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Polarization of light has been widely used as a contrast mechanism in two-dimensional (2D) microscopy and also in
some three-dimensional (3D) imaging modalities. In this paper, we report the 3D tomographic reconstruction of the
refractive index (RI) tensor using 2D scattered fields measured for different illumination angles and polarizations.
Conventional optical diffraction tomography (ODT) has been used as a quantitative, label-free 3D imaging method. It is
based on the scalar formalism, which limits its application to isotropic samples. We achieve imaging of the birefringence
of 3D objects through a reformulation of ODT based on vector diffraction theory. The off-diagonal components of the
RI tensor reconstruction convey additional information that is not available in either conventional scalar ODT or 2D
polarization microscopy. Finally, we show experimental reconstructions of 3D objects with a polarization-sensitive
contrast metric quantitatively displaying the true birefringence of the samples. ©2021Optical Society of America under the

terms of theOSAOpen Access Publishing Agreement

https://doi.org/10.1364/OPTICA.415343

1. INTRODUCTION

Polarization microscopy [1] is an imaging technique that exploits
the birefringence contrast of the samples and has been extensively
used in pathology and diagnosis of some diseases, such as squamous
cell carcinoma [2]. This microscopy modality has been studied
intensively and has evolved during many years. Birefringence is
observed in collagen, muscle tissue, tendons, retina nerves, fibrob-
lasts, starch, and biological samples containing fibrous structures
in polarization-sensitive bright-field microscopy [3]. Nonlinear
microscopy methods such as coherent anti-Stokes Raman scatter-
ing microscopy [4] and second-harmonic microscopy [5] have also
been studied as polarization-sensitive techniques.

In quantitative two-dimensional (2D) polarization imaging,
several works studied polarization-sensitive holography for bire-
fringent samples [6–11]. The Oldenbourg group has developed a
liquid-crystal-based polariscope method (LC-PolScope) [12,13]
presenting 2D images of birefringence distribution. Regarding
three-dimensional (3D) imaging techniques, polarization-
sensitive optical coherence tomography has been thoroughly
investigated for imaging birefringent samples [14–16]. Confocal
florescence polarization microscopy has also been reported [17],
and the LC-polariscope has been used together with a multi-focus
grating to provide 2D birefringence images in multiple planes [18].
However, none of these methods yield a quantitative reconstruc-
tion of birefringence in 3D, and a quantitative, label-free, and 3D
imaging method for polarization microscopy does not currently
exist.

Optical diffraction tomography (ODT), on the other hand, is a
quantitative, label-free, and 3D imaging method that reconstructs
the distribution of the refractive index (RI) values of a sample
using multiple-angle-measured scattered fields. Emil Wolf’s work
in 1969 [19] was a landmark in the establishment of ODT, in
which he proposed the Fourier diffraction theorem using the Born
approximation. Subsequently, ODT has undergone intensive
research in terms of experimental and algorithmic viewpoints
[20–22]. For example, Wolf’s method was used with the Rytov
approximation to improve reconstructions [23]. Experimental
aspects such as illumination rotation [24,25], sample rotation [26],
and wavelength scanning [27] have been thoroughly investigated.
Phase-contrast tomography of cells inside the microfluidic chan-
nels is also presented [28,29]. Iterative schemes have been proposed
to compensate for the missing spatial frequency information due
to the limited numerical aperture [30], and nonlinear forward
models with optimization have been implemented to address
multiple-scattering samples [31–33].

Previous studies on ODT reconstruction are based on the
scalar Helmholtz equation and, therefore, are limited to isotropic
samples. The 3D scalar RI distribution of a sample reveals useful
morphological and biological information; however, as men-
tioned earlier, many biological and non-biological samples are
birefringent, and their RI cannot be represented with a scalar
parameter. In this work, we study polarization-sensitive ODT for
birefringent samples and reconstruct the 3D distribution of the RI
tensor. The Jones formalism [34] is used throughout this paper.
The Jones matrix of the sample has been measured holographically
for multiple illumination angles. We then derive the tensorized
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version of Wolf’s method and use it for direct tomographic recon-
structions. Synthetic data are generated using the vectorial beam
propagation method (V-BPM), and they are used to guide the
experiments in polarization-sensitive ODT. Finally, we discuss the
3D polarization-based contrast metric to be presented as the 3D
map of the sample showing its birefringence.

2. METHODOLOGY

A. Theory

The importance of considering polarization for ODT is high-
lighted in Fig. 1. We applied conventional ODT reconstruction
using the Rytov approximation for a cornstarch granule, which is
a birefringent sample [35]. In two experiments, the illumination
beam had +45◦ and −45◦ linear polarization states with respect
to the X axis in the XY coordinate. We measured the X -polarized
light of the scattered light using a conical scan at 180 equally spaced
illumination angles with a 30◦ angle with respect to the Z axis. In
Figs. 1(a)–1(c), we show the YX profiles of the 3D reconstructions
for the two different illumination cases (+45◦ and −45◦ linear
polarizations) followed by the difference between them. This figure
clearly demonstrates the importance of considering polarization
in ODT. The Y components of the two incident polarizations are
both coupled to the measured X polarization only for an aniso-
tropic sample such as the corn kernel used in this experiment. The
opposite sign of the Y components in the incident light are respon-
sible for the difference between the reconstructions in Figs. 1(a)
and 1(b). On the other hand, when the sample is isotropic, there is
no light coupling between the X and Y polarizations. As a result,
independently of the sign of the Y -polarized light in the+45◦ and
−45◦ states, the reconstructions will be same. This has been shown
in Figs. 1(d)–1(f ) for a 4.5µm diameter polystyrene bead, which is
immersed in silicon oil.

Fig. 1. YX profiles of the conventional Rytov ODT reconstructions.
On the top we have the reconstruction of the cornstarch kernel, and
multiple scattered fields were measured in the X polarization when the
illumination beam was (a) +45◦-polarized and (b) −45◦-polarized.
(c) The difference between the two reconstructions of cornstarch. Then,
we have the reconstruction for an isotropic polystyrene bead when the illu-
mination beam was (d) +45◦-polarized and (e) −45◦-polarized. (f ) The
difference between the two reconstructions of the polystyrene bead.

The input and output field vectors and their relationship can

be presented in the Jones vectors and Jones matrix, EE out
=
¯̄J EE in,

in which EE out and EE in are the fields after and before the sample
(Jones vectors) and the linear transformation between two vec-
tors is represented by the Jones matrix, ¯̄J . The Jones formalism
represents a relationship between the complex fields, and its com-
ponents are also complex values. As a result, holography or iterative
phase retrieval methods are necessary to reconstruct the complex
scattered fields.

We derive the vectorial form of the Helmholtz equation to
study the interaction of light with the sample. At the same time,
we introduce the “scattering potential tensor,” a quantity that
is an extension of the scalar scattering potential that we use as a
contrast metric when we form the 3D image of the birefringent
sample. The integral solution of the vectorial Helmholtz equation
can be obtained under the Born approximation (see Section 1
of Supplement 1). We consider a case when the sample is illumi-
nated with the illumination beam vector EE illum and consider the
corresponding holographically recorded scattered field vector EE s ,

EE s (r )=
∫
¯̄G(r , r ′)× ¯̄V (r ′)× EE illum(r ′)d3r ′, (1)

where ¯̄G is the Green’s function (tensor) and ¯̄V = n0k2
0
¯̄δn/2π is

the scattering potential (tensor), which is defined in terms of the
quantity δ̄n, which we refer to as the RI tensor. The RI tensor is
defined in Supplement 1, and it is discussed further in Section 3.
Since the sample is assumed to be immersed in a liquid, the back-
ground is isotropic and homogeneous. Therefore, the Green’s
function is a diagonal tensor, with the diagonal elements of the
scalar case.

The RI tensor, and correspondingly the scattering potential ten-
sor, and Jones matrix are, in general, 3× 3 tensors. As a result, we
need three independent polarization states for EE illum to reconstruct
the full 3× 3 Jones matrix for each projection. However, since the
polarization state of the incident light is perpendicular to its wave
vector, we can only have two independent polarization states for
each illumination angle. Therefore, we calculate the scattering
potential using 2× 2 tensors by neglecting the Z component. The
validity of this approximation and the resulting error are discussed
in Section 3 of Supplement 1.

Now, each element of the scattering potential tensor
can be calculated with Wolf’s method, considering that
E illum(r ′)= Ẽ illum

× e j Ekin
·r ′ :

¯̄V (kx − k in
x , ky − k in

y , kz − k in
z )

=
kz

2π j
F2D

{(
E s

x1 E s
x2

E s
y 1 E s

y 2

)(
Ẽ illum

x1 Ẽ illum
x2

Ẽ illum
y 1 Ẽ illum

y 2

)−1
}
(kx , ky ).

(2)

Equation (2) is derived in Supplement 1. After taking the 2D
Fourier transform from the scattered fields, we shift them in the
Fourier domain based on Ek in and then fill the Fourier domain of the
scattering potential by adding the spectra for all the incident angles.
At the end, we take the inverse 3D Fourier transform to reconstruct
the scattering potential tensor in the spatial domain. All of these
operators are linear and can be considered equivalent to the Wolf
transform [19] operating on each of four elements of the tensor
independently using the Born approximation (see also Section 1
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of Supplement 1). Alternatively, the Rytov approximation can

be used, where we consider EE t as [e ϕ] × EE illum. In this case, we
will have(

E s
x x E s

x y
E s

y x E s
y y

)
=

(
[e ϕ]− 1

)
×

(
E illum

x1 E illum
x2

E illum
y 1 E illum

y 2

)
, (3)

which leads to

¯̄ϕ = logm

(
1+

(
E s

x1 E s
x2

E s
y 1 E s

y 2

)(
E illum

x1 E illum
x2

E illum
y 1 E illum

y 2

)−1
)

. (4)

logm is the matrix logarithm, and ¯̄ϕ is the complex phase tensor
whose imaginary part should be unwrapped [36]. Same as the
scalar case, Rytov approximation is based on the first-order Taylor

expansion, where ¯̄E
s
/ ¯̄E

illum
≈ logm(1+ ¯̄E

s
/ ¯̄E

illum
). The recon-

structed scattering potential ¯̄V can be found by applying the Wolf
transform, separately on each of the components of ¯̄ϕe j kin

·r .
The formulation described above is based on the scattered E s

and illumination E illum fields immediately before and after the
sample. However, in ODT, we illuminate the sample with different
projections, from different angles (experimentally implemented
using a galvomirror, as explained in the next subsection). As a
result, with fixed input polarization of light in a fixed coordinate
frame (here, XYZ experiment coordinates), changing the illumi-
nation angle changes the polarization of the illumination field.
In this situation, by tilting the beam, the polarization of light will
remained unchanged in the meridional plane (the plane containing
the ray, and the optical axis, here z), and it can be expressed in the
XYZ Cartesian coordinate, using a rotational matrix [37]: E illum

x
E illum

y

E illum
z

= ¯̄R ×
 E in

x
E in

y
E in

z

 , (5a)

¯̄R =

 sin2 φ(1− cos θ)+ cos θ − sin φ cos φ(1− cos θ) cos φ sin θ
− sin φ cos φ(1− cos θ) cos2 φ(1− cos θ)+ cos θ sin φ sin θ

− cos φ sin θ − sin φ sin θ cos θ

 . (5b)

The parameters θ and φ are indicated in Fig. 2(b). The absolute
value of the nine components of the rotational matrix is shown in
Fig. 2(a). The same matrix maps the complex measured fields to the
complex scattered field, right after the sample, to compensate for
the angular demagnification in the 4F system from the sample to
the CCD, including the water-dipping objective and the lens L4,

EE s
=
¯̄R × EE m . (6)

Here, EE m is the field vector, whose last component is always zero,
as the perpendicular component to the camera cannot be mea-
sured. There are other contributions in the polarization change
of the light, such as light refraction in the air-glass and glass-water
interface, and also oblique illumination to the polarizer. These are
discussed in Supplement 1.

In Eqs. (2) and (4), we are working with the cross-polarized
light, E s

y x/E illum
x . We have zero intensity values in these terms

when there is no scattering and/or birefringence, which leads to
a random background phase values. As an example, the phase of
this cross-polarized term is shown in Supplement 1 (Fig. S7) for
one illumination angle. The random background phase values
make the unwrapping and calibration challenging. To overcome
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Fig. 2. (a) Rotational matrix described in Eq. (5), for polarization
conversion of an oblique illumination. (b) Definition of the coordinate
system.

this issue, we can note the fact that Eq. (1) is linear with respect to
¯̄E illum. As a result, we can get scattered fields in the XY coordinate,

if we illuminate with any pair of perpendicular polarization states,
such as the 45◦ ab coordinate system as shown in Fig. 2(b). This
way, when the input and output polarization states are not aligned,
we do not have the intensity singularity problem. For instance, we
present the phase of E s

xa in Supplement 1 in comparison with the
phase of cross-polarized light (Fig. S7). On this subject, based on
the linearity of Eq. (1), 3D reconstructions can be performed using
E s

xa , E s
xb , E s

y a , and E s
y b , and then converted to the XY RI tensor

using the procedure discussed in the Section 4 of Supplement 1.

B. Experimental Setup

The polarization-sensitive holographic tomography system used
to acquire experimental data is shown in Fig. 3(a). The signal and
reference arms are combined in an off-axis configuration to record
holograms at different illumination angles. The source is a 488 nm

CW fiber coupled laser diode, which is collimated and split into
the signal and reference arms with a beam splitter. The polarization
of the signal arm is controlled with a half-wave plate (HW1) and
a polarizer (P1). The illumination angle is scanned with a double-
axis galvomirror. We consider two arbitrary polarization states for
our illuminations,+45◦ and−45◦, namely a and b, according to
Fig. 2(b). Thanks to a 4F system consisting of a lens, L1, and a 60×
dry objective as the condenser, the position of the beam is fixed on
the sample while scanning the angle. The imaging of the sample
on a CCD camera is done using another 4F system with a water-
dipping 60× objective and a tube lens (L2). The polarization of
the reference arm is aligned at 45◦ with respect to the X and Y axis
to get the same intensity of reference light for interference with
both polarizations. The signal beam for which the polarization is
chosen using an analyzer, in two states of X and Y , is combined
with the reference arm by a beam splitter. We measure four holo-
grams totally and reconstruct the complex fields E xa , E y a , E xb ,
and E y b , where in E i j , j indicates the incident polarization and i
indicates the output polarization. For calibration purposes (as the
illumination fields are not perfect plane waves), we measure E illum

i j
in the absence of the sample. In Fig. 3(b), the cross-polarized light
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Fig. 3. (a) Schematic of the polarization-sensitive holography setup has
been used to get vectorial scattered fields for different illumination angles.
(b) Cross-polarized light can be measured from a cornstarch granule
when illuminated with a Y -polarized light. (c) Illumination pattern in the
k-space: circles are the desired pattern, and crosses are the experimental
pattern that is measured using Fourier analysis of the holograms.

due to the birefringence of the sample is shown in the absence of
the reference beam, for the cornstarch granule. Figure 3(c) shows
the illumination pattern in the k-space. The desired pattern is
shown with circles. The experimental pattern is achieved using the
Fourier map of the hologram and is shown with crosses. For some
angles, it is slightly different from the desired pattern, due to the
imperfections of the galvo mirror. When we find the illumination

pattern using our holograms, the ¯̄R matrix of Eq. (2a) is calculated
by sampling the pattern in Fig. 2(a) with the points in Fig. 3(c).

3. RESULTS AND DISCUSSION

A. Numerical Phantom

We tested the proposed 3D reconstruction method using synthetic
data generated using a numerical forward model, the split-step
V-BPM, in order to numerically calculate the 2D projections. The
accuracy of the reconstruction method was assessed by compar-
ing the reconstruction with the known index tensor distribution
of the digital phantom. The forward model, V-BPM, is derived
in Section 2 of Supplement 1. The basic idea of this model is to
propagate light slice-by-slice by dividing a 3D sample into multiple
2D slices. The relationship between two subsequent slices can be
described by Eq. (8). To be specific, we can calculate the vector
field, EE (z+ dz), by propagating the field from the previous slice,
EE (z), followed by the phase and amplitude modulation caused
by the inhomogeneity and the birefringence of the medium,

δn(x , y , z):

Fig. 4. Complex Jones matrix calculated for a birefringent digi-
tal phantom with an illumination angle of θ = 25◦ and φ = 0◦. The
synthetic measurements were generated using the V-BPM. In order to
visualize the complex values, brightness shows the amplitude, and the
color-code shows the phase of each Jones matrix component.

EE (z+ dz)= expm

(
j k0δn(z)dz

cos θ

)

×F−1

{
e− j

k2
x+k2

y
k+kz

dz
×F{ EE (z)}

}
, (7)

where dz is the step size, expm is the matrix exponential applied on

the RI tensor, δn, F is the 2D Fourier transform, and kx , ky , kz =√
k2 − k2

x − k2
y represent the spatial frequencies in each direction.

Using the V-BPM, the scattered vector fields are calculated
for a digital phantom with +45◦-polarized and −45◦-polarized
input fields. The rotational matrix described in Eqs. (5) and (6)
is also considered. Four complex calculated fields, normalized to
the input vector fields to give the Jones matrix, are shown in Fig. 4,
for an illumination with θ= 25◦ and φ= 0◦, where θ and φ are
defined in Fig. 2(b). Ninety projections are calculated keeping θ
but varying φ. Then, we use these data for our reconstruction. The
reconstruction process is similar to what we use for the experimen-
tal data. We reconstruct based on the Rytov approximation, and
we convert the reconstructions to get nx x , n y x , nx y , and n y y . In
Fig. 5, we present the reconstruction of nx x and n y x , and compare
them with the ground-truth. We can see the underestimation
and elongation along the optical axis, which is due to the miss-
ing spatial frequencies, similarly to the scalar ODT [30]. The
full reconstruction of the tensor is shown in Supplement 1 and
is discussed in detail. We define the mean square error (MSE) as
MSE= ‖nreconstruction

− nground-truth
‖

2/‖nground-truth
‖

2 to perform
a quantitative evaluation on the 3D reconstruction of the RI tensor
with respect to the ground-truth. Based on our calculation on the
data of Fig. 5, for nx x , the MSE of the reconstruction at the plane
of focus (z= 0 µm) is 0.104, and the total MSE is 0.381. On the
other hand, for n y x , the MSE of the reconstruction at the plane of
focus is 0.317, and the total MSE is 0.451. The larger value of the
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Fig. 5. Reconstruction of the digital birefringent phantom using the
Rytov approximation. First and second rows show YX, YZ, and XZ pro-
files of the ground-truth, and reconstruction of nx x , respectively. Third
and fourth rows show the same profiles for n y x . Full tensor ground-truth
and reconstructions are presented in Supplement 1.

total MSE is due to the fact that the Rytov reconstruction is always
better in the plane of best focus.

B. Experiment

As proof of concept of our method, we first demonstrate our exper-
imental setup by reconstructing the 3D RI tensor of a cornstarch
granule. Cornstarch granules, which exhibit a simple birefringent
structure, were suspended in silicone oil (n0 = 1.43) and placed
between two #1 glass coverslips for imaging. Here, in order to
overcome the phase unwrapping problem in the presence of exper-
imental noise, we use the idea of nonaligned input and output
polarization. As a result, the sample is illuminated from differ-
ent angles with +45◦-polarized and −45◦-polarized light, and
we measure the X and Y components of the output field. Then,
the reconstructions are processed to get the RI tensor in the XY
coordinate system. A 3D total-variation (TV) denoising algo-
rithm as defined in Eq. S33 of Supplement 1 with a regularization
parameter of λ= 2× 10−3 is used on the final reconstructions
to diminish the coherent noise due to the unwanted reflections
on the final reconstructions [38]. This TV algorithm is only for
denoising purposes, is directly applied on the final images, and does
not compensate the missing-cone problem. This issue is elaborated
in Section 7 of Supplement 1. Results are shown in Fig. 6, where we
can see four different components of the RI tensor, nx x , nx y , n y x ,
and n y y , in 3D. As it can be seen in the off-diagonal terms of the
RI tensor, there are some azimutally varying structures that came
from the amylopectin crystalline structures growing radially in
corn, from its hilum. The diagonal RI components are bereft of this
information, the same as the conventional scalar ODT.

Next, we investigate the viability of using our method for more
complex anisotropic samples. We present a case study using ex vivo
mouse muscle tissue, a well-studied example of a naturally bire-
fringent tissue [39]. Striated muscle fiber cells in mammals contain

Fig. 6. YX, XZ, and YZ profiles of the 3D RI tensor reconstruction of
the cornstarch granule.

repeated longitudinally connected units known as sarcomeres,
which are periodically organized into substructures including
A-bands (anisotropic) and I-bands (isotropic). As the charac-
teristic length scale of A- and I- bands is on the order of 1 µm,
muscle tissue is well-suited for a demonstration of our method.
Fresh ex vivo mouse muscle was cryo-embedded, sectioned into
20 µm slices, mounted on a coverslip with water immersion, and
imaged under the same conditions as the previous experiment. The
cross-polarized image is shown in Fig. S6 of Supplement 1. The
regularization parameter in the 3D TV denoising algorithm for
this muscle tissue is λ= 0.8× 10−3 and is applied directly on the
final 3D RI tensor reconstructions. Figure 7 shows YX slices from
the 3D reconstruction of the RI tensor at three different depths.
The section of the tissue sample shown here consists of two en face
muscle fiber cells that are separated by a thin layer of connective
tissue. The inset in Fig. 7, providing a closer look at nx y term, indi-
cates that this measurement could be used to extract quantitative
morphological data about the sarcomere structure. Some evidence
of these structures is also visible in the images of nx x , which can be
attributed to the fact that both quantities are related to the local
mass density.

C. Coordinate-Invariant Polarization-Sensitive
Contrast Metrics

The RI tensor, which contains nx x , nx y , n y x , and n y y components,
depends on the coordinate system, which has been chosen arbitrar-
ily. One can change the coordinate system and get a new RI tensor.
For example when the coordinate system matches with the optical
axes of the sample, we will have a diagonal RI tensor. As a result, the
values of off-diagonal components in the RI tensor do not directly
indicate the inherent birefringence of the sample. A sample with a
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Fig. 7. YX profiles of the 3D reconstructions of the RI tensor com-
ponents, nx x and nx y , for a 20 µm thick muscle tissue in three different
depths. The inset shows a 2.5×magnified section of nx y YX profile, which
clarifies the sarcomere structure with A-bands and I-bands in one muscle
fiber. A z-stack video is shown in Visualization 1.

larger value of n y x in a particular location may be less birefringent
than another sample with a smaller n y x depending on the orienta-
tion of the local optical axis with respect to the laboratory coordi-
nates.

To solve this issue, we can study the eigenvalue decomposi-
tion of the RI tensor. The eigenvalues of a matrix are invariant
under any unitary transformation, such as the coordinate rotation.
We can consider the local phase modulation tensor in Eq. (7),

expm( j k0dzδn), that the electric field vector experiences as it
propagates through a step dz. This step is a linear operator, and its
eigenvectors and eigenvalues can be readily calculated. We use the
difference in the phases of these eigenvalues (δ1 and δ2) as the con-
trast metric since they convey the local retardation, independently
of orientation. It has been shown in Section 2 of Supplement 1 that
δ is directly related to the eigenvalues of the RI tensorµ1,2

n :

δ = δ1
− δ2
= k0dz(µ1

n −µ
2
n). (8)

The phase retardation, δ(x , y , z), is a 3D scalar quantity, which
is invariant under any rotation of the coordinate system in the XY

(a) (b)

(c)

Fig. 8. Comparison between the YX profiles of the 3D reconstructions
of (a) nx y and (b) phase retardation for the cornstarch granule. A 3D rotat-
ing rendering of the phase retardation is presented in Visualization 2, and
a 3D view of that is shown in (c).

plane. In Fig. 8, we present the calculated 3D phase retardation
for the cornstarch granule. The YX profiles of the reconstructed
nx y and phase retardation are compared in Figs. 8(a) and 8(b).
We can see that these two contrast metrics can show different
shapes depending on the local orientation of the optical axis. A 3D
rotating rendering of the phase retardation rendered with the Icy
platform [40] is shown in Visualization 2, and a 3D view of that
can be seen in Fig. 8(c). It should be mentioned that eigenvalue
and eigenvector characterization of the RI tensor is the key point to
quantify the parameters of anisotropicity with a physical meaning.
Each component of the RI tensor, by itself, does not convey infor-
mation about the local birefringence or the local direction of the
fibrous structures of the sample. However, the birefringence can
be calculated as the difference in the eigenvalues of the RI tensor
(µ1

n −µ
2
n), and the slow-axis orientation of the sample can be

calculated by eigenvectors of the RI tensor. These parameters (that
have been shown and discussed in Section 6 of Supplement 1) are
inherent properties of the sample and do not get affected by the
orientation of the experimental coordinate.

4. CONCLUSION

In conclusion, we studied ODT in the anisotropic scenarios and
showed how conventional ODT reconstruction can be different
depending on the input polarization for a birefringent sample.
We formulated the linear ODT for RI tensors, under the Rytov
approximation, and evaluated with some numerical examples. In
this numerical case, simulations were done with V-BPM, derived
as the forward model. Using a polarization-sensitive hologra-
phy setup, we presented 3D RI tensor reconstructions using
multiple-angle vectorial scattered fields.

Our direct reconstruction method can be further improved by
incorporating iterative reconstruction schemes along with nonlin-
ear forward models, such as our V-BPM, and we expect to extend
the previously developed learning tomography approaches for

https://doi.org/10.6084/m9.figshare.13259153
https://doi.org/10.6084/m9.figshare.13718146
https://doi.org/10.6084/m9.figshare.13259156
https://doi.org/10.6084/m9.figshare.13259156
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isotropic samples to general anisotropic samples [31]. Polarization-
sensitive ODT should be important for biological samples with
fibrous structures to provide information about the biological
details related with the birefringence of the sample and can be
resolved in the off-diagonal components of the RI tensor or the 3D
phase retardation.
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