CPU socket) without having the other component (OLTP for

OLAP and OLAP for OLTP) concurrently running on the same NUMA node (i.e., CPU socket).

Benchmarks: We use micro-benchmarks and the CH benchmark [23]. We use projection and

join microbenchmarks as they contain the basic data access patterns that database workloads

exhibit: sequential-scan and random-access. All the systems use the hash join algorithm when

running the join microbenchmark. For both micro-benchmarks, the OLTP workload is a single

transaction with a single update statement that updates the value of a randomly chosen row.

There is a single table with key and value columns. Keys are unique.

All the microbenchmarks use the CH benchmark schema. The projection microbenchmark

does a single SUM() over a single column from the orderline table. ol_amount column. We

add the projected column inside the SUM(). The join joins the orderline and orders table, and

it does a SUM() over the addition of the column that the projection query uses.

We profile Q3 and Q6 of the CH benchmark, as they represent two main categories of the CH
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Processor
Intel(R) Xeon(R) CPU

E5-2680 v4 (Broadwell)
#sockets 2

#cores per socket 14
Hyper-threading Off

Turbo-boost Off
Clock speed 2.40GHz

Per-core bandwidth
12GB/s (sequential)

7GB/s (random)

Per-socket bandwidth
66GB/s (sequential)

60GB/s (random)

L1I / L1D (per core)
32KB / 32KB

16-cycle miss latency

L2 (per core)
256KB

26-cycle miss latency

L3 (shared)
(inclusive) 35MB

160-cycle miss latency
Memory 256GB

Table 6.1 – Server parameters.

benchmark: (i) non-join queries and (ii) join-intensive queries. We profile the New-Order

transaction of the CH benchmark as it is the heaviest transaction among the most frequently

executed transactions in the CH benchmark.

Hardware: We conduct our experiments on an Intel Broadwell server. Table 6.1 presents the

server parameters. We use Intel’s Memory Latency Checker (MLC) [47] to measure cache

access-latencies and maximum single/multi-core and random/sequential-access bandwidth.

HTAP systems: We examine two real-life HTAP systems, DBMS A and DBMS B, and one

academic prototype that we built based on existing open-source OLTP and OLAP systems, Silo

[114] and Typer [56].

OS & Compiler: We use Ubuntu 16.04.6 LTS and gcc 5.4.0.

VTune: We use Intel VTune 2020 on the Broadwell server. We use VTune’s built-in uarch-

exploration (general-exploration on VTune 2018) analysis for the breakdown of the CPU

cycles, which performs Intel’s Top-down Micro-architectural Analysis Methodology (TMAM)

explained in Chapter 3. We use VTune’s built-in memory-access analysis to measure the

consumed memory bandwidth. As we numa-localize our experiments on a single socket, we

report average bandwidth per-socket values.

We provide an overview of Intel’s TMAM explained in Chapter 3. Each instruction issue slot

is categorized into one of two components: retiring and stalling. A retiring slot is a slot

where the slot is used for retiring an instruction. A stalling slot is a slot where the slot stalls,

i.e., has to wait due to a particular issue. Ideally, all issue slots would be used for retiring.
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Stalling slots are further decomposed into five components: (i) branch misprediction, (ii)

Icache, (iii) decoding, (iv) Dcache and (v) resource/dependency stalls. Branch misprediction

stalls are the slots that stall due mispredicted branch instructions. Today’s processors use a

hardware unit called branch predictor; it predicts the outcome of a branch instruction (i.e.,

an if() statement) and speculatively executes instructions per the predicted branch direction

and/or target. If the processor then realizes the prediction is not correct, it undoes whatever

it has been doing and starts executing the correct set of instructions. This cost is defined

as the branch misprediction stalls and can be very costly, as it requires canceling a large

amount of work. Icache stalls are the slots that stall due to instruction-cache and instruction

translation lookaside buffer misses. Decoding stalls are the slots that stall due to sub-optimal

micro-architectural implementation of the instruction decoding unit. Dcache stalls are the

slots that stall due to data-cache misses. Resource/dependency stalls are the slots that stall

due to resource and/or data dependencies. For example, if two instructions require using

the same arithmetic-logic unit, one has to wait for the other. This time is identified as the

resource/dependency time. Or, if an instruction’s operand depends on the result of another

instruction, the instruction with the dependent operand has to wait for the other instruction

to finish. This time is identified as the resource/dependency time.

Measurements: For every experiment, we first populate the database. We use a three-minute

warmup period, followed by a 10-minute performance or VTune profiling period. We disable

hyper-threading (HT) and turbo-boost (TB), as they jeopardize VTune counter values [45].

We examine HT separately, in Section 6.5.3 for the open-source system we built. We examine

hyper-thread sharing only for the academic prototype, as we do not have the control on which

threads run on which cores on the real-life DBMSs.

We numa-localize every experiment by using Linux’s numactl command. We do single- and

multi-threaded experiments. We choose a scaling factor of 350 (the database of 30GB) for all the

experiments. We generate statistics before profiling each database. We disable compression

for DBMS A, but not for DBMS B. DBMS B does not allow disabling compression and uses an

internally-decided compression scheme whose details are not revealed.

6.3 DBMS A

This section presents the evaluation of DBMS A.

6.3.1 Micro-benchmark

This section presents the micro-benchmark evaluation.
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1T+13A 7T+7A 13T+1A

Projection
OLTP 0.99 0.98 0.97
OLAP 0.98 0.99 1.00

Join
OLTP 0.96 0.99 0.97
OLAP 0.94 0.92 1.00

Table 6.2 – Hardware-level interference results. Normalized OLTP and OLAP throughputs
for DBMS A when running the micro-benchmark. Numerator: Throughput measured
when concurrently running OLTP and OLAP. Denominator: Throughput measured when
running OLTP or OLAP alone. Example: First, OLTP throughput with 1 OLTP thread is
measured when concurrently running with 13 OLAP threads. Second, OLTP throughput
with 1 OLTP thread is measured when running alone on the server. The former is divided
by the latter, and the result is reported as hardware-level interference at the OLTP side, for
projection query for 1T+13A configuration (shown by cell in the first row and column).
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Figure 6.1 – Micro-architectural behavior for OLTP- and OLAP-alone executions for vary-
ing number of threads for the micro-benchmark.

Hardware-level Interference

This section presents the hardware-level-interference analysis. We run the OLTP and OLAP

workloads on the same NUMA node when the OLTP and OLAP workloads use different tables.

Table 6.2 presents the normalized throughputs, where the numerator is the throughput when

running OLTP and OLAP concurrently, and the denominator is the throughput when running

the OLTP and OLAP alone. The table shows that the OLTP and OLAP throughputs are only

minimally affected by each other. Hence, the OLTP and OLAP components of DBMS A do not

interfere with each other in the shared hardware resources.

Figure 6.1 presents the micro-architectural behavior of the OLTP and OLAP components when

they run alone on the server. The figure shows that the OLTP component spends most of its

execution time in Icache stalls, similarly to DBMS D and M, as we examined in Chapter 4. The

OLAP component spends most of its execution time retiring instructions for both projection

and join queries, similarly to DBMS C, as we examined in Chapter 5. Table 6.3 presents the

memory bandwidth consumptions. The consumed bandwidth is very low for all the cases.
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Number of threads
1 7 13

Update trx (OLTP) 0.05 0.90 2.49
Projection (OLAP) 0 1.90 3.37

Join (OLAP) 0.09 2.80 3.30

Table 6.3 – Consumed memory bandwidth in GB/s for OLTP- and OLAP-alone executions
for varying number of threads for the micro-benchmark.

1T+13A 7T+7A 13T+1A

Projection
OLTP 0.63 0.79 0.91
OLAP 0.62 0.52 0.33

Join
OLTP 0.92 0.96 1.00
OLAP 0.90 0.80 0.40

Table 6.4 – Software-level interference results. Normalized OLTP and OLAP throughputs
for DBMS A when running the micro-benchmark. Numerator: Throughput measured
when concurrently running OLTP and OLAP. Denominator: Throughput measured when
running OLTP or OLAP alone.

Despite the fact that maximum available bandwidth is 66GB/s, the consumed bandwidth is

always less than 4GB/s. Hence, both the OLTP and OLAP components of DBMS A only lightly

stress the memory bandwidth.

Software-level Interference

This section presents software-level interference analysis. We run the OLTP and OLAP work-

loads on the same NUMA node when the OLTP and OLAP workloads use the same table.

Table 6.4 presents the normalized throughputs. The OLAP throughput drops by 38% to 67%

for projection. This is because the OLAP component requires accessing the fresh tuples that

usually reside at the OLTP side. Hence, it makes the necessary extra work and suffers from

the reduced throughput. The throughput is more and more decreased as the number of OLTP

threads is increased. As the number of OLTP threads is increased, the number of fresh tuple

that the OLAP side requires accessing is increased. Hence, the OLAP side requires performing

more and more extra work and is interfered more and more.

The OLAP throughput is decreased less for the join query than it is for the projection query.

This is because the join query is more expensive, and hence its performance is less affected by

the extra work that is needed to access the fresh tuples. Nevertheless, for 13 OLTP threads, its

throughput is decreased by 40%, which is close to the projection micro-benchmark.

The OLTP throughput significantly drops (by 37%) when running with the projection query,

for 1 OLTP and 13 OLAP threads. The throughput is decreased less and less as the number of

OLTP threads is increased. The throughput is decreased by 21% for 7 OLTP threads and 9% for

13 OLTP threads. As the previous section has shown, the OLTP and OLAP components do not
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interfere with each other at the hardware-level. Hence, this interference is due to the OLTP

components being affected by the OLAP component. We explain the reason as follows.

DBMS A uses the two-copy HTAP architecture (see Chapter 2, Section 2.4), where the system

maintains an intermediate data structure, usually called delta, to keep track of the fresh tuples

that are at the OLTP side, but not yet at the OLAP side. Periodically, DBMS needs to propagate

the fresh tuples from the OLTP side to the OLAP side to prevent delta from growing too much.

One way to propagate the fresh tuples is doing it right before the query execution. When a

query is submitted, the OLAP side first propagates the fresh tuples to the OLAP data, and then

performs the query execution on the OLAP data that just has had the fresh tuples propagated.

BatchDB follows this execution model [73].

HTAP fig 2. – mbench sw-level intf.
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Figure 6.2 – Micro-architectural behavior for concurrently running OLTP and OLAP on
the same NUMA node when sharing data for varying number of threads for the micro-
benchmark.1T+13A stands for having 1 OLTP and 13 OLAP threads.

An important design choice for fresh-tuple propagation is whether or not to block the OLTP

side while propagating the fresh tuples. Blocking the OLTP side can be necessary if the OLTP

side is faster than the fresh-tuple propagation. During the fresh-tuple propagation itself, there

can be even more fresh tuples generated by the OLTP side. Hence, the number of fresh tuples

would be exponentially increased. To prevent this from happening, DBMS may choose the

block the OLTP side during the fresh-tuple propagation.

The reason for the OLTP throughput to drop can be that DBMS A performs fresh-tuple propa-

gation right before the query execution and also blocks the OLTP side during the propagation.

As the number of OLAP threads is decreased, the query execution time is increased. Hence,

the frequency of fresh-tuple propagation is decreased. As the frequency of the fresh-tuple

propagation is decreased, the amount of time that the OLTP side is blocked is also decreased.

As a result, the OLTP side is less and less interfered by the OLAP side, both for projection and

join queries.

Furthermore, for the join query, the OLTP side is significantly less interfered than it is for the

projection query. This is also consistent with our conclusion. The join query is significantly
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1T+13A 7T+7A 13T+1A

Q6
OLTP 0.99 0.99 0.96
OLAP 1.04 1.01 1.00

Q3
OLTP 1.05 0.88 0.96
OLAP 1.01 0.94 0.96

Table 6.5 – Hardware-level interference results. Normalized OLTP and OLAP throughputs
for DBMS A when running the CH benchmark. Numerator: Throughput measured when
concurrently running OLTP and OLAP. Denominator: Throughput measured when run-
ning OLTP or OLAP alone.

more expensive than the projection query. Hence, the frequency of fresh-tuple propagation is

significantly less than it is for the projection query. As a result, the OLTP side is less interfered

by the join query compared to the projection query.

We also examine the micro-architectural behavior of DBMS A when running the OLTP and

OLAP components on the same data. Figure 6.2 shows the results. We observe that the

micro-architectural behavior is approximately the average of the micro-architectural behavior

when running the OLTP and OLAP components alone (see Figure 6.1). This shows that the

micro-architectural behavior of DBMS A does not significantly change when the OLTP and

OLAP components concurrently run on the same data.

6.3.2 CH benchmark

This section presents the CH benchmark evaluation.

Hardware-level Interference

This section presents the hardware-level-interference analysis. We run the OLTP and OLAP

workloads on the same NUMA node when the OLTP and OLAP workloads use different tables.

Table 6.5 presents the normalized throughputs. As the table shows, the OLTP and OLAP

throughputs do not drop significantly. Hence, the OLTP and OLAP components of DBMS A do

not interfere with each other when running the CH benchmark similar to when running the

micro-benchmark.

Figure 6.3 presents the micro-architectural behavior of the individual OLTP and OLAP compo-

nents when running alone. The results are similar to the micro-benchmark results. The OLTP

component spends most of its execution time in Icache stalls, whereas the OLAP component

spends most of its execution time retiring instructions. Table 6.6 presents the memory-

bandwidth consumptions. Once again, the results are similar to the micro-benchmark results.

The consumed bandwidth is very low for all the cases. Despite the fact that maximum available

bandwidth is 66GB/s, the consumed bandwidth is less than 4GB/s. Hence, the OLTP and OLAP

components of DBMS A only lightly stress the memory bandwidth.
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Figure 6.3 – Micro-architectural behavior for OLTP- and OLAP-alone executions for vary-
ing number of threads for the CH benchmark.

Number of threads
1 7 13

New-Order trx.(OLTP) 0.08 0.59 1.04
Q6 (OLAP) 0 1.84 1.89
Q3 (OLAP) 0 2.88 3.21

Table 6.6 – Consumed memory bandwidth in GB/s for OLTP- and OLAP-alone executions
for varying number of threads for the CH benchmark.

Software-level Interference

This section presents software-level interference analysis. We run the OLTP and OLAP work-

loads on the same NUMA node when the OLTP and OLAP workloads use the same table. As

the CH benchmark is insert-heavy, the OLAP query execution time is naturally increased in

the face of insert-heavy OLTP transactions. Hence, we normalize the OLAP query execution

time based on the number of processed tuples.

Table 6.7 presents the normalized throughputs. Neither the OLAP nor the OLTP throughput

does not drop significantly. While we are not aware of the internal implementation of the

insert operation for DBMS A, the reason is of not having software-level interference for the

CH benchmark can be that it is an insert-heavy benchm ark. The new-order transaction has

12 inserts with 2 updates and 3 selects. In a two-copy HTAP architecture, insert operation

can be implemented in a much more efficient way than update operation. While updates

require tracking down the existing tuples usually by means of an index, inserts can simply be

appended to the existing data. Hence, propagating inserts can be much simpler. We verified

our assumption by doing in insert-only micro-benchmark. We have observed less than 5%

interference at both OLTP and OLAP sides when running an insert-only transaction with the

projection and join micro-benchmark queries used in Section 6.3.1.

We also examine the micro-architectural behavior of DBMS A when running the OLTP and

OLAP components on the same data in Figure 6.4. The micro-architectural behavior is approx-

imately the average of that of when running the OLTP and OLAP components alone.
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1T+13A 7T+7A 13T+1A

Q6
OLTP 0.98 0.97 0.96
OLAP 0.96 0.94 0.93

Q3
OLTP 0.97 0.96 0.95
OLAP 0.98 0.89 0.79

Table 6.7 – Software-level interference results. Normalized OLTP and OLAP throughputs
for DBMS A when running the CH benchmark. Numerator: Throughput measured when
concurrently running OLTP and OLAP. Denominator: Throughput measured when run-
ning OLTP or OLAP alone.

Htap fig 4. ch sw-level intf.
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Figure 6.4 – Micro-architectural behavior for concurrently running OLTP and OLAP on
the same NUMA node when sharing data for varying number of threads for the CH bench-
mark.1T+13A stands for having 1 OLTP and 13 OLAP threads.

6.4 DBMS B

This section presents the evaluation of DBMS B.

6.4.1 Micro-benchmark

This section presents the micro-benchmark evaluation.

Hardware-level Interference

This section presents the hardware-level-interference analysis. We run the OLTP and OLAP

workloads on the same NUMA node, but on different tables. Table 6.8 presents the normalized

throughputs. The OLTP and OLAP throughputs drop only by 1% to 11%. Hence, OLTP and

OLAP components of DBMS B do not interfere with each other, similar to DBMS A.

Figure 6.5 presents the micro-architectural behavior of the OLTP and OLAP components when

they run alone on the server. The figure shows that the OLTP component spends most of its

execution time in Icache stalls, whereas the OLAP component spends most of its execution

time retiring instructions, similarly to the way DBMS A does. Table 6.9 presents memory-
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1T+13A 7T+7A 13T+1A

Projection
OLTP 0.97 0.91 0.97
OLAP 0.98 0.97 1.00

Join
OLTP 0.94 0.89 0.98
OLAP 1.02 0.98 0.95

Table 6.8 – Hardware-level interference results. Normalized OLTP and OLAP throughputs
for DBMS B when running the micro-benchmark. Numerator: Throughput measured
when concurrently running OLTP and OLAP. Denominator: Throughput measured when
running OLTP or OLAP alone.
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Figure 6.5 – Micro-architectural behavior for OLTP- and OLAP-alone executions for vary-
ing number of threads for the micro-benchmark.

bandwidth consumptions. The consumed bandwidth is low for all the cases. Despite the

fact that the maximum available bandwidth is 66GB/s, the consumed bandwidth is always

less than 8GB/s. Hence, the OLTP and OLAP components of DBMS B only lightly stress the

memory bandwidth.

Software-level Interference

This section presents software-level interference analysis. We run the OLTP and OLAP work-

loads on the same NUMA node when the OLTP and OLAP workloads use the same table.

Table 6.10 presents the normalized throughputs. The OLAP throughput drops by up to 53% for

projection, as the OLAP component requires scanning the delta data structure to access the

fresh tuples. As the delta is a pointer-intensive index structures, it is costlier than scanning the

column-store, where the bulk of the data is kept. Hence, it costs up to 53% for the projection

query to scan the fresh tuples. The throughput is more and more decreased as the number

of OLTP threads is increased. As the number of OLTP threads is increased, the number of

fresh tuple that the OLAP side requires accessing is increased. Hence, the OLAP side requires

performing more and more extra work and is interfered more and more.

The OLAP throughput is decreased significantly less for the join query than it is for the projec-
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Number of threads
1 7 13

Update trx (OLTP) 0.02 0.23 0.47
Projection (OLAP) 0.04 5 7.18

Join(OLAP) 0.07 2.40 4.36

Table 6.9 – Consumed memory bandwidth in GB/s for OLTP- and OLAP-alone executions
for varying number of threads for the micro-benchmark.

1T+13A 7T+7A 13T+1A

Projection
OLTP 0.98 0.93 0.91
OLAP 0.99 0.59 0.47

Join
OLTP 0.97 0.94 0.90
OLAP 0.98 0.94 0.84

Table 6.10 – Software-level interference results. Normalized OLTP and OLAP throughputs
for DBMS B when running the micro-benchmark. Numerator: Throughput measured
when concurrently running OLTP and OLAP. Denominator: Throughput measured when
running OLTP or OLAP alone.

tion query. This is because the join query is more expensive, and hence its performance is less

affected by the delta-scan that is needed to access the fresh tuples.

Table 6.10 shows that the OLTP throughput drops by only 5-10%. This shows that DBMS B does

not block the OLTP at every query execution, unlike DBMS A. This can be due to an efficient

implementation of fresh tuple propagation, which does not require blocking the OLTP side as

it can propagate the fresh tuples faster than the OLTP side generates.

Both projection and join throughputs are decreased less for DBMS B compared to DBMS A

(see Table 6.10). Furthermore, the OLTP throughput drops by only 5-10%, unlike DBMS A.

These shows that the new-generation DBMS B is more optimized for a more efficient real-time

analytical processing than the traditional DBMS A. Hence, the level of interference at both

OLAP and OLTP sides is significantly less for DBMS B, compared to DBMS A.

We also examine the micro-architectural behavior of DBMS B when running the OLTP and

OLAP components on the same data. Figure 6.6 shows the results. We observe that the

micro-architectural behavior is approximately the average of the micro-architectural behavior

when running the OLTP or OLAP components alone (see Figure 6.5), except when running

7 OLTP and 7 OLAP threads for the projection micro-benchmark. For this case, we observe

a larger amount of Dcache stalls than the average of the Dcache stalls of 7 OLTP or OLAP

individual executions. Furthermore, Table 6.10 shows that the OLAP throughput drops by 41%

when running 7 OLTP and 7 OLAP threads due to the software-level interference. Hence, the

increased Dcache stalls shows the affect of the pointer-intensive delta scan operation, which

requires large number of random data-accesses.

Note that the OLAP throughput is significantly interfered when running 13 OLTP and 1 OLAP
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Figure 6.6 – Micro-architectural behavior for concurrently running OLTP and OLAP on
the same NUMA node when sharing data for varying number of threads for the micro-
benchmarks.1T+13A stands for having 1 OLTP and 13 OLAP threads.

1T+13A 7T+7A 13T+1A

Q6
OLTP 1.01 0.88 0.97
OLAP 1.04 0.98 1.01

Q3
OLTP 0.99 0.91 0.98
OLAP 1.02 0.97 1.01

Table 6.11 – Hardware-level interference results. Normalized OLTP and OLAP throughputs
for DBMS B when running the CH benchmark. Numerator: Throughput measured when
concurrently running OLTP and OLAP. Denominator: Throughput measured when run-
ning OLTP or OLAP alone.

threads. Hence, one would expect that the interference is reflected in the micro-architectural

behavior. However, when 13 cores running the OLTP transactions and 1 core running the OLAP

query, the overall micro-architectural behavior is highly dominated by the OLTP behavior.

Hence, the individual OLAP behavior is not visible in the overall micro-architectural behavior.

As DBMS B is a closed-source system, we are not able to track down the individual threads

and present the micro-architectural behavior for individual threads. We examine this in our

open-source system analysis, where we have the control over threads.

6.4.2 CH benchmark

This section presents the CH benchmark evaluation.

Hardware-level Interference

This section presents the hardware-level-interference analysis. We run the OLTP and OLAP

workloads on the same NUMA node when the OLTP and OLAP workloads use different tables.

Table 6.11 presents the normalized throughputs. Similar to the micro-benchmark results,

the OLTP and OLAP throughputs do not drop significantly. Hence, the OLTP and OLAP
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Figure 6.7 – Left: Micro-architectural behavior for OLTP- and OLAP-alone executions for
varying number of threads for the CH benchmark. Right: Micro-architectural behavior
for concurrently running OLTP and OLAP on the same NUMA node when sharing data for
varying number of threads for the CH benchmark. Only for 7 threads for OLTP and OLAP.

Number of threads
1 7 13

New-Order trx. (OLTP) 0.01 0.10 0.50
Q6 (OLAP) 0.01 1.59 1.95
Q3 (OLAP) 0.06 0.27 1.08

Table 6.12 – Consumed memory bandwidth in GB/s for OLTP- and OLAP-alone executions
for varying number of threads for the CH benchmark.

components do not interfere with each other when running the CH benchmark.

Figure 6.7 (left) presents the micro-architectural behavior of the OLTP and OLAP components

when they run alone on the server. We present the results for seven OLTP and OLAP threads.

Similar to the micro-benchmark results, the OLTP component spends most of its execution

time in Icache stalls, whereas the OLAP component spends most of its execution time retiring

instructions. Table 6.12 presents memory bandwidth consumptions. Similar to the micro-

benchmark results, the consumed bandwidth is low for all the cases. Despite the fact that

maximum available bandwidth is 66GB/s, the consumed bandwidth is always less than 2GB/s.

Hence, the OLTP and OLAP components of DBMS B do not significantly stress the memory

bandwidth when running the CH benchmark.

Software-level Interference

This section presents software-level interference analysis. We run the OLTP and OLAP work-

loads on the same NUMA node when the OLTP and OLAP workloads use the same table.

Table 6.13 presents the normalized throughputs. The OLAP throughput drops 12% to 70% for
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1T+13A 7T+7A 13T+1A

Q6
OLTP 0.99 0.95 0.97
OLAP 0.88 0.47 0.30

Q3
OLTP 0.99 0.98 0.99
OLAP 0.97 0.91 0.86

Table 6.13 – Software-level interference results. Normalized OLTP and OLAP throughputs
for DBMS B when running the CH benchmark. Numerator: Throughput measured when
concurrently running OLTP and OLAP. Denominator: Throughput measured when run-
ning OLTP or OLAP alone.

the projection micro-benchmark. This is due to the costly delta scan operation that the OLAP

side requires doing to provide real-time query processing over the fresh data. The cost of delta

scan is higher for the projection-like Q6 than it is for the projection micro-benchmark (see

Table 6.10). This is because Q6 is a less expensive query than the projection micro-benchmark

query. Q6 is ∼2x faster than projection. Hence, Q6 is affected more than the projection query.

On the other hand, similar to the micro-benchmark results, the join query is not interfered

significantly, and the OLTP throughput does not drop significantly.

We also examine the micro-architectural behavior of DBMS B when running the OLTP and

OLAP components on the same data. Figure 6.7 (right) shows the results for 7 OLTP and 7

OLAP threads. We observe that the micro-architectural behavior is approximately the average

of the micro-architectural behavior when running the OLTP or OLAP components alone for

Q3 (see Figure 6.7 (left)). For Q6, however, there is a larger amount of Dcache stalls than the

average of the Dcache stalls of 7 OLTP or OLAP individual executions. This shows the affect of

delta scan operation that requires making random data-accesses to scan the pointer-intensive

delta data structure.

6.5 Academic Prototype

This section examines the analysis of the academic prototype that we built to analyze the

software- and hardware-level interference for HTAP workloads. We first describe the HTAP

architecture we use. Then, we present the software- and hardware-level interference analyses.

6.5.1 HTAP Architecture

We use two-copy mixed-format architecture, which is a popular architecture also used by

Oracle and SQL Server [59, 62]. We combine the open-source in-memory OLTP engine, Silo

[114], with the open-source column-store, Typer [56] into a single HTAP system. The HTAP

system launches Silo and Typer over the same data loaded to both. Then, the system keeps

track of the data that Silo modifies by using a hash table, called delta. If the number of tuples

that the delta keeps track of is more than a certain threshold, the HTAP system propagates the

fresh data from the OLTP side to the OLAP side.
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Number of OLTP threads
1 7 14 21 28

Number
of OLAP
threads

1 1.0 1.2 4.2 11.2 19.6
10 1.0 1.1 4.0 8.9 13.9
26 1.0 1.1 2.4 4.9 10.8

Table 6.14 – Normalized query execution time for the projection micro-benchmark with
varying number of OLTP (rows) and OLAP (columns) sides. Numerator: Throughput mea-
sured when concurrently running OLTP and OLAP. Denominator: Throughput measured
when running OLTP or OLAP alone.

Delta propagation is a background procedure. During delta propagation neither OLTP nor

OLAP components stop executing their workloads. To achieve this, we keep two copies for

each OLAP column that is modified by OLTP: (i) one for OLAP to perform the query execution,

and (ii) one for the delta propagation thread(s) to propagate the delta. While the query is being

executed, delta propagation thread performs the delta propagation, and waits for the next

iteration of the query execution to perform the next delta propagation.

The delta is a hash table that keeps track of the pointers to the OLTP tuples that are modified,

but not yet propagated to the OLAP side. Silo provides consistent snapshots of the data at 1ms

granularity. For each tuple, there is a chain of versions. We use Silo’s internal snapshotting

mechanism to provide the correct version of the tuples for each submitted query. The OLAP

queries access the version chain of the tuples based on the pointer that the delta keeps and

perform version traversal to find the correct version.

6.5.2 Software-level Interference

As we have the control over the core and data affinity on the academic prototype, we first

examine the software-level interference, where we place OLTP and OLAP sides to the two

separate sockets of the machine we use. We place the delta and delta propagation threads on

the OLAP-socket. We first present the empirical characterization of the interference. Then, we

provide a theoretical characterization of the query execution time in the face of continuous

fresh data ingestion. We examine only the OLAP side performance as the OLTP side is not

affected by the software-level interference. As shown in the previous section (Section 6.5.1),

the HTAP architecture we use do not block the OLTP side, similar to the real-life DBMS B that

we examined in Section 6.4.

Empirical characterization: We first empirically analyze the average query execution through-

put under continuous execution of the OLTP side, with varying number of OLTP and OLAP

threads. We fix the number of delta propagation threads to 1. We pin OLTP, OLAP and delta

propagation threads to particular individual cores, without sharing any hyper-threading re-

sources among any of the three. We use the projection micro-benchmark. Table 6.14 presents

the normalized query execution time for the projection micro-benchmark. The query execu-

tion time is normalized to OLAP-alone query execution throughput, i.e., the query execution
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Figure 6.8 – Normalized query execution times for individual number of OLTP threads.

time without having OLTP running with the OLAP.

The table shows that query execution time is increased by 1.1 to 19.6x. For low number of OLTP

threads, the fresh data ingestion rate is relatively low. Hence, the cost of processing the fresh

tuples by the OLAP threads, and the cost of propagating the fresh data by the delta propagation

thread is low compared the the OLAP-only query execution time. Hence, the interference at

the OLAP side is low. When the number of threads is 14 or more, the query execution time is

heavily increased, by 2.4x to 19.6x for every number of OLAP threads examined.

Next, we examine the query execution time one-by-one for 10 OLAP threads and varying num-

ber of OLTP threads. We submit the queries one-after-the-other, and measure the execution

time of every individual query. Our goal is to examine whether there is any particular pattern

in the query execution times that leads to the high average query execution time in the face of

fresh data ingestion.

Figure 6.8 presents the results. We plot the normalized query execution times. Each line is for

a particular number of OLTP threads, with a normalized starting value of 1. The figure shows

that for low number of OLTP threads, i.e., for 1 and 7 OLTP threads, the OLAP query execution

time is relatively constant. Similarly, the average normalized query execution time is only 1.0

and 1.1 for 1 and 7 OLTP threads, as shown by Table 6.14. However, for 14 or more threads, the

query execution time is increased exponentially. We theoretically examine the exponentially

increasing behavior in the next section.

Theoretical characterization: In this section, we theoretically characterize the query execu-

tion time of the HTAP architecture we study. We define two variables: λ, µ, and µ′. λ is fresh

data ingestion rate, µ is delta propagation throughput, and µ′ is delta processing throughput.

All variables are in tuples per second metric. Fresh data ingestion rate is the OLTP throughput

in our micro-benchmark. Delta propagation throughput is how many fresh tuples per second

the delta propagation thread(s) can propagate. Delta processing throughput is how many
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fresh tuples per second the OLAP thread(s) can process. We further define a query execution

time that exponentially increases as an unstable query execution time, and a query execution

time that converges to a constant value as a stable query execution time.

Delta propagation and processing scans the delta and accesses the set of newly generated,

fresh OLTP tuples. The delta propagation task is carried out by the delta propagation thread(s).

It reads the fresh tuples from the OLTP side and writes them to the OLAP side. Delta processing

task is carried out by the OLAP threads. Each OLAP thread scans a portion of the delta, accesses

the fresh tuples and processes the fresh tuples as the query requires, e.g., aggregates them on

an accumulator, or starts building a hash table out of them. The OLAP threads, then, continue

with regular OLAP processing over the OLAP columns.

Query execution time: As explained in Section 6.5.1, delta propagation is a background task,

performed by the delta propagation thread(s) at the background. Hence, its time is ideally not

on the critical path. Hence, we first characterize the query execution time. Query execution

time is composed of delta processing time and the OLAP-columns-processing time. The

OLAP-columns-processing time is constant (assuming that the workload does not have any

inserts). At time t = 0, the query execution starts without any fresh data. Let us denote this

time as TQ0 . In the next iteration, at time t = 1, the query execution requires scanning the

delta, accessing the fresh OLTP tuples, and processing them as the query requires, in addition

to processing the OLAP columns as done at time t = 0. Hence, the query execution time will

be:

TQ1 =
1

µ′ |∆0|+TQ0 (6.1)

where |∆0| is the size of the delta right before the query execution at time t = 1. In other words,

it is the number of fresh tuples generated during the query execution at time t = 0. Observe

that |∆0| is λTQ0 , i.e., multiplication of fresh data ingestion rate and the query execution time

at the previous time slot. If we substitute |∆0| in Equation 6.1, we obtain:

TQ1 =
1

µ′λTQ0 +TQ0

= TQ0 (1+ λ

µ′ )
(6.2)
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If we follow the same logic for TQ2 , TQ3 , ..., TQn , we obtain the following formula for TQn :

TQn = TQ0 (1+ (
λ

µ′ )1 + (
λ

µ′ )2 + ...+ (
λ

µ′ )n)

= TQ0Σ
n
i=0(

λ

µ′ )i
(6.3)

Equation 6.3 is a geometric series sum with the recurrence term of λ
µ′ . Hence, it is equal to:

TQn =
1− ( λµ′ )n+1

1− λ
µ′

(6.4)

The term in Equation 6.4 is diverging, i.e., unstable, i.e., exponentially increased if λ
µ′ > 1,

whereas it converges to:

1− ( λµ′ )n

1− λ
µ′

(6.5)

for λ
µ′ < 1. Hence, for a converging, i.e., stable query execution time, λ

µ′ < 1 should hold. In

other words, an HTAP system must make sure that the delta processing throughput is higher

than the fresh data ingestion rate. Otherwise, the amount of ingested fresh data is beyond the

processing capacity and the query execution time is exponentially increasing, i.e., unstable.

Intuitively, this means that the HTAP system should be able to process the fresh tuples faster

than the fresh tuples are generated. As delta processing is carried out by the OLAP threads, the

HTAP systems should allocate enough number of cores and threads to the OLAP side to make

sure that the delta processing throughput is higher than the fresh data ingestion rate.

Delta propagation time: While delta propagation is ideally a background task, it can take

longer time than query execution (e.g., due to having more cores allocated to OLAP than to

delta propagation). In this case, the system would be bottlenecked by the delta propagation

time.

We characterize the delta propagation time. Let us call B as the delta propagation time at the

first iteration that the delta propagation time exceeds the query execution time. Furthermore,

delta propagation performs two constant-time-taking activities: delta clearing and delete

map clearing. Let us call the amount of time needed for the constant-time-taking activities as

C . Let us call the delta propagation time at time t as TDPt . Then, we can construct TDPt for
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Number of OLTP threads
1 7 14 21 28

λ/µ 0.1 0.62 0.96 1.26 1.7
λ/µ′ 0.005 0.02 0.04 0.05 0.06

Table 6.15 – Justification of the theoretical model for query execution time for HTAP sys-
tems for 10 OLAP and 1 delta propagation threads.

t = 0,1, ...,n as follows:

TDP0 = B

TDP1 =
λ

µ
B +C

TDP2 = (
λ

µ
)2B + λ

µ
C +C

...

TDPn = (
λ

µ
)nB +CΣn−1

i=0 (
λ

µ
)i

(6.6)

AsΣn−1
i=0 (λµ )i term is a geometric series sum with the recurrence term of λµ , the delta propagation

time is:

TDPn = (
λ

µ
)nB +C

1− (λµ )n

1− λ
µ

(6.7)

Hence, the delta propagation time is exponentially increased, i.e., diverging if λ
µ > 1. For a

stable, converging delta propagation time, the delta propagation throughput should be higher

than the fresh data ingestion rate. Otherwise, the amount of ingested fresh data during delta

propagation itself is larger than the amount of fresh data that is being propagated. Hence,

the number of fresh tuples is exponentially increased. As a result, the query execution time,

which is bottlenecked by delta propagation time, is also exponentially increased. This means

that HTAP systems should make sure the delta propagation task is allocated enough cores and

threads to perform delta propagation faster than fresh data ingestion rate.

Theoretical model justification: We justify the validity of our theoretical query execution

time modelling described in the previous section. To do so, we will examine the λ/µ and λ/µ′

terms for the experiments shown in Figure 6.8. Furthermore, we increase the number of delta

propagation threads from one to two, and re-examine the query execution time for 14 and

28 OLTP threads to see whether the exponential, diverging behavior converts into a constant,

converging behavior.

Table 6.15 presents λ/µ and λ/µ′ for 10 OLAP and 1 delta propagation threads. As expected,
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Figure 6.9 – Query execution time for increased number of delta propagation threads.

λ/µ value is close to 1 (0.96) for 14 OLTP threads, where the query execution time behavior is

exponential. For 21 and 28 OLTP threads, the λ/µ values are well above 1, hence the execution

times are more and more exponentially increased. λ/µ′ is much lower than λ/µ. This is

because the number of OLAP threads is 10, whereas the number of delta propagation threads

is 1. Hence µ′, i.e., delta processing throughput, is much higher than µ, i.e., delta propagation

throughput. As a result, λ/µ′ is much lower than λ/µ.

We also examine the query execution behavior for increased number of delta propagation

threads. Figure 6.9 presents the query execution behavior for 10 OLAP threads, and 14, 28

OLTP threads with 1 and 2 delta propagation threads. When using 1 delta propagation thread,

the query execution time behavior is exponential for 14 and 28 OLTP threads. Whereas, when

using 2 delta propagation threads, the query execution time becomes converging, i.e., stable.

We further examine λ/µ and λ/µ′ for increased number of delta propagation threads. Table

6.16 shows the values. As the table shows, λ/µ is decreased approximately by half when the

number of delta propagation threads is increased from one to two. As a result, λ/µ drops

below 1 and the query execution time behavior becomes converging, i.e., stable.

This justifies our theoretical modelling of the query execution and delta propagation time

in the face of continuous fresh data generation for the HTAP architecture that we uses. Our

query execution time behavior analysis shows that delta processing and propagation tasks

should be allocated enough number of cores and threads such that their speeds are higher

than the speed that the fresh tuples are generated. During delta processing and propagation,

the OLTP component keeps producing new fresh tuples. At the end of each delta processing or

delta propagation task, the size of the delta (i.e., the number of fresh tuples in delta) should be

less than the size of the delta that was at the beginning of the delta processing or propagation

task. Otherwise, the delta size would grow exponentially, and hence, the query execution time
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14 OLTP - 1 DP 14 OLTP - 2 DP 28 OLTP - 1 DP 28 OLTP - 2 DP
λ/µ 0.96 0.64 1.7 0.77
λ/µ′ 0.04 0.04 0.06 0.06

Table 6.16 – λ/µ and λ/µ′ for increased number of delta propagation threads.

would be increased exponentially.

While different HTAP architectures would have a different exact formulation of the query

execution time, the main conclusion would apply to all HTAP architectures. For all HTAP

architectures, the HTAP system should be able to process the fresh tuples faster than they are

generated.

Our query execution time formulation in the face of continuous data generation is similar to

response time formulation of queuing theory [63]. However, building the concrete relationship

between the queuing theory and our response time formulation requires more work. In

particular, it is not clear how the two parameters, inter-arrival time distribution and service

time distribution, that queuing theory uses in its response time formulation will be used for

the query execution time formulation. We leave building the concrete relationship between

queuing theory and query execution time formulation as future work.

6.5.3 Hardware-level Interference

Next, we study hardware-level interference. We place the OLTP, OLAP and delta propagation

threads and data on the same socket. In this case, these three separate tasks share: last-level

cache (LLC), memory bandwidth and hyper-threads. We study LLC & and memory bandwidth,

and hyper-threads separately.

LLC and memory bandwidth

We first study the hardware-level interference among the delta propagation and OLAP threads.

Then, we examine the hardware-level interference among all the three components: OLTP,

OLAP, and delta propagation.

Delta propagation and OLAP: We put the OLTP threads and data to a different socket than

the delta propagation and OLAP threads. Then, for a fixed number of delta propagation

threads, we gradually increase the number of OLAP threads and measure the normalized delta

propagation throughput. Figure 6.17 presents the results for the projection and join micro-

benchmarks. As the number of OLAP threads is increased, the normalized delta propagation

throughput is decreased for the projection micro-benchmark. The decrease is negligible for

1 OLAP thread, whereas 28% and 33% for 7 and 13 OLAP threads. The reason is that the

projection micro-benchmark stresses the memory bandwidth more and more as the number

of OLAP threads is increased. As a result, it causes the delta propagation throughput to drop.
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1DP+13A 7DP+7A 13DP+1A

Projection
Delta prop. 0.67 0.71 1.0

OLAP 0.98 0.99 0.98

Join
Delta prop. 0.89 0.96 1.0

OLAP 0.99 0.99 0.98

Table 6.17 – Hardware-level interference for last-level cache and memory bandwidth
sharing between the delta propagation and OLAP components when running the micro-
benchmarks. Normalized delta propagation and OLAP throughputs. Numerator:
Throughput measured when concurrently running delta propagation and OLAP. Denomi-
nator: Throughput measured when running delta propagation or OLAP alone.

1T+12A 7T+6A 12T+1A

Projection
OLTP 0.58 0.73 0.80
OLAP 0.98 0.99 0.95

Join
OLTP 0.78 0.82 0.89
OLAP 0.99 0.98 0.98

Table 6.18 – Hardware-level interference for last-level cache and memory bandwidth shar-
ing between the OLTP and OLAP components for the micro-benchmarks. The number of
delta propagation threads is fixed to 1. Normalized OLTP and OLAP throughputs. Numer-
ator: Throughput measured when concurrently running OLTP and OLAP. Denominator:
Throughput measured when running OLTP or OLAP alone.

The delta propagation throughput drops significantly less when running with the join query.

This is because the join query is random-data-access-intensive. Hence, it does not stress

the memory bandwidth as high as the projection query. As a result, the delta propagation

throughput does not drop as significantly. The OLAP query execution time remains the same

for all the cases regardless the number of delta propagation threads running with it. Hence,

the delta propagation threads do not cause interference for the OLAP threads.

OLAP and OLTP: We place all the three tasks on the same socket. For 1 delta propagation

thread, we vary the number of OLTP and OLAP threads to examine the interference among

them. Table 6.18 presents the results. OLTP throughput is significantly interfered by the

projection query. The OLTP throughput drops by 42% when running 1 OLTP and 12 OLAP

threads. As the number of OLAP threads is decreased, the OLTP throughput is interfered less

and less: by 27% and 20% for 6 and 1 OLAP threads. The reason is that the sequential-scan-

heavy projection query highly stresses the memory bandwidth. As a result, the OLTP threads

are interfered at the last-level cache and memory bandwidth.

The OLTP throughput is decreased significantly less when running with the join query com-

pared to when running the projection query. This is because the join query is random-data-

access-heavy, and hence stresses the memory bandwidth less than the projection query. As

a result, the OLTP throughput is affected less. The OLAP throughput is not affected by the

OLTP component. This is because the OLTP component stresses the memory bandwidth

significantly less than the OLAP components, both for the projection and join queries.
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Figure 6.10 – Micro-architectural behavior for OLTP- and OLAP-alone executions for vary-
ing number of threads for the academic prototype.

Number of threads
1 7 13

Update trx (OLTP) 0.10 4.10 8.30
Projection (OLAP) 5.40 31.65 58.55

Join(OLAP) 1.19 12.10 21.71

Table 6.19 – Consumed memory bandwidth in GB/s for OLTP- and OLAP-alone executions
for varying number of threads for the academic prototype.

Figure 6.10 presents the micro-architectural behavior of the OLTP and OLAP components

when they run alone on the server. The figure shows that both the OLTP and OLAP components

spend most of their execution time in Dcache stalls. Table 6.19 presents memory-bandwidth

consumptions. The OLTP component consumes only a small fraction of the memory band-

width. Although the maximum memory bandwidth is 66GB/s, the OLTP component consumes

a maximum of 8.3GB/s. Hence, the OLTP component only lightly stresses the memory band-

width. The OLAP component consumes a significant fraction of the memory bandwidth. The

projection query consumes about half of the bandwidth for seven threads, and approaches

saturation of the bandwidth for 13 threads. The join query also consumes a significant fraction

of the bandwidth for 13 OLAP threads. Hence, the OLAP component significantly stresses the

memory bandwidth.

Hyper-threads

Next, we examine how much OLTP, OLAP and delta propagation threads interfere with each

other when they share hyper-threads. We first examine OLAP and delta propagation, and then

we examine OLTP and OLAP sharing hyper-threads.

Delta propagation and OLAP: We run 2 delta propagation on two separate physical cores. We,

then, add 2 OLAP threads such that each delta propagation thread shares its core with an

OLAP thread and examine how much the newly added OLAP threads decrease the throughputs

of the already running delta propagation threads. We do the same by starting with 2 OLAP
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2DP+2A

Projection
Delta prop. 0.5

OLAP 0.9

Join
Delta prop. 0.8

OLAP 0.9

Table 6.20 – Hardware-level interference for hyper-thread sharing between the delta prop-
agation and OLAP components when running the micro-benchmarks. Normalized delta
propagation and OLAP throughputs. Numerator: Throughput measured when concur-
rently running delta propagation and OLAP. Denominator: Throughput measured when
running delta propagation and OLAP alone.

threads, adding 2 delta propagation threads, and measuring how much OLAP throughput is

decreased. Table 6.20 presents the results.

We first examine the projection micro-benchmark results. The OLAP threads cause 50%

throughput drop for the delta propagation threads, whereas the delta propagation threads

cause only 10% throughput drop for the OLAP threads. Hence, while the OLAP threads

significantly affect the delta propagation threads, delta propagation threads modestly affect

the OLAP threads. This is because the sequential-scan-heavy projection query uses the core

resources more aggressively than the lightweight delta propagation thread.

We also examined how much OLAP and delta propagation threads would interfere with each

itself. We run 2 delta propagation threads on two separate physical cores. We, then, add 2 more

delta propagation threads such that each delta propagation thread shares its core with another

delta propagation thread. We examine how much the newly added threads improve the delta

propagation throughput. We do the same for OLAP threads. We observe that delta propagation

throughput is increased by 70%, whereas OLAP throughput is increased by only 10%. This is

because the lightweight delta propagation threads allow more room for hyper-thread sharing

whereas the aggressive OLAP threads do not leave as much hyper-thread sharing room.

Table 6.20 shows that the join query modestly affects the delta propagation throughput, unlike

the projection query. This is because the join query is random-data-access-intensive and

hence lightly uses the core resources. Similarly, when we place OLAP threads executing the join

queries on the same physical cores sharing hyper-threads, the OLAP throughput is increased by

60%. Similar to the delta propagation execution which is also random-data-access-intensive,

OLAP threads leave a significant amount of room for sharing hyper-thread resources.

OLAP and OLTP: We run 2 OLTP threads on two separate physical cores. We, then, add 2 OLAP

threads such that each OLTP thread shares its core with an OLAP thread. We examine how

much the newly added OLAP threads decrease the throughputs of the already running OLTP

threads. We do the same by starting with 2 OLAP threads, and then adding 2 OLTP threads,

and measuring how much the OLAP throughput is decreased. Table 6.21 presents the results.

We first examine the projection micro-benchmark results. The OLAP threads cause 27%

throughput drop for the OLTP threads, whereas the OLTP threads cause 45% drop for the
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2T+2A

Projection
OLTP 0.73
OLAP 0.55

Join
OLTP 0.77
OLAP 0.69

Table 6.21 – Hardware-level interference for hyper-thread sharing between the OLTP and
OLAP components when running the micro-benchmarks. Normalized OLTP and OLAP
throughputs. Numerator: Throughput when concurrently running OLTP and OLAP. De-
nominator: Throughput when running OLTP and OLAP alone.

OLAP threads. Hence, unlike the delta propagation threads, OLTP threads significantly affect

the OLAP threads when sharing hyper-thread resources. This is because OLTP workload is

more aggressive than the delta propagation workload. OLTP workload does successive index

search operations which include several levels of B+tree search with linear in-node searches.

Whereas, the delta propagation threads merely read a value and write the value to a random

position in the OLAP columns, without doing any computation. As a result, OLTP threads

block the OLAP computation and result in 45% throughput drop.

This shows that the sequential-scan-heavy OLAP workload is sensitive to hyper-thread sharing.

The performance of the projection query highly depends on successfully streaming the read

requests. If the stream of the read requests are intervened, e.g., due to a micro-architectural re-

source being occupied by the sibling hyper-thread, its performance significantly deteriorates.

The join micro-benchmark is affected moderately by the sibling OLTP threads. Similarly, the

OLTP threads are affected moderately by the sibling projection/join OLAP threads. These show

that the random-access-heavy OLTP and join query workloads are more robust to hyper-thread

sharing. We also tested how much the OLTP threads would interfere with itself. The OLTP

throughput is improved by 57%, showing a similar level of interference between OLTP and join

micro-benchmark. Observe that 57% throughput improvement over a hyper-thread sharing

means that each of the hyper-threads deliver ∼80% of the single-physical-core throughput.

Hence, the interference is about 20%.

6.6 Conclusions

In this chapter, we present the performance characterization of HTAP workloads. We examine

two real-life HTAP systems and one academic prototype that we built based on existing open-

source OLTP and OLAP systems.

The results show that the OLTP and OLAP components of the real-life systems do not interfere

with each other in the shared hardware resources. Both the OLTP and OLAP components only

lightly stress the memory bandwidth with a less than 15% memory-bandwidth consumption.

The OLTP and OLAP components of the academic prototype interfere with each other in the

shared hardware resources. Although the OLAP throughput is not affected by the concurrently
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running OLTP component, the OLTP throughput drops by 22 to 40% when the OLTP and OLAP

components share hardware resources. The OLTP component lightly stresses the memory

bandwidth, whereas the OLAP component significantly stresses the memory bandwidth with

up to 90% memory-bandwidth consumption.

Software-level interference depends on how fast the OLTP component generates fresh tuples

and how fast the OLAP component can process the fresh tuples. We have shown that OLAP

query execution time is exponentially increased if the OLTP component generates fresh tuples

faster than the OLAP component processes them. Hence, the OLAP component should be

allocated enough resources to able to process the fresh tuples faster than the OLTP component

generates them.
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7 Lessons Learned, Conclusions, and
Future Outlook

This chapter presents the learned lessons for each category of state-of-the-art database work-

loads. Then, it concludes with a future outlook.

7.1 Lessons Learned

This section presents the lessons learned for each category of state-of-the-art database work-

loads.

7.1.1 Online Transactional Processing

This section summarizes the highlights of our work on Online Transactional Processing (OLTP)

workloads and discusses its implications.

Instruction stalls. DBMS D and M suffer from instruction-cache misses. Hence, OLTP systems

should aim to mitigate instruction-cache misses. Transaction compilation has been shown to

be a promising way to reduce the number of instruction-cache misses for OLTP systems as

shown by [79] and [98].

Shore-MT ’s execution time has long shown to be dominated by the stalls due to instruction-

cache misses [98, 99, 108, 111]. We show that the improvements in the instruction fetch-unit of

Intel’s successive micro-architecture generations eliminates the instruction-cache misses that

Shore-MT suffers from, thus making Shore-MT’s execution time data-stalls-bound. Therefore,

further improvements in the micro-architecture can also make the DBMS D and M data-stalls-

bound.

Data stalls. DBMS N and Silo mainly suffer from data-cache stalls. DBMS D and M suffer from

data stalls only when the instruction-cache misses are mitigated by an increased instruction

locality in their instruction stream. A closer look into the data-cache misses has revealed that

the data-cache misses are due to the random data-accesses made during the index traversal.
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Hence, ground-up designed in-memory systems should firstly optimize the efficiency of their

index structures. We have seen that Masstree [75] used by Silo significantly outperforms the

red-black tree used by DBMS N.

While using an efficient index structure improves the performance by making fewer random

data-accesses, an efficient index structure’s execution time is still dominated by data-cache

misses caused by the random data-accesses during the index traversal. Hence, ground-up

designed in-memory OLTP systems should adopt techniques that can mitigate the negative

performance effect of random data-accesses.

One promising way to improve performance in the presence of random data-accesses is using

co-routines. Co-routines is a cheap thread interleaving mechanism that allows interleaving

long-latency data stalls with computation. Psaropoulos et al. [86, 87, 88] and Jonathan et al.

[49] have shown that co-routines can successfully be used to improve index join and index

traversal operations.

Another promising technique to improve the performance in the presence of random data-

accesses is using machine learning to learn the distribution of the keys and directly jump to

the index location that the key belongs to without actually performing the index traversal.

Kraska et al. [58], Llaveshi et al. [69] and Ding et al. [26] have shown that machine-learned

indexes can successfully replace/accelerate the index search operation.

Most OLTP indexes, e.g., the indexes used by TPC-B and TPC-C benchmarks, are over primary

keys, whose distributions are highly uniform. Hence, simple machine learning techniques,

such as linear regression, can successfully predict the location of a given key. For more complex

distributions, such as skewed distribution, the prediction is harder. However, using features

such as the natural logarithm of the key can reduce the skew in the distribution hence increase

the accuracy of the prediction. Llaveshi et al. [69] have shown that the ensemble of linear

regression models can predict the location of a given key with ∼80% accuracy for uniform

and skewed distributions, whereas the ∼20% of mispredictions are only of distance one to the

node that the key actually resides in.

Hardware. In this study, we conclude that software-level optimizations do not directly trans-

late into more efficient utilization of micro-architectural resources on modern processors.

One needs to optimize the hardware and software together as the next step putting micro-

architectural utilization as a high priority goal.

OLTP workloads are unable to utilize the wide-issue aggressive out-of-order cores that im-

plement complex hardware mechanisms. Most of the execution time go to memory stalls

for bringing either instructions or data blocks from the memory hierarchy to the processor.

instruction-cache sizes have been unchanged for the last decade due to the strict latency

limitations and we cannot expect them to increase. On the other hand, we have seen that

improved instruction fetch units can make a significant change in the micro-architectural

behavior of the OLTP systems. Further advancements at the micro-architectural level, espe-
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cially at the instruction fetch unit, can still have further potential impact to improve the OLTP

system performance, as popular OLTP systems such as DBMS D and M still highly suffer from

Icache stalls.

As ground-up designed OLTP systems mainly suffer from long-latency data-cache misses,

hardware designers can invest more on hardware mechanisms that can overlap long-latency

data stalls. We have seen that hyper-threading improves performance up to 70% in a carefully

designed and implemented in-memory OLTP system. Other hardware features such as turbo-

boost and hardware prefetchers are modestly useful for OLTP workloads as OLTP workloads

are memory-latency-bound. As the processor’s power budget is limited, hardware designers

can invest more power budget on the features that would overlap long-latency data stalls such

as larger number of hyper-threads per physical core.

Whatever the size of the last-level cache (LLC) is, megabytes of LLC will not be enough to

keep the working set of most standard OLTP benchmarks, which are in the orders of gigabytes.

Hence, instead of using beefy and complex out-of-order cores consuming large amount of

power, using simpler cores with intelligent hyper-threading mechanisms can improve the

throughput of OLTP applications with a smaller power budget [28, 30, 72]. Sirin et al. [97] have

shown that low-power ARM processor can provide 1.7 to 3 times lower throughput with 3 to

15 times less power consumption than a state-of-the-art Intel Xeon processor, achieving up to

9 times higher energy efficiency.

With that said, the adoption of low-power cores require further research. Kanev et al. [50]

have shown that server workloads partially benefit from the wide-issue out-of-order execution.

Hence, the use of wimpy cores with narrow-issue execution engines might produce a subopti-

mal performance and may not satisfy some application requirements. Similarly, Sirin et al.

[97] have shown that ARM processors’ quantified latency can be up to 11 times higher than

Intel Xeon towards the tail of the latency distribution, which makes Intel Xeon more suitable

for tail-latency-critical applications.

GPU/FPGA-based acceleration of database systems is another line of research that allows

improving database performance by using alternative computing devices to beefy and power-

hungry processors. [20, 92, 96] present techniques on using GPUs for accelerating analytical

processing queries such as hash join. Kim et al. [57] have proposed a transaction processing

engine architecture that exploits the wide-parallelism. Alonso et al. [5] present an open-source

hardware-software co-design platform for database systems, that uses CPU and FPGA as

the main building blocks. [51, 94] present techniques on integrating FPGAs into common

database operations such as data partitioning and regular expression. These studies highlight

the opportunities to enrich the traditional computing space of database systems by alternative

computing devices such as FPGAs and GPUs. As these computing devices provide massive

parallelism and/or low-power consumption, they allow investigating the energy-efficiency

space, and potentially serve as the processors of the future database systems.
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7.1.2 Online Analytical Processing

This section summarizes the highlights of our work on Online Analytical Processing (OLAP)

workloads and discusses its implications.

OLAP systems that follow the tuple-at-a-time execution model efficiently use the CPU cycles;

however, they require the execution of a significantly larger number of instructions hence

are significantly slower than the systems that use vector-at-a-time and compiled execution

models. Therefore, to deliver a high performance, OLAP systems should first adopt an efficient

execution model.

Projection and selection times are sensitive to overhead, as they are usually rapid. Having

an inefficient data access method inside the projection operator or using a simple bitvector

operation inside the selection operator loop can significantly increase the execution time.

Intermediate result materialization is a major source of overhead and should be avoided.

Using selection vectors is a good alternative to using bitvectors and intermediate result mate-

rialization.

Filtering-based techniques, such as Filter Join, Lookahead Information Passing, block-skipping

by meta-data processing and bloom filters on low hit-rate joins, are promising techniques for

reducing the work being done [85]. They do not eliminate, however, the overhead that would

come from the inefficiencies in the execution model. Combining filtering-based techniques

with efficient execution models can both reduce the work being done and eliminate the

overhead that would come from the inefficiencies in the execution model.

Vectorized engines are faster than compiled engines, only if their materialization cost pays

off. The materialization costs pay off for hash join, as vectors of computed hashes enable

the overlapping of costly random hash table accesses, but do not pay off for projection and

selection. Compiled engines suffer from mixing random data-accesses with hash computation

and/or condition checks, preventing them from overlapping the random data-accesses [56].

Scan-intensive queries saturate the memory bandwidth before saturating the number of cores.

Hence, scan-intensive queries would benefit from wider main memory bandwidths. Join-

intensive queries saturate the number of cores before saturating the main memory bandwidth.

Furthermore, join-intensive queries can significantly benefit from hyper-threads as hyper-

threads allow overlapping long-latency data-cache misses. Hence, join-intensive queries can

benefit from an increased number of hyper-threads and/or physical cores. Similarly, join-

intensive queries can benefit from cheap thread interleaving mechanisms, such as co-routines,

that allow overlapping long-latency data-cache stalls [86, 87, 88, 49].

Concurrently executing scan- and join-intensive queries provide a scenario where both core

and memory resources are fully utilized. However, concurrently executing queries interfere

with each other in the shared memory bandwidth, which results in an increased response

time for the join-intensive query. Therefore, OLAP systems should carefully schedule their
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concurrent queries and be aware of potential interference. Isolation mechanisms, such as

Intel’s Cache Allocation Technology, can be useful to mitigate the interference [70].

SIMD and predication are useful for improving single-threaded performance but, due to

bandwidth limitations, they fall short on multi-threaded performance. Hardware prefetchers

are essential for high-performance scans but are not so useful for joins. Hyper-threading is

useful for random-access-heavy queries as it allows overlapping the long-latency data stalls,

but falls short on sequential-access-heavy queries. Turbo-boost is effective for a few particular

scenarios but mostly provide modest speedups. Therefore, hardware (software) developers

should design hardware (software) based on software (hardware) characteristics for optimal

performance.

7.1.3 Hybrid Transactional and Analytical Processing

This section summarizes the highlights of our work on Hybrid Transactional and Analytical

Processing (HTAP) workloads and discusses its implications. HTAP systems significantly

suffer from the interference among the OLTP and OLAP components that share the data and

hardware. Sharing the data cause software-level interference.

The software-level interference depends on how fast the OLTP component generates fresh

data vs. how fast the OLAP component processes it. Intuitively, the OLAP component should

be faster in processing the fresh tuples than the OLTP component generates the fresh tuples.

Otherwise, the number of fresh tuples generated during the processing of the fresh tuples

will be even larger than the number of fresh tuples that are being processed. As a result, the

number of fresh tuples will be exponentially increased, and the query execution time will also

be exponentially increased.

Blocking the OLTP side during fresh tuple propagation can solve the problem of exponentially

increasing number of fresh tuples. However, this would result in a significantly reduced OLTP

throughput, especially if the fresh tuple propagation happens frequently. Hence, systems

should adopt techniques to efficiently propagate the fresh tuples such that the OLAP compo-

nent is fast enough to consume the fresh tuples, rather than blocking the OLTP component.

We have shown that it is possible to have fast enough fresh tuple propagation by using just

enough number of cores allocated for fresh tuple propagation.

Hardware-level interference is a problem for the academic prototype that we built. In partic-

ular, the OLTP throughput drops by 22 to 40% due to the interference caused by the OLAP

component. Hence, HTAP systems should adopt techniques to isolate OLTP and OLAP per-

formance at hardware level by using isolation mechanisms such as Intel’s Cache Allocation

Technology that allows isolating the last-level cache accesses by partitioning the last-level

cache among the cores that share it [70].
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7.2 Conclusions and Future Outlook

This thesis presents micro-architectural analysis of modern database workloads. Database

workloads have significantly evolved in the past twenty years. Traditional database systems

that serve for all types of database operations have evolved into fast, specialized database

systems optimized for a particular type of workload. While the initial database systems

mostly served for Online Transactional Processing (OLTP) workloads, the data warehousing

applications have led to Online Analytical Processing (OLAP) workloads and the specialized

OLAP systems used to serve for OLAP workloads. The recent real-time analytical processing

applications have led to Hybrid Transactional and Analytical Processing (HTAP) workloads

and the specialized HTAP systems used to serve for HTAP workloads.

Similarly, modern processors have significantly evolved in the past twenty years. Unicore,

simple processors with megabytes of main memory have evolved into power-hungry, multi-

core processors with hundreds of gigabytes or terabytes of main memories. Furthermore, the

processors are equipped with complex micro-architectural features such as highly-accurate

branch predictor, Single Instruction Multiple Data (SIMD) units and deep cache hierarchies. As

a result, the database system architectures further evolved to efficiently use the complex mod-

ern hardware features, leading to novel database system architectures and query processing

paradigms.

This thesis bridges the gap between the state-of-the-art database workloads and modern

processors by presenting of the hardware-software interaction among the state-of-the-art

database workloads and modern processors. We study OLTP, OLAP and HTAP workloads

separately. We focus on different generations of database systems for each workload to

identify the patterns in the hardware-software interaction for modern database workloads.

We show that OLTP workloads spend most of their execution time in instruction-cache or

data-cache misses, where the data-cache misses are due to the large number of random

data-accesses that OLTP workloads do. Therefore, OLTP workloads would benefit from tech-

niques/mechanisms at the software and hardware levels that would aim to mitigate the

instruction-cache and data-cache misses, such as transaction compilation and hyper-threads

overlapping long-latency data-cache misses.

The OLAP workloads spend most of their execution time in data-cache misses, if the OLAP sys-

tem follows vector-at-a-time or compiled execution model. The data-cache misses are due to

high pressure in the memory bandwidth or to random data-accesses. OLAP systems that follow

tuple-at-a-time execution model efficiently use the CPU cycles; however, they require the exe-

cution of a significantly larger number of instructions hence are significantly slower than the

systems that follow vector-at-a-time and compiled execution models. Hence, OLAP workloads

benefit from efficient execution models and would benefit from techniques/mechanisms at

the software and hardware levels that would aim to mitigate the data-cache misses.

HTAP workloads suffer from interference at the hardware level. We show that the OLTP
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throughput drops by 22 to 40% when the OLTP and OLAP components share hardware re-

sources. Therefore, to isolate the performance of the OLTP and OLAP workloads that share

hardware resources, HTAP systems should use resource isolation techniques and mechanisms.

Furthermore, HTAP workloads suffer from an increased OLAP query execution time when the

OLTP and OLAP sides share the data. We show that OLAP query execution time is exponentially

increased if the OLTP side generates the fresh tuples faster than the OLAP side processes them.

Therefore, HTAP systems should make sure that the OLAP component is allocated enough

resources to process the fresh tuples faster than the OLTP component generates them.
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A Appendix

A.1 CPU Cycles Categorization

In this section, we present how we map each CPU cycles category that VTune provides to the

individual categories that we use. Table A.1 presents the mapping.

A.2 Read-write Micro-benchmark

In this appendix, we extend our sensitivity analysis with the results of experiments while

running the read-write version of the micro-benchmark.

A.2.1 Sensitivity to Data Size

In this section, we examine the read-write micro-benchmark when we run the senstivity to

data size experiments. Figure A.1 shows the execution time breakdowns for all the systems

as the database size is increased. All the systems follow similar trends to the trends that we

observed for the read-only micro-benchmark, except Shore-MT. Shore-MT suffers significantly

more from Dcache stalls for the read-write micro-benchmark than it is for the read-only micro-

benchmark. We examined the function call trace of Shore-MT and saw that the increased
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Figure A.1 – Breakdowns of the CPU cycles as we increase the database size when running
the read-write microbenchmark.
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Table A.1 – The mapping between VTune’s original and our CPU cycles categorization.

VTune’s original category Mapped category
Back-End,

Memory Dcache

Back-End,
Core Resource/dependency

Front-End,
Front-End Latency,

ICache Misses
Icache

Front-End,
Front-End Latency,

ITLB Overhead
Icache

Front-End,
Front-End Latency,

Branch Resteer
Branch misprediction

Front-End,
Front-End Latency,

DSB Switches
Decoding

Front-End,
Front-End Latency,

Length Changing Prefixes
Decoding

Front-End,
Front-End Latency,

MS Switches
Decoding

Front-End,
Front-End Bandwidth Decoding

Bad Speculation Branch misprediction
Retiring Retiring
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Table A.2 – Normalized throughput for the read-write micro-benchmark. Throughput is
normalized to the throughput values of the read-only micro-benchmark.

1MB 10MB 10GB 100GB
DBMS D 0.7 0.7 0.8 0.8

Shore-MT 0.5 0.5 0.6 0.6
DBMS M 0.7 0.7 0.7 -
DBMS N 0.7 0.7 0.7 0.8

Silo 0.8 0.8 0.8 0.9

Dcache stalls are due to the logging meta-data processing that Shore-MT does for update

queries, but not read-only queries. Being a disk-based system, Shore-MT uses a heavy data

structure to keep a large amount of log information. DBMS N, on the other hand, uses

command logging where only the invoked transaction and its parameters are logged, which

then replayed in the recovery time if needed. Hence, DBMS N moves the expensive logging

operation out of the critical path and suffers less from the logging operations.

DBMS M has higher Dcache stalls compared to the read-only micro-benchmark. This is

likely due to that DBMS M uses a multi-version concurrency concurrency control mechanism,

which, in the case of updates, creates chains of versions. Chain traversal requires more random

data accesses and hence more Dcache stalls.

DBMS N and Silo has less Dcache stalls compared to the read-only micro-benchmark. This

is due to that update operation has a higher data locality than the read, as update requires

reading from and writing to the same data block. As a result, it results in less Dcache stalls.

Table A.2 shows the normalized throughputs for the read-write micro-benchmark. We normal-

ize the values with respect to the read-only micro-benchmark, as the normalization across the

systems (as done in Table 4.2) provides similar results to Table 4.2. We observe that read-write

micro-benchmark is always slower for all the systems and data sizes. This is because the

update operation requires more work than the read-only operation. It requires more work for

concurrency control as well as logging. As a result, its throughput is lower. Shore-MT ’s relative

throughput is the lowest among the systems. This highlights Shore-MT ’s inefficient locking

and logging mechanisms.

As the data size is increased, read-write micro-benchmark’s throughput is getting closer to

the read-only micro-benchmark. This is because of the data locality of the read-write micro-

benchmark. As the data size is increased, data locality matters more for the micro-benchmark

throughput. Hence, read-write micro-benchmark’s throughput gets closer to the read-only

micro-benchmark. Nevertheless, read-only micro-benchmark is 20% to 50% faster than the

read-write micro-benchmark.
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Figure A.2 – Breakdowns of the execution time as we increase the amount of work per trans-
action when running the read-write micro-benchmark.

Table A.3 – Normalized throughput for the read-write micro-benchmark. Throughput is
normalized to the throughput values of the read-only micro-benchmark.

1 row 10 rows 100 rows
DBMS D 0.8 0.8 0.7

Shore-MT 0.6 0.8 0.8
DBMS M 0.7 0.5 0.5
DBMS N 0.8 0.8 0.8

Silo 0.9 0.9 0.9

A.2.2 Sensitivity to Work per Transaction

In this section, we examine the read-write micro-benchmark when we run the sensitivity

to work per transaction experiments. Figure A.2 shows the execution time breakdowns for

all the systems as the database size is increased. We observe similar trends to the read-only

micro-benchmark As the number of rows updated per transaction is increased DBMS D

and M’s Icache stalls are decreased, and they become more and more Dcache-stalls-bound.

Shore-MT, DBMS N and Silo, being already Dcache-stalls-bound systems, have similar micro-

architectural behavior across the varied amount of work per transaction.

Table A.3 shows the normalized throughputs for the read-write micro-benchmark. We nor-

malize the values with respect to the read-only micro-benchmark, as the normalization

across the systems (as done in Table 4.3) provides similar results to Table 4.3. We observe

that the read-write micro-benchmark’s throughput is decreased as the amount of work per

transaction is increased for DBMS D and M. This is because the read-only micro-benchmark

benefits more from the increased amount of work per transaction compared to the read-write

micro-benchmark. The read-write micro-benchmark requires more work, and hence more in-

structions than the read-only micro-benchmark. As a result, the increased instruction locality

is less useful to the read-write micro-benchmark than the read-only micro-benchmark.
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Figure A.3 – Breakdowns of the execution time for different index structures with and with-
out compilation optimizations while running the read-write micro-benchmark.

Table A.4 – Normalized throughput for different index structures with and without compi-
lation when running the read-write micro-benchmark.

Micro-bench.
B-tree w/ comp. 1

B-tree w/o comp. 0.2
Hash w/ comp. 2.3

Hash w/o comp. 0.3

A.2.3 Index, Compilation and Data Type

In this section, we evaluate the index, compilation and data type for the read-write micro-

benchmark. Figure A.3 presents the execution time breakdowns for different index types

having compilation turned on and off. We observe that compilation reduces the Icache stalls

significantly similar to the read-only micro-benchmark. Table A.4 presents the normalized

throughput values. Compilation improves the throughput by 5-7.7x similar to the read-only

micro-benchmark.

Figure A.4 shows the execution time breakdowns for DBMS N and Silo for Long and String

data types. DBMS N and Silo present similar results to the read-only micro-benchmark. DBMS

N has less Dcache stalls for the String data type, whereas Silo has similar amount of Dcache
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Figure A.4 – Breakdowns of the execution time for String and Long data types while run-
ning the read-write micro-benchmark.
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Table A.5 – Normalized throughput for String and Long data types while running the read-
write micro-benchmark.

Long String
DBMS N 1 0.9

Silo 1 0.6

stalls for the String and Long data types.

Table A.5 shows the normalized throughput values for String and Long data types. The results

are similar to the read-only micro-benchmark. While Silo has lower throughput for String

due to the increased amount of work for String, DBMS N has similar throughput thanks to

utilization of the workload locality for the String data type.
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