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Abstract

Electronic-structure calculations based on hybrid functionals have emerged as a standard

technique used in physics, chemistry, and material science. Despite this success, hybrid

functionals have the drawback of containing undetermined parameters. To overcome this de-

ficiency, two different nonempirical determination schemes are being investigated at present,

namely dielectric-dependent hybrid (DDH) functionals and hybrid functionals that satisfy

Koopmans’ condition. This thesis is dedicated to the examination and further development of

these approaches. In particular, we show that a precise description of band gaps in condensed-

matter systems can be achieved with these functionals. Moreover, we demonstrate that their

accuracy is comparable to state-of-the-art GW methods while requiring substantially lower

computational cost.

First, we focus on the development of hybrid functionals satisfying Koopmans’ condition. We

show that the construction of those functionals can be optimized through suitably defined

potential probes. By monitoring the delocalized screening charge, we achieve a measure of

the degree of hybridization with the band states, which can be used to improve the band-gap

estimate. We show that the application of this methodology to common semiconducting and

insulating materials yields band gaps differing by less than 0.2 eV from experiment. These

conceptual developments are an important step towards establishing hybrid functionals

satisfying Koopmans’ condition as a robust approach for band-gap predictions.

Second, we examine DDH functionals and hybrid functionals satisfying Koopmans’ condition

for band gaps of more sophisticated materials. In particular, we focus on inorganic metal-

halide perovskites which have recently drawn great scientific attention. For this class of

materials, we show that both nonempirical hybrid-functional schemes yield band gaps of

comparable accuracy (∼0.2 eV) with respect to GW reference calculations. Furthermore, we

discuss the suitability of nonempirical hybrid-functional schemes for the application to the

screening of large sets of perovskite materials.

Third, we investigate the fundamental band gap of liquid water and hexagonal ice. These

materials are particularly challenging since experimental studies have not reached a consensus

on the band gap yet. Therefore, we first deduce robust benchmarks on the basis of a critical

review of various experimental studies in the literature. Then, we compute the band gap

through state-of-the-art GW methods as well as nonempirical hybrid functionals. We show

i



Abstract

that theoretical calculations and experimental references are in good agreement with each

other and we discuss critical aspects which are essential to ensure a consistent description of

the band gap.

Finally, we investigate band-edge levels as obtained with hybrid-functional calculations. The

CaF2/Si(111) interface serves thereby as an ideal test case to examine the accuracy of different

theoretical schemes. The comparison with experiment reveals that global hybrid functionals

and self-consistent GW methods provide the most accurate description of the interfacial band

alignment.

Keywords: Nonempirical hybrid functionals, GW approximation, dielectric response, Koop-

mans’ condition, point defects, band gap, band edges
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Zusammenfassung

Berechnungen der elektronischen Struktur von Materialien auf Basis von Hybrid-Funktionalen

haben sich zu einer weit verbreiteten Technik entwickelt, die sowohl in Physik, Chemie als

auch in der Materialwissenschaft Anwendung findet. Trotz dieses Erfolges besitzen Hybrid-

Funktionale den Nachteil, dass sie unbestimmte Parameter beinhalten. Um diesen Mangel

zu überwinden, werden derzeit zwei verschiedene nicht-empirische Bestimmungsschemata

untersucht, nämlich dielektrisch-abhängige Hybrid-Funktionale [engl. dielectric-depedent

hybrid (DDH) functionals] und Hybrid-Funktionale, welche die Koopmans-Bedingung er-

füllen. Die vorliegende Doktorarbeit widmet sich der Evaluierung und Weiterentwicklung

dieser Methoden. Insbesondere zeigen wir, dass eine präzise Beschreibung der Bandlücke von

Systemen kondensierter Materie erreicht werden kann. Außerdem demonstrieren wir, dass

diese Funktionale die Genauigkeit von hoch entwickelten GW -Methoden erreichen, dafür

jedoch nur einen Bruchteil des numerischen Aufwands bedürfen.

Zunächst konzentrieren wir uns auf die Weiterentwicklung von Hybrid-Funktionalen, wel-

che Koopmans-Bedingung erfüllen. Wir zeigen, dass die Konstruktion dieser Funktionale

mittels geeignet definierter Defekte optimiert werden kann. Durch die Überwachung der

delokalisierten Abschirm-Ladung entwickeln wir ein Maß für den Hybridisierungsgrad mit

den Bandkanten, welches verwendet werden kann, um die Bandlücke genauer zu berech-

nen. Wir demonstrieren, dass die Anwendung dieser Methodik für übliche halbleitende und

isolierende Materialien Bandlücken ergibt, die sich vom Experiment um weniger als 0.2 eV un-

terscheiden. Diese konzeptionellen Entwicklungen representieren einen wichtigen Schritt zur

Etablierung von nicht-empirischen Hybrid-Funktionalen als robuste Methode für Bandlücken-

Berechnungen.

Anschließend untersuchen wir DDH-Funktionale und Hybrid-Funktionale, welche Koopmans-

Bedingung erfüllen, für Bandlücken von anspruchsvolleren Materialien. Insbesondere kon-

zentrieren wir uns auf anorganische Metall-Halogen-Perowskite, die kürzlich große wissen-

schaftliche Aufmerksamkeit erregt haben. Für diese Materialklasse zeigen wir, dass beide

nicht-empirischen Schemata Bandlücken von vergleichbarer Genauigkeit (∼0.2 eV) ergeben,

wenn GW -Methoden als Referenz herangezogen werden. Darüber hinaus diskutieren wir die

Eignung der vorliegenden Funktionale für die Analyse einer großen Anzahl von Perowskit-

Materialien.
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Drittens untersuchen wir die Bandlücke von flüssigem Wasser und hexagonalem Eis. Diese

Materialien sind besonders herausfordernd, da experimentelle Studien noch keinen Konsens

über die Bandlücke erzielt haben. Daher leiten wir zunächst robuste Referenzwerte auf Grund-

lage einer kritischen Überprüfung verschiedener experimenteller Studien her. Anschließend

berechnen wir die Bandlücke mit modernsten GW -Methoden sowie mit nicht-empirischen

Hybrid-Funktionalen. Wir zeigen, dass theoretische Berechnungen und experimentelle Refe-

renzen gut miteinander übereinstimmen, und diskutieren kritische Aspekte, die wesentlich

sind, um eine konsistente Beschreibung der Bandlücke zu gewährleisten.

Zuletzt untersuchen die Vorhersage von Bandkanten, wie sie mit Hilfe von Hybrid-Funktionalen

erhalten werden. Die CaF2/Si(111)-Grenzfläche dient dabei als idealer Testgegenstand, um

die Genauigkeit verschiedener theoretischer Schemata zu evaluieren. Der Vergleich mit dem

Experiment zeigt, dass globale Hybrid-Funktionale und selbstkonsistente GW -Methoden die

genaueste Beschreibung der Bandkanten ermöglicht.

Schlüsselwörter: Nicht-empirische Hybrid-Functionale, GW Approximation, Dielektrische

Funtion, Koopmans-Bedingung, Punktdefekt, Bandlücke, Bandkante
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1 Introduction

1.1 Electronic-structure calculations

The electronic structure is among the most relevant physical properties of each material.

Indeed, the interaction of electrons with each other and with different particles (such as nuclei,

photons, etc.) entirely characterizes a material at the microscopic level. Therefore, various

material properties can be subsequently determined based on the knowledge of the electronic

structure. Moreover, the mathematical description of the electrons is given by the fundamental

equations of quantum mechanics. As a consequence, the electronic structure (and thus many

deduced properties) can in principle be determined relying only on quantum mechanics

and a few physical constants. The prediction of materials based only on these first principles

of nature has inevitably stimulated great scientific effort. Interestingly, these developments

encompass various scientific disciplines such as physics, chemistry, biology, and material

science. Thus, electronic-structure theory exhibits generally a great interdisciplinary character.

However, the computation of the electronic structure is not a trivial task. It is therefore not

surprising, that a large variety of computational methods have been developed within the

last century. Early approaches have been invented simultaneously to the development of

quantum mechanics in the beginning of the 20th century. Indeed, the prominent Hartree-Fock

(HF) [1, 2] and Thomas-Fermi (TF) [3] theories date back almost one hundred years. The

predictive power of these schemes remained however limited due to the lack of computational

ressources and to the approximations involved.

A major breakthrough has been achieved with the advent of density-functional theory (DFT) in

the 1960s [4]. The central idea of this method is to describe the electronic structure using a sim-

ple quantity: the electron density. Based on this approach, DFT enabled electronic-structure

calculations with reasonable accuracy at low computational cost. Due to this promising com-

bination, DFT has developed into the most widely used techniques for electronic-structure

calculations. A simple way to quantify this development, is the number of scientific articles

which employ DFT as shown in Fig. 1.1. Starting with not even hundred per year in the 1980s,

the use of DFT has grown almost exponentially, resulting in more than ten thousand articles
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Chapter 1. Introduction

within the last years. The enormous success of DFT is also reflected in the fact that Walter

Kohn, one of the founders of DFT, received the Nobel prize in 1998.

Figure 1.1 – Number of papers per year when DFT is searched as a topic in the Web of Knowl-
edge.

Nevertheless, local and semilocal density functionals such as the widely used Perdew-Burke-

Ernzerhof (PBE) functional [5] suffer from important deficiencies. While the prediction of

ground-state properties (such as total energies, electron densities, lattice constants and com-

pressibilities) are already reasonably accurate, the description of the excited-state properties

remains still unsatisfactory [6]. In particular, the prediction of band gaps indicates generally a

severe underestimation by up to 50 %. For some narrow-gap semiconductors, such as Ge or

InN, this can lead to an even qualitatively wrong metallic character [7]. As a consequence of

the band-gap underestimation, also the computation of defect levels as well as of interfacial

band offsets suffers tremendously [8]. These limitations of local and semilocal DFT have led

to an extensive search for more advanced electronic-structure methods.

The generally accepted approach to overcome the band-gap underestimation consists in

many-body perturbation theory (MBPT). This highly sophisticated scheme relies on a set

of equations proposed by Hedin in 1965, together with the so called GW approximation to

them [9]. Based on this theoretical foundation, various flavours of GW methods have been

developed in the last decades. The earliest GW calculations in the 1960s and 1970s remained

limited to the electron gas as a model system [10]. The first applications to semiconductors

have been presented in the 1980s by Hybertsen and Louie [11, 12] as well as by Godby and

coworkers [13]. In this approach, the underestimated band gaps as obtained with (semi)local

DFT are corrected in a perturbative fashion resulting in a better agreement with respect to

the experimental references. In the 2000s, this one-shot procedure has been conceptually

expanded to self-consistent GW calculations [14, 15, 16]. More recently, the incorporation of

vertex corrections [17, 18] has led to advanced GW approaches with a even higher predictive

power. It is noteworthy, that the improved description of the electronic structure is not limited

to the band gap. Indeed, also defect levels [19, 20], ionization potentials [18], and band offsets

[21] have been predicted with a remarkable accuracy.

2



1.2. Parameter dependence of hybrid functionals

The main drawback of GW methods are their high computational cost with respect to DFT

calculations. Despite, implementations with increasing efficiency [22] and various numer-

ical techniques [23], the application of GW calculations remained limited to rather small

molecules or crystals with small unit cells. Moreover, a practical GW based scheme to perform

structural relaxations is still missing. Therefore, it was (and still remains) highly desirable to

develop alternative computational schemes yielding the same accuracy as self-consistent GW

methods but requiring a lower computational cost.

Hybrid functionals have the potential to fill this gap. These functionals aim at combining the

advantages of Hartree-Fock (HF) theory with those of DFT [24]. Indeed, the former provides

an exact treatment of exchange and the latter enables an efficient computation of correla-

tion effects [24]. An early approach to unify both aspects has been proposed by Kleinman

and Bylander in 1990 [25]. This method, later termed as sX-LDA [26], yields an improved

description of band gaps with respect to semilocal functionals [7]. In a different context,

also Becke proposed a combined approach in 1993 [24]. Based on the adiabatic connection

formula and adopting a linear interpolation, Becke invented the so called half-and-half hybrid

functional [24]. The name refers thereby to the 50% : 50% mixing ratio between semilocal

and Fock exchange. Following Becke’s pioneering work, numerous hybrid functionals have

been proposed in the literature. In chemistry, hybrid-functional calculations have been used

regularly since the 1990s. In particular, the most popular B3LYP functional [27, 24] has been

adopted in numerous studies for the computation of molecular properties. Instead, the appli-

cation of hybrid functionals in condensed-matter physics has been hampered notably. The

origin of this delay is the substantial increase in computational cost of hybrid functionals

when adopting plane-wave basis sets. Therefore, semilocal functionals provided for long

time a more appropriate combination of accuracy and computational burden. However, in

the last decades several methodological advances [28, 29, 30] drastically reduced the cost of

hybrid-functional calculations for periodic systems. As a consequence, hybrid functionals

have been used intensively for the modelling of phenomena in solid-state physics.

1.2 Parameter dependence of hybrid functionals

Among the most popular hybrid functional used for extended condensed matter systems

is the PBE0 functional [31]. This functional is deduced from the semilocal PBE functional

by replacing a fraction α of the semilocal exchange with nonlocal Fock exchange. As a gen-

eralization of PBE0, one could consider the hybrid functional proposed by Heyd, Scuseria,

and Ernzerhof (HSE) [32, 33]. This functional additionally incorporates a range-separation

length by which Fock exchange is treated explicitly only at short-range distances whereas the

semilocal expression is adopted in the long range. Recently, as previously done by Yanai et al.

[34] for the B3LYP functional, the expression of this hybrid functional has been extended to

allow for distinct fractions of Fock exchange to be admixed at short and long range through

the incorporation of yet another parameter [35]. The rationale behind this decomposition is

that spatial variations in the screening might be better accounted for in this way.

3



Chapter 1. Introduction

Intuitively, the question raises how to fix the undetermined parameters incorporated in hybrid

functionals. Early strategies in searching for the optimal parameter focused on the validation

against experimental data sets [7]. More specifically, the mean absolute error in the prediction

of particular properties is minimized when considering large sets of materials. For the case of

the PBE0 functional, this has led to a default fraction of Fock exchange of 0.25 on the basis

of energetic considerations for molecular systems [31]. However, this way of proceeding

yields accurate results only “on average”, whereas for specific cases significant deviations

can be observed. Moreover, an arbitrariness arises due to the selective choice of the dataset

and the properties against which the parameters are fitted [7]. In this perspective, default

hybrid-functional parameters represent only an educated guess rather than a general solution.

Another aspect of the parameter dependence of hybrid functionals is the fact, that the incorpo-

rated parameters should depend on the system under consideration. Indeed, the optimal ratio

between semilocal and Fock exchange is apparently different for a narrow-gap semiconductor

and a wide-gap insulator. Therefore, a uniquely defined set of parameters for all materials

is not achievable. Nevertheless, the system dependence of the optimal parameters provides

clear advantages for the practical application of hybrid functionals.

In the study of solids, hybrid functionals are particularly appreciated for the capability of

reproducing the experimental band gap [8]. In particular when considering defect levels,

this aspect is crucial to avoid ambiguities in the comparison of theory and experiment. To

achieve this goal, the free parameters are commonly adjusted empirically in order to produce a

calculated band gap that corresponds to the experimental one [36]. Here, one takes advantage

of the dependence of the band gap on the hybrid-functional parameter. For the case of the

PBE0 functional, this is shown in Fig. 1.2 for typical materials investigated in this thesis.

Figure 1.2 – Linear dependence of the theoretical band gap on the fraction of Fock exchange α
incorporated in the PBE0(α) functional for several materials investigated in this thesis.

For each specific material an optimal fraction of Fock exchange can be determined in case

the experimental band gap is known. This specific empirical choice appears to offer also the

additional benefit that calculated band offsets at interfaces [8, 21] and ionization potentials at

4



1.3. Nonempirical hybrid functionals

surfaces [18] are in good agreement with their experimental counterparts. Furthermore, total-

energy differences [8] and basic structural properties [37] generally do not depend strongly on

the amount of Fock exchange. However, setting the functional parameters in an empirical way

remains unsatisfactory from a conceptual point of view.

1.3 Nonempirical hybrid functionals

To overcome this drawback, considerable scientific effort has been devoted to the development

of nonempirical and still system-dependent definitions of the hybrid-functional parameters.

A promising strategy is the consideration of exact physical constraints which are not a priori

fulfilled by the approximate functional. The hybrid functional is then denoted as nonempirical,

if the free parameters are fixed in such a way that the exact condition is fulfilled or at least

residual deviations are minimized. At present, two main branches of development can be

identified, namely dielectric-dependent hybrid (DDH) functionals [38, 39, 40, 41, 42, 43, 44,

45, 35, 46, 47] and hybrid functionals enforcing Koopmans’ condition [48, 49, 50, 51, 52, 53, 54,

55]. Both approaches exhibit great potential due to their promising combination of accuracy

and computational cost.

In the DDH approach, the dielectric response of the considered material is used to determine

the free hybrid-functional parameters. In particular, the inverse high-frequency dielectric con-

stant 1/ε∞ has shown to be in close relation with the incorporated amount of Fock exchange

[36, 41]. From a conceptual perspective, this connection corresponds to enforcement of the

asymptotically correct Kohn-Sham potential [56] within the approximate hybrid functional.

Through adopting this exact property, one can determine one hybrid-functional parameter for

each investigated material and without resorting to an empirical adjustment. The application

of this basic idea has stimulated the development of various DDH schemes within the last

decade. These approaches differ mostly in technical aspects such as global [36, 41, 43] or

range-separated functional form [35, 57, 47], one-shot [41, 58] or self-consistent workflow

[39, 43, 44], as well as the spatial variability of the DDH functionals [59]. The most elaborate

schemes represent the recently developed DD-RSH of Skone et al. [35], DD-RSH-CAM of

Chen et al. [47], and DSH of Cui et al. [57]. In practice, these schemes have shown to provide

an accurate description of band gaps and dielectric constants for a variety of organic and

inorganic crystals [35, 47, 57]. Furthermore, specific DDH functionals have been successfully

applied to polaronic distortions [45], aqueous solutions [60, 61], and heterogeneous systems

[59].

The second category of nonempirical hybrid functionals particularly focuses on the enforce-

ment of Koopmans’ condition. This constraint represents a property of the exact density

functional and states that a single-particle energy level does not change upon electron occu-

pation. Interestingly, this property can be equivalently expressed as the piecewise linearity of

the total energy as a function of fractional electron number [62, 63]. In the same perspective,

Koopmans’ condition can be related to a variety of other theoretical concepts such as the so

5



Chapter 1. Introduction

called IP theorem [62, 64] or the many-electron self-interaction error [62, 63]. However, in

practice it turned out that most of the commonly used electronic-structure methods do not

fulfil Koopmans’ condition (and thus the equivalent exact constraint) [65]. In order to over-

come this deficiency, considerable efforts have been devoted to enforce these exact conditions

within a hybrid-functional framework [66, 67, 42, 68, 48, 49, 51, 52, 69, 50, 53, 55]. The first

successful applications of this idea have been reported for finite systems (such as atoms and

molecules). Indeed, for such systems an improved description of the band gaps, the ionisation

potential and the spectra of excited states has been achieved [66, 67, 42, 65]. The application of

the same concept to infinite systems (such as solids) has been shown to be more challenging

because of the fact that a localized state is necessary while band edges of solids are usually

delocalized. This drawback has been overcome, for instance, through the analysis of localized

defect states [68, 48, 49, 51, 50, 53, 55].

Overall, the nonempirical construction of hybrid functionals has become a widely used tech-

nique in numerous scientific studies. Either by means of the dielectric response or through

the enforcement of Koopmans’ condition, the unsatisfactory parameter dependence of hybrid

functionals can be circumvented without relying on empirical adjustments. Therefore, such

functionals exhibit great potential to overcome the limitations of semilocal DFT in a fully

nonempirical fashion. Even more, their moderate computational cost makes them a valu-

able alternative to highly demanding GW calculations. However, a variety of open questions

remain to be answered before nonempirical hybrid functionals will have achieved this goal.

1.4 Objectives

In this thesis, we set out to explore various routes for improving electronic-structure calcula-

tions by focusing on nonempirical hybrid functionals. In particular, we are interested to what

extent an accurate description of band gaps and band-edge levels can be achieved through

these functionals. We specifically ask the questions: Which nonempirical hybrid functional is

going to perform best? Is the obtained accuracy dependent on the investigated material? So

far, these questions have been addressed only separately for DDH functionals [41, 43, 35, 47,

57] and hybrid functionals satisfying Koopmans’ condition [42, 51]. A comparative study of

both approaches has only been reported for the case of alkali halides in Ref. [51]. Therefore,

it is our goal to examine both schemes in a systematic fashion for a more extended set of

materials.

In order to ensure the overall consistency among electronic-structure methods, we address

this problem also from the side of many-body perturbation theory. Here, it is our special

interest to confront nonempirical hybrid functionals with state-of-the-art GW calculations.

Are these functionals indeed able to compete with the most sophisticated GW techniques?

And if not, which further developments are necessary to achieve this goal?

Additionally, we want to address the possible benefits due to different classes of hybrid func-

tionals. This comprises both global as well as range-separated hybrid functionals. For the
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former, we generally consider the widely used PBE0(α) functional [31]. For the latter, we adopt

the so called CAM(αs,α`,µ) functional [70] which provides a substantial amount of flexibility

due to the three incorporated parameters. Are both functional forms adequate for the con-

struction of nonempirical hybrid functionals? Which accuracy can be achieved in each case?

It is noteworthy that for DDH functionals it has already been shown, that the range-separated

form enables more accurate band-gap predictions than the global one [35, 47]. For hybrid

functionals satisfying Koopmans’ condition, it is not clear to what extent the same statement

holds [51, 55]. Therefore, we systematically apply the two nonempirical construction schemes

to both global and range-separated hybrid functionals and evaluate the obtained accuracy in

each case.

Another very interesting question concerns the possibility of combining both nonempirical

schemes. So far, hybrid functionals determined by the dielectric response and those enforcing

Koopmans’ condition have been treated as distinct techniques. However, a few studies in the

literature have already implied a combination of both approaches [71, 51]. It is our interest, to

continue these promising results and to investigate to what extent a hybrid functional can be

constructed that enforces both the correct long-range screening and Koopmans’ condition.

Are both nonempirical schemes compatible with each other? Are the underlying exact physical

constraints equivalent?

Finally, we want to remark that both nonempirical hybrid-functional schemes exhibit a dif-

ferent level of conceptual development. Indeed, DDH functionals are already an established

technique for band-gap predictions [43, 35, 47, 57]. In contrast, hybrid functionals satisfying

Koopmans’ condition have not yet reached such an elaborated stage. Most studies have ap-

plied these functionals for the investigation of specific defects such as polaronic distortions

[48, 51, 50, 53]. The application of hybrid functionals satisfying Koopmans’ condition as a

predictive tool for band-gap calculations has been proposed just recently by Miceli et al. [51].

Therefore, open questions have to be answered before these functionals can be applied in a

systematic way. Which defect should be used for the enforcement of Koopmans’ condition?

Are all defects equivalent for this purpose? Is there maybe an optimal defect applicable to

every material? We set out, to address these questions in a comprehensive way. This allows

us to establish hybrid functionals satisfying Koopmans’ condition as an accurate method for

band-gap calculations and thus to perform a meaningful comparison with DDH functionals.

1.5 Organization of the thesis

This thesis is organized as follows.

In Chapter 2, we describe the theoretical background of the electronic-structure methods

adopted in this thesis. This comprises DFT in semilocal and hybrid-functional formulations

as well as many-body perturbation theory in the GW approximation. In addition, we describe

computational aspects and practical implementations of these methods. Finally, we devote

special attention to finite-size corrections for charged defects and to the computation of
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Chapter 1. Introduction

the dielectric function since these computational methods are of great importance for the

construction of nonempirical hybrid functionals.

In Chapter 3, we introduce the construction schemes for nonempirical hybrid functionals

adopted in this thesis. First, we address dielectric-dependent hybrid functionals. We de-

scribe the relationship between the dielectric function and the amount of incorporated Fock

exchange and show how this connection can be used to determine free hybrid-functional

parameters in a nonempirical manner. Second, we consider hybrid functionals which satisfy

Koopmans’ condition. We introduce Koopmans’ condition as an exact physical constraint and

describe it’s connection to equivalent theorems. Based on this conceptual preface, we then

describe the nonempirical construction of a hybrid functional based on single-particle energy

levels of localized states. For both schemes, we present related approaches in the literature

and discuss similarities and differences with the ones adopted in this thesis.

In Chapter 4, we present conceptual developments for hybrid functionals that satisfy Koop-

mans’ condition. More specifically, we introduce adjustable potential probes for determining

band gaps of extended systems. This allows us to study the band-gap prediction as the defect

level varies within the band gap. In particular, we examine the relation between the estimated

band gaps and the hybridization with the band-edge states, which we describe through the de-

localized screening charge in the simulation cell. We apply the proposed scheme to aluminium

phosphide (AlP), diamond (C) and magnesium oxide (MgO), which cover a large range of band

gaps and show both covalent and ionic bonding character. The accuracy of the band-gap

estimate corresponding to the lowest degree of hybridization is assessed and compared to

that achieved with point defects or with the interstitial hydrogen probe. We underline that the

concepts presented in this chapter are a crucial step to establish hybrid functionals satisfying

Koopmans’ condition as a serious alternative with respect to DDH functionals.

A systematic comparison between both nonempirical hybrid-functional schemes is presented

in Chapter 5. In particular, we evaluate the performance of various nonempirical hybrid

functionals for inorganic metal-halide perovskites. We consider the cubic phase of CsBX3

perovskites, where B represents Pb or Sn and X stands for Cl, Br, or I. These compounds

serve as a representative set of metal-halide perovskites and additionally show sufficiently

small unit cells to make high-level reference calculations affordable. The parameters in

the hybrid functionals constructed here are determined both through the static dielectric

response and through the enforcement of Koopmans’ condition. Our work carefully goes

through the construction process highlighting all critical issues encountered, thereby allowing

clear insight into the viability of the two approaches. To achieve reference band gaps, we

additionally perform state-of-the-art GW calculations within a consistent computational

set-up. The present analysis allows us to determine the accuracy of the investigated schemes

in a comparative fashion and to discuss their suitability for application to the screening of

large sets of perovskite materials.
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In Chapter 6, we calculate the fundamental band gap of liquid water and hexagonal ice

through several advanced electronic-structure methods. These comprise state-of-the-art

GW schemes as well as nonempirical hybrid functionals. In particular, we consider QSGW̃

calculations that account for vertex corrections in the screening and hybrid functionals in

which the free parameters are fixed either through the dielectric response of the material or

through enforcing Koopmans’ condition to localized states. Both nonempirical procedures

are applied to global and range-separated hybrid functionals. The evaluation of such a variety

of different approaches within a consistent computational setup allows us to achieve a robust

band-gap estimate and to overcome the spread of previous results in the literature. The

comparison with available experimental references confirms the validity of our results.

In Chapter 7, we determine band offsets at the CaF2/Si(111) interface using various advanced

electronic-structure schemes to examine their accuracy in comparison with the experimental

characterization. Our investigation includes both hybrid-functional and GW calculations.

In particular, we use both global and range-separated hybrid functionals and consider self-

consistency and vertex corrections in the GW calculations. Our study also encompasses the

effect of strain in the CaF2 overlayer to ensure that it does not affect the comparison with

experiment. In this way, we expect to be able to identify the most suitable theoretical approach

for the band alignment. We then address the variation of the band offset upon the occurrence

of extra fluorine at the interface.

We draw the conclusions of this thesis in Chapter 8.
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2 Theoretical background

In this chapter, we describe the theoretical background of the electronic-structure methods

adopted in this thesis. First, we present the quantum mechanical many-body problem for

interacting electron and nuclei together with the Born-Oppenheimer approximation. Then, we

introduce density functional theory (DFT) in local and semilocal approximations. The hybrid-

functional formulation of DFT is described subsequently. In the last part of this chapter,

we turn to many-body perturbation theory. In particular, we present Hedin’s equations,

the prominent GW approximation, and the widely used self-consistent GW schemes. In

addition to the theoretical concepts, we also describe computational aspects and practical

implementations of the adopted electronic-structure methods. Finally, we devote special

attention to finite-size corrections for charged defects and to the computation of the dielectric

function.
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Chapter 2. Theoretical background

2.1 Many-electron problem

Many-body Hamiltonian

Atoms, molecules, and solids represent quantum mechanical systems composed of interacting

electrons and nuclei. The Hamiltonian of such systems can be written in a non-relativistic

and spin-unpolarized form as [72]

Ĥtot = −∑
i

∇2
i

2︸ ︷︷ ︸
T̂e

− ∑
I

∇2
I

2MI︸ ︷︷ ︸
T̂N

+ 1

2

∑
i 6= j

1

|ri − r j |︸ ︷︷ ︸
V̂ee

+ 1

2

∑
I 6=J

ZI ZJ

|RI −RJ |︸ ︷︷ ︸
V̂NN

− ∑
i ,I

ZI

|ri −RI |︸ ︷︷ ︸
V̂eN

. (2.1)

Here, a formulation in Hartree atomic units (~= me = e = 1/(4πε0) = 1) is adopted. The proper-

ties of the electrons (coordinates ri ) and the nuclei (coordinates RI , masses MI , charges ZI )

are distinguished through lower and upper case letters, respectively. Every term of the Hamil-

tonian Ĥtot represents a part of the total energy, namely the kinetic energy of the electrons T̂e,

the kinetic energy of the nuclei T̂N, the potential energy of the electron-electron interaction

V̂ee, the potential energy of the nuclei-nuclei interaction V̂NN, and the potential energy of the

electron-nuclei interaction V̂eN. The ground-state energy E and the wave functionΨ of this

system are then determined by the time-independent Schrödinger equation

ĤtotΨ(r,R) = EΨ(r,R). (2.2)

Here, the wave functionΨ depends on the positions of the electrons r = {ri } and the nuclei

R = {RI }. With these equations, the physics of a quantum mechanical system composed of

interacting electrons and nuclei is in principle captured. However, obtaining solutions for sys-

tems of ∼1023 particles is practically impossible. Indeed, analytical solutions are only known

for very simple systems and direct calculations suffer from the enormous computational

burden. Therefore, reasonable approximations to this problem are needed.

Born-Oppenheimer approximation

The first simplification is the Born-Oppenheimer (BO) approximation [73], which uses the

fact that electrons and nuclei exhibit largely different masses. Indeed, the mass of a proton

is ∼1800 times larger than the mass of an electron. Therefore, it is justified to decouple the

description of both constituents. Mathematically, this corresponds to the development of a

perturbation series based on the small parameter 1/MI [74]. The many-body wave functionΨ

(and thus the Hilbert space) is then separated into an electronic and an ionic part. To simplify

the discussion, MI can be set to infinity thereby neglecting the kinetic energy of the nuclei T̂N.

Also the potential energy of the nuclei-nuclei interaction V̂NN can be disregarded. This term

represents only an additive constant to the total energy and is not relevant here since we are

only interested in the electronic states of the many-body problem. Overall, one can write the
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Hamiltonian of the electronic system as

Ĥ = T̂e + V̂ee + V̂eN. (2.3)

This Hamiltonian (and thus the wave functionΨ) still depends on the coordinates of the nuclei

R but only in a parametrical fashion. With the present approximations, one can reduce the

“many-body problem” to a (still challenging) “many-electron problem”. To tackle the latter,

different theoretical approaches have been developed which will be introduced in the next

section.

2.2 Density-functional theory

Electron density

Density-functional theory (DFT) is one of the most prominent approaches to tackle the

many-electron problem. As the name suggests, the electron density n(r) plays an important

role within DFT. This quantity is a scalar function of the position in space r and is therefore

much more tractable compared to the multi-dimensional many-electron wave functionΨ(r).

Moreover, the electron density for a system of N electrons can be deduced from the wave

function via [72]

n(r) = N
∫

|Ψ(r,r2, ...,rN )|2 dr2 ...drN . (2.4)

The normalization ofΨ ensures that n(r) integrates to the integer number of N electrons, i.e.∫
n(r)dr = N . (2.5)

Hohenberg-Kohn theorems

Based on this simple quantity, Hohenberg and Kohn laid the foundation for DFT in their pio-

neering work in 1964 [75]. The authors considered a system of electrons subject to an external

potential Ŵext. Analogous to Eq. (2.3), the Hamiltonian of this system can be formulated as

Ĥ = T̂e + V̂ee +Ŵext = T̂e + V̂ee +
∑

i
Vext(ri ). (2.6)

The external potential comprises the interaction of the electrons with the nuclei (V̂eN), electro-

magnetic fields, etc. and can be written in the identical functional form Vext(r) for all electrons.

For such an electronic system, Hohenberg and Kohn proved a twofold theorem. First, it was

shown that there is a one-to-one correspondence between the external potential Ŵext and

the ground-state electron density n(r). This bijection has far reaching consequences. In

particular, it guarantees that the expectation value of the electron kinetic energy T̂e and the

electron-electron interaction V̂ee on the ground-state wave function Ψ can be written as a

functional of the electron density. Moreover, also the total energy E of the ground state can be
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written as such a functional which represent the second part of the Hohenberg-Kohn (HK)

theorem. Mathematically, this can be expressed as [75]

E [n] = F HK[n]+
∫

Vext(r)n(r)dr, (2.7)

where F HK[n] is a universal functional of the density, independent of both the considered

system and the external potential. The HK theorems proof that this functional exists and that

it is uniquely defined. Moreover, the total-energy functional E [n] reaches it’s minimum at the

exact ground-state density with the exact ground-state energy [76]. These exciting properties

indicate a way to solve the many-electron problem using variational calculus, although the

HK functional itself is not explicitly known. It is noteworthy that the presented theorems can

be rigorously generalized for spin-polarized electronic systems.

Kohn-Sham equations

The minimization of the total-energy functional with respect to the electron density was

then performed by Kohn and Sham [4]. The authors used the assumption that the system of

interacting electrons can be substituted by an auxiliary system of non-interacting electrons

that yields the same ground-state density. Adopting orthonormal orbitals φi (r), one can then

write the ground-state density as

n(r) =∑
i
φ∗

i (r)φi (r). (2.8)

One can argue that this decomposition is in principle exact and unique for any well behaved

density n(r) [76]. Moreover, it allows one to write the kinetic energy of the non-interacting

electron system in a simple form as

T0[n] =∑
i
〈φi |− ∇2

2
|φi 〉. (2.9)

Also, the Hartree energy, which is the classical energy of the electron-electron interaction, can

be expressed with the orbital φi as

EH[n] = 1

2

∑
i , j

〈φiφ j | 1

|r− r′| |φiφ j 〉 = 1

2

Ï
n(r)n(r′)
|r− r′| drdr′. (2.10)

Assuming that the non-interacting electron system mimics the fully interacting one, the given

expressions for T0[n] and EH[n] can serve as reasonable approximations to Te[n] and Vee[n],

respectively. Adopting these simplifications, the HK functional can be recast to

F HK[n] = T0[n]+EH[n]+Exc[n]. (2.11)
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The last term in Eq. (2.11) represents the so-called exchange-correlation (xc) functional

Exc[n] = Te[n]−T0[n]+Vee[n]−EH[n]. (2.12)

In contrast to T0[n] and EH[n], this functional is not given through an explicit expression.

Indeed, it remains as an unknown term and can be interpreted as the error induced by

disregarding the full electron-electron interaction. Nevertheless, Exc[n] amounts only to a

minor contribution of the total energy insofar as the Hartree term has already been separated

out [72]. Therefore, the xc functional can be reasonably approximated in a local or semilocal

fashion as discussed at a later point in this section. The variational minimization of the total-

energy functional under the constraint of orthonormalized orbitals (〈φi |φ j 〉 = δi j ) leads to

the prominent Kohn-Sham (KS) equations [4]

[
− ∇2

2
+Vext(r)+VH(r)+Vxc(r)︸ ︷︷ ︸

Veff(r)

]
φi (r) = εiφi (r). (2.13)

Here, VH(r) represents the Hartree potential as obtained by the functional derivative of the

Hartree energy, which is given by

VH(r) = δEH[n]

δn(r)
=

∫
n(r′)
|r− r′| dr′ =∑

i
〈φi | 1

|r− r′| |φi 〉. (2.14)

Analogously, Vxc(r) denotes the xc potential derived from the xc functional

Vxc(r) = δExc[n]

δn(r)
. (2.15)

The sum over the three potentials in Eq. (2.13) can then be considered as an effective potential

Veff(r). In this perspective, the KS equations can be interpreted as single-particle Schrödinger

equations combined with a mean-field approach. More specifically, the energy of each individ-

ual electron is determined by the effective potential induced by the other electrons. It is also

noteworthy that the quantities εi are Lagrangian multipliers adopted within the variational

procedure. Therefore, they have, in principle, no physical meaning. Nevertheless, εi are

generally interpreted as single-particle energy levels. This way of proceeding can be justified

within the more general quasiparticle picture, which will be discussed later.

Local density approximation

As mentioned earlier, the exact xc functional is not known. Therefore it is necessary to find

approximate xc functionals in order to solve the KS equations. Within the last fifty years a large

variety of such functionals have been developed differing in complexity and predictive power

[77]. One of the first approximations for the xc functional was the local density approximation

(LDA). Indeed, this approach was already proposed by Kohn and Sham in 1965 [4]. It’s main

simplification is to locally refer the xc energy of the considered (inhomogeneous) electronic
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system to the one obtained for the homogeneous electron gas (HEG) with the same density

n(r). This can be expressed as

E LDA
xc [n] =

∫
n(r)εHEG

xc (n(r))dr, (2.16)

where εHEG
xc is the xc energy density of the HEG. To obtain analytical expressions for εHEG

xc ,

one decomposes exchange (εx) and correlation (εc) contributions as εHEG
xc = εHEG

x +εHEG
c . Both

parts are then considered separately. First, the exchange energy density of the HEG can be

written as [78]

εHEG
x (n) =− 3

4π

(
3π2n

)1/3 =− 3

4π

(9π

4

)1/3 1

rs
, (2.17)

where rs denotes the Wigner-Seitz radius. This quantity describes a typical length scale within

the HEG and is defined as the radius of the sphere occupied on average by each electron [72]:

4π

3
r 3

s = 1

n
. (2.18)

Second, the correlation energy density of the HEG is considered. In contrast to the exchange

energy density, εHEG
c is analytically known only in the extreme limits of high and low electron

densities [78]. Nevertheless, one can deduce rather complicated expressions which encom-

pass both limits [79, 80, 81]. Such parametrizations quantify εHEG
c (rs) based on numerical

parameters which are (i) extracted from the analytical high-density expressions and (ii) ob-

tained by fitting to the quantum Monte-Carlo calculations of Ceperley and Alder [82]. One

prominent example is the parametrization reported by Perdew and Zunger [80] which reads

as

εHEG
c (rs) =

−0.0480−0.0116rs +0.0311ln(rs)+0.002rs ln(rs) for rs < 1

−0.1423/(1+1.0529
p

rs +0.3334rs) for rs ≥ 1
. (2.19)

In conclusion, εHEG
xc (n) and thus E LDA

xc [n] can be computed. It is noteworthy that LDA can

be rigorously generalized for spin-polarized systems, resulting in the local spin density ap-

proximation (LSDA) [78]. For the collinear case, the xc functional can then be expressed as

E LSDA
xc [n↑,n↓] =

∫
n(r)εHEG

xc (n↑(r),n↓(r))dr, (2.20)

where n↑ and n↓ denote the electron densities in both spin polarizations and n = n↑+n↓ holds.

The presented parametrizations for εHEG
xc (n) are also thereby generalized to a spin-polarized

formulation as given for instance in Ref. [78].

Generalized gradient approximation

Although, the LDA is only exact for the HEG, it performs surprisingly well for systems with

slowly varying densities. In particular, structural properties such as bond lengths are typically

underestimated by only 1−2 % with respect to experimental references. Despite this success,
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great scientific effort has been devoted to overcome the conceptual limitations of the LDA.

A natural extension of the local density approximation is the incorporation of higher derivatives

such as the gradient of the electron density ∇n. Thus, the resulting density functionals

represent not only local but semilocal approximations. However, first approaches including

∇n yield less accurate results than those obtained with the LDA [78]. Indeed, these so-called

gradient expansion approximations (GEA) suffered from various unphysical assumptions

which are further described in Ref. [78]. The GEA was succeeded by the generalized gradient

approximation (GGA) which overcame these obstacles and represents a milestone in the

development of DFT. Analogous to the LDA, the xc functional of the GGA can be generally

expressed as [77]

E GGA
xc [n] =

∫
n(r)εGGA

xc (n(r),∇n(r))dr. (2.21)

It is noteworthy that a substantial amount of physical intuition and craftsmanship is required

for the construction of the function εGGA
xc (n,∇n) [77]. Therefore it is not surprising, that

numerous different expressions have been proposed over the last decades [77]. The most

widely used GGA functional is the Perdew-Burke-Ernzerhof (PBE) functional [5] which is

also adopted for all semilocal DFT calculations in this thesis. A detailed description of the

construction of the PBE functional is given in Refs. [5, 78].

It is of interest, that the incorporation of higher order derivatives has not remained restricted

to the gradient of the density ∇n(r). Indeed, so called meta-GGA functionals consider also

the Laplacian of the density ∇2n(r) as well as the kinetic energy density τ(r), which is further

explained in Ref. [77]. However, such functionals are not the scope of this thesis and are there-

fore mentioned here for completeness. In this work, we focus on another class of approximate

density functionals, namely hybrid functionals, which will be introduced in Sec. 2.3.

Practical aspects of DFT calculations

For practical DFT calculations, different numerical techniques are instrumental in order to

ensure an efficient computation. First, the KS equations have to be solved for all electrons.

Insofar as these equations are non-linear and coupled with each other, one generally addresses

this task by resorting to self-consistent computational schemes. More specifically, based on an

initial guess for the electron density, the effective potential is computed and is subsequently

adopted to solve the KS equations. The orbitals obtained in this way, are used to calculate a

new charge density which is feed backed until self-consistent description is reached.

For such calculations, it is advantageous to incorporate more information about the consid-

ered physical system. In particular, the periodicity of the crystal (which frequently occurs in

this thesis) can be accounted for within the computational setup. This stems from the fact

that a periodic potential can be expressed as V (r) =V (r+R), where R denotes a crystal lattice
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vector. Thanks to Bloch’s theorem [74], one can then write the KS wave functions as

φn,k(r) = e i kr un,k(r), (2.22)

where k is a wave vector within the first Brillouin zone and n is a band index. The Bloch

functions un,k(r) indicate the same periodicity as the crystal and can be expanded in a plane-

wave basis set. Thus, the KS wave functions can then be expressed as [83]

φn,k(r) = 1p
Ω

∑
G

cn,k(G)e i (k+G)r, (2.23)

whereΩ denotes the volume of the unit cell, G represents a reciprocal lattice vector and cn,k

are the expansion coefficients. To ensure that the calculations are numerically feasible, the

present expansion is restricted to a finite number of plane waves. In practice, this can be

achieved by means of a cutoff energy Ecut.

Beside the plane-wave basis, the reciprocal lattice plays an important role in DFT calculations

for periodic systems. In particular, an integration over the first Brillouin zone is required for

the evaluation of many physical quantities such as the electron density, density of states, etc.

Numerically, this is achieved by replacing the integral with a sum over a finite grid. An efficient

integration scheme has been proposed by Monkhorst and Pack [84]. It provides a uniform

k-point sampling adjusted to the primitive vectors of the reciprocal lattice [74] and is used

throughout this thesis.

Another very useful numerical method to reduce the computational cost of DFT calculations

is the use of pseudopotentials. This technique is motivated by the fact that the description

of core-electron wave functions is numerically expensive due to strong oscillations in the

vicinity of the nucleus. Moreover, such deep electrons are insignificant for the chemical

bonds, which are mainly determined by the valence electrons. Therefore, it is appropriate to

separate the core from the valence electrons. The former are treated in an effective manner

together with the nucleus, whereas the latter are computed explicitly. Proceeding in this

way leads to a significant reduction of the computational cost which speeds up the DFT

calculations and enables the treatment of larger systems. In this thesis, we generally use either

the normconserving Troullier-Martins pseudopotentials [85] (taken from Ref. [86]) or the

recently developed optimized norm-conserving Vanderbilt pseudopotentials (ONCVPSP) [87]

(taken from Ref. [88]).

The presented numerical techniques are typically implemented in sophisticated electronic-

structure codes. In this thesis, we used the software packages ABINIT [22] and Quantum

ESPRESSO [89]. We generally adopted a consistent computational setup to ensure a meaningful

comparison between the results of the two codes.
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2.3 Hybrid functionals

The density functional theory in the local and semilocal approximations, which we have

presented in the preceding section, is one the most widely used approaches to tackle the many-

electron problem. However, the prediction of band gaps as obtained with DFT calculations

remained highly unsatisfactory [6]. To overcome this drawback, considerable effort has been

devoted to the development of more sophisticated electronic-structure methods. Hybrid

functionals are a promising representative of such advanced techniques. These functionals

have in common that they admix a certain fraction of nonlocal Fock exchange together with a

complementary fraction of semilocal exchange. For the purposes of this thesis, the PBE0 [31]

and the CAM [70] functional are of great importance. Therefore, these hybrid functionals are

briefly introduced in the following section.

PBE0(α) and CAM(αs,α`,µ)

First, we consider the PBE0, or more specifically PBE0(α), functional which can be written as

E PBE0(α)
xc =αE Fock

x + (1−α)E PBE
x +E PBE

c . (2.24)

Here, α denotes the fraction of incorporated Fock exchange. In the original work of Perdew,

Burke, and Ernzerhof, this parameter was empirically set to α = 0.25 in order to provide

accurate atomization energies of typical molecules [31]. However, this empirical definition

can be generalized to a generic fraction α between 0 and 1. For the specific case of α = 0,

the PBE0 functional reverts back to the semilocal PBE functional. It is noteworthy that the

correlation energy is independent of the mixing parameter α and generally obtained at the

PBE level of theory.

Second, we describe the CAM(αs,α`,µ) functional which is derived from the PBE0(α) func-

tional following the Coulomb-attenuating method (CAM) of Yanai et al. [70]. This range-

separated hybrid functional offers a substantial amount of flexibility through the appearance

of three parameters. The range-separation parameter µ determines the partitioning of the

Coulomb potential through an error function

1

|r− r′| =
erfc(µ|r− r′|)

|r− r′| + erf(µ|r− r′|)
|r− r′| . (2.25)

First and second term of the right-hand side of Eq. (2.25), define the short-range (SR) and the

long-range (LR) part of the exchange respectively. For both limits of the range separation, the

exchange is then determined through admixing a certain fraction of nonlocal Fock exchange

to the semilocal PBE exchange. In the short range this fraction amounts to αs whereas in

the long range a value of α` is considered. In analogy to Eq. (2.24), one can express this xc
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functional as [56]

E CAM(αs,α`,µ)
xc =αsE Fock,SR

x (µ)+ (1−αs)E PBE,SR
x (µ) +

α`E Fock,LR
x (µ)+ (1−α`)E PBE,LR

x (µ) + E PBE
c (2.26)

Once again, the correlation energy contribution is taken entirely from the PBE functional. A

schematic visualization of the range-separated CAM(αs,α`,µ) functional is given in Fig. 2.1

together with the global PBE0(α) functional.

Figure 2.1 – Schematic illustration of the fraction of Fock exchange vs. the interelectronic
distance ri j for the hybrid functionals PBE0(α) and CAM(αs,α`,µ).

It is noteworthy that in the original work of Yanai et al., the three parameters have been

set empirically to αs = 0.18, α` = 0.65 and µ = 0.33 bohr−1 [70]. However, the expression

given in Eq. (2.26) provides a substantially larger amount of flexibility. Therefore, various

commonly used functionals can be derived from the CAM functional form. Indeed, for

µ→ 0, the CAM(αs,α`,µ) functional reverts back to PBE0(αs). Also for µ→ ∞, the PBE0

functional is obtained, but with a mixing parameter α=α`. If αs =α` = 0, the PBE functional

is recovered. For αs = 0 and specific definitions for α` and µ, various long-range corrected

hybrid functionals can be obtained [90, 91, 92, 93, 94]. Furthermore, the prominent Heyd-

Scuseria-Ernzerhof (HSE) functional [32, 33] is recovered through αs = 0.25, α` = 0 and

µ= 0.11 bohr−1. Overall, the range-separated CAM(αs,α`,µ) functional represents a natural

generalization of various commonly used hybrid functionals.

Fock exchange

Technically, it shall be mentioned that irrespective of the hybrid-functional form, Fock ex-

change is not computed through a HF calculation. Indeed, the Fock exchange is defined as

E Fock
x =−1

2

∑
i , j

Ï φ∗
i (r)φ∗

j (r′)φ j (r′)φi (r)

|r− r′| drdr′ (2.27)
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and is self-consistently evaluated with the KS orbitals φi . The corresponding Fock exchange

potential can then be expressed as

V Fock
x (r,r′) =−∑

i

φ∗
i (r′)φi (r)

|r− r′| . (2.28)

This potential (and thus the xc potential Vxc) are nonlocal within hybrid-functional formu-

lations. As shown by Seidl et al. [26], these nonlocal potentials can be rigorously embedded

within a generalized KS theory. The corresponding generalized Kohn-Sham (gKS) equations

can then be written as[
−∇2

2
+Vext(r)+VH(r)

]
φi (r)+

∫
Vxc(r,r′)φi (r′)dr′ = εiφi (r). (2.29)

It is apparent that the gKS equations incorporate the standard KS equations in the special case

of a (semi)local xc potential.

Practical aspects of hybrid-functional calculations

For practical calculations based on hybrid functionals, it is necessary to evaluate the Fock

exchange. Within a plane-wave basis [cf. Eq. (2.23)], one can express the corresponding matrix

elements as [83]

〈k+G|Vx |k+G′〉 =−4π

Ω

∑
n

∑
q

∑
G′′

c∗n,q(G′+G′′)cn,q(G+G′′)
|k−q−G′′|2 . (2.30)

The evaluation of this expression is a very time-consuming step in hybrid-functional calcu-

lations. Moreover, Eq. (2.30) contains a singularity for k−q = G′′ [83]. Gygi and Baldereschi

proved that this integrable divergence can be circumvented by means of an auxiliary function

[83]. We adopt this approach for all hybrid-functional calculations presented in this thesis.

Further information and insightful explanations on the Coulomb singularity can be found in

Ref. [37].

2.4 Many-body perturbation theory in the GW approximation

Green’s function formalism

A highly sophisticated method to overcome the infamous band-gap problem of semilocal DFT

consists in many-body perturbation theory (MBPT). In contrast to DFT, this approach is not

centered on the electron density n but on the one-particle Green’s function G . As explained

in Ref. [10], G is conceptually superior to n. While from both quantities one can obtain the

ground-state energy and the expectation values for any one-particle operator in the ground-

state, only the Green’s function provides the single-particle excitation spectrum of the system

[10]. Nonetheless, G still represents an approximation to the full many-body wave function.
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Within a second quantization formalism, the one-particle Green’s function G can be written

as [10]

G(rt ,r′t ′) =−i 〈N |T̂ [Ψ̂(rt )Ψ̂†(r′t ′)]|N〉 =
−i 〈N |Ψ̂(rt )Ψ̂†(r′t ′)|N〉 for t > t ′

i 〈N |Ψ̂†(r′t ′)Ψ̂(rt )|N〉 for t < t ′
, (2.31)

where |N〉 is the exact N -particle ground-state wave function, i is the imaginary unit, Ψ̂†

and Ψ̂ are the electron creation and annihilation field operators and T̂ is the time-ordering

operator [9]. The Green’s function is also called propagator due to the physical interpretation

of Eq. (2.31). Indeed, for t > t ′, G describes the probability amplitude for the propagation of

an electron from r′ at time t ′ to r at time t . Instead, for t < t ′, G describes analogously the

propagation of a hole [10].

The physical meaning of G also becomes clear when Eq. (2.31) is recast through inserting the

closure relation in between the two field operators [95]. Taking the Fourier transformation in

time, one finds the so called Lehmann representation of G which reads as [10]

G(r,r′,ω) =∑
i

ψi (r,ω)ψ∗
i (r′,ω)

ω−Ei (ω)
. (2.32)

Here, ψi are the so-called Lehmann amplitudes which are defined as given in Ref. [95]. More

relevant is the fact that the excitation energies Ei (ω) of the electronic systems represent the

poles of the Green’s function G . Therefore, G incorporates the exact ionization energies,

electron affinities and thus the band gap of the investigated system. More than that, one can

make a direct comparison between the poles of the Green’s function and the peaks obtained

in photoemission and inverse photoemission experiments [95].

Due to these fascinating properties of the Green’s function, great scientific effort has been

devoted to the evaluation of G in the many-body context [95]. However, this goal represents

a challenging theoretical task. Indeed, by adopting the Heisenberg equation for the field

operators, one can derive an equation which defines the one-particle Green’s function G .

Unfortunately, this specific equation also involves the two-particle Green’s function G (2) [10].

Adopting the same procedure for G (2), one finds an equation which depends on the three-

particle Green’s function G (3), and so on. Overall, one can derive an infinite hierarchy of

equations defining the one-particle Green’s function G . This structure describes the physical

phenomenon, that the propagation of one electron/hole (G) causes an electron-hole pair

(G (2)) that further polarizes the medium (G (3), ...).

In order to break this hierarchy, one can formally introduce an effective operator, called

the self-energy Σ [95]. This new operator is supposed to incorporate all the many-body

effects associated to the many-particle Green’s functions. Therefore, Σ is generally a nonlocal,

dynamical and non-Hermitian operator [95]. With this sophisticated object, one can derive
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2.4. Many-body perturbation theory in the GW approximation

the famous Dyson equation for the one-particle Green’s function [95]

G(r,r′,ω) =G0(r,r′,ω)+
∫

G0(r,r1,ω)Σ(r1,r2,ω)G(r2,r′,ω)dr1dr2. (2.33)

In a shorthand notation, Eq. (2.33) can be also expressed as G = G0 +G0ΣG . The first term

refers to the Hartree Green’s function G0, which corresponds to the specific case of a vanishing

self-energy (Σ= 0) [10, 95].

Quasiparticles

The Lehmann representation already hints at the more general interpretation of the one-

particle Green’s function G . This picture is called quasiparticle approximation and is described

in more detail in Refs. [10, 96]. One of the most relevant results of quasiparticle approximation

is the reformulation of the Dyson equation (2.33) to the so called quasiparticle equation [10][
−∇2

2
+Vext(r)+VH(r)

]
ψi (r,ω)+

∫
Σ(r,r′,ω)ψi (r′,ω)dr′ = Ei (ω)ψi (r,ω). (2.34)

It is noteworthy that the quasiparticle energies Ei are generally complex. The real part de-

scribes the energy of an excitation, whereas the imaginary part can be interpreted as the inverse

of the lifetime [10]. Furthermore, the quasiparticle wave functionsψi are in general not orthog-

onal since Σ is non-Hermitian. These properties are in contrast to the non-interacting system

for which Σ is Hermitian, and thus the wave functions are orthogonal and the eigenstates

have infinite lifetime. The similarities between the quasiparticle equation (2.34) and the KS

[cf. Eq. (2.13)] or the gKS [cf. Eq. (2.29)] equations are apparent. Therefore, one can interpret

the xc potential Vxc (local or nonlocal) as a static and Hermitian approximation to the GW

self-energy Σ. In addition, the single-particle orbitals φi can be seen as approximations to the

quasiparticle wave functions ψi .

Thanks to the Dyson equation and its insightful reformulation, it is possible to compute the

one-particle Green’s function, provided that the self-energy can be approximated appropri-

ately. However, this constraint has proven to be challenging, in particular, when considering

periodic systems [96, 95]. This drawback can be circumvented through considering a modified

Coulomb interaction as shown by Hedin in 1965 [9].

Screened Coulomb interaction

Periodic systems such as solids generally invoke numerous interacting electrons. For the

modelling of such systems, it is physically more meaningful to consider a screened Coulomb

interaction W instead of the bare repulsion v(r,r′) = 1/|r−r′|. The attribute ‘screened’ refers to

the fact, that the interaction between two electrons is always shielded by other electrons. This

screening effect is typically described by means of a dielectric function ε. One can connect the
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three quantities via [95]

W (r,r′,ω) =
∫
ε−1(r,r1,ω)v(r1,r′)dr1 =

∫
ε−1(r,r1,ω)

|r1 − r′| dr1, (2.35)

or in a more compact notation W = ε−1v .

It is noteworthy that the nonlocal and dynamical ε(r,r′,ω) in Eq. (2.35) should be interpreted

as a microscopic dielectric function. It is, in principle, not a measurable quantity, in contrast

to the macroscopic dielectric function εM [95]. The connection between microscopic and

macroscopic scale is given by [97]

εM(q,ω) = 1

ε−1
00 (q,ω)

, (2.36)

where ε−1
GG′(q,ω) is the Fourier transformation of the inverse microscopic dielectric function.

Note that the full matrix has to be inverted before taking the reciprocal of the G = G′ = 0

component. The thereby obtained εM is a measurable quantity which can be compared to

experimental data from, e.g., electron loss spectroscopy (EELS) or inelastic X-ray scattering

(IXS) [95].

Hedin’s equations and the GW approximation

The Green’s function G , the self-energy Σ and the screened interaction W are important

quantities to describe the excitation characteristics of a many-electron system. In order to

find suitable approximations for their practical calculation, Hedin proposed a system of five

equations in 1965 [9]. The major step forward in Hedin’s work was the incorporation of the

screened Coulomb interaction W instead of the bare interaction v . In a graphical illustration

(and employing shorthand notation), one can summarize Hedin’s equations as shown in Fig.

2.2.

Σ

G

Γχ̃

W

G = G0 + G0ΣG

Γ = 1 + δΣ
δGGGΓ

χ̃ = −iGGΓ

W = v + vχ̃W

Σ = iGWΓ

Figure 2.2 – Hedin’s equations illustrated in an pentagonal form.

In addition to the previously introduced quantities, the irreducible polarizability χ̃ and the

vertex function Γ also appear in Hedin’s equations. The former describes the response of the
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system to an additional electron/hole and the latter contains the information how electrons

and holes interact [96]. Overall, Hedin’s equations represent five coupled integral equations

for five quantities, which have to be solved self-consistently. Starting with a given expression

for Σ, the above set of equations provides a way to generate higher order approximations [10].

However, this procedure is not feasible for practical calculations and it is also challenging

due to functional derivative in the equation of the vertex function Γ. Therefore, further

simplifications are required.

The so called GW approximation has already been proposed by Hedin in his pioneering work

in 1965 [9]. Through retaining only the zero-order term in the vertex function (Γ = 1), he

obtained a simplified set of equations [95]. In analogy to Fig. 2.2, this is shown in Fig. 2.3.

Σ

G

Γχ̃

W

G = G0 + G0ΣG

Γ = 1

χ̃ = −iGG

W = v + vχ̃W

Σ = iGW

Figure 2.3 – Illustration of Hedin’s equations employing the GW approximation.

It is noteworthy that the self-energy becomes the product of G and W (in the time domain),

which explains the name GW approximation. In the frequency domain, Σ becomes a convolu-

tion which can be expressed as [10]

Σ(r,r′,ω) = i

2π

∫
G(r,r′,ω+ω′)W (r,r′,ω′)dω′. (2.37)

Furthermore, the irreducible polarizability χ̃ becomes a simple product of Green’s functions

which is known as the random-phase approximation (RPA) [95]. Due to the connection

ε= 1−v χ̃, equivalent RPA expressions can be derived for the irreducible polarizability χ̃ and

for the dielectric function ε. In case these representations are written in terms of single-particle

energies and orbitals, one obtains the well-known expressions proposed by Adler [97] and

Wiser [98].

Overall, the GW approximation represents a notable simplification of Hedin’s equations.

However, the practical implementation of these equations is not trivial. Therefore, it is not

surprising that various different flavours of GW calculations have been developed over the

last decades.
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G0W0 calculations

Technically, GW calculations are often carried out subsequently to preliminary DFT or HF

calculations [12, 99]. The rationale behind this procedure is the assumption that single-

particle orbitals φi and eigenvalues εi provide already a good description of the investigated

electronic system. One can then reconstruct the independent-particle Green’s function G0 and

thus compute the polarizability (χ̃0), the screened interaction (W0) and self-energy (G0W0)

according to Hedin’s equations. This is called the one-shot GW (G0W0) approach since the

self-consistent loop shown in Fig. 2.3 is truncated after the first iteration.

By considering the quasiparticle equation (2.34) within the G0W0 framework, one can calcu-

late the quasiparticle energies Ei as first-order perturbative correction to the single-particle

energies εi . This reads as [95]

Ei = εi +〈φi |Σ(Ei )−Vxc|φi 〉. (2.38)

The implicit occurrence of Ei in Eq. (2.38), is generally overcome through a linearization of Σ.

This yields [95]

Ei = εi +Zi 〈φi |Σ(εi )−Vxc|φi 〉, (2.39)

with a renormalization factor

Zi =
[

1−〈φi |∂Σ(ω)

∂ω

∣∣∣∣
ω=εi

|φi 〉
]−1

. (2.40)

In most G0W0 calculations, the perturbative corrections are obtained through Eq. (2.39). This

approach yields generally improved band gaps [37, 100] with respect to the underestimated

results from semilocal DFT [6]. However, G0W0 remains unsatisfactory since it is highly de-

pendent on the adopted starting point [37]. Indeed, G0W0 results, as obtained from semilocal

DFT, hybrid functional or HF calculations as starting points, indicate notable differences. In

the case where initial wave functions are insufficient, the G0W0 corrections might fail entirely

[101, 102].

Self-consistent GW calculations

To overcome the dependence on a specific starting point, different self-consistent GW schemes

have been developed in the last decades. Intuitively, the self-consistent solution of Hedin’s

equations in the GW approximation is the natural solution to the starting-point problem.

This approach is called fully self-consistent GW (scGW ) and has been shown to suffer from

critical limitations. First, the computational cost of this scheme is very high. Indeed, since

the self-energy is non-Hermitian, one should distinguish left and right eigenvectors, which

do not form a orthogonal basis, and are associated with complex eigenvalues [95]. Therefore,

practical scGW calculations are subject to stringent computational limitations. The second

and even more severe drawback of scGW is of conceptual nature. As further explained in
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Refs. [103, 95], scGW incorporates an unbalanced renormalization factor in the irreducible

polarizability. As a consequence, the screening becomes unreasonable and subsequently

computed quantities deteriorate [104, 105].

To overcome the limitations of scGW , Schilfgarde, Kotani and Faleev proposed an alternative

method which is called quasiparticle self-consistent GW (QSGW ) [103, 15, 16]. This approach

is based on an Hermitian ansatz for the GW self-energy. More specifically, the matrix elements

of the self-energy in the QSGW approximation are expressed as

〈φi |ΣQSGW|φ j 〉 = 1

2
Re

[〈φi |Σ(εi )|φ j 〉+〈φ j |Σ(ε j )|φi 〉
]
, (2.41)

where Re denotes the Hermitian part. The diagonalization of ΣQSGW yields a new set of

orthogonal orbitals φi , which is then used to construct a new ΣQSGW [37]. This procedure is

carried out until a self-consistent description is reached. Interestingly, the specific ansatz

in Eq. (2.41) can also be justified as a way to find an optimal one-body Hamiltonian [15,

95]. Due to the Hermitian self-energy, QSGW is computationally more efficient than scGW

(but still notably more demanding than G0W0). Furthermore, it has been shown that QSGW

yields improved band gaps compared to those obtained with semilocal functionals or G0W0

calculations [15].

It is noteworthy that alternative self-consistent GW schemes have also been developed, such

as eigenvalue-only self-consistent GW [106] or self-consistent versions of the Coulomb-hole

plus screened exchange (COHSEX) method [107, 108]. However, for the purpose of this thesis

it is sufficient to focus on the QSGW approach which is one of the most widely used methods

for self-consistent GW calculations.

Vertex corrections

Despite the great success of QSGW in overcoming the starting-point problem, also this ap-

proach has been shown to have limitations. In particular, it has been observed that QSGW

systematically overestimates the band gap by ∼20 % [103, 15, 18]. The origin of this observation

is the lack of electron-hole interaction in the polarizability when calculated within the RPA

[17, 18]. This obstacle can be circumvented through the incorporation of so-called vertex

corrections. The polarizability χ is then expressed through a Dyson equation

χ=χ0 +χ0(v + fxc)χ, (2.42)

where χ0 is the independent-particle polarizability as calculated with the one-particle wave

functions and energies [18]. The exchange-correlation kernel fxc is the functional derivative of

the exchange-correlation potential with respect to the density, and accounts for the many-body

interactions [18]. For the specific case of a vanishing fxc, the RPA polarizability is recovered.
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Various expressions for fxc have been proposed over the last few years [96]. Throughout this

thesis, we adopt the bootstrap kernel of Sharma et al. [109] in the efficient implementation

of Chen et al. [18]. This kernel makes use of the exact relation between fxc and ε−1 [109],

and iterates the RPA screening and the fxc kernel until the convergence is reached [18]. In

reciprocal space, the bootstrap kernel f boot
xc can be expressed as [18]

f boot
xc,GG’(q,ω) =

v1/2
G (q)ε−1

GG′(q,0)v1/2
G’ (q)

1−εRPA
00 (q,0)

, (2.43)

where εRPA is the RPA dielectric function. The expression given in Eq. (2.43) requires no

empirical parameters and it ensures the correct scaling behaviour as further discussed in Ref.

[18]. A comprehensive overview of various other xc kernels can be found in Ref. [110].

The screened interaction including vertex corrections is then denoted as W̃ and the corre-

sponding self-consistent GW scheme is named QSGW̃ . The accuracy of this method has been

verified for numerous materials including common semiconductors and insulators [17, 18,

111], transition-metal compounds [18, 112, 113], alkali halides [51], metal-halide perovskites

[114, 115], as well as liquid water [116]. QSGW̃ is therefore acknowledged as one of the most re-

liable GW approaches for band-gap predictions. Throughout this thesis, we therefore consider

the results obtained with QSGW̃ as a benchmark for other electronic-structure methods.

Practical aspects of GW calculations

A critical aspect of many GW calculations is the variety of incorporated parameters which

affect the final result. It is therefore of major importance to carefully converge all parameters

which are required for the investigated quantity. The GW calculations performed in this thesis

are mainly focused on the band-edge levels and thus on the band gap. To obtain converged

results for these quantities, the cutoff in the dielectric matrix E eps
cut and the total number of

bands nband are highly relevant. Depending on the considered supercell size, the band gap

as a function of these parameters can indicate a very slow convergence. In order to retain

computationally feasible calculations, it is good practice to separately extrapolate the band

gap with respect to E eps
cut and/or nband. In terms of E eps

cut , an extrapolation with an exponential

function is adequate. In terms of nband, generally an extrapolation with a hyperbolical function

f (nband) = a

nband − n̄band
+b, (2.44)

is performed, where a, b, and n̄band are fitting parameters [117]. Overall, the sum of these ex-

trapolations typically amounts to ∼0.1−0.2 eV which is then added as an posteriori correction

to the computed band gaps.

Another important aspect of GW calculations is the treatment of the frequency dependence

of key quantities such as self-energy, screened exchange, and dielectric function. In this

thesis, we adopt a full frequency approach as given by the contour deformation technique
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[118]. This method has been shown to yield more adequate results for states far away from

the Fermi level [119] than those obtained with standard plasmon-pole models [12, 119].

The contour deformation technique incorporates results from complex analysis in order to

efficiently compute the convolution of the self-energy. More specifically, the cumbersome

integration over the real frequency axis is replaced by an integration along the imaginary axis

plus contributions arising from the poles lying inside the contour [118]. Further information

on the technicalities of this method can be found in Refs. [118, 16, 22]. For the materials

investigated in this thesis, it was generally sufficient to account for 8 real and 4 imaginary

frequencies. Only for Si and CaF2 in chapter 7, we adopted very conservative values of 10 real

and 10 imaginary frequencies.

2.5 Other computational methods in this thesis

In this section, computational methods are presented which are of great importance for this

thesis. More specifically, finite-size corrections for charged defects and different techniques

for the computation of the dielectric constant are presented. We remark that these methods

are applicable irrespective of the considered density functional approach (semilocal or hybrid).

Therefore, we generally refer to DFT calculations within the following section.

Finite-size corrections for charged defects

For the purposes of this thesis, the investigation of point defects is of great importance.

We aim at describing such defects in an isolated manner. However, due to the periodic-

boundary conditions adopted in the electronic-structure calculations, the simulations are

performed in practice for an infinite array of point defects. This way of proceeding is justified

as long as sufficiently large supercells are considered. In particular, for charged defects, this

constraint cannot be fulfilled due to the long-ranged Coulomb potential which inevitably leads

to spurious defect-defect interactions. The resulting divergence of the electrostatic energy

is treated in the self-consistent DFT procedure through a neutralizing charge background.

However, the total energy and thus the single-particle defect levels still suffer from the spurious

interactions with image charges.

To overcome these finite-size effects, various correction schemes have been developed within

the last decades [120, 121, 122, 123, 19, 124]. In particular, the scheme proposed by Freysoldt,

Neugebauer and van de Walle (FNV) [122] has achieved accurate results irrespective of the

considered defect [125]. The central idea of this scheme is the (formally exact) partition of

the defect potential into a long-range and a short-range contribution [20]. The former can be

approximated by the potential of a localized model charge repeated in an infinite array. The

latter is then given through a simple potential shift obtained from the difference between the

actual and the model potential. In the specific case of a point-charge model for a defect within

29



Chapter 2. Theoretical background

a cubic supercell, the FNV correction can be expressed in a simple form as [20]

E FNV
corr = αq2

2εL
−q∆V. (2.45)

The physical quantities included are the Madelung constant α, the total defect charge q ,

the dielectric constant ε, and the supercell size L. The first term of Eq. (2.45) represents the

well-known Madelung energy for an array of point charges within a compensating background

and immersed in a dielectric medium. The second term is given by the potential alignment

∆V . The practical computation of ∆V is illustrated in Fig. 2.4 for a hydrogen interstitial H+
i in

MgO. It is noteworthy that the obtained finite-size corrections are independent of the adopted

model charge [122]. Further information about the FNV scheme can be found in Refs. [125,

20].

Figure 2.4 – Planar averaged electrostatic potential for a hydrogen interstitial H+
i in MgO. The

defect is located at z = 0.9 Å with periodic images according to the supercell size L = 16.9 Å.
The potential as obtained through a DFT calculation V DFT and the potential associated to a
point-charge model V model are shown. The difference between the two potentials far away
from the defect site determines the potential alignment ∆V (in this case ∼0.02 eV).

We note, that the present FNV scheme provides accurate corrections to the total energy of a

considered defective supercell. For the purposes of this thesis, we are however interested in

single-particle defect levels. To this end, one can deduce a KS level correction E KS
corr from the

total-energy correction E FNV
corr via [19, 124]

E KS
corr =− 2

q
E FNV

corr . (2.46)

The accuracy of these KS level corrections have been demonstrated for various defects in

semiconducting and insulating materials [19, 20, 124]. Therefore, we apply this correction

scheme throughout this thesis to all DFT calculations of charged defects. We remark that Eq.

(2.46) is only valid for defects which do not involve ionic polarizations as described in more

detail in Ref. [124].
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Computation of the high-frequency dielectric constant

The high-frequency dielectric constant ε∞ of an investigated material is of major importance

for the purposes of this thesis. For the calculation of this quantity, three different approaches

have been instrumental, namely the application of a sawtooth potential [126, 127], the finite-

electric field approach [128], and the linear response theory [97, 98]. The specific choice in

favour of one of these techniques has been made conveniently according to the investigated

materials and the electronic-structure methods compared. Furthermore, the three different

approaches yield generally dielectric constants in close agreement with each other thereby

ensuring the consistency of the conclusion drawn in the following sections. Here, a brief

introduction to the three techniques is given.

The first approach consists in the application of an external sawtooth-like potential V saw

to an elongated cell of the considered material [126, 127]. In response to this potential, the

average electrostatic potential V DFT, as obtained through a DFT calculation, indicates also a

sawtooth-like shape, but screened by the dielectric constant ε∞ [129]. This fact is visualized in

Fig. 2.5 for the case of MgO.

Figure 2.5 – Planar-averaged electrostatic potential V DFT across a 1×1×8 supercell of MgO
in the presence of a sawtooth potential V saw. For simplicity, the displayed potential V DFT

has been broadened with a Gaussian of width 2.5 Å in the z direction. The shaded areas
correspond to the regions far away from the extrema of the sawtooth potential. The linear fit
to the potential in both regions is indicated in black.

The dielectric constant ε∞ is then determined by the ratio of the slopes of sawtooth and

electrostatic potential. This can be expressed as [129]

ε∞ = ∂V saw/∂z

∂V DFT/∂z
. (2.47)

It is good practice to deduce the slopes in the region far away from the extrema of the sawtooth

potential. Moreover, the total height of the potential must be smaller than the band gap of the

considered material to avoid a dielectric breakdown [129]. Further technical details of this

technique are summarized in Ref. [129]. The computation of the dielectric constant through

the sawtooth procedure is straightforward and yields generally very robust results. Indeed,

residual deviations associated to different cell sizes, different amplitudes, and rising/falling
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part of the potential amount to only 1−2% [129]. The drawback of this method is the high

computational burden due to the treatment of an elongated supercell. The dielectric constant

ε∞ as calculated with a sawtooth potential is shown in Fig. 2.6 for the case of MgO. We

observe a good agreement with the experimental counterpart irrespective of the employed

approximate density functional.

Figure 2.6 – High-frequency dielectric constant ε∞ as calculated with a sawtooth potential, a
finite electric field, and the RPA with and without vertex corrections. Calculations performed
with the semilocal functional PBE and the hybrid functional PBE0(0.25) are distinguished. The
value of ε∞ as obtained in experiment [130] is indicated through a black line.

The second technique for the determination of the dielectric constant considered in this thesis

consists in a finite-electric field approach [131]. This method relies on the fact, that differences

in the electric polarization P can be defined also for periodic systems, independent of the

surface termination [132]. Indeed, based on the modern theory of polarization [133, 134], P

can be related to a Berry phase computed from the valence wave functions [132]. Therefore,

one can model the presence of a finite electric field E through a variational energy functional

EE = E 0 −E ·P [132, 131, 135]. Here, E 0 denotes the usual energy functional in the absence of

the electric field and P is the polarization along the direction of E . The functional EE can be

minimized for finite values of the electric field. Based the present theory, one can then express

the high-frequency dielectric constant through [131, 128]

ε∞ = 1+ 4π

Ω

PE −P 0

E
, (2.48)

whereΩ is the volume of the unit cell and PE and P 0 are the polarizations with and without

electric field, respectively. It is noteworthy that also for this technique, a critical electric field

shall not be overcome in order to avoid numerical instabilities [131]. The calculation of ε∞
using Eq. (2.48) yields results in good agreement with those of the sawtooth potential as shown

in Fig. 2.6. Moreover, the sawtooth potential and the finite electric field yield in principle the

same results provided all numerical parameters are carefully converged. This is due to the fact

that in both methods the electronic structure in the presence of an electric field (or potential) is

computed explicitly. Apart from the considered approximate density functional, both methods

do not rely on any further approximation for the determination of the dielectric constant.

32



2.5. Other computational methods in this thesis

From a computational point of view, the finite electric field method is more appropriate than

the sawtooth potential insofar as the calculations can be performed with the primitive unit

cells.

The third approach considered in this thesis, namely linear response theory, has already been

discussed in the context of GW calculations and shall therefore not be repeated here. In

particular, the random-phase approximation (RPA) has been introduced for the computation

of the dielectric constant. We remark that this method incorporates a further approximation

in addition to the adopted density functional. Therefore, the computed values of ε∞ are not

necessarily equal to the ones obtained with the sawtooth potential and the finite electric field.

However, in practice it turned out that the differences between the various methods amount

to only a few percent as shown in Fig. 2.6 for case of MgO.

It is noteworthy that the RPA does not incorporate electron-hole interactions, which is gener-

ally overcome through the use of vertex corrections. We show the effect of such corrections in

Fig. 2.6 for the bootstrap xc kernel [109, 18]. The somewhat overestimated results in Fig. 2.6

can be attributed to the fact that the xc kernel should correspond to the functional derivative

of the xc potential with respect to the density. Therefore, we should in principle use vertex

corrections obtained with a xc kernel associated to the PBE and the PBE0(0.25) functional.

However, for the purposes of this demonstration the application of the bootstrap kernel shall

be sufficient.

Overall, we adopted three different approaches to compute the high-frequency dielectric

constant ε∞. The different methods yield generally results in good agreement with each other

and with experimental references.
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3 Construction schemes for
nonempirical hybrid functionals

This chapter is devoted to the detailed description of nonempirical hybrid functionals. First,

we consider dielectric-dependent hybrid (DDH) functionals. We motivate the development

of these functionals through describing the relationship between the dielectric constant and

the amount of incorporated Fock exchange. Then, we provide an overview of existing DDH

functionals in the literature. The construction scheme for DDH functionals adopted in this

thesis is given subsequently. In the second part of this chapter, we turn to hybrid functionals

satisfying Koopmans’ condition. We introduce this exact physical constraint and describe its

connection to equivalent theorems. Then, we summarize existing hybrid functionals satisfying

Koopmans’ condition in the literature and conclude this chapter with the construction scheme

used in this thesis.

Parts of this chapter have been published in peer-reviewed articles [54, 115] or have been

submitted to Physical Review Research.
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3.1 Dielectric-dependent hybrid (DDH) functionals

3.1.1 Motivation of DDH functionals

An important step towards nonempirical hybrid functionals has been the identification of the

connection between the dielectric constant and the amount of Fock exchange in the global

PBE0(α) functional. This was first described by Alkauskas et al. [36] and shortly afterwards by

Marques et al. [41]. In the former study, it has been shown that the optimal fraction of Fock

exchange αopt (which reproduces the experimental band gap) and the inverse high-frequency

dielectric constant 1/ε∞ are closely related to each other [36]:

αopt ≈ 1/ε∞. (3.1)

Interestingly, this dependence has also been implied in the early works of Bylander and

Kleinman [25], and Shimazaki and Asai [38, 39, 40].

A graphical illustration of the connection expressed in Eq. (3.1) is given in Fig. 3.1. Note,

that we show here αopt as deduced from the slightly larger data set of Marques et al. [41].

Nevertheless, the results of Alkauskas et al. [36] are almost identical thereby confirming the

conclusion drawn in their work. The adopted set of materials amounts to 21 compounds

comprising semiconductors (Si, Ge, GaAs, etc.), insulators (MgO, SiO2, etc.), alkali halides (LiF,

LiCl, etc.), 2D materials (BN, MoS2), as well as noble-gas crystals (Ne, Ar, etc.).

Figure 3.1 – Optimal mixing parameter αopt within the PBE0(α) functional vs. the high-
frequency dielectric constant ε∞ for various materials. The curve associated to αopt = 1/ε∞ is
shown as a dashed line. The data for αopt have been deduced from Table I in Ref. [41]. The
experimental data for ε∞ have been taken from Ref. [47] and the references therein.

In Fig. 3.1, a clear correlation between αopt and 1/ε∞ is apparent. The residual scattering

can be attributed to various simplifications such as neglecting the frequency dependence
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3.1. Dielectric-dependent hybrid (DDH) functionals

and the anisotropy of the dielectric function [36]. Also materials including d electrons have

been identified as typical outliers [36]. Nevertheless, the manifest correlation shown in Fig. 3.1

remains unaffected by these minor deviations.

The empirical connection between αopt and 1/ε∞ can be also explained adopting physical

arguments. Semiconductors with a narrow band gap indicate typically a strong dielectric

screening. In contrast, wide band-gap insulators show only a weak dielectric screening.

Whereas this observation is already qualitatively reproduced at the PBE level, the hybrid func-

tional PBE0(1/ε∞) yields also a quantitatively correct description. Indeed, for semiconductors

1/ε∞ becomes small and thus the band-gap estimate E PBE0(1/ε∞)
g . Analogously for insulators,

1/ε∞ assumes much larger values and therefore the band gap E PBE0(1/ε∞)
g increases.

One can also provide some theoretical support for Eq. (3.1) by considering the COHSEX

approximation to the GW self energy. This static approximation is composed of two parts: the

Coulomb hole (COH) and the screened exchange (SEX) contribution [10]. One can write the

COHSEX self-energy as the sum of the following terms:

ΣCOH(r,r′) =− 1

2
δ(r,r′)

[
v(r,r′)−W (r,r′,0)

]
, (3.2)

ΣSEX(r,r′) =−∑
i
φi (r)φ∗

i (r′)W (r,r′,0) (3.3)

Here, φi are the single-particle wave functions and v and W are the bare and the screened

Coulomb interaction, respectively. Assuming that the dielectric function acts as a constant

scaling of the electron-electron interaction, one finds W (r,r′,0) ≈ v(r,r′)/ε∞ and thus [7]

ΣSEX(r,r′) ≈− 1

ε∞

∑
i
φi (r)φ∗

i (r′)v(r,r′) = 1

ε∞
V Fock

x (r,r′), (3.4)

where in the last step, Eq. (2.28) is used. It becomes apparent, that a hybrid functional

including a fraction of Fock exchange α= 1/ε∞ yields the same asymptotic behaviour as ΣSEX

given in Eq. (3.4). This conclusion is valid since the fraction of semilocal exchange is only short

ranged and ΣCOH can be sufficiently well approximated through the correlation term within

the hybrid functional [99].

Interestingly, a somewhat similar reasoning can be found in the works of Kronik and collabora-

tors [71, 56]. In Ref. [56], these authors discuss that within exact KS theory, the KS potential for

a finite neutral system decays as −1/r for large distances r from the center of the system [56].

This exact property is denoted as the asymptotically correct potential for finite systems [64,

56]. For the extension of this property to infinite systems, it is then argued, that the exact KS

potential decays as −1/(ε∞r ) [71, 56]. Under the justified assumption that the asymptotically

correct potential is the same for exact KS and gKS theory, one can transfer this result to the

hybrid-functional framework. The resulting fraction of Fock exchange is then the well known

α= 1/ε∞ [71]. For a more extensive discussion on the exact properties in KS and gKS theory,

we refer here to Ref. [56].
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Overall, the connection between the amount of Fock exchange and the high-frequency dielec-

tric constant is well supported through statistical, physical, and theoretical arguments. The

practical incorporation of this concept into nonempirical hybrid-functional schemes will be

discussed in the following.

3.1.2 Overview of DDH functionals

Based on the fundamental idea of dielectric-dependent hybrid (DDH) functionals, various

construction schemes have been proposed in the last years. These approaches have in com-

mon, that the inverse dielectric constant is an integral part of the adopted procedure. However,

the technical details of the schemes exhibit notable differences.

Only a few works, such as the study of Conesa [58], utilized the experimental dielectric con-

stant εExpt
∞ and then determined the mixing parameter as α= 1/εExpt

∞ . However, this way of

proceeding relies on experimental data and is therefore comparable to adopting the empirical

αopt. It is apparent that also the dielectric constant has to be calculated from first principles

in order to construct nonempirical hybrid functionals. This constraint raises the question:

Which electronic-structure method shall be employed for this task? For instance, Marques et

al. computed the dielectric constant at the PBE level of theory [41]. The resulting PBE0(1/εPBE∞ )

functional was then instrumental to obtain an estimate for the band gap. However, this choice

remains kind of arbitrary, even if the computed dielectric constant depends only weakly on

the considered functional.

In order to answer this open question, several iterative procedures have been proposed. In

these workflows, the dependence of the dielectric constant on the specific electronic-structure

method is overcome through a simple feedback loop. Further details on such workflows,

are presented in the next section. The application of an iterative scheme to a global hybrid

functional has first been performed by Skone et al. and denoted as sc-hybrid approach

[43]. Similar schemes were also proposed later by Gerosa et al. [44] and He et al. [136]. The

sc-hybrid approach has been applied to a variety of semiconductors, insulators, and transition-

metal oxides and has led to notably improved band gaps with respect to semilocal DFT and

PBE0(0.25) [43, 44, 136]. However, this method has also some limitations which have been

attributed to the underlying global hybrid functional.

As a remedy, range-separated hybrid functionals have been investigated. These functionals

offer a substantial amount of flexibility due to the distinct fraction of Fock exchange in the

short range (αs) and in the long range (α`) mediated through the range-separation parameter

(µ). The long-range fraction α` is generally set to 1/ε∞ in order to enforce the correct longe-

range screening. For the remaining parameters αs and µ further approximations are required,

which have shown to be less straightforward [47]. Interestingly, the range-separated framework
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allows us to approximate the static Coulomb interaction as [35]

W (r,r′) ≈ ε−1∞
|r− r′| +

(αs −ε−1∞ )erfc(µ|r− r′|)
|r− r′| . (3.5)

Here, the first term is the same as for a global DDH functional and the second term represents

a short-range correction to the Coulomb interaction. In this perspective, one can interpret

range-separated DDH functionals as a natural generalization of global DDH functionals.

Among the first range-separated DDH schemes was the RS-DDH method of Skone et al. In this

approach, the screening parameter µ has been determined through different nonempirical

definitions [35]. Instead, the short-range fraction of Fock exchange αs has been set to 0.25

following the seminal PBE0 paper [31]. It has been argued, that this definition of αs represents

an attenuated short-range exchange which amounts in practice for an approximate form of

short-range correlation in the functional [35]. However, this semi-empirical setting of αs has

remained rather unsatisfactory.

To overcome this drawback of RS-DDH, Chen et al. proposed the DD-RSH-CAM method

[47]. In this approach, the full Fock exchange is considered in the short-range, i.e. αs = 1.

This definition has been rationalized by a comparison between the range-separated Coulomb

interaction and a model dielectric function [47]. The range-separation parameter µ is then

computed by fitting the model to the inverse dielectric function [47]. It is noteworthy that

in DD-RSH-CAM the dependence of the hybrid-functional parameters on the dielectric con-

stant has been embedded in more general dependence on the dielectric function. Since the

dielectric function can be calculated with ab-initio methods, DD-RSH-CAM is in principle

free of empirical parameters [47]. We remark, that simultaneously to the work of Chen et

al. [47], Cui et al. proposed the doubly screened hybrid (DSH) approach [57]. This method

is essentially the same as DD-RSH-CAM, differing only in some technical aspects and the

physical motivation [57]. Consequently, both range-separated DDH schemes yield very similar

results as shown in Ref. [137].

3.1.3 Construction scheme adopted in this thesis

In this thesis, we employ some of the DDH schemes described in the previous section. Fur-

thermore, we develop new flavours of DDH functionals in order to overcome drawbacks

of the established approaches. Generally, we determine DDH functionals by adopting the

self-consistent workflow visualized in Fig. 3.2. The scheme consists in an iterated update

of an initial guess for the hybrid-functional parameters. Within each iteration step, the gKS

equations [26] are solved and the dielectric constant ε∞ of the considered material is calcu-

lated (cf. Sec. 2.5). Subsequently, improved values of the parameters are determined using the

calculated dielectric properties. This process is performed until a self-consistent description

is reached. We note that the parameter update in Fig. 3.2 is specific to the adopted class of

hybrid functional. We discus this separately for the different classes investigated in this thesis.
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Initial guess for
hybrid functional parameter(s)

Solve generalized
Kohn-Sham equations

Evaluate high-frequency
dielectric constant ε∞

Update hybrid
functional parameter(s)

Convergence?

Output

No

Yes

Figure 3.2 – Workflow for the construction of dielectric-dependent hybrid (DDH) functionals.
The procedure for updating the free parameters depends on the considered hybrid-functional
form and is described in the text.

First, we consider the PBE0(α) functional which depends on the global fraction of incorporated

Fock exchange α [31]. This parameter is updated in the standard fashion through α= 1/ε∞.

The self-consistent procedure in Fig. 3.2 then converges to a dielectric constant εsc∞ and

a mixing parameter α = 1/εsc∞. The hybrid functional determined in this way is denoted

PBE0(1/εsc∞).

Second, we examine the CAM(αs,α`,µ) functional which incorporates different fractions of

Fock exchange in the short (αs) and in the long range (α`), connected via the inverse range-

separation length µ [70]. These three parameters are treated differently. The short-range

fraction αs is taken as a constant and is set according to different definitions proposed in

the literature. We specifically consider αs equals to 1 [47], 0.25 [35], or 0 [90, 91, 92, 93, 94].

The long-range fraction of Fock exchange α` is determined analogously to the global mixing

parameter by setting α` = 1/εsc∞. Finally, the inverse range-separation length µ is fixed either

through the fitting procedure of Chen et al. [47] or through the Thomas-Fermi (TF) screening

parameter

µTF = 6

√
3nv

π
, (3.6)

where nv is the valence-electron density [35].

Overall, we investigate five distinct DDH functionals in this thesis which are denoted as

PBE0(1/εsc∞), DD-RSH-CAM, CAM(1, 1/εsc∞,µTF), CAM(0.25, 1/εsc∞,µTF), and CAM(0, 1/εsc∞,µTF).

A comparison of these functionals is given in Table 3.1.
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Table 3.1 – Comparison of the DDH functionals examined in this thesis. The comparison is
made in terms of the fraction of short-range Fock exchange αs, the fraction of long-range Fock
exchange α`, and the range-separation parameter µ.

αs α` µ

PBE0(1/εsc∞) 1/εsc∞ 1/εsc∞ -

DD-RSH-CAM [47] 1 1/εsc∞ µfit

CAM(1, 1/εsc∞,µTF) 1 1/εsc∞ µTF

CAM(0.25, 1/εsc∞,µTF) 0.25 1/εsc∞ µTF

CAM(0, 1/εsc∞,µTF) 0 1/εsc∞ µTF

3.2 Hybrid functionals satisfying Koopmans’ condition

3.2.1 Koopmans’ condition and related theorems

The second class of nonempirical hybrid functionals investigated in this thesis, are determined

through enforcing Koopmans’ condition. This constraint describes a physical property within

exact DFT and will be introduced in this section. In addition, we describe several well known

theorems which are equivalent but not identical to Koopmans’ condition. We note, that beside

the nomenclature adopted in this thesis, various different names for these theorems can be

found in the literature.

In 1982, Perdew and collaborateurs showed that the HK theorems can be extended to systems

with fractional electron numbers [62]. Such systems are not described by a single many-body

wave function but through a statistical enesemble of wave function associated to integer

electron numbers [62]. Adopting Levy’s constrained search formulation [138], one can then

proof that within exact DFT the total energy E satisfies

E(N + f ) = (1− f )E(N )+ f E(N +1), (3.7)

where N is an integer and f is a real number between 0 and 1 [62]. This represents a series of

linear functions in between integer values of the electron number. Therefore, Eq. (3.7) is also

denoted as piecewise-linearity condition. Interestingly, this constraint was later also derived

by Yang et al. [34] based on a different interpretation of fractional charges invoking replicas of

pure states [56]. A graphical illustration of the piecewise-linearity condition is given in Fig. 3.3.

In practice, it turned out that most of the commonly used electronic-structure methods do not

fulfil the piecewise-linearity condition. Indeed, semilocal functionals typically give a convex

curve whereas HF yields a concave one [63, 65]. For this violation of the piecewise-linearity con-

dition different terms have been coined in the literature such as deviation-from-the-straight-

line-error [139], localization/delocalization error [140] or many-electron self-interaction error

[63]. In particular, the latter term has to be distinguished from the one-electron self-interaction
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Figure 3.3 – Schematic illustration of the piecewise-linearity condition. The total energy is
shown as a function of the electron number of the system. The curves corresponding to exact
DFT (exact), a semilocal xc functional (DFT) and Hartree-Fock theory (HF) are indicated.

error [80], which is related to another property of the exact xc functional [56].

The piecewise-linearity condition can be equivalently expressed in terms of the single-particle

levels. This can be achieved through Janak’s theorem, εi = ∂E/∂ fi , which states that the

single-particle energies εi are equal to the derivative of the total energy E with respect to

the occupation fi [141]. Employing this theorem, one can deduce that the highest occupied

single-particle energy level does not change upon its occupation [142]. This is the so called

Koopmans’ condition which is illustrated in Fig. 3.4.

Figure 3.4 – Schematic illustration of Koopmans’ condition. The highest occupied single-
particle level is shown as a function of the electron number of the system. The curves corre-
sponding to exact DFT (exact), a semilocal xc functional (DFT) and Hartree-Fock theory (HF)
are indicated.

In analogy to the observations made for the piecewise-linearity condition, many commonly

used electronic-structure methods also violate the Koopmans’ condition [65]. Indeed, the

spurious convexity (concavity) in the total-energy curve of semilocal DFT (HF) translates

into an almost linear increase (decrease) of the highest occupied single-particle level as a
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function of the fractional occupation [65]. At integer values of the electron number, finite steps

are apparent which are underestimated (overestimated) with respect to exact DFT [65]. It is

noteworthy that these finite steps represent discontinuities in the derivative of the total energy.

Moreover, these steps are of great importance for the interpretation of the fundamental band

gap and have stimulated significant scientific effort [62, 140, 142, 143].

Another equivalent exact property is the so called IP theorem [62, 64]. It states that the highest

occupied single-particle level corresponds to the negative ionization potential (IP). It can be

proved by simply adopting the piecewise linearity, Janak’s theorem and the definition of the

IP [56]. The violation of the IP theorem by most of the commonly used electronic-structure

methods is a direct consequence of the previous explanations and is therefore not discussed

again. We remark that in the early work of Koopmans [144] the same statement as in the

IP theorem has been made. However, Koopmans’ result is an approximate theorem since

it is derived from a frozen-orbital HF theory [56]. In contrast, the IP theorem is a physical

constraint derived within exact DFT. In order to preserve a consistent nomenclature, we refer

to the study of Koopmans as to the “original Koopmans’ condition” to distinguish it from the

“Koopmans condition” shown in Fig. 3.4.

3.2.2 Overview of hybrid functionals satisfying Koopmans’ condition

As shown in the previous section, Koopmans’ condition and its related theorems are violated

by most of the commonly used electronic-structure methods. Therefore, great scientific

effort has been devoted to incorporate these exact constraints within approximate density

functionals. In particular, hybrid functionals exhibit great potential to achieve this goal.

Indeed, their incorporated free parameters can be varied systematically in order to enforce a

specific constraint or at least to minimize the deviations from it. Moreover, as seen in Figs. 3.3

and 3.4, semilocal density functionals and HF theory typically show an opposite behaviour

with respect to exact DFT. Therefore, hybrid functionals, which incorporate a certain fraction

of Fock exchange, represent an ideal compromise between both limits and are thus an intuitive

starting point for the incorporation of exact constraints. It is noteworthy that the previously

discussed properties of exact KS DFT can be rigorously generalized to gKS DFT [56]. Therefore,

it is meaningful to enforce these constraints within a hybrid-functional framework.

The enforcement of previously presented exact constraints through hybrid functionals has

been first achieved for molecular systems. Indeed, the presence of localized orbitals enables

the enforcement of the IP theorem [42, 71] and the piecewise-linearity [65] in a straightfor-

ward manner. The application of the same idea to extended systems such as solids is more

challenging and will be described later.

Among the first nonempirical hybrid-functional schemes for molecular systems was the

optimally tuned range-separated hybrid (OT-RSH) method of Baer, Kronik and coworkers [66,

67, 42]. In this scheme, the exchange energy is decomposed into pure Fock exchange in the

long-range and pure semilocal exchange in the short-range. The range-separation parameter
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is “optimally tuned” through minimizing the deviation from the IP theorem [66]. Despite

the success of OT-RSH for various molecular systems, the application to extended systems

proved to be difficult. The origin of these complications lies in the fact that IPs for extended

systems are not directly accessible from periodic bulk calculations. Indeed, the computation

of IPs requires calculations for an adequate surface model which would result in a rather

impractical nonempirical scheme. In the investigation of molecular crystals, this problem has

been circumvented by first fixing the optimal parameters through calculations of individual

molecules in the gas phase and then adopting the determined parameters for the molecular

crystal [71]. However, this procedure is apparently not applicable to inorganic crystals. This

limitation is also apparent in the further generalized OT-SRSH approach [71], which requires

an empirical parameter adjustment in case inorganic crystals are investigated.

The application of hybrid functionals satisfying Koopmans’ condition to solids has been mostly

achieved within the last decade. In particular, the investigation of defects in semiconductors

was key to overcome the limitations outlined before. Indeed, defects naturally induce localized

states, which can be considered analogously to the localized orbitals in molecular systems.

Various authors adopted this basic idea in order to enforce Koopmans’ condition within

a hybrid-functional framework [68, 48, 49, 51, 52, 69, 50, 53, 55]. This development was

accelerated by the fact that the study of defects through hybrid functionals was already a well

established technique, which allowed for a fast adaption of the computational procedure. It

is noteworthy that most studies employ these nonempirical hybrid functionals in order to

achieve an accurate description of the defect under investigation [68, 49, 55]. In particular,

the modelling of polaronic distortions has shown to be sensitively affected by the fulfilment

of the piecewise linearity condition [48, 51, 50, 53]. Miceli et al. [51] were among the first,

to employ hybrid functionals that satisfy Koopmans’ condition as a predictive tool for band-

gap calculations. These authors showed that the exact constraint is satisfied across a series

of defects, which in turn enables a robust band-gap estimate for the specific host material

[51]. Moreover, the hydrogen-interstitial defect has been proposed as a universal probe

for achieving accurate band gaps [51]. These promising results guide the way towards a

nonempirical hybrid-functional scheme which is generally applicable to semiconducting

and insulating materials. Therefore, we adopt the construction procedure of Miceli et al.

throughout this thesis. A more detailed description of the workflow is given in the next section.

Before closing this section, we briefly summarize closely related computational methods which

also rely on Koopmans’ condition. First, it is noteworthy that the incorporation of Koopmans’

condition (and the equivalent theorems) has not been limited to hybrid functionals. Indeed,

similar nonempirical approaches have been proposed within the DFT+U [145, 146, 68] and

the hybrid+U framework [147, 148]. Also one-shot GW corrected hybrid functionals have

been considered as a starting point for the enforcement of exact constraints [149, 139, 65].

All these approaches have in common that they incorporate undetermined parameters. In

analogy to the case of hybrid functionals, these free parameters are fixed in such a way that

the exact constraint is satisfied. A second possible strategy to enforce Koopmans’ condition

is the incorporation of additional terms in the Hamiltonian. This way of proceeding can be
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3.2. Hybrid functionals satisfying Koopmans’ condition

interpreted as a generalization of the one-electron self-interaction correction (SIC) scheme

[80] to the more general many-electron self-interaction error [63]. The application of this idea

to extended systems typically requires the use of maximally-localized Wannier functions. The

resulting schemes are therefore denoted as Wannier-Koopmans method [150] or Koopmans’

compliant functionals [151, 152]. Such corrections are in principle also applicable to hybrid

functionals, but lie outside of the scope of this thesis. In the following, we focus again on

hybrid functionals without resorting to SIC schemes anymore.

3.2.3 Construction scheme adopted in this thesis

In this thesis, we construct hybrid functionals that satisfy Koopmans’ condition through the

procedure outlined in the work of Miceli et al. [51]. Here, we illustrate the workflow for the

specific case of the global PBE0(α) functional. For range-separated functionals, the procedure

can be applied analogously.

First, we consider a supercell of the investigated material in which a point defect D is intro-

duced. The associated single-particle energy level is then computed in the occupied and in

the unoccupied charge configuration. For an arbitrary mixing parameter α, both PBE0(α)

calculations yield generally different defect levels due to the violation of Koopmans’ condition.

This is shown schematically in Fig. 3.5. The energy difference between the single-particle level

in the two charge configurations is denoted as ∆K. Since a single-particle level evolves linearly

with α, the same holds for ∆K. Therefore, one can identify a unique value α=αK for which

∆K vanishes, i.e. ∆K(αK) = 0. In this case, Koopmans’ condition is fulfilled as shown in Fig.

3.5. The PBE0(αK) functional is then instrumental to obtain a band-gap estimate for the host

material.

It is worth noting that αK is independent of the specific occupation of the single-particle

level. The crossing point can therefore also be determined through every pair of fractional

occupations between 0 and 1. However, it is good practice to use the two extreme cases of

occupation in order to minimize numerical errors associated with the determination of the

intersection. Furthermore, we remark that we show here D0 as occupied and D+ as unoccupied.

Of course, the analogous situation of unoccupied D0 and occupied D− is equivalent.

Technically, one should bear in mind, that the present construction scheme relies predom-

inantly on defect calculations. We note that upon the creation of the defect we generally

calculated the electronic structure fully self-consistently and without allowing for structural

relaxations. This is justified insofar we are interested in an accurate band-gap prediction of the

host material rather than the correct modelling of the defect structure. Furthermore, this way

of proceeding carries the advantage that the long-range screening is described entirely by the

high-frequency dielectric constant ε∞. The spurious interactions with periodically repeated

image charges is overcome through accurate finite-size corrections to the single-particle levels

[20, 124] as described in Sec. 2.5. It is noteworthy that these corrections incorporate the

specific value of ε∞ [cf. Eq. (2.45)]. In order to ensure a consistent application of the finite-size
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Chapter 3. Construction schemes for nonempirical hybrid functionals

Figure 3.5 – Occupied and unoccupied single-particle energy levels as a function of the mixing
parameter α used in the PBE0(α) functional. The energy difference ∆K between both charge
configurations is indicated for an arbitrary value of α. The point of intersection corresponds
to the enforcing of Koopmans’ condition. The dashed vertical line indicates the resulting
band-gap estimate. The band-edge levels of the host material vs. α are also shown.

corrections, we systematically consider dielectric constants as calculated with the same hybrid

functional used in the defect calculations.

The outlined procedure has been applied to various defects and host materials throughout

this thesis. In order to visualize our results in a understandable fashion, we simplify the

presentation of Fig. 3.5. In particular, we show in the following only the crossing point as

obtained for each specific defect. This point contains all the relevant information for the

enforcement of Koopmans’ condition.
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4 Developments for hybrid functionals
satisfying Koopmans’ condition

In this chapter, we describe a nonempirical procedure for achieving accurate band gaps of

extended systems through the insertion of suitably defined potential probes. By enforcing

Koopmans’ condition on the resulting localized electronic states, we determine the optimal

fraction of Fock exchange to be used in the adopted hybrid functional. As potential probes, we

consider point defects, the hydrogen interstitial, and various adjustable potentials that allow

us to vary the energy level of the localized state in the band gap. By monitoring the delocalized

screening charge, we achieve a measure of the degree of hybridization with the band states,

which can be used to improve the band-gap estimate. Application of this methodology to AlP,

C, and MgO yields band gaps differing by less than 0.2 eV from experiment.

The results presented in this chapter have been published in Ref. [54]. Further information

can be found in the corresponding archive on the Materials Cloud [153].
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Chapter 4. Developments for hybrid functionals satisfying Koopmans’ condition

4.1 Open questions

The determination of nonempirical hybrid functionals through the enforcement of Koopmans’

condition has recently drawn great scientific attention [68, 48, 49, 51, 50, 52]. In particular,

Koopmans’ condition applied to defect states and interstitial hydrogen probes has been

successful in accurately describing band gaps [49, 51, 52] and polaronic states [48, 69, 51, 50,

53]. However, open questions concerning the use of defects within this procedure still remain.

Indeed, it is unclear to what extend the band-gap estimate depends on the selected defect.

This uncertainty is visualized in Fig. 4.1 for the oxygen vacancy VO and the two different charge

transition levels for the hydrogen interstitial Hi in MgO.

Figure 4.1 – Band edges and defect energies at the points of intersection displayed versus
mixing parameter α, as obtained with the PBE0(α) functional for native defects in MgO. The
defects comprise the oxygen vacancy VO and the two different charge transition levels for
the hydrogen interstitial Hi. The indicated band gaps correspond to those obtained with the
PBE0(α) functional. The vertical green line corresponds to the experimental reference (see
text).

We observe that the nonempirical construction procedure (cf. Sec. 3.2.3) applied to the three

defects yields mixing parameter in overall agreement with each other. Also the comparison

with respect to the empirically adjusted mixing parameter reveals acceptable deviations. How-

ever, the corresponding band-gap estimates differ by ∼0.3 eV. This deviation is not negligible

and raises the question of how to assess the reliability of a specific defect for band-gap predic-

tions. Moreover, it might be possible to identify an optimal defect for this task. On the other

hand, we should bear in mind that we aim at calculating the band gap of a specific material

without performing an extended defect study. These open issues call for further clarification.

48



4.2. Definition of adjustable potential probes

4.2 Definition of adjustable potential probes

To overcome these drawbacks, we introduce adjustable potential probes. These are defects

that allow us to study the band-gap prediction as the defect level varies within the band gap.

More specifically, rather than relying on immutable physical defects, we aim at controlling

the energy level of a localized electron state in the band gap. For this purpose, we consider

parameter-dependent potentials that correspond to generalizations of the standard Coulomb

potential of the hydrogen atom. These flexible potential probes are achieved by suitably

modifying the local or the nonlocal part of the hydrogen pseudopotential.

As a first type of potential probe, we take the local potential

Vloc(r ) =−1

r
erf

(
rp
2σ

)
, (4.1)

which corresponds to the solution of the Poisson equation for a Gaussian charge distribution of

width σ. For a vanishing σ, the local potential coincides with the standard Coulomb potential

VC(r ) =−1/r . The use of a finite width leads to the transformation of the central divergence

into a finite global minimum. The asymptotic r−1 behavior is ensured irrespective of the value

of σ. A graphical visualization of such local potentials is given in Fig. 4.2.

Figure 4.2 – Local potential as a function of the distance to the origin for various width
parameter σ.

The energy level associated with the local potential Vloc shifts upwards for increasing σ ac-

companied by an electronic state of larger extent. The parameter dependence is found to be

almost linear when the defect level lies close to the middle of the band gap, as shown in Fig.

4.3 for a local potential probe in C. Upon varying σ, it is possible to position the energy level

between the neutral hydrogen level and the conduction-band edge of the host material.

The second type of parametrized potentials that we take under consideration in this chapter

are nonlocal. We define such potentials as

Vnonloc = Ṽloc(r )+D|β〉〈β|, (4.2)
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Chapter 4. Developments for hybrid functionals satisfying Koopmans’ condition

Figure 4.3 – Defect energy eigenvalue of the local and the nonlocal potential probe in C as a
function of the internal parametersσ and D , respectively. The energy eigenvalue of the neutral
hydrogen interstitial H0

i is also indicated. The defect eigenvalues and the band-edge levels are
obtained with the functional PBE0(αopt), which reproduces the experimental reference for the
band gap (see text).

where Ṽloc(r ) is a local Coloumb-like potential, D is a controllable parameter, and |β〉 is a

projector on a localized orbital of s symmetry. For a specific value of D (D = −12.5 Ry),

the potential probe Vnonloc corresponds to a viable pseudopotential for hydrogen and the

eigenvalue describes that of the hydrogen interstitial, as can be seen in Fig. 4.3. The parameter

D is then varied to continuously displace the energy level of the nonlocal potential probe

either to higher or lower energies compared to the neutral hydrogen level. The energy level

is found to shift monotonically with D. The use of these two types of adjustable potential

probes allow us to generalize the hydrogen-probe concept of Miceli et al. [51] providing an

instrument to tune the associated defect level to a desired energy.

4.3 Computational aspects

To examine the performance of the adjustable probes, we consider three materials, namely

AlP, C, and MgO. These compounds cover a large range of band gaps and show either covalent

or ionic bonding character. The conventional unit cells of the three materials are shown in Fig.

4.4. We adopt experimental lattice constants taken from Ref. [130]. For the electronic-structure

calculations, we use energy cutoffs of 50, 80, 100 Ry for AlP, C, and MgO, respectively, by which

the total-energy convergence is assured within 1 meV/atom. Converged results for the band

gaps are achieved with a 4×4×4 k-point sampling. It is noteworthy that the three considered

compounds show different kinds of band gaps, namely indirect for AlP and C, and direct for

MgO. The different positions of the band-edge levels are visualized in Fig. 4.5 as obtained at

the PBE level of theory.
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4.3. Computational aspects

(a) (b) (c)

Al

P C Mg O

Figure 4.4 – Conventional unit cells of (a) AlP in zincblende structure, (b) C in diamond
structure, and (c) MgO in rocksalt structure. Al, P, C, Mg, and O atoms are shown in violet,
orange, gray, blue, and red, respectively.

Figure 4.5 – PBE band structure of (a) AlP, (b) C, and (c) MgO. The valence-band maximum
(VBM), the conduction-band minimum (CBM), and the corresponding band gap are indicated.

For the construction of hybrid functionals satisfying Koopmans’ condition, we consider in

this chapter the global PBE0(α) functional. The mixing parameter α is determined through

the analysis of point defects modelled within a 64-atom supercell together with a 2×2×2

Brillouin zone sampling. A graphical visualization of the defective supercells is given in Fig.

4.6 for the case of an adjustable potential probe at an interstitial position. We account for the

spurious interactions with image charges arising from the periodic boundary conditions (PBC)

through finite-size corrections as described in Sec. 2.5. The dielectric constants are calculated

separately through the application of a sawtooth potential to a 1×1×8 supercell [126, 127].

It is important to set the references for the band gaps against which we benchmark our

calculations. For AlP, C, and MgO, we take experimental band gaps E Expt
g of 2.50 [154], 5.48

[154], and 7.97 eV [130], respectively. These values correspond to fundamental electronic gaps.

To ensure a proper comparison between theory and experiment, we add to the experimental

band gaps renormalizations due to phonons, i.e. 0.02 eV for AlP, 0.37 eV for C, and 0.53 eV

for MgO, where the former two estimates are based on experimental data [154] and the latter

corresponds to a theoretical value [155] and includes the effect of lattice polarization [156].

Further effects such as spin-orbit coupling are neglected. We estimate that the experimental

references obtained in this way are subject to a global uncertainty of 0.1 eV.
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Chapter 4. Developments for hybrid functionals satisfying Koopmans’ condition

(a) (b) (c)

Figure 4.6 – Defective supercell with an adjustable potential probe at an interstitial position in
(a) AlP, (b) C, and (c) MgO. The defect sites are highlighted with green circles. Al, P, C, Mg, and
O atoms are shown in violet, orange, gray, blue, and red, respectively. The adjustable potential
probes are visualized in white.

4.4 Application of adjustable potential probes

For various point defects, the hydrogen interstitial, and the two types of adjustable potential

probes, we construct hybrid functionals satisfying Koopmans’ condition following the proce-

dure illustrated in Sec. 3.2.3. As defect levels, we consider the (+/0) level for the PAl antisite

in AlP, the subsititutional NC in C, and the oxygen vacancy VO in MgO. For the hydrogen

interstitial, which is inserted at the center of the largest void, we take under consideration

both the (+/0) and (0/−) charge transitions. As far as both the local and nonlocal potential

probes are concerned, we position their centers at the same location as that of the hydrogen

interstitial. We focus on the (+/0) transition and use parameters for which the defect levels

sample the band gap. The results of our calculations are given in Fig. 4.7.

Figure 4.7 – Band edges and defect energies at the points of intersection displayed versus
mixing parameter α, as obtained for various defects in AlP, C, and MgO. The results for the
parametrized local and nonlocal potentials are indicated by red squares and red diamonds,
respectively. Additionally, labeled defects comprise PAl in AlP, NC in C, and VO in MgO, together
with two different charge transition levels for the hydrogen interstitial Hi . X∗ refers to the
potential probe with the smallest degree of hybridization δ. The vertical green lines correspond
to experimental references (see text).
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4.4. Application of adjustable potential probes

We observe that the mixing parameters αK satisfying Koopmans’ condition for the various

defects and probes fall in a narrow range for each of the three considered materials, supporting

the robustness of the proposed scheme. In particular, the derived αK values achieved with

the two types of adjustable potential probes almost coincide when the associated energy

level is the same, and this holds to some extent also for the other defects. More generally, the

adjustable potential probes allow us to visualize trends resulting from the continuous variation

of the defect energy level in the band gap. We detect a systematic tendency of deviating from

the ideal vertical line for defect energies close to the band-edges. This deviation is especially

evident in the vicinity of the valence band of MgO [cf. Fig. 4.7(c)]. For each value of α, Fig. 4.7

also provides the band gap achieved with the PBE0(α) functional. We note that the band gaps

corresponding to αK values resulting from defect levels close to the middle of the band gap fall

within about 0.2 eV from the experimental reference (cf. Fig. 4.7), consistent with previous

observations [51]. However, the behavior close to the band edges leads to a deterioration of

this agreement.

It is natural to assign the deviations observed for defect levels falling in the vicinity of the

band edges to the hybridization of the defect state with the delocalized band-edge states. To

verify this connection, we adopt a criterion for describing the degree of hybridization on the

basis of the delocalized screening charge, as proposed in Ref. [125]. Indeed, the polarization

charge that screens a charged defect is drawn in a uniform way from the periodically repeated

simulation cell [125, 146]. Far from the defect, this gives an average charge density of (1−
1/ε)q/Ω, where ε is the dielectric constant, q the total defect charge, andΩ the volume of the

supercell. In the presence of hybridization, the observed charge density is found to deviate

from this reference value [125]. We define the degree of hybridization δ through this deviation,

as shown in Fig. 4.8(a). We use a Gaussian broadening with a width of 1 Å to smoothen the

defect charge density prior to the evaluation of δ.

To demonstrate its direct connection with the deviations in Fig. 4.7, we evaluate the degree of

hybridization δ for all considered defects versus the corresponding defect energy level within

the band gap. The calculated values in the case of MgO are shown in Fig. 4.8(b). We observe

that the lowest degree of hybridization is found for defect states in the middle of the band gap.

The hybridization increases noticeably when the defect level is located in the vicinity of either

the valence or the conduction band. Considering both local and nonlocal potential probes, we

identify the highlighted defect X∗ yielding the minimal degree of hybridization. For the three

considered materials, the energy level of X∗ is found to lie close to the middle of the band gap

(cf. Fig. 4.7). The corresponding mixing parameter αK then gives an accurate description of

the band gap. We note that the hybridization between band-edge and defect states depends

critically on the host material. In particular, we observe in MgO a strong interaction with the

valence band, which shows a high density of states due to the localized nature of the O 2p

states [157]. Such a dramatic behavior is seen neither for AlP nor for C. These results allow us

to understand the dependence of the mixing parameter αK on the considered defect and to

improve our selection criteria for identifying the most suitable defect states.
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Figure 4.8 – (a) Schematic view of the degree of hybridization δ defined in this work as the
deviation of the smoothened defect charge density from the delocalized screening charge
density (horizontal dashed line) at a large distance from the defect site. (b) Degree of hy-
bridization for various potential probes in MgO as a function of the defect energy level. The
results for the parametrized local and nonlocal potentials are indicated by red squares and
red diamonds, respectively. The indicated band-edge energies correspond to the functional
PBE0(αopt), which reproduces the experimental reference for the band gap (see text).

Table 4.1 – Band gaps (in eV) of AlP, C, and MgO obtained with the PBE0(αK) functional, in
which the mixing parameter is set through enforcing Koopmans’ condition for the two differ-
ent charge transition levels of the hydrogen interstitial, Hi(+/0) and Hi(0/−), as well as for the
potential probe X∗(+/0) showing the minimal degree of hybridization. The corresponding
mixing parameters αK are given in parentheses. The mean absolute errors (MAE) are deter-
mined with respect to the experimental references (Expt. in last column). These correspond to
fundamental band gaps corrected for phonon renormalization.

Hi(+/0) Hi(0/−) X∗(+/0) Expt.
AlP 2.30 (0.13) 2.30 (0.13) 2.40 (0.15) 2.52
C 5.90 (0.21) 5.71 (0.19) 5.93 (0.22) 5.85
MgO 8.35 (0.36) 8.61 (0.38) 8.48 (0.37) 8.50
MAE 0.14 0.16 0.07
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4.5. Summary

In Table 4.1, we give the band gaps of AlP, C, and MgO obtained from the (+/0) defect level

of the potential probe X∗ showing the minimal degree of hybridization, in comparison with

those obtained from the (+/0) and (0/−) charge transitions of the hydrogen interstitial Hi.

All hybrid functionals that result from these nonempirical constructions give band gaps in

good agreement with experimental references (Table 4.1). The mean absolute errors are

within 0.20 eV, which is comparable to other state-of-the-art methods for band-gap evaluation

[17, 18, 47, 35, 43]. Noticeably, the MAE of the potential probe X∗ is lower than those for

Hi indicating that minimizing the degree of hybridization generally improves the band gap

estimate. This property is particularly valuable when the natural defect levels associated to Hi

lie close to the band edges or even outside the band gap. More generally, these results validate

a rational procedure for identifying a suitable localized state for band-gap evaluation through

the fulfillment of Koopmans’ condition. In view of the results in Ref. [52], we expect that such

a procedure should also be applicable to systems of lower dimensions.

4.5 Summary

In this chapter, we present two types of adjustable potential probes for band-gap evaluations

through the application of Koopmans’ condition. Through the use of these potential probes,

the hybridization with the band-edge states can be minimized to yield band gaps within 0.2

eV or lower from experimental values. The dependence on the parameters of the potential

probes is smooth and thus suitable to be implemented in an automated minimization process.

The present results provide guidelines for the selection of suitable potential probes even

when natural defect states cannot be used, thereby enlarging the application scope of the

methodology based on the enforcement of Koopmans’ condition. This is an important step

towards establishing the present technique as a serious alternative with respect to many-body

perturbation theory schemes and dielectric-dependent hybrid functionals for robust and

accurate band-gap predictions.
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5 Band gaps of inorganic metal-halide
perovskites

In this chapter, we investigate nonempirical hybrid functionals for band-gap predictions of

inorganic metal-halide perovskites belonging to the class CsBX3, with B = Ge, Sn, Pb and X =

Cl, Br, I. We consider both global and range-separated hybrid functionals and determine the

parameters through two different schemes. The first scheme is based on the static screening

response of the material and thus yields dielectric-dependent hybrid functionals. The second

scheme defines the hybrid functionals through the enforcement of Koopmans’ condition

for localized defect states. We also carry out quasiparticle self-consistent GW calculations

with vertex corrections to establish state-of-the-art references. For the investigated class of

materials, dielectric-dependent functionals and those fulfilling Koopmans’ condition yield

band gaps of comparable accuracy (∼0.2 eV), but the former only require calculations for the

primitive unit cell and are less subject to the specifics of the material.

The results presented in this chapter have been published in Ref. [115]. Further information

can be found in the corresponding archive on the Materials Cloud [158].
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Chapter 5. Band gaps of inorganic metal-halide perovskites

5.1 Motivation

Solar cells based on metal-halide perovskites have recently drawn great scientific attention

[159, 160, 161, 162, 163]. In fact, within one decade their power conversion efficiencies in-

creased tremendously [159, 161] and reached 22.1% in 2017 [163] with potential for improving

even further. This makes them stand out as a promising alternative to today’s best thin-film

photovoltaic devices [160, 162]. The further improvement of perovskite solar cells relies greatly

on the ability of exploring the immense space of possible compositions and structures. For this

task, one naturally resorts to automated computational methods [164, 165, 166]. This requires

a critical trade off between aspired accuracy and bearable effort. The most accurate technique

for band-gap evaluation consists of quasiparticle self-consistent GW calculations including

vertex corrections [9, 15, 17, 18]. However, this technique demands a high computational effort

and is practically limited to materials with small unit cells. In particular, a recent study by

Wiktor et al. on perovskite compounds accounting for spin-orbit and thermal effects showed

that this level of theory is needed to achieve a good comparison with experimental band gaps

[114]. Therefore, it is highly desirable to develop alternative computational schemes yielding

the same accuracy as self-consistent GW methods but requiring a lower computational cost.

Electronic-structure calculations based on nonempirical hybrid functionals have the potential

to fill this gap. In this chapter, we evaluate the performance of such functionals for inorganic

metal-halide perovskites.

5.2 Theoretical schemes and band-gap references

In this chapter, we apply nonempirical construction schemes to different classes of hybrid func-

tionals. In particular, we consider the global PBE0(α) and the range-separated CAM(αs,α`,µ)

functional. First, we determine the free parameters through the dielectric response of the

perovskites materials. For the global functional this leads to the PBE0(1/εsc∞) functional (cf. Sec.

3.1.3). For the case of the range-separated functional CAM(αs,α`,µ), we adopt the DD-RSH-

CAM approach of Chen et al. (cf. Sec. 3.1.3). In analogy, we also fix the free parameters of the

global and the range-separated functional through the enforcement of Koopmans’ condition

(cf. Sec. 3.2.3).

To evaluate the performance of the nonempirical hybrid functionals, we carry out comparisons

with state-of-the-art methods for band-gap evaluation. Quasiparticle self-consistent GW

(QSGW̃ ) including vertex corrections in the screening (W̃ ) can serve as such a high-level

reference [9, 15, 17, 18]. A detailed QSGW̃ study of inorganic metal-halide perovskites has

recently been carried out by Wiktor et al. [114]. Here, we calculate QSGW̃ band gaps in a

similar fashion but with the pseudopotentials considered in this work and with nonlocal

commutators for the optical matrix element in the long-wavelength limit as described in Ref.

[167]. Our QSGW̃ band gaps are given in Table 5.1. In comparison to the results in Ref. [114],

the present band gaps agree within ∼0.2 eV on average and thereby confirm the conclusions

drawn previously.
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5.3. Computational aspects

The comparison with experiment requires the consideration of thermal effects and spin-orbit

coupling [114]. For the perovskites based on Pb and Sn, this can be achieved by relying on the

corrections given in Ref. [114]. The calculated band gaps corrected in this way are compared

with experimental band gaps in Table 5.1. We generally consider experimental data for the

same cubic phase when available, but report values referring to other phases otherwise. We

observe that the QSGW̃ band gaps generally agree well with experiment after the consideration

of thermal effects and spin-orbit coupling [114]. The case of CsSnCl3 shows a deviation of

about 0.6 eV, but this could at least partially result from the consideration of a cubic phase in

the calculation and of a monoclinic one in the experiment. In the following, we do not refer to

experimental data any more and use our QSGW̃ results to benchmark the band gaps obtained

through the nonempirical hybrid-functional schemes.

Table 5.1 – Band gaps (in eV) as calculated through QSGW̃ . Following Ref. [114], we include
corrections for finite temperature effects (∆T ) and for spin-orbit coupling (∆SOC) before com-
paring with experimental band gaps.

QSGW̃ QSGW̃ +∆T +∆SOC Expt.
CsPbI3 2.27 1.79 1.67 [168], 1.73 [169]
CsPbBr3 3.01 2.24 2.25 [170], 2.36 [171]
CsPbCl3 3.41 2.70 2.85 [170]
CsSnI3 1.10 1.46 1.31a [172], 1.3a [173]
CsSnBr3 1.32 1.75 1.75 [172]
CsSnCl3 1.79 2.17 2.8b [172]
CsGeI3 1.67 - 1.6c [174], 1.63c [175]
CsGeBr3 2.13 - 2.38d [176]
CsGeCl3 2.67 - 3.43d [176]

a orthorhombic phase, b monoclinic phase, c trigonal phase, d rhombohedral phase.

5.3 Computational aspects

5.3.1 Computational details

The calculations presented in this chapter are carried out using experimental lattice constants

for the cubic phase as given in Refs. [177, 114]. A graphical representation of the primitive unit

cell is given in Fig. 5.1(a) for the case of CsPbI3. In this crystal structure, all the nine considered

perovskites show a direct gap at the R point as shown in Fig. 5.1(b).

In our calculations, we use two sets of normconserving pseudopotentials to describe core-

valence interactions [87, 88] to examine the role of exchange interactions with core states [178]

(see Sec. 5.3.2). The first set (denoted PP1) incorporates only the outermost shells among

the valence states, whereas the second set (denoted PP2) additionally includes semicore

shells. The pseudopotential of Cs includes the semicore states in both sets. The reference GW

calculations have been performed with the set PP2. We used cutoffs of 70 and 100 Ry for the sets
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(a) (b)

Cs

Pb

I

Figure 5.1 – (a) Primitive unit cell of cubic CsPbI3. Cs, Pb, I atoms are shown in blue, gray, and
red, respectively. (b) PBE band structure of CsPbI3. Band-edge levels as determined at the R
point are indicated with vertical dashed lines.

PP1 and PP2, respectively. The valence electrons for all the elements in the pseudopotential

sets are specified in Table 5.2.

Table 5.2 – Atomic shells treated among the valence electrons in the two different sets of
pseudopotentials considered in this work.

PP1 PP2
Cs 5s25p66s1 5s25p66s1

Ge 3d 104s24p2 3s23p63d 104s24p2

Sn 4d 105s25p2 4s24p64d 105s25p2

Pb 5d 106s26p2 5s25p65d 106s26p2

Cl 3s23p5 2s22p63s23p5

Br 4s24p5 3s23p63d 104s24p5

I 5s25p5 4s24p64d 105s25p5

The QSGW̃ calculations in this chapter are performed with computational parameters consis-

tent with Ref. [114]. In particular, we use a plane-wave cutoff of 100 Ry. We include 800 bands

and achieve results in the infinite basis-set limit through linear extrapolation with respect to

the inverse number of bands [117]. For the materials investigated here, we find that such an

extrapolation generally leads to a band-gap opening of ∼0.1 eV.

For the construction of DDH functionals, we calculate the dielectric function through a linear

response approach. The irreducible polarization is evaluated with the formula of Adler and

Wiser [97, 98], for which 500 bands and an energy cutoff of 16 Ry are found to give converged

results. For a more realistic description, we calculate the reducible polarizability including the

bootstrap exchange-correlation kernel [109] for treating vertex corrections [47]. For the proper

evaluation of the high-frequency dielectric constants a dense k-point sampling of 8×8×8 for

the Pb compounds and of 10×10×10 for the Sn and Ge compounds are used. The convergence

of the high-frequency dielectric constant with respect to the k-point mesh in shown in Fig. 5.2

for the representative cases CsPbCl3 and CsSnCl3. It is noteworthy that samplings without
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Figure 5.2 – Convergence of the high-frequency dielectric constant ε∞ of CsPbCl3 and CsSnCl3

with respect to the adopted k-point mesh. Meshes with and without the R point are distin-
guished. The converged results are highlighted with an arrow.

the R point exhibit a somewhat faster convergence with respect to the number of k points.

However, this point describes the direct band-gap transition and is therefore indispensable for

a proper description of the electronic structure. Therefore, we evaluate the dielectric function

generally for k-point samplings which include the R point.

The construction of hybrid functionals satisfying Koopmans’ condition is based on calculations

for defects in supercells [51]. For modelling the point defects, we use 2×2×2 supercells (40

atoms) together with 2× 2× 2 k-point samplings. Spin polarization is explicitly included

whenever unpaired electrons occur.

5.3.2 Role of semicore electrons

Preliminary to the construction of the nonempirical hybrid functionals, we devote special

attention to the effect of including semicore shells among the valence electrons. To ensure

consistency with the GW reference, the same PP2 pseudopotentials should be used in the

hybrid functional calculations. This can be achieved with the DDH construction scheme,

which relies on calculations in the primitive unit cell. However, the PP2 set of pseudopo-

tentials becomes prohibitively demanding when dealing with defects in supercells. For the

construction of hybrid functionals satisfying Koopmans’ condition, we therefore make use of

the lighter pseudopotentials in the set PP1.

In order to estimate the error that we introduce through neglecting the semicore electrons

in PP1, we perform band-gap calculations using the two sets of pseudopotentials. In par-

ticular, we systematically vary the free parameters αs and µ within the hybrid functional

CAM(αs,α`=1/ε∞,µ). The form of the functional PBE0(α) is recovered by setting α=αs and

µ→ 0. The band-gap differences originating from the different pseudopotentials are visualized
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Figure 5.3 – Band-gap difference (in eV) for CsPbI3 between calculations with pseudopotential
sets PP1 and PP2, which differ by the treatment of semicore electrons. The band gaps are
obtained with a CAM-type hybrid functional in which the long-range fraction of Fock exchange
is set to α`=1/ε∞. The figure shows the band-gap difference as a function of the short-range
fraction of Fock exchange αs and the inverse screening length µ. Isovalues are shown by solid
lines.

in Fig. 5.3 in the representative case of CsPbI3. The two sets of pseudopotentials yield almost

identical band gaps in the limit corresponding to the semilocal functional PBE (αs = 0 and

µ= 0). This is consistent with the fact that the two sets of pseudopotentials are generated at

the PBE level and indicates that semicore states play a negligible role at this level of theory.

When the fraction of Fock exchange incorporated in the functional is increased, we find that

the PP1 set yields a reduction of the band gap with respect to the PP2 set. For low values

of αs, the difference in the band gap amounts to only a few tenths of an electronvolt, but it

progressively increases with αs, and reaches values larger than 1 eV for αs approaching 1. This

dependence indicates that the implicit treatment of semicore states in PP1 leads to significant

discrepancies with respect to the more accurate PP2 set when the fraction of Fock exchange

incorporated in the functional becomes sizeable. Similar effects were observed by Stroppa et

al. [178] for hybrid functional calculations with pseudopotentials generated at the semilocal

level.

These observations have significant consequences for the construction of nonempirical hybrid

functionals. In particular, this affects the DD-RSH-CAM functionals generated in this work,

which include a fraction of Fock exchange αs = 1 in the short range [47]. Therefore, it is only

meaningful to consider DD-RSH-CAM functionals in conjunction with PP2 pseudopotentials.

For the global hybrid functionals PBE0(1/εsc∞) and PBE0(αK) which incorporate only small

fractions of Fock exchange, the implicit treatment of core-electrons leads to smaller deviations

and thus the use of the PP1 set entails smaller errors. This should be borne in mind when

considering PBE0(1/εsc∞) and PBE0(αK) functionals with PP1 pseudopotentials in Secs. 5.4.1

and 5.4.2.
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5.4 Band gaps

5.4.1 Dielectric-dependent hybrid functionals

We first focus on the construction of dielectric-dependent hybrid functionals. The convergence

of this scheme applied to PBE0(α) functionals is shown in Fig. 5.4 for the case of CsPbI3.

Generally, convergence for the dielectric constant ε∞ [cf. Fig. 5.4(a)] and the band gap [cf.

Fig. 5.4(b)] is reached within three to four iterations. The self-consistent update procedure

is initialized through the use of the PBE functional, which corresponds to PBE0(α= 0). We

remark that the PBE0(1/εsc∞) functional resulting from this procedure is independent of the

starting point [43].

Figure 5.4 – Convergence of (a) the dielectric constant ε∞ and (b) the band gap within the self-
consistent DDH scheme for CsPbI3. The values for the PBE starting point and the converged
PBE0(1/εsc∞) are highlighted. The present results are obtained with PP1. PP2 pseudopotentials
show an analogous behavior.

The band gaps obtained with the PBE0(1/εsc∞) functional for the present set of perovskites are

shown in Table 5.3 and compared to the QSGW̃ reference values. The corresponding mixing

parameters 1/εsc∞ are given in parentheses. On average, we find a band-gap underestimation of

∼0.4 and ∼0.3 eV for PP1 and PP2, respectively. Such an accuracy is comparable to PBE0(1/εsc∞)

results reported in the literature for extended sets of semiconductors and insulators [43, 47].

This provides confidence that dielectric-dependent hybrid functionals can achieve the same

level of accuracy for a larger set of perovskite materials. The determined mixing parameters are

almost identical for both sets of pseudopotentials. This indicates that the explicit treatment of

semicore electrons only marginally affects the iterative construction scheme, even though the

ensuing band gaps differ by ∼0.1 eV.

Next, we apply the dielectric-dependent approach also to range-separated hybrid functionals.

We consider the CAM-type functional, which includes a fraction of Fock exchange αs in the

short range and α` in the long-range, mediated by an inverse screening length µ. These

parameters are determined through fitting of Chen’s model function [47]

ε−1(G) = 1− (1−ε−1
∞ )e−G2/4µ2

(5.1)
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Table 5.3 – Band gaps (in eV) calculated through PBE0(1/εsc∞) and DD-RSH-CAM functionals.
The determined hybrid functional parameter (1/εsc∞) and (1/εsc∞, µ) are given in parentheses.
The considered set of pseudopotentials is indicated. Band gaps evaluated through QSGW̃ are
given as reference. The mean absolute difference (MAD) is given with respect to these values.

PBE0(1/εsc∞) DD-RSH-CAM QSGW̃
PP1 PP2 PP2 PP2

CsPbI3 1.68 (0.16) 1.83 (0.17) 1.99 (0.18, 0.51) 2.27
CsPbBr3 2.48 (0.23) 2.65 (0.23) 2.84 (0.24, 0.53) 3.01
CsPbCl3 3.24 (0.27) 3.32 (0.27) 3.40 (0.28, 0.56) 3.41
CsSnI3 0.60 (0.10) 0.65 (0.10) 0.78 (0.12, 0.48) 1.10
CsSnBr3 0.82 (0.13) 0.88 (0.13) 0.99 (0.15, 0.53) 1.32
CsSnCl3 1.63 (0.21) 1.64 (0.21) 1.75 (0.22, 0.58) 1.79
CsGeI3 1.09 (0.12) 1.17 (0.12) 1.40 (0.10, 0.55) 1.67
CsGeBr3 1.59 (0.17) 1.66 (0.17) 1.89 (0.15, 0.58) 2.13
CsGeCl3 2.44 (0.22) 2.48 (0.22) 2.51 (0.21, 0.60) 2.67
MAD 0.42 0.35 0.20

to the inverse dielectric function as obtained from linear response theory. The accuracy of

the fit is shown in Fig. 5.5 for the case of CsPbI3. We remark, that the value determined for α`
corresponds to 1/ε∞. Since the fitting procedure is iterated within the DDH workflow (cf. Sec.

3.1.3), the final long-range fraction of Fock exchange is α` = 1/εsc∞.

Figure 5.5 – Inverse dielectric function ε−1
G (q→0 ,ω= 0) of CsPbI3 as calculated using linear

response theory (circles) and fitted according to the model function (solid line). The fitted
values for the parameters α` and µ and for the root-mean-square error (RMSE) are given.

The hybrid-functional parameters of the constructed DD-RSH-CAM functionals together with

the obtained band-gap estimates are given in Table 5.3. The observed long-range fraction of

Fock exchange is in close agreement to the one obtained with the global PBE0(1/εsc∞) function-

als. This indicates that the long-range exchange interaction is screened with almost identical

high-frequency dielectric constants εsc∞ in the two approaches. Consequently, differences in

the observed electronic structure originate from the different short-range description. The
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calculated band gaps indicate a mean absolute difference (MAD) of 0.20 eV with respect to

the QSGW̃ reference, which corresponds to an improved description relative to PBE0(1/εsc∞).

Hence, in the dielectric-dependent construction scheme, the range-separated CAM functional

yields more accurate band gaps than the global PBE0 functional, in accord with the results in

Ref. [47].

5.4.2 Hybrid functionals satisfying Koopmans’ condition

We first apply Koopmans’ condition to determine the free parameter α within the PBE0(α)

functional. We consider various native defects, such as vacancies, interstitials, and antisites,

but decide to focus only on halide vacancies since their single-particle energy levels are found

to lie close to mid-gap. Indeed, the present construction scheme works most effectively when

the hybridization of the defect states with the delocalized band states is minimized [54]. We

remark that in our scheme the defect levels are obtained without structural relaxation [51, 54],

thereby explaining their different location in the band gap with respect to previous studies

of defects in such perovskite materials [179, 180, 181]. A graphical illustration of the halide

vacancy defect is given in Fig. 5.6 (a) for the case of CsPbI3. The defect calculations in this

section are carried out with the pseudopotential set PP1 due to the computational cost entailed

by the consideration of supercells.

(a) (b)

VI X∗

Figure 5.6 – Defective supercells of CsPbI3 with (a) an iodine vacancy VI and (b) an adjustable
potential probe X∗. The defect sites are highlighted with green circles. Cs, Pb, I atoms are
shown in blue, gray, and red, respectively. The potential probe is visualized in white.

To support the choice of the halide-vacancy defect, we use the concept of adjustable potential

probes [54] as shown in Fig. 5.6 (b). We use potentials resulting from a Gaussian distribution

of positive charge with width parameters σ ranging from 0.625 to 1.25 bohr. This allows us to

continuously vary the defect level of the localized state across the entire band gap of the host

material, as shown in Fig. 5.7. We observe that the mixing parameter satisfying Koopmans’

condition αK is 0.29±0.01 irrespective of the considered defect. The uncertainty in the mixing

parameter results from limitations of the construction scheme [51, 54], but yields in this case

negligible band-gap deviations of ±0.02 eV. We identify the optimal potential probe X∗ by

minimizing the degree of hybridization with the band edges, as described in Sec. 4.4. The
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corresponding band-gap estimate is very close to that obtained with the halide vacancy (cf.

Fig. 5.7). On the basis of this agreement, we focus in the following only on the halide vacancy

to construct hybrid functionals satisfying Koopmans’ condition.

Figure 5.7 – Band edges and defect energies displayed versus the mixing parameter α for the
iodine vacancy VI (green circle) and various local potential probes (red squares) in CsPbI3. X∗

refers to the potential probe with the smallest degree of hybridization with the band edges.
The indicated band gaps are obtained with the functional PBE0(α).

In Table 5.4, the band gaps resulting from the constructed PBE0(αK) functionals are reported

and compared with QSGW̃ references. We find a MAD of 0.21 eV between the PBE0(αK) band

gaps and the GW references. We remark that the chlorine compounds show larger errors

but this effect cannot trivially be related to the electronegativity or to the size of the involved

ions. While the origin of these deviations is unclear at the moment, the MAD on the full set

of considered compounds is consistent with values in the literature [51]. This consistency

supports that this level of accuracy can be expected when considering a larger set of perovskite

materials.

It is also of interest to compare the present results with those obtained with PBE0(1/εsc∞)

functionals (cf. Table 5.3), which share the same functional form of PBE0(α). The mixing

parameters of the PBE0(1/εsc∞) functionals are systematically lower than those of PBE0(αK),

and so are the corresponding estimates for the band gap. With respect to the GW references,

the performance of PBE0(αK) (MAD = 0.21 eV) is significantly better than that of PBE0(1/εsc∞)

(MAD = 0.42 eV). Hence, for the global functional PBE0(α), the fraction of Fock exchange solely

determined through ε∞ generally leads to underestimated band gaps, while the enforcement

of Koopmans’ condition yields better results on average. These differences suggest that the

physical properties considered in the two construction schemes are not equivalent [56] and

that they could potentially be exploited in a complementary fashion. However, the generality

of this observation remains to be demonstrated for a larger variety of materials.
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Table 5.4 – Band gaps (in eV) calculated through PBE0(αK) functionals. The corresponding
mixing parameters αK are given in parentheses. The considered set of pseudopotentials is
indicated. Band gaps evaluated through QSGW̃ are given as reference. The mean absolute
difference (MAD) is given with respect to these values.

PBE0(αK) QSGW̃
PP1 PP2 PP2

CsPbI3 2.06 (0.28) 2.28 2.27
CsPbBr3 2.99 (0.35) 3.24 3.01
CsPbCl3 3.87 (0.41) 4.00 3.41
CsSnI3 1.02 (0.23) 1.12 1.10
CsSnBr3 1.34 (0.26) 1.42 1.32
CsSnCl3 2.31 (0.35) 2.29 1.79
CsGeI3 1.46 (0.21) 1.55 1.67
CsGeBr3 2.03 (0.26) 2.12 2.13
CsGeCl3 2.91 (0.32) 2.93 2.67
MAD 0.21 0.20

Part of the differences between the band gaps obtained with PBE0(αK) and QSGW̃ might

result from the use of different pseudopotential sets in the two calculations. To evaluate

this effect, we determine the band gaps with the PP2 set using the same mixing parameters

as obtained from the PP1 defect calculations. We hereby rely on the fact that the mixing

parameters remain almost unchanged upon varying the pseudopotential set, as seen in Table

5.3 for PBE0(1/εsc∞). Table 5.4 shows that this generally yields an increase of the resulting band

gaps as a consequence of the trend in Fig. 5.3. However, the overall accuracy (MAD = 0.20 eV)

remains similar to that achieved with PP1 (MAD = 0.21 eV) and thus the considerations made

above remain unaffected.

Next, it is our interest to study the accuracy of CAM hybrid functionals when enforcing Koop-

mans’ condition. As discussed in Sec. 5.3.2, such calculations require the explicit treatment

of semicore electrons, i.e. the use of the demanding PP2 pseudopotentials. To circumvent

this problem, we determine the free parameters of the CAM functional by performing defect

supercell calculations with PP1 pseudopotentials. We then obtain band-gap estimates from

bulk calculations of the primitive unit cell using the constructed CAM functional with either

PP1 or PP2 pseudopotentials.

We illustrate this procedure for the iodine vacancy VI in CsPbI3 in Fig. 5.8. In the investigated

CAM functionals, α` is fixed to 1/ε∞, while αs and µ are varied systematically. We only

consider αs < 0.5 due to the decreasing reliability of the PP1 pseudopotentials with increasing

αs (cf. Fig. 5.3). The parameters fulfilling Koopmans’ condition are identified by the red curve

within the two-dimensional (αs, µ) space. In Ref. [51], it was found that such lines remain close

to band-gap isolines, thereby providing a robust determination of the band gap irrespective of

the location on the curve fulfilling Koopmans’ condition (Koopmans’ curve). This behavior
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Figure 5.8 – Isocontour plots for the band gap of CsPbI3 as a function of the short-range fraction
of Fock exchange αs and the inverse screening length µ. The parameter α` is fixed to 1/ε∞.
The displayed band gaps are obtained with (a) PP1 and (b) PP2 pseudopotentials. The red lines
indicate fulfillment of Koopmans’ condition, and the regions shaded in red deviations below
0.1 eV. The point in parameter space corresponding to the PBE0(αK) functional is highlighted
with a yellow square.

is not seen for PP1 pseudopotentials [Fig. 5.8(a)], but is recovered when the PP2 set is used

[Fig. 5.8(b)]. In the latter case, the band gap always remains close to ∼2.3 eV, in agreement

with the band gap achieved with the global functional PBE0(αK). These results suggest that

the deviation of the Koopmans’ curve from a band-gap isoline for PP1 pseudopotentials is a

consequence of the discrepancies pointed out in Fig. 5.3. Nevertheless, the hybrid-functional

parameters determined with PP1 pseudopotentials appear to have a more extended range of

validity than the band-gap values, in a similar way as seen above for PBE0(1/εsc∞) functionals

(cf. Table 5.3). Overall, to close this section on the use of Koopmans’ condition for determining

the parameters, we conclude that the consideration of the CAM functional does not bring any

improvement over the PBE0 functional. This is in agreement with the findings of Ref. [51].

5.5 Summary

In this chapter, we applied two nonempirical schemes for the construction of hybrid func-

tionals to a set of inorganic metal-halide perovskites. We set out to determine the accuracy

by which such nonempirical hybrid functionals are capable of predicting band gaps. For this

purpose, we also performed state-of-the-art GW calculations, which we used as reference. The

free parameters of the hybrid functionals in the first scheme were fixed through the dielectric

response, while the enforcement of Koopmans’ condition on defect states was the criterion at

the basis of the second scheme. Moreover, we investigated two classes of functionals: global

functionals with a single undetermined parameter and range-separated CAM-type functionals

involving three parameters.
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The dielectric-dependent approach based on global functionals yields a mean average devia-

tion of 0.35 eV with respect to the GW references. This deviation is in line with previous results

in the literature on other materials [43, 47]. The consideration of range-separated functionals

reduces the mean average deviation to 0.20 eV, confirming thereby that the use of this type of

functional leads to a higher accuracy [47, 35]. Global hybrid functionals fulfilling Koopmans’

condition also yield band gaps in good agreement with our GW references, as indicated by the

mean average deviation of 0.20 eV. Consideration of CAM-type functionals supports the ro-

bustness of the predicted band gaps [51], and hence does not lead to any further improvement

in the accuracy. Overall, the two applied schemes yield band gaps with an accuracy of ∼0.2

eV. For this, the dielectric-dependent scheme requires the use of range-separated functionals,

but plain global functionals are sufficient within the scheme based on Koopmans’ condition.

More generally, the differing features of the two schemes hint at the fact that reproducing the

dielectric response and imposing Koopmans’ condition are nonequivalent constraints [56].

This might deserve further investigation to benefit from the individual advantages of the two

schemes in a combined fashion.

On the practical side, the dielectric-dependent scheme only involves bulk calculations for

the primitive unit cell, whereas the scheme based on Koopmans’ condition requires the

consideration of localized defect states and thus the treatment of supercells of suitable size.

The latter condition can imply demanding computational resources and restrict the overall

flexibility of the scheme, as seen in this chapter as far as the class of pseudopotentials that

could be treated. Furthermore, the use of Koopmans’ condition necessitates the identification

of defect states lying in the middle of the band gap. This is a material-dependent issue which

complicates the incorporation of Koopmans’ condition in automatized procedures.

In view of applying such nonempirical schemes to a larger class of perovskite materials, we

conclude that the dielectric-dependent scheme with range-separated functionals is the most

suitable, both for the accuracy achieved and for the computational cost involved. Hence, it

stands out as a viable scheme to achieve accurate band gaps in the high-throughput screening

of perovskite materials.
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6 Band gaps of liquid water and
hexagonal ice

In this chapter, we calculate the fundamental band gaps of liquid water and hexagonal ice

through advanced electronic-structure methods. We compare specifically the performance of

state-of-the-art GW calculations with nonempirical hybrid functionals. For the latter, we fix

the free parameters either through the dielectric response of the material or through enforcing

Koopmans’ condition to localized states. The various approaches yield consistent band gaps,

in good agreement with available experimental references. Furthermore, we discuss the

critical aspects of each approach that underlie the band-gap predictions.

The results presented in this chapter have been submitted to Physical Review Research.
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6.1 Motivation

Liquid water is an ubiquitous material in nature and has inevitably drawn great scientific

attention. In particular, the electronic structure of liquid water has been the subject of nu-

merous experimental [182, 183, 184, 185, 186, 187] and theoretical studies [60, 116, 188, 189].

These fundamental efforts enable a deeper understanding of liquid water in technological

applications such as solvation processes [190, 191, 192, 193, 194] or catalytic reactions at

solid-water interfaces [195, 23, 196, 59, 197, 198]. In addition to the liquid phase, also various

solid phases of water have been investigated. The precise knowledge of the electronic structure

of these polymorphs is relevant for atmospheric science [199, 200, 201, 202, 203], geoscience

[204], astronomy [205, 206], as well as solid-state physics [207, 208, 209, 210].

It is surprising that despite this great scientific effort, the fundamental band gap of water is

only known with mediocre accuracy. Indeed, the often cited study of Bernas et al. reports a

band gap for liquid water of 8.7±0.5 eV [186]. This value and its sizeable uncertainty reflect

the lack of consensus among the various studies from which this band-gap estimate has

been inferred. It is noteworthy that also the band gaps of the solid phases of water have not

been determined with a high precision. In particular, the fundamental band gap of the most

prominent ice Ih has been estimated to be 8.8±0.4 eV [211]. Such substantial uncertainties

call for further investigation.

Complementary to experimental studies, also a great deal of theoretical works have been

devoted to this open question. Many-body perturbation theory in the GW approximation is

generally considered as the most accurate computational scheme for band-gap evaluation

[9, 15, 17, 18]. Various flavors of this approach have been instrumental to predict the band

gap of liquid water [212, 213, 60, 195, 116, 188, 214] and ice [215, 216, 217]. However, the

various studies have not reached a consensus on the band gap yet. Indeed, the reported

values for liquid water range from 7.8 to 10.5 eV with an uncertainty even larger than that of

the experimental measurements. Among these studies, Chen et al. have deployed the most

advanced method consisting in quasiparticle self-consistent GW including vertex corrections

and obtained a band gap of 8.9 eV [116]. However, such high-level GW calculations are

computationally demanding and have remained rare. For further confirmation, it is therefore

necessary to take under consideration a larger variety of electronic-structure approaches.

Moreover, to allow for applications involving larger systems, it is highly desirable that such

alternative methods are computationally less demanding.

Electronic-structure calculations based on nonempirical hybrid functionals [24, 31, 32, 70]

can serve as a valuable alternative to GW calculations. In particular, dielectric-dependent

hybrid (DDH) functionals have already successfully been applied to liquid water [43, 35, 61,

59]. Similar investigations based on hybrid functionals satisfying Koopmans’ condition are at

present still lacking. A comparison of both nonempirical hybrid-functional schemes together

with high-level GW approaches might yield valuable insight into the fundamental band gap

of water and ice.
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6.2 Experimental band-gap references

Prior to deploying advanced electronic-structure calculations, it is our interest to establish

robust experimental band-gap references. We infer such references through a critical review

of various experimental studies in the literature. The fundamental band gap, defined as the

separation between the valence-band maximum (VBM) and the conduction-band minimum

(CBM), is generally determined through the separate investigation of the two band edges. The

VBM is given through the ionization potential (IP) as obtained in photoemission experiments.

The CBM is determined by the electron affinity (EA) or equivalently by the position of the

conduction band with respect to the vacuum level (denoted V0). These properties are generally

accessed through inverse photoemission experiments or the analysis of thermodynamic data

pertaining to the hydrated electron. We note that the fundamental band gap could also be

inferred from the corresponding optical one [218, 219, 220]. However, this route requires a

proper assessment of the excitonic binding energy for which a final consensus has not yet been

reached [215, 212, 220, 221]. Therefore, we do not include optical spectroscopy experiments in

our analysis of band-gap references.

First, we examine the fundamental band gap of liquid water at ambient temperature. Early

studies by Delahay and coworkers reported a photoemission threshold of 9.3±0.3 eV [184],

which has later been revised to 10.06 eV [185]. The more recent work of Winter et al. indicated

a very similar value of 9.9 eV [187]. Based on the latest results, we assume 10.0±0.1 eV for

the ionization potential of liquid water. For the unoccupied states, Bernas and collaborators

reported V0 =−1.2 eV [183], later revised to −0.74 eV [186]. A recent study by Ambrosio et al.

inferred V0 =−0.97 eV from thermodynamical data for the hydrated electron [193]. Overall,

we estimate V0 =−1.0±0.2 eV. We do not consider the value of V0 =−0.12 eV proposed by Coe

et al. [222] due to the criticism raised in Ref. [193]. Altogether, we deduce a fundamental band

gap for liquid water of 9.0±0.2 eV. This value is consistent with previous works by Bernas et al.

and Painter et al., which reported band gaps of 8.7±0.6 eV [186] and 9 eV [223], respectively.

Moreover, the present estimation is based on more recent experimental studies and subject to

a smaller uncertainty. We remark that a fundamental band gap of 9.1−9.2 eV was also inferred

in Ref. [189].

Next, we consider the fundamental band gap of ice. Among the various possible phases [224],

we are particularly interested in hexagonal ice Ih. This phase is stable at ambient pressure and

has been subject to numerous experimental and computational studies. To benchmark the

fundamental band gap of Ih, we adopt in the following also results obtained for polycrystalline

and amorphous ice structures. This is justified through the studies of Nordlund et al. [225]

and Kobayashi et al. [219], which have demonstrated a remarkable similarity in the electronic

structure of crystalline and amorphous ice based on photoemission and optical spectroscopy,

respectively. Furthermore, we note that the considered experimental results have generally

been obtained at a temperature of 77 K. The measurements in Refs. [226, 225, 227] have been

performed at a slightly higher temperature of 90−103 K.
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Table 6.1 – Fundamental band gaps E Expt
g (in eV) of liquid water `-H2O and hexagonal ice Ih

as inferred from a review of various experimental data. The given band gaps correspond to
temperatures of 300 and 77 K, respectively. Band-gap corrections E corr

g (in eV) are also given.
These corrections account for the band-gap reduction due to nuclear quantum effects (NQE)
in liquid water and to the zero-phonon renormalization (ZPR) in hexagonal ice.

E Expt
g E corr

g

`-H2O 9.0 ± 0.2 0.7a

Ih 9.4 ± 0.3 1.5b

a Ref. [116], T = 300 K, b Refs. [235, 211], T = 0 K.

Early photoemission experiments by Shibaguchi et al. indicated an ionization potential of

10.5 eV [226]. This result has been confronted with the value of 8.7±0.1 eV obtained by Baron

et al. [228] and that of 8.8 eV by Campbell et al. [229]. However, it should be considered that

the latter studies define the onset of the photoemission spectra according to an extended

tail at lower energies. Instead, the linearly extrapolated threshold reveals a value of ∼10 eV

[229], in much better agreement with Shibaguchi et al. [226]. Furthermore, from the work of

Pache et al. [230], one also infers an IP of ∼10 eV [231]. More recent photoemission studies of

Winter et al. [187] and Nordlund et al. [225] support these values for the ionization potential.

Specifically, Winter et al. remarked that electron binding energies (and thus the IP) in ice tend

to be larger by ∼0.1−1.0 eV than those obtained for liquid water (10.0±0.1 eV). We account

for these various experimental measurements by adopting an IP estimate of 10.3± 0.3 eV.

For the conduction-band edge, early studies of Baron et al. and Grand et al. reported rather

distinct values of V0 = −0.9 eV [228] and −0.1 eV [232], respectively. Later, Michaud et al.

derived a value of V0 =−1 eV [231] on the basis of the photoelectric threshold [233] and the

photoconductivity [234] of hydrated electrons. Most recently, Stähler et al. measured V0 =−0.8

eV through time-resolved photoemission experiments [227]. Overall, we take on the value of

V0 =−0.9±0.1 eV, only marginally higher than the one assumed for liquid water. Based on the

present discussion of IP and V0, we infer a fundamental band gap for hexagonal ice of 9.4±0.3

eV. This estimate is in overall agreement with earlier studies by Michaud et al. and Engel et al.,

which reported band gaps of ∼9 eV [231] and 8.8±0.4 eV [211], respectively. The differences

result from a more stringent review of the recent literature in the present work.

Overall, we adopt a band-gap reference for liquid water at 300 K of 9.0±0.2 eV. For hexagonal

ice at 77 K, we estimate a band gap of 9.4±0.3 eV. We observe a rather small difference of

0.4 eV on average between these two phases of water. This observation indicates that the

fundamental band gap of water depends only weakly on temperature and crystal structure. A

similar conclusion was reached by Bernas et al. [186]. In this chapter, the band gap of liquid

water is calculated through configurations obtained at 300 K. For hexagonal ice, we obtain

the band gap through a calculation at relaxed atomic positions. The comparison of the latter

with the experimental band-gap references at 77 K is justified insofar the finite temperature

difference is expected to have a negligible effect. Indeed, Engel et al. have shown that the
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6.2. Experimental band-gap references

calculated band gap of Ih is almost independent of temperature between 0 K and 77 K [211].

Estimated variations are limited to ∼0.02−0.05 eV and are therefore disregarded [211].

After the critical review of experimental band-gap references, we discus further effects which

have to be taken into account to ensure a consistent comparison between theory and ex-

periment. In particular, we consider nuclear quantum effects (NQE) in liquid water and

zero-phonon renormalization (ZPR) in hexagonal ice. These effects originate from the quan-

tum mechanical nature of the nuclei and generally induce a renormalization of the band gap.

Since we consider classical nuclei in our structural models (cf. Sec. 6.4.1), these renormal-

izations are added a posteriori as corrections to the band gaps calculated with the advanced

electronic-structure methods. A summary of the band-gap references and corrections adopted

in this chapter is given in Table 6.1.

For liquid water, various studies have shown that the NQE significantly affect the electronic

structure [236, 116, 188, 214]. Indeed, Chen et al. found a band-gap reduction of 0.7 eV due

to NQE, consistently for various state-of-the-art GW approaches [116]. For the semilocal

Perdew-Burke-Ernzerhof (PBE) functional [5], this effect reduces to 0.5 eV [116]. These results

are in overall agreement with other studies in the literature. The NQE effect have been found

to be 0.5 eV with the G0W0@RSH method [188], 0.6 eV with the PBE0-ADMM-D3 hybrid

functional [236], and 0.65 eV with evGW calculations [214]. Among these various values, we

adopt throughout this chapter the GW value from Chen et al. for the band-gap correction

due to NQE. This choice is motivated, on the one hand, by the fact that this estimate results

from one of the most accurate theoretical schemes, and, on the other hand, by the fact that we

adopt in this chapter the very same structural configurations obtained by Chen et al. [237].

Therefore, we correct the band gap of liquid water at ambient temperature by 0.7 eV due to

NQE.

In analogy to liquid water, we also consider the ZPR of the band gap in the case of hexagonal

ice. Monserrat et al. calculated a ZPR of 1.52 eV by means of DFT calculations at the semilocal

and hybrid functional levels [235]. Engel et al. confirmed this estimate in an extended study

involving various proton orderings in hexagonal ice [211]. Therefore, we adopt throughout

this chapter the value of 1.52 eV for the a posteriori correction of the calculated band gaps in

hexagonal ice.

It is noteworthy that the band-gap corrections for the two considered water phases are signifi-

cantly different. Indeed, the ZPR of the band gap of hexagonal ice is larger than the NQE on

the band gap of liquid water by ∼0.8 eV. Engel et al. have found that the ZPR of hexagonal ice

varies by only ∼0.1 eV over the temperature range 0-240 K [211]. Therefore, the dominating

part of this effect cannot solely be assigned to the temperature difference between the two

phases, but should rather be related to underlying atomic structures. In particular, in the

case of liquid water, the band gap reduction results from a complex interplay between the

broadenings in the density of states due to the NQE and to the molecular disorder.
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6.3 Theoretical schemes

In this chapter, we study the fundamental band gap of liquid water and hexagonal ice through

several advanced electronic-structure methods. First, we employ the QSGW method for this

purpose. Since this approach does not account for electron-hole interactions, we use also the

QSGW̃ scheme which includes vertex corrections in the screening (W̃ ). We note that QSGW̃

generally yields band gaps with a high accuracy and is therefore often used as a benchmark

for other electronic-structure methods (cf. Sec. 5.4). However, due to the lack of consensus

among the reported GW calculations for liquid water [212, 213, 60, 195, 116, 188, 214], we do

not give a particular preference to the QSGW̃ scheme from the start in this chapter.

The second advanced electronic-structure method investigated in this chapter consists in

dielectric-dependent hybrid (DDH) functionals. We determine such functionals through the

self-consistent workflow given in Sec. 3.1.3. As underlying classes of hybrid functionals we

adopt the global PBE0(α) and the range-separated CAM(αs,α`,µ) functional. For the single

parameter α of the former, the DDH procedure leads to α= 1/εsc∞ and thus to the global DDH

functional PBE0(1/εsc∞). For the three parameters αs, α`, and µ of the latter, the parameter

definition is performed as follows. The short-range fraction αs is taken as a constant for

which different values have been proposed in the literature. Chen et al. applied αs = 1 with

the underlying idea of achieving a hybrid functional that reproduces the fully unscreened

Coulomb interaction in the short range [47]. Skone et al. used instead an attenuated short-

range exchange based onαs = 0.25 [35]. In this chapter, we consider both ways of fixingαs and

compare the resulting implications for the construction of range-separated DDH functionals.

Moreover, we investigate the effect of adopting purely semilocal exchange in the short range as

obtained by setting αs = 0. This definition is motivated by the success of long-range corrected

hybrid functionals [90, 91, 92, 93, 94] and will be discussed in more detail in Sec. 6.5.2. The

second parameter of the CAM functional, namely the long-range fraction of incorporated Fock

exchange α`, is determined analogously to the global mixing parameter by setting α` = 1/εsc∞.

Finally, the inverse range-separation length µ is set to the Thomas-Fermi (TF) screening

parameter as given in Eq. (3.6). For liquid water and hexagonal ice, Eq. (3.6) yields µ equal to

0.58 and 0.57 bohr−1, respectively (cf. Sec. 6.4.1). These values can be physically interpreted as

the inverse of the OH bond length, 1/(0.96 Å) ≈ 0.55 bohr−1, and represent in this perspective

a typical length scale of the considered material. The values of µTF are also consistent with

those obtained in Ref. [43]. We note that alternative definitions of the µ parameter relying

on the effective TF screening [57], the Wigner-Seitz radius [35], or various fitting procedures

[35, 47] have been suggested in literature. However, it has been shown that these definitions

yield almost identical µ values [35, 47, 137] accompanied with insignificant effects on the

band-gap estimates [35]. Therefore, we consider µ=µTF throughout this chapter. Overall, we

investigate three range-separated DDH functionals in this study, denoted as CAM(1, 1/εsc∞,µTF),

CAM(0.25, 1/εsc∞,µTF), and CAM(0, 1/εsc∞,µTF). We remark that the present functionals can be

compared to similar range-separated DDH functionals in the literature, such as DD-RSH-CAM

[47], DSH [57], and RS-DDH [35]. A comparison of these functionals is given in Table 6.2. The
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differences are technical and originate from the definition of αs and the determination of the

range-separation parameter µ.

Table 6.2 – Comparison of the range-separated DDH functionals considered in this chapter
(bold) with respect to similar approaches reported in the literature: DD-RSH-CAM [47], DSH
[57], and RS-DDH [35]. The comparison is made in terms of the fraction of short-range Fock
exchangeαs, the fraction of long-range Fock exchangeα`, and the range-separation parameter
µ.

αs α` µ

CAM(1, 1/εsc∞,µTF) 1 1/εsc∞ µTF

DD-RSH-CAM [47] 1 1/εsc∞ µsc
fit

a

DSH [57] 1 1/εsc∞ µsc
eff. TF

b

CAM(0.25, 1/εsc∞,µTF) 0.25 1/εsc∞ µTF

RS-DDH [35] 0.25 1/εsc∞ µfit
c

CAM(0, 1/εsc∞,µTF) 0 1/εsc∞ µTF

a Fitted µ parameter within a self-consistent loop,
b Effective TF parameter within a self-consistent loop,

c Fitted µ parameter.

The third class of advanced electronic-structure methods investigated in this chapter consists

in hybrid functionals that satisfy Koopmans’ condition. For the construction of such func-

tionals, we proceed as described in Sec. 3.2.3. To ensure a consistent comparison with the

DDH functionals, we apply this procedure to the global PBE0(α) and to the range-separated

CAM(αs,α`,µ) functional.

6.4 Computational aspects

6.4.1 Structural models

The calculations carried out in this chapter make use of well established structural models for

liquid water [116] and hexagonal ice [238]. The properties of these models are summarized in

Table 6.3. Graphical illustrations are given in Fig. 6.1.

Table 6.3 – Properties of the structural models used for liquid water `-H2O and hexagonal ice
Ih: Space group, lattice parameters a and c/a, number N of water molecules per unit cell, and
mass density %. The settings are taken from Refs. [116, 238].

Space group a (Å) c/a N % (g/cm3)

`-H2O P1 9.81 32 1.01
Ih P63cm 7.82 0.941 12 0.92
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Chapter 6. Band gaps of liquid water and hexagonal ice

(a) (b)

Figure 6.1 – Graphical illustration of (a) an instantaneous configuration of liquid water and (b)
the Bernal-Fowler model of hexagonal ice as viewed along the c axis. Oxygen and hydrogen
atoms are shown in red and white, respectively.

In the case of liquid water, we consider 20 snapshots taken from a molecular-dynamics

simulation performed by Chen et al. [116, 237]. The atomic structure in this simulation

has been shown to be well equilibrated and to be consistent with the experimental radial

distribution functions [116]. The adopted snapshots are evenly spaced in time and correspond

to independent configurations of 32 water molecules at ambient temperature (300 K) [116].

The density of liquid water in the considered trajectory is only marginally higher than the

experimental one [239] (by ∼1%), which has been shown to negligibly affect the calculated

band gaps [116]. Van der Waals interactions are incorporated in the water trajectory through

the use of the revised Vydrow and Van Voorhis (rVV10) nonlocal density functional [240, 241].

The empirical parameter b had been set to 8.9, which ensures a realistic description of the

structure of liquid water [242, 116]. As discussed in Sec. 6.2, we account for NQE through an a

posteriori band-gap correction. It is therefore appropriate to consider configurations of liquid

water in which the nuclei have been treated classically.

For hexagonal ice, we consider a unit cell as given in the Bernal-Fowler model [238]. This

model comprises 12 water molecules arranged in a hexagonal lattice and has been adopted

in several theoretical studies [243, 242, 211, 244, 245]. To ensure a consistent description

of liquid water and hexagonal ice, we relaxed the atomic coordinates of the Bernal-Fowler

model with the same rVV10 functional as used by Chen et al. [116]. The density of the original

Bernal-Fowler model (0.92 g/cm3) corresponds to that obtained at a temperature just below

the melting point [238]. The density at this temperature differs only slightly from that obtained

through extrapolation to 0 K, namely 0.93 g/cm3 (see Ref. [246, 247] and references therein).

We checked that such an increase of the density leads to negligible changes in the calculated

band gaps (less than 0.01 eV at the PBE level of theory). Therefore, we adopt in this chapter

the lattice constants (and thus the density) as originally proposed by Bernal and Fowler [238].

Furthermore, we remark that the present model carries a net dipole moment which is closely

connected to the lattice-constant ratio c/a [243]. To investigate the effect of this dipole, we
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modified this ratio such that the net dipole moment vanishes, but we found no relevant change

in the band gap. Hence, we keep the unmodified c/a ratio throughout this chapter.

We note that hexagonal ice is generally a proton-disordered phase of solid water. To account

for this effect, various structural models have been proposed in the literature [248]. The most

stable proton-ordered configuration of Ih is referred to as XIh [244]. It has been observed below

the order-disorder transition temperature of 72 K [249] and exhibits the space group C mc21

[250]. However, Engel et al. have shown that the band gaps calculated using the C mc21 model

and the Bernal-Fowler model differ by less than 0.02 eV at the semilocal and hybrid-functional

levels of theory [211]. Likewise, the computed band gaps for 16 distinct Ih models agree within

0.05 eV when the zero-phonon renormalization is taken into account [211]. Therefore, it is

justified to focus in our investigation on the Bernal-Fowler model as a representative structural

configuration of Ih.

6.4.2 Computational details

The calculations presented in this chapter are carried out with normconserving pseudopoten-

tials to describe core-valence interactions [87, 88]. The energy cutoff of the plane-wave basis

set is set at 85 Ry. The adopted k-point samplings for the bulk calculations in liquid water and

hexagonal ice are 1×1×1 (only the Γ-point) and 2×2×2, respectively. We calculate the VBM

of liquid water following the procedure outlined by Ambrosio et al. [190]. This implies the cal-

culation of the average electron density of states (DOS) over the adopted selection of 20 water

snapshots. The VBM is then determined through linear extrapolation of the valence-band

wing in the DOS as shown in Fig. 6.2.

Figure 6.2 – Density of states (DOS) of liquid water as calculated with the PBE functional. The
inset shows the DOS near the VBM. The dotted line indicates the linear extrapolation of the
valence-band wing of the DOS. The vertical dashed line represents the highest occupied KS
level obtained as an average over the 20 classical snapshots. Energies are referred to the VBM
as obtained in the extrapolated limit.
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This procedure is convenient since it leads to a fast convergence of the VBM with respect to

the supercell size [190, 116]. It is noteworthy that the VBM determined in this way differs

only marginally (∼0.1 eV) from the average of the highest occupied KS level irrespective of

the employed electronic-structure method. We determine the CBM of liquid water through

the average of the lowest unoccupied KS level. This way of proceeding is justified by the work

of Pendergast et al. [251]. For hexagonal ice, we determine VBM and CBM as the highest

occupied and lowest unoccupied KS level, respectively. It is noteworthy that the VBM in

hexagonal ice is located at the X point resulting in an indirect band-gap transition X → Γ. The

direct band gap at the Γ point is generally ∼0.1 eV larger than the indirect one. The band gaps

reported in the following correspond to the indirect transition.

The QSGW calculations in this chapter are performed with nonlocal commutators for the

optical matrix element in the long-wavelength limit, as described in Ref. [167]. The contour

deformation technique is used to evaluate the frequency dependence of the dielectric function

[118]. We account for 8 real and 4 imaginary frequencies. For the calculation of the dielectric

function, we apply the formula of Adler and Wiser [97, 98] using an energy cutoff E eps
cut of 12

Ry and a total number nband of 2000 bands. In the QSGW calculations, we self-consistently

update only the lowest 600 bands and keep the higher-lying states unchanged as obtained

with the semilocal PBE functional [5]. For the vertex corrections in the screening, we use

the bootstrap exchange-correlation kernel of Sharma et al. [109] in the efficient head-only

implementation of Chen et al. [18, 116].

In order to ensure the convergence of the GW calculations, we separately extrapolate the

band gap as a function of the cutoff E eps
cut , the total number of bands nband, and the number of

self-consistently updated bands. These extrapolations are performed through an exponential

function of the energy cutoff and through linear functions of the inverse number of total bands

and of the inverse number of updated bands [117]. The performed extrapolations for the two

considered phases of water are illustrated in Fig. 6.3. For hexagonal ice, the extrapolations in

E eps
cut and nband both yield corrections of ∼0.08 eV. The extrapolation in the number of updated

bands gives a correction of only 0.01 eV. For liquid water, the respective corrections are 0.03 eV,

0.28 eV, and 0.13 eV. The corrections associated with the number of bands are larger than in

the case of hexagonal ice, due to the larger simulation cell used for liquid water (cf. Sec. 6.4.1).

Hence, the QSGW band gaps are corrected by the sum of the three corrections determined

above. This results in a global correction of 0.44 eV and 0.17 eV for liquid water and hexagonal

ice, respectively.

For the construction of DDH functionals, it is necessary to evaluate the high-frequency dielec-

tric constant ε∞. To this end, we perform separate calculations using the finite electric field

approach [128]. The proper convergence of ε∞ is ensured through a four times denser k-point

sampling in the direction of the field. For hexagonal ice, we perform an isotropic average over

the trace of the dielectric tensor to account for the small anisotropy in ε∞ [252, 253].

80



6.5. Band gaps of liquid water and hexagonal ice

Figure 6.3 – Band-gap corrections (in eV) for hexagonal ice Ih (a-c) and liquid water (d-f)
according to the extrapolation of the cutoff in the dielectric matrix E eps

cut , the total number
of bands nband, and the number of updated bands nsc-band. The yellow circle indicates the
parameter value generally used in the QSGW calculations and serves as reference for the
band-gap corrections. The solid and the dashed line illustrate the fit and the extrapolated
limit, respectively.

The construction of hybrid functionals satisfying Koopmans’ condition is based on single-

particle levels of point defects [51, 54, 115]. For liquid water, we generate such defects within

the snapshots of Chen et al. [116]. For hexagonal ice, we generate the defects within a 2×2×2

supercell based on the Bernal-Fowler model [238] (cf. Sec. 6.4.1). For both systems, a k-point

sampling at the sole Γ-point ensures converged single-particle levels. Spin-polarized defect

calculations are performed whenever unpaired electrons occur.

6.5 Band gaps of liquid water and hexagonal ice

6.5.1 Quasiparticle self-consistent GW

First, we examine the band gaps of liquid water and hexagonal ice as obtained with different

flavors of the QSGW approach. In particular, we consider (i) the standard QSGW scheme and

(ii) QSGW̃ , which includes vertex corrections in the screening. The results of our calculations

are shown in Table 6.4 together with the experimental band-gap references.
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Table 6.4 – Fundamental band gaps (in eV) for liquid water `-H2O and hexagonal ice Ih as
calculated with the QSGW and QSGW̃ methods. The band gaps correspond to temperatures
of 300 and 77 K, respectively. The reported band gaps include the corrections associated to
NQE and ZPR (cf. Sec. 6.2). Band gaps inferred from experimental data are given as reference
(cf. Sec. 6.2).

QSGW QSGW̃ Expt.

`-H2O 9.6 9.1 9.0 ± 0.2a

Ih 9.8 9.3 9.4 ± 0.3b

a T = 300 K, b T = 77 K.

The GW schemes applied to liquid water and hexagonal ice give results that compare similarly

with the corresponding experimental references. The standard QSGW method yields band

gaps that are overestimated. Indeed, the calculated band gaps are higher by 0.4 eV and 0.1 eV

than the upper limit of the reference range for liquid water and hexagonal ice, respectively.

Similar overestimations have been observed for various other materials [17, 18] and have been

attributed to the neglect of electron-hole interactions in the calculation of the screened W . We

overcome this limitation by carrying out QSGW̃ calculations, which include vertex corrections

in the screening (W̃ ). In this scheme, the band gaps are smaller by 0.5 eV with respect to those

obtained without vertex corrections. When comparing to experimental values, we record a

very good agreement for both phases of water since the calculated band gaps fall within the

reference range. Such an accuracy is in agreement with previous studies, which have found

typical mean absolute errors of ∼0.2 eV for such QSGW̃ calculations [17, 18, 114].

We note that our QSGW̃ calculations can be confronted with other GW studies in the literature.

For liquid water, several one-shot G0W0 calculations have been performed. With respect to our

QSGW̃ scheme, this method systematically yields underestimated band gaps when semilocal

results are used as starting points [212, 213, 60, 217] and overestimated band gaps when hybrid

functional results are used [188]. As far as previous self-consistent GW methods are concerned,

we take under consideration the recent study of Chen et al. [116]. These authors obtained

a band gap of 8.9 eV also by means of QSGW̃ calculations. The difference of 0.2 eV with

respect to the present results should be attributed to small differences in the computational

setup. Indeed, we evaluate the nonlocal commutators for the optical matrix element in the

long-wavelength limit as described in Ref. [167] and use more stringent convergence criteria

to overcome the criticism raised in Ref. [214]. The latter work reported a band gap of liquid

water obtained with the eigenvalue self-consistent GW (evGW ) scheme. The calculated band

gap of 9.07 eV is in good agreement with the present QSGW̃ band gap, despite the absence

of explicit vertex corrections in the evGW approach [214]. Our results can also be compared

with those of Kharche et al. [195]. By means of full-frequency-spectrum-only self-consistent

GW calculations, these authors calculated a band gap of 9.53 eV for classical water, which was

later revised to 9.7 eV [195]. Accounting for a band-gap reduction of 0.7 eV due to NQE [116],

we correct their band-gap estimate to 9.0 eV. This result has been obtained without including
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explicit vertex corrections, but is nevertheless in agreement with our QSGW̃ band gap of 9.1

eV.

For hexagonal ice, fewer GW band-gap calculations can be found in the literature. Yim et al.

reported a band gap of 8.9 eV obtained with one-shot G0W0 calculations. Similarly, Fang et

al. found a band gap of 9.17 eV by means of a partially self-consistent GW0 approach [216].

However, both studies did not account for the sizeable zero-phonon renormalization (ZPR) of

∼1.5 eV (cf. Sec. 6.2). Therefore, the apparent agreement with our QSGW̃ calculations results

from error cancellation. In another investigation, Hahn et al. determined a larger band gap of

∼10 eV using an approximate GW scheme, which incorporates a model dielectric function

and lacks self-consistency [215]. When this result is corrected for ZPR, one finds a band gap of

∼8.5 eV, to be compared with the band gap of 9.3 eV obtained in the present work.

Overall, we conclude that the QSGW̃ approach used in the present work corresponds to the

most elaborate theoretical framework applied so far to either liquid water or hexagonal ice.

Thus, this scheme is expected to give the most accurate estimates for the band gaps of these

systems.

6.5.2 Dielectric-dependent hybrid functionals

We here devote special attention to DDH functionals and to their band-gap estimates for liquid

water and hexagonal ice. The free parameters of these functionals are determined through the

dielectric response of the material under investigation. In this section, we therefore present

the band gaps resulting from the DDH functionals together with their corresponding dielectric

constants.

First, we apply the DDH procedure to the global hybrid functional PBE0(α). The dielectric

constant as calculated within the self-consistent workflow is shown in Fig. 6.4(a) for the case

of hexagonal ice. We observe that ε∞ converges within four iterations to the self-consistent

value εsc∞. It is noteworthy that this specific value is independent of the considered starting

point [43], as we checked using two distinct initializations, namely from results obtained with

the functionals PBE and PBE0(0.7) (cf. Fig. 6.4). The calculated value of εsc∞ is in agreement

with its experimental counterpart showing an underestimation of only ∼5% (Table 6.5). For

liquid water, the self-consistent calculation of the dielectric constant proceeds analogously

and results in a similar comparison with experiment (Table 6.5). In this case, εsc∞ is only

marginally affected by the considered water snapshot. We analyzed various snapshots and

observed variations in εsc∞ smaller than ∼0.02. It is sufficient to average over five different

water snapshots to achieve a converged mean value with a standard deviation of less than

0.01.

Next, we consider the band gaps as obtained with the global DDH functional. The convergence

of the band gap within the DDH procedure is shown in Fig. 6.4(b) for the case of hexagonal

ice. Analogously to the dielectric constant, the band gap converges within four iterations
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Figure 6.4 – Convergence of (a) the dielectric constant ε∞ and (b) the band gap Eg within
the self-consistent DDH scheme for hexagonal ice Ih. Iteration steps and converged results
are visualized as circles and squares, respectively. The global hybrid functional PBE0(1/εsc∞)
and the range-separated hybrid functionals CAM(0, 1/εsc∞,µTF), CAM(0.25, 1/εsc∞,µTF), and
CAM(1, 1/εsc∞,µTF) are examined. For the global DDH functional, the independence of the
converged results from the starting point is illustrated though distinct initializations, based
on results obtained with either PBE (solid line) or PBE0(0.7) (dashed line) functionals. The
reported band gaps include the corrections due to ZPR (cf. Sec. 6.2). The horizontal gray line
corresponds to the experimental high-frequency dielectric constant εExpt

∞ [254]. The shaded
area indicates the interval corresponding to the experimental reference values E Expt

g inferred
in Sec. 6.2.

irrespective of the adopted starting point. The converged result for the band gap corresponds

to the functional PBE0(1/εsc∞). The convergence behavior for liquid water is analogous to that

of hexagonal ice shown in Fig. 6.4(b). The spread of 0.01 in εsc∞ due to the statistical variety of

water snapshots results in variations smaller than 0.1 eV in the band-gap estimate.

The band gaps obtained with the PBE0(1/εsc∞) functional for both liquid water and hexagonal

ice are given in Table 6.6 together with experimental references. We observe an overestimation
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Table 6.5 – High-frequency dielectric constant εsc∞ of liquid water `-H2O and hexagonal ice
Ih as calculated self-consistently within the DDH procedure. The dielectric constants are
obtained either with the global functional PBE0(1/εsc∞) or with the range-separated functional
CAM(αs, 1/εsc∞,µTF). Various settings for the short-range fraction of Fock exchange αs are
distinguished. Experimental dielectric constants are given for comparison.

PBE0(1/εsc∞) CAM(αs, 1/εsc∞,µTF) Expt.

αs = 1 αs = 0.25 αs = 0

`-H2O 1.69 1.66 1.72 1.74 1.77±0.01a

Ih 1.64 1.61 1.66 1.68 1.72b

a Refs. [218, 220], b Ref. [254].

of the band gap for both water phases. With respect to the upper limit of the reference interval

the deviations amount to 0.8 and 0.6 eV for liquid water and hexagonal ice, respectively. We

attribute this band-gap overestimation to the underestimation of the dielectric constant with

respect to the experimental value [cf. Fig. 6.4(a) and Table 6.5].

Table 6.6 – Fundamental band gaps (in eV) of liquid water `-H2O and hexagonal ice Ih as
calculated with DDH functionals. The band gaps correspond to temperatures of 300 and 77
K, respectively. The band gaps are obtained either with the global functional PBE0(1/εsc∞) or
with the range-separated functional CAM(αs, 1/εsc∞,µTF). The value of the parameter 1/εsc∞ is
given in parentheses. Various settings for the short-range fraction of Fock exchange αs are
distinguished. The reported band gaps include the corrections associated to NQE and ZPR (cf.
Sec. 6.2). Band gaps inferred from experimental data are given as reference (cf. Sec. 6.2).

PBE0(1/εsc∞) CAM(αs, 1/εsc∞,µTF) Expt.

αs = 1 αs = 0.25 αs = 0

`-H2O 10.0 10.9 9.5 9.0 9.0 ± 0.2a

(0.59) (0.60) (0.58) (0.57)
Ih 10.3 11.0 9.6 9.1 9.4 ± 0.3b

(0.61) (0.62) (0.60) (0.59)

a T = 300 K, b T = 77 K.

Our result for the band gap of hexagonal ice can be compared with that obtained by Skone et

al., who used a similar self-consistent approach [43]. These authors reported a band gap of

11.71 eV for hexagonal ice [43]. When this result is corrected for the ZPR, one obtains a band

gap of 10.2 eV, in good agreement with the value of 10.3 eV obtained in the present work.

In the second part of this section, we apply the DDH construction procedure to the range-

separated functional CAM(αs,α`,µ). This functional incorporates different fractions of Fock

exchange in the short (αs) and in the long range (α`). The transition between the two limiting

regimes is mediated by the range-separation parameter µ. For the determination of these

parameters, we proceed as discussed in Sec. 6.3. In particular, we consider three different
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Chapter 6. Band gaps of liquid water and hexagonal ice

settings for the short-range fraction of Fock exchange αs, namely αs equal to 1, 0.25, and

0. The respective range-separated DDH functionals are then denoted CAM(0, 1/εsc∞,µTF),

CAM(0.25, 1/εsc∞,µTF), and CAM(1, 1/εsc∞,µTF).

The convergence of the DDH scheme for the three functionals considered is shown in Fig.

6.4 in the case of hexagonal ice. The convergence behavior is generally very similar to that

of the global DDH functional, but the results deserve close attention. First, we focus on the

self-consistently determined dielectric constants εsc∞. The values resulting from the three

range-separated DDH functionals are given in Table 6.5 for both liquid water and hexagonal

ice. We observe a systematic variation of εsc∞ as a function of αs. More specifically, the smaller

the short-range Fock exchange αs, the higher the dielectric constant εsc∞. This systematic trend

manifests in deviations from the experimental references ranging from only ∼2% for αs = 0 up

to ∼6% for αs = 1. Overall, these dielectric constants agree with experiment irrespective of αs.

However, the best agreement is clearly achieved for αs = 0 and the corresponding functional

CAM(0, 1/εsc∞,µTF).

Next, we investigate the band gaps resulting from the three range-separated DDH functionals.

Our results for liquid water and hexagonal ice are given in Table 6.6. We find that also the

band gap exhibits a systematic variation according to the value set for the parameter αs. More

specifically, the smaller the short-range Fock exchange αs, the smaller the band gap obtained

with the corresponding DDH functional CAM(αs, 1/εsc∞,µTF). In the following, we separately

discuss the results for the three settings of αs.

For αs=1 and the associated DDH functional CAM(1, 1/εsc∞,µTF), we obtain strongly overes-

timated band gaps. With respect to the upper limit of the reference interval, the deviations

amount to 1.7 and 1.3 eV for liquid water and hexagonal ice, respectively. This result is unex-

pected insofar the similar DD-RSH-CAM approach of Chen et al. provides accurate band gaps

for a variety of semiconductors and insulators [47]. Similarly, we found a good agreement with

experiment for a series of metal-halide perovskites in Chapter 5. The origin of the failure of

this method for liquid water and hexagonal ice remains unclear at the moment and deserves

further investigation.

For αs=0.25 and the corresponding DDH functional CAM(0.25, 1/εsc∞,µTF), we observe a good

agreement with the experimental references. Indeed, for hexagonal ice the computed band

gap falls within the reference interval. For liquid water, we observe a small overestimation of

0.3 eV with respect to the upper limit of the range of experimental values. Interestingly, the

band gaps obtained with CAM(0.25, 1/εsc∞,µTF) can be confronted with the similar RS-DDH

approach of Skone et al. [35]. These authors reported a band gap for hexagonal ice of 10.94 eV

[35]. When this result is corrected for ZPR, one finds a band gap of 9.4 eV, in good agreement

with the value of 9.6 eV found in the present work.

For αs=0 and the associated DDH functional CAM(0, 1/εsc∞,µTF), we achieve the best agree-

ment with experiment among the examined range-separated DDH functionals. Indeed, we

find band-gap estimates falling within the experimental range for both phases of water.
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6.5. Band gaps of liquid water and hexagonal ice

On the basis of the agreement with experiment for the dielectric constant, we are led to elect

the CAM(0, 1/εsc∞,µTF) as the most reliable range-separated DDH functional for liquid water

and hexagonal ice. This assessment is further supported by the band gaps achieved with this

functional, which fall within the range of experimental values for the two phases of water.

Before closing this section, we question to what extent the nature of the present DDH func-

tionals can be considered nonempirical. The global hybrid functional PBE0(1/εsc∞) is entirely

determined through the dielectric response of the material and is therefore fully nonempir-

ical. However, for the range-separated functionals, the specific value adopted for αs has a

significant effect on the resulting band gaps. In a fully nonempirical DDH scheme, these

different settings should be either irrelevant for the outcome or determined on the basis of an

exact property of generalized Kohn-Sham theory [26]. This is manifestly not the case for the

range-separated DDH functionals. This remaining indetermination also underlies the lack of

consistency among the various range-separated DDH approaches in the literature [35, 47, 57].

Despite this open issue, we consider the functional CAM(0, 1/εsc∞,µTF) as the most reliable

DDH functional on the grounds that it achieves the best agreement with the experimental

dielectric constants.

6.5.3 Hybrid functionals satisfying Koopmans’ condition

We now focus on hybrid functionals satisfying Koopmans’ condition. For the construction

of such functionals, we apply the procedure outlined in Sec. 3.2.3 to various localized states

in the two investigated phases of water. We introduce such states through interstitial atoms

(Hi, Fi, Cli, Bri), substitutional atoms (FH2O, ClH2O, BrH2O), or inorganic radicals (OH, NH2). In

the case of hexagonal ice, we also consider the Bjerrum defect pair, which results from locally

disregarding the second ice rule [255, 256, 257]. More specifically, one water molecule is piv-

oted in such a way that one pair of neighboring oxygen atoms is formed with no intermediate

hydrogen atom and another pair occurs with two intermediate hydrogen atoms [257]. For

each considered localized state the degree of hybridization δ is computed [54]. This quantity

measures the undesired hybridization between the localized defect state and the delocalized

band-edge states. Through the minimization of δ, we can identify the most reliable localized

defect states [54, 115, 258].

First, we examine the global hybrid functional PBE0(α) and determine the mixing parameter

αK which satisfies Koopmans’ condition. Our results are shown in Fig. 6.5(a) for the case of

hexagonal ice. We find different values of αK for the various localized states. The +/0 and

0/− charge transitions of the hydrogen interstitial Hi determine the maximal and minimal

value of αK. Their sizeable variation can be attributed to strong hybridizations with the band-

edge states. The mixing parameters obtained through the other localized states fall within

a much narrower range. This property goes together with a systematically lower degree of

hybridization for the involved defects. The smallest δ are observed for the radical OH, the

radical NH2, the fluorine interstitial Fi, the fluorine substitutional FH2O, and the chlorine
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Chapter 6. Band gaps of liquid water and hexagonal ice

substitutional ClH2O. The Bjerrum defect pair, the bromine substitutional BrH2O, and chlorine

interstitial Cli also show rather small values of δ, but yet noticeably larger than the previous

five defects.

To account for the different behaviors of the various localized states, we proceed in the

following way. We consider the five defects with the lowest degree of hybridization and

compute the root mean square (rms) of their individual deviations from Koopmans’ condition

through

∆rms
K (α) =

√√√√1

5

5∑
i=1

[
∆i

K(α)
]2

. (6.1)

The rms deviation ∆rms
K resulting from Eq. (6.1) is displayed in Fig. 6.5(b) for the case of

hexagonal ice. We find that ∆rms
K depends continuously on the fraction of Fock exchange

α and reaches a minimum for a specific value in close proximity of the crossing points of

the individual defects. Hence, this minimum accounts effectively for the different localized

states and enables us to determine αK in a robust fashion. The minimum value of ∆rms
K is

found to be ∼0.2 eV, which corresponds to ∼2% of the band gaps involved. This indicates

that Koopmans’ condition is effectively fulfilled for the various localized states albeit with a

finite accuracy. We checked that the inclusion of the more hybridized bromine substitutional

BrH2O and Bjerrum defect pair among the defects considered in Eq. (6.1) affects the extracted

αK by less than 0.01 corresponding to changes of less than 0.1 eV in the band-gap estimate.

We therefore consider only the five defects with the lowest δ. With the procedure outlined

above, we find mixing parameters αK of 0.47 and 0.48 for liquid water and hexagonal ice,

respectively. In particular, the result for liquid water is in good agreement with the value of

α= 0.45 determined empirically by Ambrosio et al. [189]. In the case of liquid water, αK is

found to be almost independent of the considered water snapshot, with variations within

∼0.01. Therefore, it is sufficient to average over five different water snapshots to achieve a

converged mean value.

The band gaps obtained with the functional PBE0(αK) are compared with the experimental

reference values in Table 6.7. The corresponding mixing parameterαK are given in parentheses.

For liquid water, we observe a small band-gap underestimation of 0.1 eV with respect to

the lower bound of the experimental range. Similarly, we find an underestimation of 0.2

eV for hexagonal ice. This level of accuracy is in line with previous studies employing the

nonempirical functional PBE0(αK) for band-gap predictions [51, 54, 115].

It is of interest to compare the present results obtained with the functional PBE0(αK) with those

obtained with the functional PBE0(1/εsc∞) (cf. Table 6.6). Both originate from the global hybrid

functional PBE0(α), but the parameters are determined through distinct construction schemes.

We find that the mixing parameter 1/εsc∞ is systematically higher than αK. Consequently, the

same holds for the respective band gaps obtained with PBE0(1/εsc∞) and PBE0(αK). With

respect to the experimental band-gap references, PBE0(αK) shows a significantly better accord

than PBE0(1/εsc∞). We note that similar considerations have been found to apply to the metal-
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6.5. Band gaps of liquid water and hexagonal ice

Figure 6.5 – (a) Band edges and defect energies for various localized states in hexagonal ice
displayed versus the mixing parameter α incorporated in the PBE0(α) functional. The degree
of hybridization δ of each localized state is visualized through the color scale. The indicated
band gaps are obtained with the functional PBE0(α) prior to the application of the corrections
described in Sec. 6.2. (b) rms deviation from Koopmans’ condition ∆rms

K as a function of the
mixing parameter α. The value of αK and the corresponding minimum of ∆rms

K are indicated.

halide perovskites studied in Chapter 5. While both Koopmans’ condition and the asymptotic

long-range dielectric screening correspond to properties of the exact underlying generalized

Kohn-Sham functional, the present results further support that these two properties are

physically distinct [56]. The class of global PBE0(α) hybrid functionals described by the single

parameter α is thus clearly insufficient to describe both properties at the same time, and thus

prones the consideration of more elaborate hybrid functionals.

Next, we examine CAM functionals that satisfy Koopmans’ condition. These functionals

include three parameters αs, α`, and µ. Since Koopmans’ condition is not sufficient to fix all

three parameters, we proceed in the following way. First, we narrow down the parameter space

by setting α` equal to 1/εExpt
∞ . For the high-frequency dielectric constant εExpt

∞ , we consider

1.77 [218, 220] and 1.72 [254] for liquid water and hexagonal ice, respectively. We remark that

taking the experimental value for the dielectric constant introduces an empirical parameter in
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Chapter 6. Band gaps of liquid water and hexagonal ice

Table 6.7 – Fundamental band gaps (in eV) of liquid water `-H2O and hexagonal ice Ih as
calculated with hybrid functionals satisfying Koopmans’ condition. The band gaps correspond
to temperatures of 300 and 77 K, respectively. The band gaps are obtained either with the
global functional PBE0(αK) or with the range-separated functional CAM(αs,K, 1/εExpt

∞ ,µTF).
The values of the parameters αK and αs,K are given in parentheses. The reported band gaps
include the corrections associated to NQE and ZPR (cf. Sec. 6.2). Band gaps inferred from
experimental data are given as reference (cf. Sec. 6.2).

PBE0(αK) CAM(αs,K, 1/εExpt
∞ ,µTF) Expt.

`-H2O 8.7 (0.47) 9.2 (0.18) 9.0 ± 0.2a

Ih 8.9 (0.48) 9.3 (0.18) 9.4 ± 0.3b

a T = 300 K, b T = 77 K.

the scheme. However, this could in principle be eliminated by taking the PBE value as a starting

point and by carrying out a self-consistent cycle to ensure that the final value be consistent with

the resulting hybrid functional. Setting the experimental value from the beginning ensures the

physically correct screening in the long range and is sufficient for the purpose of the present

investigation. Second, we treat the inverse range-separation length µ as a free parameter that

we vary systematically. Third, we fix αs through the enforcement of Koopmans’ condition. The

determined parameter is denoted αs,K and depends parametrically on µ. We note that the

resulting functional CAM(αs,K, 1/εExpt
∞ ,µ) incorporates two exact physical constraints, namely

the correct long-range screening as well as Koopmans’ condition [56]. The free parameter

µ allows one to mediate between two extreme regimes. Indeed, for µ→ 0, the present CAM

functional reverts to the global hybrid functional PBE0(αK), which is entirely determined by

Koopmans’ condition. Instead, for µ→∞, the functional converges asymptotically to the

functional PBE0(1/εExpt
∞ ), which is entirely determined by the dielectric response. In the latter

limit, the piece-wise linearity can no longer be satisfied. The continuous variation of µ allows

one to study the band-gap estimate in between these two extreme cases.

For the enforcement of Koopmans’ condition to the functional CAM(αs,K, 1/εExpt
∞ ,µ), we adopt

the following procedure. We carry out an extended study on hexagonal ice and assume that

an analogous analysis would also hold for liquid water insofar both phases of water exhibit

very similar electronic structures. We solely consider the five localized states with the smallest

degrees of hybridization, namely the radical OH, the radical NH2, the fluorine interstitial Fi,

the fluorine substitutional FH2O, and the chlorine substitutional ClH2O. We verify that the

degree of hybridization of these defects remains small when considering the range-separated

CAM functional. Thereby, we ensure a reliable enforcement of Koopmans’ condition and a

consistent comparison with the PBE0(αK) functional. We evaluate the deviations ∆i
K for these

five localized states and compute the rms deviation ∆rms
K using Eq. (6.1). The minimum of

∆rms
K defines αs,K for each specific value of the range-separation parameter µ. It is noteworthy

that the adopted construction scheme requires numerous supercell calculations at the hybrid

functional level. To reduce the computational burden, we first compute ∆rms
K using the Bernal-
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6.5. Band gaps of liquid water and hexagonal ice

Fowler unit cell with 12 water molecules (cf. Sec. 6.4.1). We use a grid in the two-dimensional

space (αs,K,µ) including 6 values ofαs,K and 6 values of µ. Subsequently, we refine these results

using a supercell with 96 water molecules. We generally observe small variations of ∆rms
K as

compared to the smaller supercell. Hence, the values of the grid obtained with the smaller

supercell are adjusted using a linear interpolation of the differences achieved for a 2×2 subset

of relevant points in the space (αs,µ).

Figure 6.6 – Band gaps (in eV) of hexagonal ice Ih as obtained with the CAM functional: (a) iso-
contour plot for the band gap as obtained with the hybrid functional CAM(αs, 1/εExpt

∞ ,µ). The
short-range fraction of Fock exchange αs and the screening parameter µ are varied systemati-
cally. The red line indicates Koopmans’ curve (αs,K,µ) as obtained through the minimization
of ∆rms

K . The shaded region indicates deviations of less than 0.1 eV from the minimum of ∆rms
K ;

(b) band gaps as obtained with the hybrid functionals CAM(αs,K, 1/εExpt
∞ ,µ) along Koopmans’

curve. The vertical dashed line limits the range in which Koopmans’ condition can be fulfilled.
Data points corresponding to the functionals PBE0(αK) and CAM(αs,K, 1/εExpt

∞ ,µTF) are indi-
cated with squares and circles, respectively. The reported band gaps include the corrections
resulting from the ZPR (cf. Sec. 6.2).

Based on the procedure outlined above, we determine αs,K as a function of µ. The obtained

curve (αs,K,µ) is denoted Koopmans’ curve and is shown in Fig. 6.6(a). We observe that αs,K

decreases continuously with increasing µ. For µ = 0, the range-separated CAM functional

reverts to the global hybrid functional PBE0 and we thus consistently have αs,K = αK. The
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Chapter 6. Band gaps of liquid water and hexagonal ice

upper limit for µ is reached at ∼0.75 bohr−1, when αs,K vanishes. For larger values of µ, ∆rms
K

shows no minimum and it is therefore no longer possible to enforce Koopmans’ condition.

Next, we monitor the band gap along Koopmans’ curve highlighted in Fig. 6.6(a) to identify

the range of values consistent with the hybrid functionals CAM(αs,K, 1/εExpt
∞ ,µ). The extracted

band gaps are given as a function of µ in Fig. 6.6(b). We observe an almost linear increase

of the band gap with µ. For vanishing µ, we recover the band gap of 8.9 eV pertaining to the

PBE0(αK) functional. For the upper limit of µ, we achieve a band gap of 9.4 eV. This allows us

to restrain the range of values achieved with the CAM functionals to 9.15±0.25 eV. We remark

that these values are obtained for functionals that reproduce both Koopmans’ condition

and the asymptotic behavior of the Coulomb interaction. For restraining the value of the

band gap even further, it is necessary to invoke additional physical constraints. Similarly to

the discussion for selecting the optimal DDH functional, we could use the deviation of the

calculated dielectric constant from the experimental value to identify the optimal functional

along the Koopmans’ curve. However, the calculated dielectric constant is found to vary

little among the functionals defined in this way (1.65±0.01) and can thus not be used for this

purpose. Another physically motivated way to identify the optimal functional consists in

realizing that the variation along the Koopmans’ curve is determined by the scale of spatial

variation in the screening. It is therefore reasonable to adopt the value of µ = µTF (cf. Sec.

6.3). For hexagonal ice, µTF = 0.57 bohr−1. An explicit fit of the spatially dependent dielectric

constant, would give µ= 0.52 bohr−1 [35], corresponding to a band-gap difference of only 0.04

eV. This leads us to favor the functional CAM(αs,K, 1/εExpt
∞ ,µTF), which gives a band gap of 9.3

eV for hexagonal ice.

In light of the present considerations, the functional CAM(αs,K, 1/εExpt
∞ ,µTF) satisfies Koop-

mans’ condition, reproduces the long-range asymptotic potential, and includes the correct

length-scale for the variation in the screening. This form of hybrid functional should be

preferred over the functional PBE0(α), which does not possess sufficient free parameters to

concomitantly account for all these properties. Hence, we adopt this form of CAM functional

not only to predict the band gap of hexagonal ice but also that of liquid water. In the case of

water, we thus adopt µ= µTF and determine αs,K by imposing Koopmans’ condition on the

same set of five defects employed for hexagonal ice. The consideration of five water snapshots

is again sufficient to converge the mean value of αs,K. The calculated band gaps are given in

Table 6.7 for both phases of water. We observe that the band gaps resulting from the functional

CAM(αs,K, 1/εExpt
∞ ,µTF) increase by ∼0.4−0.5 eV with respect to those obtained with the func-

tional PBE0(αK). This result is consistent with the trend observed in Fig. 6.6(b). The agreement

with experiment is very good as the band gaps obtained with this CAM functional fall within

the range of the experimental reference values.

Before closing this section, it is noteworthy to compare the extension to CAM functionals with

results for other materials previously reported in the literature [51, 115]. So far, Koopmans’

curve has generally been found to remain close to a band-gap isoline, indicating that the range-

separated functional does not improve the description achieved with the simpler global hybrid
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functional (cf. Sec. 5.4.2). However, in the case of NaF, the band gap obtained with PBE0(1/ε∞)

differed from that obtained with PBE0(αK) by about 0.5 eV and some deviation from the isoline

appeared [51]. Similarly, we here find for the two phases of water deviations from the isoline as

large as 0.5 eV. This suggests that such deviations primarily occur in materials with large band

gaps and low dielectric constants. More generally, from the analysis presented above [cf. Fig.

6.6(b)], such a behavior arises when the band gap achieved with the PBE0(αK) substantially

differs from that obtained with PBE0(1/ε∞).

6.6 Summary

In this chapter, we calculate the fundamental band gap of liquid water and hexagonal ice

through advanced electronic-structure methods. We investigate specifically the performance

of both state-of-the-art GW calculations and nonempirical hybrid functionals. The free

parameters of the hybrid functionals are determined either through the dielectric response

of the material or the enforcement of Koopmans’ condition to localized states. We apply

both construction schemes to two classes of hybrid functionals, namely the global PBE0

and the range-separated CAM functionals. The comparison of such a variety of advanced

electronic-structure methods within a consistent computational setup corresponds to one

of the main strengths of our work and brings valuable insight into the issue concerning the

fundamental band gaps of liquid water and hexagonal ice. The results obtained in this chapter

are summarized in Fig. 6.7.

Figure 6.7 – Fundamental band gaps (in eV) of (a) liquid water `-H2O and (b) hexagonal ice
Ih. Vertical bars indicate the band gaps as calculated with the various advanced electronic-
structure methods. The reported band gaps include the corrections associated to NQE and
ZPR (cf. Sec. 6.2). The most reliable band-gap calculations are shown in green. Based on these
calculations, we infer the range of best theoretical estimates (between dashed lines). The
shaded areas indicate the ranges of experimental reference values inferred in Sec. 6.2.
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Table 6.8 – Parameters of all the hybrid functionals retained in this chapter describing liquid
water `-H2O and hexagonal ice Ih. The fraction of short-range Fock exchange αs, the fraction
of long-range Fock exchange α`, and the range-separation parameter µ pertaining to the
functional CAM(αs,α`,µ) are given. When αs =α` =α, one recovers the functional PBE0(α).

`-H2O Ih

αs α` µ αs α` µ

PBE0(1/εsc∞) 0.59 0.59 - 0.61 0.61 -

CAM(1, 1/εsc∞,µTF) 1 0.60 0.58 1 0.62 0.57

CAM(0.25, 1/εsc∞,µTF) 0.25 0.58 0.58 0.25 0.60 0.57

CAM(0, 1/εsc∞,µTF) 0 0.57 0.58 0 0.59 0.57

PBE0(αK) 0.47 0.47 - 0.48 0.48 -

CAM(αs,K, 1/εExpt
∞ ,µTF) 0.18 0.56 0.58 0.18 0.58 0.57

In addition, we report in Table 6.8 a summary of the parameters of all hybrid functionals

retained in this chapter.

Preliminary to the theoretical investigations, we critically review various experimental studies

in the literature. We discuss different estimates for the ionization potential and the electron

affinity for both considered water phases. Based on the most reliable results, we infer experi-

mental values of 9.0±0.2 eV and 9.4±0.3 eV for the fundamental band gaps of liquid water and

hexagonal ice, respectively. These values serve as robust references for the electronic-structure

methods examined in this chapter.

Then, we investigate band gaps as obtained with different state-of-the-art GW calculations.

We show that the QSGW method yields band gaps that overestimate the experimental refer-

ences. The incorporation of vertex corrections in the screening (W̃ ) is then instrumental to

overcome the missing electron-hole interaction in W . With the resulting QSGW̃ scheme, we

find band gaps of 9.1 and 9.3 eV for liquid water and hexagonal ice, respectively. In compari-

son with the experimental references, these results are in good agreement for both phases of

water. Herewith, we confirm QSGW̃ being one of the most accurate schemes for band-gap

predictions [17, 18].

Subsequently, we study dielectric-dependent hybrid functionals for the band gaps of liquid

water and hexagonal ice. The band gaps obtained with the global DDH functional overestimate

the upper limit of the reference interval by 0.6−0.8 eV. Such a poor performance is in line

with a previous result for ice [43], but worse than the typical accuracy of this approach for

other materials [43, 47]. Then, we study DDH functionals based on the CAM functional.

We consider three range-separated DDH functionals differing in the short-range fraction of

Fock exchange. Based on the comparison with experimental references for the dielectric

constant, we identify the functional CAM(0, 1/εsc∞,µTF) as the most reliable DDH functional.

This functional incorporates pure semilocal exchange in the short-range, thereby extending
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the scope of long-range corrected hybrid functionals [90, 91, 92, 93, 94]. This scheme yields

band gaps of 9.0 eV and 9.1 eV for liquid water and hexagonal ice, respectively.

Finally, we investigate hybrid functionals satisfying Koopmans’ condition. We find that the

enforcement of this physical constraint also gives accurate band gaps. The minimization of

the degree of hybridization between localized defects and delocalized band-edge states is

thereby key to ensure proper band-gap predictions. First, we construct the global functional

PBE0(αK) and achieve band gaps for liquid water and hexagonal ice of 8.7 eV and 8.9 eV,

respectively. These results lie lower than the onset of the range of experimental references by

only 0.1−0.2 eV. This is in contrast to the global DDH functional, which is unable to attain such

an accuracy. Then, we construct range-separated hybrid functionals that satisfy Koopmans’

condition. In particular, we investigate the functional CAM(αs,K, 1/εExpt
∞ ,µ), which additionally

enforces the correct long-range screening [56]. The obtained band-gap estimate exhibits a

parametric dependence on the range-separation parameter µ encompassing the result of

the global hybrid functional PBE0(αK) as a lower bound. We overcome the µ dependence by

invoking the scale of spatial variation of the screening, i.e. µ= µTF. This nonempirical and

physically motivated setting leads to the functional CAM(αs,K, 1/εExpt
∞ ,µTF). We employ this

kind of functional for the band-gap estimates of liquid water and hexagonal ice and find 9.2

and 9.3 eV, respectively.

Overall, we show that the three advanced electronic-structure methods considered in this

chapter provide consistent results for the band gaps of liquid water and hexagonal ice. In-

deed, the band gaps of the most reliable schemes, namely QSGW̃ , CAM(0, 1/εsc∞,µTF), and

CAM(αs,K, 1/εExpt
∞ ,µTF) differ by at most 0.2 eV, which corresponds to only ∼2% of the band

gaps involved. We remark that this agreement originates from a consistent computational

setup and from the critical consideration of each method. In this way, our analysis allows us

to resolve the discord arising from previous studies. Based on the present results, we infer best

theoretical estimates of 9.1±0.1 eV and 9.2±0.1 eV for liquid water and hexagonal ice, respec-

tively. The comparison of these theoretical ranges with the experimental ones obtained in

Sec. 6.2 indicates a remarkable agreement. The present comparison provides strong evidence

for the reliability of both experimental and theoretical estimates and reduces the residual

uncertainty on the fundamental band gaps of liquid water and hexagonal ice.

Additionally to the accuracy in the band-gap predictions it is of interest to compare also

the computational costs and the robustness of the examined electronic-structure methods.

QSGW̃ calculations require extensive computational resources and remain therefore limited to

relatively small unit cells. Nevertheless, the reliability of the QSGW̃ scheme has been verified

not only for water and ice but also for numerous other materials. DDH functionals have the

potential of replacing such high-level GW methods due to their efficient implementation

in many electronic-structure codes and their fast convergence within only a few iterations.

However, the present results indicate that the band gaps obtained with DDH functionals

can span a large interval of values, leading to considerable uncertainty. In this chapter,

we overcome this problem by taking under consideration the description of the dielectric
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constant ε∞, but the validity of this way of proceeding for a larger variety of materials remains

to be ascertained. Hybrid functionals satisfying Koopmans’ condition also serve as a viable

alternative to QSGW̃ . This approach yields robust band-gap estimates irrespective of the

considered class of hybrid functionals. However, the application of this method generally

requires defect calculations at the hybrid-functional level with relatively large supercells,

thereby limiting its potential.

In view of employing the present electronic-structure methods to applications involving liquid

water and hexagonal ice, it is clear that the hybrid functional approaches offer significant

advantages in terms of computational cost and the availability of a total-energy scheme. The

present work shows that the compromise on accuracy is limited as the hybrid functional

approaches achieve band gaps comparable to those obtained with the most elaborate GW

scheme.

We finally remark that the results presented in this chapter are also highly relevant for the

band alignment at the water/vacuum interface. Further explanations regarding this topic can

be found in Appendix A.
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7 Band alignment at the CaF2/Si(111)
interface

In this chapter, we determine the band alignment at the CaF2/Si(111) interface through various

advanced electronic-structure methods. This interface is experimentally well-studied and

serves as an ideal test case to examine the accuracy of theoretical schemes. We use both global

and range-separated hybrid functionals as well as GW calculations including self-consistency

and vertex corrections. Our calculation procedure accounts for residual strain resulting from

the small mismatch in the lateral lattice constants at the interface to minimize the systematic

error in the comparison with experiment. Both the hybrid-functional and the GW schemes

give band alignments in overall good agreement with the experimental characterization.

However, the considered methods yield sizable variations in the calculated band offsets, which

do not originate from incorrect evaluations of the band gaps but rather from different inherent

relative positions of the band edges. The comparison with experiment reveals that the global

hybrid functional and the quasiparticle self-consistent GW with vertex corrections give the

most accurate description of the band alignment. We then determine the variation of the

band offsets as a function of the amount of excess fluorine at the interface and attribute the

experimental spread in the measured offsets to uncontrolled fluorine contamination.

The results presented in this chapter have been published in Ref. [111]. Further information

can be found in the corresponding archive on the Materials Cloud [259].
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7.1 Motivation

Why studying the band alignment at the CaF2/Si(111) interface ?

Insulator-semiconductor heterostructures are encountered in a broad variety of modern elec-

tronic devices. The precise understanding of their properties is of great practical importance

[260]. However, an accurate theoretical description of such heterostructures is not trivial.

It requires the appropriate prediction of the band gaps of the involved materials and the

determination of their band alignment at the interface. The calculation of these quantities

within density functional theory (DFT) in standard semilocal approximations [4, 5] suffers

from severe band-gap underestimations [8, 261]. Advanced methods for electronic-structure

calculation like the many-body perturbation theory [9, 15, 17, 18] and hybrid functionals [24,

31, 32] can overcome this deficiency and have therefore intensively been used for studying the

interfacial band alignment [262, 263, 264, 261, 8, 265, 266, 267, 268, 269, 270, 21, 271].

However, two critical aspects of band-alignment calculations have been identified in the last

years. First, it became apparent that a more realistic description of the band gap does not

automatically imply an accurate positioning of the band-edge levels. In fact, it has been shown

that different advanced electronic-structure methods tend to position the band edges differ-

ently even when they give the same band gap [36, 272, 273]. This phenomenon is not yet fully

understood and has direct implications on the prediction of band offsets at heterostructures

[21]. Second, we refer to the work of Grüneis et al. [274]. These authors proposed that GW

calculations including higher-order diagrams are required in order to achieve an accurate

description of ionization potentials (and thus band-edge levels) [274]. Since these terms are

lacking in most commonly used electronic-structure methods, these approaches might yield

unsatisfactory results with respect to experimental references [274]. These critical aspects

put the use of many widely used methods for band-alignment calculations considerably into

question.

For addressing these issues, it is necessary to determine band-edge positions with different

electronic-structure methods. However, band-edge levels from periodic bulk calculations

cannot directly be compared with experimental references [36]. To circumvent this limitation,

theoretical schemes have been examined through their accuracy in predicting ionization

potentials at surfaces [274, 18], band offsets at interfaces [21, 271] or defect levels with respect

to band edges [272, 275]. While a comparison between theoretical schemes is relatively

straightforward, the validation of the calculated band edges against experimental data is more

difficult. Indeed, the latter requires the availability of realistic structural models accounting

for the detailed surface reconstruction [18] or the specific bonding pattern at interfaces [276,

8]. In the absence of such models, it is an arduous task to draw conclusions concerning the

quality of competing electronic-structure methods.

In this context, the CaF2/Si(111) interface can serve as an ideal test case. The CaF2 layer is

epitaxially grown on the silicon substrate [277] and the structural [278, 279, 280, 281, 282, 283,
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284] and electronic [285, 286, 277, 287, 288, 289, 290] properties have been experimentally

characterized in great detail. Furthermore, the combination of a semiconductor like Si with a

wide band-gap insulator like CaF2 leads to sizable band offsets. Therefore, differences between

computational approaches are expected to be more pronounced than for heterostructures

involving similar semiconductors [21, 271].

Overall, we set out to determine the band offsets at the CaF2/Si(111) interface using various

advanced electronic-structure methods to examine their accuracy in comparison with the ex-

perimental characterization. In particular, we are interested to what extent hybrid functionals

and GW methods are capable of accurately predicting the interfacial band alignment.

Should we adopt nonempirical hybrid functionals for this purpose?

For the hybrid-functional calculations, we are in principle inclined to consider nonempiri-

cal parameter definitions. However, the choice of nonempirical hybrid functionals can be

problematic for the purposes of this chapter. This is due to the fact that a proper description

of the band gap of the constituing bulk materials is of great importance in order to achieve

meaningful results for the interfacial band offsets [8]. In case the bulk band gaps suffer from

inaccuracies, the computed band offsets deteriorate accordingly. Unfortunately, we have

seen in the previous chapters, that even the most sophisticated nonempirical hybrid func-

tionals yield band gaps differing by ∼0.2 eV from the experimental counterparts. Whereas

this accuracy is comparable to state-of-the-art GW methods to date, it would introduce a

notable uncertainty for the present study. Indeed, we can anticipate that the computed band

offsets might be subject to variations of several tenth of an electronvolt due to incorrect bulk

band gaps. In this case, the comparison of different electronic-structure methods becomes

a difficult task. Therefore, we decide to employ empirical hybrid-functional schemes in this

chapter in order to diminish systematic errors as much as possible. More specifically, we fix

the hybrid-functional parameter in such a way that calculated and experimental band gap

match. In light of the previous chapters, this way of proceeding is somewhat unsatisfactory

but it is nevertheless appropriate for our purposes here.

7.2 Computational aspects

7.2.1 Electronic-structure methods

In this chapter, we use various advanced electronic-structure methods for determining the

band alignment at the CaF2/Si(111) interface. To this end, we perform calculations for the

bulk components and for an interface model, as further explained later in Sec. 7.2.3.

First, we consider hybrid functionals [24, 31, 32, 291]. In particular, we investigate global as well

as range-separated hybrid functionals. For the former, we use the functional PBE0(α), which

depends on the amount of incorporated Fock exchange α [31]. For the latter, we consider the
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functional HSE(α,µ) which additionally includes a range-separation parameter µ [32, 291].

For the purpose of this study, it is sufficient to vary only the mixing parameter α whereas µ is

kept equal to 0.11 bohr−1 [291]. We remark that both functionals revert to the semilocal PBE

functional [5] when α= 0.

As second kind of advanced electronic-structure method, we use many-body perturbation

theory in the GW approximation [9]. In this chapter, we perform one-shot GW calculations

to correct the single-particle energies obtained from the hybrid functional calculations. In

this way, the adopted GW method depends on the fraction of Fock exchange used in the

preceding hybrid functional calculation. Furthermore, we consider self-consistency [15,

17, 18] and vertex corrections [18]. We account for vertex corrections through the use of

the bootstrap exchange-correlation kernel [109, 18]. A summary of the electronic-structure

methods investigated in this chapter is given in Table 7.1.

Table 7.1 – Advanced electronic-structure methods in this chapter: global (PBE0) and range-
separated hybrid functionals (HSE); one-shot GW with (G0W̃0) and without (G0W0) vertex
corrections using wave functions and energies either from PBE0 or from HSE; quasiparticle
self-consistent GW with vertex corrections (QSGW̃ ). The inclusion of vertex corrections in
the screening results in the notation W̃ for the screened Coulomb interaction. The notation
with the parameter α indicates that the fraction of Fock exchange is adapted to match the
experimental band gap.

Method Global Range-separated
Hybrid functional: PBE0(α) HSE(α)
One-shot G0W0: G0W0@PBE0(α) G0W0@HSE(α)
One-shot G0W̃0: G0W̃0@PBE0(α) G0W̃0@HSE(α)
QSGW̃

7.2.2 Computational details

For all calculations, we use plane-wave basis sets and normconserving pseudopotentials to

describe core-valence interactions [87, 88]. Only the outermost shells are treated among

the valence states for Si (3s23p2) and F (2s22p5). In the pseudopotential of Ca, we include

semicore shells (3s23p64s2) as these states have been shown to be important in a previous

GW study [292]. For the bulk calculations, we adopt the well-known primitive unit cells of Si

and CaF2, respectively. More specifically, we model Si bulk with a face-centered cubic (fcc) cell

with two Si atoms located at the reduced coordinates (0, 0, 0) and ( 1
4 , 1

4 , 1
4 ) [130]. CaF2 bulk is

described by a fcc lattice with one Ca atom at (0, 0, 0) and two F atoms at ( 1
4 , 1

4 , 1
4 ) and (−1

4 ,

−1
4 , −1

4 ) [292]. The structural details of the interface models are given in Sec. 7.4.1 and Sec. 7.5.

The adopted k-point sampling and the energy cut-off are given in Table 7.2.

We verified that the adopted parameters ensure the convergence of the total energy of the

ground state within 10−3 eV/atom. In the particular case of silicon, a dense k-point grid

of 12×12×12 is necessary to include the conduction-band minimum (CBM), which is not
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Table 7.2 – Computational parameters used throughout this study: k-point sampling, ground-
state cut-off energy Ecut, cut-off energy E eps

cut in the dielectric matrix, and total number of
bands nband (occupied and unoccupied) in the dielectric matrix and in the Green’s function.

k points Ecut (Ry) E eps
cut (Ry) nband

Si bulk 8×8×8 60 15 300
CaF2 bulk 6×6×6 100 30 500
CaF2/Si interface 8×8×1 100

located at a high-symmetry k-point [130]. To avoid using such a high-density grid in the more

demanding electronic-structure schemes, we proceed in the following way. We first perform

advanced and semilocal calculations with a coarser 8×8×8 k-point mesh. The differences are

evaluated and interpolated to match the denser 12×12×12 k-point grid. The final results are

achieved by combining the interpolated corrections with a PBE calculation on the 12×12×12

k-point grid. This way of proceeding is appropriate since the energy corrections only weakly

depend on the considered k-point [12, 99]. The final band gaps differ only by ∼0.04 eV with

respect to the estimate achieved with the coarser 8×8×8 k-point mesh.

The GW calculations are performed with nonlocal commutators for the optical matrix element

in the long-wavelength limit as described in Ref. [167]. The dielectric function is calculated

with the formula of Adler and Wiser [97, 98], including an energy cut-off E eps
cut and a total

number of bands nband as given in Table 7.2. The frequency dependence of the dielectric

function is evaluated through the contour deformation technique [118] accounting for 10 real

and 10 imaginary frequencies. In the quasiparticle self-consistent GW (QSGW̃ ) approach

[15, 17], we only update the lowest 100 bands self-consistently and keep higher-lying states

as obtained at the PBE level. The update of more bands leads to indiscernible changes in the

band edges. Overall, we estimate that the quasiparticle energies are converged within 0.05 eV.

7.2.3 Band-alignment scheme

In this study, we determine the band alignment following the scheme outlined in Refs. [293,

294]. A graphical representation is given in Fig. 7.1.

The band-offset determination is based on two individual bulk and on one interface calcula-

tion. The bulk models are used to position the valence-band maximum (VBM) EVBM of each

component relative to the average electrostatic potential V . In the interface model, the line-up

of the average electrostatic potential across the interface ∆V is achieved. The valence-band

offset ∆EV is then found through

∆EV = E Si
VBM −E CaF2

VBM +∆V. (7.1)

The conduction-band offset ∆EC is then inferred from the consideration of the band gaps of

the two interface components (cf. Fig. 7.1).

101



Chapter 7. Band alignment at the CaF2/Si(111) interface

Figure 7.1 – Band-alignment scheme for the calculation of the valence-band offset ∆EV and of
the conduction band offset ∆EC at the CaF2/Si(111) interface.

We apply this scheme to evaluate the band-alignment obtained through different electronic-

structure methods following the specific procedure outlined by Alkauskas et al. [8]. First, we

focus on the hybrid functionals, which contain a single undetermined parameter α. For each

interface component, we empirically determine the optimal α for which the calculated band

gap of the bulk matches its experimental counterpart. In particular, we impose an indirect

band gap of 1.17 eV [130] for Si and a direct band gap of 12.0 eV [295] for CaF2. The latter

condition is equivalent to enforcing an indirect gap of 11.7 eV. The optimal mixing parameters

αSi and αCaF2 obtained in this way for the PBE0(α) and HSE(α) hybrid functional forms are

given in Table 7.3.

Table 7.3 – Optimal mixing parameters αSi and αCaF2 that reproduce the experimental band
gap of Si and CaF2, respectively. The mean value ᾱ= (αSi +αCaF2 )/2 is used in the interface
calculation for the determination of the line-up.

G0W0@ G0W̃0@
PBE0 HSE PBE0 HSE PBE0 HSE

αSi 0.12 0.25 0.00 0.00 0.05 0.07
αCaF2 0.40 0.56 0.30 0.38 0.77 0.87
ᾱ 0.26 0.40 0.15 0.19 0.41 0.47

The interfacial line-up is then computed with a hybrid functional defined by the mean of the

mixing parameters pertaining to the two interface components [8]: ᾱ= (αSi +αCaF2 )/2. This

approach is meaningful because the interfacial line-up potential is almost independent of the

mixing parameter [8, 267, 21]. In this way, the combination of bulk and interface calculations

provides us with the band offsets corresponding to a given hybrid-functional form.

Next, we consider the band alignment for the electronic-structure methods based on GW cal-

culations. These calculations are performed for the bulk models of the interface components.

For the line-up in the one-shot GW schemes, we follow the same procedure as for the hybrid
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functionals since these GW schemes also depend on an underlying value of α for the starting

point. A specific value ᾱ is thus identified as the mean of the optimal mixing parameters of the

bulk components given in Table 7.3. Since the one-shot GW calculations do not modify the

charge density, we use the line-up potential achieved with the hybrid functional defined by ᾱ.

By contrast, in the QSGW̃ scheme, the band-gap determination does no longer depend on the

value of α of the starting hybrid functional, because of the iteration towards self-consistency.

Therefore, a QSGW̃ calculation would in principle lead to a distinct value of the line-up ∆V .

However, such high-level GW calculations are computationally demanding for large super-

cells and do not lead to any sizable variation in ∆V . Indeed, Shaltaf et al. [261] calculated

for the Si/SiO2 interface an effect of only 0.02 eV on ∆V due to the self-consistency. This

property stems from the fact that QSGW only brings minor variations to the charge density

and thus to the electric dipoles, as also seen in the case of small molecules [296]. In view of

these considerations, we use in our QSGW̃ scheme the same value of ∆V as obtained with the

hybrid functionals. In the QSGW̃ scheme, the band gaps do not match the experimental ones

by construction. Hence, it should be considered that the band offsets could suffer from this

drawback [8].

7.2.4 Strain effects

We now devote special attention to the strain in our description of the CaF2/Si(111) interface.

There are multiple reasons to properly account for such effects. First, in experimental con-

ditions, the CaF2 layer grows epitaxially upon silicon [277] with a residual mismatch, which

causes this layer to be subject to compressive strain in the in-plane directions [285, 286, 277].

For the present interface, the experimental mismatch is particularly small and corresponds to

0.59% (cf. lattice constants in Table 7.4). Second, our interface modelling englobes a structural

relaxation (cf. Sec. 7.4.1), which leads the relaxed model interface to exhibit lattice constants

in the growth direction that differ from the targeted experimental situation. Third, we have

a preference for performing the advanced calculations on bulk systems, on the one hand to

take advantage of the high symmetry, and, on the other hand, to establish benchmark results

for future reference. Fourth, the motivations of this study consists in comparing different

advanced electronic-structure methods to experiment and it is thus important to reduce

effects that could bias our conclusions as much as possible. Hence, the motivation for paying

attention to strain effects arises from both experimental and computational conditions. In the

following, we describe how these effects are accounted for.

We specifically distinguish between the lattice constants in the lateral directions alat and in

the growth direction az. These quantities exhibit different values for bulk Si, bulk CaF2, the

interface model, and the strained CaF2 layer in the experiment. A schematic illustration of the

different configurations is shown in Fig. 7.2.

103



Chapter 7. Band alignment at the CaF2/Si(111) interface

Figure 7.2 – Schematic illustration of the band alignment of bulk Si, Si and CaF2 within the
interface model, bulk CaF2, and the strained CaF2 layer. The lattice constants in the lateral
directions alat and in the growth direction az are indicated. The band gaps for Si and CaF2

are shown in correspondence of the unstrained bulk configurations. The targeted valence-
band offset ∆EV and conduction-band offset ∆EC, corresponding to those measured in the
experimental conditions, are also indicated.

Our ultimate intention is to calculate the alignment between unstrained silicon with exper-

imental lattice constant aSi
bulk, i.e. with alat = aSi

bulk and az = aSi
bulk, and a CaF2 layer that is

strained because of the lattice mismatch, i.e. for which alat = aSi
bulk and az = aCaF2

layer . The value of

aCaF2

layer is determined through the experimental values for the mismatch and the Poisson ratio

of CaF2. For the latter, we here use the value of ν= 0.26 from Ref. [297, 298]. To achieve this

goal, our band alignment scheme takes advantage of (i) bulk calculations of Si and CaF2 that

are performed at their respective experimental bulk lattice constants, aSi
bulk and aCaF2

bulk , and of

(ii) an interface model calculation, in which the in-plane lattice constant is fixed at the target

aSi
bulk, but the az lattice constants of both components are allowed to relax according to the

electronic structure scheme used, giving aSi
model and aCaF2

model. The various lattice constants used

in this chapter are compiled in Table 7.4.

To connect the two structural calculations of Si, we follow the scheme for evaluating deforma-

tion potentials proposed in Ref. [300]. We construct a superlattice in which regular Si alternates

with a Si layer in which the lattice constant along the growth direction has been modified.

We obtain in this way a strain-induced shift in the electrostatic potential ∆V (Si bulk → Si

model). For CaF2, we proceed analogously. From a superlattice calculation between regular

and strained CaF2, we obtained the effect of uniaxial strain on the electrostatic potential and

on the band edges. Based on the symmetry and the linearity in the strain, we then extend the

results to the specific strain transitions between the three structural configurations of CaF2 of

interest to us. More specifically, we derive in this way ∆V (CaF2 model → CaF2 bulk) and the
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Table 7.4 – Lattice constants (in Å) for Si and CaF2 considered in this chapter. aSi
bulk and aCaF2

bulk

are the experimental lattice constant of bulk Si and bulk CaF2, respectively. aCaF2

layer is the lattice
constant in the growth direction for a CaF2 layer epitaxially grown on Si, determined through
the experimental Poisson ratio. aSi

model and aCaF2

model are lattice constants in the growth direction
as found in the respective bulk regions of the relaxed model interface.

aSi
bulk aSi

model aCaF2

model aCaF2

bulk aCaF2

layer

5.431a 5.484 5.581 5.463b 5.587

a Ref. [130], b Ref. [299].

strain-induced band-edge shifts between bulk CaF2 and the strained CaF2 layer, i.e. ∆EV(CaF2

bulk → CaF2 layer) and ∆EC(CaF2 bulk → CaF2 layer). We perform these calculations with the

hybrid functionals PBE0(α) and HSE(α), i.e. with parameters α set as in the respective bulk

phases (cf. Table 7.3). The results obtained are reported in Table 7.5.

Table 7.5 – Strain-induced shifts (in eV) of the electrostatic potential ∆V (Si bulk → Si model)
and ∆V (CaF2 model → CaF2 bulk) and of the valence and conduction band levels ∆EV(CaF2

bulk → CaF2 layer) and ∆EC(CaF2 bulk → CaF2 layer), as obtained with the hybrid functionals
PBE0(α) and HSE(α). These shifts are used for all electronic-structure methods in this chapter.

PBE0(α) HSE(α)
∆V (Si bulk → Si model) −0.10 −0.10
∆V (CaF2 model → CaF2 bulk) 0.25 0.25
∆EV(CaF2 bulk → CaF2 layer) −0.16 −0.17
∆EC(CaF2 bulk → CaF2 layer) 0.09 0.08

We generally observe small effects due to strain, which is consistent with the epitaxial growth

found for this interface [277]. More specifically, we find strain-induced shifts in the electro-

static potential of −0.10 eV and 0.25 eV for ∆V (Si bulk → Si model) and ∆V (CaF2 model →
CaF2 bulk), respectively. For the potential line-up between bulk Si and bulk CaF2 this yields

an overall correction of only 0.15 eV with respect to the value obtained through the interface

model. For the band-edge shifts between bulk CaF2 and the strained CaF2 layer, we find with

PBE0(α) a shift of −0.16 eV and 0.09 eV for the VBM and CBM, respectively. The strain correc-

tions calculated with HSE(α) differ by at most 0.01 eV. We expect corrections of similar size for

the other electronic-structure methods considered in this chapter. In particular, we apply for

the one-shot GW schemes identical strain corrections as obtained with the underlying hybrid

functional. For the QSGW̃ scheme, we use the corrections as calculated with PBE0(α).

7.3 Band gaps and band-edge levels of bulk materials

We first focus on the bulk materials and determine band gaps and band-edge levels with

respect to the average electrostatic potential. We devote special attention to the direct or
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indirect nature of the band gaps. In particular, we consider the direct (Γ→ Γ) and the indirect

(X → Γ) band gap for CaF2 to enable a meaningful comparison with experiment. A graphical

visualization of the band structure of Si and CaF2 is given in Fig. 7.3 as obtained at the PBE

level of theory.

Figure 7.3 – PBE band structure of (a) Si and (b) CaF2. Valence-band maximum (VBM),
conduction-band minimum (CBM) are indicated for each material.

A summary of the calculated band gaps is given in Table 7.6 together with experimental data

for the fundamental band gap.

Table 7.6 – Band gaps (in eV) for Si and CaF2 as calculated at various levels of theory. It is
specified whether the band gaps correspond to direct or indirect transitions. All the results in
this table are obtained with hybrid functionals in which α= 0.25. The experimental data refer
to fundamental band gaps.

G0W0@ G0W̃0@
PBE PBE0 HSE PBE PBE0 HSE PBE PBE0 HSE QSGW̃ Expt.

Si (indir.) 0.57 1.79 1.17 1.17 1.54 1.41 1.11 1.44 1.33 1.28 1.17a

CaF2 (indir.) 7.33 10.11 9.30 10.41 11.51 11.28 9.28 10.07 9.98 11.47 11.8b

CaF2 (dir.) 7.58 10.37 9.57 10.72 11.80 11.57 9.59 10.37 10.28 11.76 12.0±0.1c, 12.1d

a Ref. [130], extrapolated to T = 0 K, b Estimation of Shirley [301] based on Ref. [302], c Ref. [295], T = 15 K, d Ref. [302], T = 90 K.

At the PBE level the well-known band-gap underestimation is apparent. The advanced

electronic-structure methods provide a more realistic description of the band gap even when

the hybrid-functional parameter is set to the default value α = 0.25 without applying any

optimization. In particular, we observe that the PBE0(0.25) band gaps are generally larger

than the HSE(0.25) ones, in accord with the analysis in Ref. [267]. The G0W0 corrections

tend to level out this difference when the two hybrid functionals are used as starting points.

The inclusion of vertex corrections in the G0W0 only yields a minor reduction of the band

gap. Overall, QSGW̃ gives the best agreement with experiment further supporting the high

accuracy of this scheme for band-gap evaluations [15, 17, 18, 112, 114].
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For a proper comparison with experiment, it is necessary to consider the band-gap renor-

malization due to phonons. For Si this effect is found to be 0.06 eV [154]. For CaF2, such an

estimate is unavailable in the literature but a sizable effect on the order of ∼0.5 eV can be

expected on the basis of the result of a similar ionic compound such as MgO [156, 155]. In

the band-offset calculations in which the calculated band gaps reproduce their experimental

counterparts, we assume that phonon renormalization effects are implicitly accounted for

through the empirical tuning of the hybrid-functional parameter α. This way of proceding

is justified as long as the phonon renormalizations affect the band edges in a similar way as

the scaling of α. However, the effect of phonon renormalization should be kept in mind when

assessing the accuracy of QSGW̃ , since this scheme does not rely on any band-gap tuning.

The band gaps calculated here are in good agreement with other theoretical studies in the

literature. For Si, there are numerous computational studies including the application of

both hybrid-functional and GW calculations [17, 8, 261, 267, 273, 37, 21, 18, 47]. Within this

variety of references, we particularly focus on the high-level GW calculations of Refs. [17] and

[18]. These studies found QSGW̃ band gaps of 1.24 eV and 1.30 eV, respectively, in excellent

agreement with our QSGW̃ result of 1.28 eV. For CaF2, several studies based on the local

density approximation (LDA) for the exchange-correlation energy report an indirect band

gap ranging between ∼6.7 and 7.1 eV [301, 292, 303, 304] These values agree well with our

band gap of 7.33 eV obtained with the semilocal PBE functional. As for the more advanced

electronic-structure methods, we refer to the GW calculations of Ma and Rohlfing [304], the

GW calculations of Shirley [301], and to the self-consistent screened-exchange LDA (sX-LDA)

calculations of Kim et al. [303], which yield band gaps of 11.5, 11.38, and 11.66 eV, respectively.

These results are all in good agreement with our QSGW̃ band gap of 11.47 eV.

We then turn to band-edge levels as obtained at the various levels of theory. Our hybrid-

functional results are illustrated in Fig. 7.4, where the band-edge levels are displayed as a

function of the hybrid-functional parameter α.

We generally observe a linear dependence of the VBM and CBM on the fraction of incorporated

Fock exchange. The corresponding band-gap opening is smaller for HSE(α) than for PBE0(α),

in analogy with the results in Ref. [267]. The linearity in α is preserved when applying a one-

shot GW correction, as also found in Ref. [37] for other materials. In QSGW̃ such dependence

on the starting-point is overcome through the iteration towards self-consistency. For CaF2, all

GW approaches provide almost symmetric band-edge corrections with respect to the hybrid-

functional starting points, i.e. the upwards shift of the CBM has a similar size to the downwards

shift of the VBM. Instead, for Si the VBM and CBM are both subject to a negative energy

correction. Our results are generally consistent with the finding of Chen and Pasquarello that

different electronic-structure methods tend to position the band edges differently [273]. This

appears clearly when comparing the band edges from QSGW̃ with those from the hybrid

functionals with optimal mixing parameters, as can be seen in Fig. 7.4 and Table 7.7. For Si, we

observe that the valence-band edges as calculated with the hybrid functionals are persistently

higher by 0.3 to 0.6 eV than corresponding ones in GW . For CaF2, no such simple statement
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Figure 7.4 – Band-edge levels (in eV) for Si and CaF2 as calculated through various levels of
theory. The VBM and the CBM are displayed as a function of the fraction of Fock exchange
α. We show the results for Si as obtained with (a) the PBE0(α) and (b) the HSE(α) functionals.
The results for CaF2 are presented analogously in (c) and (d). The band-edge levels obtained
with the one-shot GW methods are also given. The vertical bars indicate the value ofα needed
to reproduce the experimental band gap. The red bar highlights band edges as calculated
with QSGW̃ and is positioned at the mixing parameter for which PBE0(α) and QSGW̃ give the
same band gap. The energy levels are aligned through the average electrostatic potential.

can be made. In this case, the most pronounced differences are found for the band edges

obtained with the hybrid functionals. More specifically, the valence-band edge from HSE(α)

is ∼0.4 eV lower than that from PBE0(α). The GW approaches yield values lying in between

those obtained with the two hybrid functionals.
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Table 7.7 – Valence band-edge levels (in eV) with respect to the average electrostatic potential
for Si and CaF2 as calculated at various levels of theory. The band-edge levels are expressed
as shifts with respect to the reference PBE values at 4.35 eV and 1.21 eV for Si and CaF2,
respectively. Different calculations are aligned through the average electrostatic potential. For
the parameter-dependent electronic structure methods, the fraction of incorporated Fock
exchange α is tuned to reproduce the experimental band gap (cf. Table 7.3).

G0W0@ G0W̃0@
PBE0(α) HSE(α) PBE0(α) HSE(α) PBE0(α) HSE(α) QSGW̃

Si −0.33 −0.34 −0.68 −0.68 −0.73 −0.72 −0.90
CaF2 −3.18 −3.61 −3.24 −3.26 −3.30 −3.47 −3.66

7.4 Band offsets at the CaF2/Si(111) interface

7.4.1 Interfacial line-up potential

For the calculation of the interfacial line-up potential ∆V , we use the so called T4-interface

model in B-type orientation [277, 305], which is characterized by a predominance of Si-Ca

bonds at the interface. The interface is charge neutral and the Ca atoms are located at the

T4 sites of the Si(111)-(1×1) surface. We remark that the precise interface morphology has

intensively been debated in the literature [278, 285, 277, 281] resulting in clear evidence for the

presently adopted T4-interface model [279, 289, 282, 283, 284]. Furthermore, computational

studies based on this model structure successfully accounted for photoemission [306, 307]

and second-harmonic generation measurements [305].

In our superlattice model, we use ∼21 Å of Si and ∼20 Å of CaF2. We carefully check that

such thicknesses ensure a bulk-like electrostatic potential far from the interface. In order to

mimic the epitaxial growth, the experimental lattice constant of Si is adopted for the lateral

directions. We further find that the structural relaxation of the interfacial atomic positions

has a significant influence on the line-up potential due to changes brought to the interface

dipole. Therefore, we fully relax the structure at the PBE level until the total energy between

two successive iteration steps is smaller than 10−5 Ry. The residual Hellmann-Feynman forces

are then smaller than 10−4 Ry/bohr. In this structural optimization, we allow for the relaxation

of both the atomic positions and the supercell size in the growth direction. The two other

supercell dimensions are kept fixed. The model interface obtained in this way is used in all

subsequent calculations of the interfacial line-up potential irrespective of the considered level

of theory. This is justified since structural relaxations at the hybrid functional level only lead to

minor changes. For instance, further relaxation with the functional PBE0(0.25) affects ∆V by

0.03 eV with respect to the value achieved with same functional but for the structure relaxed

with the PBE functional. This is consistent with the results of Weston et al. [308].

We now study the line-up of the electrostatic potential at the CaF2/Si(111) interface. To this

end, we perform calculations for the constructed interface model at the various levels of theory
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Figure 7.5 – Locally averaged (a) charge density ρ and (c) electrostatic potential V across the
CaF2/Si(111) interface as obtained with the semilocal PBE functional. (b) The charge density
δρ and (d) the electrostatic potential δV as obtained with the hybrid functionals PBE0(0.25)
and HSE(0.25) with respect to PBE are also given. The interfacial line-up ∆V in PBE and its
modification δ(∆V ) in case of PBE0(0.25) are indicated. The shaded areas correspond to the
transition regions between Si and CaF2. In the top panel, the atomic structure of the interface
model is illustrated: Si, Ca, and F atoms are shown in yellow, blue, and green, respectively.

considered in this study. We note that earlier works demonstrated that electrostatic properties

are already adequate at the semilocal DFT level [261, 8, 267, 21]. Therefore, we first focus on

the PBE level of theory. The corresponding charge density ρ and electrostatic potential V are

given in Figs. 7.5(a) and (c), respectively. For simplicity, the displayed quantities are averaged

in the lateral directions and broadened with a Gaussian of width 2.5 Å in the growth direction.

We observe that ρ and V exhibit bulk-like behavior away from the interfacial transition regions.

From the difference between the plateau values in the electrostatic potential we infer a line-

up potential of ∆V = 2.56 eV at the PBE level. For the more advanced electronic-structure

methods, we focus on the differences in the charge density δρ and in the electrostatic potential
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δV with respect to PBE, as shown in Figs. 7.5(b) and (d), respectively. In particular, we display

the results for the hybrid functionals PBE0(0.25) and HSE(0.25) as representative cases. We find

that δρ and δV indeed correspond to minor modifications, namely on the order of ∼2 ·10−4

e/Å and ∼0.03 eV, respectively. We observe a charge transfer from CaF2 to Si [cf. Fig. 7.5(b)],

which produces a change in the interfacial line-up potential δ(∆V ) [cf. Fig. 7.5(d)]. This effect

amounts to 0.06 eV for the functional PBE0(0.25). An almost identical value is found for the

functional HSE(0.25).

To estimate the range of these deviations, we calculate δ(∆V ) as a function of the hybrid-

functional parameter α. The dependence is shown in Fig. 7.6 for both PBE0(α) and HSE(α).

Figure 7.6 – Variation of the line-up potential δ(∆V ) with respect to the result obtained with
PBE as a function of the mixing parameter α in the hybrid functionals PBE0(α) and HSE(α).
Calculations with the optimal mixing parameters for bulk Si and CaF2 (cf. Table 7.3) are shown
as triangles pointing to the left and the right, respectively. Calculations with the mean of these
mixing parameters are indicated with a square. Other calculated data points are shown with
circles. Dashed lines are guides to the eye.

We find a linear dependence on α at low values, but a saturation becomes apparent at higher

values. Overall, the variations in the line-up potential are generally smaller than 0.1 eV

conferring consistency to the applied band-alignment scheme. To overcome the remaining

dependence on the parameter, we follow the procedure outlined in Ref. [8]. This consists in

using the line-up potential as calculated with the mean of the optimal mixing parameters

of the bulk components (cf. Table 7.3). For the hybrid functionals PBE0(α) and HSE(α), this

yields almost identical line-up potentials of 2.62 eV and 2.63 eV, respectively. In the one-shot

GW schemes, the line-up is obtained through the underlying hybrid functional defined with

the mean value ᾱ given in Table 7.3. In the QSGW̃ scheme, we use the value of ∆V = 2.62 eV

obtained in PBE0(α) following the discussion in Sec. 7.2.3. These different choices for α lead

to an uncertainty in the determination of ∆V that amounts to 0.05 eV at most.

111



Chapter 7. Band alignment at the CaF2/Si(111) interface

7.4.2 Band offsets at the interface

We now have all the ingredients for the calculation of the band offsets at the CaF2/Si(111)

interface. For this we combine the band-edge positions determined in Sec. 7.3 with the

interfacial line-up potential calculated earlier in Sec. 7.4.1. We also account for strain effects

as discussed in Sec. 7.2.4. The band offsets obtained in this way are given in Table 7.8, where

they are compared with experimental data [286, 285, 290]. We remark that several differing

experimental values for the band offsets can be found in the literature [285, 286, 277, 287, 288,

289, 290]. In Table 7.8, we report an interval of experimental data that encompasses the three

measurements with the highest values for the valence-band offset. We expect these results

to be representative of the CaF2/Si(111) interface with a low contamination of Si-F bonds, as

discussed in more detail in Sec. 7.5.

Table 7.8 – Band offsets (in eV) for the CaF2/Si(111) interface as obtained at the various levels
of theory considered in this chapter. Experimental data are given for comparison.

G0W0@ G0W̃0@
PBE PBE0(α) HSE(α) PBE0(α) HSE(α) PBE0(α) HSE(α) QSGW̃ Expt.

∆EV 5.73 8.58 9.01 8.28 8.31 8.31 8.48 8.49 8.7±0.2a

∆EC 0.96 1.90 1.45 2.18 2.14 2.17 1.99 1.63 1.8±0.2b

a Refs. [286, 285, 290], b Based on measured ∆EV from Refs. [286, 285, 290] and the experimental band gaps

considered in this study. The effect of strain in the CaF2 overlayer is included through strain corrections determined

at the PBE0(0.40) level (cf. Table 7.5).

All advanced electronic-structure methods considered in this chapter yield a reasonable

agreement with the experimental data showing errors of at most ∼0.4 eV, corresponding to

only 3% of the largest band gap involved. In particular, the highest accuracy is found for the

hybrid functional PBE0(α), which yields band offsets within ∼0.1 eV from the experimental

ones. Interestingly, the high accuracy of the band alignment achieved in the PBE0(α) scheme

has already been remarked previously in applications involving ionization potentials [37],

band-offsets at semiconductors heterostructures [21], and band alignments at solid-water

interfaces [196]. At variance, the hybrid functional HSE(α) overestimates ∆EV by ∼0.3 eV

and hence underestimates ∆EC by an equivalent amount. Among the GW methods, the

QSGW̃ achieves the highest accuracy resulting in both conduction and valence band offsets

underestimated by ∼0.2 eV. This result is particularly remarkable because the band gaps are

not empirically adjusted in the QSGW̃ scheme. However, the consideration of band-gap

renormalization effects especially for CaF2 might lead to a further deviation of the QSGW̃

band offsets with respect to the experimental ones (cf. Sec. 7.3). For the one-shot GW methods,

the agreement with respect to experiment is generally worse. In most cases, the valence-band

offset is underestimated by ∼0.4 eV irrespective of the starting point and the use of vertex

corrections. The only exception is found for G0W̃0@HSE, which yields band offsets of accuracy

comparable with QSGW̃ . All advanced electronic-structure methods in this chapter overcome

the band-gap problem encountered in the semilocal PBE approximation (cf. Table 7.8) as
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well as in previous LDA-based schemes [309, 310, 311], which yield valence-band offsets

underestimated by ∼2.0 to 2.4 eV.

Apart from the overall good agreement between theory and experiment, it is noteworthy to

remark that the band offsets obtained with the various advanced electronic-structure methods

show sizable variations. These variations prevalently originate from the different positioning

of the band-edge levels with respect to the average electrostatic potential (cf. Sec. 7.3). The

other ingredients of the modelling procedure, such as the potential line-up or the strain effects,

cannot account for the size of the observed variations. At this point, it is of interest to identify

which electronic-structure method provides the most reliable description of the band-edge

levels.

To address this issue, we focus on the two most accurate schemes, i.e. PBE0(α) and QSGW̃ .

The band-offsets in these two schemes are very close (cf. Table 7.8), but the band-edge levels

are noticably different. Indeed, the band-edge levels of both Si and CaF2 calculated in QSGW̃

are deeper by 0.5–0.6 eV than the respective ones in PBE0(α). A similar situation occurs for

interfaces between cubic semiconductors [21], which all belong to a similar class of materials

from both the electronic and structural point of view. In the present case, this behavior is

seen for two rather dissimilar materials exhibiting different crystal structure, degree of ionic

bonding, and band gap. While this difference does not show up in the band offsets calculated

here, it nevertheless directly affects the average electrostatic potential with respect to the

vacuum level and in principle can be investigated through the comparison with experimental

ionization potentials. In the case of the Si(111) surface, it has already been shown that the

ionization potential calculated in the PBE0(α) scheme accurately reproduces the experimental

value [37], whereas the QSGW̃ result shows a significant overestimation by about 0.5 eV [18].

For silicon, Grüneis et al. have shown that the consideration of higher-order diagrams in GW

leads to an upward shift of about 0.3 eV [274], which would compensate the discrepancy to a

noticable extent. However, the same authors have shown that such a shift is not encountered

for large band-gap materials and would thus presumably not apply to the case of CaF2. Thus,

it appears clearly that further investigations are necessary to understand the overall position

of the band structure with respect to the average electrostatic potential or to vacuum level.

7.5 Effect of interfacial Si-F bonding

In this section, we address the reduction of the valence-band offset at the CaF2/Si(111) inter-

face as the fraction of Si-F bonding increases due to excess fluorine. The possibility of a Si-F

termination has been amply discussed when determining the precise interface morphology

[278, 285, 277, 279]. While a predominance of Si-Ca bonds has clearly been identified at the

interface [277, 279, 289, 306, 282, 283, 284, 305], evidence for a certain percentage of Si-F

bonds has also been established [277, 280]. Despite the considerable efforts deployed [285,

277, 312, 280, 282, 283], the quantitative dependence of the valence-band offset on the fraction

of interfacial Si-F bonding has so far remained elusive.
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Having established the accuracy of advanced electronic-structure calculations, we are now in

a suitable position for addressing this issue. For this purpose, we construct various interface

models showing fractions of Si-F bonding corresponding to 25%, 50%, 75%, and 100% fluorine

termination. To account for the intermediate fractions of fluorine termination, we double

the size of the interfacial repeat unit used so far in both lateral directions, resulting in models

with a total number of atoms multiplied by four. Following Refs. [286, 277], we position the F

atoms at the T sites of the Si(111)-(1×1) surface and the Ca atoms at the T4 sites. In particular,

for each of the intermediate percentages, we consider three interface models differing in the

specific arrangement of Si-F and Si-Ca bonds. Some representative examples of these models

are shown in Fig. 7.7.

(a)

(b)

(c)

Figure 7.7 – Atomic structure of an interface model with (a) 0%, (b) 50%, and (c) 100% Si-F
bonds. Si, Ca, and F atoms are shown in yellow, blue, and green, respectively.

We apply the computational setup described in Sec. 7.2, which includes a relaxation at the

PBE level. We check that the considered percentages of Si-F bonds are preserved through the

structural relaxation. The multiple structural models at the intermediate fractions show total

energies differing by at most 0.7 eV per surface Si atom. In this way, the interface is described

through a set of low-energy structural configurations. A shifted 2×2×1 k-point mesh is found

to give converged line-up potentials. For the calculation of the band offsets, we use the hybrid

functional PBE0(α), which has been shown in Sec. 7.4.2 to yield the highest accuracy among

the electronic-structure methods considered in this study.

The results of our investigation are illustrated in Fig. 7.8, in which the valence-band offsets

are displayed versus the fraction of Si-F bonding. We observe a general reduction of the

valence-band offset with increasing fraction of Si-F bonding. In particular, we determine a

sizable difference of 4.7 eV between pure Si-Ca and pure Si-F bonding. When considering

the various structural models at a given intermediate fraction, we find valence-band offsets
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Figure 7.8 – Valence-band offset (in eV) versus the fraction of interfacial Si-F bonding. Calcu-
lated values are given as circles. The most stable and higher-energy structures are shown in
blue and cyan, respectively. The dashed line is a guide to the eye. The shaded area indicates
the interval of valence-band offsets measured in experiments in which the interfacial fraction
of Si-F bonds has not been determined explicitly. The upper and lower bounds correspond to
8.8 eV [285] and 7.0 eV [313, 312], respectively. The experimental result of Olmstead et al. [277]
is illustrated with a red triangle at the estimated fraction of interfacial Si-F bonding.

falling in a range of ∼0.6 eV due to the varying bonding patterns. The descending trend of the

valence-band offset is nevertheless well supported.

Our result demonstrate that the valence-band offset sensitively depends on the amount of

interfacial Si-F bonding. In view of this dependence, we attribute the large spread from 7.0

eV to 8.8 eV in the experimental data [312, 313, 285, 286, 277, 287, 288, 289, 290] to different

amounts of generally uncontrolled F contamination. On the basis of our calculations, we

estimate that the utilized samples might contain up to 50% of Si-F bonding. In particular,

in the experiment of Olmstead et al. [277], the fraction of Si-F bonding could be estimated

resulting in a data point lying consistently with respect to the results of our calculations (cf.

Fig. 7.8). This agreement supports the dependence found in Fig. 7.8.

7.6 Summary

In this chapter, we investigated the band alignment at the CaF2/Si(111) interface through

various advanced electronic-structure methods based on hybrid functional and GW calcula-

tions. This allowed us to assess the accuracy of these theoretical schemes for an interface that

has been extremely well characterized from the experimental point of view. In particular, we

considered both PBE0(α) and HSE(α) hybrid-functional forms, several one-shot GW methods

with various starting points, with or without vertex corrections, and the self-consistent QSGW̃
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scheme. All applied schemes were empirically tuned to reproduce the experimental band gap,

with the only exception being the fully ab initio QSGW̃ . We determined the band offsets by

combining the band-edge levels calculated for the bulk components with the line-up of the

average electrostatic potential at the interface.

All electronic-structure methods considered in this chapter perform satisfactorily yielding

band offsets within 0.4 eV from the experimental values. The highest accuracy encountered

is 0.1 eV and is found for the empirically tuned PBE0(α) hybrid functional. This result is

particularly interesting since it further extends the range of successful applications of this

scheme [37, 21, 196]. QSGW̃ is the next most accurate scheme reproducing the experimental

band offsets within 0.2 eV. This is particularly remarkable since the band gap of the interface

components is not imposed in this scheme, but determined in a fully ab initio fashion.

Apart from finding an overall good agreement with experiment, our study reveals significant

differences between the band offsets calculated with the applied electronic-structure methods.

Due to their size, the origin of these differences can be reconducted to the position of the

band-edge levels with respect to the average electrostatic potential in each electronic-structure

scheme. In particular, it is interesting to compare PBE0(α) and QSGW̃ . While both schemes

give band offsets agreeing within at most 0.2 eV with the experiment, the band edges with

respect to the average electrostatic potential consistently differ by 0.5–0.6 eV in the two

interface components. This difference does not affect the band offsets at the CaF2/Si(111)

interface, but leads to different ionization potentials. In this respect, results in the literature for

silicon suggest that it is the PBE0(α) scheme that yields a better agreement with the experiment

[37, 18]. However, PBE0(α) is an empirical scheme and thus remains unsatisfactory. In the

presence of increasing support in favor of PBE0(α) [37, 21, 196], it is legitimate to inquire

whether the fully ab initio QSGW̃ scheme still misses a crucial ingredient. Grüneis et al.

proposed to go beyond such a GW scheme by including higher-order diagrams [274]. However,

such corrections were found to be insignificant for large-gap materials [274] and would thus

leave the band edges of CaF2 unaffected. Therefore, it appears clearly at this stage that further

investigations are necessary for allowing a consistent picture to emerge.

In the final part of this chapter, we determined the reduction of the valence-band offsets as a

function of the amount of extra fluorine at the interface. Our results are consistent with the

experimental characterization and offer an explanation for the large spread in the measured

band offsets. The present analysis suggests that the bonding structure at the CaF2/Si(111)

interface should be carefully characterized prior to the achievement of benchmark results for

the band offsets.
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In this thesis, we explore various routes for improving electronic-structure calculations by fo-

cusing on nonempirical hybrid functionals. In particular, we investigate dielectric-dependent

hybrid functionals and hybrid functionals that satisfy Koopmans’ condition as constructed

for both global and range-separated functional forms. Through a series of investigations, we

demonstrate that these functionals provide an accurate description of the band gaps of various

semiconducting and insulating materials. The comparison with experimental references and

state-of-the-art GW calculations confirms the validity of our conclusions.

Prior to the application of the nonempirical schemes to specific kinds of materials, we focus in

Chapter 4 on conceptual developments of hybrid functionals satisfying Koopmans’ condition.

In particular, we identify open questions concerning the use of defect levels for the construc-

tion of these functionals. To overcome these issues, we introduce adjustable potential probes,

which allow us to study the band-gap estimate as the defect level varies within the band gap.

We find that the estimate is most accurate in case the defect level lies in the middle of the

band gap. In contrast, we observe a notable deterioration for defect levels in the vicinity of

the band edges. The monitoring of the delocalized screening charge allows us to explain this

observation and in turn to achieve an improved description of the band gap. The application

of this methodology to common semiconducting and insulating materials yields band gaps

differing by less than 0.2 eV from experiment. In addition, our results provide guidelines for

the selection of suitable potential probes even when natural defect states cannot be used. This

enlarges the scope of the methodology based on the enforcement of Koopmans’ condition.

Having established a conceptual balance between DDH functionals and hybrid functionals

satisfying Koopmans’ condition, we turn to the examination of band-gap predictions as

obtained with these functionals. First, we investigate inorganic metal-halide perovskites in

Chapter 5. More specifically, we study nine cubic perovskites belonging to the class CsBX3,

with B = Ge, Sn, Pb and X = Cl, Br, I. These compounds serve as a representative test set and

allow us to perform QSGW̃ reference calculations due to their small unit cell. Our hybrid-

functional calculations indicate that the global DDH functional exhibits an accuracy inferior

to the range-separated one. This observation is inline with previous studies in the literature
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corroborating range-separated DDH functionals for band-gap predictions [35, 47, 57]. The

hybrid functionals fulfilling Koopmans’ condition also yield band gaps in good agreement

with our GW references. Interestingly, this statement holds irrespective of the global or

range-separated functional form, thereby supporting the robustness of hybrid functionals

satisfying Koopmans’ condition for band-gap calculations [51]. Overall, we find that the two

nonempirical schemes yield band gaps with an accuracy of ∼0.2 eV. Based on a discussion

of the required computational cost, we then elect the range-separated DDH functional as

the most suitable approach for the application to high-throughput screening of larger sets of

perovskite materials.

In Chapter 6, we investigate the fundamental band gaps of liquid water and hexagonal ice.

Due to the large variety of conflicting experimental and theoretical studies in the literature, we

proceed in two steps. First, we establish robust benchmarks through a critical review of various

experimental studies. Then, we employ self-consistent GW calculations and nonempirical

hybrid functionals to obtain state-of-the-art theoretical band-gap estimates. As a result of

both steps, we consistently achieve fundamental band gaps of liquid water and hexagonal ice.

Moreover, the calculations presented in this chapter provide valuable insight into the accuracy

achievable with nonempirical hybrid functionals. In particular, we observe significantly

overestimated band gaps when employing the global DDH functional. This result is consistent

with the poor performance of this scheme seen in the study on the perovskite compounds.

Once again, range-separated DDH functionals can overcome this deficiency and provide a

more precise description of the band gap. However, the comparison of three different range-

separated DDH functionals exhibits a critical dependence of the band-gap estimate on the

specific fraction of Fock exchange incorporated in the short range. This observation hints

at a lack of consistency among the existing range-separated DDH schemes and necessitates

further investigation. For the hybrid functionals satisfying Koopmans’ condition, we generally

find good agreement with the experimental references. In case the global functional form

is considered, a small band-gap underestimation of 0.1-0.2 eV is apparent. This accuracy is

consistent with the results obtained in Chapter 4, Chapter 5, and Ref. [51]. In addition to the

global functional, we also construct a range-separated hybrid functional that complies with

the Koopmans’ condition, the asymptotically correct KS potential, and the spatial variation

of the screening. This nonempirical hybrid functional provides band gaps with a remarkable

accuracy and guides the way towards a unification of DDH functionals and hybrid functionals

enforcing Koopmans’ condition.

In the last chapter of this thesis, we turn to the investigation of band-edge levels. In particular,

we determine the band offsets at the CaF2/Si(111) interface. This interface can serve as an

ideal test case to examine the accuracy of computational schemes due to the combination of

constituents with largely different band gaps and to the precise knowledge of the interface

morphology. In our study, we examine in particular global and range-separated hybrid func-

tionals as well as GW calculations including self-consistency and vertex corrections. In order

to diminish systematic errors, we consider in this chapter an empirical adjustment of the

hybrid-functional parameters. Due to the insight gained in the previous chapters, we can infer
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that the results obtained with nonempirical hybrid functionals would vary only marginally

with respect to the empirical ones. Our calculations indicate that the global hybrid functional

is capable of precisely describing the interfacial band offsets. The obtained accuracy is even

higher than the one achieved with the highly sophisticated QSGW̃ scheme. These promising

results guide the way towards accurate band-alignment calculations with nonempirical hybrid

functionals.

Finally, it is interesting to reflect on further investigations in the context of nonempirical hybrid

functionals. More specifically, we focus on two aspects, namely (i) the application of nonem-

pirical hybrid functionals to materials of particular interest, and (ii) further developments of

the theoretical concepts. In the following, we address these points in more details.

First, we discuss specific materials for which the application of nonempirical hybrid func-

tionals is expected to provide enlightening results. For instance, materials which incorporate

localized d electrons such as some III-V semiconductors (GaAs, GaN, InP etc.) and transition-

metal oxides (ZnO, Cu2O, NiO, TiO2 etc.) can be assigned to this category. In particular the

latter have shown to be notoriously difficult to describe both with hybrid-functional [272] and

GW calculations [101, 117, 195, 18, 196]. Therefore, it would be of great interest to examine

the performance of nonempirical hybrid functionals for such materials. For DDH functionals,

several successful applications have already been reported [44, 35, 136, 57, 137]. For hybrid

functionals satisfying Koopmans’ condition, only a few studies can be found [49, 55, 258],

whereas the majority of works resort to nonempirical DFT+U schemes [146, 147, 148] when

considering materials with d electrons. A comparative study using a consistent computational

setup would therefore be highly appreciated. It is noteworthy that in such an investigation one

could compare not only the accuracy of the band-gap estimates but also the average positions

of the d bands which are relevant for band-alignment calculations [314, 315].

Another attractive test set for nonempirical hybrid functionals represent nanoporous materials

such as metal-organic frameworks (MOFs). Numerous of these compounds are investigated

at present due to their possible application for photocatalytic water splitting [316, 317]. For

their theoretical characterization, one could imagine an analogous investigation to our study

on the metal-halide perovskites presented in Chapter 5. In particular, the application of

hybrid functionals satisfying Koopmans’ condition has been demonstrated recently in Ref.

[316]. Similar studies employing DDH functionals are lacking at present. Therefore, it would

be interesting to construct hybrid functionals based on both nonempirical schemes and to

systematically compare the obtained band gaps for a representative set of MOFs. We expect

that on the basis of such an examination, one could additionally identify the most appropriate

functional for the high-throughput screening of large sets of MOFs.

Also amorphous materials (Ge, SiO2, HfO2 etc.) or binary alloys (Inx Ga1−x N, CuInx Ga1−x S2

etc.) could be investigated by means of nonempirical hybrid functionals. These compounds

are of great practical importance due to their incorporation in various microelectronic devices.

Furthermore, these materials are typically studied using hybrid functionals since GW calcu-
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lations are practically unaffordable due to the sizeable structural models required. It would

be interesting to examine to what extent nonempirical hybrid functionals provide accurate

band gaps of these systems. In particular for binary alloys, it would be fascinating to study

the variation of the band gap on the concentration ratio x. This dependence is also known

as band-gap bowing [318, 319] and can only be approximately described through semilocal

or empirical hybrid functionals. Adopting the nonempirical hybrid-functional schemes, one

could determine the amount of Fock exchange specifically for each ratio x and thus study the

band-gap bowing with an unprecedented accuracy.

Certainly, there exist a variety of other materials to which nonempirical hybrid functionals

could be applied as well. However, we remain here with the given examples as representatives

for various other possibilities. Instead, it is our interest to discuss also conceptual develop-

ments for nonempirical hybrid functionals. In particular for hybrid functionals satisfying

Koopmans’ condition, one can envisage various improvements. So far, the construction of

these functionals necessitates the analysis of localized defects within a supercell of the con-

sidered host material. This constraint inherits a huge computational burden which notably

limits the application scope of these functionals. To overcome this drawback, it would be

highly desirable to enforce Koopmans’ condition without defect calculations. Interestingly,

promising steps towards this goal can be found in the works of Ivady et al. [147, 148]. These

authors focus on deriving analytical expressions for the hybrid-functional parameters that en-

force Koopmans’ condition. Despite the fact that this approach needs to be elaborated further,

it guides the way towards enforcing Koopmans’ condition at greatly reduced computational

cost.

Another thought-provoking improvement of nonempirical hybrid functionals is the unification

of the dielectric-dependent and the Koopmans’ scheme. As we have shown in our studies

on perovskites (cf. Chapter 5) and on water/ice (cf. Chapter 6), it is possible to construct

such functionals based on the range-separated CAM functional. Their application to the

present materials yields band-gap estimates in good agreement with experimental references

and state-of-the-art GW calculations. However, the validity of this statement needs to be

demonstrated for a larger class of semiconducting and insulating materials.

Apparently much work is still required to develop the ideas outlined in this chapter. In the

mean time, we hope that the results presented in this thesis could serve as a basis for further

studies employing nonempirical hybrid functionals.
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Appendix A
Band alignment at the
water/vacuum interface

In this Appendix, we determine the alignment of the band-edge levels of liquid water with

respect to the vacuum level. This specific band alignment has provoked controversial scientific

discussion [116, 188, 189] and is also highly relevant for the description of photocatalytic

reactions at semiconductor/water interfaces [195, 196]. Having established a consistent

description of the band gap of liquid water in Chapter 6, we are in the comfortable situation to

address the band alignment at the water/vacuum interface.

Band-alignment scheme

We compute the band alignment following the scheme outlined in Refs. [293, 294]. A graphical

representation of this scheme is given in Fig. 8.1.

Figure 8.1 – Schematic illustration of the band alignment at the water/vacuum interface.

The determination of the band-edge positions of liquid water is based on one bulk and on

one interface calculation. The former is used to position the valence-band maximum (VBM)

EVBM and the conduction-band minimum (CBM) ECBM relative to the average electrostatic
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potential V . The latter is instrumental to obtain the line-up ∆V of the average electrostatic

potential across the water/vacuum interface. The position of the VBM with respect to the

vacuum level, i.e. the ionization potential IP, is then found through IP = −EVBM +∆V . In

analogy, the position of the CBM relative to the vacuum level, i.e. the electron affinity EA, is

given by EA =−ECBM +∆V .

Band-edge positions vs. average electrostatic potential

For the bulk calculations, we focus in particular on the electronic-structure methods which

yield the most reliable band-gap estimates of liquid water (cf. Sec. 6.6). These are the QSGW̃

method and the nonempirical hybrid functionals CAM(0, 1/εsc∞,µTF) and CAM(αs,K, 1/εExpt
∞ ,µTF).

We do not consider the other electronic-structure methods examined in Chapter 6 since these

schemes yield more inaccurate band-gap estimates, which would deteriorate the accuracy in

the determined band-edge positions [8].

The computational details of the bulk calculations are given in Sec. 6.4.2 and shall not be

repeated in this Appendix. We verified that the presented values for the numerical parameters

ensure converged results for the band gap but also for the individual band-edge positions.

Furthermore, we note that the extrapolations of the band gap as obtained with QSGW̃ can be

performed analogously for the VBM and the CBM. We checked that the band-edge extrapola-

tions determined in this way are consistent with the band-gap extrapolations presented in Fig.

6.3.

The computed band-edge levels with respect to the average electrostatic potential are given in

Table 8.1. We observe that both the VBM and the CBM of liquid water as obtained with QSGW̃

are systematically lower by 0.3-0.6 eV with respect to the corresponding band-edge levels

achieved with the nonempirical hybrid functionals. This finding could at least partially result

Table 8.1 – Band-edge levels EVBM and ECBM (in eV) with respect to the average electrostatic
potential. The corresponding fundamental band gap Eg (in eV) is also given. Values obtained

with QSGW̃ , CAM(0, 1/εsc∞,µTF), and CAM(αs,K, 1/εExpt
∞ ,µTF) are distinguished. In the bottom

panel, the band-edge levels and the band gap include the NQE corrections ∆E NQE
VBM, ∆E NQE

CBM,

and ∆E NQE
g (see text).

QSGW̃ CAM(0, 1/εsc∞,µTF) CAM(αs,K, 1/εExpt
∞ ,µTF)

EVBM −7.4 −6.8 −7.1
ECBM 2.4 2.9 2.9
Eg 9.8 9.7 9.9

EVBM+∆E NQE
VBM −6.9 −6.3 −6.6

ECBM+∆E NQE
CBM 2.2 2.7 2.6

Eg +∆E NQE
g 9.1 9.0 9.2
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from the different band-gap estimates of the three methods. However, the band-gap variations

amount to only 0.1-0.2 eV and are thus insufficient to account for the full effect. We remark

that similar differences in the band-edge levels obtained with GW and hybrid-functional

schemes have been found also for Si and CaF2 in Sec. 7.3 and for various other materials in

Ref. [273].

It is noteworthy that the results presented in the top panel of Table 8.1 have been obtained

with classical water snapshots. For a more realistic description of the electronic structure,

it is necessary to account for nuclear quantum effects (NQE). For liquid water, these effects

have been shown to reduce the fundamental band gap by ∆E NQE
g =−0.7 eV [116] (cf. Sec. 6.2).

For the purposes of this Appendix, it is necessary to express this correction to the band gap

as individual corrections to the VBM and the CBM, which we denote as ∆E NQE
VBM and ∆E NQE

CBM,

respectively. Based on the QSGW̃ calculations of Chen et al. presented in Fig. 5 of Ref. [116],

one can infer these corrections to be 0.47 eV and −0.23 eV, respectively. These values are

consistent with other results reported in the literature [188] and ensure additionally an overall

band-gap correction of −0.7 eV. Therefore we apply these NQE corrections systematically to

the band-edge levels achieved with the three electronic-structure methods. The corrected

band-edge levels (and band gaps) are given in the bottom panel of Table 8.1. We note that

the discrepancies among the three schemes remain unaffected since ∆E NQE
VBM and ∆E NQE

CBM act

as constant shifts to the VBM and the CBM, respectively. We adopt the corrected band-edge

levels throughout this Appendix for the alignment at the water/vacuum interface.

Line-up potential at the water/vacuum interface

For the interface calculation, we consider a molecular-dynamics (MD) trajectory computed by

Ambrosio et al. [189, 320]. In their simulation, the water/vacuum interface has been modelled

through an orthorhombic supercell, which is elongated in the c direction and accommodates

∼25 Å of liquid water and 40 Å of vacuum. The density of liquid water in the bulk-like region

amounts to 0.995 g/cm3 which is in good agreement with experimental references [239]. The

molecular configurations of the 128 incorporated water molecules are well equilibrated due

to an evolution of the MD over 60 ps. Van der Waals interactions have been accounted for

through the use of the revised Vydrow and Van Voorhis (rVV10) nonlocal density functional

[240, 241]. The empirical parameter b has been set to 9.3, which ensures a realistic description

of the structure of liquid water [242, 116]. Further information on the employed MD trajectory

can be found in Ref. [189] and the corresponding archive on the Materials Cloud [320].

In the calculation of the line-up potential ∆V , the potential profile has been symmetrized.

This effectively eliminates the bias due to the small residual electric field [189]. Upon the MD

evolution, ∆V converges to a value of 3.37±0.04 eV as shown in Fig. 8.2. We remark that this

result has been achieved through an cumulative running average over water configurations

after every time step of 0.1 ps. This corresponds to a total number of 600 snapshots which

ensures a sufficient sampling of the configuration space. We note that the absolute value of∆V

cannot be compared to the result of Ambrosio et al. since these authors adopted a different set
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Figure 8.2 – Cumulative running average of the potential offset ∆V across the water/vacuum
interface (solid line). The converged limit is also indicated (dashed line).

of pseudopotentials which critically affects the average electrostatic potential. Nevertheless,

the residual uncertainty of 0.04 eV is identical to the value reported by Ambrosio et al. [189]

which indicates that oscillations due to the finite temperature are described consistently.

For the interface calculation, we adopted in this Appendix the semilocal PBE functional. This

is justified since electrostatic properties have been shown to be adequate at this level of theory

[261, 8, 267, 21]. Indeed, Ambrosio et al. have reported a marginal variation of 0.06 eV when

recalculating ∆V at the hybrid-functional level [189]. For self-consistent GW methods, no

such result for the water/vacuum interface can be found in the literature. Nevertheless, Shaltaf

et al. computed for the Si/SiO2 interface a variation in ∆V of only 0.02 eV due to such GW

calculations [261]. Therefore, we use the PBE functional for the computation of the line-up

potential and adopt the value of 3.37 eV for all electronic-structure methods considered in

this Appendix. We estimate that this way of proceeding introduces an uncertainty in the band

alignment of at most 0.1 eV.

Band-edge positions vs. vacuum level

We now have all the ingredients for the calculation of the band alignment at the water/vacuum

interface. For this, we combine the band-edge positions relative to the average electrostatic

potential with the interfacial line-up. The VBM and CBM obtained in this way are given in Fig.

8.3 where they are compared with experimental references for the IP and the EA, respectively.

We find that the three considered electronic-structure methods yield band-edge levels in good

agreement with the experimental references. More specifically, the QSGW̃ scheme positions

the CBM within the EA reference interval and the VBM only 0.2 eV below the lower bound

of the IP reference interval. For the hybrid functional CAM(0, 1/εsc∞,µTF), the CBM and the

VBM lie higher than the corresponding references by 0.1 eV and 0.2 eV, respectively. The

hybrid functional CAM(αs,K, 1/εExpt
∞ ,µTF) yields a CBM higher than the upper bound of the

EA reference interval by 0.1 eV and a VBM falling within the IP reference interval. Overall,

we find that none of the three theoretical schemes yields both band edges falling within the
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Figure 8.3 – VBM and CBM of liquid water referred to the vacuum level. The results achieved
with the QSGW̃ scheme and the nonempirical hybrid functionals CAM(0, 1/εsc∞,µTF) and

CAM(αs,K, 1/εExpt
∞ ,µTF) are shown. The shaded areas illustrate the intervals corresponding to

the experimental reference values for the ionization potential IP and the electron affinity EA
(cf. Sec. 6.2). The fundamental band gaps as inferred from the VBM and the CBM are also
indicated. All energies are given in electronvolts.

experimental reference intervals. However, the observed deviations amount to at most 0.2 eV,

which corresponds to the typical accuracy achieved with state-of-the-art electronic-structure

calculations [116, 188, 189, 196].

We note that the present band alignment is consistent with other studies in the literature.

In particular, for the QSGW̃ scheme, we find band-edge positions differing only by 0.1 eV

from those reported by Ziae and Bredow [214]. However, these authors combined results

from calculations using different pseupotentials which may lead to inconsistencies [189].

As far as the hybrid-functional schemes are concerned, we can compare our results with

those of Ambrosio et al. [189]. These authors employed the empirically adjusted hybrid

functional PBE0(0.45) and found the VBM and the CBM at −9.7 eV and −0.8 eV with respect

to the vacuum level, respectively. These results differ only by 0.1-0.3 eV from the present

values. These discrepancies can be attributed to the different value of 8.9 eV assumed for the

fundamental band gap in Ref. [189].

Overall, we conclude that the QSGW̃ scheme as well as nonempirical hybrid functionals

CAM(0, 1/εsc∞,µTF) and CAM(αs,K, 1/εExpt
∞ ,µTF) are capable of accurately predicting the band

alignment at the water/vacuum interface. The residual deviations from the experimental

references amount to at most 0.2 eV. The comparison with other theoretical studies in the

literature further supports the conclusions drawn in this Appendix.
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