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Abstract:  35 

In a geotechnical excavation, back analyses are routinely performed using the measured field 36 

responses to derive the material parameter values for the different soil layers present at the site. 37 

For the purpose of back analyses, the engineers will usually make use of a portion of the large 38 

volumes of field data collected, in order to keep the computational effort to a manageable level. 39 

However, excavation back analyses using different selected sets of field response 40 

measurements may not yield the same knowledge of material parameter values. Therefore, 41 

measurements need to be carefully selected to obtain the best estimates of material parameter 42 

values. Currently, the selection of measurements is largely based on engineering heuristics; no 43 

method has been proposed to systematically quantify the expected knowledge of the parameter 44 

values that field response measurements could provide. In this paper, a hierarchical algorithm 45 

based on a joint-entropy objective function is proposed to systematically evaluate the 46 

knowledge gained from wall deflections measured by eight inclinometers at an excavation site. 47 

The algorithm ranks the inclinometers based on the expected knowledge yield of the parameter 48 

values. Back analysis using actual field response measurements is then carried out to 49 

corroborate the ranking. The rankings obtained from the back analysis results and the 50 

predictions of the hierarchical algorithm are very similar, which suggests that the latter method 51 

can aid in the judicious selection of field response measurements in order to obtain useful 52 

knowledge of material parameter values. Since the application of the hierarchical algorithm 53 

does not entail the use of actual measurements, such predictions can be made at the early stages 54 

of a project, even before the commencement of site activities.  55 

 56 
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1. Introduction 63 

The combination of various geologic, chemical, physical and environmental processes has 64 

made soil a material that has high variability in mechanical properties. Such variability creates 65 

challenges to the design and analysis of geotechnical structures [31, 39, 42]. While knowledge 66 

pertaining to soil properties can be obtained from laboratory tests on soil samples, other 67 

strategies that involve machine learning and utilization of big data have also been proposed [20, 68 

43, 47]. One of the alternative strategies for gaining knowledge of soil properties is through 69 

measurement of behaviour and back analysis. A back analysis, which is synonymous with 70 

system identification or model updating, is performed using measured field responses to obtain 71 

knowledge pertaining to material parameter values [8, 14, 15, 16, 41, 45, 51, 52, 57, 58], from 72 

which engineers can make informed decisions and achieve better designs.  73 

In an excavation project, the measurements typically consist of inclinometer readings that 74 

capture the retaining wall deflections, as well as survey data from the movement of ground 75 

settlement markers. Due to variations in natural ground conditions that are encountered at 76 

almost all sites, the inclinometers and ground settlement markers are usually installed at 77 

multiple locations within the excavation site. Depending on the scale of the project, the 78 

measurement data collected can be quite voluminous. For the purpose of back analyses, the 79 

engineers will usually make use of data from only a selected number of instruments, in order 80 

to keep the computational effort to a manageable level. The extra data that are collected but not 81 

used serve as redundancies or back-up information in the event of sensor break-down or 82 

malfunction, which are quite common occurrences. In this regard, a trade-off may be necessary 83 

when field response measurements need to be selected for a back analysis. This involves the 84 

consideration of two issues.   85 

First, the data measured at several locations of an engineering structure do not necessarily 86 

provide the same knowledge pertaining to the material parameter values [32] and therefore, 87 
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field response measurements of multiple sensors are usually involved in a back analysis. 88 

However, mutual information about the material parameter values can also exist among 89 

measurement data from various sensors. Mutual information occurs when the knowledge about 90 

the material parameter values obtained using the data of one sensor is similar to that obtained 91 

using the data of another sensor. As a result, one sensor is considered to be redundant for a 92 

back analysis because it provides limited improved knowledge of material parameter values. 93 

This has led to the second issue, which is that the inclusion of more measurement data does not 94 

necessarily lead to proportionate gains in knowledge of material parameter values [4, 16]. In 95 

the worst case, it can lead to less effective identification of material parameter values [12]. 96 

Hence, the proper selection and adoption of field response measurements collected at 97 

appropriate inclinometer locations is important to obtain the maximum useful information of 98 

material parameter values from back analysis.  99 

Previous work on excavation back analysis either utilised as much measurement data as was 100 

available [16, 18, 49] or considered only selected measurement data based on engineering 101 

judgement [14, 41, 45, 56]. In many cases, wall deflections measured at the middle section of 102 

an excavation are usually chosen because these magnitudes are typically the largest and are 103 

best approximated by plane strain condition. If wall deflections measured at several locations 104 

are used simultaneously, most studies do not use data from more than one inclinometer located 105 

on the same side of the excavation [15, 41]. While this may be intended to reduce redundant 106 

information provided by the inclinometers, the selection of which data set to use does not 107 

appear to be based on any quantitative approach. To date, no systematic method has been 108 

proposed to provide guidance on the optimal selection of excavation measurement data from 109 

multiple inclinometer readings for excavation back analysis. 110 

In the present study, a hierarchical algorithm based on a joint-entropy objective function is 111 

adopted to systematically evaluate the information provided by field response measurement 112 
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data. It is worth mentioning that the knowledge of material parameter values and excavation 113 

behaviour is defined loosely in this introductory section. In the later part of this paper, specific 114 

aspects of the back analysis results will be selected to represent the knowledge of material 115 

parameter values and excavation behaviour. 116 

Papadimitriou et al. [32] originally introduced information entropy from information theory as 117 

a sensor-placement objective function in the field of structural identification. Information 118 

entropy can be either minimized in posterior model-parameter distributions [33] or maximized 119 

in model-population prediction [40]. Most work uses greedy algorithms to reduce the 120 

computation time of the optimization task, such as [21] among many others. 121 

As suboptimal solutions may be obtained if the mutual information is not properly taken into 122 

account in the optimization phase [54], Papadopoulou et al. [35] introduced a hierarchical 123 

algorithm based on a joint-entropy objective function that explicitly evaluates the mutual 124 

information between sensors. While it was originally implemented for the study of wind 125 

predictions around buildings, this algorithm has been successfully modified and implemented 126 

to civil engineering applications such as water-pipe leak detection [28] and bridge engineering 127 

[4]. Other than the hierarchical algorithm, some studies investigated optimal measurement 128 

systems using the value of the information collected through utility theory [36], value of 129 

information [26] and multi-criteria decision analysis framework [6]. 130 

The selection of potential field response measurements using the hierarchical algorithm does 131 

not entail the use of any actual measurements from the field excavation. Therefore, such an 132 

exercise can be carried out at an early stage of the project to help identify useful measurements 133 

for back analysis. An excavation case history in Singapore is used to illustrate the effectiveness 134 

of the methodology. Eight inclinometers were installed for the excavation, each measuring wall 135 

deflections at 1 m interval from ground level to the toe of the wall. The hierarchical algorithm 136 

is first used to rank the inclinometers based on the expected information represented by the 137 
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value of joint-entropy. For comparison with the hierarchical algorithm’s ranking, back analyses 138 

of the excavation are then carried out to examine how the use of selected wall deflection 139 

measurements from various combinations of single and multiple inclinometers affect the 140 

performance of the parameter identification process. Both the back analysis and the hierarchical 141 

algorithm produce similar inclinometer rankings, which suggests that the latter method can 142 

serve as a tool to select useful field response measurements that lead to the best information 143 

prior to a back analysis. 144 

The hierarchical algorithm is formulated based on a recent population-based data-interpretation 145 

approach known as error-domain model falsification (EDMF) [12]. Due to the large number of 146 

simulations required, the response surface method is adopted to facilitate the computations of 147 

both the hierarchical algorithm and the back analyses. The response surfaces are used to replace 148 

the 2D finite element models of the excavation. However, as will be shown later in Figure 4, 149 

some inclinometers are located near to excavation corners and therefore, the 2D model may 150 

not be adequate. The approach proposed by Wang et al. [51] to quantify three-dimensional 151 

excavation effects is then adopted to facilitate the analyses of these inclinometers. More details 152 

regarding the two techniques will be provided in the later part of this paper. 153 

 154 

2. Methodologies 155 

2.1. Error-domain model falsification 156 

This method was developed based on the assertion of Sir Karl Popper in The Logic of Scientific 157 

Discovery [34] that models cannot be fully validated by data and that they can only be falsified. 158 

In the context of EDMF, a model, e.g. a FEM model, is first constructed to represent the studied 159 

engineering structure. Then, the analysis proceeds to the generation of an initial population of 160 

material parameter value sets. This initial population of material parameter value sets, referred 161 

as “instances/model instances” in the subsequent parts of this paper, are inputs of the FEM 162 
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model for predicting the responses of the engineering structure. Such a model-instance set 163 

defines the model class of the studied engineering structure [46]. The falsification process is 164 

then carried out to eliminate parameter value sets that do not yield predictions compatible with 165 

field response measurements, based on some pre-defined acceptance criteria. The remaining 166 

non-falsified parameter value sets, which are termed candidates, are considered as viable inputs 167 

for use with the numerical model to assess the behaviour of the actual system. In this regard, 168 

EDMF often yields a solution that comprises a population of candidates. The more detailed 169 

mathematical formulation is provided below. 170 

A plausible physics-based model defined by nθ parameter values and a model class Gk can be 171 

identified using field response measurements. In the context of an excavation problem, a 172 

retaining wall deflection profile taken by an inclinometer at ny number of measurement 173 

locations is often adopted in the identification process. Let Ri and ŷi denote the real response 174 

and the measured response respectively at location i ∈{1, …, nv}. Predictions gi,k (Θ'k) of the 175 

model class at location i can be obtained using values for Θ'k, which correspond to the true 176 

parameter values. Modelling uncertainties arising from model simplifications/omissions and 177 

measurement uncertainties are expressed as Ui,gk and Ui,ŷ respectively at location i. The 178 

mathematical relationship between these quantities is given in Eq. (1): 179 

 180 

gi,k(Θ'k)+ Ui,gk
= Ri= ŷi+ Ui,ŷ   ∀i∈{1,…,ny}                                                                          (1) 181 

 182 

Upon rearrangement, Eq. (2) is obtained: 183 

 184 

gi,k(Θ'k)-ŷi=Ui,ck                                                                                                                      (2) 185 

 186 
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where Ui,ck is a random variable representing the difference between the measurement 187 

uncertainty Ui,ŷ and the modelling uncertainty Ui,gk at location i. 188 

The left term of Eq. (2) is typically called the residual ri, which represents the difference 189 

between the model prediction and the measurement at location i. The implementation of EDMF 190 

starts with the generation of 𝑛𝑛𝛺𝛺 model instances Ωk = {Өk,m, m = 1,…, nΩ}. Threshold bounds 191 

are then defined by computing the narrowest interval {uik,low, uik,high} that represents a 192 

probability equal to Ød
1/nv  for the combined PDFs fUi,ck(ui,ck) at each measurement location i. 193 

This computation is performed using the following equation: 194 

 195 

Ød
1/nv =� fui,ck �ui,ck�dui,ck   

uik,high 

uik,low 
∀i ∈{1,…,nv}                                                                       (3) 196 

 197 

The combined PDFs fUi,ck(ui,ck) at each measurement location i is obtained using numerical 198 

sampling [12]. Error samples are drawn from several uncertainty probability density functions 199 

and then added together. A value of 0.95 for the confidence level Ød ∈ [0,1] is commonly 200 

employed. The confidence level Ød is adjusted using the Šidák correction [44] to take into 201 

account the fact that nv measurements are used simultaneously. For example, assuming that 202 

there are two measurement locations, each of which is associated with an uncertainty that is 203 

normally distributed with a mean of 0 and a standard deviation of 1, the adjusted confidence 204 

level at each measurement location is 0.951/2 = 0.9747. Therefore, the uik,low and uik,high at each 205 

measurement location bound the PDF of the uncertainty distribution with an area of 0.9747. 206 

Uniform probability distributions are then assigned to the lower and upper bounds calculated 207 

to create a hyper-rectangular acceptance region. Under this scheme, the value of the correlation 208 

between measurement locations is no longer needed, which is particularly important because 209 
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it is often difficult to determine the correlation values between measurement locations. 210 

Falsification is then performed according to the following equation: 211 

 212 

Ωk
''={ϴk ∈ Ωk| ∀i ∈{1,…,nv} uik,low ≤ gi,k(ϴk)- ŷi ≤ uik,high}                                                  (4) 213 

 214 

An instance Ө*k of a model class Gk is a candidate if for each measurement location i ∈{1, …, 215 

nv}, the residual ri value falls inside the threshold bounds derived from Eq. (3). The candidate 216 

set (CMS), 𝛺𝛺𝑘𝑘′′, is then made up of all model instances that have not been falsified. A uniform 217 

probability distribution is assigned to all model instances that belong to the CMS because it is 218 

often difficult to justify a more sophisticated distribution in practical situations. Details of 219 

EDMF implementation on a multi-stage excavation problem can be found in [50, 51, 52]. 220 

 221 

2.2. Hierarchical algorithm 222 

2.2.1. Original implementation [35] 223 

Papadopoulou et al. [35] introduced a hierarchical algorithm based on a joint-entropy objective 224 

function that explicitly evaluates the mutual information between sensors. Information entropy 225 

from information theory is the “amount of information” contained in a variable or an event. In 226 

the current analysis, the event is the back analysis while the information is the knowledge of 227 

the material parameter values and the excavation behaviour. Section 5 will provide a detailed 228 

definition of “knowledge” in the current study. 229 

The hierarchical algorithm involves several steps. A FEM model is first constructed, which is 230 

used to generate the predictions at each sensor location corresponding to an input population 231 

of material parameter combinations. A total of 1000 material parameter combinations is used 232 

in the present study, these being generated using the Latin Hypercube sampling technique. It 233 

is also necessary to estimate the modelling uncertainties and instrumentation errors associated 234 
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with this problem. Using the FE predicted datasets and the quantified uncertainties, the 235 

expected gain in knowledge about the material parameter values, represented as information 236 

entropy, is evaluated.  237 

 238 

 239 

With reference to Figure 1, at each sensor location i, prediction datasets generated from the FE 240 

analyses are first generated. This is shown in step 1) in Figure 1. Then, a series of bands are 241 

generated based on the combined uncertainties in Eq. (2). The width of each band is constant 242 

and is proportional to the difference between the lower and upper threshold bounds computed 243 

by Eq. (3). This is shown in step 2) in Figure 1. In the next step, for each sensor location i, the 244 

probability that the model-instance prediction falls inside the jth band, denoted as P �yi,j�, 245 

equals to mi,j ∑mi,j⁄ , where 𝑚𝑚𝑖𝑖,𝑗𝑗  is the count of model instances inside the jth band. The 246 

information entropy 𝐻𝐻(𝑦𝑦𝑖𝑖) can then be evaluated using Eq. (5). 247 

 248 

Figure 1 An illustration on the procedures of the hierarchical algorithm. 
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 249 

𝐻𝐻�yi�=-∑ P �yi,j� log2 P �yi,j�
NI,i
j=1                                                      (5) 250 

 251 

When more than one sensor is present in a measurement system, there is likely to be some 252 

redundancy of information gain between sensors, also known as mutual information. To 253 

explicitly account for mutual information, Papadopoulou et al. [35] proposed joint entropy as 254 

a new objective function to quantify the redundancy of information gain between sensors. The 255 

joint entropy 𝐻𝐻�𝑦𝑦𝑖𝑖,𝑖𝑖+1� assesses the information entropy between sets of predictions, such as 256 

between two sensors, which allows the consideration of redundancy of information gain 257 

between sensors. For a set of two sensors, the joint entropy is defined using Eq. (6), where 258 

𝑃𝑃�𝑦𝑦𝑖𝑖,𝑗𝑗, 𝑦𝑦𝑖𝑖+1,𝑘𝑘� is the joint probability that a model instance falls inside the jth band at the sensor 259 

location i, and the kth band at sensor location i+1, 𝑘𝑘 ∈ �1, … ,𝑁𝑁𝐼𝐼,𝑖𝑖+1�, NI,i+1 is the maximum 260 

number of prediction band at the sensor location i+1 and 𝑖𝑖 + 1 ∈ {1, … , 𝑛𝑛𝑠𝑠} with the total 261 

number of sensor locations ns. 262 

 263 

𝐻𝐻�𝑦𝑦𝑖𝑖,𝑖𝑖+1� = −∑ ∑ 𝑃𝑃�𝑦𝑦𝑖𝑖,𝑗𝑗, 𝑦𝑦𝑖𝑖+1,𝑘𝑘� log2 𝑃𝑃�𝑦𝑦𝑖𝑖,𝑗𝑗, 𝑦𝑦𝑖𝑖+1,𝑘𝑘�
𝑁𝑁𝐼𝐼,𝑖𝑖
𝑗𝑗=1

𝑁𝑁𝐼𝐼,𝑖𝑖+1
𝑘𝑘=1                                       (6) 264 

 265 

The joint entropy is less than or equal to the sum of the individual information entropies of 266 

multiple sets of predictions. Eq. (7) shows the joint entropy of two sensors, where 𝐼𝐼�𝑦𝑦𝑖𝑖,𝑖𝑖+1� is 267 

the mutual information between sensor i and i+1. 268 

 269 

𝐻𝐻�𝑦𝑦𝑖𝑖,𝑖𝑖+1� = 𝐻𝐻(𝑦𝑦𝑖𝑖) + 𝐻𝐻(𝑦𝑦𝑖𝑖+1) − 𝐼𝐼�𝑦𝑦𝑖𝑖,𝑖𝑖+1�                                                    (7) 270 

 271 
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The hierarchical algorithm is a greedy search sequential algorithm [35] that selects sensors 272 

iteratively, in which the sensors previously selected are not re-evaluated during subsequent 273 

selections. At each iteration, the hierarchical algorithm re-evaluates only the joint-entropy 274 

objective function of the remaining sensors and chooses the one that maximises the joint 275 

entropy. The algorithm stops when all sensors are selected, providing a ranking of the sensors 276 

and an evaluation of the incremental information gain associated with each sensor. 277 

 278 

2.2.2. Adaptation to excavation back analysis 279 

In the current work, lateral wall deflections measured by inclinometers are examined. An 280 

inclinometer, installed at a designated location, typically measures the lateral deflections at 281 

every 1 m interval from the toe to the top of the retaining wall. As such, an inclinometer 282 

produces a set of readings at multiple depths. As excavations usually involve multiple stages, 283 

such a set of readings is recorded for every excavation stage. For the remainder of this paper, 284 

“inclinometer location” refers to the location at which the inclinometer is placed while 285 

“measurement” refers to the survey point reading at a depth and an excavation stage within 286 

each inclinometer-measured deflection profile. For example, a 10 m long inclinometer 287 

produces 40 measurements over 4 excavation stages. 288 

As a simplification, the upper and lower threshold bounds are calculated based on the average 289 

values of the combined uncertainties and instrumentation errors. Figure 1 shows a simple 290 

example to illustrate this simplification. Three model instances with their corresponding values 291 

of yi,1, yi,2, and yi,3 at location i are shown. Three bands, the width of which, denoted as Wi, j, is 292 

calculated using Eq. (3) by adopting the average uncertainties of the three model instances. The 293 

information entropy can then be calculated using P �yi,j�= mi,j ∑mi,j⁄  and Eq. (5) with mi,1 =294 

 2, mi,2 =  0 and mi,3 =  1. 295 
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The objectives of the analysis using the hierarchical algorithm are twofold. These are (i) the 296 

identification of the measurements within a selected inclinometer, or grouping of two or more 297 

inclinometers, that contribute to the information gain, and (ii) the identification of the 298 

inclinometers, either single or in groups, that provide the most information gain.  To do so, the 299 

implementation of the hierarchical algorithm in this paper involves two steps, which will be 300 

explained with the aid of Figure 2. 301 

 302 

 303 

Step 1: The hierarchical algorithm is applied to all the measurements along a selected 304 

inclinometer. Joint entropies are first calculated using Eq. (5) for individual measurements, 305 

from which the measurements can be ranked in terms of the useful information yielded. 306 

Data point A in Figure 2 shows that the highest entropy value of 1.7 is computed among 307 

the individual measurements along the inclinometer. The particular measurement yielding 308 

the highest entropy is then adopted for subsequent joint entropy calculations involving 309 

Figure 2 Measurement selection based on the measurement ranking using the hierarchical 
algorithm. 
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two or more measurements. Point B shows that, by combining the data from the highest 310 

entropy measurement with any other measurement along the inclinometer, the computed 311 

highest joint entropy using Eq. (6) for a grouping of two measurements is 2.6. When 312 

considering a grouping of three measurements that include the two measurements 313 

associated with data point B of Figure 2, the computed highest joint entropy is 3.4, as 314 

represented by Point C. Such a ‘greedy search’ technique can be extended to calculate the 315 

highest joint entropies associated with groupings of four or more measurements, as shown 316 

on Figure 2 for groupings of up to 12 measurements along the inclinometer. Figure 2 317 

shows that the computed joint entropy increases with the number of measurements, albeit 318 

at a decreasing rate, such that it converges to a maximum value Hmax after 6 measurements 319 

are used. The value Hmax can be considered as a performance indicator which represents 320 

the maximum expected information gain achievable by the measurements along the 321 

selected inclinometer.  322 

Step 2: The procedure outlined in Step 1 is repeated to compute the joint entropy response of 323 

all the inclinometers at the site. Besides considering individual inclinometers, the joint 324 

entropies are also evaluated for combined measurements obtained using groupings of two 325 

or more inclinometers.  Hence, similar plots as that shown on Figure 2 can be generated 326 

for all other individual inclinometers, as well as groupings of two or more inclinometers.  327 

The joint entropy results from these analyses are used to rank the performance of the 328 

inclinometers and inclinometer groupings.  329 

In summary, the information entropy, which measures the disorder in information content, 330 

evaluates the variability of model-instance predictions at measurement locations. A large 331 

entropy value corresponds to a high variability of model-instance predictions. Based on Eqs. 332 

(5) and (6), measurement location associated with a high variability of model-instance 333 

predictions is expected to falsify more model instances. This is in line with the concept of 334 
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model falsification wherein field measurement data that falsifies more model instances provide 335 

more information pertaining to material parameter values. Therefore, the information entropy 336 

provides a metric that can probabilistically quantify the performance of the model falsification 337 

exercise. By maximising the value of entropy, the hierarchical algorithm can identify the 338 

measurement data that provides the most information about the material parameter values. 339 

 340 

Figure 3 shows how the methodologies in this section are integrated into a geotechnical back 341 

analysis. Before performing the back analysis with actual field measurement data, the 342 

hierarchical algorithm is first employed to identify field response measurements that maximise 343 

Figure 3 Proposed framework for geotechnical back analysis with systematic 

measurement selection algorithm. 
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the expected information gain, which will then be used to perform the back analysis. The 344 

framework described will be applied on an excavation case study in the following section. 345 

 346 

3. Excavation Case Study 347 

The geotechnical finite-element software package Plaxis 2D [5] and Plaxis 3D [3] are used to 348 

model the excavation and compute the wall deflection response. Deterministic finite element 349 

analysis that assumes homogenised properties within each soil layer is adopted. Although such 350 

an analysis does not consider the spatial variabilities of material properties, the use of a 351 

population-based data-interpretation methodology in the current study can account for, to some 352 

degree, the inherent variabilities of the material properties.  353 

 354 

 355 

The excavation is approximately 60 m in length, 40 m in width and 10 m in depth. The support 356 

system of the excavation includes diaphragm walls, soldier pile walls, toe pins and two layers 357 

of steel struts and waler beams. Figure 4 shows the 3D finite-element model of this project. 358 

Figure 4 3D finite-element model of the excavation case study (with locations of all 
inclinometers shown). 
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The 800 mm thick diaphragm walls are modelled as elastic plate members with the presence 359 

of construction joints between the panels captured by releasing the rotational stiffness between 360 

the plates [7, 14, 55]. The toe pins and the soldier pile walls, as a simplification, are smeared 361 

and modelled as elastic plate members with equivalent properties. Struts and waler beams are 362 

modelled as node-to-node anchors and beam elements respectively. Interface elements with 363 

zero thickness [5] is used to model the soil-wall interactions. The properties of all structural 364 

elements are listed in Table 1. 365 

 366 

 367 

Six boreholes were drilled at this site, which is situated on the Bukit Timah Granite formation. 368 

The borelogs from the six boreholes were interpreted to obtain the following geological 369 

stratigraphy. The top layer, which is roughly 3 m thick, contains mostly sandy silt and man-370 

made backfill materials. It is underlain by a 10 to 13 m thick residual soil layer of sandy silt, 371 

denoted as G(VI), across most parts of the project site. The granitic rock layer G(III) is present 372 

at approximately 15 m below the ground surface. On the eastern half of the project site, there 373 

is also a 5 m thick layer of coarse sand sandwiched between the G(VI) sandy silt and G(III) 374 

granitic rock. In addition, the soil investigation report indicates that a pocket of medium to 375 

coarse gravels is present at a localised area near the centre of the pit. The fill layer and the 376 

gravels are described using the Mohr-Coulomb model while the rock layer is described using 377 

the Hoek-Brown model.  378 

Table 1 Properties of structural elements involved in the excavation case history (underlined cell indicates the 
initial range of the identified parameter). 

 Diaphragm 
Walls 

Toe 
Pins 

Soldier Pile 
Walls 

Concrete Waler 
Beams Type 1/2/3 

Steel Waler 
Beams Type 1/2 Struts 

Thickness 
(m) 0.8 - - - - - 

EA(kN) 2.0E7 18E6 - 1.7E7/3.2E7/2.48E7 4.0E6/1.3E7 8.0E6 

EI(kNm2) 1.1E6 11E3  (3000-10000) 7.0E5/2.1E6/1.3E6 2.6E5/8.8E5 - 

Lspacing (m) - - - - - 10 
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Other soil layers are simulated using the Hardening Soil with Small Strain Stiffness (HS Small) 379 

model [2]. This excavation generally shows low deflection magnitudes and thus, the capture of 380 

the higher stiffness at low strain levels is important for realistic wall-deflection predictions. 381 

Many studies [25, 30, 53] have highlighted the importance of small strain stiffness in 382 

excavation analyses. 383 

 384 

 385 

Based on the laboratory test results of similar ground conditions, information pertaining to the 386 

strength parameters can be obtained, and the derived values are consistent with the 387 

representative parameter values reported for the Bukit Timah formation [39, 42]. However, the 388 

published laboratory tests provided very limited information related to the soil moduli, and this 389 

has provided the motivation for selecting the soil moduli as the parameters to be identified in 390 

the back analysis exercise. The material parameter values in the current study are listed in Table 391 

2, except for the underlined cells which indicate the parameter values to be identified.  392 

Table 2 Properties of geological materials involved in the excavation case history (underlined cell indicates 
the initial range of the identified parameter). 
 Fill Gravel Sandy Silt Residual Soil Coarse Sand Rock 

E (MPa)  (3-20) 40 - - 2.5E3 

E50
ref(𝐌𝐌𝐌𝐌𝐌𝐌) - -  (5-50)  (5-50) - 

Eoed
ref (𝐌𝐌𝐌𝐌𝐌𝐌) - - 1.0 * E50

ref 1.0 * E50
ref - 

Eur
ref(𝐌𝐌𝐌𝐌𝐌𝐌) - - 3.0 * E50

ref 3.0 * E50
ref - 

m - - 0.6 0.6 - 

c’ (𝐤𝐤𝐤𝐤𝐤𝐤) 0 0 10 0 - 

φ’(o) 25 40 28 35 - 

ψ(o) 0 0 0 0 - 

ϒ0.7  - - 0.0001 0.0001 - 

G0
ref(𝐌𝐌𝐌𝐌𝐌𝐌) - - 2 * Eur

ref 2 * Eur
ref - 

pref(𝐌𝐌𝐌𝐌𝐌𝐌) - - 100 100 - 

σci (MPa) - - - - 80 

mi - - - - 32.7 

GSI - - - - 65 

D - - - - 0.7 

Rinter 0.7 0.5 0.7 0.7 0.75 
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 393 

In the present study, two 2D finite-element models representing the east-to-west section and 394 

north-to-south section are built. The east-to-west model is used to simulate the behaviour of 395 

the diaphragm walls at the locations of inclinometers 3, 4, 5, 8, 9 and 10 while the north-to-396 

south model is used to simulate the behaviour of the walls at the locations of inclinometers 2 397 

and 6. Inclinometers 1 and 7 are excluded in the present study because they were reset in the 398 

field midway during the excavation activities. Figure 5 shows the two 2D finite-element models 399 

with the pertinent geological features, excavation support system and boundary conditions.  400 

In this study, four parameters are selected for the identification exercise following a 401 

preliminary sensitivity analysis. These are (a) the Young’s modulus E of the fill layer, (b) the 402 

reference Young’s modulus E50
ref  of the G(VI) sandy silt layer, (c) the reference Young’s 403 

modulus E50
ref of the coarse sand layer and (d) the equivalent flexural rigidity EI of the smeared 404 

Figure 5 2D finite-element models of the excavation case study. Top: west-to-east section. 
Bottom: north-to-south section. 
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soldier pile walls. Reasonable ranges of these parameter values at the start of the identification 405 

process, as indicated in the underlined cells of Tables 1 and 2, are estimated based on 406 

engineering judgement and local experience. Other Hardening Soil model reference moduli, 407 

such as Eoed
ref , Eur

ref and G0
ref, of the sandy silt and coarse sand layers are indirectly considered in 408 

the identification process via correlations to E50
ref, as shown in the tables. Representative values 409 

for the Buikit Timah formation [39, 42] are assigned to soil parameters that are not involved in 410 

the identification. The initial water table is 2 m below the ground level.  411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

The construction sequence modelled in the finite element analysis comprises 6 stages, as shown 419 

in Table 3. As the interpreted soil layers are inclined with varying thicknesses, the initial ground 420 

stresses in stage 0A are generated using the gravity turn-on approach. The diaphragm wall is 421 

‘wished-in-place’ in stage 0B, assuming negligible installation effects. Fully coupled flow-422 

deformation calculations [10] are performed to account for the combined effects of 423 

groundwater flow and time-dependent consolidation.  424 

The computations of the hierarchical algorithm and the back analyses are carried out with the 425 

help of response surfaces, these being constructed using the Gaussian process regression model 426 

[38] with 136 samples of the four parameter values to be identified. The performance of the 427 

response surfaces are validated using an additional 50 samples of the four parameters that are 428 

Table 3 Simplified excavation activities and remarks. 

Stage Simplified Excavation Activities Duration (days) Calculation Type 
0A Initial Condition - Gravity Loading 
0B Wall Installation - Plastic 

1 Excavate below Strut layer 1 20 Fully coupled flow-
deformation 

2 Install Strut layer 1  45 Fully coupled flow-
deformation 

3 Excavate below Strut layer 2 20 Fully coupled flow-
deformation 

4 Install Strut layer 2 and Excavate 
to formation level 

30 Fully coupled flow-
deformation 

https://doi.org/https:/doi.org/10.1016/j.aei.2021.101296


Wang, Z. Z., Bertola, N. J., Goh, S. H., & Smith, I. F. C. (2021). Systematic selection of field 
response measurements for excavation back analysis. Advanced Engineering Informatics, 48, 
101296. https://doi.org/https://doi.org/10.1016/j.aei.2021.101296 

21 
 

not involved in their construction. The validated response surfaces are used as surrogates of 429 

the 2D finite element models shown in Figure 5 to make wall deflection predictions.  430 

Figure 4 shows that some inclinometers are located near the excavation corners. Due to corner 431 

constraint effects, the wall deflections at these locations may not be properly captured using 432 

the 2D plane strain models. In this regard, the approach proposed by Wang et al. [50] can be 433 

used to quantify three-dimensional effects so that inclinometers near to excavation corners can 434 

be analysed in an efficient and accurate manner. This technique quantifies and represents the 435 

three-dimensional effects as uncertainty error terms, which are then subtracted from the 436 

predictions made with the 2D finite element models to arrive at the equivalent 3D predictions. 437 

The concept of correcting 2D model predictions to account for three-dimensional effects has 438 

been commonly adopted in the literature [9, 17, 22, 29]. The strategy used in the current study 439 

has been successfully applied on a synthetic excavation example [49] and two full-scale multi-440 

stage excavation case histories in Singapore [51, 52]. 441 

 442 

 443 

 444 

 445 

 446 

Table 4 lists the uncertainties involved in the analysis and their magnitudes. These uncertainty 447 

sources include inclinometer errors, 2D model simplification and errors arising from the use of 448 

response surfaces, among others. Uncertainties such as inclinometer errors and 2D model 449 

simplification can be quantified with reference to [8, 51], and these uncertainties vary across 450 

inclinometer locations and measurement points. The values shown in Table 4 are some selected 451 

values of such uncertainties. 452 

 453 

Table 4 Examples of uncertainties used in the study. 

Uncertainty sources Magnitudes Remarks 
Inclinometer uncertainties e.g. ±3.5mm [8] 
2D-model simplification e.g. 0.9mm – 2.3mm Quantified using approach in [51] 
Response surface e.g. ±2.5mm - 
Mesh refinement ±5% [13 ,37] 
Others ±5% [13 ,37] 
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4. Measurement Selection with the Hierarchical Algorithm 454 

4.1. Individual inclinometer  455 

The current study involves four excavation stages at which parameter identification is 456 

performed. It is often useful, at an early or intermediate point in the excavation process, to 457 

predict the field responses of subsequent excavation stages. Hence, a back analysis can be 458 

performed after every excavation stage. In the subsequent part of the paper, the term ‘1st round 459 

of identification’ refers to the back analysis performed after excavation Stage 1, where wall 460 

deflection measurements of excavation stage 1 are used. Similarly, the term ‘4th round of 461 

identification’ refers to the back analysis performed after excavation Stage 4, where wall 462 

deflection measurements of excavation Stages 1 to 4 are used. Therefore, the eight 463 

inclinometers are analysed four times corresponding to the four rounds of identification.   464 

Figure 6 shows the joint entropy of the eight inclinometers after each round of identification. 465 

The joint entropy refers to the converged value after sufficient measurements along the 466 

inclinometer have been adopted in the hierarchical algorithmic calculations, as shown in Figure 467 

Figure 6 Joint entropy of eight inclinometers after each round of identification. 
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2. In the current study, the joint entropy value is the metric that represents the expected 468 

knowledge about the material parameter values the inclinometer can provide. Figure 6 shows 469 

that inclinometers provide little information during the first three rounds of identification. This 470 

is because wall deflection magnitudes are small in the early excavation stages and hence are 471 

relatively insensitive to variations in parameter values. As the excavation proceeds to the final 472 

excavation stage, the deflection magnitudes become larger and more inclinometers are able to 473 

provide useful information.  474 

Based on the joint entropy evaluations after the 4th round of identification, the five 475 

inclinometers, ranked in the order of 4, 10, 5, 9 and 3, are deemed to provide useful information. 476 

Therefore, the subsequent analyses will utilize wall deflection measurements of only 477 

inclinometers 4, 10, 5, 9 and 3 from all four excavation stages (after the 4th round of 478 

identification) because only these inclinometers and the associated measurements can 479 

potentially provide useful information about the material parameter values.  480 

The objective of the current work is to demonstrate the effectiveness of the hierarchical 481 

algorithm in selecting field response measurements that maximise the expected information 482 

about the material parameter values that can be obtained from a back analysis. This may be 483 

done through a comparison between the results of the hierarchical algorithm and the back 484 

analyses after the 4th round of identification.   485 

For the selected individual inclinometers, Figure 7 (a) plots the convergence of joint entropy 486 

with the number of measurements after the 4th round of identification. In this study, there is a 487 

distinction between a ‘measurement’ and a ‘measurement point’. Each inclinometer contains 488 

between 11 to 15 measurement points that measure the lateral deflections at different depths to 489 

generate the wall deflection profile. As there are four stages in the excavation, each 490 

inclinometer will record four deflection profiles. This generates four measurements per 491 
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measurement point, or a total of between 44 to 60 measurements per inclinometer for back 492 

analysis during the 4th round of identification. 493 

 494 

For the five inclinometers shown in Figure 7 (a), the individual joint entropies converge before 495 

all available measurements are included in the calculations, thus indicating that only a fraction 496 

of the 44 to 60 measurements recorded by each inclinometer is expected to provide useful 497 

information about the material parameter values. For example, only 8 measurements out of the 498 

50 measurements recorded by inclinometer 4 provide useful information. Table 6 shows the 499 

information pertaining to these useful measurements for the selected five individual 500 

inclinometers. The numbers in the table indicate the depth the measurements are recorded. 501 

Studies related to the information provided by Table 6 will be presented in the later part of this 502 

paper. 503 

Figure 7 Convergence of joint entropy with respect to measurements for selected 
inclinometers and inclinometer groupings. 

https://doi.org/https:/doi.org/10.1016/j.aei.2021.101296


Wang, Z. Z., Bertola, N. J., Goh, S. H., & Smith, I. F. C. (2021). Systematic selection of field 
response measurements for excavation back analysis. Advanced Engineering Informatics, 48, 
101296. https://doi.org/https://doi.org/10.1016/j.aei.2021.101296 

25 
 

Based on Figure 7(a), inclinometer 4 yields the highest joint entropy value, indicating that a 504 

back analysis that utilises measurement data of inclinometer 4 is likely to yield better 505 

knowledge about the material parameter values than the back analyses that utilise other 506 

individual inclinometers. 507 

 508 

4.2. Joint entropy for inclinometer groupings 509 

While the preceding section presents the expected information gain about the material 510 

parameter values when the selected inclinometers are used in a back analysis individually, the 511 

hierarchical algorithm is also able to analyse the expected information gain when combined 512 

measurement data of multiple inclinometers are utilised in the back analysis. 513 

 514 

 515 

 516 

Table 5 summarises the 15 inclinometer groupings that are considered in the present study. 517 

Using the greedy search approach in the hierarchical algorithm, it is not necessary to evaluate 518 

all possible combinations. For example, when groupings of two inclinometers are examined, 519 

inclinometer 4, which is the best individual inclinometer, is always included. Similarly, 520 

inclinometers 4 and 10, being the best grouping of two inclinometers (as will be shown in 521 

Table 5 Inclinometer groupings considered in the present study. 

Single 
inclinometer 

Grouping of two 
inclinometers 

Grouping of three 
inclinometers 

Grouping of four 
inclinometers 

Grouping of five 
inclinometers 

3; 4; 5; 9; 10 3&4; 4&5;  4&9; 
4&10 

3,4,&10; 4,5&10;   
4,9&10 

3,4,5,&10;   
4,5,9&10 3,4,5,9&10 

Table 6 Measurements that provide useful information (the numbers in the parenthesis indicate the depth the 
measurements are recorded). 

Inclinometer ID Measurements (depth (m)) 
Stage 1 Stage 2 Stage 3 Stage 4 

3 - - - 1, 2 
4 - 1 2, 4 1, 2, 3, 4, 5 
5 - - - 1, 2, 3 
9 1, 2, 3, 6 3, 4, 5, 6 2, 7, 8, 10 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 

10 1, 3, 15 1, 2, 15 1, 15 1, 2, 3, 4, 5, 6, 7 
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Figure 7(b)), are always considered for the analysis that involves a grouping of three or more 522 

inclinometers.  523 

Figures 7(b) to (d) plot the increase in the computed joint entropy values with the number of 524 

measurements associated with groupings of two to four inclinometers, after the 4th round of 525 

identification. As was noted earlier in Figure 7(a) for individual inclinometers, the joint entropy 526 

values calculated using measurements from the selected groupings of inclinometers also 527 

converge before all available measurements are taken into account. This again suggests that a 528 

significant fraction of the total measurements provide redundant information. 529 

In Figure 7(b), the combination of inclinometers 4 and 10, which are the two ‘best’ 530 

inclinometers according to the converged joint entropy values of Figure 7(a), produces the 531 

largest joint-entropy value of approximately 3.5. In Figure 7(c), the grouping of inclinometers 532 

4, 5 and 10, comprising the three ‘best’ individual inclinometers of Figure 7(a), provide the 533 

most information when measurements from three inclinometers are used simultaneously. 534 

Similarly, in Figure 7(d), the two cases involving four inclinometers (4, 5, 10 & 9; 4, 5, 10 & 535 

3) yield similar joint-entropy values that are only marginally larger than the joint entropy value 536 

of the three-inclinometer grouping 4, 5 and 10.  537 

 538 
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Figure 8 plots the maximum joint entropy for different inclinometer groupings as a function of 539 

the number of inclinometers used. The individual joint entropy of inclinometer 4 is 540 

approximately 2.5. When two inclinometers are used, the joint entropy increases to 3.5 with 541 

the inclusion of inclinometer 10. However, when more inclinometers are considered, there are 542 

diminishing incremental gains in the joint entropy. Furthermore, when measurements from 543 

inclinometers 2, 6 or 8 (which are not useful inclinometers according to Figure 6) are included 544 

in the calculations, the computed value of joint entropy decreases. This demonstrates that it is 545 

not always favourable to include more field response measurement data. 546 

 547 

5. Back Analysis with Field Measurement Data 548 

In this section, the performance of the hierarchical algorithm in identifying and ranking the 549 

useful inclinometers is checked against the results from back analyses utilizing actual field 550 

measurements from different individual and selected groupings of the eight inclinometers.  551 

Figure 8 Maximum joint entropy values of different groupings of inclinometers. 
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In the introductory section of this paper, it was mentioned that the information entropy 552 

measures the “amount of information” contained in an event, and this information was loosely 553 

defined as the knowledge of the material parameter values and excavation behaviour. In the 554 

subsequent discussions, this “knowledge” refers to three aspects of the back analysis results: 555 

(i) the percentage of falsified models following the concept of EDMF, (ii) the range of the 556 

identified material parameter values and (iii) the standard deviations of the predicted wall 557 

deflections.  558 

The results of the back analyses are first interpreted in terms of the percentage of material 559 

parameter values falsified during the EDMF process. The larger the falsification percentage, 560 

the smaller is the identified candidate set, which translates into a ‘better’ performance (in terms 561 

of information yield) of the particular individual or grouping of inclinometers from which the 562 

subset of field measurements is utilized in the back analysis.  Hence, the use of the falsification 563 

percentage as a performance metric is reasonable and compatible with the approach adopted 564 

by [12]. Similarly, a smaller range of the identified material parameter values and a smaller 565 

standard deviation of the predicted wall deflections also translate into a “better” performance. 566 

The back analyses are performed by first generating 20,000 initial samples of the four material 567 

parameters to be identified using the Latin Hypercube sampling technique, for which the 568 

corresponding wall deflection predictions are obtained using response surfaces derived from 569 

finite-element simulations. The error-domain model falsification (EDMF) method is then 570 

adopted to identify the parameter candidate sets by comparing the predicted wall deflections 571 

with field measurements. Different back analyses are performed by using field measurements 572 

from different individual and groupings of inclinometers, each of which will result in a different 573 

identified candidate set.  574 

Following the above methodology, back analyses are performed using field measurements 575 

from individual inclinometer and groupings of two to five inclinometers, as listed in Table 5. 576 
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First, back analyses using all measurements obtained from either individual inclinometers or 577 

groupings of inclinometers are carried out. The results are interpreted in terms of percentage 578 

falsification for individual inclinometers or inclinometer groupings, which can then be 579 

compared with the rankings of inclinometers and inclinometer groupings presented in Section 580 

4 using the hierarchical algorithm. Second, back analyses are performed using EDMF with 581 

only the selected measurement subsets, such as those measurements listed in Table 6, from 582 

individual inclinometers or inclinometer groupings. 583 

 584 

5.1. Percentage of falsified models 585 

5.1.1. Using all measurements from individual inclinometers and inclinometer 586 

groupings 587 

Figure 9(a) shows the percentage of falsified models obtained by using field measurements 588 

from the individual inclinometers. The individual inclinometer that produces the highest 589 

percentage of falsified model is inclinometer 4, which may also be interpreted as the instrument 590 

yielding the most information about the material parameter values. This agrees with the 591 

assessment of the expected information gain obtained from the hierarchical algorithm discussed 592 

in Section 4. Both the back analyses and the hierarchical algorithm indicate that the next two 593 

best individual inclinometers are inclinometers 10 and 5; however, the back analysis shows 594 

that the use of measurements from inclinometer 5 produces a slightly higher percentage of 595 

falsified models compared to inclinometer 10, which is contrary to the joint entropy results of 596 

the hierarchical algorithm. For inclinometers 9 and 3, the results of the back analyses are in 597 

agreement with the hierarchical-algorithm results.  598 

Figure 9(b) to (e) shows the percentage of falsified models using the field measurements 599 

associated with groupings of two or more inclinometers. Globally, the results of the back 600 

analyses, in terms of the inclinometer falsification performance, are in agreement with the joint 601 
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entropy calculations of the hierarchical algorithm. The grouping of inclinometers 4 and 10 602 

yields the highest percentage of falsified models among all groupings of two inclinometers, 603 

which is consistent with the results of the hierarchical algorithm in Figure 7 (b). The rankings 604 

of the other three groupings of two inclinometers also agree well with that of the hierarchical 605 

algorithm.  For groupings of three inclinometers, both the back analyses and the hierarchical 606 

algorithm show that the grouping of inclinometers 4, 5 and 10 yields the most information. The 607 

back analyses also show that the grouping of inclinometers 3, 4, 5, and 10 offers similar 608 

performance as the inclinometer grouping 4, 5, 9 and 10, which is consistent with the outcome 609 

using the hierarchical algorithm in Figure 7(d).  610 

Figure 10 plots, for each grouping of inclinometers, the highest percentage of falsified models 611 

within that group. Both Figures 8 and 10 illustrates a possible adverse effect of including too 612 

much measurement data [12], as can be seen in the small drop in the value of joint entropy and 613 

Figure 9 Percentage of falsified models for groupings of one or more inclinometers. 
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the percentage of falsified model instances. However, in contrast to Figure 8, which indicates 614 

that additional information can be gained with the inclusion of more data taken from up to five 615 

inclinometers (using the hierarchical algorithm), Figure 10 shows that no further information 616 

gain is achieved by using measurements from more than three inclinometers (from the back 617 

analysis exercise). This discrepancy is possibly due to the probabilistic nature of the 618 

hierarchical algorithm and simplifications adopted in the evaluation of the joint entropy (see 619 

Section 2.2).  620 

 621 

 622 

5.1.2. Using only selected measurements from individual inclinometers and groupings 623 

As indicated in Figure 7(a) to (d), not all measurements associated with each inclinometer 624 

deflection profile provide useful information. Therefore, the measurements that do not belong 625 

to the subset of measurements selected by the hierarchical algorithm are not considered to be 626 

“useful” for the back analysis. In the subsequent analysis, back analyses are performed using 627 

just this subset of measurements (Table 6) that are considered to be “useful” by the hierarchical 628 

Figure 10 Maximum percentage of falsified models for various inclinometer groupings. 
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algorithm in Section 4. Results are then compared against those from the preceding analyses 629 

that utilise all measurements. 630 

 631 

Figure 11(a) compares the percentage of falsified models for the back analyses using the full 632 

sets versus the selected subsets of measurements from individual inclinometers. The dashed 633 

red bars correspond to results obtained using the subset of measurements, while the solid bars 634 

are the results obtained utilizing all measurements. The close agreement in the percentage of 635 

falsified models for each inclinometer imply that generally similar information is obtained 636 

Figure 11 Percentage of falsified models of individual inclinometer and groupings of two to 
five inclinometers with all measurements or subsets of measurements. 
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using both the subset and the full set of measurements. In a similar manner to Figure 11(a), 637 

Figure 11(b) to (e) compares the percentage of falsified models for the back analyses using the 638 

full sets versus the selected subsets of measurements by the hierarchical algorithm for 639 

groupings of two to five inclinometers. The analyses that use all measurements (indicated by 640 

solid bars) do not yield significant variations in the percentages of falsified models when 641 

compared with the analyses using subsets of measurements selected by the hierarchical 642 

algorithm (indicated by bars with dashed outlines). These observations corroborate the 643 

selection obtained using the hierarchical algorithm, and suggest that the hierarchical algorithm 644 

is effective in identifying the measurements that provide useful information about the 645 

parameter values in a back analysis. 646 

 647 

 648 

 649 

Figure 12 Comparisons of identified values of small strain stiffness G0 (MPa) of sandy silt 
using different individual and grouping of inclinometers with reference values reported in 
the literature [18, 24, 27, 48, 59]. 
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5.2. Identified material parameter values 650 

Given that the excavation in this case study exhibits fairly small deflection magnitudes (as will 651 

be shown in Figure 13) and that the sandy silt layer is the dominant geological material, the 652 

identified values of the small strain stiffness G0 are chosen for subsequent discussions. As 653 

indicated in Table 2, the values of G0
ref

 are correlated to the values of E50
ref [1]. Values of G0 can 654 

then be calculated based on the identified values of G0
ref and the effective minor principal stress 655 

extracted from the finite element analysis following the equation described in [3, 5]. 656 

Figure 12 compares the identified values of G0 with values obtained from (i) correlations with 657 

SPT-N values [18, 24, 48] and (ii) geophysical tests on similar grounds [27, 59]. Multiple lines 658 

that correspond to the maximum and minimum values of G0 identified using different field 659 

response measurements are shown in the figure. These values correspond to the candidates 660 

separately obtained from the back analyses using measurements of (i) inclinometer 4, (ii) 661 

grouping of inclinometers 4 and 10, (iii) grouping of inclinometers 4, 5 and 10, (iv) grouping 662 

of inclinometers 4, 5, 9 and 10, and (v) (ii) grouping of inclinometers 3, 4, 5, 9 and 10.  These 663 

individual inclinometers and groupings of inclinometers are selected based on the results 664 

shown in Figure 8. The key observations are summarised as follows: 665 

(i) The G0 values calculated using correlations to in-situ SPT-N values [18, 24, 27, 48, 59] 666 

are reasonably bounded by the maximum and minimum values obtained from all the five 667 

back analyses using different combinations of the inclinometers. This comparison 668 

supports the claim that the back analyses carried out are reliable and have led to 669 

reasonable identification of the material parameter values.  670 

(ii) The back analysis carried out using measurements of inclinometer 4 yields the widest 671 

bounds of G0 values. While the use of combined measurements of inclinometers 4 and 672 

10 effectively reduces the bounds of G0 values obtained from the preceding case, the use 673 

of combined measurements of inclinometers 4, 5 and 10 further reduces the bounds of 674 
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G0 values. However, the reduction in the G0 bounds achieved by inclinometers 4, 5 and 675 

10 is less than the reduction achieved by inclinometers 4 and 10. Moreover, minor 676 

variations in the maximum and minimum values are observed when additional 677 

measurements from inclinometers 3 and 9 are included in the back analysis.  678 

Observation (ii) implies that while improved knowledge about the material parameter values, 679 

in the form of a narrower bound, can be obtained by using more measurements in the back 680 

analyses, the improvement is not proportionate to the quantity of the measurements. Eventually, 681 

the information gain attains a plateau and therefore, the strategy to use as much measurement 682 

data as possible in the back analysis may not necessarily be effective in gaining the maximum 683 

knowledge about the parameter values. Such a conclusion is consistent with that drawn from 684 

Figures 8 and 10, which respectively show the improvements in joint entropy and percentage 685 

of falsified models diminish with the inclusion of additional measurement data. 686 

 687 

5.3. Wall-deflection predictions 688 

Figure 13 shows the wall deflection predictions at the locations of the five selected 689 

inclinometers (3, 4, 5, 9 and 10) made with material parameter values identified from the back 690 

analysis using combined measurements of inclinometers 4, 5 and 10, which yields the best 691 

knowledge of the material parameter values based on Figures 10 and 12. As explained in 692 

Section 2.1, EDMF is a population-based approach that identifies a population of candidate 693 

material parameter values. All candidate parameter values are then used to produce a 694 

population of wall deflection predictions. Both mean predictions and 95% confidence bounds 695 

are calculated based on this population of predictions and are shown in the Figure 13. Good 696 

agreement between measurements and predictions is observed for all five inclinometers, 697 

implying that the back analyses carried out are reliable and have led to reasonably accurate 698 

predictions of wall deflections. 699 

https://doi.org/https:/doi.org/10.1016/j.aei.2021.101296


Wang, Z. Z., Bertola, N. J., Goh, S. H., & Smith, I. F. C. (2021). Systematic selection of field 
response measurements for excavation back analysis. Advanced Engineering Informatics, 48, 
101296. https://doi.org/https://doi.org/10.1016/j.aei.2021.101296 

36 
 

 700 

 701 

Figure 14 shows the ‘averaged’ standard deviations of wall deflection predictions at the 702 

locations of the five selected inclinometers (3, 4, 5, 9 and 10) made at excavation stage 4 with 703 

material parameter values identified using combined measurements of several groupings of 704 

inclinometers. These ‘averaged’ standard deviations are obtained by evaluating the mean 705 

values of the standard deviations calculated for all the measurements and stages of the 706 

individual inclinometer-measured wall deflection profile. This is done in an attempt to evaluate 707 

the overall variability of the predicted wall deflections across all measurement points and 708 

excavation stages.  709 

Figure 13 Wall deflection predictions at locations of the five selected inclinometers made 
at excavation stage 4 with material parameter values identified using combined all 
measurements of inclinometers 4, 5 and 10. 
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In general, the use of combined measurements of inclinometers 4, 5 and 10 leads to the lowest 710 

values of standard deviations for all five inclinometers, implying that the wall deflection 711 

predictions in this case are the most precise. In addition, the standard deviations obtained using 712 

combined measurements of inclinometers 4, 5, 9 and 10 and inclinometers 3, 4, 5, 9, 10 are 713 

very similar to the values obtained using combined measurements of inclinometers 4, 5 and 10. 714 

These observations again suggest that the gain in knowledge of the excavation behaviour, as 715 

manifested in the form of narrower bounds of the predicted wall deflections, diminishes with 716 

additional measurements utilized in the back analysis. The inclusion of additional 717 

measurements beyond a certain quantity may not confer any improvements on the performance 718 

predictions. These observations are consistent with those presented in Figures 8, 10 and 12. 719 

 720 

 721 

 722 

 723 

6. Implications on Back Analysis of Excavations 724 

Based on the common practice of performing excavation analyses using plane strain 725 

assumptions [8, 14, 15, 41], the measurements from inclinometers 4 and 9 will typically be 726 

chosen for routine back analysis. Engineering heuristics also suggest that inclinometer 9, which 727 

Figure 14 Standard deviations of wall deflection predictions at locations of the five selected 
inclinometers made at excavation stage 4 with material parameter values identified using 
combined measurements of grouping of inclinometers. (unit: mm) 
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records the largest deflection magnitudes (Figure 13), is likely to be the most useful 728 

inclinometer for a back analysis. Although the results from both the hierarchical algorithm and 729 

the back analyses (Figures 7 and 9) support the selection of inclinometers 4 and 9 as good 730 

sensors in general, they also indicate that inclinometers 5 and 10 are better choices than 731 

inclinometer 9. Inclinometer 9, which mainly penetrates through the sandy silt layer only as 732 

shown in Figure 13, likely contains useful information pertaining primarily to this layer. As a 733 

result, the usefulness of the information gained from this inclinometer would be more limited. 734 

In contrast, inclinometers 4 and 5, which measure responses pertaining to multiple geological 735 

members and structural members as shown in Figure 13, can provide more diverse and useful 736 

information.  737 

When combined measurements of multiple inclinometers are to be used for a back analysis, it 738 

is recommended to have inclinometers that are not located on the same side of the excavation. 739 

In Figures 7(b) and 9(b), the best two-inclinometer combinations are the groupings of 740 

inclinometers 4 and 10 followed by 4 and 9. In both cases, the two inclinometers are located 741 

on opposite sides of the excavation. When combined measurements of three inclinometers are 742 

to be used, the best grouping is inclinometers 4, 5 and 10, in which inclinometers 5 and 10 are 743 

located diagonally across the site.  744 

Furthermore, engineering heuristics often suggest that the use of measurement data of one 745 

inclinometer is often insufficient for getting the best knowledge about the material parameter 746 

values. While the current study supports this statement, it also shows that the use of combined 747 

measurements of two inclinometers (e.g. inclinometers 4 and 9), which is the typical strategy 748 

adopted in the literature [8, 15, 41], is not necessarily the optimal choice as shown in Figures 749 

7 and 9. 750 

It may be surmised from the above observations that, while considerations pertaining to plane 751 

strain assumption and deflection magnitudes are important, it is recommended to take diversity 752 
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of information into consideration when selecting field response measurements for a back 753 

analysis. The above observations also suggest that, while a selection based on engineering 754 

heuristics (e.g. inclinometers 4 and 9) can yield reasonable results, the rational and systematic 755 

selection and adoption of field response measurements collected at appropriate sensor locations 756 

is able to provide a more robust strategy to ensure maximum useful information gain from a 757 

back analysis. 758 

 759 

7. Limitations and Conclusions 760 

The following limitations of the work are recognized: 761 

The combined uncertainties used in the hierarchical algorithm are calculated as the mean values 762 

of the uncertainties associated with the 1000 model instances to reduce computational effort. 763 

Such a simplification may inevitably influence the computational results, which may explain 764 

some of the observed discrepancies between the results of the hierarchical algorithm and the 765 

back analysis.  766 

In addition, the greedy-search strategy used by the hierarchical algorithm does not 767 

automatically lead to a global optimum of the joint entropy, particularly for small numbers of 768 

measurements. Given that the results of the hierarchical algorithm are largely in agreement 769 

with the results of the back analysis, these limitations are likely to have little impact. 770 

Furthermore, Figure 9 suggests that limited knowledge of the material parameter values is 771 

obtained during the first three rounds of identification. In this case study, wall deflection 772 

magnitudes are small in the early excavation stages, and hence are relatively insensitive to 773 

variations in parameter values. Consequently, the inclinometer measurements at early 774 

excavation stages provide limited information. This is a limitation specific to the inherent 775 

nature of this case study. Nevertheless, both the back analysis and the hierarchical algorithm 776 

produce similar inclinometer ranking after the fourth round of identification. This observation 777 
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lends support to the conclusion that the hierarchical algorithm is effective in selecting 778 

measurement data that allows good and useful knowledge of material parameter values to be 779 

obtained from a back analysis. 780 

A limited number of settlement markers were installed for the current case history.  781 

Unfortunately, they could not be used due to the erroneous readings that were recorded. 782 

Additional case histories that involve both wall deflections and ground settlement 783 

measurements should be considered in future studies to further substantiate the effectiveness 784 

of the hierarchical algorithm. 785 

In summary, this paper examines the effectiveness of the hierarchical algorithm as a tool to 786 

systematically select measurement data to maximise the information gain from a back analysis 787 

of an excavation. The application of the hierarchical algorithm does not entail the use of any 788 

actual measurements from the field excavation, and therefore, such an exercise can be carried 789 

out at an early stage of the project to help identify potential inclinometer measurements for 790 

back analysis. The results have been corroborated using a back analysis performed on an 791 

excavation case history in Singapore. Specific conclusions are summarised as follows: 792 

(i) A hierarchical algorithm that is formulated based on joint-entropy values leads to 793 

effective evaluation of the mutual and redundant knowledge of material parameter values. 794 

(ii) The hierarchical algorithm can serve as a tool for engineers to accurately identify and 795 

select measurements that provide the most useful knowledge of material parameter 796 

values in a back analysis exercise. 797 

(iii) By comparing back analysis results using all inclinometer measurements and subsets of 798 

measurements, the performance of the hierarchical algorithm is validated using field 799 

response measurements. 800 

 801 

 802 
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