SAT-Sweeping Enhanced for Logic Synthesis

Luca Amart*, Felipe Marranghello*, Eleonora Testa’, Christopher Casares*, Vinicius Possani*,
Jiong Luo*, Patrick Vuillod*, Alan Mishchenko*, Giovanni De Micheli'
*Synopsys Inc., Design Group, Sunnyvale, California, USA
TIntegrated Systems Laboratory, EPFL, Lausanne, Switzerland
iDepartment of EECS, University of California, Berkeley, USA

Abstract—SAT-sweeping is a powerful method for simplifying
logic networks. It consists of merging gates that are proven
equivalent (up to complementation) by running simulation and
SAT solving in synergy. SAT-sweeping is used in both verification
and synthesis applications within EDA. In this paper, we focus
on the development of a highly efficient, synthesis-oriented, SAT-
sweeping engine. We introduce a new algorithm to guide initial
simulation, which strongly reduces the number of false candidates
for merge, thus increasing the computational efficiency of the
sweeper. We revisit the SAT-sweeping flow in light of practical
considerations for synthesis, with the aim of proving all valid
merges and ensuring fast execution. Experimental results con-
firm remarkable speedup deriving from our methodology, up
to 10x for large combinational networks, and better QoR as
compared to previous SAT-sweeping implementation. Embedded
in a commercial synthesis flow, our proposes SAT-sweeper enables
area and power savings of 1.98% and 1.81%, respectively, with
neutral timing at negligible runtime overhead, over 36 testcases.

I. INTRODUCTION

Original SAT-sweeping algorithms [1]-[5] are designed to
work for both synthesis and verification, almost interchange-
ably. However, synthesis problems have several peculiarities
that can be exploited to design higher efficiency SAT-sweeping
algorithms. For example, logic networks encountered during
synthesis are often shallow, mapped into gates, and contain
only a few percent of mergeable gates. In the context of
industrial quality logic synthesis, SAT-sweeping is asked to
find all advantageous merging opportunities within limited
runtime, i.e., making the best use of the given runtime budget.
By analyzing the runtime profile of traditional SAT-sweepers
over synthesis benchmarks, it turns out that more than 95% of
the runtime is spent in proving non-equivalence, and propagat-
ing the consequences of non-equivalence, rather than proving
equivalences that are useful for synthesis. Ideally, we would
like SAT-sweeping to spend majority of the runtime in prov-
ing equivalent answers, thus bringing up the computational
efficiency for this optimization.

In this paper, we introduce a new algorithm to guide initial
simulation in SAT-sweeping, which is capable of dramatically
decreasing the number of false candidates for merging. We
propose enhancements to the SAT-sweeping flow, exploiting
practical considerations on the type of logic networks received
by the SAT-sweeper, in an industrial synthesis context. We
integrate our technologies in a new SAT-sweeper engine and
we compare it to a previous state-of-the-art implementation.
We demonstrate up to one order of magnitude speedup for
difficult industrial testcases, and 1.5x speedup on average. We
also show better Quality of Results (QoR), as more merges are

naturally proven by the new SAT-sweeper. Integrated in an
industrial synthesis tool, the proposed SAT-sweeper enables
area and power reductions of 1.98% and 1.81% , respectively,
neutral timing, at the moderate runtime cost of 0.7%, measured
post Place and Route (PnR) over 36 industrial testcases.

The remainder of this paper is organized as follows. Section
IT gives some background on SAT-sweeping. Section III stud-
ies the computational efficiency of traditional SAT-sweeping
algorithms, in the context of logic synthesis, and highlights
opportunities for improvements. Section IV describes a novel
algorithm to guide initial simulation patterns, using fast SAT-
solving, which can drastically filter false candidates for merg-
ing by accounting for many counter-examples in sweeping.
Section V details our new SAT-sweeping engine, integrating
the technologies presented in Sections III and IV. Section
VI shows experiments for the proposed SAT- sweeper over
industrial benchmarks and compares the results to state-of-
the-art solutions. Section VII concludes the paper.

II. BACKGROUND AND MOTIVATION

This section provides background on SAT-sweeping and
discusses the motivation for this work.

A. SAT-sweeping

The advances in SAT solving technology over the past
decades enabled many SAT based methods to be effective
and scalable in Electronic Design Automation (EDA) [5]-[15].
SAT-sweeping is one such method that identifies equivalent
gates (up to complementation), [1], [2]. SAT-sweeping uses
SAT to check if two nodes can be merged. If the nodes
cannot be merged, the SAT solver provides a counter-example,
i.e., an input assignment under which the two gates can
be simulated to different values. A naive implementation of
SAT-sweeping would test all possible pairs of nodes. To
alleviate this problem, simulation is extensively used in SAT-
sweeping to reduce the number of calls to the SAT solver.
By using initial random simulation, gates can be grouped into
equivalence classes, i.e., class of gates that always simulate
to the same value. Calls to SAT for proving, or disproving,
equivalencies are then only needed for gates belonging to the
same class. This already drastically reduces the number of
SAT queries.

Fig. 1 shows a partial logic network, embedded in a larger
circuit context, which we will use as example. The example
is based on three different sets of simulation vectors, i.e., V7,
V5 and V3, which are applied at the network inputs so that
corresponding simulation values are produced for all gates as

V,: 0101 Vy: 1101
V,: 01010 V,: 11010
vyl | Gé Vi 111
Vi 1101 Vs 0111
V,: 11010 V,: 01110
Vy: 1111 Vi 1111
Vs 1101
Vy: 11011
Vi 111 vy 1111 V,: 1010
Vy: 11110 - V,: 10101
Vi 1111 HW 0000

Vio 1111 1111 1101 1111 1000 0010 1101
Vyo 11111 11110 11011 11111 10001 00101 11010
Vi 1111 1111 1111 1111 0000 0000 1111

Fig. 1. Zoomed window of logic for sat-sweeping example, embedded in a
larger design, with associated simulation values for equivalence classification.
Classes from V3

Classes from V| Classes from V)

@ =
T
G5 G4
G6 G7
o &

(a) (b) (c)
Fig. 2. Equivalence classes for the circuit in Fig. 1 obtained (a) from V7, (b)
from V2 and (c) from V3.

shown in Fig. 1. By applying V; to simulate the network in
Fig. 1, we obtain the initial equivalence classes illustrated in
Fig. 2(a). There is only one class with more than one gate. This
class contains gates G4, G2 and G7. Only merges among these
nodes have to be tested.

Since the initial simulation is not exhaustive, gates that are
neither equivalent nor complementary to each other can end up
in the same class. Indeed, equivalence classes are only as good
as the distinguishing power of simulation. In order to address
this limitation, counter-examples provided by SAT for the non-
equivalent cases can be used to incrementally re-simulate the
circuit and refine equivalence classes.

In this example, gates G2 and G7 belong to the same
equivalence class. When G2 and G7 are tested for equivalence
the SAT solver finds an input assignment that proves that G2
and G7 cannot be merged. This input assignment is used as a
counter-example that contributes to incrementally extend the
simulation vectors from V; into V5, which comprises new
simulation bits highlighted (underscored) in Fig. 1. Therefore,
by re-simulating the full network in Fig. 1 based on V5,
equivalence classes can be refined as illustrated in Fig. 2(b).
Now only gates G4 and G7 are in the same equivalence class.

B. Motivation

State-of-the-art SAT-sweeping algorithms intertwine simu-
lation and SAT solving, with intelligent engines for counter-
example propagation and class refinement [4]. Some algo-
rithms iterate over all possible pair of merges to be proven.

Others iterate until further refinement of the equivalence
classes is possible [4]. Further enhancement and tuning of
SAT-sweeping algorithms has been summarized in [16]. In
the context of synthesis, the number of valid merges is usually
small, within a few percent of the total number of gates, while
in the context of verification a much larger number of gates
can be merged (see miters [2], [17]). Ideally, all valid merges
need to be proved and explored for maximal QoR.

In this work we focus on synthesis applications for SAT-
sweeping. As previously described, the quality of initial sim-
ulation plays a vital role in the computational efficiency of
SAT-sweeping. With poor simulation, equivalence classes will
be larger, and refinement via counter-examples can become
computationally expensive. Unfortunately, random simulation
quality/coverage becomes poor just after a few levels of
logic. A trivial example for this is an n-input AND function
implemented as a tree of two-input AND gates. Random initial
simulation from the leaves of this tree will quickly converge
to an all-0 pattern at the output.

To illustrate the impact of low quality simulation on SAT-
sweeping, consider the simulation vectors in V3 derived from
the context circuit embedding the network illustrated in Fig. 1.
When applying V3 to simulate the network illustrated in Fig. 1,
all patterns converge to all-0 and all-1 in a few levels of
logic from the primary inputs. Therefore, this low quality
simulation makes almost all gates look identical to the eyes
of a SAT-sweeper algorithm, resulting in a poor classification
as depicted in Fig. 2(c). To further refine the single large
equivalence class, we solely rely on counter-examples from
SAT and re-simulation.

To address these situations, we would like to have a reliable
methodology for initial simulation, capable of creating high
quality equivalence classes, with small or no further refinement
necessary. In the ideal case, the perfect initial simulation will
only leave true merges to be proven by SAT. Motivated by this
reasoning, we propose several improvements to SAT-sweeping
algorithms, specifically targeting synthesis applications.

III. COMPUTATIONAL EFFICIENCY OF SAT-SWEEPING

This section presents a study on the computational efficiency
of SAT-sweeping. We analyze the runtime profile of state-of-
the-art algorithms running with synthesis testcases.

TABLE 1
RUNTIME PROFILE FOR THREE REPRESENTATIVE BENCHMARKS
Testcase Sim Unsat Sat Time o
No. 1 8.38 0.13 6.23 15.96 | 0.81%
No. 2 5.49 0.21 2.44 947 | 2.21%
No. 3 117.91 0.84 | 4823 | 184.18 | 0.45%
Table I shows the runtime profile for 3 medium size

industrial benchmarks. In such circuits only a few percent of
equivalent gates (up to complementation) exist, as it is typical
of synthesis applications. Most of the runtime is then spent
in simulating these circuits, mainly coming from counter-
example propagation. The second runtime contributor comes
from disproving false equivalence candidates with SAT (true
answers from SAT-solving) and thus getting a counter-example
to distinguish them. Only a very small percentage of runtime is
spent in proving actually useful equivalences. We informally

define computational efficiency (u) of SAT-sweeping as the
ratio of runtime spent in proving real equivalences with the
rest of runtime. Using this information, we can see that
the majority of the runtime, more than 95%, is spent in
computation to distinguish false candidates. This is true not
only for the three testcases showed in the table above, but for
many industrial testcases we experimented with, not included
here for the sake of brevity. The reason for this inefficiency
stands in the limitation of initial simulation. As previously
mentioned, the reach of random initial simulation rapidly
decreases with circuit depth.

TABLE II
NUMBER OF NON-TOGGLING GATES WITH RANDOM INPUT PATTERNS
Testcase PI PO Gates Levels | O Toggle Rate
No. 1 9,869 | 26,228 21,746 41 6.92%
No. 2 22,615 | 37,929 | 124,753 46 10.25%
No. 3 43,989 | 81,090 | 119,406 42 18.20%

Eventually, some gates would have simulation patterns
where no toggling at all happens: these are all-1 and all-O
simulation patterns. Table II considers the previous testcases
and shows how many gates fall into this condition (zero
toggle rate simulation patterns): from 6.92% to 18.20% of total
number of gates. Considering a larger number of testcases, a
range between 5% to 25% is typical, with outliers having up to
60% non-toggling gates under the initial simulation patterns.
Outliers especially happen when the test circuit has locking
logic, e.g., select logic, reset logic, etc. Non-toggling gates
fall in the same equivalence class for SAT-sweeping, relying
on counter-example generation and propagation to refine it. In
the next Section we present a technique to alleviate this issue.

IV. SAT-GUIDANCE FOR INITIAL SIMULATION

We propose a novel technique to guide initial simulation
patterns in SAT-sweeping. The goal is to narrow down the
quality gap between initial and final equivalence classes, in
the shortest time possible. In order to achieve this goal, we
start by defining how the simulation patterns at each gate in
the circuit should look like, after initial simulation. Firstly, we
want to avoid gates that have all zeros or all ones in their
simulation pattern. Then, we also want to avoid gates that
have only a few ones and rest zeros, and viceversa. More in
general, we target simulation patterns with high toggle rate'.
On top of this, we target diverse distribution of bits in the
simulation patterns with similar toggle rates. Experimentally,
these characteristics of simulation patterns correlate well with
high quality equivalence classes.

The constraints on the simulation patterns’ characteristics
can be efficiently formulated as a SAT problem. The SAT
problem, if satisfiable, will produce new assignments at the
primary inputs satisfying the set of constraints. For this
procedure to be efficient in the context of SAT-sweeping, the
calls to the SAT solver need to be resolved very quickly. A low
conflict budget given to the SAT solver meets this requirement.

Alg. 1 depicts the pseudocode for our proposed SAT-based
algorithm. First the gates are sorted in inverse topological
order for processing. The idea is that by fixing the simulation

'We define toggle rate as the ratio of bit-toggles over the bit-string length.
For example 1001 toggles two times (1-0, 0-1), over four bits, so TR = 0.5.

Algorithm 1 SAT based guidance of simulation patterns

Input: Network NN, pattern optimization effort
Output: Optimized simulation patterns .S for network N.

1: list < inverse_topological_sort(N)
2: S < initial_rand(PI)

3: for gates GG; in list do

4: if GG; has low toggle rate then

5: next_bit < increase_toggles(G;)

6: next_PI_patt < SAT-solving(next_bitQG;, N)
7: if next_PI_patt is () then

8: continue

9: end if

10: new_patt < next_PI_patt | next_PI_patt(1-d)
11: S + S U new_patt

12: Incrementally simulate N with S

13: end if

14: end for

15: return S

patterns of gates at the upper levels, closer to the outputs,
other gates with low toggle rate at the lower levels will be
automatically handled. This makes especially sense in the
context of synthesis, where circuits are relatively shallow and
SAT problems can be solved with limited effort. A first round
of initial random simulation is conducted with initial input
patterns S. The main loop begins by considering each gate
G,, and checking if the properties of its simulation pattern
respect the desired characteristics, e.g., minimum toggle rate.
Note that more elaborated characteristics can be added to the
check, such as distribution of bits in the pattern, alignment
w.r.t. other patterns, etc. Without loss of generality, we focus
on toggle rate property for Alg. 1. If the desired toggle rate is
not met, then the next bit for G; is decided, for example by
flipping the last bit in the pattern. At this point, a SAT problem
is formulated where the value of next bit value is assumed at
the output of GG;. The number of conflicts, propagations and
other metrics of the SAT solver are decided on the basis of the
pattern optimization effort provided as input to the algorithm.
In general, just a few tens of conflicts are enough to solve
most of these SAT problems. Details on the circuit-level SAT
formulation will be given in the next Section.

The SAT call in Alg. 1 can give three answers: (i) unSAT,
which means that the gate GG; cannot assume the desired logic
value “next_bit” under any input assignment, (ii) SAT, which
means that G; = "next_bit” is possible and an input pattern for
this is returned by the solver and (iii) unDETermined (unDET),
which means no answer was found within the solving budget.
In the unSAT and unDET cases, no new Primary Input (PI)
pattern can be added to the set of input simulation patterns
S. In the SAT case, a new input pattern, also called SAT
assignment, is retrieved from the SAT solver. The amount of
circuit PIs necessary to guarantee a SAT assignment can be
minimized by different techniques. Indeed, it is desirable to
receive SAT assignments that affect the minimum number of
PIs, as this corresponds to minimal (re)simulation and better
compaction of learned patterns into words. Incremental SAT
calls, including constraints on reducing the number of PlIs,

can be triggered for this purpose when higher optimization
efforts are specified in input to the algorithm. To continue
the analysis of Alg. 1, we assume to have retrieved a valid
new input pattern from the SAT solver. Instead of just adding
this single new pattern, we follow the ideas presented in [4]
and also add I-distance vectors w.r.t. the new pattern, i.e.,
simulation vectors that have Hamming distance 1. In several
practical cases, distance 1 vectors are also very likely to satisfy
the same SAT problem. The number of distance 1 vectors
to be added depends on the optimization effort and distance
from target toggle rate. We incrementally simulate the new
input pattern(s). The output of Alg. 1 is an optimized set
of input patterns for simulation and an up to date simulated
network. This serves as an enhanced starting point for building
equivalence classes and running the core sweeping algorithm.

V. SAT-SWEEPING FRAMEWORK FOR SYNTHESIS

This section proposes a novel SAT-sweeping framework,
tailored for synthesis applications. We list hereafter some key
observations, made when synthesizing industrial circuits, that
are of interest to SAT-sweeping:

o Circuits in synthesis are shallow, they have in the order

of tens levels of logic, up to hundreds in rare cases.
 Circuits in synthesis are not highly redundant. There are
only a few percent equivalent gates to prove.

o Equivalencies in synthesis are easy to prove. This is
in contrast to equivalencies in verification, that become
harder with larger depth (e.g., miters).

o Processing gates top-down vs. bottom-up makes a dif-
ference. If we prove that a top gate can be removed,
then we do not need to process its MFFC. Similarly, a
counter-example for a top gate is likely to distinguish
false candidates in its fanin cone of logic. So top-down
is preferable for runtime. This is in contrast to verification
where bottom-up is preferable to incrementally reduce the
complexity of top equivalencies (e.g., miters).

o Depending on the synthesis step, the circuits can be
mapped into gates. Gates can be decomposed into shadow
AIGs or directly translated into CNF, following the cost-
ing proposed in [18], [19].

Based on these observations, we aim at designing a SAT-
sweeper for synthesis capable of unveiling all valid merging
opportunities with small runtime budget. Indeed, leaving merg-
ing opportunities unexplored can hurt later stages in synthesis,
as the redundant logic would be placed, sized, buffered, etc.
resulting in both a QoR cost and runtime cost.

Please note that the observations above hold on average,
as outlier circuit cases can also be seen in synthesis. Special
handling for outlier cases is necessary to ensure general
scalability. For example, when a circuit has too many levels, or
after getting too many unDET answers, the SAT-sweeper can
be re-configured on-the-fly to operate in "verification mode” .

In the next two subsections we (i) discuss flow level
considerations for sweeping and (ii) propose our enhanced
SAT-sweeping algorithm.

A. Flow Level Considerations

At the flow level, there are various entry points in synthesis

where SAT-sweeping could be called. As runtime is a main

concern in modern synthesis tools, and a limited number of
SAT-sweeping calls can be afforded, it is important to study
where this optimization improves QoR the most in the flow.

At the HDL level, sometimes there is logic that can be
shared between modules. There might also be redundancies
and unseen duplications in the way operators are unrolled
during high level optimization. For this reason, we run sat-
sweeping first at the beginning of the synthesis flow. Get-
ting rid of this HDL-level equivalencies early also helps the
runtime of the downstream flow because fewer cells needs
to optimized, placed and routed. Other than intrinsic HDL
equivalencies, many other equivalent gates are created dur-
ing timing optimization. When running delay restructuring,
many aggressive Boolean transformations are applied, e.g.,
collapsing followed by Shannon’s decomposition, exact delay
synthesis [6], duplication of logic in the critical path, etc. At
the end of the timing optimization loop, the critical paths
moved across the circuit, and some of the area traded for
timing during the first iterations can now be recovered. We
call SAT-sweeping to merge back the duplicated logic, coming
from restructuring or duplication moves, while costing the
delay at each merge operation.

B. SAT-Sweeping Algorithm

The SAT-sweeping algorithm we propose is depicted by
Alg. 2 and operates as follows. First, simulation patterns are
derived by the SAT-guided initial pattern algorithm detailed in
Alg. 1. The quality of simulation patterns is key to contain
the size of equivalence classes, thus limit the number of calls
to the SAT solver. With the high quality simulation patterns
provided by Alg. 1, we start computing equivalence classes
up to complementation. Then we sort the list of gates to
be processed by sat-sweeping in inverse topological order,
i.e., exploring the circuit top-down from primary outputs to
primary inputs. As previously discussed, the rationale is to
minimize redundant computation: for example if two outputs
are equivalent, we don’t want to run sat-sweeping on the
cone of logic being deleted (which would instead happen in
a bottom-up approach). At this point, we start processing the
sorted gates. We call the current gate candidate, as it is a
candidate gate to be deleted and replaced by a topological
preceding gate. We immediately check for conditions for
skipping the present candidate. For example, gates may be
marked as don’t touch or don’t try as candidate. Many other
skipping conditions include synthesis restrictions. We consider
equivalence classes for positive and negative (complementary)
polarity as one general class, where negative polarity gates
just translate in positive polarity ones with an output inverter.
The general class is then ordered topologically, but all positive
polarity gates are considered foremost. This ensures the most
advantageous merge is tried first, i.e., no extra inverter gate.
At this point, each member of the generalized equivalence
class is attempted for a merge, and is called driver. Conditions
for skipping a driver with the current candidate are evaluated.
These conditions include non-precedence in topological order,
so that no loops are introduced, special markings on driver,
and timing checks for timing-bounded merges. If no skipping
condition applies, then the equivalence problem is translated

Algorithm 2 SAT-sweeping for synthesis

Input: Network N

Output: Optimized network N.
1: S« SAT _guided_simulation_patterns(N)
2: classes < compute_init_equiv_classes(N, S)
3: list + inverse_topological_sort(N)
4: for each gate GG; in list do

5 candidate = G;

6 if must_skip(candidate) then

7: continue;

8 end if

9: gen_class = class(G;) |J (INV+class(—G;));

10: sort(gen_class) in topo order, positive pol. class first;
11: for each gate G; in gen_class in order do

12: driver = G;

13: if must_skip(driver, candidate) then

14: continue;

15: end if

16: eq = sat-solver(candidate & driver);

17: if eq == unDET then

18: mark_mffc_dont_try(candidate);

19: break;

20: end if

21: if eq == unSAT then

22: Patch fanins of candidate fanouts to driver;
23: mark_mffc_dont_try(candidate);

24: else /* eq = SAT at this point */

25: get counter-example from sat-solver;

26: incremental simulation of counter-example;
27: lazy refinement of equiv. classes;

28: end if

29: end for

30: end for

into CNF and sent for solving into the sat-solver. During the
CNF translation, preference is given to the method (gate to cnf,
sop to cnf, aig to cnf, lut-covering to cnf) which minimizes
number of variables [19]. Details on the CNF converter and
setting of the SAT-solver are omitted for the sake of brevity.
If the answer provided by the solver is unDET, it means the
conflict and propagation budget® provided to the solver were
not sufficient to obtain a solution. In this case, it is likely that
logic included is either not CNF friendly or just translates to a
hard SAT problem (recall that CNF-SAT is NP-complete). The
MFFC rooted at this candidate is also likely to lead to unDET
answers. To avoid this situation, the candidate gate is marked
as don’t try together with its MFFC. This provides maximum
runtime speedup and scalability. Please consider that this
condition only happens rarely in synthesis applications, but
we equipped our proposed algorithm to deal with it in the
most scalable way. When we get unSAT answers from the
solver we proceed with the merge, by reconnecting the fanins
of candidate fanouts to the driver. In case of negative polarity a
new INV gate is instantiated. This leaves the MFFC rooted at
candidate dangling. We mark that MFFC as don’t touch. If we

2Conflict and propagation budgets are used to limit runtime instead of
absolute runtime bailouts, which are non-deterministic.

instead get SAT answer, we proceed with getting the counter-
example from the solver, propagating it through the simulation
network and then refining the equivalence classes accordingly.
Dead nodes are removed at the end of the procedure.

VI. EXPERIMENTAL RESULTS

This section presents experimental results for our proposed
sat-sweeping engine. We first apply SAT-sweeping directly on
combinational logic circuits extracted from industrial designs.
Then, we show results at flow level, where sat-sweeping is
embedded in a commercial synthesis solution.

A. Combinational Networks SAT-sweeping Results

We extracted combinational networks from 11 industrial
designs. These networks are mapped and vary in complexity
from 15k gates to more than 1M gates. For the sake of compar-
ison, we considered a previous SAT-sweeper implementation
which includes state-of-the-art AIG techniques. For our novel
implementation, we provide runtime results with and without
the proposed SAT guidance techniques. Table III shows results
for gate count (GC), runtime and network characteristics.
The first column is the design name, the second and third
columns are, respectively, the number of inputs and number
of outputs. The fourth and fifth columns are the GC and area
before sat-sweeping. Then for each sat-sweeping we show
the GC and area after optimization as well as the runtime
in seconds. For the new sat-sweeping columns “’rt w/o guid.”
and ”w/ guid.” are the runtimes without and with the novel
simulation guidance algorithm. Table IV shows details on
the proof/counter-examples encountered during SAT-sweeping
with and without SAT guidance. More specifically, it shows
the number of total merge candidates and then the ratio of
proven merges and computed counter-examples. As example,
consider designl in Table IV. In the “w/o guid.” column, we
have 2895 total candidates, and proof over counter-examples
ratio 0.39, implying 812 proofs and 2082 counter-examples.
The set of benchmarks is diverse on purpose: there are
benchmarks showing many gate merging opportunities while
other benchmarks do not. We aim at making sure that our
proposed methodology is highly scalable in both cases. The
cases with more merges possible are expected to have higher
speedup, deriving from our sat-guidance. We notice that even
without sat-guidance runtime is quite better than previous
implementation of the sweeper. This is because some of the
algorithmic enhancements are orthogonal to initial simulation:
top-down exploration, improved CNF generation from gates,
marking of cones of logic where merges cannot happen, etc.
It is also worth mentioning that QoR with and without sat-
guidance remains the same for the benchmarks of Table III,
since all merges in this set of benchmarks can be proven
with the given solving budget. However, in a full design flow
scenario, the speedup obtained by SAT guidance can be traded
to increase solving budget and get more merges.

Considering runtime, we observe remarkable speedup for
most benchmarks. For only one benchmark (designi0) we
observe virtually the same runtime because random initial
simulation already gets a small number of counter-examples
(few tens). For benchmarks rich in gate merging opportunities,

TABLE III
NEW SAT-SWEEPING RESULTS OVER INDUSTRIAL SYNTHESIS TESTCASES (RUNTIME IN SECONDS)

SAT-GUIDANCE: NUMBER OF MERGING CANDIDATES

Benchmark | # w/o guid. (p/c) | # w/ guid. (p/c)
designl 2,895 (0.39) 1,361 (1.48)
design2 4,951 (0.78) 2,957 (2.82)
design3 2,149 (0.84) 1,822 (1.17)
design4 2,900 (0.04) 781 (0.17)
design5 2,693 (0.27) 822 (2.25)
design6 59,179 (0.78) 29,220 (8.30)
design7 654 (0.35) 331 (1.07)
design8 95,924 (26.56) 95,222 (33.27)
design9 11,527 (0.22) 3,501 (1.47)
design10 6,742 (306.45) 6,724 (1680)
designl1 863,291 (0.16) 132,524 (329)

Previous SAT-sweeper New SAT-sweeper
Benchmark #In #0ut GC Area (bef.) GC Area (aft.) runtime GC Area (aft.) | rt w/o guid. | w/ guid.
designl 22,615 37,929 124,753 696,421 123,929 694,946 790.6 123,830 694,762 559.4 362.0
design2 43,989 81,090 119,406 507,146 | 117,455 503,231 165.9 117,400 503,170 429 27.5
design3 6,594 10,012 15,090 68,367 14,103 65,456 89.3 14,090 65,417 28.9 15.2
design4 21,232 21,669 156,148 962,003 | 156,018 961,700 1,423.4 156,001 961,650 72.3 55.5
design5 114,672 | 140,376 170,688 592,339 | 169,796 589,581 229.7 169,790 589,504 26.2 19.3
design6 39,258 | 487,478 950,536 5,738,499 NA NA | TO(12h) 922,092 5,664,237 2,099.0 561.7
design7 47,849 55,326 51,679 246,681 51,517 246,047 53.0 51,489 245,938 10.1 6.8
design8 47,009 2,424 140,296 186,682 47,842 94,226 100.2 47,842 94,226 61.4 60.6
design9 50,305 95,136 206,888 1,462,777 | 205,212 1,385,719 1,118.9 203,522 1,375,168 132.8 84.8
design10 58,439 32,670 161,296 457,580 | 151,176 424,158 1,821.4 151,176 424,161 10.5 10.6
designl 1 113,533 17,305 | 1,271,694 2,543,386 NA NA | TO(12h) | 1,233,985 2,365,987 41,900.9 4,163.2
TABLE IV

SAT-sweeping for representative combinational networks, up
to 10x, permitting more merges to be found with better
runtime. Embedded in a commercial synthesis tool, the new
SAT-sweeper enables 1.98% area and 1.81% power savings on
top of current baseline, with only modest runtime overhead.

REFERENCES

[11 A. Mishchenko, S. Chatterjee, R. Jiang, and R. Brayton, “Fraigs:
A unifying representation for logic synthesis and verification,” 2005.
Available at http://www.eecs.berkeley.edu/~alanmi/publications/2005/
tech05_fraigs.pdf.

[2] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust boolean

we see often speedups in the order of 1.5-2x, and up to
10x for the case of designll. For designll we see the
impressive runtime speedup thanks to SAT guidance, which
reduces counter-examples from 740880 to just 401 (counter-
example values can be extracted from total candidates and p/c
ratio in Table IV), preserving the same number of merges.

B. Full Synthesis Flow SAT-sweeping Results

TABLE V
FuLL DESIGN FLOW RESULTS ON 36 INDUSTRIAL DESIGN
Flow Cmb. Area | Cmb. PW WNS TNS Time
Baseline 1 1 1 1 1
New flow -1.98 % -1.81% -0.84% | +0.59% | +0.7%

We embedded the proposed SAT-sweeping in a commercial
synthesis flow. We call SAT-sweeping both during technology
independent optimization, and after timing optimization on a
mapped netlist. We embed timing checks in both forms of
level count and timer check for each merge. Table V shows the
full flow results, post physical design. A baseline flow is run
without the new sat-sweeper. The benchmarks chosen are 36
industrial designs. Our proposed flow improves combinational
area by 1.98%, combinational power by 1.81%, maintaining
neutral timing with only modest runtime overhead.

VII. CONCLUSIONS

This paper proposed a new SAT-sweeper engine, tailored
to be efficient for logic synthesis applications. The proposed
SAT-sweeper employs a novel SAT-guidance technique, which
strongly reduces the number of false positive candidates
for merge. Specialized algorithmic enhancements to SAT-
sweeping are also proposed, especially regarding practical
considerations on combinational networks encountered during
synthesis. Experimental results show impressive speedup of

[3]
[4]
[5]

[6]

[7]

[8]
[9]
[10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]
(18]

[19]

reasoning for equivalence checking and functional property verification,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol. 21, no. 12, pp. 1377-1394, 2002.

Qi Zhu, N. Kitchen, A. Kuehlmann, and A. Sangiovanni-Vincentelli,
“Sat sweeping with local observability don’t-cares,” in DAC, 2006.

A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een, “Improvements
to combinational equivalence checking,” in ICCAD, 2006.

M. Fujita, “Toward unification of synthesis and verification in topolog-
ically constrained logic design,” Proc. of the IEEE, vol. 103, pp. 2052—
2060, Nov 2015.

L. Amard, M. Soeken, P. Vuillod, J. Luo, A. Mishchenko, P.-E. Gail-
lardon, J. Olson, R. Brayton, and G. De Micheli, “Enabling exact delay
synthesis,” in ICCAD, 2017.

A. Mishchenko, R. Brayton, J.-H. R. Jiang, and S. Jang, “Scalable don’t-
care-based logic optimization and resynthesis,” ACM Trans. Reconfig-
urable Technol. Syst., vol. 4, no. 4, pp. 34:1-34:23, 2011.

P. Fiser, 1. Halecek, and J. Schmidt, “Sat-based generation of optimum
function implementations with xor gates,” in Euromicro DSD, 2017.
M. L. Case, V. N. Kravets, A. Mishchenko, and R. K. Brayton, “Merging
nodes under sequential observability,” in DAC, 2008.

J. S. Zhang, A. Mishchenko, R. Brayton, and M. Chrzanowska-Jeske,
“Symmetry detection for large boolean functions using circuit represen-
tation, simulation, and satisfiability,” in DAC, 2006.

B.-H. Wu, C.-J. Yang, C.-Y. R. Huang, and J.-H. R. Jiang, “A robust
functional eco engine by sat proof minimization and interpolation
techniques,” in ICCAD, 2010.

S. M. Plaza, K.-h. Chang, I. L. Markov, I. L. Markov, V. Bertacco, and
V. Bertacco, “Node mergers in the presence of don’t cares,” in ASP-DAC,
2007.

S. Krishnaswamy, H. Ren, N. Modi, and R. Puri, “Deltasyn: An efficient
logic difference optimizer for eco synthesis,” in /ICCAD, 2009.

M. Elbayoumi, M. S. Hsiao, and M. ElNainay, “Novel sat-based
invariant-directed low-power synthesis,” in ISQED, 2015.

'W. Haaswijk, A. Mishchenko, M. Soeken, and G. De Micheli, “Sat based
exact synthesis using dag topology families,” in DAC, 2018.

Z. Hassan, Y. Zhang, and F. Somenzi, “A study of sweeping algorithms
in the context of model checking,” Ganesh Gopalakrishnan University
of Utah USA, p. 30, 2011.

D. Brand, “Verification of large synthesized designs,” in ICCAD, 1993.
M. N. Velev, “Efficient translation of boolean formulas to cnf in formal
verification of microprocessors,” in ASP-DAC, 2004.

N. S. Niklas Een, Alan Mishchenko, “Applying logic synthesis for
speeding up sat,” Conf. on Theory and Applications of SAT Testing,
vol. 4, Dec. 2007.

