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ABSTRACT
Flexure oscillators are promising time bases thanks to their high quality factor and

monolithic design compatible with microfabrication. In mechanical watchmaking, they
could advantageously replace the traditional balance and hairspring oscillator, leading to
improvements in timekeeping accuracy, autonomy and assembly. As MEMS oscillators,
their performance can rival that of the well-established quartz oscillator. However, their
inherent nonlinear elastic behavior can introduce a variation of their frequency with ampli-
tude called isochronism defect, a major obstacle to accurate timekeeping in mechanical
watches. Previous research has focused on addressing this issue by controlling the elastic
properties of flexure oscillators. Yet, these oscillators exhibit other amplitude-related fre-
quency variations caused by changes of inertia with amplitude. In this article, we not only
improve existing models by taking into account inertia effects but also present a new way
of using them to adjust the isochronism defect. This results in a better understanding of
flexure oscillators and an alternative way of tuning isochronism by acting on inertia instead
of stiffness. This also opens the door to new promising architectures such as the new
Rotation-Dilation Coupled Oscillator (RDCO) whose symmetry has the advantage of min-
imizing the influence of linear accelerations on its frequency (the other major limitation of
flexure oscillators). We derive analytical models for the isochronism of this oscillator, show
a dimensioning with compensating inertia and stiffness variations and present a practical
method for post-fabrication isochronism tuning. The models are validated by FEM and
mock-ups serve as preliminary proof-of-concept.

1 INTRODUCTION
1.1 Flexure mechanical watch time bases

The Swiss watchmaking industry, with an annual export of about 20 billion Swiss francs, is the
country’s third largest exporter and accounts for approximately 1.5% of its GDP [1].1 Mechanical
watches constitute about 80% of these exports (in value) and rely substantially on innovation push-
ing the limits of mechanical timekeepers to maintain their position. However, despite concerted
efforts by the industry, the accuracy of the best mechanical watches seems to have reached a
plateau of a few seconds per day. The general consensus in horology is that the quality factor of
the time base, a dimensionless number that characterizes the damping of an oscillator, is the key
limiting factor to accuracy [2,3,4]. Yet, the friction in the bearing of the traditional mechanical watch
oscillator, the balance and hairspring depicted in Fig. 1, drastically limits its quality factor.2 This
fact, together with the recent spreading in the watchmaking industry of high-technology materials
and techniques such as silicon components manufactured by deep reactive ion etching [6,7,8], has
motivated the search for new time bases [9, 10]. Flexure oscillators are a promising replacement
for the balance and hairspring since their motion is only guided by the deformation of elastic ele-
ments, thus eliminating contact friction [11, 12], paving the way to a significant increase in quality
factor and a new level of timekeeping accuracy.3

1More information available on Switzerland’s official website: www.eda.admin.ch/aboutswitzerland/en/
home/wirtschaft/taetigkeitsgebiete/uhrenindustrie.html

2Air friction also has a significant influence but eliminating it only increases the quality factor by about 50%: it was
increased from 300 to 450 for a balance and hairspring in 99.8% vacuum [5].

3Monolithic fabrication using materials with minimal internal friction such as monocrystalline silicon also contributes
to increasing the quality factor [13]. Additionally, increasing the quality factor reduces power consumption, leading to
greater watch autonomy [10]. 2

www.eda.admin.ch/aboutswitzerland/en/home/wirtschaft/taetigkeitsgebiete/uhrenindustrie.html
www.eda.admin.ch/aboutswitzerland/en/home/wirtschaft/taetigkeitsgebiete/uhrenindustrie.html


Fig. 1: Classical mechanical watch balance and hairspring oscillator [14].

The introduction of flexure oscillators in mechanical watches comes with new challenges that
need to be overcome before they can be implemented. First, the nonlinear elastic behavior of
flexures introduces a dependence of oscillation period on amplitude, i.e., an isochronism defect.
Second, the deviation of flexures from the motion of ideal linkages can result in changes in the
mass distribution of the time base as it oscillates. This causes an isochronism defect (through
amplitude-dependent inertia variation) and a contribution of gravity to the effective stiffness of the
oscillator (and hence an effect on its period). These directly affect timekeeping accuracy. Other
external factors can also affect the period such as temperature, magnetic fields and shocks; these
effects which can be addressed with existing materials and techniques [15, 16] are not treated in
the present article.

Flexure oscillators also have applications as MEMS time bases for electronic devices, where
their frequency stability and potential for miniaturization and batch production can compete with
the well-established quartz oscillator [17, 18]. The main challenge for MEMS time bases is, as
for mechanical watch oscillators, to have a stable frequency regardless of external perturbations,
except that the main sources of perturbation are different. For instance, isochronism defect is
not a significant issue for MEMS oscillators due to their small amplitudes whereas temperature
is [19,20]. For this reason, this paper focuses on mechanical watch applications. Note that linear
accelerations (such as gravity) are important sources of perturbation for both applications, hence
the symmetry of the architectures presented here also has potential for MEMS time bases.4

1.2 State of the art
In our previous research on flexure oscillators, we developed design principles that allow to

minimize gravity effects [15, 22] and introduced the concept of isochronism tuning by changing
second order stiffness properties of the oscillator [16]. We showed that we could compensate
isochronism defects by adjusting the stiffness of flexures whose motion is of second order of the
main oscillation, that is, the same order as the isochronism defect, see Eq. (6). The fact that
this is is done by changing oscillator properties without affecting any other crucial characteristic of
the pivot (such as such as nominal stiffness, gravity sensitivity and parasitic center shift) is called
intrinsic isochronism tuning [16] and is superior to existing solutions. Indeed, the first flexure pivot
oscillator to be introduced in a watch, the 2014 “Genequand System” [9, 10] used an external
mechanism to tune its isochronism [23]; other oscillators based on the crossed flexure pivot [24]
use special values for the point at which the leaf springs cross and the angle between them to
reach isochronism [22,25,26,27,28] which, however, does not qualify as isochronism tuning since
changing these parameters affects other crucial properties of the pivot [16,22,29,30].

4For instance, Ref. [20] presents a kHz MEMS flexure time base using a symmetrized tuning fork which is known to
minimize the effect of linear accelerations [21]. The MHz MEMS oscillator in Ref. [19] also presents a similar symmetry.
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1.3 New concept of inertial isochronism tuning
In previous research, we noticed that the deviation of flexures from the motion of ideal linkages

resulted in changes in the mass distribution of our time bases as they oscillate, thus affecting their
isochronism. For instance, the “GIFP” oscillator [15, 22] has a parasitic tilt of its rotation axis and
the “co-RCC” [15, 16, 31] has an inward motion of its intermediate bodies. These effects were
neglected, assuming that they were small and could be compensated by acting on the restoring
torque nonlinearity of the flexures [16]. Similar inertia variations are also present in other existing
flexure time bases, for instance in Refs. [32,33,34].

In the present article, we show how to take into account the effect of inertia variations in our
previous isochronism model. This has several advantages. First, this completes the analysis
of the isochronism of flexure time bases and allows to take into account inertia effects into the
design instead of compensating them a posteriori. Second, this widens the spectrum of potential
new flexure time bases by including architectures with significant inertia variations. For instance,
we introduce the new Rotation-Dilation Coupled Oscillator (RDCO) family [35] whose symmetry
has the advantage of inherently minimizing the influence of linear accelerations on oscillation
frequency: the other major obstacle to the implementation of flexure time bases [21, 22]. Third,
we present a new way of tuning isochronism, by acting on the inertia variation of the oscillator
instead of its stiffness variation, as was previously done [9, 16]. This concept is new and is the
main contribution of this article. As a result, new practical methods of tuning isochronism post-
fabrication emerge that are potentially simpler than the ones based on the stiffness. For instance,
displacing masses or removing mass by laser ablation [36] is a much less sensitive operation than
removing matter from slender flexures to affect their stiffness, as we suggested in Ref. [16]. Some
of these results were announced in the first author’s PhD thesis [15].
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Fig. 2: Kinematic diagram of the RDCO using ideal joints in nominal position (left) and rotated
(right).

Remark 1.1. It is well known that inertia variations can be used to tune the nominal frequency
of rotational oscillators. This is for example implemented on balance and hairspring oscillators by
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changing the position of inertia blocks or screws placed on the balance [37,38]. Inertia variations
with temperature have also been used to minimize the effect of temperature on frequency, for
example with bimetallic balances [37, pp.259-262]. These concepts are however different form the
one proposed in this article as they results in a modified inertia that is not function of oscillation
amplitude and therefore does not affect isochronism.

Remark 1.2. Our concept is analogous to the Huygens’ 1657 theoretical isochronism corrector
for the pendulum depicted in Fig. 3 [39, 40]: he proposed to compensate the isochronism defect
resulting from the nonlinear relation between gravity restoring torque and angular position of the
pendulum by replacing the rod with a flexible cord that unwinds off a cycloid. This essentially
corresponds to changing the active length L of the pendulum as it swings. The analogy with
changing the inertia J of a rotational oscillator as it rotates can be seen from the formulas for
angular frequency, namely

√
k/J for a harmonic rotational oscillator of stiffness k and

√
g/L for

an ideal pendulum under gravity g. Pushing the analogy further, tuning the isochronism defect
by acting on the inertia variation would correspond to tuning the curvature of Huygens’ cycloidal
cheeks.

Fig. 3: Huygens’ isochronism correction for the pendulum with cycloidal cheeks changing its active
length as it oscillates.

1.4 Structure of the paper
Section 2 presents the new RDCO rotational oscillators family and describes its kinematics.

Examples of flexure implementations are given and the design is validated qualitatively on mock-
ups. Section 3 derives analytical models for the inertia variation and restoring torque nonlinearity
(i.e., stiffness variation) of the RDCO and describes their effect on the isochronism of the oscillator.
Section 4 validates the concepts of this paper by designing a flexure implementation where the
inertia and stiffness variations compensate each other to minimize the isochronism defect. We
show that the isochronism of the RDCO can be tuned by controlling either its stiffness variation
in Sec. 4.2.1 or its inertia variation in Sec. 4.2.2. The stiffness variation is controlled by adjusting
the stiffness of flexures whose deflection is of second order of the rotation angle and the inertia
variation is controlled by displacing tuning masses at a constant radius from the center of the
system. These results are validated by Finite Element Method (FEM).
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2 DESIGN AND KINEMATICS
Figure 2 shows a kinematic diagram of the RDCO. The mechanism consists of n > 3 inertial

bodies linked to each other by sliders (prismatic joints) to form a loop (n = 3 in Fig. 2). Each rigid
body is linked to the ground by a connecting rod with a pivot at both extremities, one connected
to the ground (pivot A) and the other to the inertial body (pivot B). The joints are placed such
that they have rotational symmetry of order n with respect to the center O of the system. An extra
degree-of-freedom (DOF) is added by allowing a pivoting motion in one of the sliders, see Fig. 2.
The sole purpose of this extra DOF is to avoid overconstraining the system; it is not activated
during the motion of the system. Grübler’s formula for planar linkages [41] gives a mobility M = 1
for the RDCO in Fig. 2 with N = 8 bodies and j = 10 joints with each a DOF fi = 1:

M =

j∑
i=1

fi − 3(j −N + 1) = 10− 3(10− 8 + 1) = 1 (1)

Knowing that there are no internal degrees-of-freedom, this shows that the 1-DOF motion depicted
in in Fig. 2 is obtained without overconstraints (for a planar mechanism).

2.1 Flexure implementation
For this system to act as a mechanical oscillator, spring components must be added. This

happens naturally in the flexure implementation. Any combination of flexures presenting equivalent
properties to the ideal kinematic diagram of Fig. 2 can be used. Figure 4 shows an example where
truncated circular notch flexure hinges are used for pivots A and B [12, Sec. 3.5.10] and parallel
leaf springs are used for the sliders. Parallel leaf springs actually have a parabolic motion but it
is assumed that they closely approximate a linear motion for the small deformations considered
here [12, Sec. 4.1]. In this implementation, two orthogonal axes of symmetry were chosen instead
of a rotational symmetry (so as to have symmetric functions with respect to equilibrium) but the
design still corresponds to the ideal kinematic diagram of Fig. 2 with n = 4 inertial bodies. More
examples of flexure implementation are given in Sec. 2.3 and Ref. [15, Sec. 3.3]. Note that the
extra DOF is omitted in most designs, assuming that there is enough flexibility in the system to
release the overconstraint.

2.2 Rotation-dilation coupling
The kinematic behavior of the system is determined by the dimensionless ratio δ = d/L, where

d is the distance from the center O of the system to the axis of pivot A and L is the distance from
the axis of pivot A to the axis of pivot B, see Fig. 4 and Table 1. The signs of d and L are defined
with respect to the direction from O to B. We classify the RDCO architectures according to three
domains of the parameter δ, summarized in Table 1.

(a) When δ > 0, d and L are of same sign. The connecting rods are connected to the ground
between the inertial loop and point O.

(b) When −1 < δ < 0, d and L are of opposite sign and d < L. The connecting rods cross each
other inside of the inertial loop.

(c) When δ < −1, d and L are of opposite sign and d > L. The connecting rods are connected to
the ground outside of the inertial loop.
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Fig. 4: Example of RDCO physical implementation.

Figure 2 shows the motion of the system as it is displaced from its equilibrium position. We
call this motion rotation-dilation coupling, where the rotation is defined by the angle θ swept by a
vector from the center O to a point P on the inertial body and the dilation is defined by the change
of length of this vector. As shown in Table 1 and Eq. (8), the parameter δ influences this dilation:

• When δ > 0,
∥∥∥−−−−→OP (θ)

∥∥∥ < ∥∥∥−−−−→OP (0)
∥∥∥ and the inertial bodies move towards each other. We call it

a negative dilation.
• When δ < 0,

∥∥∥−−−−→OP (θ)
∥∥∥ > ∥∥∥−−−−→OP (0)

∥∥∥ and the inertial bodies move away from each other. We call
it a positive dilation.

2.2.1 Particular case: δ = 0
When δ = 0, the connecting rods are attached to the ground at the center of the system and

the size of the system stays constant as it rotates (no dilation).

2.2.2 Particular case: δ = −1
When δ = −1, d and L are of opposite sign and go to infinity. It is noted that circular motion

becomes straight line motion when the radius goes to infinity. This motion can be implemented by
replacing pivots A by sliders with axis tangential to a circle with center O [15, Fig. 3.16].

2.3 Qualitative design validation
Mock-ups were built to validate qualitatively the kinematics of the RDCO. The configurations

(a) and (b) of Table 1 are shown in Fig. 5 and 6, respectively. In these implementations, rectangular
notch flexure hinges [42,12] have been used for the pivots and parallel leaf springs for the sliders.
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(a) δ > 0 (b) −1 < δ < 0 (c) δ < −1
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Negative dilation Positive dilation Positive dilation

Table 1: Influence of parameter δ on the kinematics of the RDCO.

The mock-ups were fabricated by laser cutting a 5 mm thick Polyoxymethylene (POM) sheet. They
have an outer diameter of 200 mm and an admissible angular stroke of approximately ±18 degrees
for the configuration with δ > 0 and ±25 degrees for the configuration with −1 < δ < 0. This
hardware showed that the system behaves qualitatively as predicted: the system has one DOF
and a motion of the inertial bodies closely approximating a rotation about point O coupled to a
dilation. The variation in diameter of the mock-ups can be observed relatively to the red circle
printed in the background. The two systems confirm that the dilation is negative when δ > 0, see
Fig. 5 and Ref. [43], and positive when −1 < δ < 0, see Fig. 6 and Ref. [44].

Remark 2.1. Due to its three-dimensional design, the mock-up of Fig. 6 had to be assembled in
multiple parts. As a result, the connecting rods do not cross perfectly in the center in the nominal
position and one of the parallel leaf springs was removed to prevent overconstraining the pivot.
This is equivalent to the extra DOF of Fig. 2.

3 ANALYTICAL MODEL
The goal of this paper is to use the inertia variation of the oscillator in addition to its stiffness

variation to tune its isochronism defect. We thus start by deriving in Sec. 3.1 an expression for the
isochronism defect of a general rotational oscillator with varying stiffness and varying inertia. We
then compute these two effects for the RDCO in Sec. 3.2 and 3.3, respectively.
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(a) (b)

Fig. 5: Mock-up of the RDCO with δ > 0 and n = 4 inertial bodies in nominal position (a) and
rotated (b), showing a negative dilation. Video available in Ref. [43].

(a) (b)

Fig. 6: Mock-up of the RDCO with −1 < δ < 0 and n = 3 inertial bodies in nominal position (a)
and rotated (b), showing a positive dilation. Video available in Ref. [44].
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3.1 Isochronism defect of the perturbed rotational harmonic oscillator

We consider the case of an oscillator whose restoring torque can be expressed by a power
series having only odd terms (assuming the restoring torque to be antisymmetric with respect to
equilibrium position)

M = k0 θ + k2 θ
3 +O

(
θ5
)

= k0 θ(1 + µθ2) +O
(
θ5
)
, (2)

where k0 is the nominal stiffness (i.e., the limiting stiffness as rotation angle goes to zero) and
µ = k2

k0
the relative restoring torque nonlinearity [22], and whose inertia can be expressed by a

power series having only even terms (assuming the inertia variation to be symmetric with respect
to equilibrium position)

J = J0 + J2θ
2 +O

(
θ4
)

= J0

(
1 + ιθ2

)
+O

(
θ4
)
, (3)

where J0 is the nominal inertia and ι = J2
J0

the relative inertia variation.

This oscillator satisfies the differential equation

θ̈ = −
k0

(
1 + µθ2

)
J0 (1 + ιθ2)

θ +O
(
θ5
)
, (4)

which, when using again series expansions around θ = 0, becomes

θ̈ = −k0

J0
θ − k0

J0
(µ− ι) θ3 +O

(
θ5
)
. (5)

Solving this equation using standard methods of perturbation theory [45, Eq. 2.3.34] yields the
frequency-amplitude relation of the oscillator

ω(Θ) = ω0

(
1 +

3 (µ− ι)
8

Θ2

)
+O

(
Θ4
)
, (6)

where ω0 =
√
k0/J0 is the nominal frequency as amplitude approaches zero.

Equation (6) gives an explicit expression for the isochronism defect. It shows that isochronism
tuning can be performed either by modifying the relative restoring torque nonlinearity µ by acting
on k2 (without affecting k0) or by modifying the relative inertia variation ι by acting on J2 (without
affecting J0), hence not affecting the nominal frequency ω0. This will be done on the RDCO in
Sec. 4.2.1 and 4.2.2, respectively.

Remark 3.1. When the relative restoring torque nonlinearity is equal to the relative inertia variation
(µ = ι), Eq. (5) becomes the differential equation of the simple rotational harmonic oscillator with
constant angular frequency ω0, i.e., with zero isochronism defect.
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3.2 Stiffness variation of the RDCO
The rotational stiffness of the RDCO is calculated with the following assumptions:

• The flexure elements of the RDCO are considered as springs and the other bodies as rigid.
• The system is considered symmetric: all pivots A have rotational stiffness kA, all pivots B have

rotational stiffness kB and all the sliders have translational stiffness kt.
• The restoring force or restoring torque of the flexure elements can be expressed by series

expansion having only odd terms of displacement, see Eq. (2).
• The rotations θ are small and terms can be expressed using series expansions around θ = 0.
• No external force (such as gravity) is acting on the oscillator; we assume that its symmetry

minimizes the influence of gravity on its restoring torque [22].

The rotational stiffness of the oscillator is derived from the strain energy of the system with the
following steps:

1. Derive the motion of the two pivots of the connecting rod for a given rotation of the oscillator.
2. Derive the motion of the sliders for a given rotation of the oscillator.
3. Express the strain energy of the system for a given rotation of the oscillator.
4. Compute the rotational stiffness of the system from its total strain energy.

3.2.1 Motion of the pivots of the connecting rod
The angles θA and θB swept by the pivots of the connecting rod when the system rotates by an

angle θ are obtained by trigonometry, see Fig. 7b. For small displacements, they can be expressed
using series expansions:

θB = arcsin
d sin θ

L
= δθ +

1

6
δ
(
δ2 − 1

)
θ3 +O

(
θ5
)

θA =θ + θB = (1 + δ) θ +
1

6
δ
(
δ2 − 1

)
θ3 +O

(
θ5
)
.

(7)

3.2.2 Motion of the sliders
The motion of the sliders corresponds to the change in distance q between the pivots of the

inertial bodies, see Fig. 7b. We first derive the distance from the center of the oscillator to these
pivots as the oscillator rotates

r(θ) = d cos θ + L cos θB = R0

(
1− δ

2
θ2

)
+O

(
θ4
)
, (8)

where R0 = L+ d. We then get the motion of the sliders

∆q(θ) = 2 sin
(π
n

)
(r (θ)− r (0)) = −R0 δ sin

(π
n

)
θ2 +O

(
θ4
)
. (9)
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Fig. 7: Parameters of the RDCO stiffness and inertia models in equilibrium position (a) and rotated
by angle θ (b).

3.2.3 Strain energy

The restoring force of the flexures can be expressed by series expansion:

MA (θ) = kA,0(1 + µA θ
2) θ +O

(
θ5
)
,

MB (θ) = kB,0(1 + µB θ
2) θ +O

(
θ5
)
,

Ft (∆q) = kt,0(1 + µt ∆q2) ∆q +O
(
∆q5

)
.

(10)

The strain energy of the system for a rotation θ follows from the sum of the strain energies of each
elastic joint

U = n

(∫ θA

0
MA (ν) dν +

∫ θB

0
MB (ν) dν +

∫ ∆q

0
Ft (ν) dν

)
. (11)

3.2.4 Rotational stiffness

Substituting Eq. (7)-(10) into Eq. (11) and deriving and dividing the strain energy U by θ yields
the rotational stiffness of the RDCO

kR =
dU

dθ
= kR,0(1 + µRθ

2) +O
(
θ4
)
, (12)
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where

kR,0 = n
(
(δ + 1)2kA,0 + δ2kB,0

)
(13)

is the nominal stiffness and

µR =
2δ(δ + 1)(δ2 − 1)kA,0 + 2δ2(δ2 − 1)kB,0 + 3 (δ + 1)4 kA,0µA + 6δ2kt,0R

2
0 sin2

(
π
n

)
3 ((δ + 1)2kA,0 + δ2kB,0)

. (14)

is the relative restoring torque nonlinearity according to Eq. (2). Note that the contribution of the
relative restoring torque nonlinearity µB of the external pivot is neglected assuming that it is small
and that δ4 is small.

Remark 3.2. We define the rotational stiffness by the secant stiffness defined as the restoring
torque divided by the angular displacement ksec = M(θ)

θ . This quantity should not be confused with
the tangent stiffness defined as the derivative of the restoring torque ktan = dM

dθ .

3.3 Inertia variation of the RDCO
The inertia of the RDCO as it rotates is calculated with the following assumptions:

• All the inertial bodies are the same.
• All the joints are ideal.
• The connecting rods are massless.
• The rotations are small and terms can be expressed using series expansions around θ = 0.

The inertia of the RDCO for a rotation θ is

J (θ) = n
(
Jr +mrs

2 (θ)
)
, (15)

where Jr and mr are respectively the inertia and mass of one of n inertial bodies and s is the
distance from the center O of the oscillator to the COM of one inertial body depicted in Fig. 7. This
distance can be computed as follows

s2 (θ) =S2
x + (r (θ)− (R0 − Sy))2 = S2

0 − δR0Syθ
2 +O

(
θ4
)
, (16)

where r is given in Eq. (8), S0 = s(0) is the distance from O to the COM of one inertial body at
equilibrium and Sy is the projection of that distance against the axis formed by the pivots of the
connecting rod, see Fig. 7a.

Substituting Eq. (16) into Eq. (17) yields the inertia of the RDCO as it rotates

J (θ) = n
(
Jr +mr

(
S2

0 − δR0Syθ
2
))

+O
(
θ4
)

(17)
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with relative inertia variation according to Eq. (3)

ιR =
−δmrR0Sy
Jr +mrS2

0

. (18)

The results obtained with this model are compared to the ones obtained by numerical simula-
tion in Fig. 8 and show a good match. The FEM model is described in Sec. 4.1.

Fig. 8: Inertia J of the RDCO versus rotation angle θ obtained by FEM and with the analytical
model.

Remark 3.3. The sign of the inertia variation in Eq. (18) depends on the sign of δ, as was already
noted through the sign of the dilation in Sec. 2.2.

4 EXAMPLE OF IMPLEMENTATION AND NUMERICAL VALIDATION
4.1 Design with compensating inertia and stiffness variation

In order to validate the concepts presented in this paper, we design a flexure implementation
of the RDCO and show, first, that the inertia and stiffness variation can compensate each other
in order to reach isochronism and, second, that the isochronism of the RDCO can be tuned by
varying either its stiffness variation µ or its inertia variation ι. We validated these results by FEM.

Two configurations exist where the inertia and restoring torque defects can compensate each
other:

(a) δ < 0 and the positive dilation of the system (ι > 0) compensates for the increasing stiffness
of the system (µ > 0).
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(b) δ > 0 and the negative dilation of the system (ι < 0) compensates for the decreasing stiffness
of the system (µ < 0).

Configuration (b) where δ > 0 was chosen. This makes the implementation easier since the
connecting rods do not have to cross each other as depicted in Fig. 6. The design is shown in
Fig. 4. It does not target watch specifications but aims at respecting realistic proportions for a
titanium prototype of diameter 80 mm and thickness 5 mm manufactured by electrical discharge
machining (EDM).5 A relatively large value of δ = 0.25 was chosen in order to highlight nonlinear
effects. Truncated circular notch flexure hinges were used for pivots A and B with the following
dimensions: minimum thickness of 50 µm and radius of 10.5 mm for pivot A and minimum thick-
ness of 150 µm and radius of 2 mm for pivot B (whose deformation is much smaller). Parallel leaf
springs were used for the sliders with a thickness of 130 µm and a length of 32 mm. It was shown
in Ref. [46, Chap. 7] that these dimensions can be reached by EDM manufacturing.

Figure 9 shows that the inertia and stiffness variation of this oscillator obtained by FEM overlap,
hence compensating each other and allowing to reach theoretical isochronism. These results
validate the design and concepts presented in this paper.

The oscillator was simulated using the commercial FEM software ANSYS [47] with a mesh of
hexahedral elements of type SOLID186 that is refined on the flexures such that there are three
elements across their thickness and five along their height. The truncated circular notch flexures
have 10 elements along their length and the parallel leaf springs 32, see Fig. 10. The inertia
variation Jvar = J(θ)

J0
is obtained directly from the FEM data and the stiffness variation is obtained

by calculating the secant stiffness for each data point, i.e, kvar = ksec
k0

= M(θ)
k0θ

, see Remark 3.2.

Fig. 9: Inertia and stiffness variation of the example RDCO versus rotation angle θ.

5Titanium alloy TiAl6V4 with Young’s modulus E = 114 GPa was chosen for its machinability and high ratio of fatigue
limit to Young’s modulus that make it suitable for flexures [46, Table B.14].15



Fig. 10: Close-up view of the mesh of the RDCO finite element model.

Remark 4.1. In order to satisfy the analytical model’s assumption that stiffness and inertia are
symmetric functions with respect to the equilibrium position, a flexure implementation with axial
symmetry was chosen instead of a rotational symmetry such as shown in Fig. 6.

4.1.1 Numerical validation of analytical stiffness model
The analytical restoring torque nonlinearity of the oscillator is calculated by substituting the

rotational stiffness of the pivots and translational stiffness of the sliders from [46, Eq. 4.20 and 5.9]
into Eq. (14). We showed in previous research that the nonlinearity µA of pivot A cannot be cal-
culated accurately using Euler-Bernoulli beam theory [15,22]. This issue is resolved by assuming
that µA = 0 to find a first set of dimensions and then fine-tuning the restoring torque nonlinear-
ity µR of the oscillator by changing the thickness ht of the parallel leaf springs, as explained in
Sec. 4.2.1. For the given implementation, Fig. 9 displays similar analytical and FEM results with
respective restoring torque nonlinearities µR = −0.225 and µR = −0.205, showing that the analyt-
ical model provides an estimation with less than 10% error despite neglecting µA. Note that the
FEM value of µR was obtained by fitting Eq. (2) to the data.

4.1.2 Numerical validation of analytical inertia model
Since our flexure implementation has two different types of inertial bodies, see Fig. 4, Eq. 18

is adapted as follows:

ιR =
−δR0 (mr,1Sy,1 +mr,2Sy,2)

Jr,1 + Jr,2 +mr,1S2
0,1 +mr,2S2

0,2

(19)

where indices 1 and 2 refer to the two different types of inertial bodies. With the mass parameters
in Table 2, this equation returns an inertia variation ιR = −0.217 that matches the numerically
computed ιR = −0.204 with less than 10% error, see Fig. 9. Note that the FEM value of ιR was
obtained by fitting Eq. (3) to the data in Fig. 8.
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R0 S0,1 S0,2 Sy,1 Sy,2 mr,1 mr,2 Jr,1 Jr,2

34.0 mm 34.2 mm 30.5 mm 34.0 mm 30.3 mm 11.3 g 13.5 g 2.29 kg mm2 2.99 kg mm2

Table 2: Mass parameters of the RDCO flexure implementation used for numerical validation.

4.2 Isochronism tuning
Using the models of Sec. 3.3 and 3.2, we present two ways of tuning the isochronism of the

RDCO, by acting either on stiffness or inertia.

4.2.1 Stiffness isochronism tuning
The isochronism of the RDCO can be tuned by varying the relative restoring torque nonlinearity

µR without affecting any other crucial property of the oscillator. As in our previous work [16], this
can be done by changing the stiffness kt,0 of flexures that perform a second order motion of the
rotation angle and thus only contribute to the stiffness variation in Eq. (12) without affecting the
nominal stiffness kR,0 in Eq. (13). Although the analytical model cannot exactly predict the inertia
and stiffness variation of the oscillator, this technique can be used to fine-tune the dimensions
obtained using the analytical model to have the two effects accurately compensate each other as
shown in Fig. 9.

The tuning calculated with Eq. (14) is compared to FEM results in Fig. 11. Recall that the
model cannot accurately predict the absolute restoring torque nonlinearity since µA is unknown.
The results are hence shown in terms of variation of restoring torque nonlinearity ∆µ obtained
for a relative thickness variation ∆ht of the parallel leaf springs. The difference in slope between
the analytical and FEM models could be explained by the fact that flexures only approximate the
motion of the ideal joints used in the analytical model. It is indeed known that parallel leaf springs
actually have a parabolic trajectory and that the rotation axis of notch flexure hinges moves slightly
during their deformation [12,42].

Remark 4.2. The thickness ht of the parallel leaf springs was chosen as tuning parameter due to
its low impact on the design. However, their length Lt could also have been used, which might be
more suited for post-fabrication fine-tuning [16].

4.2.2 Inertia isochronism tuning
The isochronism of the RDCO can be tuned by varying the inertia variation ιR without changing

any other crucial property of the oscillator. Equation (18) shows that this can be done by changing
parameter Sy without changing Jr, mr or S0, for instance by moving the COM of the inertial part on
a circle centred at point O as depicted in Fig. 12. Note that the stiffness properties of the oscillator
are not affected by these changes in mass distribution.

Figure 13 shows a practical way of implementing this tuning by moving tuning masses placed
on the inertial bodies of the RDCO by an angle β on a circle centred at O. Note that the nominal
position β = 0 is offset with respect to the axis formed by the pivots of the connecting rods such
that the tuning can produce either a positive or negative isochronism defect.

In order to provide numerical data for the tuning, we choose a reference amplitude Θ1 =
10 degrees and express the isochronism defect in seconds per day for a 20% amplitude decrease
from the Θ1 reference. This is computed by applying Eq. (6) in the definition for daily rate [16, Eq.
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Fig. 11: Analytical and FEM results for the restoring torque nonlinearity tuning (i.e., isochronism
tuning) of the RDCO by varying the thickness ht of the parallel leaf springs.

S
y
,2

S
y
,1

S0

Fig. 12: Tuning of the inertia variation ι of the RDCO.

(7)]. The results are plotted in Fig. 14, showing an effective way of tuning the isochronism of the
RDCO with a precision of order 1 s/day for the chosen amplitude range. Note that the predictions
of the analytical model match the numerical result with less than 0.2 s/day error.

Remark 4.3. The masses were chosen such that the correction is of order 1 s/day for the tuning
range depicted in Fig. 13. The tuning can be adjusted by changing the mass ratio, inertia ratio and
COM radius ratio between the mobile and fixed parts of the inertial bodies. In this example, these

18



(a) β = 0

β

(b) β = 11 degrees

β

(c) β = −20 degrees

Fig. 13: Inertia isochronism tuning masses for the RDCO.

Fig. 14: Isochronism tuning for the RDCO by varying the angular position β of tuning masses.
Results obtained by FEM and with the analytical model are displayed in terms of daily rate ρ for a
20% amplitude decrease from reference amplitude Θ1 = 10 degrees.

ratios have the respective values of 0.38, 0.007 and 1.29 for body 2, see Table 2.

5 CONCLUSION AND FUTURE WORK
This article presents a new way of tuning the isochronism of flexure mechanical time bases

by using their inertia variation, as opposed to the previously known methods that focused on
stiffness variation. A simple and practical way of implementing this tuning post-fabrication was
devised by displacing masses. A new family of flexure rotational oscillators was introduced that
embodies both inertia and stiffness isochronism tuning concepts. Additionally, the symmetry of
these architectures has the advantage of addressing another important limitation of flexure time
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bases: the influence of linear accelerations on their period [15, 16, 21, 22], making them also
interesting candidates for MEMS time bases [17,18]

The concept of inertia isochronism tuning introduced here is not limited to the RDCO family:
it is indeed common for flexure oscillators to have second order motions resulting in variations of
their mass distribution that could be exploited to tune their isochronism. This is for example the
case with the motion of the intermediate bodies of the “co-RCC” oscillator [16,31] or the parasitic
angle of the rotation axis of the “GIFP” oscillator [15,22].

Our new concept of inertia isochronism tuning paves the way for new solutions to this historical
problem and has led to a new family of flexure architectures with rotation-dilation kinematics that
could find promising applications in other fields. For instance, the RDCO has potential in flexure
(a.k.a. compliant) gripper applications where the dilation kinematics offer self-centering gripping
with radial symmetry that can be superior to the conventional 2 finger gripping [48, 49] while the
rotation kinematics allow simple actuation with a conventional rotary actuator.
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[26] Di Domenico, G., Léchot, D., Helfer, J.-L., and Winkler, P., 2017. Timepiece Resonator Mech-
anism, Patent Number: EP3206089A1.

21

https://dx.doi.org/10.1109/SOLSEN.1990.109810
https://dx.doi.org/10.5075/epfl-thesis-8802
https://dx.doi.org/10.1115/1.4045388
https://dx.doi.org/10.1088/0960-1317/22/1/013001
https://dx.doi.org/10.1109/EFTF-IFC.2013.6702311
https://dx.doi.org/10.1109/EFTF-IFC.2013.6702311
https://dx.doi.org/10.1109/FCS.2012.6243704
https://dx.doi.org/10.1109/JSSC.2014.2360377
https://dx.doi.org/10.1115/1.4039887
https://patents.google.com/patent/US8672536B2
https://patents.google.com/patent/WO2016096677A1
https://patents.google.com/patent/EP3206089A1


[27] Helfer, J.-L., Di Domenico, G., and Winkler, P., 2017. Timepiece Resonator Mechanism,
Patent Number: EP3200029A1.

[28] Thalmann, E., Kahrobaiyan, M. H., and Henein, S., 2018. “Flexure-Pivot Oscillator Restoring
Torque Nonlinearity and Isochronism Defect”. In Proceedings of the ASME 2018 IDETC-CIE
Conference, Vol. 5A, ASME, p. V05AT07A013, DOI: 10.1115/DETC2018-85863.

[29] Wittrick, W., 1951. “The properties of crossed flexure pivots, and the influence of the
point at which the strips cross”. The Aeronautical Quarterly, 2, Feb., pp. 272–292, DOI:
10.1017/S0001925900000470.

[30] Zhao, H., and Bi, S., 2010. “Accuracy characteristics of the generalized cross-
spring pivot”. Mechanism and Machine Theory, 45(10), pp. 1434–1448, DOI:
10.1016/j.mechmachtheory.2010.05.004.

[31] Kahrobaiyan, M. H., Thalmann, E., and Henein, S., 2020. Flexure Pivot Oscillator Insensitive
to Gravity, Patent Number: WO2020016131.

[32] von Gunten, S., Gygax, P., and Humair, L., 2015. Oscillateur mécanique, Patent Number:
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