To cite this document:

L. Pereira, B. Lecampion '"A plane-strain hydraulic fracture driven by a shear-thinning Carreau fluid" Int.
J. Numer. Anal. Meth. Geomech (2021)

(received Dec. 11, 2020, accepted Apr. 1, 2021)

https://doi.org/10.1002/nag.3216

A plane-strain hydraulic fracture driven by a shear-thinning
Carreau fluid

Lucas Pereira and Brice Lecampion!

!Geo-Energy Lab - Gaznat chair on Geo-Energy - EPFL, Lausanne, Switzerland

March 22, 2021

Abstract

We study the propagation of a plane-strain hydraulic fracture driven by a shear thinning
fluid following a Carreau rheology. We restrict to the impermeable medium case and quantify
in details the impact on fracture growth of the shear-thinning properties of the fluid between
the low and high shear-rates Newtonian limits. We derive several dimensionless numbers
governing the evolution of the solution. The propagation notably depends on the ratio be-
tween the two limiting viscosities, the fluid shear-thinning index, a dimensionless fracture
toughness and a characteristic time-scale capturing the instant at which the fluid inside the
fracture reaches the low-shear rate Newtonian plateau. We solve the problem numerically us-
ing Gauss-Chebyshev methods for the spatial discretization of the coupled hydro-mechanical
problem and a fully implicit time integration scheme. The solution evolves from an early
time self-similar solution equals to the Newtonian one for the large-shear rate viscosity to a
late time self-similar solution equals to the low-shear rate Newtonian solution. The transition
period (corresponding to the shear thinning part of the rheology) exhibits features similar
to the power law rheology, albeit quantitatively different. Comparisons of hydraulic fracture
growth predictions obtained with a power-law model confirm its inadequacy for realistic flu-
ids used in practice compared to the more physical Carreau rheology: the Newtonian plateau
at high and low shear rates cannot be neglected.
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1 Introduction

The type of fluids used during hydraulic fracturing operations is the main component that can be
engineered notably in relation to their capacities to carry propping agents, minimize plugging of
the fracture faces and ensuring minimal pumping energy. Over the years, a variety of proprietary
fluid formulation have therefore been developed by pumping services companies from dilute
polymer solutions (slickwater), linear and cross-linked gels to viscoelastic surfactants (micellar
fluids). We refer to Barbati et al. [1] for a review. Most of these fluids exhibit a non-linear
shear-thinning rheological behaviour: their tangent viscosity decreases with increasing shear
rate / shear stress. More precisely, these fluids exhibit a Newtonian plateau at low shear rate
where their viscosity is maximum and starts to shear thin for value of shear rate larger than a
critical value 4.. At very large shear rate, the viscosity tends to the Newtonian viscosity of the
base solvent used (see Fig. 1).

How such non-linear rheological fluid behavior impacts the growth of a hydraulic fracture is an
important question in practice. A large number of work in the hydraulic fracturing literature have
approximated the shear-thinning behavior by a power-law rheology (also sometimes referred to as
the Ostwald—de Waele model). Such a power-law variation clearly over-estimates the fluid tangent
viscosity at low shear rates and under-predicts it at large shear rates (see Fig. 1). Nevertheless,
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Figure 1: Example of the evolution of the viscosity as function of shear rate for the Carreau (black
line) and power law rheological models (red line). Case representative of a Hydroxypropylguar
(HPG) fluid - see e.g. [13, 18] for other examples.

thanks to the simple expression of the power-law model, the lubrication relation in a thin fracture
between flow rate and the fluid pressure gradient is analytical. Semi-analytical reference solutions
for a hydraulic fracture driven by a power-law fluid have thus been obtained for a plane-strain
geometry [2, 3],complementing solutions already available for the case of Newtonian fluids (see
[4, 5, 6] for a comprehensive list of references). The solution for a steadily moving semi-infinite
fluid driven crack has also been derived for a power-law fluid [7, 8]. The power-law rheology
despite its short-comings is implemented in a large number of computer codes [6, 9].

In this article, we investigate in details how the precise evolution from the low shear-rate
to the large shear rate Newtonian plateau impacts the growth of a finite plane-strain hydraulic
fracture. To do so, we use the Carreau rheological model [10] which captures well the shear-
thinning behavior from low to high shear rates (see Fig. 1). Similar results would be obtained
with similar rheological models [11]. It is worth noting that a semi-analytical solution for the
lubrication flow of a Carreau fluid between two parallel plates exist (in the form of a non-linear
scalar equation for the wall shear-stress) and will be subsequently used [12]. In what follows, we
extend the work of Moukhtari and Lecampion [13] who studied the asymptotic case of a steadily
moving semi-infinite fracture. Very recently, as we finalize this work, the propagation of a plane-
strain hydraulic fracture driven by a truncated power-law rheology (which is an approximation of
the Carreau model [14]) has been investigated numerically [15]. Our analysis using the complete
Carreau rheology goes in more details regarding the different regimes of the solution. After
discussing in details the structure of the hydraulic fracture propagation solution at the light of
a scaling analysis, we present an efficient numerical scheme for the case of a finite plane-strain
fracture based on Gauss-Chebyshev quadrature and barycentric differentiation / interpolation
techniques [16, 17]. We then notably compare the results obtained with Carreau rheology with
the power-law model.

2 Governing equations

We consider the propagation of a finite hydraulic fracture under plane-strain condition driven by
the injection of a complex shear-thinning fluid modelled by a Carreau rheology. The fracture is
fully filled by the non-linear fluid. The presence of a fluid lag is neglected which is a reasonable



assumptions when the in-situ confining stress o, is sufficiently large (see [13, 19| for a detailed
discussion for Newtonian and Carreau fluids respectively). We further assume that the material
is impermeable and isotropic linear elastic. The fluid is injected from a point source at the
fracture center under a constant rate Q.

In line with previous contributions [4, 20|, for sake of clarity, we use the following set of

material parameters:
32 E
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where K. denotes the solid fracture toughness, E and v the solid elastic Young’s modulus and
Poisson’s ratio and p, is the fluid low shear viscosity.

2.1 Linear elastic fracture mechanics

In the case of a pure tensile mode I fracture growing symmetrically under plane-strain condition,
the quasi-static elastic deformation of the material reduces to the following normal traction
boundary integral equation between the net pressure loading p(x) and the fracture opening w(x)
[21]:
E ' ow ds
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where the net pressure loading p(z,t) = py(x,t) — 0, is the fluid pressure py in excess of o,
the minimum in-situ confining stress acting perpendicular to the fracture plane. Due to the
uniformity of the medium and in-situ stress field, the fracture grows symmetrically from a point
source, and £(t) denotes its half-length.

We assume quasi-static co-planar fracture growth under pure mode I such that the Griffith
propagation criteria reduces to the equality of the mode I stress intensity factor with the material
fracture toughness K. (see [22] for example). Such a propagation condition notably results in
the 1/2 asymptote for the width near the fracture tip
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2.2 Lubrication flow

Recognizing that the length of the fracture is much longer than its width, the fluid flow is well
approximated by the lubrication theory [23]. In the absence of any fracturing fluid leaking off
from the fracture to surrounding medium, for an incompressible fluid, the width-averaged fluid
mass conservation reduces to:

ow(x,t)  Iq(z,t)
o oz
where ¢ = w X V denotes the local fluid flux, and V' the width-averaged fluid velocity.
We use the Carreau rheological model [10] to capture the shear-thinning behaviour of the
fracturing fluid. This model expresses the tangent viscosity p in simple shear as a function of
the shear-rate 7 as:

=0 (4)

= oo + (10 — 1oo) ¥ (14 (3/30)%) "2 (5)
where 1, and oo are respectively the viscosity at low and large shear-rates (the large shear-rate
visscosity is typically equal to the solvent viscosity), n the fluid shear-thinning index and 4. the
shear rate at which the fluid starts to shear-thin.

For laminar flow under lubrication conditions (w < ¢), the width average of the balance of
momentum yields for a Carreau fluid the following Poiseuille’s like relation between the between
the local fluid flux and pressure gradient [12]:

w(z,t) Ops(x,t)

X T (o), ool o) O ©)

Q(x7t) =

3



10 — T T 10g

\ - - - - Power-law N - - - - Power-law
Carreau 1 N Carreau

0.100¢ 0.100

Hoo /Mo = 1072

0.001¢ 0.001
10_4 3 X 10—4 !
10_5 . L \ L A 10—5 \ \ \
0.01 100 10 107 0.001 1 1000 109 10°
Tw Tw
10 \ \ \
001N 1N NAe =100
0.100
T 0.010
0.001 - - - - Power-law
Carreau
10_4 \ \ \
10—5 . L \ v -
0.01 100 10
Tw

Figure 2: Dimensionless tangent geometric viscosity I' as a function of the wall shear stress in
plate parallel flow for the Carreau (solid lines) and Power-law rheolog (dashed lines): (a) effect of
the viscosity ratio 7 = jiso /o (for 4. = 1 and n = 0.4), (b) the fluid index n (for oo /po = 1074
and 4, = 1), (c) the critical shear rate ¥, (tioo/tto = 107 and n = 0.4.

where I" is a dimensionless apparent width-averaged geometric factor for parallel plates-like flow
of a Carreau fluid. We will also refer it as a dimensionless tangent viscosity for short. It is a
non-linear (implicit) function of the fluid shear stress at the walls of the fracture
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It also depends on the ratio between the high and low shear rate viscosities uoo /o, the critical
shear rate at which the fluid starts to shear thin 4. and the shear-thinning power-law index n.
This dimensionless apparent geometric viscosity I" requires the numerical solution of a non-linear
scalar equation for a given value of wall shear stress 7, (see [12, 13| for details and appendix A
for summary).

We display in Fig. 2 the evolution of I'" as function of the wall-shear stress for different
values of the shear thinning index, viscosity ratio and 4.. We also display on the same figure,
the corresponding power-law model expression for I' (see appendix B for details). Similarly to
simple shear, the power-law model matches the Carreau only for an intermediate range of wall
shear-stress corresponding to the shear-thinning region similarly to the case of simple shear flow
(see Fig. 1).

2.3 Boundary conditions

The growing plane-strain fracture has two symmetric wings and the fluid is injected at x = 0 at
a constant rate. In addition, in the absence of a fluid lag, the width and fluid flux vanish to zero
at the fracture tip [24]:

q(0,1) = Qo/2  q(6) =0  w(t)=0 (8)



2.4 Global volume conservation

The integration of the continuity equation (4) taking into account the boundary and symmetry
conditions yields the following global volume conservation

o)
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3 Scaling and structure of the solution

3.1 Scaling

Following previous contributions on plane-strain fracture driven by a Newtonian fluid [25, 26],
for such a moving boundary fracture problem, it is natural to introduce a characteristic length
L(t) and a characteristic width as e(t)L(t) where (t) is a small dimensionless number reflecting
the fact that w < £. Similarly, the net pressure p is much smaller than typical value of the elastic
modulus, such that €(¢)E’ provides a characteristic pressure scale. As a result, introducing the
scaled spatial coordinate £ = x/£(t), we scale the fracture length, width and net pressure as

(t) =y(P(t)L(E)  wlz,t)=e@)LHOQUE PR),  pla,t) =()ETE P(E)  (10)

where v, Q and II are the dimensionless length, width and net pressure while P(t) denotes
additional dimensionless parameters on which the solution depends. Introducing these scales in
the global volume balance gives the following dimensionless group

o
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which is the ratio between the injected volume and characteristic fracture volume. In the absence
of fluid leak-off (impermeable medium case), we must have G, = 1, in other words & = Q,t/L?.
The fracture propagation condition and Poiseuille’s like relation provides two additional dimen-
sionless groups
Kl !/
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In addition, for a Carreau fluid, the dimensionless apparent geometric viscosity I' can be
re-written as function of the viscosity ratio fiso/tto, the shear thinning index n (dimensionless),
and a dimensionless fluid shear stress at the wall

m'an (13)
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where G, is the ratio between the characteristic wall shear stress e?E’ (obtained by introducing
the scaling (10) in Eq. (7)) and the fluid shear stress at the onset of shear thinning fi,7e:
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Newtonian case

For a Newtonian fluid, two scalings are possible in relation to the dominance of viscosity or
toughness dissipation. If fluid viscous dissipation dominates, setting the dimensionless group
associated with viscous G, to unity, one obtains (using a subscript m for this viscosity scaling):

1/3 1/6)1/2,2/3
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and the solution depends on a single dimensionless toughness X = G, which is independent of
time:
1 1/4
=K=K'|—=+— 16
—— o

Similarly, if fracture toughness dominates over viscous dissipation, a toughness scaling (sub-
script k) is obtained (by setting Gy, to unity):

KA 1/3 £ 2/3
e = | =—— L, = Qo (17)
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and the solution depends on a dimensionless viscosity G,, = M which is directly related to the
dimensionless toughness

EngoM/o
M =G = M= =2

=K (18)
These two scalings are of course related as ei/ 4 /5%4 = ? / Li/ P=K (see e.g. |4] for details).

Solutions (and first order expansions) for small and large dimensionless toughness have been
derived [4, 25, 26]. The growth solution is viscosity dominated for K < 1.3, and purely toughness
dominated (with little to no pressure drop) for IC 2 3.7 - as discussed in [27].

Carreau fluid

For a shear-thinning fluid, the dimensionless apparent geometric viscosity I' introduces addi-
tional dependence of the solution upon n, the ratio /1, but also on the dimensionless shear
stress ratio G, (14) which enters the definition of the dimensionless shear stress (13). In the
viscosity dominated scaling (defined above using the low-shear rate viscosity p,), we obtain

El 1/3
The characteristic fluid shear stress at the wall e2E’ decreases with time. At early time, the
fluid shear stress will be much larger than the one at which the fluid starts to shear thin. As a
result, the flow will be governed by the large shear rate /stress viscosity viscosity j~ at early

time, and will become dependent on the low shear rate viscosity when G, = 1, which defines a
characteristic time-scale

fmeeme = V27 78 (20)

for the transition from a high shear rate dominated regime when ¢t < t,,,__m, (at early time when
the fracture velocity and as a result the fluid shear rate is large) to the low-shear rate dominated
regime for ¢t > ¢, m,-

Similarly, in the toughness dominated scaling, in addition to n and oo/ pte, the solution
depends on the following dimensionless shear stress ratio G, = ax

12 K83
= - = K83 x ap, (21)
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and oy, /oy = M?2/3 = K~8/3. In what follows, we mostly use the viscosity scaling to develop a
numerical solver and discuss our results.

3.2 Structure of the solution

We have seen that at early time (t < t,,__m,) the characteristic fluid shear stress at the wall ¢ E’
is much larger than the one at which the fluid starts to shear thin (u%c): @ < 1 for small time.
This introduces a characteristic time-scale ¢, ., in the propagation solution which in additions
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Figure 3: Schematic propagation diagram for a plane-strain HF driven by a Carreau fluid. The
growth evolves from an early time edge (¢ < t,,. m,) Where fluid dissipation is governed by the
large shear rate plateau (and the solution corresponds to the Newtonian one with a dimensionless
toughness Ko defined with ps) to a large time edge (¢ > ¢ m,) Where it is controlled by the
low shear rate plateau (and the solution corresponds to the Newtonian one with a dimensionless
toughness K defined with p,). The transition occurs over a the characteristic time-scale ¢, m, -
Besides the dimensionless time ¢ /t,,__m,, the solution depends on a dimensionless toughness /C,
the viscosity ratio fieo /o and power-law index n. The propagation is fully toughness dominated
(with no effect of the fluid rheology) for dimensionless toughness K 2 3.7 [27].

also depends on the usual (time-independent) dimensionless toughness K (16) for a plane-strain
hydraulic fracture, the fluid shear-thinning index n and high to low shear rate viscosities ratio
fhoo/ Ho-

It appears clearly that at early time (t < tp,__m, ), the large shear rate viscosity pco governs
the fluid dissipation. The fluid is completely shear-thinned such that n, and wu, do not influence
the growth solution. As a result, the solution depends solely on the plane-strain HF dimensionless
toughness defined using the large shear rate viscosity i, that we may denote o, which is simply

related to IC (defined with g,):
~1/4
Koo = K x (“OO) (22)

Mo
As the time evolves, the shear-thinning behaviour of the fluid will enter into play, and finally
at large time (¢ > t,,__m,) the fluid viscous dissipation is solely governed by the low shear rate
plateau (p,). The growth solution is then a sole function of the dimensionless toughness K
(defined with ).

In addition, we see that as i/t < 1, if the dimensionless toughness K is larger than ~ 3.7
such that the growth is toughness dominated at large time, it will also necessarily be toughness
dominated at early time. In other words, the viscous dissipation is always negligible: the growth
will always follow the toughness dominated solution and the details of the fluid rheology have

no impact on growth.
We therefore can schematically summarize the propagation via a triangular diagram with
three vertices (see Fig. 3): K for a solely toughness dominated growth, M, for viscosity dom-



inated growth with the large shear rate viscosity peo, and M, for viscosity dominated growth
with the low shear rate viscosity u,. The solution evolves from the M, K edge at early time gov-
erned by the dimensionless toughness Ko, toward the M,K edge at large time over a transition
time-scale defined by ¢,,__m,. The shear-thinning index n will likely only influence the transition
between the early and late time solutions.

Before proceeding to the complete numerical solution, it is interesting to grasp some order of
magnitudes. Using a range of realistic values for both the fluid parameters (u, € [0.5 — 100]Pa.s,
4. € [0.1—30]1/s) and solid elastic properties (E’ € [2—60]GPa), we see that the transition time-
scale can vary between 200 seconds (soft rocks/viscous fluid) up to 10® seconds (stiff rocks/low
viscosity). Depending on the injection rate and fracture toughness, the dimensionless toughness
K can vary in a large range [0.01 — 5] (see [27]). Note that p is the solvent viscosity - typically
water - such that f1,/ oo € [107°—1072] and as a result K, /K € [0.05—0.3]. It thus possible that
the propagation regime at early time is toughness dominated (Koo > 3.7) and viscous dominated
at large time (K < 1.3)..

4 Numerical solution

In view of the previously discussed scaling of the solution, it is natural to scale the time ¢ with
the transition time-scale ¢,,_ ., and use a time-based scaling adapted from the viscosity scaling
with 7 = t/t;,.m, as the dimensionless time. We use time-independent characteristic length,
width and pressure scales:

_ _ 12VFQ, .
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The dimensionless shear stress ratio a,, = « now simplifies to oy, = 7-2/3. Emphasizing the

dependence on the different dimensionless parameters, we can rewrite the length, width and net
pressure in that time-based viscosity scaling as:

w = gmfmg(ga 7, K, s oo/ o) P =En BT, 7, K\, oo/ o) C= Lpny(7, K, 0, fhoo/ o)
(24)
Note that W,, = L,, and P,, = E’ will be used to denote the characteristic width and net
pressure scales. There is obviously a correspondence between this numerical scaling and the
viscosity scaling:
2 1 1
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where Yy, Qm, I, correspond to the dimensionless quantities in the M viscosity scaling.

4.1 Dimensionless governing equations

In the moving frame of reference defined by & = xz/4(t), taking into account the convective
derivative, the governing equations in the previous scaling (23)-(24) reduces to the following
dimensionless system.

e Elasticity:

1 houg,r) de
=11 2
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e Propagation condition:

Q=Kyi(1-¢z for (1-§)<<1 (27)

e Global volume balance: .
2y / Qdg = 7 (28)

0



e Reynolds equation (combining continuity (4) and the generalized Poiseuille (6) equations):
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with Ty = 7o /(lo?e) = am/2 ‘85’ the dimensionless fluid shear stress at the fracture
walls (13), with ay, = 772/3,

e The solution for the uni-dimensional pressure-driven flow of a Carreau fluid between parallel
plates [12] can be expressed in this scaling as:
7:3
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where [ is an analytical function obtained by Sochi [12] (see appendix A for its expression
in dimensional form). For a given value of dimensionless shear stress at the wall the
previous equation can be easily solved numerically for the corresponding dimensionless
wall shear rate (%, /4.) using a root-finding scheme. It thus easy to tabulate this tangent
dimensionless viscosity as function of the dimensionless shear-stress for given values of the
rheological parameters. As the dimensionless shear stress directly depends on dimensionless
time (¢ =2/ 3), we tabulate such a function at every time step. The computational cost is
minimal. Note that a complete interpolation over the whole range of n, s/ to and 4, /3e)
is also possible. The evolution of this tangent viscosity as a function of the wall shear stress
(TwTw X (fo¥e)), and the impact of the different rheological parameters (n, pioo/ o, Jc) can
be grasped on Fig. 2 .

The evolution of the dimensionless tangent geometric viscosity I' will impact HF growth
significantly. Indeed, the viscosity being defined locally as function of the dimensionless shear
stress, we expect that the shear stress at the tip of the fracture will be larger than in the rest
of the crack (due to the pressure gradient that increase at the tip), resulting in a region where
the fluid will shear thin. As oy, = 7 2/3 decrease with time, we also expect that the region
where the flow is governed by the large shear rate viscosity oo will shrink and disappear as the
low-shear rate Newtonian plateau extends further for large a.

4.2 Numerical algorithm

The spatial discretization is performed using a Gauss-Chebyshev quadrature and barycentric
differentiation thus transforming the governing equations into a system of non-linear ordinary
differential equations (ODEs) in time. Following Gauss-Chebyshev techniques for fracture prob-
lem [16, 28], we write the dislocation density as a product of a weight function w(s) = 1/v/1 — s2
containing the proper tip singularity and a non-singular function F'(s):

0Q(s, T)

5 w(s) x F(s,7) (31)

and use F'(s, 7) at quadrature points (s-points) and the dimensionless fracture length v(7) as
the main unknowns of the system. We notably combine barycentric differentiation techniques
with Gauss-Chebyshev quadrature following the techniques described in [16] to obtain a system of
ODEs. Pending the presence of the non-linear viscosity, the method is similar to the one described
in [17] for the finite plane-strain and radial hydraulic fracture cases driven by a Newtonian fluid.
The details of the different operators are given in appendix C.

We use a fully implicit time-integration scheme due to the stiff behavior of the resulting
system. The final non-linear system over a given time-step (77! = 774 A7) is given in appendix

C.
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Figure 4: Profile of the dimensionless fracture opening (left) and net pressure (right) in a plane-
strain hydraulic fracture driven by a Carreau fluid at different dimensionless times 7 - n = 0.5,
Hoo/ 1o = 0.01 and K = 0.5 case.

4.2.1 Initial solution

In order to start the simulation, an initial condition is required. As we have seen from the rheology
of the Carreau fluid, at early dimensionless time, all the fluid in the fracture is at the viscosity
i = oo (large shear rate cases). We thus use as initial condition the self-similar plane-stain
hydraulic fracture solution for the corresponding dimensionless toughness Koo = K X (10/ uoo)l/ 1
We actually also use a Gauss-Chebyshev quadrature scheme (as described in [17]) to obtain such
a self-similar solution for any value of Ko. We denote such an initial / early-time Newtonian
solution with the o, viscosity as me in what follows- this for any value of the dimensionless
toughness K, which may be large and as such the growth may be toughness dominated early-on.
Note, that we have to carefully convert this initial solution obtain with the p, viscosity scaling
to the u, viscosity scaling used in our time evolution algorithm. As the initial solution is self-
similar, we start from a small (but non-zero) time 7;,; taken to be sufficiently small such that
the HF solution with s is indeed valid. We typically use 7j,; = 107° in the results reported in
the following section.

5 Results

5.1 Overall behaviour of the solution

Before varying the different dimensionless parameters such as the fluid index and viscosities
ratio, it is worthwhile to first analyse the solution for a given set of dimensionless parameters.
We use as a base case n = 0.5, loo/tto = 0.01 and a dimensionless toughness K = 0.5. As
such, at early time, the growth is between the viscosity and toughness dominated regimes as
Koo = K X (fioo/tto)"/* = 1.58. We run a simulation for a dimensionless time ranging from
7 = 107" to 7 = 10 in order to observe the transition from the early time m., Newtonian solution
to the large time m, Newtonian solution.

The fracture width and net pressure profiles at different times are displayed on Fig. 4, while
the time-evolution of fracture length, inlet pressure and width can be found on Fig. 5.

One can notably observe on Fig.4 that the net pressure gradient near the tip remains impor-
tant while it decays with time in the central part of the fracture. This hints that the near tip
region will be the last one one where the viscosity will tend towards p,.

The overall transition of the fracture growth is clearly visible from the time evolution of
length, inlet width and inlet net pressure. At early time (for 7 < 1073 — 107%), the fracture
growth follows the Newtonian M, solution, and tends exactly to the Newtonian M, solution (for
the given value of dimensionless toughness K) at large time (7 > 1). The fact that the growth

10



falls well on the M, solution at large confirm that the choice of the characteristic time-scale
tm.om, defined as the time at which the fluid characteristic shear stress falls in the low shear rate
Newtonian plateau. It also validate the numerical method used.

The transition from the early to late time behavior is clearly visible with a change of slope
around 7 = 1072 when the solution departs from the one where growth is governed by the large
shear rate viscosity. Another change of slope occurs around 7 = 1, when the growth becomes
controlled by .. Interestingly, these change of slopes are more visible on the evolution of the
inlet net pressure and to a lesser extent inlet width compared to the fracture length.

In figure 5, we have also displayed during the transition period, the corresponding solution
for a power-law fluid rheology (denoted as the M, solution). To perform such a comparison,
we use the equivalence between the power-law consistency and Carreau rheological parameters
using the same fluid index (see details in appendix). In the power-law case, a different time-scale
emerges (see 2, 3]) and the solution becomes self-similar for a propagation time of the order
of ten times the characteristic timescale of the power law problem. In that particular case, the
power-law time-scale is about 10* times smaller than t,,_,,, such that for this given value of
dimensionless toughness (K = 0.5), the power-law growth is viscosity dominated and self-similar
[2] (we denote it as M, on figure 5).

One can see that the slopes of the Carreau and power law solutions are similar at the beginning
of the transition (for 1073 < 7 < 1072). There is however a clear offset between the power law
solution and the one obtained using the Carreau model. It is thus worth noting that even during
the transition where the shear-thinning of the Carreau fluid is akin to a power-law (see Fig. 1),
the growth obtained with a power-law rheology is significantly off from the solution for a Carreau
rheology.

The evolution of the solution in between the large and low shear rates Newtonian plateaus
can be physically grasped by looking at the profile of the tangent dimensionless viscosity I" inside
the fracture at different times as presented in Fig. 6. The spatial profile of I'(x/¢) evolves between
the large shear rate (early time) My, limit (red line) and the low shear rate M, limit at large time
(blue line on Fig. 6). For intermediate time, the dimensionless viscosity profile has a characteristic
inverted U-shape, with a strong gradient developing near the tip as time progresses. The tangent
viscosity in the centre of the crack reaches unity (low shear rate plateau) for a dimensionless time
close to t/t;, .m, = 1. A strong gradient develops near the tip as time progresses, but eventually
disappear. Such an evolution is in line with the tip solution for a steadily moving fracture (with
zero lag) as discussed in [13]: indeed three regimes where low and high shear Newtonian regions
as well as a power-law regions can be present depending on the relative value of the viscosity
ratio, fluid index and a dimensionless ratio of shear-stress (which in the tip scaling decreases
with velocity). Figure 13 of [13| clearly illustrates that for low & (which corresponds to small tip
velocities therefore large time for a finite fracture under constant injection) the viscous asymptote
corresponding to the high shear rate Newtonian plateau (uoo) ultimately disappears as well as
the intermediate power-law region. This is clearly what happens here. We see from Fig. 6 that
the fluid is completely at its low shear rate value for 7 ~ 10. For larger time, the details of the
fluid rheology does not matter: the shear rate inside the fracture is low enough such that the
fluid can be considered as Newtonian with a viscosity f,.

5.2 Influence of the dimensionless toughness

We now study the influence of the dimensionless toughness K on the solution, performing simu-
lations for K = 0.5, 1.5, 3, for the same viscosity ratio fieo/to = 0.01 and fluid index (n = 0.5).
As such, the corresponding early time toughness (governed by fio) are respectively 1.58, 4.74
and 9.48 (as Koo = K X (fioo/tto)~"/*). The time evolution of the dimensionless fracture length
for these three cases are reported on Fig. 7. As expected, the solutions evolves at late time to
the M, solutions corresponding to the different toughness values K (we do not display here all
these solutions on Fig. 7 to avoid crowding the plot). For I = 3, the solution is nearly toughness
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Figure 5: Dimensionless physical quantities as a function of a dimensionless time t/t,, _m, in
log-log scale - n = 0.5, pioo/po = 0.01 and I = 0.5 case. We also plot the corresponding infinite
viscosity Newtonian solution (M, solution in dashed red), u, viscosity Newtonian solution (M,
solution in dashed blue) and the viscosity dominated power law solution (M, solution in dashed
green). (a) dimensionless central opening w(0,t)/W,, where W, = em(tmomy ) L (tmoym,) (b)
dimensionless length of the fracture £(t)/L,, (c) dimensionless central pressure P(0,t)/P,, where
P = em(tmem,)E'.
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Figure 6: Dimensionless tangent viscosity profile I' as a function of the dimensionless coordinate
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0.83, 2.6, 3.9, 10.(blue line)). The parameters for this simulation are n = 0.5, fi00 /o = 0.01 and
K =0.5.
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Figure 7: Evolution of the dimensionless length of the fracture in function of the dimensionless
time for four different K = 0.5,1.5,3, a fluid index n = 0.5 and a viscosity ratio pieo/pe = 0.01
(black curves) and Newtonian toughness dominated solution for K = 3 (dashed red curve).

dominated at all times: it follows perfectly the toughness dominated solution (reported in red
dashed line as the K-solution). This is to be expected as Ko, = 9.48 for K = 3, and as discussed
in [27], the difference with the fully toughness dominated solution is within 5 percent for I > 3.7.

This confirms the triangular propagation diagram of Fig. 3, which depicts the fact that if
the late time / low shear rate dimensionless toughness K = 3.7 the growth is fully toughness
dominated at large time, it is also toughness dominated at early time. In other words, the details
of the fluid rheology do not matter. Interestingly, for lower values of I for which the growth is
viscosity dominated (' < 1.3) or intermediate (1.3 < K < 3.7) at large time, the growth can
initially be toughness dominated due to the relation Koo = K X (too/tto) /*. This is notably
the case here for K = 0.5 (Ko = 1.58) .

5.3 Influence of the viscosity ratio

We now investigate the influence of the rheological parameters of the Carreau model on the
behaviour of the solution, starting with the viscosity ratio. For this, we focus on the evolution of
the central opening and the length of the crack which are displayed in Fig. 8. It can be observed
on the dimensionless viscosity in function of the shear stress at the wall (Fig. 2) that the viscosity
ratio impacts only the value of the dimensionless tangent viscosity for large enough wall shear
stresses. The rheology is insentive to the viscosity ratio for low shear stress (Fig. 2).

The influence of the ratio is thus especially decisive at early time, because it determines the
asymptote that the solution initially follows as Keo = K X (fieo/pto) /%, At large times, the
solutions converge towards the Newtonian (M,) solution for the corresponding value of IC (0.5
here). On the curves of Fig. 8, we can observe that although the solutions for different viscosity
ratios are initially apart at early times, they eventually merge during the transition period even
before converging to the Newtonian solution u, (especially for the two smaller ratios). This is
because the shear stress values falls within the range where the corresponding tangent viscosity
values are very close for all three cases. In order to fully appreciate this phenomenon, it is
interesting to study the evolution of the viscosity profile within the fracture as displayed on
Fig. 9. At the beginning of the propagation, these viscosities profile are very different, but as
time progresses, the profiles from the smaller to the larger viscosity ratio collapse and eventually
reaches the full Newtonian low shear rate limit (I' = 1 everywhere). It can be seen on Fig. 9
that the pioo /o = 0.001 case first catch up with the curve for poo /1o = 0.01. Keeping in mind
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Figure 8: Evolution of the physical quantities as a function of the dimensionless time ¢/t,, in
loglog scale for £ = 0.5, n = 0.4 and three different values of the viscosity ratio pieo/po =
0.1,0.01,0.001. We also plot the viscosity dominated Newtonian solutions computed with the
infinite viscosity (Mq red curve) and the ug viscosity (M, dashed blue curve). (a) dimensionless
central opening of the fracture w(0,t)/W, where W, = e (tmoomy ) L (tmoom,) (b) dimension-
less length of the fracture £(t)/Ly,.

the viscosity - shear stresses profiles of Fig. 2, we can observe the phase where these two curves
are equal (7, < 0.1). It is also understandable why the poo/po = 0.1 profile is caught up just
before the M, solution. Again, we can refer to the rheological profiles (Fig. 2-viscosity ratio
panel), where we observe that the two curves (for 0.1 and 0.01) merges only shortly before the
low shear-rate Newtonian plateau. This tendency intrinsic to the rheology and Poiseuille type
flow is thus found in the HF propagating solution.

5.4 Influence of the power law index n

The power-law index n controls how steep the fluid transition between the low and high shear
rates viscosity limits. The greater the n, the larger is the shear-thinning region (see e.g.??-n
panel) while the limit of the low shear rate plateau is unchanged. As a result, for larger n,
the longer will be the transition of the propagation solution between the early and late time
Newtonian regimes. However, we have seen that the characteristic time of the problem does not
depend on n (i.e. the limit of the low shear rate plateau do no depend on n). We therefore
expect the transition phase to end approximately at the same time regardless of the value of n.
The transition is expected to start at distinct times, with shorter transition in the case of smaller
values of n. We performed simulations for four n values (0.2, 0.4, 0.6, 0.8) spanning realistic values
of the fluid index. The time evolution of length and inlet width are reported on Fig. 10, while
the viscosity profiles at different times are displayed on Fig. 11.

We indeed observe the strong effect of n on the departure from the early time / large viscosity
solution. For n = 0.8, we observe for example that even for very early time, the solution is already
in the transition phase. The transition period starts later and is significantly shorter for smaller
n (0.4 and 0.2)). All solutions for the different power-law indices merge at about t/t;, _m, = 1,
which is consistent with the rheological behaviour as this time scales is defined by the critical
shear rate at which the fluid starts to shear-thin. The convergence of all the viscosity profiles in
time can be clearly observed from the four snapshots reported on Fig. 11, with the profiles for
the different values of n already very similar throughout the fracture at ¢/t _m, = 0.8.

6 Discussions

It is interesting to compare the results obtained for HF growth on a specific case when using
either the Carreau or the power-law model. To do so, we use the rheological parameters for a
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Figure 9: Dimensionless viscosity profile as a function of the dimensionless coordinate £ = x/¢(t)
at four different dimensionless time ¢/t,,_ _m,=(0.0001, 0.0101, 0.0692, 0.4803) for n = 0.4 and
for three different values of the viscosity ratio peo/po = 0.1,0.01,0.001 and K = 0.5.
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Figure 10: Evolution of the physical quantities as a function of the dimensionless time ¢/t,,__m,
in loglog scale for a viscosity ratio of pieo /1o = 0.01 and dimensionless toughness K = 0.5 and
four different values of the power number n = 0.2, 0.4, 0.6, 0.8. We also plot the viscosity
dominated Newtonian solutions computed with the infinite viscosity poo (Ms red curve) and
the p, viscosity (M, dashed blue curve). (a) dimensionless length of the fracture I(t)/L.,(t) (b)
dimensionless central opening of the fracture w(0,t) /W, with /W, = em(tmemy ) Lm (tmem, )-
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Figure 11: Dimensionless viscosity profile as a function of the dimensionless coordinate £ = x/¢(t)
at four different dimensionless time ¢/t _m, = (0.012,0.07,0.4,0.8) for four different values of
the fluid index n = 0.2,0.4,0.6,0.8 - poo /1o = 0.01 and K = 0.5.

HPG fluid as reported below (see [29] and also [13]):

n | o (Pas) | peo (Pa.s) | 4 (s71)
HPG (15°C) | 0.46 | 0.4 0.001 3.3

The corresponding value of the consistency index of the power-law model is M = 0.75 Pa.s™.
We assume E' = 30GPa and K' = 1.5 MPa.\/m for the rock properties and an injection
rate Q, = 4.107*m?/s. For these parameters, the dimensionless toughness is X = 0.1, and
oo/ o = 0.002 .

The evolution of fracture length, inlet width and inlet net pressures is reported in Fig. 12 for
an injection lasting of one hour.

In case of the power-law model, a physically different characteristic time ¢py emerges (see
[2, 3] and appendix B) which corresponds to the time at which the viscosity dominated solution
becomes valid. On the other hand for the Carreau model, the characteristic time (¢,,) corresponds
to the time when the solution converges towards the zero shear rate Newtonian solution. For
the values used here, these time scales are respectively tpr, = 2.95 seconds and ¢, m, = 522691
seconds (about 150 hours). We thus see that over the hour of propagation investigated here, the
growth for the power-law model follows the viscosity dominated power-law solution derived in
[2]. On the other hand, the Carreau solution has not yet completely finished converging towards
the Newtonian solution after an hour of injection (3600 < t,, m,). After an hour of injection
the relative difference between the simpler power-law model compared to the Carreau one are
respectively of 26.78%,-40.85% and —101% on fracture length, inlet width and net pressure
respectively. In other words, the power-law model strongly under-estimates net pressure and
fracture width while over-estimating fracture half-length.

These differences are significant, however, they are dependent on the characteristic time of
the problem. Indeed, let’s compare the results for a hypothetical fluid with the same rheological
parameters except for the critical shear rate 4, now taken as 4. = 20 (1/seconds). Using also lower
value for the plane-strain Young’s modulus E' = 10 GPa, we obtain after an hour of injection a
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difference of the power-law compared to the Carreau model of 8.13%, —13.63% and —30.73% for
length, inlet width and net pressure respectively. In this case, the Carreau characteristic time
is about 3 hours (20 226 seconds), while ¢py, remains low (tp;, = 207.89 seconds such that the
power-law growth is strictly viscosity dominated). As a result, after one hour of injection, the
Carreau solution is equal to the Newtonian solution at viscosity p,. As can be seen in Fig. 13,
the difference between the solutions evolves with the dimensionless time, following the shear-
thinning of the fluid which is best captured by the Carreau model. The power-law estimates are
always under predicting the fracture length, over predicting the net pressure and width.

7 Conclusions

In view of the extensive use of shear-thinning fluids in hydraulic fracturing practice, it is impor-
tant to take the appropriate shear thinning behaviour into account. For a plane-strain geometry
and a Carreau fluid, we have shown that the propagation at early-time is following the Newto-
nian one with the large shear-rate viscosity, then departs from it and evolves at late time to the
low shear-rate Newtonian solution.

The characteristic time-scale of transition ty, _m, = 123/2E’1/2/(u;1/2"yg/2) controls the time
where the solution converges toward the low-shear rate Newtonian plateau: it does not depend
neither on n nor the viscosity ratio. One has to note that t,,__,, can vary significantly depending
on the fluid and rock properties spanning a very large range (from 200 up to 108 seconds) for
realistic values. This time-scale ¢, m, allows to easily grasp the importance of shear-thinning
for a particular case in comparison to the injection duration. If ., ,, is small compared to the
injection duration, the fluid will always have a Newtonian behaviour (with the low shear rate
viscosity) during most of the operation - the use of a Newtonian rheology with a viscosity equals
to o is warranted. Similarly, if ¢, m, is large compared to the injection duration, the use of
a Newtonian rheology with po, properly captures the HF evolution. It is interesting to note
that the effort of making a polymer fluid (to obtain larger width) in hydraulic fracturing can be
lost if ¢,,__m, is much larger than the injection duration as in that particular cases, the solvent
viscosity peo controls the hydraulic fracture evolution during most of the injection. Decreasing
tm.om, Via notably large value of the critical shear-rate 7, is a key engineering target.

If the injection duration is comparable to t,, _m,, a large transition period occurs (see for
example the case of the HPG fluid discussed previously where the solution is still in the tran-
sition phase after one hour of injection). The departure from the early-time / large-shear
rate Newtonian solution occur faster for value of the fluid index closer to 1. The viscosity
ratio also plays a crucial role in the intensity of the overall shear-thinning effect. It is also
worth re-emphasizing that the solution at early time is controlled by a dimensionless toughness
(Koo = K % (fto0/ tto) /%) which may be significantly larger than the late time dimensionless
toughness K for small viscosity ratio (ieo/ o). In other words, the propagation can be dominated
by toughness at early time and viscosity at late times.

Figure 13 displays another example for the fracture length evolution (viscosity dominated at
late time, transitional at early time). Again, one can see that the Carreau solution "follows"
the structure of the rheology. When the shear rate begins to decrease, the solution begins its
transition to the Newtonian solution p,, the fracture behaves for a short intermediate period of
time like the one driven by a power law fluid (with the same slope in time but with an offset).
However, it finally ends up following the p, Newtonian solution for times larger than t,,_m,.

Another important conclusion is that using a power-law rheology never gives realistic results
compared to the Carreau model. The power-law model should be simply abandoned in hydraulic
fracture modeling. This is intrinsically due to the fact that the power-law model yields unre-
alistically small tangent viscosity at high shear rates, respectively unrealistically large tangent
viscosity at low shear rates. The range of shear rate occurring in hydraulic fracturing is so wide
that capturing only the shear-thinning part of the rheology is not a proper strategy. Missing the
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Figure 12: Results of a dimensional simulation for a HPG fluid using either a Power law or a
Carreau rheological model, (a) length (m) of the fracture as a function of the time (s) in log-log
scale (b) central opening (m) as the function of the time (s) in log-log scale (c) central pressure
(Pa) as the function of the time (s) in log-log scale. For the power law model, the viscosity
dominated solution obtained in [2] is displayed.
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Figure 13: Evolution of the dimensionless length of the fracture using theCarreau, Power law
and the Newtonian (for g = p, and p = pe) models as a function of dimensionless time for
n = 0.46, fico/ o = 0.002 and £ = 0.3 (Ko = 1.5) .

large or low shear rate plateau (as the power-law model does) results in a significant error.

The scaling and structure of the solution provided here for a plane-strain fracture allow to
easily quantify the importance of shear-thinning on hydraulic fracture growth for a particular
set of rock, fluid properties and injection conditions. The case of a radial fracture geometry will
exhibit similar features with in addition a competition between the evolution of the dimensionless
toughness (which in the radial case depends on time) and the fluid shear-thinning behavior.
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A Parallel plate flow of a Carreau fluid

For completeness, we here briefly recall the expression derived in [12] for the flow of a Carreau fluid
in pressure-driven parallel plate flow. The dimensionless apparent viscosity I' (Ty, Je, 7, fhoo/ o)
appearing in Eq. (6) can be expressed from the shear stress at the wall 7, as

. 3
e i ey 32)

where I(%/%e, oo/ 1ho, 1) is an analytical function of the the wall shear rate 4,, derived in [12]:

. L. 1 3 C . 1 3 ..
e i) =10 Gl 3) a3 (1= 01553 = Guf30?) =i (o' 3= /)| +
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- 3 - 3

withn’ =n — 1,8 = 1 — f100/ o, and 2 F} is the hypergeometric function with real variables. The
shear rate at the wall 4, is related to the wall shear stress 7, via the Carreau rheological Eq. (5).

B Power-law rheology

For comparisons purposes, we briefly recall here the scalings for the propagation of plane-strain
hydraulic fracture driven by a power-law fluid. In the case of a power law fluid, the Poiseuille
lubrication equation has the following analytical expression:

w2t @
M' Ox

with M’ = 22”“(2”71#]\4 (M has dimension Pa.s™). The power-law consistency M can be
expressed directly from the rheological parameters of the Carreau model (see [13] for example):

glg/" ! =~ (33)

_ Ho + floo

keeping the same power-index n. We can re-write the Poiseuille lubrication flow relation for
a power-law fluid (33) in a similar way than for the Carreau rheology eq.(6). We obtain the
following expression for the power-law dimensionless viscosity I'py, as function of the wall shear-
‘ _w|op
stress Ty = o |5

2(n71)/nM/1/n7_1(Un_1)/”
I'pr, = 30 (35)

which can be expressed in function of the Carreau rheological parameters thanks to Eq. (34).

Following a scaling analysis similar to the one of the main text (see [2, 3] for more details), one
obtains the following dimensionless numbers for plane-strain HF growth driven by a power-law
rheology:

M'Qo" K’

E'e2(eL)*n S Y AVE

g’U €L2

Gm (36)
Similarly than for the Newtonian case, two different scalings appear. We start by the K-scaling

where both Gy and G, are set to 1.

Krh o\ /3 E'Qut\? 2(1—n)/3 ~(24n)/3 —4(n+2)/3 15 /3+4n/3
6k_<El4Qot> Lk_<K’> M = 21=m/300 MK A3 oS inss (37)
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defining a characteristic time-scale

K'2(2+n)/(1-n)
El(5+4n)/(2(1—n)M/3/(2(1—n)Q(()2+n)/2(1*n)

tpr = (38)

This characteristic time corresponds to the time needed for the dimensionless toughness to be
equal to 1, so for larger times the solution will be in the viscosity dominated regime (since K is
decreasing). The dimensionless viscosity can be expressed as M = (t/tpp,)2(1=™)/3,

For the M-scaling (viscosity dominated), we have the following expressions:

€m = El—l/(2+n)Mll/(2+n)t—n/(2+n) (39)
L, = Ell/(4+2n)Ml—1/(4+2n)Q})/Qt(1+n)/(2+n) (40)
K(t) = (t/tpL)("_l)/(2(2+")) (41)

The complete solution evolving from the toughness dominated solution at early time to the
viscosity dominated solution at large time can be found in [3]. The late time viscosity dominated
solution (M, self-similar solution) derived in [2] is valid for ¢ > tpp, i.e. for M > 10 (see
discussion in [3]).

C Numerical algorithm

We describe a numerical method for the solution of the complete evolution problem from a given
initial state. Our method is based on a non-uniform moving mesh discretized using a Gauss-
Chebyshev quadrature and a collocation method. Extrapolation, integration, and differentiation
operations are simplified as matrix multiplications using Barycentric techniques (see [16] for
more details). We turn the fully coupled hydraulic fracture propagation problem into a system
of non-linear ordinary differential equations (ODEs) in time that can then be integrated in time
via a fully implicit scheme.

C.1 Gauss-Chebyshev quadrature

The method makes use of a primary s = s;, j = 1,...,n, and a complimentary z = z;, i = 1,...,m
sets of nodes, discretizing the fracture interval [—1, 1], which corresponds to the roots of the
respective Chebyshev polynomials ¢, (s) and ¥,,(z). Specifically, the square-root singularity of
linear elastic fracture mechanics can be directly embedded in the discretization. The dislocation
density is expressed as:
dw B 1

T = w(s)F(s), w(s)= N (42)
where w(s) is a weight function with the required tip singularity and F(s) an unknown non-
singular function. For the type of singularity embedded in Eqns (26)-(27), the primary and
complimentary polynomials are the Chebyshev of the first ¢,,(s) = T,,(s), and second ¥,,(z) =
Um(2) (with m = n — 1) kinds respectively [16]. The corresponding two sets of spatial nodes are
given by:

(5 —1/2 i

s; = cos( ),j=1,...n z;=cos—,i=1,...n—1 (43)
n

C.2 Hilbert transform operator for the dislocation density

The plane-strain elastic equation reduces to the well-known Hilbert transform

1
Hw)(z) = & / L v s (44)

™) _12z—s0s
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which is evaluated on the complimentary z-set of nodes using representation of the dislocation
density on the s-set, F'(s;). This results in the following:

zi) = iHijF(Sj% Hij = R (45)

nzy—3Sj

C.3 Operators for extrapolation and integration

The unknown function F' representing the unknown dislocation density can be extrapolated from
the Gauss-Chebyshev nodes to the fracture tip:

=N "PiF(s;), F(1)=Y_ Q;F(s)) (46)
j=1 i=1

where :
-tan arccos s;/2 scot arccos s;/2

Py = (-1 RSN, ()

n n

(47)
Integration operators can be defined on either grid with the result of integration on the same or
the other grid.For example, consider integration of the dislocation density:

1 n—1

- d3 = ZSUF S] 1] = Z[‘bk(zl) ¢k(1)]BkJ (48)

i k=0
where ¢, is the Chebyshev polynomial and

Th(j — 1/2) )

2
Byj = — cos
n

and By; = 1/n, we can define the following operators:

n—1
—ds = ZSA] (55), Saj= Z[%(U — ¢(—1)] By (50)
k=0
n—1
. 7d3 ZSH] 3] SHj = Z[(bk(l) - ¢k(0)]Bk] (51)
k=0

We also have:
/ E=— dg — —S.(sF) (52)

where S is a matrix 5;;, F a vector contalmng F; and s contains the s-set coordinates. A
derivative operator can be defined, for a regular f(z) function:

() = ZDilf(zi) (53)
=1

C.4 Discretized governing equations

The elasticity equations transforms into the following matrix equation as

1
—H . F; =11, 4
4777H gt (54)
The lubrication flow equation becomes after integrating the equation between z; and 1:
0 0 1dy (S.F)3
—z—(S.F S.(sF ——(S.(sF)) = D.II 55
25 (SF) + o (S.5F)) + L (S.(6F) = (55)
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where 7,, is the dimensionless wall shear stress at the z-points obtained as - (S.F)(D.II). The

2y
global continuity equation becomes (with Sy = Sg;):
27ySu.(sF) =71 (56)
while the propagation criterion becomes (where Q = Q;):

il

Q.F NG (57)

This allows to construct a system of non-linear ordinary differential equations solving for the
unknowns F; at the s-nodes and the dimensionless fracture length ~.

To solve the problem, we will use an implicit algorithm in order to get rid of the temporal

derivative. Considering that we know the solution at a time 7,,, we will solve the following system

to find the solution at 7,11, we discretize the lubrication equation, but we also derivate in time

the three others equations. We replace the partial time derivative using a simple finite difference:

0y _ Vr+AT — 7

or AT (58)
o0 o QT—‘,—AT - QT
o= Ar (59)

Knowing that o depends on time, we will have to generate a new I'(uiny/po,n, o, ) at each
step of the computation. The final system to be solved therefore consists in

e the continuity equation collocated on the z-nodes

T (Ffm, — (S.FT+AT)3D.P+z(S.(FT—FT+AT)—(2—’Y::ATS.(sFT+AT)+S.(sFT) =0
(60)
e the propagation condition:
~QFriar = Fr) = Kl (61)
e and the global volume balance:
(Yr+ar = 7)Sa(sFriar) + Yriar(Sa(sFriar) — Sa(skFr)) + AT =0 (62)

This system is strongly non linear due to the presence of F' in the dimensionless viscosity. In
order to obtain a solution at each time step, we use a Newton-Raphson scheme. The initial
condition is taken as the Newtonian solution with the large shear-rate viscosity fieo-
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