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Flexure oscillators are promising time bases, thanks to their high
quality factor and monolithic design compatible with microfabrica-
tion. In mechanical watchmaking, they could advantageously
replace the traditional balance and hairspring oscillator, leading
to improvements in timekeeping accuracy, autonomy, and assem-
bly. As MEMS oscillators, their performance can rival that of the
well-established quartz oscillator. However, their inherent nonlin-
ear elastic behavior can introduce a variation of their frequency
with amplitude called isochronism defect, a major obstacle to accu-
rate timekeeping in mechanical watches. Previous research has
focused on addressing this issue by controlling the elastic proper-
ties of flexure oscillators. Yet, these oscillators exhibit other ampli-
tude-related frequency variations caused by changes of inertia with
amplitude. In this article, we not only improve existing models by
taking into account inertia effects but also present a new way of
using them to adjust the isochronism defect. This results in a
better understanding of flexure oscillators and an alternative way
of tuning isochronism by acting on inertia instead of stiffness.
This also opens the door to promising architectures such as the
new rotation–dilation coupled oscillator (RDCO) whose symmetry
has the advantage of minimizing the influence of linear accelera-
tions on its frequency (the other major limitation of flexure oscilla-
tors). We derive analytical models for the isochronism of this
oscillator, show a dimensioning with compensating inertia and
stiffness variations, and present a practical method for post-
fabrication isochronism tuning by displacing masses. The models
are validated by finite element method (FEM) and mockups serve
as preliminary proof-of-concept. [DOI: 10.1115/1.4050558]
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1 Introduction
1.1 Flexure Mechanical Watch Time Bases. The Swiss

watchmaking industry, with an annual export of about 20 billion
Swiss francs, is the country’s third largest exporter and accounts
for approximately 1.5% of its gross domestic product [1].2 Mechan-
ical watches constitute about 80% of these exports (in value) and
rely substantially on innovation pushing the limits of mechanical

timekeepers to maintain their position. However, despite concerted
efforts by the industry, the accuracy of the best mechanical watches
seems to have reached a plateau of a few seconds per day. The
general consensus in horology is that the quality factor of the oscil-
lator, a dimensionless number that characterizes its damping, needs
to be improved for the accuracy to increase [2–4]. Yet, the friction
in the bearing of the traditional mechanical watch oscillator, the
balance and hairspring (Fig. 1), drastically limits its quality
factor.3 This fact, together with the recent spreading in the watch-
making industry of high-technology materials and techniques
such as silicon components manufactured by deep reactive ion
etching [7–9], has motivated the search for new time bases
[10,11]. Flexure oscillators are a promising replacement for the
balance and hairspring since their motion is only guided by the
deformation of elastic elements, thus eliminating contact friction
[12,13], paving the way to a significant increase in quality factor
and a new level of timekeeping accuracy.4 Additionally, increasing
the quality factor reduces power consumption, leading to greater
watch autonomy [11].
The introduction of flexure oscillators in mechanical watches

comes with new challenges that must be overcome before they
can be implemented. First, the nonlinear elastic behavior of flexures
introduces a dependence of oscillation period on amplitude, i.e., an
isochronism defect. Second, the deviation of flexures from the
motion of ideal linkages can result in changes in the mass distribu-
tion of the time base as it oscillates. This causes an isochronism
defect (through amplitude-dependent inertia variation) and a contri-
bution of gravity to the effective stiffness of the oscillator (and
hence an effect on its period). These directly affect timekeeping
accuracy. Other external factors can also affect the period such as
temperature, magnetic fields, and shocks but they can be addressed
with existing materials and techniques [15].
Flexure oscillators also have applications as MEMS time bases

for electronic devices, where their frequency stability and potential
for miniaturization and batch production can compete with the
well-established quartz oscillator [16,17]. The main challenge for
MEMS time bases is, as for mechanical watch oscillators, to have
a stable frequency regardless of external perturbations, except that
the main sources of perturbation are different. For instance, isochro-
nism defect is not a significant issue for MEMS oscillators due to
their small amplitudes whereas temperature is [18,19]. For this
reason, this paper focuses on mechanical watch applications. Note
that linear accelerations (such as gravity) are important sources of
perturbation for both applications, hence the symmetry of the archi-
tectures presented here also has potential for MEMS time bases.5

1.2 State-of-the-Art. In our previous research on flexure
oscillators, we developed design principles that allow to minimize
gravity effects [15,21] and introduced the concept of isochronism
tuning by changing second-order stiffness properties of the oscilla-
tor [22]. We showed that we could compensate isochronism defects
by adjusting the stiffness of flexures whose motion is of second
order of the main oscillation, that is, the same order as the isochro-
nism defect, see Eq. (6). The fact that this is done by changing oscil-
lator properties without affecting any other crucial characteristic of
the pivot (such as nominal stiffness, gravity sensitivity, and parasitic
center shift) is called intrinsic isochronism tuning [22] and is con-
sidered superior to existing solutions. Indeed, the first flexure
pivot oscillator to be introduced in a watch, the 2014 “Genequand
System” [10,11], needed an external mechanism to tune its isochro-
nism [23]; other oscillators based on the crossed flexure pivot [24]

1Corresponding author.
2More information is available on Switzerland’s official website: www.eda.admin.

ch/aboutswitzerland/en/home/wirtschaft/taetigkeitsgebiete/uhrenindustrie.html
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manuscript received March 5, 2021; published online May 14, 2021. Assoc. Editor:
David Myszka.

3Air friction also has a significant influence but eliminating it only increases the
quality factor by about 50%: it was increased from 300 to 450 for a balance and hair-
spring in 99.8% vacuum [6].

4Monolithic fabrication using materials with minimal internal friction such as
monocrystalline silicon also contributes to increasing the quality factor [14].

5For instance, Ref. [19] presents a kilohertz MEMS flexure time base using a sym-
metrized tuning fork which is known to minimize the effect of linear accelerations [20].
The megahertz MEMS oscillator in Ref. [18] also presents a similar symmetry.

Journal of Mechanical Design NOVEMBER 2021, Vol. 143 / 115001-1Copyright © 2021 by ASME

mailto:etienne.thalmann@epfl.ch
mailto:simon.henein@epfl.ch
http://www.eda.admin.ch/aboutswitzerland/en/home/wirtschaft/taetigkeitsgebiete/uhrenindustrie.html
http://www.eda.admin.ch/aboutswitzerland/en/home/wirtschaft/taetigkeitsgebiete/uhrenindustrie.html


use special values for the point at which the leaf springs cross and
the angle between them to reach isochronism [21,25–28], which,
however, does not qualify as isochronism tuning since changing
these parameters affects other crucial properties of the pivot
[21,22,29,30].

1.3 New Concept of Inertial Isochronism Tuning. In previ-
ous research, we noticed that the deviation of flexures from the
motion of ideal linkages resulted in changes in the mass distribution
of our time bases as they oscillate, thus affecting their isochronism.
For instance, the gravity insensitive flexure pivot (GIFP) oscillator
[15,21] has a parasitic tilt of its rotation axis and the
“co-RCC” oscillator [15,22,31] has an inward motion of its interme-
diate bodies due to the parasitic center shift of the two remote center
of compliance (RCC) flexure pivots it comprises. These effects
were neglected, assuming that they were small and could be com-
pensated by acting on the restoring torque nonlinearity (i.e., stiff-
ness variation) of the flexures [22]. Similar inertia variations are
also present in other existing flexure time bases [32–34].
In the present article, we show how to take into account the effect

of inertia variations in our previous isochronism model. This has
several advantages. First, this completes the analysis of the isochro-
nism of flexure time bases and allows to take into account inertia
effects into the design instead of compensating them a posteriori.
Second, this widens the spectrum of potential new flexure time
bases by including architectures with significant inertia variations.
For instance, we introduce the new rotation–dilation coupled
oscillator (RDCO) family (Fig. 2) whose symmetry has the advan-
tage of inherently minimizing the influence of linear accelerations
on oscillation frequency, the other major obstacle to the implemen-
tation of flexure time bases [20,21]. Third, we present an alternative
way of tuning isochronism, by acting on the inertia variation of the
oscillator instead of its stiffness variation. This concept is new and
is the main contribution of this article. As a result, new practical
methods of tuning isochronism post-fabrication emerge that are
potentially simpler than the ones based on the stiffness [10,22].
For instance, displacing masses or removing mass by laser ablation
[35] is a much less sensitive operation than removing matter
from slender flexures to affect their stiffness, as we suggested in
Ref. [22]. Some of these results were announced in the first
author’s PhD thesis [15].
Remark 1. It is well known that inertia variations can be used to
tune the nominal frequency of rotational oscillators. This is for
example implemented on balance and hairspring oscillators by
changing the position of inertia blocks or screws placed on the
balance [37,38]. Inertia variations with temperature have also
been used to minimize the effect of temperature on frequency, for
example, with bimetallic balances [37, pp. 259–262]. These con-
cepts are however different from the one proposed in this article
as they result in a modified inertia that is not a function of oscillation
amplitude and therefore does not affect isochronism. ▪
Remark 2. Our concept is analogous to the Huygens’ 1657 theore-
tical isochronism corrector for the pendulum depicted in Fig. 3
[39,40]: he proposed to compensate the isochronism defect

resulting from the nonlinear relation between gravity restoring
torque and angular position of the pendulum by replacing the rod
with a flexible cord that unwinds off a cycloid. This essentially cor-
responds to changing the active length L of the pendulum as it
swings. The analogy with changing the inertia J of a rotational
oscillator as it rotates can be seen from the formulas for angular fre-
quency, namely,

����
k/J

√
for a harmonic rotational oscillator of stiff-

ness k and
�����
g/L

√
for an ideal pendulum under gravity g. Pushing the

analogy further, tuning the isochronism defect by acting on the
inertia variation would correspond to tuning the curvature of
Huygens’ cycloidal cheeks. ▪

1.4 Structure of the Paper. Section 2 presents the new RDCO
family and describes its kinematics. Examples of flexure implemen-
tations are given and the design is validated qualitatively on
mockups. In Sec. 3, we derive analytical models for the inertia var-
iation and stiffness variation of the RDCO and describe their effect
on its isochronism. In Sec. 4, we validate the concepts of this paper
by designing a flexure implementation where the inertia and stiff-
ness variations compensate each other to reach theoretical isochro-
nism. We show that the isochronism of the RDCO can be tuned by
controlling either its stiffness variation (Sec. 4.2.1) or its inertia
variation (Sec. 4.2.2).

2 Design and Kinematics
Figure 2 shows a kinematic diagram of the RDCO. The mecha-

nism consists of n⩾ 3 inertial bodies linked to each other by
sliders (prismatic joints) to form a loop (n= 3 in Fig. 2). Each
rigid body is linked to the ground by a connecting rod with a
pivot at both extremities, one connected to the ground (pivot A)
and the other to the inertial body (pivot B). The joints are placed
such that they have rotational symmetry of order n with respect to
the center O of the system. An extra degree-of-freedom (DOF) is
added by allowing a pivoting motion in one of the sliders, see
Fig. 2. The sole purpose of this extra DOF is to avoid overconstrain-
ing the system; it is not activated during the motion of the system.
Grübler’s formula for planar linkages [41] gives a mobility M= 1
for the RDCO in Fig. 2 with N= 8 bodies and j= 10 joints with
each a DOF fi= 1:

M =
∑j

i=1

fi − 3(j − N + 1) = 10 − 3(10 − 8 + 1) = 1 (1)

Knowing that there are no internal DOFs, this shows that the 1-DOF
motion depicted in Fig. 2 is obtained without overconstraints (for a
planar mechanism).

2.1 Flexure Implementation. For this system to act as a
mechanical oscillator, spring components must be added. This
happens naturally in the flexure implementation. Any combination
of flexures presenting equivalent properties to the ideal kinematic

Fig. 2 Kinematic diagram of the RDCO using ideal joints in
nominal position (left) and rotated (right) [36]

Fig. 1 Classical mechanical watch balance and hairspring oscil-
lator [5]
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diagram of Fig. 2 can be used. Figure 4 shows an example where
truncated circular notch flexure hinges [13, Section 3.5.10] are
used for pivots A and B and parallel leaf springs are used for the
sliders. Parallel leaf springs actually have a parabolic motion but
it is assumed that they closely approximate a linear motion for
the small deformations considered here [13, Section 4.1]. In this
implementation, two orthogonal axes of symmetry were chosen
instead of a rotational symmetry (so as to have symmetric functions
with respect to equilibrium) but the design still corresponds to the
ideal kinematic diagram of Fig. 2 with n= 4 inertial bodies. More
examples of flexure implementation are given in Sec. 2.3 and
Ref. [15, Section 3.3]. Note that when our designs can be monolith-
ically fabricated, i.e., do not need assembly, the extra DOF is
omitted, assuming that there is enough flexibility in the system to
release the overconstraint.

2.2 Rotation–Dilation Coupling. The kinematic behavior of
the system is determined by the dimensionless ratio δ= d/L,
where d is the distance from the center O of the system to the
axis of pivot A and L is the distance from the axis of pivot A to
the axis of pivot B, see Fig. 4 and Table 1. The signs of d and L
are defined with respect to the direction from O to B. We classify
the RDCO architectures according to three domains of the parame-
ter δ, summarized in Table 1.

(a) When δ> 0, d and L are of same sign. The connecting rods
are connected to the ground between the inertial loop and
point O.

(b) When −1 < δ< 0, d and L are of opposite sign and d< L. The
connecting rods cross each other inside the inertial loop.

(c) When δ<−1, d and L are of opposite sign and d> L. The con-
necting rods are connected to the ground outside of the iner-
tial loop.

Figure 2 shows the motion of the system as it is displaced from its
equilibriumposition.We call thismotion rotation–dilation coupling,

Fig. 3 Huygens’ isochronism correction for the pendulum with
cycloidal cheeks changing its active length as it oscillates

Fig. 4 Example of RDCO physical implementation

Table 1 Influence of parameter δ on the kinematics of the RDCO

(a) δ> 0 (b) −1 < δ< 0 (c) δ<−1

Nominal position

Rotated

Negative dilation Positive dilation Positive dilation

Journal of Mechanical Design NOVEMBER 2021, Vol. 143 / 115001-3



where the rotation is defined by the angle θ swept by a vector from the
centerO to a pointP on the inertial body and the dilation is defined by
the change of length of this vector. As shown in Table 1 and Eq. (8),
the parameter δ influences this dilation:

• When δ> 0, OP(θ)
�����∥∥∥ ∥∥∥ < OP(0)

�����∥∥∥ ∥∥∥ and the inertial bodies move

towards each other. We call it a negative dilation.

• When δ< 0, OP(θ)
�����∥∥∥ ∥∥∥ > OP(0)

�����∥∥∥ ∥∥∥ and the inertial bodies move

away from each other. We call it a positive dilation.

2.2.1 Particular Case: δ= 0. When δ= 0, the connecting rods
are attached to the ground at the center of the system and the size of
the system stays constant as it rotates (no dilation).

2.2.2 Particular Case: δ=−1. When δ=−1, d and L are of
opposite sign and go to infinity. It is noted that circular motion
becomes a straight line motion when the radius goes to infinity.
This motion can be implemented by replacing pivot A by sliders
with axis tangential to a circle with center O [15, Fig. 3.16].

2.3 Qualitative Design Validation. Mockups were built to
validate qualitatively the kinematics of the RDCO. The

configurations (a) and (b) of Table 1 are shown in Figs. 5 and 6,
respectively. In these implementations, rectangular notch flexure
hinges [13,42] have been used for the pivots and parallel leaf
springs for the sliders. The mockups were fabricated by laser
cutting a 5 mm thick polyoxymethylene sheet. They have an outer
diameter of 200 mm and an admissible angular stroke of approxi-
mately ±18 deg for configuration (a) and ±25 deg for configuration
(b). This hardware showed that the system behaves qualitatively as
predicted: the system has one DOF and a motion of the inertial
bodies closely approximating a rotation about point O coupled to a
dilation. The variation in diameter of the mockups can be observed
relatively to the circle printed in the background. The two systems
confirm that the dilation is negative when δ> 0 (Fig. 5 and video
[43]) and positive when −1 < δ< 0 (Fig. 6 and video [44]).
Remark 3. Due to its three-dimensional design, themockup of Fig. 6
had to be assembled inmultiple parts. As a result, the connecting rods
do not cross perfectly in the center in the nominal position and one of
the parallel leaf springs was removed to prevent overconstraining the
pivot. This is equivalent to the extra DOF of Fig. 2. ▪

3 Analytical Model
The goal of this paper is to use the inertia variation of the oscil-

lator in addition to its stiffness variation to tune its isochronism

Fig. 5 Mockup of the RDCO with δ>0 and n=4 inertial bodies in (a) nominal position and
(b) rotated, showing a negative dilation. Video is available [43].

Fig. 6 Mockup of the RDCO with −1< δ<0 and n=3 inertial bodies in (a) nominal position and
(b) rotated, showing a positive dilation. Video is available [44].
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defect. We thus start by deriving an expression for the isochronism
defect of a general rotational oscillator with varying stiffness and
varying inertia (Sec. 3.1). We then compute these two effects for
the RDCO (Secs. 3.2 and 3.3, respectively).

3.1 Isochronism Defect of the Perturbed Rotational
Harmonic Oscillator. We consider the case of an oscillator
whose restoring torque can be expressed by a power series having
only odd terms (assuming the restoring torque to be antisymmetric
with respect to equilibrium position)

M = k0 θ + k2 θ
3 +O θ5

( )
= k0 θ(1 + μθ2) +O θ5

( )
(2)

and whose inertia can be expressed by a power series having only
even terms (assuming the inertia variation to be symmetric with
respect to equilibrium position)

J = J0 + J2θ
2 +O θ4

( )
= J0 1 + ιθ2

( )
+O θ4

( )
(3)

Here, k0 is the nominal stiffness (i.e., the limiting stiffness as rota-
tion angle goes to zero), μ= k2/k0 is the relative restoring torque
nonlinearity [21], J0 is the nominal inertia, and ι = J2/J0 is the rela-
tive inertia variation.
This oscillator satisfies the differential equation

θ̈ = −
k0 1 + μθ2
( )

J0 1 + ιθ2
( ) θ +O θ5

( )
(4)

which, when using again series expansions around θ= 0, becomes

θ̈ = −
k0
J0

θ −
k0
J0

μ − ι
( )

θ3 +O θ5
( )

(5)

Solving this equation using standard methods of perturbation theory
[45, Section (2.3.34)] yields the frequency–amplitude relation of the
oscillator

ω(Θ) = ω0 1 +
3 μ − ι
( )
8

Θ2

( )
+O Θ4

( )
(6)

where ω0 =
������
k0/J0

√
is the nominal frequency as amplitude

approaches zero.
Equation (6) gives an explicit expression for the isochronism

defect. It shows that isochronism tuning can be performed either
by modifying the relative restoring torque nonlinearity μ by
acting on k2 (without affecting k0) or by modifying the relative
inertia variation ι by acting on J2 (without affecting J0), hence not
affecting the nominal frequency ω0. This will be done on the
RDCO in Secs. 4.2.1 and 4.2.2, respectively.

Remark 4. When the relative restoring torque nonlinearity (i.e.,
stiffness variation) is equal to the relative inertia variation (μ = ι),
Eq. (5) becomes the differential equation of the simple rotational
harmonic oscillator with constant angular frequency ω0, i.e., with
zero isochronism defect. ▪

3.2 Stiffness Variation of the RDCO. The rotational stiffness
of the RDCO is calculated with the following assumptions:

• The flexure elements of the RDCO are considered as springs
and the other bodies as rigid.

• The system is considered symmetrical: all pivots A have rota-
tional stiffness kA, all pivots B have rotational stiffness kB, and
all the sliders have translational stiffness kt.

• The restoring force or restoring torque of the flexure elements
can be expressed by series expansion having only odd terms of
displacement, see Eq. (2).

• The rotations θ are small and terms can be expressed using
series expansions around θ= 0.

• No external force (such as gravity) is acting on the oscillator;
we assume that its symmetry minimizes the influence of
gravity on its restoring torque [21].

The rotational stiffness of the oscillator is derived from the strain
energy of the system with the following steps:

(1) Derive the motion of the two pivots of the connecting rod for
a given rotation of the oscillator.

(2) Derive the motion of the sliders for a given rotation of the
oscillator.

(3) Express the strain energy of the system for a given rotation of
the oscillator.

(4) Compute the rotational stiffness of the system from its total
strain energy.

3.2.1 Motion of the Pivots of the Connecting Rod. The angles
θA and θB swept by the pivots of the connecting rod when the system
rotates by an angle θ are obtained by trigonometry, see Fig. 7(b).
For small displacements, they can be expressed using series expan-
sions:

θB = arcsin
d sin θ
L

= δθ +
1
6
δ δ2 − 1
( )

θ3 +O θ5
( )

θA = θ + θB = 1 + δ( )θ + 1
6
δ δ2 − 1
( )

θ3 +O θ5
( ) (7)

3.2.2 Motion of the Sliders. The motion of the sliders corre-
sponds to the change in distance q between the pivots of the inertial

Fig. 7 Parameters of the RDCO stiffness and inertia models in (a) equilibrium position and
(b) rotated by angle θ
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bodies, see Fig. 7(b). We first derive the distance from the center of
the oscillator to these pivots as the oscillator rotates

r(θ) = d cos θ + L cos θB = R0 1 −
δ

2
θ2

( )
+O θ4

( )
(8)

where R0= L+ d. We then get the motion of the sliders

Δq(θ) = 2 sin
π

n

( )
r θ( ) − r 0( )( ) = −R0 δ sin

π

n

( )
θ2 +O θ4

( )
(9)

3.2.3 Strain Energy. The restoring force of the flexures can be
expressed by series expansion:

MA θ( ) = kA,0(1 + μA θ
2) θ +O θ5

( )
MB θ( ) = kB,0(1 + μB θ

2) θ +O θ5
( )

Ft Δq
( )

= kt,0(1 + μt Δq
2)Δq +O Δq5

( ) (10)

The strain energy of the system for a rotation θ follows from the
sum of the strain energies of each elastic joint

U = n

∫θA
0
MA ν( ) dν +

∫θB
0
MB ν( ) dν +

∫Δq
0
Ft ν( ) dν

( )
(11)

3.2.4 Rotational Stiffness. Substituting Eqs. (7)–(10) into
Eq. (11) and deriving and dividing the strain energy U by θ
yields the rotational stiffness of the RDCO

kR =
dU
dθ

= kR,0(1 + μRθ
2) +O θ4

( )
(12)

where

kR,0 = n (δ + 1)2kA,0 + δ2kB,0
( )

(13)

is the nominal stiffness and

μR =
2δ(δ + 1)(δ2 − 1)kA,0 + 2δ2(δ2 − 1)kB,0 + 3 δ + 1( )4kA,0μA + 6δ2kt,0R2

0 sin
2 π/n
( )

3 (δ + 1)2kA,0 + δ2kB,0
( ) (14)

is the relative restoring torque nonlinearity according to Eq. (2).
Note that the contribution of the relative restoring torque nonlinear-
ity μB of the external pivot is neglected assuming that it is small and
that δ4 is small.
Remark 5. We define the rotational stiffness by the secant
stiffness, that is the restoring torque divided by the angular displa-
cement ksec=M(θ)/θ. This quantity should not be confused with
the tangent stiffness, that is the derivative of the restoring torque
ktan= dM/dθ. ▪

3.3 Inertia Variation of the Rotation–Dilation Coupled
Oscillator. The inertia of the RDCO as it rotates is calculated
with the following assumptions:

• All the inertial bodies are the same.
• All the joints are ideal.
• The connecting rods are massless.
• The rotations are small and terms can be expressed using series

expansions around θ= 0.

The inertia of the RDCO for a rotation θ is

J θ( ) = n Jr + mrs
2 θ( )( )

(15)

where Jr and mr are, respectively, the inertia and mass of one of n
inertial bodies and s is the distance from the center O of the oscil-
lator to the COM of one inertial body (Fig. 7). This distance can
be computed as follows:

s2 θ( ) = S2x + r θ( ) − R0 − Sy
( )( )2 = S20 − δR0Syθ

2 +O θ4
( )

(16)

where r is given in Eq. (8), S0= s(0) is the distance from O to the
COM of one inertial body at equilibrium, and Sy is the projection
of that distance against the axis formed by the pivots of the connect-
ing rod (Fig. 7(a)).
Substituting Eq. (16) into Eq. (17) yields the inertia of the RDCO

as it rotates

J θ( ) = n Jr + mr S20 − δR0Syθ
2

( )( )
+O θ4

( )
(17)

with relative inertia variation according to Eq. (3)

ιR =
−δmrR0Sy
Jr + mrS20

(18)

The results obtained with this model are compared to the ones
obtained by the finite element method (FEM) in Fig. 8 and show
a good match. The FEM model is described in Sec. 4.1.

Remark 6. The sign of the inertia variation in Eq. (18) depends on
the sign of δ, as was already noted through the sign of the dilation in
Sec. 2.2. ▪

4 Example of Implementation and Numerical
Validation
In order to validate the concepts presented in this paper, we design

aflexure implementation of theRDCOand show,first, that the inertia
and stiffness variation can compensate each other to reach isochro-
nism (Sec. 4.1) and, second, that the isochronism of the RDCO can
be tuned by varying either its stiffness variation μ or its inertia varia-
tion ι (Sec. 4.2). These results are validated by FEM.

4.1 Design With Compensating Inertia and Stiffness
Variation. Two configurations exist where the inertia and restoring
torque defects can compensate each other:

(a) δ> 0 and the negative dilation of the system (ι < 0) compen-
sate for the decreasing stiffness of the system (μ< 0).

(b) δ< 0 and the positive dilation of the system (ι > 0) compen-
sate for the increasing stiffness of the system (μ> 0).

Fig. 8 Inertia J of the RDCO versus rotation angle θ obtained by
FEM and with the analytical model

115001-6 / Vol. 143, NOVEMBER 2021 Transactions of the ASME



We chose to implement configuration (a), which is easier since
the connecting rods do not have to cross each other. Our design
(Fig. 4) does not target watch specifications but aims at respecting
realistic proportions for a titanium prototype of diameter 80 mm and
thickness 5 mm manufactured by wire electrical discharge machin-
ing (EDM).6 A relatively large value of δ= 0.25 was chosen in
order to highlight nonlinear effects. Truncated circular notch
flexure hinges were used for pivots A and B with the following
dimensions: minimum thickness of 50 μm and radius of 10.5
mm for pivot A and minimum thickness of 150 μm and radius
of 2mm for pivot B (whose deformation is much smaller). Parallel
leaf springs were used for the sliders, with a thickness of 130 μm
and a length of 32mm. These dimensions can typically be
reached by wire EDM [46, Chapter 7].
Figure 9 shows that the inertia and stiffness variation of this oscil-

lator obtained by FEM overlap, hence compensating each other
and allowing to reach theoretical isochronism. These results vali-
date the design and concepts presented in this paper.
The oscillator was simulated using the commercial FEM software

ANSYS [47] with a mesh of hexahedral elements of type SOLID186
that is refined on the flexures such that there are three elements
across their thickness and five along their height (Fig. 10). The trun-
cated circular notch flexures have 10 elements along their length
and the parallel leaf springs 32. The inertia variation Jvar= J(θ)/J0
is obtained directly from the FEM data and the stiffness variation
is obtained by calculating the secant stiffness for each data point:
kvar= ksec/k0=M(θ)/k0θ, see Remark 5.
Remark 7. In order to satisfy the analytical model’s assumption that
stiffness and inertia are symmetric functions with respect to the
equilibrium position, a flexure implementation with axial symmetry
was chosen instead of a rotational symmetry such as shown
in Fig. 6. ▪

4.1.1 Numerical Validation of the Analytical Stiffness Model.
The analytical restoring torque nonlinearity of the oscillator is cal-
culated by substituting the rotational stiffness of the pivots and
translational stiffness of the sliders from Ref. [46, Eq. 4.20 and
5.9] into Eq. (14). We showed in previous research that the nonlin-
earity μA of pivot A cannot be calculated accurately using Euler–
Bernoulli beam theory [15,21]. This issue is resolved by assuming
that μA= 0 to find a first set of dimensions and then fine-tuning the
restoring torque nonlinearity μR of the oscillator by changing the

thickness ht of the parallel leaf springs, as explained in Sec. 4.2.1.
For the given implementation, Fig. 9 displays similar analytical
and FEM stiffness variations with respective restoring torque non-
linearities μR=−0.225 and −0.205. This shows that the analytical
model provides an estimation with less than 10% error despite
neglecting μA. Note that the FEM value of μR was obtained by
fitting Eq. (2) to the data.

Fig. 9 Inertia and stiffness variation of the example RDCO
versus rotation angle θ

Fig. 10 Close-up view of the mesh of the RDCO finite element
model

Fig. 11 Analytical and FEM results for the restoring torque non-
linearity tuning (i.e., isochronism tuning) of the RDCO by varying
the thickness ht of the parallel leaf springs

Fig. 12 Tuning of the inertia variation ι of the RDCO

6Titanium alloy TiAl6V4 with Young’s modulus E= 114 GPa was chosen for its
machinability and high admissible elastic strain εadm = σadm/E = 0.44% [46,
Table B.14].
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4.1.2 Numerical Validation of the Analytical Inertia Model.
Since our flexure implementation has two different types of inertial
bodies (Fig. 4), we adapted Eq. (18) as follows:

ιR =
−δR0 mr,1Sy,1 + mr,2Sy,2

( )
Jr,1 + Jr,2 + mr,1S20,1 + mr,2S20,2

(19)

where indices 1 and 2 refer to the two different types of inertial
bodies. With the mass parameters given in Table 2, this equation
returns an inertia variation ιR = −0.217 that matches the numeri-
cally computed ιR = −0.204 with less than 10% error, see Fig. 9.
Note that the FEM value of ιR was obtained by fitting Eq. (3) to
the data in Fig. 8.

4.2 Isochronism Tuning. Using the models of Secs. 3.2 and
3.3, we present two ways of tuning the isochronism of the
RDCO, by acting either on stiffness or inertia.

4.2.1 Stiffness Isochronism Tuning. The isochronism of the
RDCO can be tuned by varying the relative restoring torque nonlin-
earity μR without affecting any other crucial property of the oscilla-
tor. As in our previous work [22], this can be done by changing
the stiffness kt,0 of flexures that perform a second-order motion of
the rotation angle and thus only contribute to the stiffness variation
in Eq. (12) without affecting the nominal stiffness kR,0 in Eq. (13).
Although the analytical model cannot exactly predict the inertia and
stiffness variation of the oscillator, this technique can be used to
fine-tune the dimensions obtained using the analytical model to
have the two effects accurately compensate each other (Fig. 9).
The tuning calculated with Eq. (14) is compared to FEM results

in Fig. 11. Recall that the model cannot accurately predict the abso-
lute restoring torque nonlinearity since μA is unknown. The results
are hence shown in terms of variation of restoring torque nonlinear-
ity Δμ obtained for a relative thickness variation Δht of the parallel
leaf springs. The difference in slope between the analytical and
FEM models could be explained by the fact that flexures only
approximate the motion of the ideal joints used in the analytical
model. It is indeed known that parallel leaf springs actually have
a parabolic trajectory and that the rotation axis of notch flexure
hinges moves slightly during their deformation [13,42].
Remark 8. The thickness ht of the parallel leaf springs was chosen
as tuning parameter due to its low impact on the design. However,
their length Lt could have also been used, which might be more
suited for post-fabrication fine-tuning [22]. ▪

4.2.2 Inertia Isochronism Tuning. The isochronism of the
RDCO can be tuned by varying the inertia variation ιR without
changing any other crucial property of the oscillator. Equation
(18) shows that this can be done by changing the parameter Sy
without changing Jr, mr, or S0, for instance by moving the COM
of the inertial part on a circle centered at point O as depicted in
Fig. 12. Note that the stiffness properties of the oscillator are not
affected by these changes in mass distribution.
Figure 13 shows a practical way of implementing this tuning

by moving tuning masses placed on the inertial bodies of the
RDCO by an angle β on a circle centered at O. Note that the
nominal position β= 0 is offset with respect to the axis formed by
the pivots of the connecting rods such that the tuning can produce
either a positive or negative isochronism defect.
In order to provide numerical data for the tuning, we choose

a reference amplitude Θ1= 10 deg and express the isochronism

Fig. 13 Inertia isochronism tuning masses for the RDCO: (a) β=0, (b) β=11deg, and (c) β=−20deg

Fig. 14 Isochronism tuning for the RDCO by varying the angular
position β of tuning masses. Results obtained by FEM and with
the analytical model are displayed in terms of daily rate ρ for a
20% amplitude decrease from reference amplitude Θ1=10deg.

Table 2 Mass parameters of the RDCO used for the numerical validation

R0 S0,1 S0,2 Sy,1 Sy,2 mr,1 mr,2 Jr,1 Jr,2

34.0mm 34.2mm 30.5mm 34.0mm 30.3mm 11.3 g 13.5 g 2.29 kgmm2 2.99 kgmm2
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defect in seconds per day for a 20% amplitude decrease from the Θ1

reference. This is computed by applying Eq. (6) in the definition for
daily rate [22, Eq. (7)]. The results are plotted in Fig. 14, showing an
effective way of tuning the isochronism of the RDCO with a preci-
sion of order 1 s/day for the chosen amplitude range. Note that the
predictions of the analytical model match the numerical result with
less than 0.2 s/day error.
Remark 9. The masses were chosen such that the correction is of
order 1 s/day for the tuning range depicted in Fig. 13. The tuning
can be adjusted by changing the mass ratio, inertia ratio, and
COM radius ratio between the mobile and fixed parts of the inertial
bodies. In this example, these ratios have the respective values of
0.38, 0.007, and 1.29 for body 2, see Table 2. ▪

5 Conclusion and Future Work
This article presents a new way of tuning the isochronism of

flexure mechanical time bases using their inertia variation, as
opposed to the previously known methods that focused on stiffness
variations. A simple and practical way of implementing this tuning
post-fabrication was devised by displacing masses. A new family of
flexure rotational oscillators was introduced that embodies both
inertia and stiffness isochronism tuning concepts. Additionally,
the symmetry of these architectures has the advantage of addressing
another important limitation of flexure time bases, the influence of
linear accelerations on their period [15,20–22], making them also
interesting candidates for MEMS time bases [16,17].
The concept of inertia isochronism tuning introduced here paves

the way for new solutions to this historical problem. The concept is
not limited to the RDCO family; it is common for flexure oscillators
to have second-order motions resulting in variations of their mass
distribution that could be exploited to tune their isochronism.
This is, for example, the case with the motion of the intermediate
bodies of the “co-RCC” oscillator [22,31] or the parasitic angle of
the rotation axis of the “GIFP” oscillator [15,21].
Our search for new time bases has also led to a family of flexure

architectures with rotation–dilation kinematics that could find
promising applications in other fields. For instance, the RDCO
has potential as flexure (also known as “compliant”) gripper,
where its dilation kinematics offer radial self-centering gripping
that can be superior to the conventional two-finger gripping
[48,49] while its rotation kinematics facilitate actuation with a stan-
dard motor.
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