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Vertex function compliant with the Ward identity for quasiparticle
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We extend the quasiparticle self-consistent approach beyond the GW approximation by using a range-
separated vertex function. The developed approach yields band gaps, dielectric constants, and band positions
with an accuracy similar to highest-level electronic-structure calculations without exceeding the cost of regular
quasiparticle self-consistent GW. We introduce an exchange-correlation kernel that accounts for the vertex over
the full spatial range. In the long range it complies with the Ward identity, while it is approximated through the
adiabatic local density functional in the short range. In this approach, the renormalization factor is balanced and
the higher-order diagrams are effectively taken into account.
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Achieving an accurate description of the electronic struc-
ture of solids is a challenging problem in condensed matter
physics. In particular, important properties of materials such
as band gaps and excited states cannot be accurately re-
produced within density-functional theory (DFT) [1-4]. A
common approach to correct the calculated band gaps is
Hedin’s GW approximation [5]. It has been shown that
single-shot GoyW, corrections applied to DFT electronic
structures improve the band gaps [6-8]. However, the out-
come of this approach strongly depends on the starting
point, i.e., the exchange-correlation (xc) functional [9-11].
The starting-point dependency can be overcome by solving
Hedin’s equations self-consistently, as in the quasiparticle
self-consistent GW (QSGW) scheme developed by van Schilf-
gaarde et al. [12,13]. However, straight QSGW overestimates
the band gaps by 20% [12,14,15]. van Schilfgaarde, Kotani,
and Faleev argued that the electron-hole interaction included
in the polarizability through the vertex function should ad-
dress this issue [12,13]. Another drawback of QSGW is that it
yields absolute band positions that are too deep for delocalized
states and too shallow for localized states [14,16,17]. Thisis a
highly relevant issue as the band positions play a determining
role in photocatalysis, photovoltaics, and charge transport in
materials.

The electron-hole interaction has been a long-standing
problem in time-dependent density functional theory (TD-
DFT). This interaction gives rise to excitonic effects and is
therefore highly important in optical spectra [18,19]. Since
the random phase approximation (RPA) neglects these effects,
they have to be included via the xc kernel fix. [20]. The
development of such kernels is an actively progressing field
in which various approximations have been proposed [19,20].
The simplest one is the adiabatic local-density approximation
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(ALDA) [18]. It has been shown that ALDA vertex correc-
tions in GW calculations shift the absolute quasiparticle (QP)
energies [21-23] but have very little effect on the band gaps
[24]. In fact, ALDA lacks the correct asymptotic long-range
(LR) behavior 1/¢>, which accounts for the electron-hole
interaction [24].

In order to account for this interaction, the nanoquanta
(NQ) kernel has been derived from the Bethe-Salpeter equa-
tion [25-27]. Notably, the NQ kernel has shown an excellent
accuracy and established the state of the art for describ-
ing excitonic effects in optical spectra. Shishkin et al. [15]
performed QSGW calculations with the NQ vertex in the
polarizability achieving significant improvements in the band
gaps and in the dielectric constants. However, the main draw-
back of the NQ kernel is its computational complexity, which
makes it only applicable to small systems. An approximated
xc kernel that is able to capture the excitonic effects has
been developed by Sharma et al. [28]. By adopting this so-
called bootstrap (Boot) approximation for the polarizability
vertex, Chen and Pasquarello yielded band gaps of similar
accuracy to NQ, but the ionization potentials (IPs) remained
strongly overestimated [14]. Moreover, the Boot vertex lacks
a formal derivation and has limited accuracy [28]. As Griineis
et al. showed, the consideration of the vertex function in the
self-energy brings the IPs much closer to experiment [16].
However, this improvement comes at the demanding cost of
including higher-order diagrams. Thus, it would be highly
desirable to achieve such improvements through the develop-
ment of accurate and reliable approximations for the vertex.

In the present Letter, we focus on efficient approximations
to the vertex function in the QSGW method and demonstrate
the potential of this approach. We represent the vertex func-
tion as a sum of a short-range and a long-range contribution.
Such a range separation yields a vertex satisfying the renor-
malization balance and can be approximated more efficiently.
Through the use of the Ward identity, we derive an expression
for the long-range xc kernel that respects the charge conserva-
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tion and construct vertex corrections that effectively account
for higher-order diagrams over the full spatial range. These
vertex corrections yield an excellent accuracy for the band
gaps and significantly improve the absolute band energies as
well as the dielectric constants. Most importantly, this accu-
racy is achieved at practically no extra computational cost
with respect to state-of-the-art QSGW .

In the many-body perturbation theory, the self-energy can
be defined as X = iGWT [5], where G is the Green’s function,
W the screened Coulomb potential, and I" the vertex func-
tion. The GW approximation neglects the vertex by taking
' =1 [5,7]. Despite the lack of vertex corrections, non-self-
consistent GoWp has been shown to give surprisingly good
results [6-8]. The success of this approximation has been
explained by the cancellation of the renormalization factor
Z [13]. A similar cancellation occurs in the self-consistent
QSGW approach. We can write the Green’s function as

1
T w—H— [-V* + Z(wo) + 2= NCE wo)] +i8’
ey
where Hj is a one-body Hamiltonian and V*¢ is the nonlocal
xc potential given by

1
V= 2 2 Re[E ()] + Re ()]} (Wl ()
ij

Considering that the noninteracting Green’s function is de-
fined as

1

GO:—.7
w— Hy+1id

(3)
we can rewrite the Green’s function as G = ZGy + G, where
the first term represents the renormalized QP Green’s func-
tion and the second term is an incoherent part neglected in
QSGW [13]. The renormalization factor Z accounts for the
redistribution of the spectral weight from the main QP peak
to the satellites and is given by Z = (1 — 82/3a))’1 [5,29].
Next, we use the fact that in the limit g — 0, @ — 0 the vertex
function I" becomes

r=1--—"—-="_. ()

This relation is an exact constraint enforcing the conservation
of the total charge and is known as the first Ward identity
[30,31]. Hence, the self-energy can be approximated as ¥ =
iGWT =~ iGyW, justifying the lack of self-consistency in the
Green’s function in QSGW [13]. Indeed, Kutepov confirmed
that the self-consistency in G and the vertex corrections in
% cancel out to a large extent [32,33]. Thus, the Z-factor
balance is essential for accurate calculations, and its violation,
asin ¥ =iGW orin ¥ = iGoWT, leads to an unsatisfactory
accuracy for the band gaps [15,16,32]. However, the Z-factor
cancellation was only demonstrated for the long-range limit
and the remaining contribution of the vertex does not cancel
out. Thus, we argue that within the QSGW approach the
long-range part of the vertex can be neglected in ¥ while
the short-range part has to be included to improve the QP
energies.

The vertex function I" is highly nonlocal and even its first
nontrivial term has a dependency on three spatial coordinates,

making it extremely difficult to calculate explicitly. However,
in the polarizability this three-point dependent contribution
cancels out, which means that the vertex can be well described
by an efficient two-point kernel fx. [9]. The vertex corrections

are included in the reducible polarizability ¥ through the
Dyson equation as

X =X+ XfxeX- &)
The corresponding dielectric function is found through
Fl=1+07, 6)

and then used for screening the Coulomb interaction W =
€~ 'v. This approach is referred to as the test charge—test
charge screening [34], hereafter denoted as QSGW.

Let us assume that such an efficient two-point vertex can
be expressed as the sum of a short-range and a long-range
contribution:

fre = iR+ f3R (7

As discussed above, the Z-factor balance is required for the
charge conservation, hence we need to ensure this condition in
our scheme. Since the vertex is related to the xc kernel through
I' =1+ fiex [9] and goes as 1/Z in the long-range limit [cf.
Eq. (4)], the self-energy with the two-point vertex corrections
reads

% =iZGo(l + fieOW =iZGo(1 + fi % + [} %)W
=iGo(1 + ZfXX)W. (8)
In a more compact notation, the self-energy is given by
X =iGee v, )
where ! includes the terms up to linear order:
Tl =14+vg +Zf3R5. (10)

In Eq. (9), the long-range contribution to the vertex is canceled
out and Zf35R is the remaining part of the vertex in the short
range, renormalized by Z. This renormalization of the vertex
in the self-energy has hitherto not been considered.

Considering the formidable computational cost associated
with the diagrammatic vertex corrections, a better approach
for including higher-order effects in the long range is required.
However, the computationally more efficient Boot approxi-
mation is based on an empirical formula and, as we show
below, has a limited accuracy, especially for large-gap semi-
conductors. At variance, in the limit of small momenta, the
Ward identity provides an exact relation between the renor-
malization factor Z and the vertex function. The two-point
vertex is connected to the xc kernel through the noninteracting
polarizability xo [24],

F'=(— fiexo) (11)

Since the “head” terms of the matrices xo and fx. become

dominant in the long-range limit, we can approximate them

as scalar functions of momenta [36]. Thus, we use the Ward

identity to derive a static xc kernel in the long-range limit,
R_1-Z

S = ) (12)
xP
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FIG. 1. Results of the QSGW calculations with various vertex corrections. The corresponding mean absolute errors (MAEs) are given
in the legends (energies in eV). In (a) and (c), the band gaps and the dielectric constants are plotted on a logarithmic scale. Zero-point
electron-phonon renormalizations are taken into account by modifying the experimental values [35]. In (b), the first ionization potentials
obtained with Perdew-Burke-Ernzerhof (PBE) and GWT are taken from Ref. [16]. The IPs are calculated as QP shifts added to the PBE values
from Ref. [16]. We take the average value for the experimental IP when multiple references are available. In (c), the dielectric constants are
obtained from the dielectric function defined in Eq. (6), which includes the vertex corrections.

where the superscript 00 denotes the head of the matrix.
In the long-range limit, this kernel yields a vertex function
that reproduces the effect of higher-order diagrams, respects
charge conservation, and involves no extra cost compared
to the RPA approximation. In the following, we denote this
vertex function LR.

In order to assess the performance of the proposed ap-
proach, we carry out QSGW calculations with the LR, Boot,
and NQ vertex approximations. The calculations are per-
formed for a set of semiconductors and insulators with a
modified version of the code VASP [37,38] [cf. Supplemental
Material (SM) [35]]. The wave functions are represented in a
plane-wave basis and the ionic potential is described by the
projector augmented-wave (PAW) approach [39].

In this Letter we focus on solids, but our derivation does
not rely on properties specific to solids and should thus apply
more generally. In the QP calculations, the renormalization Z
in the vertex is taken from the valence band maximum (VBM)
at the I point, which corresponds to the limit ¢ — 0, v —
0. The values of Z are updated self-consistently with QSGW
iterations starting from 0.8. This starting point is found to be
close to the converged values and to those reported for the
homogeneous electron gas [40,41].

The band gaps obtained with the various considered meth-
ods are shown in Fig. 1(a). The lack of the long-range vertex
in QSGW leads to a strong overestimation of the band gaps.
The LR and NQ vertices show a high accuracy with MAEs as
low as 0.2 and 0.1 eV, respectively. The band gaps calculated
with NQ agree with the results of Refs. [15,16]. The Boot
approximation also corrects the band gaps, but it is compu-
tationally more expensive than the LR vertex as it uses an
inner self-consistent loop for the vertex calculation [14]. The
accuracy of the LR vertex further supports that a long-range

L161

behavior compliant with the first Ward identity is critical for
correctly reproducing the band gaps.

As discussed above, the vertex in the self-energy does not
have a major effect on the calculated band gaps, but is essen-
tial for obtaining accurate QP energies [21]. In the spirit of the
proposed range separation, we combine our exact long-range
correction with the ALDA approximation in the short-range
through a Gaussian function:

1-Z _.
(k) — Te_k /k%F _i_f)l_,DA(l _ e_kz/k%F)_

c
0

LR+LDA

fxe (13)

Here, k is equal to |q + G|, G are reciprocal lattice vectors,
and the wave vectors q belong to the first Brillouin zone. In
this kernel, the range separation is determined by the Thomas-
Fermi wave vector kg, which is a characteristic screening
length of the Coulomb interaction commonly used for de-
scribing the spatial variation of the dielectric function [42,43].
Such a simple form for the proposed vertex function can
be extended to explicitly account for dynamical effects and
allows for the generalization to anisotropic systems, provided
the screening length and the long-range limits are properly
adjusted.

In the self-energy, the LR term of the kernel cancels out, as
shown in Eq. (9), leaving only the ALDA contribution. In this
case, the self-energy reads

T =iGo(l +v¥ + ZfPM % )v. (14)
The approach in which the vertex is included in both x and
¥ is denoted QSGW . The details of the implementation are
given in the SM [35].

This approach shows an improvement for the band gaps
leading to the same accuracy as the NQ vertex corrections,
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TABLE I. Mean position (in eV) of the semicore d states at the
I point with respect to the VBM. The QSGW ™R and QSGW results
are compared to the diagrammatic GWT" [16]. The calculated values
are corrected to account for the effect of norm conservation (cf. SM
[35]). Experimental values are taken from Ref. [16].

GWr* QSGW'™* QSGW Expt.
ZnO 7.10 7.02 7.11 7.50
ZnS 8.40 7.95 8.08 9.00
ZnSe 8.60 8.29 8.42 9.20
Cds 9.50 9.15 9.41 9.50
CdSe 9.70 9.35 9.56 10.04
GaN 17.00 16.79 17.32 17.00
GaP 18.30 18.03 18.43 18.55
GaAs 18.50 18.10 18.50 18.80
InP 16.90 16.38 16.64 16.80
MAE 0.29 0.59 0.40

2From Ref. [16].

as shown in Fig. 1(a). Since the vertex corrections play an
important role in the absolute QP energies, we also analyze
their effect on the ionization potentials (IP). In Fig. 1(b), the
IPs calculated with vertex corrections for various semicon-
ductor surfaces are provided [44]. Without vertex corrections,
QSGW strongly overestimates the IPs (MAE 0.64 eV) in
accord with the results of Refs. [14,16]. Although the LR
vertex corrections in the polarizability improve the band gaps,
they barely affect the absolute band energies (MAE 0.51 eV).
When the ALDA vertex is additionally applied to the self-
energy, as implemented in the QSGW scheme, the local
screening increases and the valence band maxima shift up-
wards by ~1 eV on average. This results in a MAE of 0.30 eV,
which is comparable to the accuracy of self-consistent di-
agrammatic GWT' [16] (MAE 0.36 eV). We remark that
disregarding the renormalization in the short-range vertex of
Eq. (14) leads to a downward shift of all the calculated IPs
by about 0.2 eV, thereby strongly deteriorating the agreement
with experiment. Thus, our results indicate that a high level of
accuracy can be attained for both the band gaps and the IPs
through the use of an efficient two-point vertex function that
satisfies the Z-factor balance.

The considered methods can be further evaluated through
their performance in describing the dielectric constants. It is
known that the dielectric constants in the RPA are strongly un-
derestimated (~20%) and that the electron-hole interaction in
the polarizability reduces the error significantly [14,15,45,46].
The effect of the vertex corrections on the dielectric con-
stants is shown in Fig. 1(c). Indeed, the presence of the Boot
vertex in x reduces the error by a factor of 2 resulting in
a MAE of 0.55 for QSGW B, However, the calculated di-
electric constants are still underestimated compared to both
the experimental values and the QSGWNQ results. The LR
vertex in QSGW™R shows an improved accuracy compared

to the Boot approximation with a MAE of 0.37 eV. Notably, a
further improvement is achieved in QSGW, where the short-
range vertex in the polarizability enhances the local screening
[21], and the dielectric constants are obtained with a MAE
of 0.16 eV. However, such a treatment of the local screening
leads to a slight overestimation of the dielectric constants in
small-gap semiconductors.

Next, we evaluate the effect of the vertex corrections on
localized d states. Table I shows the mean positions of the
semicore d bands of (post)transition metals calculated with
various vertex corrections. In QSGW™R, the lack of vertex in
the self-energy leads to the underestimation of the binding
energies of the d states. Indeed, the inclusion of the vertex
in the self-energy in QSGW shifts the d bands downwards in
energy improving the agreement with experiment and making
this scheme almost as accurate as GWI". Hence, we conclude
that QSGW improves the energies of both localized and delo-
calized states.

The overall accuracy of the proposed QSGW approach
essentially matches that of self-consistent GW with second-
order diagrams for all properties considered [16]. It is
important to emphasize that diagrammatic approaches are
limited to small systems as their complexity increases dra-
matically with the order of included diagrams, whereas the
present approximation does not add any extra cost to the
calculations. Moreover, the proposed kernel accounts for the
exact long-range asymptotic behavior and for all the local
interactions through the ALDA term. Considering the success
of the proposed scheme, we conclude that an approach in
which higher-order terms are approximated through nondia-
grammatic schemes with Z-factor balance provides a reliable
alternative for achieving highly accurate electronic properties
of solids.

In conclusion, we have developed a self-consistent QSGW
approach that extends beyond GW by using a range-separated
vertex function that satisfies the Z-factor balance. We have
derived the xc kernel compliant with the Ward identity in the
long-range limit and proposed an approximated vertex func-
tion that spans the full spatial range. As a result, this vertex
dramatically improves the quasiparticle energies of localized
and delocalized states as well as the dielectric constants. Most
importantly, the proposed approach achieves an accuracy sim-
ilar to high-level diagrammatic GW at the same cost as regular
RPA calculations.

The structures and the input files used for the calcula-
tions are freely available on the Materials Cloud platform,
see Ref. [47].
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