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Abstract
Over the last two decades, many technological and scientific discoveries, ranging from the

development of materials for energy conversion and storage through the design of new drugs,

have been accelerated by the use of preliminary in silico experiments, to steer and inform

synthesis and characterization. This new computational paradigm has been particularly sig-

nificant for simulations taking place at the atomic scale, which provide a predictive framework

to determine the properties of condensed phases and molecular systems from first principles.

Thanks to the steady improvement in accuracy and efficiency of ab initio methods, as well as

to the increase in the performance (and reduction in the cost) of computational resources,

once-prohibitive quantum mechanical calculations of atomic-scale properties have become

affordable and ubiquitous. The rise of ab initio and high-throughput materials design and

discovery, however, brings both challenges and opportunities.

Large repositories of atomistic data require complicated, time-consuming analyses to ratio-

nalize the relationship between the structure and the properties, and to determine the most

promising candidates for a given application. Oftentimes - for instance when considering

molecular dynamics simulations that sample the finite-temperature fluctuations of materials

in realistic thermodynamic conditions - first-principle calculations contain large amounts

of redundant data, for which a direct ab initio treatment is still prohibitively expensive. The

availability of large amounts of data, and the fact that many applications require to sample

repeatedly configurations that share considerable similarities, provide the ideal scenario to

leverage statistical learning techniques. Machine-learning potentials (and more generally,

atomistic property models) trained on a small number of reference quantum calculations

accelerate by orders of magnitude the prediction of the stability and behavior of similar mate-

rials and molecules, while unsupervised (or semi-supervised) analyses automate the process

of mining large computational databases for materials with improved performances, and for

insights on the physical processes that determine their outstanding properties.

This thesis presents several methodological advances to the representation of condensed

phase matter at the atomic scale to develop data-driven atomistic models. We present an

atom density framework to build n-body representations encoding the chemical structure

along with the fundamental symmetries of such systems and draw links between several

popular frameworks. This formulation provides both a unifying picture of density-based

representations and recipes to extract symmetry-adapted features from atomistic systems,

one of the key factors for the successful application of – both supervised and unsupervised –

machine learning algorithms. Building on this framework, we used a 3-body representation
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to explore large databases of small peptides and molecular crystals using clustering and

dimensionality reduction, unsupervised learning techniques, through maps of their structural

correlations. These simple overviews of entire datasets allowed us to highlight structure-

property relations and to check for their consistency and reliability. Thanks to the generality

of this representation we also applied supervised learning to construct surrogate models of

several quantum properties such as the chemical shifts in molecular materials and the stability

of molecular materials, small molecules, and perovskites. We further improve the quality of

these models by introducing property and system-specific knowledge into the representation

to increase its correlation with the target properties. Such optimization of the representation

helps reducing the error of model predictions, but being able to estimate the accuracy of these

predictions is just as useful. To simplify computing uncertainty estimates for the predicted

properties, we provided simple schemes to calibrate them and assess their accuracy thus

increasing the reliability of data-driven models of materials.

The success of the supervised and unsupervised learning applications we presented within

the atom density representation framework highlights the value for the atomic scale modeling

toolbox in integrating machine learning algorithms to automate analyses and accelerate

property predictions. This framework has already lead to several extensions – both on the

representation and on the modeling strategy – and we expect it to be the cornerstone for the

development of new knowledge-based computational materials methods.

Key words: Materials modelling, Machine learning, Atomistic Computer Simulation, Density-

based representations, Kernel methods, New materials discovery, High-throughput screening,

DFT, crystal structure prediction, Molecular Materials, Structure-property relationship
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Résumé
Au cours des deux dernières décennies, de nombreuses découvertes technologiques et scienti-

fiques, allant du développement de matériaux pour la conversion et le stockage énergétique à

la conception de nouveaux médicaments, ont été accélérées par l’utilisation d’expériences

“numériques” pour orienter leur synthèse et leur caractérisation. Ce nouveau paradigme a été

particulièrement important pour les simulations à l’échelle atomique, qui fournissent un cadre

théorique solide pour prédire les propriétés de la matière condensée. Grâce à l’amélioration

constante de la précision et de l’efficacité des méthodes ab initio, ainsi qu’à l’augmentation

des performances des ordinateurs, les calculs précédemment prohibitifs des propriétés à

l’échelle atomique sont devenus courants. L’essor de la conception et de la découverte de

matériaux à haut débit utilisant des méthodes ab initio, cependant, apporte à la fois des défis

et des opportunités.

Les grands dépôts de données atomiques nécessitent des analyses compliquées et longues

afin de rationaliser la relation entre la structure et les propriétés, et de déterminer les candidats

les plus prometteurs pour une application donnée. Souvent - par exemple les simulations

de dynamique moléculaire qui échantillonnent les fluctuations à température finie des ma-

tériaux dans des conditions thermodynamiques réalistes - les interactions entre les atomes

sont redondantes et les traiter directement avec une méthode ab initio sont encore prohibitif.

La disponibilité de grandes quantités de données, et le fait que de nombreuses applications

nécessitent d’échantillonner de façon répétée des configurations qui partagent des simili-

tudes considérables, fournit le scénario idéal pour tirer parti des techniques d’apprentissage

statistique. D’une part, les potentiels interatomiques (et plus généralement, les modèles de

propriétés atomiques) entrainés avec des techniques d’apprentissage automatique sur un

petit nombre de références ab initio accélèrent grandement la prédiction des propriétés de

matériaux et de molécules similaires D’autre part, l’apprentissage non supervisé (ou semi-

supervisé) permet d’automatiser l’exploration de grandes bases de données contenant des

références ab initio afin de trouver des matériaux aux performances améliorées, et d’obtenir

des informations sur les processus physiques qui déterminent leurs propriétés exception-

nelles.

Cette thèse présente un certain nombre d’avancées méthodologiques sur représentation de la

matière condensée à l’échelle atomique dans le but de développer des modèles guidés par

les données. Nous présentons un cadre théorique pour représenter les structures atomiques

à travers les corrélations structurelles. De cette manière, la structure chimique ainsi que les

symétries fondamentales de tels systèmes sont encodés succinctement, un des facteurs clés
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pour l’application réussie des algorithmes d’apprentissage automatique. De plus, cette for-

mulation fournit une image unifiée des représentations basées sur les densités atomiques.

Sur la base de ce cadre, nous avons utilisé une représentation à trois corps pour explorer des

bases de données de petits peptides et de cristaux moléculaires en utilisant des techniques

de partitionnement et de réduction de la dimensionnalité, dit apprentissage non supervisé,

en établissant des visualisations simples de leurs corrélations structurelles. Ces aperçus d’en-

sembles de ces bases de données nous ont permis de vérifier leur cohérence et leur fiabilité et

de mettre en évidence des relations structures-propriétés pour ces systèmes. Grâce à la géné-

ralité de cette représentation, nous avons également appliqué des techniques d’apprentissage

supervisé pour construire des modèles de substitution pour plusieurs propriétés quantiques

telles que les déplacements chimiques dans des solides moléculaires et la stabilité des ma-

tériaux moléculaires, des petites molécules et des pérovskites. La qualité de ces modèles est

améliorés davantage en introduisant des connaissances spécifiques des propriétés cible dans

la représentation des structures atomiques afin d’augmenter leur corrélation réciproque. Une

telle optimisation de la représentation permet de réduire l’erreur des prédictions du modèle,

mais il est tout aussi utile de pouvoir estimer la précision de ces prédictions. Pour simplifier

le calcul de l’estimation de l’incertitude associée avec les propriétés prédites, nous avons

proposé des procédures simples pour la calibrer et évaluer sa précision, augmentant ainsi la

fiabilité des modèles de matériaux guidés par les données.

Le succès des applications des algorithms d’apprentissage (non) supervisé que nous avons

présentées dans le cadre de la représentation des systèmes atomiques par densité atomique

souligne les possibilités d’amélioration qu’offrent les algorithmes d’apprentissage automa-

tique aux méthodes classiques de modélisation des matériaux, que ce soit pour automatiser

des analyses de leurs simulations ou pour accélérer la prédiction de leurs propriétés. Ce cadre

théorique a déjà donné lieu à plusieurs extensions – tant sur le plan de la représentation que

celui de la stratégie de modélisation – et nous pensons qu’il sera une pierre angulaire pour

développement de nouvelles méthodes de modélisation des matériaux basées sur les données.
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1 Machine learning for atomic-scale
modelling

The advent of new materials has been at the core of many deep societal changes over the last

century, from widely available commercial flights to computers thanks to the use of super-

alloys and silicon-based transistors. New materials have been typically discovered through

labor-intensive searches. For instance, Edison tested about six thousand organic compounds

to develop the filament of his long lasting light bulb while the formulation of a stable and

cheap catalyst for the Haber-Bosch process required testing more than twenty thousands

metallic candidates.

Following such protocol to find alternative materials to build solar cells or batteries to improve

their efficiency would represent a prohibitive investment. As a result, computational mate-

rials methods have grown in the past two decades to be an essential guide for experimental

searches and developments of new materials, providing atomistic insights to complex phe-

nomena, pre-screening of hypothetical materials. The emergence of computer simulations to

predict, in silico, the stability and the properties of hypothetical materials owes to the steady

improvement of the modelling methods, computational resources, and in the efficiency of

their implementations. Some recent achievements include highlighting the stabilization of

high-temperature super-conductors by nuclear quantum effects1 and the details of the defor-

mation processes in tantalum metal with ab initio molecular dynamics,2 finding promising

2D semiconductors for the next generation of transistors3 and proposing alternative materials

to extend the lifetime of Li-ion batteries.4

The most accurate description of atomic systems is provided by Schrödinger’s equation but

solving it numerically for all the electrons and nuclei system is impractical for more than a

few atoms. Over the last fifty years a hierarchy of approximate quantum mechanical theories

have been developed to predict their properties, e.g. formation energy, electronic band

structure, NMR chemical shifts, and dipole-moment, from first principles.5–9 These methods

include by order of increasing accuracy Density Functional Theory (DFT), Møller-Plesset (MP)

perturbation theory and Coupled-Clusters with singles and doubles (CCSD) methods and their

typical scaling are respectively O(n3), O(n5) and O(n6) where n is the number of electrons in

the system. Therefore the length and time scales they can model, typically of the order of the

1



Chapter 1. Machine learning for atomic-scale modelling

nm and ps with DFT, are often too small to directly study the effect of grain boundaries on the

strength of alloys or the binding of a molecule to a protein, to mention only a few examples.

Nevertheless, they provide the first step upon which multi-scale modelling techniques are

built.10 One of the most prominent examples of such procedure is the parametrization of

empirical force fields (FF) using ab initio data where the electronic degrees of freedom are

approximately incorporated into internal parameters of the model. This drastic simplification

of the interactions within the atomic system coupled with fixed functional forms leaves the

development of accurate and transferable reactive, multi-component FF as a major challenge.

Thermodynamic properties such as the phase diagram of a condensed phase system or the

Raman spectra of a solvated molecule can be accurately estimated by sampling a statistical

ensemble using Markov Chain Monte Carlo (MCMC) or Molecular Dynamics (MD) in the

thermodynamic limit, i.e. for a large number of atoms, in conjunction with electronic struc-

ture methods.11,12 Besides these generally applicable techniques, the atomic scale modelling

toolbox also includes more targeted protocols. Among the most widely used design ap-

proaches figure Crystal Structure Prediction (CSP) to elucidate the polymorphism of molecular

materials,13,14 computer-aided drug design to accelerate drug discovery and development15

and the combinatorial evaluation of materials properties,16 e.g. optimize the composition of

the perovskites structure for energy conversion.17 Considering the large amount of reference

data produced by such methods, several community efforts have emerged over the past few

years18–26 that aim at generating, and/or storing large amounts of simulation data in publicly

available databases. The development of these repositories of structural data along with their

associated materials properties (e.g. formation energy, band gap, polarizability, . . . ) and

more generally the widespread availability of atomistic data enables the use of data-driven

approaches to accelerate discoveries in the field of computational materials.20,27,28

In the past few years, machine learning (ML) models have become increasingly popular as

a way to interpolate between ab initio calculations of both energy29–34 and more complex

properties35–37 of atomistic structures (supervised learning), as well as automating time con-

suming analyses of atomistic simulations data (unsupervised learning).38–43 The properties

y of a physical system, A, obey a number of symmetries and conservation laws, and efforts

to encode these at the core of atom-scale models have been shown to consistently improve

the data efficiency of the regression scheme, making better use of the expensive electronic-

structure calculations used for training. One option is to incorporate symmetries at the level

of the model so that an appropriate representation can be learned from the data. For example,

convolutional neural networks (CNN) architectures learn translational and scale-invariant

features from images by design leading to a significant improvement of their performances

compared to models based on features crafted by experts.44 The main approach followed in

the atomic scale modelling community this far has however been to develop representations

of the atomic structure, defined by the positions and the species of its atoms {ri , ai } and the

lattice vectors h1,2,3 for periodic structures, that extract features x that are equivariant with

respect to these symmetries. Using these features as the input representation gives a ML

model adapted to the desired symmetries.

2



Most of the current efforts have been geared towards the modelling of scalar properties, such

as a system’s energy, which are invariant with respect to permutations of the atoms label

and rigid translations and rotations. Moreover, most physical observables are continuous

functions of the atomic coordinates so an efficient representation would benefit from a certain

level of smoothness. Different strategies have been proposed to incorporate these symme-

tries. Approaches based on internal coordinates (e.g. Coulomb matrices,45,46 eigenvalues of

overlap matrices47 or bag of bonds48) are automatically invariant to rotations and translations

but require an additional symmetrization over the permutation group. For low-dimensional

problems this symmetrization can be performed exactly.49–51 For larger systems, one can

proceed by sorting the vector of interatomic distances or eigenvalues of a matrix that depends

on interatomic distances.47 However, both procedures introduce derivative discontinuities.

Instead, many approaches to represent atomistic configurations rely more or less explicitly on

atomic distributions, e.g radial distribution functions,52 smooth overlap of atomic positions,53

permutation invariant polynomials,54 atom centered symmetry functions.29 These repre-

sentations need to be contrasted with the descriptors or fingerprints used in chemical and

materials informatics. Instead of relying solely on atomic positions and types like representa-

tions, they incorporate heterogeneous information such as the degree of hybridization, atomic

electronegativity, HOMO-LUMO energies. . . 28,55 with structural indicators such as backbone

dihedral angles56 and discrete secondary-structure categories57,58 in proteins, graph represen-

tation of molecules59 or histograms of coordination numbers60 for clusters and condensed

phase materials. Using domain-specific knowledge to model the relation between a material

and its property can be very effective35,37,61 but it also restricts the range of application of the

method so this thesis will focus on representations.

The featurization of the atomic structure leads directly to the definition of distances over the

chemical space, a key ingredient of unsupervised learning (UL). This family of techniques

is centered around two main paradigms, clustering and dimensionality reduction, and aim

at revealing patterns within a dataset of samples {xi }i=1,2,...,N without labels. The clustering

task tries to identify groups of samples within the data that are similar while reducing the

dimensionality of the sample’s features enables the identification of the key subspace in high-

dimensional data.62 Identifying groups of similar structures has found direct applications to

improve crystal structure prediction methods,63–65 where redundant crystals candidates are

filtered, by providing more faithful metrics than the traditional root mean square displacement

(RMSD).47,66,67 Clustering techniques coupled with system dependant fingerprints have also

been instrumental in the identification of metastable states in MD trajectories using Markov

states models,68,69 hierarchical clustering,70 or gaussian mixture models.40 Similarly, dimen-

sionality reduction techniques can be used to infer the main slow structural transition path

within a MD trajectory41,71–73 or to provide a comprehensive visualization of entire databases

of heterogeneous materials.74,75 Low dimensional embeddings and visualizations of databases

of materials are helpful tools to rationalize structure-property relations.76

On the other hand, supervised learning (SL) corresponds to a category of ML algorithms aiming

to construct a model f (x) = y that can predict accurately the properties of a structure.62 The
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Chapter 1. Machine learning for atomic-scale modelling

internal parameters of the model are determined by optimizing the accuracy of prediction

over a set of reference samples {(xi , yi )}i=1,2,...,N where xi and yi are respectively a set of

features and target property associated with a training structure. The most appealing aspects

of these methods lie in their systematic improvability with respect to the reference target by

increasing the size of the training set.77 One of the early applications of ML to the prediction

of atomic-scale properties aimed at obtaining an accurate model of the potential energy

surface (PES), which is crucial to assess the stability of a given configuration, and whose

sampling underlies the evaluation of the thermodynamic properties of a system.78 Contrary

to traditional FFs, which assume physics-inspired functional forms for the interactions, and

often use experimental observable as fitting targets, ML interatomic potentials (MLIPs) don’t

assume a fixed functional form and usually rely on electronic-structure calculations as a

reference. In many cases, this more general, data-driven approach has been shown to result in

more transferable and accurate models.29,30,45,49 Besides the PES, ML models have also been

successful at predicting other static lattice properties such as chemical shieldings,79,80 density

of states,52 Hamiltonian matrix elements,81 band gaps, electron affinities.46

In this thesis, we have aimed at improving the description of atomic systems to be used

in conjunction with ML methods. We start from an abstract representation of structures

and atomic environments to discuss atom-density-based approaches to chemical machine

learning in Chapter 2.82 We emphasize the basis-set independence of this representation by

using the Dirac bra-ket notation. This framework provides a unifying picture of the field, in

that several popular techniques can be seen as alternative representations of the same abstract

feature vectors. In particular, we show that by representing these kets based on an expansion

of atom-centered Gaussians in radial basis functions and spherical harmonics one recovers

the smooth overlap of atomic positions (SOAP) representation.53 From this formalism, we

deduce general patterns to couple features of the representation. The resulting coupling

weights are parameters that can be used to optimize and/or reduce the dimensionality of

the original representation, recovering the flexibility of using different kinds of density-based

representations within an elegant, unified framework.

Building on this foundation, we focus on the SOAP representation combined with (a) UL

techniques to draw intuitions from repositories of hypothetical materials and (b) SL techniques

accelerate reliable predictions of static lattice quantum properties. In Chapter 3, we expand

from the REMatch metric,75 non-linear dimensionality reduction and clustering techniques

to address the challenges of navigating databases of molecular conformers83 and molecular

crystals,84 checking their internal consistency and rationalizing structure-property relations.

Even though we concentrate on particular databases of amino acid, dipeptide conformers,

pentacene, and two azapentacene isomers obtained by an ab initio structure search,85–87

many of the observations we infer are general and provide insight on the application of UL

techniques to the analysis of structure-property relations in molecular and materials databases

generated by high-throughput methodologies.

Finally, Chapter 4 demonstrate how Gaussian Process Regression (GPR)88 with the SOAP
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representation is capable of predicting the relative energetics, chemical shifts, and transfer

integrals that enter the evaluation of charge mobilities in molecular materials to high levels

of accuracy.84,89 To achieve state-of-the-art performances with machine-learned chemical

shifts, we built a database of DFT calculated chemical shifts for structures taken from the

Cambridge Structural Database (CSD),90 chosen to be as structurally diverse as possible. Most

significantly, even though no experimental shifts were used in training, we show that the

model has sufficient accuracy to be used in a chemical shift driven NMR crystallography

protocol to correctly determine, based on the match between experimentally-measured and

ML-predicted shifts, the correct structure several pharmaceutical molecular crystals. To

improve the performance of the regression further, we explore some optimizations of the

input representation sketched in Chapter 2. We extend the SOAP representation by adapting

the representation to the intrinsic length scales of atomic interactions, and by considering

“alchemical” correlations between chemical species, which make it possible for instance to

exploit the similar behavior of different elements to accelerate learning in very chemically

heterogeneous data sets. Not only do these extensions improve significantly the performance

of SOAP representations, but they do indeed offer insights into the chemistry of the system,

for instance providing a data-driven representation of the similarity between elements that

is reminiscent of the periodic table of the elements. Furthermore, to enhance the reliability

of SL models, we compare uncertainty prediction estimators provided by sparse GPR and

sub-sampling of the training set, by assessing their relative performances and propose a

calibration procedure based on cross-validation to improve them. We demonstrate that the

combination of sub-sampling with sparse GPR yields an inexpensive and reliable estimate of

the uncertainty associated with the prediction of formation energies in the QM9,25 Elpasolite

crystal33 and 1H NMR chemical shieldings dataset.89,90
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2 Theory of atomic scale representa-
tions†

The main reason underlying the development of representations of atomic structure is to

build surrogate models of QM methods to predict static lattice properties by leveraging ML

algorithms powered by collections of already computed references. These representations

are therefore required to only incorporate inputs of QM methods, namely the set of atomic

positions and species (with lattice vectors for periodic systems), and should act as a bridge

between the atomistic and ML world. Moreover, the last decade of representation development

has made it clear that ML models benefit greatly from including the physical knowledge of the

target properties. QM observables are typically smooth functions of the atomic coordinates

and they follow a certain set of symmetries. For instance, scalar quantities are invariant with

respect to the permutation of atomic identities and rigid rotations and translations of the

system. Including in the representation such invariances by design avoids the need to ‘teach’

them to the model, hence improving its data efficiency.29,53,91,92 The effective locality of many

QM interactions is another important feature to take advantage of when modelling extensive

quantities, e.g. the total energy, since such methods are easier to transfer from small to larger

systems compared to their global counterparts.

Following these guidelines, the main challenge is to devise representations of atomic systems

that are at the same time complete and concise, so as to reduce the number of reference

calculations that are needed to predict the properties of different types of materials reliably.

This has led to a proliferation of alternative ways to convert an atomic structure into an input

for a machine-learning model. We introduce an abstract definition of chemical environments

that is based on a smoothed atomic density, using a bra-ket notation to emphasize basis set

independence and to highlight the connections with some popular choices of representations

for describing atomic systems. The correlations between the spatial distribution of atoms

and their chemical identities are computed as inner products between these feature kets,

which can be given an explicit representation in terms of the expansion of the atom density

on orthogonal basis functions but also in real space, corresponding to n-body correlations

†This chapter has been adapted from the journal article [82] whose authors are Michael J. Willatt, Félix Musil
and Michele Ceriotti. The author of this thesis worked on the links to other representations and the generalization
of the invariant density representations of the article and contributed to the rest of the manuscript.
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Chapter 2. Theory of atomic scale representations

of the atom density. This formalism lays the foundations for a more systematic tuning of

the behavior of the representations, by introducing operators that represent the correlations

between structure, composition, and the target properties. It provides a unifying picture of

recent developments in the field and indicates a way forward towards more effective and

computationally affordable machine-learning schemes for molecules and materials.

This approach should be contrasted with the development of deep learning methods which

integrate the definition of the representation into the learning procedure. The introduction

of deep learning algorithms44 has considerably improved the state-of-the-art performances

in the fields of computer vision, speech recognition. . . which might lead to similar disruptive

changes in atomistic ML. Nevertheless, QM observables are complex but well defined mathe-

matical objects for which representations can take inspiration from more than half a century

of theoretical modelling. Therefore it is not yet clear which of the two approaches is more

effective or if such explicit assessment is even possible, and we focus on the development of

explicit representations.

2.1 A Dirac notation for atomic configurations and environments

The Dirac (bra-ket) notation is often used to streamline the formulation of quantum-mechanical

expressions, since it stresses basis-independence of quantum states, it helps avoiding ma-

nipulation errors and it is convenient to express linear transformations. For these reasons,

we extend the use of this notation to the representation of atomic systems for ML (see also

Appendix A where it simplifies greatly complex manipulations). Each atomic structure A

that belongs to a dataset D is associated with a ‘state’ |A;r ep〉 which gathers the elemental

composition and geometric arrangement of atoms with the specification of the representation.

When it is clear which representation is being used or that the discussion is focused on the

representation |A〉 and |r ep〉 will be used as shorthands. In the same spirit a property Y or

the element of a basis bn are casted into this bra-ket notation, such that Y (A) := 〈Y |A〉 is the

property Y associated with A and bn := |n〉 is the nth basis function. Continuous basis such

as the real space basis x := |x〉 are similarly transformed.

For the convenience of the reader, we summarize here a few shorthands that will be introduced

later. Using the Dirac notation, basis set transformations are simply expressed as

〈n|A〉 =∑
m

〈n|m〉 〈m|A〉 , (2.1)

〈x|A〉 =
∫

dr〈x|r〉 〈r|A〉 , (2.2)

where 〈A|m〉 and 〈A|r〉 are the coefficients for the change of basis. By abusing slightly this

notation, we can express a linear model as

〈Y |A〉 ≈∑
n

〈Y ;r ep|n〉 〈n|A;r ep〉 , (2.3)
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2.1. A Dirac notation for atomic configurations and environments

where 〈Y |A〉 is the prediction of the property Y of structure A, which is not a scalar product,

and 〈Y ;r ep|n〉 are interpreted as the regression weights. By extension a kernel model can be

written as

〈Y |A〉 ≈ ∑
T∈T

〈Y ;r ep|T ;r ep〉 〈T ;r ep|A;r ep〉 , (2.4)

where T is an atomic configuration that belongs to the training set T , 〈Y ;r ep|T ;r ep〉 are the

model’s weights and 〈T ;r ep|A;r ep〉 is the kernel, e.g. inner product, between the training

configurations and the structure A. The analogy between Eqs. (2.3) and (2.4) highlights the

fact that in kernel models, predictions are performed using the training points as a basis.

Supervised models are discussed in more details in Section 4.1 and an extensive discussion

of linear and kernel methods can be found in Ref.88. Another useful construction is the

tensor-product of representations

|(A;r ep)⊗ (B ;r ep ′)〉 = |A;r ep〉⊗ |B ;r ep ′〉 , (2.5)

which can be expressed as a Cartesian product of bases |n〉⊗ |m〉 or as a combined basis |k〉
with the shorthands

〈n;m|A⊗B〉 = 〈n|A〉 〈m|B〉→ 〈k|A⊗B〉 . (2.6)

Lastly, the symmetrization of a representation with respect to a symmetry group S of element

Ŝ by Haar integration93 is written as

|〈A⊗ A〉S〉 =
∫

Ŝ
dŜŜ |A⊗ A〉 . (2.7)

The symmetrized representation |〈A⊗ A〉S〉 will also be expressed in the more compact nota-

tion

| 〈A⊗ A〉S〉→ |A⊗ A〉→ |A⊗2〉 , (2.8)

where the group average and the tensor product are respectively highlighted by the overline

and and the superscript.

2.1.1 Density-based structural representations

We represent the distribution of atoms in structure A as a density field |A;ρ〉 composed of

smooth, real, positive and localized function |g 〉, e.g. a Gaussian, centered on each atom and

decorate them with orthonormal kets |a〉 to represent their elemental identities. Smooth-

ness in the representation is beneficial as it leads to smooth kernels and better-behaved

regression,88 while the choice of a function that is clearly peaked at the atom positions en-

codes without ambiguity the full structural information. Moreover, the choice of a density field

makes the representation automatically permutation invariant. Such an atomic configuration

9



Chapter 2. Theory of atomic scale representations

is written in position space as‡

〈ax|A;ρ〉 = ∑
i∈A

δaai g (x− ri ), (2.9)

where the sum is taken over all atoms in the configuration. This expansion could be gen-

eralized by using e.g. element-dependent widths in g (x), i.e. g (x) → g (s(a)x). Anisotropic

functions may be used to represent entities with a preferential orientation, or some sort of

internal structure. For a set of atoms, isotropy is a natural requirement for g (x). Regardless of

the particular form of g (x) (provided that it is sufficiently localized), |A〉 provides a unique rep-

resentation of the structure, but is variant with respect to fundamental physical symmetries,

such as rigid translations t̂ and rotations R̂ of the constituent atoms {ri } → {R̂ t̂ri }.

2.1.2 Symmetry-invariant representations

To address the variance of Eq. (2.9) with respect to a symmetry operation Ŝ, one can proceed

by formally averaging the ket over the corresponding symmetry group (a procedure often

referred to as Haar integration93):

|〈ρ〉
S〉 =

∫
Ŝ

dŜ Ŝ |ρ〉 . (2.10)

To see how this translates into symmetry-invariant representations, let us start by considering

the relatively simple case of the integration over the translation group which simply corre-

sponds to the integration over R3. Averaging directly over the position representation of |ρ〉
leads to a rather uninformative representation, which eliminates all structural information

and only counts the number Na of atoms belonging to each species,

〈r|〈ρ〉
t̂ 〉 = 〈r|ρ⊗1〉 =

∫
t̂

dt̂ 〈r| t̂ |ρ〉 =∑
i
|ai 〉

∫
R3

dt g (t+ r− ri ) =∑
a

Na |a〉 , (2.11)

where we have used the position representation of the translation operator. To avoid this

information loss, one can perform the Haar integration over tensor products of |ρ〉, and define

|ρ⊗ν〉 =
∫

t̂
dt̂ t̂ |ρ〉⊗ t̂ |ρ〉 . . . t̂ |ρ〉︸ ︷︷ ︸

ν

. (2.12)

‡We use the notation 〈x|A〉 as shorthand for
[〈x|⊗ Î

] |A〉.
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2.1. A Dirac notation for atomic configurations and environments

For ν= 2, and assuming for simplicity that the same smooth density function is used for each

atom, one gets

〈rr′|ρ⊗2〉 =
∫

dt̂
∑
i j

g (t̂r− ri )g (t̂r′− r j ) |ai a j 〉

=∑
i j

|ai a j 〉
∫

dt g (t+ r− ri )g (t+ r′− r j )

=∑
i j

|ai a j 〉 (g ? g )(r− r′− ri j ),

(2.13)

where ri j = ri −r j , and? denotes the cross-correlation operation. We can simplify the notation

for |ρ⊗2〉 in the position representation by (1) noting that the cross-correlation in Eq. (2.13)

only depends on r− r′, so we can write the ket as a function of ∆r = r− r′ alone; (2) redefining

the cross-correlation of two atom-density functions as h = g ? g :§ ||

〈∆r|ρ⊗2〉 =∑
j
|a j 〉⊗

∑
i

h(∆r− ri j ) |ai 〉 . (2.14)

2.1.3 Tensor-product representations

Before proceeding further, let us comment briefly on the implications of the form of this ket

for machine-learning of the properties associated with the structure |A〉, taking for simplicity

a single-species compound so we can ignore the elemental kets. Learning a linear model is

equivalent to the optimization of a linear mapping between the ket and the property, i.e.

〈Y |A〉 =
∫
R3

dr 〈Y ;ρ⊗2|r〉 〈r|A;ρ⊗2〉 , (2.15)

where 〈Y ;ρ⊗2|r〉 represent the weights of the linear model. Taking the Dirac δ distribution

limit of g (r), one sees this is a (orientation-dependent) pair potential,

〈Y |A〉 =∑
i j

〈Y ;δ⊗2|ri j 〉 , (2.16)

and it is therefore easy to conceive properties that cannot be represented in this form. The

feature vector itself, however, contains complete information about the structure, which can

be recovered by taking tensor products of |A〉. For instance, if one takes the outer product of

the translationally-symmetrized ket, learning amounts to the optimization of a function that

§For a generic basis function g ? g might be a complicated function, but when g is a Gaussian, g ? g is simply
a Gaussian with double the variance

||Like in Eq. (2.9), we use 〈∆r|ρ⊗2〉 as shorthand for
[〈∆r|⊗ Î ⊗ Î

] |ρ⊗2〉.
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Chapter 2. Theory of atomic scale representations

depends on two displacement vectors simultaneously,

〈Y |A〉 =
∫

drdr′ 〈Y ;δ⊗2|rr′〉 〈r′|A;δ⊗2〉 〈r|A;δ⊗2〉

= ∑
i j i ′ j ′

〈Y ;δ⊗2|ri j ri ′ j ′〉 ,
(2.17)

and so on. This simple example highlights how high-order correlations between atomic

positions can be incorporated in the model by taking the tensor product of the structural

ket before taking the Haar integral53,94 (that is, choosing a high value of ν in Eq. (2.12)) or by

taking a tensor product of the invariant ket,

| 〈ρ⊗ν〉〉t̂ ⊗ |〈ρ⊗ν〉t̂ 〉⊗ · · ·⊗ |〈ρ⊗ν〉t̂ 〉︸ ︷︷ ︸
ζ

→ |〈ρ⊗ν〉t̂ 〉⊗ζ . (2.18)

The latter choice corresponds to taking element-wise powers of the linear invariant kernel.

In other terms, using a unique representation of a structure in a non-linear ML model can

introduce higher body order correlations than those explicitly afforded by the feature vector

itself.

2.1.4 Atom-centered representations

Having clarified how tensor-product kets can be used to incorporate higher-order correlations

between the atoms, let us move on to discuss how the representation of a structure as a sum of

atom-centered environments arises naturally, starting from a sum of atom-centered densities,

as a by-product of symmetrization over the translation group. By grouping together the

terms in the sum corresponding to displacement vectors involving atom j , the translationally-

invariant second-order ket Eq. (2.14) decomposes into atom-centered contributions,

|A; 〈ρ j ⊗ρ j 〉R̂〉 = |A;ρ⊗2
j 〉 =∑

j
|α j 〉⊗ |A;ρ j 〉 , (2.19)

where we have dropped the indication of the translational averaging from |A;ρ j 〉 to keep

at bay the complexity of the notation. Note that Eq. (2.19) implies an additive definition of

the relation between the representations of the entire structures, and those associated with

atom-centered environments.

The position representation of the environmental atom-centered ket |A;ρ j 〉 is

〈r|ρ j 〉 =
∑
i∈ j

fc (ri j )h(r− ri j ) |αi 〉 . (2.20)

In this definition we have introduced a smooth cutoff function fc (ri j ) so that each environ-

ment only depends on the position of the atoms in a spherical neighborhood centered on

atom j . While one could in principle proceed with an atom-centered description that incor-

porates information from the entire structure, by making fc (r ) = 1, localisation is useful for
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2.1. A Dirac notation for atomic configurations and environments

computational reasons and is justified when studying atomic problems in light of the near-

sightedness principle of electronic matter,95 which underlies most linear-scaling electronic

structure methods.96–98 Note that when the ket is written in this form it might make sense

to further generalize the definition of h, e.g. by making its width dependent on ri j = |ri j |,
h(r) → h(s(ri j )r), or by choosing a form other than a Gaussian that is more flexible or compu-

tationally efficient. The notation can be further simplified by emphasizing the representations

of structure and composition,

〈ar|ρ j 〉 =
∑
i∈ j

δa j ai fc (ri j )h(r− ri j ). (2.21)

Writing the ket as a sum over all elements a = H,He, . . .

〈r|ρ j 〉 =
∑
a
〈ar|ρ j 〉 |a〉 . (2.22)

This translationally-invariant atom-centered environment representation can also be adapted

by taking a linear transformation Û |ρ j 〉→ |ρ j 〉, where the linear operator Û might act in the

position space, the element space or both. As we will see, the freedom in choosing the form of

Û can be used to tune the behavior of the representation to describe in a more efficient way

the relation between structure and properties.

2.1.5 Rotationally-invariant representations

In order to obtain a rotationally-invariant representation, one can formally average the ket

|ρ j 〉 over the SO(3) rotation group,

|ρ⊗1〉 =
∫

SO(3)
dR̂ R̂ |ρ j 〉 . (2.23)

This ket can be readily computed in the position representation. Taking for simplicity the case

where only one element is present, one gets

〈r|ρ⊗1〉 =
∫

dR̂ 〈r|R̂|ρ j 〉 =
∫

dR̂ 〈r R̂ êz |ρ j 〉 , (2.24)

where we have used the fact that the integral is over all the rotation matrices, and so we can

always rotate r to be aligned with the Cartesian z axis êz before taking the integral. The average

can be written explicitly in terms of a suitable parameterization of the rotations, e.g. using

Euler angles,

1

8π2

∫ 2π

0
dα

∫ π

0
sinβdβ

∫ 2π

0
dγ 〈r R̂(α,β,γ)êz |ρ j 〉 . (2.25)
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Chapter 2. Theory of atomic scale representations

One can then recognize that the γ angle does not affect êz , so the integral can be written

equivalently as an average over the unit sphere.¶ We can then define

〈r |ρ⊗1〉∝ r
∫

dR̂ 〈r R̂ êz |ρ j 〉 = 1

4π
r
∫

dr̂ 〈r r̂|ρ j 〉 , (2.26)

where we have highlighted the fact that the position representation only depends on r , and

we have explicitly included a factor of r so that∫
dr〈ρ⊗1|r〉 〈r|ρ⊗1〉 =

∫
dr 〈ρ⊗1|r 〉 〈r |ρ⊗1〉 . (2.27)

Much like in the case of translations, the average over rotations eliminates too much infor-

mation, and |ρ⊗1〉 does not retain knowledge of the angular correlations of atoms around the

center of the environment. A more general family of invariant kets can be obtained by starting

from the tensor products of (possibly different) environmental kets, Û1 |ρ1
j 〉⊗Û2 |ρ2

j 〉⊗ . . ., and

then symmetrizing over the rotation group,

|ρ⊗ν
j 〉 =

∫
dR̂

ν∏
ℵ

⊗ R̂Ûℵ |ρℵ
j 〉 . (2.28)

As for the case of translational averages, one can use a linear map to build a machine-learning

model of a property based on these symmetrized kets. Non-linear features correspond to

tensor products of symmetrized kets such as

|ρ⊗ν
j 〉⊗ |ρ⊗ν

j 〉⊗ . . .⊗ |ρ⊗ν
j 〉︸ ︷︷ ︸

ζ

→ |ρ⊗ν
j 〉⊗ζ , (2.29)

and one could further generalize the construction by taking products of kets built from differ-

ent Û operators.

2.2 A unified picture of density-based representations

Equation (2.28) provides a very general – and abstract – definition of a density-based rep-

resentation of an atomic structure that encodes translational, rotational and permutation

symmetries. This level of abstraction provides a unifying picture of the field, in that many of

the representations that have been used for machine-learning of atomic-scale properties can

be seen as special cases of this form, or as the result of projection onto a particular choice of

basis.

¶This is a consequence of the fact that SO(3) is the product of SO(2) and S2
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* *

b) c)

*

*

*

a)

Figure 2.1 – Atom-density-based structural representations, expressed in the real-space 〈r|
basis. (a) A structure can be mapped onto a smooth atom density built as a superposition of
smooth atom-centered functions. The overall density can be decomposed in atom-centered
environments, and information on chemical compositions can be stored by decorating the
functions with elemental kets. (b) The ν= 1 invariant ket corresponds to spherical averaging
of the environmental atom density. (c) The ν= 2 invariant ket corresponds to three-body
correlations, which are obtained by integrating over all rotations a stencil corresponding to
two distances along two directions with a fixed angle arccosω between them.

2.2.1 Plane waves

Let us start by considering the translationally-invariant ket | 〈ρ⊗2〉t̂ 〉, writing it in a plane-waves

basis { |k〉}, and taking for simplicity the h → δ limit. One obtains a representation that is equiv-

alent to the diffraction pattern generated by the structure, decomposed in multiple channels

that correspond to the reciprocal-space correlations between different atomic species,

〈k| 〈δ⊗2〉t̂ 〉 =
∑
i j

|αiα j 〉e ik·ri j . (2.30)

When considering a periodic structure, and with an appropriate normalization, this repre-

sentation is directly connected with the fingerprints that have been recently used to identify

crystalline structures,99 highlighting how different choices of basis may be best suited to

different applications.

2.2.2 Many-body kernels and representations

Moving on to the case of rotationally-invariant kets, let us take for simplicity Ûℵ = 1, and

assume that all the environmental kets that are multiplied in Eq. (2.28) are the same. We will

revisit later the possibility of introducing a linear operator to fine-tune the properties of the

representation. Since we have started from a position representation for the environmental

kets, it is natural to write Eq. (2.28) explicitly in a complete basis of position and element states,

|∏ν
ℵαℵrℵ〉 ≡∏ν

ℵ⊗|αℵrℵ〉,

〈
ν∏
ℵ
αℵrℵ|ρ⊗ν

j 〉 =
∫

dR̂
ν∏
ℵ

〈αℵR̂rℵ|ρ j 〉 . (2.31)
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Chapter 2. Theory of atomic scale representations

One can see clearly that the kernels associated with Eq. (2.31) are in the form of the invariant

n-body kernels discussed in Ref.94 (more specifically, as we will see below, they correspond

precisely to the SOAP kernels if h is a Gaussian). Considering the case with a single element,

〈ρ⊗ν
k |ρ⊗ν

j 〉 =
∫

dR̂dR̂ ′
[∫

dr
〈
ρk

∣∣R̂ ′r
〉〈

R̂r
∣∣ρ j

〉]ν
, (2.32)

it is clear that one of the two Haar integrals is redundant and can be eliminated. Let us consider

the effect of ν on the representation and the information that it captures. As discussed in

the case of ν = 1 following Eq. (2.24), one of the input vectors r can be aligned with a fixed

reference axis, e.g. êz . The fact that this axis is invariant under one of the Euler rotations

makes it possible to align a second vector so that it lies in the xz plane. For ν= 1 and ν= 2 this

analysis leads to

〈ar |ρ⊗1
j 〉∝r

∫
dR̂ 〈ar R̂ êz |ρ j 〉

〈ar a′r ′ω|ρ⊗2
j 〉∝r r ′

∫
dR̂ 〈a;r R̂ êz |ρ j 〉 〈a′;r ′R̂(ωêz +

√
1−ω2êx |ρ j 〉 ,

(2.33)

where ω = r̂ · r̂′ (see Fig. 2.1). After one has aligned the first two rℵ’s, the position of all the

other rℵ’s cannot be manipulated, so in practice for ν> 2 each further order brings in three

degrees of freedom, that are expressed in the reference system in which the first two vectors

are aligned along the z axis and lie in the xz plane. For ν= 3,

〈ar a′r ′ωa′′r ′′r̂′′|ρ⊗3
j 〉∝ r r ′r ′′

∫
dR̂ 〈a;r R̂ êz |ρ j 〉 〈a′;r ′R̂(ωêz +

√
1−ω2êx |ρ j 〉 〈a′′;r ′′R̂ r̂′′|ρ j 〉 .

(2.34)

Also note that we have incorporated the square root of the Jacobian in the definition of the

representations so that the corresponding kernels can be computed straightforwardly as the

inner product between two vectors without scaling.

*

Figure 2.2 – Isocontours of the 3-body correlation functions associated with the environment
centered on the tagged carbon atom of an ethanol molecule. From left to right, the figures
correspond to 〈CrHr ′ω|ρ⊗2

j 〉/r r ′, 〈OrHr ′ω|ρ⊗2
j 〉/r r ′, 〈OrHr ′ω|ρ⊗2

j 〉/r r ′.

By expanding the densities as sums over atoms, it becomes clear that these kets are representa-
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2.2. A unified picture of density-based representations

tions of the (ν+1)-body order correlations between atoms within an environment53,94 (Fig. 2.2).

To start with, we return to the delta function limit of the atomic densities. In the limit in which

each atomic density is represented by Dirac δ distributions, the position representations of

the invariant vectors take very simple forms:

〈ar |δ⊗1
j 〉∝r

∑
i
δaai fc (ri j )δ(r − ri j )

〈ar a′r ′ω|δ⊗2
j 〉∝r r ′∑

i i ′
δaaiδaai ′δ(r − ri j )δ(r ′− ri ′ j )δ(ω− r̂i j · r̂i ′ j ) fc (ri j ) fc (ri ′ j ).

(2.35)

The δ-distribution limit of the density kets is equivalent to the atomic cluster expansion (ACE)

framework of Ref.100,101, which has been independently developed to increase body order.

Note that the symmetrized overlap between atomic densities defined in Eq. (2.32) does not

vanish in the delta limit thanks to the smoothness of the radial basis functions used to expand

the densities |δ j 〉. Linear regression based on |ρ⊗ν
j 〉 corresponds to (ν+1)-body potentials94

e.g. for the 3-body term,

〈Y |A〉 =∑
j

∫
dr dr ′dω 〈Y ;ρ⊗2

j |r,r ′,ω〉 〈r,r ′,ω|A;ρ⊗2
j 〉 . (2.36)

There are however good reasons to use non-linear functions of the feature vector in an ML

model. In the case of sufficiently sharp atom-centered density functions, the ket with ν= 1

contains information on the list of all pair distances within an environment, which is not

sufficient to reconstruct the structure of the environment unequivocally. The representation

with ν = 2, on the other hand, contains information on pair distances and angles between

triplets of atoms. Contrary to the original understanding,53 it has been recently shown that

this information is not sufficient to represent arbitrarily complex invariant functions of the

atomic coordinates.102 Despite this limitation, the tensor products of the |ρ⊗2
j 〉 ket seem good

enough in practice to model complex scalar properties.

2.2.3 Behler-Parrinello symmetry functions

An expression of Eq. (2.28) in the position representation and in the h → δ limit is an ideal

starting point to investigate the relationship of |ρ⊗ν
j 〉 with other density-based frameworks.

These expressions reveal the connection between these invariant kets and several popular

fingerprints designed to capture pair and 3-body interactions. The link between 〈ar |ρ⊗1
j 〉 and

the pair distribution function103 is obvious. Behler-Parrinello symmetry functions, and similar

weighed averages of n-body correlations, can be seen as projections of the SO(3) invariant ket

over suitable test functions G . For instance, for a 2-body symmetry function G2(r ) one has

〈aa′G2|δ⊗1〉 = 〈a|a j 〉
∫

dr G2(r )r 〈a′r |δ⊗1〉 , (2.37)

and an analogous expression can be written for a 3-body symmetry function G3(r,r ′,ω).

Expressions similar to Eq. (2.37) can be obtained by inserting into Eq. (2.33) Gaussians, or
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Chapter 2. Theory of atomic scale representations

alternative basis functions. The relationship to other density-based representations, such as

those discussed in Refs.104,105 is less transparent, but several of the essential ingredients – such

as scaling functions that modulate geometric and chemical correlations – can be introduced

in terms of appropriate choices of the Û operators, as we will discuss in the next section.

2.2.4 Smooth Overlap of Atomic Positions

We have left as a last example a discussion of the connection between the symmetrized ket

and the Smooth Overlap of Atomic Positions (SOAP) power spectrum.53,75 In fact, if we take

as we did before Ûℵ = 1 and |ρ1〉 = |ρ2〉 = . . . |ρν〉 in Eq. (2.28), the SOAP power spectrum is

nothing but an alternative representation of |ρ⊗2
j 〉. To see how, one can start by expanding the

translationally-invariant environmental ket Eq. (2.22) in a basis of orthonormal radial basis

functions Rn(r ) = 〈r |n〉 and spherical harmonics Y l
m(r̂) = 〈lm|r̂〉,

〈anl m|ρ j 〉 =
∫

dr 〈n|x〉 〈l m|x̂〉 〈ax|ρ j 〉 . (2.38)

Using a basis of spherical harmonics is extremely useful and practical because they block

diagonalize the angular momentum operator (and thus the rotation operator), which allows

for explicit integration over the rotation group in Eq. (2.31) (see Section A.3 for an explicit

derivation of the 〈anl m|ρ j 〉 coefficients for some radial basis). or ν = 1, this leads to the

following feature vector,

〈an|ρ⊗1
j 〉∝ 〈an00|ρ j 〉 . (2.39)

For ν= 2, the feature vector corresponds to the SOAP power spectrum,

〈a1n1a2n2l |ρ⊗2
j 〉∝ 1p

2l +1

∑
m

(−1)m 〈a1n1l m|ρ j 〉 〈a2n2l −m|ρ j 〉 . (2.40)

For ν= 3 the representation corresponds to the bispectrum,53

〈a1n1l1a2n2l2a3n3l3|ρ⊗3
j 〉∝ ∑

m1m2
m3

(
l1 l2 l3

m1 m2 m3

)
〈a1n1l1m1|ρ j 〉 〈a2n2l2m2|ρ j 〉 〈a3n3l3m3|ρ j 〉 ,

(2.41)

where the parentheses denote a Wigner 3j symbol. For a full derivation of Eqs. (2.39) to (2.41)

refer to Section A.2. The bispectrum is used as a four-body feature vector in SOAP and

in Spectral Neighbor Analysis Potentials (SNAP), where its high resolution is exploited to

construct accurate interatomic potentials through linear regression.106

Seen in the light of the present formalism, the remarkable fact that the SOAP kernel (Eq. (2.32)

with densities written as a sum of Gaussians) can be expressed as an explicit scalar product

between vectors, representing a truncated expansion of the power spectrum, emerges as a
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2.2. A unified picture of density-based representations

*

Figure 2.3 – Schematic representation of the construction of a real-space representation of
a tensorial ket associated with a λ-SOAP kernel. The (smooth) atom density is evaluated at
two points corresponding to a stencil (r,r ′,ω), and the spherical harmonic Y λ

µ is evaluated at
the angles (θ,φ), relative to the reference frame that is used to describe the stencil.

natural consequence of the definition of the kernel as the scalar product between invariant

kets. It should also be noted that in practical applications of SOAP the kernels are often (but

not always) normalized and raised to an integer power ζ, which corresponds to taking a tensor

product of the kets and introduces a many-body character in the model built on such kernels.

2.2.5 Tensorial Smooth Overlap of Atomic Positions (λ-SOAP)

The feature vectors that appear in the tensorial extension of SOAP92 are of the form in Eq. (2.28),

with Ûℵ = Î for ℵ= 1,2, . . . ,ν+1, |ρℵ
j 〉 = |ρ j 〉 for ℵ= 1, . . . ,ν and |ρ⊗ν+1

j 〉 = |λµ〉, where |λµ〉 is

an angular momentum ket:

|ρ⊗ν
j ;λµ〉 =

∫
dR̂ R̂ |λµ〉

ν∏
ℵ=1

⊗ R̂ |ρ j 〉 . (2.42)

The ket is rotationally invariant,[
ν+1∏
ℵ=1

⊗ R̂

]
|ρ⊗ν

j ;λµ〉 = |ρ⊗ν
j ;λµ〉 , (2.43)

but not in the subspace that describes the atomic environments,[
Î ⊗

ν∏
ℵ=1

⊗ R̂

]
|ρ⊗ν

j ;λµ〉 6= |ρ⊗ν
j ;λµ〉 . (2.44)

The inner product between two of these vectors is easily shown to be

〈ρ⊗ν
j ;λµ|ρ⊗ν

k ;λ′µ′〉 = δλλ′

∫
dR̂ Dλ

µµ′(R̂)
[〈ρ j |ρk〉

]ν, (2.45)
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Chapter 2. Theory of atomic scale representations

which agrees with the usual definition of the λ-SOAP kernel,

〈ρ⊗ν
j ;λµ|ρ⊗ν

k ;λ′µ′〉 = kλµµ′(ρ j ,ρk ). (2.46)

While |ρ⊗ν
j ;λµ〉 can be represented very effectively using a spherical-harmonics expansion

of the atom density,92 it is also possible to express it in terms of a real-space basis. Following

arguments similar to those used to derive Eq. (2.34), one can see that in this form the tensorial

ket corresponds to the evaluation of a three-body correlation function of the atom density,

multiplied by a spherical harmonic of appropriate order computed in the reference frame of

the (r,r ′,ω) stencil (see Fig. 2.3).

Taking tensor products of |ρ⊗ν
j ;λµ〉 with itself increases the order of body correlations that are

explicitly included in the feature vector for which an efficient evaluation procedure can be

found in Ref.107. Instead, one can take tensor products with λ= 0 kets, which are rotationally

invariant in the subspace that describes the atomic environments while preserving the desired

symmetry of the representation, e.g.

|ρ⊗ν
j ;λµ〉

ζ−1∏
k=1

⊗|ρ⊗ν
j 〉→ |ρ⊗ν

j ;λµ〉⊗ζ . (2.47)

This procedure has been found effective in practice for increasing the order of body correla-

tions in tensorial SOAP.108,109

a) b) c)

Figure 2.4 – (a) Permutation-variant structural descriptors can be stored in a vector to
be used as an atomic-scale representation. (b) Sorting this vector makes it permutationally
invariant. (c) It is easy to see how the sorted vector relates to the cumulative distribution
function associated with the histogram of the values of the structural features.

2.2.6 Distributions vs sorted vectors

It is worth making some further considerations that extend somewhat the generality of this

construction to include representations that are not based explicitly on atom densities. Many

approaches in the literature rely on computing quantities that are not permutationally in-

variant per se, for instance the elements of the matrix of pair distances between atoms,110

transformed elementwise by some function,45 or the eigenvalues of such matrices.47 In order

to make these representations invariant to atom permutations, one often proceeds to sort
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2.2. A unified picture of density-based representations

these sets of items, and uses the Euclidean distance between the sorted vectors as the building

block of kernels or other statistical learning frameworks.

In fact, it is easy to see that given a set of elements {ei ∈R}, the sorted list contains the same

amount of information as the histogram of the elements h(e) (see Fig. 2.4). Scaling the index

of the sorted items by the total number of items N , and considering the limit in which one can

take x = i /N as a continuous index, one sees that x(ẽ) counts the fraction of entries that are

smaller than ẽ, that is

x(ẽ) =
∫ ẽ

−∞
de h(e). (2.48)

It follows that e(x), which is a continuous representation of the vector of sorted distances, is

just the inverse cumulative distribution function (iCDF) associated with h(x). The Euclidean

distance between two vectors of sorted elements is proportional to the L2 norm of the dif-

ference between the iCDF of the histograms associated with the two sets. Interestingly, if

one considers the L1 norm, the distance between the sorted vectors corresponds to the earth

mover’s distance111 between two distributions in one dimension.

The connection between different density-based representations is more direct than that

which can be established between density-based and sorted-vector descriptions – also given

that the relation between atom positions and the permutation-variant items might be far from

trivial, e.g. when the representation involves the eigenvalues of an overlap matrix. However,

the argument we present here highlights the fact that incorporating physical symmetries in

the description of atomistic systems leads to representations that contain essentially the same

information.

2.2.7 Use of density-based features in artificial neural networks

It should be stressed that the density-based representations presented so far could also be

used as an input of an Artifical Neural Network (ANN). The simplest case is when one aims

to predict a scalar property. Since the ket corresponding to a representation for learning

scalars is invariant under permutations, translations and rotations, it follows that each of its

components in a basis is an invariant, e.g.

〈ar l a′r ′l ′ . . .|R̂ρ⊗ν
j 〉⊗ζ = 〈ar l a′r ′l ′ . . .|ρ⊗ν

j 〉⊗ζ . (2.49)

This means that one can construct a model of the form

〈Y |A〉 =∑
j

f
[{

〈ar l a′r ′l ′ . . .|A;ρ⊗ν
j 〉⊗ζ

}]
, (2.50)

where f is an arbitrary non-linear function of the components (with a nested structure in the

case of an ANN), and the predicted property 〈Y |A〉 will necessarily fulfill the same invariances

as the representation. Given the earlier demonstration of how Behler-Parrinello symmetry
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*

*

*

*

a)

b)

Figure 2.5 – (a) Schematic representation of an ANN in which the input layer corresponds
to the elements of a density-based representation. The target property associated with the
full structure is expressed as a sum of atomic contributions. (b) In the case of a tensorial
property it is essential to preserve the covariant nature of the λ-SOAP ket. To do so, one
can construct a NN using only scalar SOAP features, and use the output as a multiplier for
the tensorial features. The output of several of these blocks must then be combined linearly
and without mixing different λµ components to obtain the environment’s contribution to a
tensorial property.
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2.3. Generalized invariant density representations

functions fit into the abstract framework described in this article, this observation should

come as no surprise since Behler-Parrinello symmetry functions have enjoyed great success

as ANN inputs.

One must be more careful with a representation engineered for use with a tensor model

(e.g. λ-SOAP presented earlier). In the same way that taking tensor products of |ρ⊗ν
j ;λµ〉

with itself destroys the desired symmetry properties of the representation, feeding expansion

coefficients of |ρ⊗ν
j ;λµ〉 into an arbitrary non-linear function (e.g. an ANN) will generally

lead to predictions that do not satisfy the desired symmetry properties. One can, however,

construct a generalisation of Eq. (2.50) in which expansion coefficients of |ρ⊗ν
j ;λµ〉 enter only

at the last layer, i.e.

〈Y |A;λµ〉 =∑
j

far l a′r ′l ′...

[{
〈ar l a′r ′l ′ . . .|A;ρ⊗ν

j 〉⊗ζ
}]

〈ar l a′r ′l ′ . . .|A;ρ⊗ν
j ;λµ〉 , (2.51)

where each far l a′r ′l ′... is an arbitrary non-linear function of the components (see Fig. 2.5).

With such a structure, the predictions are guaranteed to satisfy the same symmetry proper-

ties as the representation |ρ⊗ν
j ;λµ〉, an idea that has been put in practice in the Cormorant

architecture.112,113

2.3 Generalized invariant density representations

The formalism we have introduced in the previous section provides an elegant framework

to construct a rotationally-invariant representation of the atomic density that can be used

for machine-learning purposes. While the formalism provides a complete description of

structural correlations of a given order within an atomic environment, the quality and the

computational cost of the regression scheme can be improved substantially in practice by

transforming the representation so that it incorporates some degree of chemical intuition.

For instance, the combination of multiple kernels corresponding to different interatomic

distances has been shown to improve the quality of the ML model.114 Likewise, a scaling of the

weights of different atomic distances within an environment has been shown to be beneficial

when using ML to predict atomic-scale properties.104,115

We will discuss how many of these modifications can be incorporated through inclusion of

a rotationally-invariant Hermitian operator Û = Û1 = Û2 = . . . (as introduced earlier) that

leads to coupling of the geometric and elemental components of the translationally-invariant

atom-centered ket |ρ j 〉. For concreteness, and to provide a formulation that can be directly

applied to an existing framework, we discuss Û written in the orthonormal basis of radial

functions and spherical harmonics { |anl m〉}, that correspond to the SOAP power spectrum.

The requirement that Û is rotationally-invariant (and thus commutes with an arbitrary rotation

operator) means that it must have the following form

〈anl m|Û |a′n′l ′m′〉 = δl l ′δmm′ 〈anl |Û |a′n′l ′〉 . (2.52)
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Equation (2.52) is the most general form compatible with SO(3) symmetry, and can be seen as

a way to introduce correlations between different radial and elemental components of the

features, and to weight the contribution from different angular channels.

2.3.1 Low-rank expansion of the Û operator

Since Û is Hermitian, it can be diagonalized and expressed in the orthogonal basis of its

eigenkets { |J〉},

Û =∑
J
|J〉UJ 〈J | . (2.53)

Taking UJ 〈J |→ 〈J | allows us to express Û as Û =∑
J |J〉 〈J |.

The transformed SO(3) vector components can be written in terms of the components of |J〉
in the chemical basis, u Janl = 〈J |anl〉. This yields

〈J J ′|ρ⊗ν
j 〉 = ∑

aa′nn′l
u Janl u J ′a′n′l

∑
m

(−1)m 〈anl m|ρ j 〉 〈a′n′l -m|ρ j 〉 . (2.54)

By choosing a low-rank expansion of Û one can greatly reduce the dimensionality of the SO(3)

fingerprint vector, similarly to what was done in Ref.116 applying standard sparse decomposi-

tion techniques to the SO(3) fingerprints.

A possible approach is to determine this low-rank approximation based on the correla-

tions found between environments that are part of the data set. For a given l , consider

the spherically-symmetric covariance matrix between the features of the expanded atomic

density,††

C (l )
ana′n′ = 1

N

∑
j

∑
m

(−1)m 〈anl m|ρ j 〉 〈a′n′l -m|ρ j 〉 =
p

2l +1

N

∑
j
〈ana′n′l |ρ⊗ν

j 〉 . (2.55)

The eigenvectors of C(l ), v (l )
J , can then be used as u Janl in Eq. (2.54). It is easy to see that this

transformation identifies components of the data that are linearly independent within the

training set, and have a spread that is equal to the corresponding eigenvalues λ(l )
J . The feature

space can then be compressed by only retaining a certain number of components n J that

could be determined using the magnitude of the associated eigenvalues.

2.3.2 Radially-scaled representations

In a system with relatively uniform atom density, the coefficients of the representation |ρ⊗ν
j 〉

are dominated by the region farthest from the center. This could be regarded as rather un-

††Note that, apart from a l-dependent scaling, the covariance matrix is just the average of the SOAP power
spectrum over the training set.
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physical, since interactions between atoms decay with distance and the closest atoms should

therefore give the most significant contribution to properties, which is reflected in the ob-

servation that multi-scale kernels tend to perform best when very low weights are assigned

to the long-range kernels.89,109,114 This effect can be counteracted by multiplying the atomic

probability amplitude Eq. (2.20) with a radial scaling u(r ),

〈ar|Û |ρ j 〉 = u(r )〈ar|ρ j 〉 . (2.56)

In the context of the SOAP power spectrum, this change can be represented in terms of a Û

operator that reads

〈n|Û |n′〉 =
∫

dr r 2Rn(r )Rn′(r )u(r ), (2.57)

since an operator that scales states in the position representation must be diagonal in it,

〈r |Û |r ′〉 = δ(r − r ′)u(r )/r r ′, (2.58)

and its matrix elements in the basis of radial basis functions are

〈n|Û |n′〉 =
∫

dr
∫

dr ′r 2Rn(r )Rn′(r ′)δ(r − r ′)u(r ), (2.59)

which reduces to Eq. (2.57).

Radial scaling in the form of Eq. (2.56) can be approximated, when using narrow atom-centered

functions, with
∑

i u(ri j ) fc (ri j )h(r− ri j ), where we also consider for simplicity the case with

a single species.117 Besides the fact that it is simpler to implement this form of scaling in an

existing code, this approximation also makes apparent the connection between the general

density-based framework we introduce here and the descriptors of Ref.104. When h is taken

to be a Gaussian function of width σ, the weight on the central atom is set to zero and one

considers the two-body invariant representations, this ansatz is essentially equivalent to the

two-body features in Ref.104:

〈r |Û |ρ⊗1
j 〉 =∑

i 6= j
u(ri j )

p
2π

σri j

[
e−(r−ri j )2/2σ2 −e−(r+ri j )2/2σ2

]
∼∑

i 6= j
u(ri j )

p
2π

ri j
e−(r−ri j )2/2σ2

.

(2.60)

2.3.3 Alchemical kernels

In the presence of multiple species, one could make the scaling element dependent, or devise

a more complex operator that couples different channels of different species. As a first test of

the generalization of SOAP in the presence of multiple elements, we consider an operator in
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the form

〈anl m|Û |a′n′l ′m′〉 = δl l ′δmm′δnn′ 〈a|Û |a′〉 , (2.61)

which ignores couplings between the structure of an environment and the elements within it.

One can always write a low-rank expansion of the operator, Û ≈∑
Ja |J〉u Ja 〈a|, which allows

one to write

Û ⊗Û |ρ⊗2〉 = ∑
aa′

|J J ′〉u Jau J ′a′ 〈aa′|ρ⊗2〉 . (2.62)

In the context of SOAP, one can define the projections of the power spectrum in this “alchemical

basis”,

〈Jn J ′n′l |ρ⊗2〉 = ∑
aa′

u Jau J ′a′
∑
m

(−1)m 〈anl m|ρ j 〉 〈a′n′l -m|ρ j 〉 , (2.63)

which was shown in Ref.117 to yield a substantial improvement in the learning efficiency in

the presence of many chemical elements, and to result in a low-dimensional representation

of elemental space that shares some similarities with the grouping found in the periodic

table of the elements. One can see the relationship between these “alchemical features” and

previous attempts to incorporate cross-species correlations through the generalized SOAP

environmental kernel,∫
dR̂

[
〈ρ j |Û †Û R̂ |ρk〉

]2 = ∑
Jn J ′n′l

〈ρ⊗2
j |Jn J ′n′l〉〈Jn J ′n′l |ρ⊗2

k 〉 . (2.64)

By writing out explicitly this inner product in terms of the full power spectrum elements

〈ana′n′l |X (2)
j 〉 R̂ one can see that the matrix elements 〈a|Û †Û |a′〉 are nothing but the ele-

ments of the alchemical kernel κaa′ that was introduced in Ref.75, where it was shown that

taking κaa′ 6= δaa′ can improve property predictions with kernel ridge regression.75,114 Off-

diagonal couplings between chemical elements have also been used in other representations,

including those of Ref.104.

The expression in terms of reduced features Eq. (2.63) is, however, more efficient to compute

and clarifies how this approach enables the introduction of correlations between elements, as

well as reduction of the space dimensionality. The full SOAP feature vector contains a number

of components that is proportional to the square of the number of present species nsp, while

limiting to a number d J ¿ nsp of basis kets reduces the dimensionality of the feature vector

by a factor (nsp/d J )2. Note that one does not even need to compute all the elements in the

|anl m〉 expansion of the density, since the alchemical projection can be brought down to the

level of the atom density, which can be defined for d J chemical “channels” rather than for

each element separately,

〈Jr|ρ j 〉 =
∑
a

u Ja 〈ar|ρ j 〉 . (2.65)

26



2.3. Generalized invariant density representations

Density-based representations that assign a weight to each species have been explored as

means to reduce the complexity of ML representations in cases where many elements are

present simultaneously,118–120 which correspond essentially to the case with d J = 1. For

instance, the compositional descriptor of Ref.118 is equivalent to Eq. (2.37) computed on a

single invariant density,

〈r |ρ⊗1
j 〉 =∑

i
uaiδ(r − ri j ) fc (ri j ), (2.66)

where the weights of different species are rather arbitrarily set to be ua = 0,±1,±2. . .. The

more general formulation in Eqs. (2.63)-(2.65) provides a way to alter the dimensionality of

the representation, and to optimize the projections to obtain the most efficient features for a

given regression problem.

2.3.4 Multiple-kernel learning

We have shown that by manipulating the form of the SOAP kernel, e.g. by including a radial

scaling, by introducing correlations between elements, or by adjusting other hyperparameters,

such as the cutoff radius or the shape of the atomic Gaussian functions, it is possible to obtain

different perspectives of the structural correlations, and to tune them to give the best possible

performance in a regression task. As done in Ref.114, one can build a composite kernel out of a

selection of different models, i.e.

K (A,B) =∑
ℵ

wℵKℵ(A,B). (2.67)

This multiple-kernel model makes it possible to find the best combination of different repre-

sentations of the atomic environments, using short and long-range, 2 and 3-body, radially-

scaled and alchemically-contracted terms. In a Gaussian Process Regression language, each

model is meant to contribute
p

wℵ to the variance of the target property. The weights can be

set manually based on an intuitive understanding of how they contribute to a property, or –

more simply – optimized by cross-validation (see Section 4.1.3). Note that such combined

kernels can still be seen as an explicit inner product between representations. In other words,

taking sums of multiple kernels can be interpreted equivalently as generalizations of kernels,

or as generalizations of representations that take the form

|X 〉 =p
w1 |X 1〉⊕p

w2 |X 2〉⊕ . . . , (2.68)

where ⊕ denotes concatenation.

2.3.5 Non-factorizable operators

In order to relate Eq. (2.28) to other density-based representations that involve more com-

plicated scaling functions of the internal coordinates, it is necessary to introduce a further
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Chapter 2. Theory of atomic scale representations

linear transformation Û (ν) which does not factorize into components that act independently

on each term in the ν-order tensor product. Such an operator must be chosen with care to

ensure that it is rotationally-invariant, otherwise the rotational-invariance of the transformed

ket will be lost. As far as the ν= 2 rotationally-invariant kets are concerned, a generic operator

is completely determined by its action on the basis vectors { |ara′r′〉}. Rotationally-invariant

operators must act on |aR̂ra′R̂r′〉 in the same was as on |ara′r′〉, followed by the rotation R̂.

The upshot of this observation is

〈a1r1a′
1r′1|Û⊗2|a2r2a′

2r′2〉 = 〈a1r1a′
1r ′

1ω1|Û⊗2|a2r2a′
2r ′

2ω2〉 , (2.69)

i.e. any non-internal coordinate must be cyclic. If a distance and angle-based scaling is

required, then the operator is diagonal,

〈a1r1a′
1r′1|Û⊗2|a2r2a′

2r′2〉 = δa1a2δa′
1a′

2
δ(r1−r2)δ(r ′

1−r ′
2)/r 2

1 r ′2
1 δ(ω1−ω2)u(a1,r1, a′

1,r ′
1,ω1).

(2.70)

For example, the scaling function in the three-body descriptor in Ref.104 corresponds to the

following choice for u(r1,r2,ω),

u(r1,r2,ω1) = 1−3ω1ω2ω3

(r1r2r3)n , (2.71)

where r 2
3 = r 2

1 + r 2
2 −2r1r2ω1, ω2 = (r 2

1 − r 2
2 − r 2

3 )/2r2r3, ω3 = (r 2
2 − r 2

1 − r 2
3 )/2r1r3 and n is an

adjustable parameter. Faber et al. do not specify a scaling function for four-body and higher-

body descriptors, but the analysis presented here clearly extends to any hypothetical scaling

function that involves the internal coordinates of a collection of ν+1 positions.

Starting from the SOAP power spectrum, one can exploit the fact that each component is

separately symmetry invariant. It is then possible to introduce an arbitrary linear operator

coupling the |a1na′
1n′l〉 components, 〈a1n1a′

1n′
1l1|Û |a2n2a′

2n′
2l2〉. Being a linear operation,

this transformation amounts to a change of regularization for the ridge regression problem,

and is most useful if applied to reduce the dimensionality of the feature vectors. This can be

done e.g. by finding the principal components of the covariance matrix of the SOAP power

spectrum or – as done in Ref.116 – by a sparse decomposition that singles out a subset of the

components that suffice to obtain a thorough description of the relevant structures. This

corresponds to the contracted representation

〈J |ρ⊗2
j 〉 =∑

Jk
u Jk 〈ak nk a′

k n′
k lk |ρ⊗2

j 〉 , (2.72)

where k runs over the set of selected components,‡‡ which can be determined with different

schemes, from a CUR decomposition121 to farthest point sampling.122,123 The coefficients u Jk

‡‡The sparsification could be also represented explicitly by a Û operator, that zeroes out all of the unnecessary
components.
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are the elements of a square matrix that ensures the contracted vectors in Eq. (2.72) generate a

kernel that is as close as possible to the full kernel.

2.3.6 Optimization of the density representation

The optimization of the Û operator in its more general form (see Eq. (2.52)) involves a large

number of parameters, leading to a very concrete risk of overfitting. This is exacerbated by

the fact that the feature vector is then used as the input for regression, and one has to balance

the amount of data used to optimize the elements of Û and that used for the training of the

ridge regression model. The simplest approach to reduce the optimization of Û to a small

number of free parameters uses the compression method discussed in Section 2.3.1 to identify

the most important combinations of 〈anl m|ρ j 〉 components that are linearly independent

for the data at hand. We would like to be able to optimize based on the correlations found

between environments that are part of the training set. The idea is that further optimization

using target properties will be less likely to overfit after this dimensionality reduction.

Another possible use of the principal-component representation of 〈anl m|ρ j 〉 is to obtain a

simpler ansatz to further optimize the Û operator. For instance, one could combine linearly

the different components using the Û operator defined in Eq. (2.55)

〈I J l m|ρ j 〉 =
∑

I ′a J ′n
f (l )

I I ′ J J ′u
(l )
I ′a J ′n 〈anl m|ρ j 〉 , (2.73)

where the scaling coefficients f (l )
I I ′ J J ′ are determined so as to make the representation better

suited to build a regression model for the target property y . A systematic exploration of the

different possibilities, as well as their benchmarking on different regression problems, is left

for future work.
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3 Unsupervised ML†

The large databases of structures and properties that result from computational searches, as

well as the agglomeration of data of heterogeneous provenance, leads to considerable chal-

lenges when it comes to navigating the database, representing its structure at a glance, under-

standing structure-property relations, eliminating duplicates and identifying inconsistencies.

In order to automate these tasks a number of different unsupervised learning (UL) algorithms

have been developed, or adapted to the specific requirements of this field.41,42,60,73,74,124–126 A

fundamental ingredient in all of these approaches is the need to define distances over chemical

space. As mentioned in Chapter 2 many options are available, with different levels of complex-

ity and generality, starting from the commonly used Root Mean Square (RMS) distance. In

order to deal with symmetry operations or condensed phase structures, several representation

and “fingerprint” frameworks have been developed,39,45,48,66,127–135 that assign a unique vector

of order parameters to each molecular or crystalline configuration. Representations of the

atomic structure are a solid foundation to build metrics comparing materials by taking some

norm of the difference between feature vectors. The dissimilarity, i.e. distance, between the N

atomic configurations in a database contains a large amount of information on the structural

relations between the database items. However, this information is not readily interpretable,

as it is encoded as a N 2 matrix of numbers. Any of these distances could be taken as the basis

of the clustering and dimensionality reduction algorithms the main methods of UL that have

been used on atomistic data. Both of these classes of techniques aim at discovering patterns

or structures in an unlabeled dataset D. In most cases, this can be thought of as learning a

probabilistic model from D. Dimensionality reduction involves building a low-dimensional

“map”, where each point corresponds to one of the structures in the database and where the

(Euclidean) distances between points represent the information on the pairwise dissimilarity

†This chapter has been adapted from the journal article [83][84] whose authors are respectively Sandip De,
Félix Musil, Teresa Ingram, Carsten Baldauf, and Michele Ceriotti and Félix Musil, Sandip De, Jack Yang, Joshua E.
Campbell, Graeme Matthew Day, and Michele Ceriotti. The author of this thesis built the unsupervised models,
the dendrogram visualizations, made all the figures and contributed to the writing of [83] while he analyzed the
data, built and benchmarked the supervised and unsupervised ML models and wrote the methods, results and
discussions sections of [84]. Since Ref. [84] combines both supervised and unsupervised ML models, it has been
split in Section 4.2.2 and here to follows the logic of this thesis. Please refer to Section 4.2.2 for the the details,
results and discussion of the supervised learning side of this article.
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matrix. Several methods have been proposed over the years to solve this dimensionality

reduction problem, starting from principal component analysis136 and the equivalent linear

multi-dimensional scaling,137 and proceeding to non-linear generalizations of the idea, such

as ISOMAP,138 diffusion maps,139 kernel PCA.140 An alternative approach to navigate a set of

structures based on the dissimilarity matrix is to use clustering algorithms, that identify groups

of objects having similar properties to hint at the presence of recurring motifs underlying the

behavior of the system. A considerable number of clustering algorithms have been developed

over the last few decades,141–143 including connectivity models144 (i.e. hierarchical clustering,

centroid models145–147 (i.e. k-means algorithm) and density based models.42,148,149

In Section 3.1, we present the regularized entropy matching (REMatch) kernel75 based on

SOAP features and the relation between kernels and distances. We introduce the sketch-map

dimensionality reduction technique60 and the HDBSCAN* clustering method150 in Section 3.3

as tools to address the challenges of navigating a database of molecular conformers in Sec-

tion 3.4, checking its internal consistency and rationalizing structure-property relations, and

to develop a data-driven classification scheme that provides useful insight into the packing

motifs in datasets of organic semiconductors in Section 3.5.

3.1 REMatch Kernel and Distances

A kernel function K (·, ·) between atomic configurations A and B measures their similarity.

When this function is positive definite, it defines an inner product between vectors in a Hilbert

space, i.e. K (A,B) = 〈A|B〉.151 The power of kernel methods lays in their ability to transform a

low-dimensional non-linear problem into a ‘more linear’ problem in a higher-dimensional

space.88,152 The ‘kernel trick’ allows transforming simple linear models into fully non-linear

ones at the cost of defining this similarity measure.

In the case of local representations such as the SOAP power spectrum (see Section 2.2.4), the

inner product between normalized feature vectors

k(Ai ,B j ) = 〈A;ρ⊗2
i |B ;ρ⊗2

j 〉ζ , (3.1)

defines an element ki j (A,B) of the similarity matrix between local environments of the two

structures. Contrary to the additive global similarity measure often associated with regres-

sion models (see Section 2.1.4), the REMatch kernel75 measures the structural similarity by

combining the local similarity measures to highlighting the pairs of local environments that

exhibit the highest degree of structural similarity. For this purpose, the similarity between

structure A and B is given by the weighted sum over the elements of k(A,B) where the weights

are evaluated using a technique borrowed from optimal transport theory,153

K̂γ(A,B) = [
TrPγk(A,B)

]
,

Pγ = argmin
P∈U (N ,N )

∑
i j

Pi j
(
1−k(Ai ,B j )+γ lnPi j

)
. (3.2)
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The optimal combination is obtained by searching the space of doubly stochastic matrices

U (N , M) using the Sinkhorn algorithm154 which minimizes the discrepancy between matching

pairs of environments, regularized using the information entropy of the weight matrix E(P) =
−∑

i j Pi j lnPi j ; ζ affects the sensitivity of the kernel and γ enables switching between a strict

and broad selection of best matching pairs of local environment (see Ref.75 for more detail).

Once a kernel between two configurations has been defined, it is then possible to introduce a

kernel-induced distance155

D(A,B)2 = K̂γ(A, A)+ K̂γ(B ,B)−2K̂γ(A,B). (3.3)

that can be used as the metric for clustering or dimensionality reduction.

3.2 Sketch-map

A widely adopted strategy used to perform dimensionality reduction is to find the low dimen-

sional Cartesian projection that best reproduces the pairwise distances in the high dimensional

space. Such an approach, called multi-dimensional scaling (MDS), is useful to represent high-

dimensional data such as distance matrices. Sketch-map60,123,126 is a particular non-linear

MDS algorithm in which one iteratively optimizes the objective function

S2 =∑
i j

[
F

[
D(Xi , X j )

]− f
[
d(xi , x j )

]]2 , (3.4)

that measures the mismatch of the dissimilarity between atomic configurations D(Xi , X j )

with the dissimilarity (typically just the Euclidean distance) between the corresponding low-

dimensional projections {xi }. The procedure is very similar to multi-dimensional scaling,

except for the appearance of the transformations F and f , which are non-linear sigmoid

functions of the form:

F (r ) = 1− (1+ (2a/b −1)(r /σ)a)−b/a . (3.5)

The non-linear transformation focuses the optimization of Eq. (3.4) on the most significant

distances (typically those of the order of σ), and disregards local distortions (e.g. induced

by thermal fluctuations or by incomplete convergence of a geometry optimization) and the

relation between completely unrelated portions of configuration landscape. The maps that we

report in this work will be labeled synthetically using the notation σ-A_B-a_b, where A and B

denote the exponents used for the high-dimensional function F , a and b denote the exponents

for the low-dimensional function f , andσ the threshold for the switching function. The choice

of these parameters of the sigmoid functions are discussed in detail elsewhere.123 In practice,

A, B , a, and b have a relatively small effect on the projection and can be optimized and kept

fixed for systems belonging to the same family. Since the structures we consider here are

minimum-energy configurations, and there are no thermal fluctuations that should be filtered

out, we set A = a = 1 (so that at short range the algorithm will still try to represent distances
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faithfully) and set the long-range exponents to B = b = 4. The parameter σ is the one to which

sketch-map is most sensitive, and needs to be tuned for each system separately. To automate

the process of building sketch-maps of a large number of subsets of the database, we have

used a simple heuristic procedure for determining the value of σ automatically. Following

the prescriptions in Ref.123, we first compute the histogram of distances in the dissimilarity

matrix of each molecular set and detect the dissimilarity value (Dmax ) corresponding to the

peak value of the histogram. We then set the value of σ to 0.8Dmax .

3.3 Hierarchical clustering and HDBSCAN*

Cluster analysis can be achieved through various strategies ranging from distribution models

such as Gaussian mixture models to centroid models like k-means. Clustering models based on

connectivity information such as hierarchical (or agglomerative) clustering144 are particularly

suited for the identification of recurring motifs underlying the behavior of the system. Starting

from each configuration as its own cluster, the hierarchical clustering algorithm iteratively

aggregates clusters together based on some assessment of their distance. The distance between

two clusters, however, can be defined in many different ways. One possible choice is the RMS

dissimilarity between the pair of members of the two clusters. The linkage distance ∆ between

two clusters X and Y is then defined as:

∆(X,Y) =
√

1

NXNY

∑
X∈X,Y ∈Y

D2(X ,Y ), (3.6)

where NX and NY are the total number of configurations within each cluster. The results of hi-

erarchical clustering can be further processed to identify groups of structurally homogeneous

atomic structures and unique configurations within the database as done in Section 3.4. The

‘dendrogram’ plot conveys visually the sequence of agglomerative clustering operations and

the linkage distance at each step. The lowest level of the dendrogram is composed of single-

structure clusters so that the x axis corresponds to individual configurations sorted according

to the clustering procedure. Each merge operation is represented by a line joining the two

underlying clusters, with the y position of the line representing the linkage distance for that

pair, as defined by Eq. (3.6). In this kind of representation, at the bottom of the dendrogram,

each structure can be thought of as an individual cluster containing only one item. Clusters

are then merged iteratively, selecting at each step the pair of clusters that are closest to each

other. This operation is repeated until all the clusters collapse into one single group that

encompasses all the structures in the database, thus completing the dendrogram. To avoid

overcrowding the bottom of the plot, one can hide the part that corresponds to very small

linkage distances, while still graphically visualizing the size of the clusters by drawing bars

that encompass the associated structures. Since the “leaves” of this dendrogram correspond

to individual configurations, it is possible to complement the dendrogram with color-coded

bar plots that represent the value of different properties of each structure, thereby giving a

clear picture of the relation between structural clustering and the different properties.
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In order to understand the basic motifs of a particular cluster X, it is very useful to select one

of its structures that is as representative as possible of the entire subset. In the case where

stability estimates are available, such structure may be the lowest-energy structure in the

cluster. For a definition that is based purely on conformational or configurational information,

the most representative structure RS (X) could be defined, as the item having the minimum

mean square dissimilarity with respect to all other members of X, i.e.

RS (X) = argmin
X1∈X

[
1

NX

∑
X2∈X

D2(X1, X2)

]
. (3.7)

Representative structures can be defined at each level of the hierarchy, and can therefore be

very useful in navigating the database, and understanding what are its most crucial structural

features. The spread of the cluster around RS (X),

σD (X) =
√

1

NX

∑
X∈X

D2(X ,RS(X)), (3.8)

can be used to quantify the range of structural landscape that is covered by the cluster. Com-

bined with the dendrogram plot, such metric can help identify groups of structures character-

ized by similar structural patterns.

Another important aspect of database analysis is ‘outlier detection’.156–161 An “outlier” config-

uration is defined as a configuration that is different from most of the samples in the database.

Outlier configurations are very important as they are likely to have a unique structural motif

in the whole database and are thus interesting for structure prediction applications. They also

could represent chemical changes or indicate inconsistent configurations which are likely

to be “errors” in the database. They can often be identified in the dendrogram plot as small

clusters that are very different from their neighboring clusters.

Unfortunately, the analysis described above is quite time-consuming. A more systematic

technique to identify automatically the main structural motifs is the HDBSCAN* algorithm150

which has been applied in Section 3.5. This method introduces an adaptive density threshold,

in a similar fashion as density-based clustering algorithms, to group together samples belong-

ing to dense regions of the dataset. Indeed, HDBSCAN* has a single intuitive hyper-parameter,

the minimal size of a cluster, which can be set to approximately 1% of the dataset size to

discard configurations that belong to sparsely-populated regions that do not correspond to a

recurring structural motif. Since such configurations are different from most of the samples in

the database it automatically provides a list of “outlier” candidates.
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3.4 Mapping and classifying molecules from a high-throughput struc-

tural database

This analysis focuses on a collection of ab initio datasets containing conformers of twenty

proteinogenic amino acids and dipeptides, as well as their interactions with a series of diva-

lent cations along with their calculated energy (Ca2+, Ba2+, Sr2+, Cd2+, Pb2+, Hg2+).85 The

potential-energy surfaces (PES) of 280 systems were explored using replica exchange molec-

ular dynamics and selecting conformers up to 4 eV (390 kJ/mol), summing up to an overall

of 45,892 stationary points on the respective potential-energy surfaces.86 The underlying

energetics were calculated by applying density-functional theory (DFT) in the generalized gra-

dient approximation corrected for long-range van der Waals interactions (PBE+vdW).162–164 A

number of theory-theory and theory-experiment comparisons have shown the applicability

of the method to amino acid and peptide systems.86,165–170 The generation of this dataset

involved significant manual intervention, and one would expect it to be an easy starting

point for studying materials and molecules across chemical space.171 Nevertheless, we will

demonstrate that, even for such heavily curated data, automated techniques are needed to

extract trends and to check for internal consistency.

In the following text we focus on the amino acid lysine (in short Lys) and investigate basic

structural motifs of three forms, see Fig. 3.1. Furthermore, the UL techniques introduced in

Sections 3.1 to 3.3 are used to detect the impact of perturbations (here Ca2+ cations) on the

structural properties of the unperturbed systems. Finally, we demonstrate how the approach

can also be applied to discover inconsistencies and outliers in the database.

(a) (c)(b)

Figure 3.1 – The lysine building block was studied in three forms: (a) uncharged dipeptide,
(b) protonated dipeptide, and (c) uncapped and uncharged amino acid.
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3.4. Mapping and classifying molecules from a high-throughput structural database

Figure 3.2 – Representation of the similarity matrix corresponding to the lysine dipeptide
dataset using the agglomerative clustering algorithm (top) and the sketchmap algorithm (bot-
tom, projection parameters shown following the scheme σ-A_B-a_b). A few representative
structures (see Eq. (3.7)) of interesting clusters are shown (right) and their corresponding
position on the sketch-maps and dendrogram representation is highlighted. The five sketch-
maps are colored according to the conformational energy and the backbone dihedral angles
φ, ψ, ω1 and ω2. The dendrogram shows the clustering hierarchy of the structures of the
dataset. Each structure is vertically aligned with its properties shown using color bars below
the dendrogram. The dendrogram is cut at a linkage distance of 0.1 since structural properties
are very similar below this threshold, and the clusters that are merged at this level are shown
as thick gray bars separated by light-gray lines. Clusters composed of only one structure are
drawn as a black line reaching the bottom of the dendrogram. The main structural motifs of
this set of structures are governed by the peptide bond dihedral angles ω1 and ω2. The two
main clusters (a) and (b) are showing a global correlation with the angle ω2 while the angle
ω1 splits them into two well correlated sub-clusters (d), (e) and (f), (g) respectively. The
cluster (c) is highlighted as an example containing ‘outlier’ structures of low conformational
energy.
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3.4.1 Finding the Dominant Features of a Structual Landscape

Lysine Dipeptide

We take as our first example a subset of the database containing 2080 conformers of lysine

dipeptide. we start by constructing the distance matrix using the SOAP-REMatch kernel.

In Fig. 3.2 the dendrogram plot as well as sketch-maps have been shown along with five

properties, energy and four dihedral angles, using the same color scales in both the sketchmap

and dendrogram representations. In the sketchmap each circular ‘disk’ represents a conformer.

Whereas in the case of the dendrogram plot, structures are represented by vertical lines at the

bottom of the plot. The strong correlation between energy and conformational parameters on

one side, and clustering and position on the map on the other, testifies how the the REMatch-

SOAP kernel induces a meaningful classification of the structures in this dataset.

While both clustering and sketchmap show clearly that the dataset is composed of groups

of structurally-related conformers, the agnostic nature of the underlying metric does not

disclose immediately the structural features that most transparently differentiate between

different clusters. Comparing the representative structures from the main clusters allowed

us to quickly identify candidate structural motifs that could be used to rationalize the layout

of the conformational landscape. By color-coding the dendrogram and the sketch-maps

according to these indicators one can readily highlight the key correlations.

When considering existing literature on the stability of oligopeptides, the two structural pa-

rameters that are most often considered as the key coordinates to navigate the conformational

landscape are the Ramachandran dihedral angles φ and ψ, that determine the structure of

the backbone around the side chain bearing Cα atom56 under the assumption of peptide

bonds being solely in trans conformation. While fine-grained clusters are homogeneous with

respect to the φ and ψ angles, it is clear that for the present systems the clear-cut branching at

the top of the dendrogram is determined by some other order parameter. An analysis of the

representative structures for the two main clusters (a) and (b) shows that the two molecules

differ by the isomerization of the N-terminal peptide bond. Further splitting of these two

clusters, i.e. (a) into clusters (d) and (e), and (b) into (f) and (g), depends on the isomeriza-

tion of the C-terminal peptide bond. We can confirm this attribution of the main features

of the dataset by color-coding the map and the dendrogram following the dihedral angles

ω1 and ω2. The four main clusters are largely homogeneous with respect to peptide bond

isomerization, and are then further subdivided based on φ and ψ. This observation deserves

some further comment. Peptide bonds in naturally-occurring proteins are believed to almost

exclusively exist in trans conformation with the exception of prolyl peptide bonds where a

smaller energy difference to trans increases the chance for cis conformers.172,173 This view

is supported by the analysis of protein structures deposited in the protein databases where

cis conformations are found for about 5% of the prolyl peptide bonds, but less than 0.1% for

the others.174 X-ray crystallographic structure represent however merely frozen snapshots

of structural dynamics. The ab initio structure search protocol, instead, does consider the
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peptide bond torsions as variable and intentionally allowed simulations to overcome the

isomerization barrier. Consequently, the dataset contains representatives of all four combi-

nations of cis and trans conformers. Since these transitions are strongly bimodal, and reflect

in significant changes of the favorable side chain conformations, they constitute the most

significant feature to classify the conformers. As expected, the most stable conformers are

largely in a trans-trans conformation. However, the large parts of conformational space of

that is occupied by conformers with 1 or 2 cis peptide bonds suggests that cis isomers might

play a role in the dynamics of peptides and proteins. Consequently, an analysis only focused

on the Ramachandran dihedrals,φ and ψ, would have missed one of the main features of

the structural landscape that is critical to characterize the relation between structure and

energetics. One could then proceed further with the analysis, focusing for instance on small

clusters containing low-energy structures such as that represented by the conformer (c). All

the structure in this group are trans-trans isomers, that in addition have φ ≈ −90 degrees

and ψ ≈ 90 degrees, allowing for the formation of a H-bond between the side chain N3 and

H1, and a favorable arrangement of the N2 donating a H-bond to the carbonyl O1 as shown

in Fig. 3.2. Having access to the combined information on energetics, and on the grouping

of structures with similar geometry makes it easier to rationalize the energy ordering of the

structures, without having to separately juxtapose all the low-lying conformers but focusing

on a few representative structures.

Protonated Lysine Dipeptide

As the second example we considered a dataset containing 897 conformers of gas phase

protonated lysine dipeptide. We follow the same steps as described in the previous example in

order to find the most basic structural motifs of this system. Figure 3.3 shows the dendrogram,

the sketchmap and a few color coded properties of this system to show their correlation with

the classification. The most prominent feature for this molecule, which is evident in both

the dendrogram and the sketch maps, is the presence of a group of outliers, that are clearly

separated from the bulk of the conformers. Inspection of the cluster centroid (g) clarifies

the structural basis of this separation. Whereas in most of the structures the excess charge

lies on the lysine side chain as a NH+
3 group, conformers in this cluster experienced a proton

transfer event, with the excess proton attached to one of the carbonyl oxygen O1, stabilized by

H-bonding to N2. This is a result of the database generation where ab initio replica-exchange

molecular dynamics including high T trajectories where used for structure sampling during

which protons can eventually transfer.

Moving on to the main cluster of structures, we can see that similar to our previous example of

the neutral dipeptide and again due to the unbiased sampling protocol and the high energy

range the peptide bond angles are again more important than Ramachandran’s dihedrals.

Conformers (a) and (b) are the representative structure for groups having cis and trans ω2

peptide bonds respectively. Group (a) is further split based on the cis/trans state of ω1 into the

clusters represented by structures (d) and (e).
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Figure 3.3 – Representation of the similarity matrix corresponding to the protonated lysine
dipeptide dataset using the agglomerative clustering algorithm (top) and the sketchmap
algorithm (bottom, projection parameters shown following the scheme σ-A_B-a_b). A few
representative structures (see Eq. (3.7)) of interesting clusters are shown (right) and their
corresponding position on the sketch-maps and dendrogram representation is highlighted.
The six sketch-maps are colored according to the conformational energy, the minimal distance
between O1 or O2 with N3 called DON, and the backbone dihedral angles φ, ψ, ω1 and
ω2. The dendrogram shows the clustering hierarchy of the structures of the dataset. Each
structure is vertically aligned with its properties shown using color bars below the dendrogram.
The dendrogram is cut at a linkage distance of 0.1 since structural properties are very similar
below this threshold, and the clusters that are merged at this level are shown as thick gray
bars separated by light-gray lines. Clusters composed of only one structure are drawn as a
black line reaching the bottom of the dendrogram. The main structural motifs of this set
of structures are governed by the dihedral angles ω1 and ω2 and the distance DON. The
two main clusters (a) and (b) are showing a global correlation with the angle ω2 while the
angle ω1 splits them into well correlated sub-clusters (e.g. sub-clusters (d) and (e)). The
other important sub-clustering parameter is the distance DON, e.g. sub-clusters (c) and (b),
which also correlates well with the separation between low and high conformational energy
shown on the sketch-maps. Two sub-clusters are particular: (g) is a clear ‘outlier’ due to a
chemical change and (f) features a H-bonding pattern with the side chain NH+

3 pointing to
both carboxy groups that sets this cluster apart from all others.
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The presence of a charged side-chain leads to stronger H-bonds. As a consequence, peptide-

bond isomerism plays a less crucial role in determining structural clustering than for the

neutral dipeptide. An example of the importance of H-bonds is given for instance by the

subcluster represented by conformer (f), in which the bent side chain leads to the formation

of two H-bonds between NH+
3 group and the carbonyl oxygens. H-bonds also dominate the

partitioning of cluster (b), that is split into two groups – one of which is still best represented

by the same conformer, and one that is epitomised by (c). Once again, inspection of these

structural representatives reveals the organising principle behind the classification: (c)-like

structures have an extended side chain, and are dominated by interactions among the peptide

bond moieties, whereas (b)-like structures have a well-formed H-bond between the side chain

and one of the two backbone O atoms. This structural pattern can be emphasized by color-

coding conformers based on the parameter DON= min[d(O1,N3);d(O2,N3)]: A small O-N

distance indicates bending of the side chain and the formation of a H-bond between O and N.

As it is clear from the sketchmap representation, there is a very strong correlation between the

bending of the charged side chain and the energy of a conformer. All of the structures within

0.5 eV of the ground state feature this sidechain to backbone H-bonds.

It is worth noting that the importance of intramolecular H-bonds is a consequence of the gas-

phase environment in which the structure search was performed. In a polar solvent like water,

where intramolecular H-bonds that introduce strain compete with H-bonds with the sur-

rounding water molecules, that do not require a bending of the side-chain, the energy balance

might be different or less clear-cut. The analysis techniques we introduce in this work would

be ideally suited to rationalize the changes in the (free) energetics of biological molecules

when moving from the gas phase to (micro)solvated environments or to organic/inorganic

interfaces.

Uncapped Lysine

Our third example is a dataset containing 733 conformers of the un-capped lysine molecule in

the gas phase. We follow the same steps as described in the previous examples to construct

the dendrogram shown in Fig. 3.4. The map has a simple structure, with few well-separated

groups. Being a smaller molecule with fewer degrees of freedom, the Ramachandran angles

are not defined. Still, the dihedral angles in the vicinity of the Cα atom display local structural

correlation but once again they are not the main organizing factor that can rationalize the

clustering. By juxtaposing representative conformers from the main clusters we could identify

a better order parameter, that correlates strongly with H-bond patterns within the molecule.

Namely, the distance (DH) between the H atom in the OH group of the carboxyl function and

the N atom in the backbone (N1) discriminates well between structures based on H-bonding

patterns171 of type I between N1H→O2 (e.g. conformer (b)) and of type II with a H-bond

O1H→N1 (e.g. conformer (a)). It can be seen from both the dendrogram and the sketch-maps

that one could identify several subgroups based on particular values of DH, representing

specific orientations. Conformers (c) and (d) represent small groups of conformers having
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Figure 3.4 – Representation of the similarity matrix corresponding to the lysine uncapped
dataset using the agglomerative clustering algorithm (top) and the sketchmap algorithm (bot-
tom, projection parameters shown following the scheme σ-A_B-a_b). A few representative
structures (see Eq. (3.7)) of interesting clusters are shown (right) and their correspond-
ing position on the sketch-maps and dendrogram representation is highlighted. The five
sketch-maps are colored according to the conformational energy, the distance between N1

and the hydrogen in the carboxilic group H1 (labelled DH), the distance between N2 and
Cα (labelled DCN), and the dihedral angles α1 and α2 which are respectively computed
with the following atoms (N1,Cα,C2,C3) and (C1,Cα,C2,C3). The dendrogram shows the
clustering hierarchy of the structures of the dataset. Each structure is vertically aligned with
its properties shown using color bars below the dendrogram. The dendrogram is cut at a
linkage distance of 0.1 since structural properties are very similar below this threshold, and
the clusters that are merged at this level are shown as thick gray bars separated by light-gray
lines. Clusters composed of only one structure are drawn as a black line reaching the bottom
of the dendrogram. The main structural motifs of the database are governed by the distance
DH. The two main clusters (a) and (b) are agglomerated according to the orientation of
H1 and the oxygen atom it is bonded to with respect to N1 which is well described by the
distance DH. The sub-cluster (e) is composed of ‘outlier’ structures showing an H-bond
between N2 and an hydrogen of N1 resulting in a folded side chain structural motif. Finally,
the outlier cluster (f) contains a H-bond between the carboxy H and the side-chain NH2,
that can be seen as a precursor to the zwitterionic form.
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specific relative orientation between the OH and NH2 groups. Conformer (e) is representative

of a small outlier group with a well-defined bend of the side chain, leading to the formation of

a further H-bond between the N1 atom in the amino acid moiety and N2, in the side chain.

The lysine side chain is very flexible, and the distance between N and Cα only plays a role in

defining the fine-grained structure of the dataset, but is minimally correlated with the most

prominent features.

Figure 3.5 – The out-of-sample embedding of conformers with Ca2+ ion on the sketchmap
of their pure counterpart, for the three systems we discussed in above: lysine dipeptide (a),
protonated lysine dipeptide (b) and molecular lysine (c) systems. The projected conformers
are colored with their energy where as the sketchmap on which they are projected are kept
all in grey color. The location of the projected conformers allows us to understand how the
conformational space of the pure conformers are affected due to presence of the Ca2+ ion.

While it appears that even in this case we could identify the basic structural motifs that

characterize the conformational landscape of this system, the correlation with energy is

very poor. There are several instances, in both the dendrogram and the sketchmap, where

two conformers that are detected as structurally very similar display very different stability.

Understanding whether this inconsistency signals a problem with our analysis brings us to the

topic of outlier detection and consistency checks, that we will discuss in details in Section 3.4.3.

3.4.2 Understanding the Impact of Perturbations on conformational Space

Having elucidated the essential structural motifs that underlie the organization of a set of

molecular conformers, one could also wonder how changes in the thermodynamic conditions,

or other external perturbations such as solvation, the addition or subtraction of an electron175

or that of an atom,176–178 modify the conformations of the molecule and their stability. In

addition to bare oligopeptides, the database85,86 that we are using as an example contains

sets of locally-stable conformers in the presence of cations of six different species, namely

Ca2+, Ba2+, Sr2+, Cd2+, Pb2+ and Hg2+. We consider the case of Ca2+ to describe how one can

characterize its impact on the conformational space of the three molecular systems that we

have discussed in our previous examples. We start by calculating the dissimilarity of all the
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conformers containing cations with their pure counterpart. In order to make the comparison

on the same footings, we did not include the location of the cation in defining the SOAP kernels,

so that the presence of Ca2+ only enters by distorting molecular geometries and/or altering

their relative stability. Using this information, we then projected the cation-containing dataset

on the top of the sketchmap of structures for the bare molecule. This is done using sketchmap

out-of-sample embedding, and we refer our reader to see the relevant literature60,123,126 for

more details about the method. In Fig. 3.5 we show the resulting projection, colored according

to the stability of the conformers, on top of the sketchmap of the pure molecule shown in

grey color as a reference. A close proximity of projected conformers with a pure conformer

signifies their structural similarity. Segregation of the projected conformers with the cation in

some area of the reference sketchmap, represents the structural bias introduced by the strong

electrostatic interaction with Ca2+.

In the case of neutral lysine dipeptide (Fig. 3.5-a), the presence of the Ca2+ ion induces rel-

atively small distortions of the stable conformers, that get pushed towards the outer region

of the map but are still clearly related to the locally stable structures for the bare molecule.

Energies are dramatically changed, with the most stable cluster in the original map being

completely absent in the presence of the cation. These observations highlight the importance

of sampling high-energy conformers during high-throughput structure searches, since the

relative stability can be modulated strongly by external perturbations. In particular, cis con-

formers become energetically more competitive and are topologically closer to the global

minima. In the case of protonated lysine dipeptide (Fig. 3.5-b), the same analysis shows an

even clearer pattern. All the conformers with Ca2+ ions are projected in the lower part of the

sketchmap, that correspond to conformers with an extended side chain (see Fig. 3.3). The

Ca2+ ion preferably binds to the peptide O atoms, and the electrostatic repulsion with the

protonated lysine residue strongly favors extended conformers, contrary to what we observed

in the case of the bare molecule. Finally, one sees that for molecular lysine the addition of

Ca2+ leads to conformers with very different structural motifs from those seen with the bare

molecule, which is apparent in the sketchmap projection being concentrated far away from

the unperturbed conformers (Fig. 3.5-c). In fact, inspection of the structures shows that Ca2+

often triggers the transition to the zwitterionic form, with the cation coupled to the carboxylate

group, and the protonated side chain NH3+ extending as far as possible away from it. In analogy

with what was observed for Lennard-Jones clusters123 and solvated polypeptide segments,179

sketch-maps proved to be a powerful tool to analyze the response of the system to external

perturbations and changes in the boundary conditions, and – in this specific example – to

draw connections between different subsets of a high-throughput molecular database.

3.4.3 Identifying Outliers and Checking for Consistency

The tools we introduced in this work are useful to address other important issues in data-

driven science, such as outlier detection and consistency checks. We have already discussed

the importance of detecting groups of “outlier” structures that are very different from the bulk
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of the dataset. These unusual items often signal the occurrence of unexpected effects that go

beyond the original goal of the database construction effort. In the case of protonated lysine

dipeptide, looking for outliers allowed us to reveal the presence of conformers with different

chemical connectivity, or of strong H-bonds between the backbone and the charged side

chain. Similar observations can also be made in the case of the bare lysine molecule (Fig. 3.4).

Moreover, one can observe a branch at the topmost level of the dendrogram, containing only

two conformers. These are the only two cases where a H-bond is formed between the N of

the side chain and the H atom of the OH group in the backbone. In the sketchmap, these

two conformers are projected on the top, clearly isolated from rest of the groups, and bear

the most resemblance to the zwitterionic conformers that are stabilized in the presence of

a divalent cation. Obviously, the definition of a group of “outliers” can be more nuanced,

and refer to small groups of structures appearing at deeper levels in the hierarchy. Overall,

the possibility of clustering together the structures from a large dataset and inspecting a few

representative conformers, rather than hundreds or thousands, greatly facilitates the task of

identifying trends and spotting interesting or unexpected structures.

Figure 3.6 – This figure compares the homogeneity of clusters from the protonated lysine
dipeptide (see a) and the bare lysine uncapped (see b) with respect to properties of their
elements. The homogeneity of a cluster is probed using the standard deviation with respect
to the distance between each cluster elements, σD , and the conformational energy, σE . The
outliers of uncapped lysine (b) were manually highlighted in orange.

Outliers can signal interesting or important trends, but can also be a red flag for the pres-

ence of errors. The importance of database integrity has long been recognized by computer

scientists,180–183 and several tools are available to monitor and correct inconsistencies from

the technical point of view, in terms of reliability of storing and retrieving data.156–161 The issue

is also crucial when it comes to the maintenance of automatically-generated databases, and to

repositories that store data of heterogeneous provenance.18,19,21–23 In these cases, problems

have generally little to do with the integrity of the storage, but rather with the consistency of

the simulation details of different sets of calculations. Rather, inconsistencies should manifest
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themselves in the presence of structures that are geometrically very similar, but are associated

to very different values of particular properties.

For example the lysine molecule dataset shows signs of this kind of issues, with energies that

vary wildly within clusters that are very homogeneous in structure. This problem can be seen

from the maps, i.e. when comparing the energy-colored sketchmap in Fig. 3.4 to the respective

maps for the other systems. However, a more robust and easy-to-automate approach to

identify structure/property inconsistencies starts from the hierarchical clusters, and compares

the structural variability within each clusterσD (Eq. (3.8)) with the variance of a given property,

in this case energy, σE . Looking, for example, at a glassy energy landscape,184 one can observe

configurations that are very different from a structural point of view, but have similar energy,

giving rise to clusters with large σD and small σE . The data points in Fig. 3.6 each represent

individual clusters of lysine dipeptide and uncapped lysine, respectively, and illustrate their

variation in energy and structure. In the case of lysine dipeptide (Fig. 3.6a) one sees a clear

correlation between the structural and energetical variation of the clusters. The two quantities

σD and σE are not necessarily strongly correlated, but in general clusters that contain very

similar structures also have a low spread in energy. For uncapped lysine (Fig. 3.6b), however,

one can identify a group of points (which we manually highlighted in orange for clarity) that

has a distinctively different behavior, with σE converging to a constant value other than zero

as σD decreases. This kind of feature indicates that the metric based on which structures were

classified cannot detect one specific effect that has a dramatic impact on energetics, signaling

either a failure of the metric or, as in this case, an inconsistency in the generated data. Further

investigation of the lysine molecule dataset revealed that a subset of structures that had been

generated at a lower level of theory in the initial stages of the structure-search procedure made

their way by mistake into the final dataset. Using this measure of cluster homogeneity on

all systems of the amino acid database revealed similar problems also for other molecules,

for example Cys, Glu, and Arg. Thanks to this analysis we will be able to identify and rectify

mistakes in all the affected datasets and subsequently update the on-line repository.85

3.5 The structure–energy–property landscapes of molecular crys-

tals

Molecular crystals possess a diverse range of applications, including pharmaceutical,185,186

electronics187,188 and the food industry.189 The directed assembly of molecules into crystalline

materials with targeted properties is a central goal of the active research field of crystal engi-

neering. However, material design guided by empirical rules of self-assembly often exhibit

inconsistent success, particularly for the crystallization of molecular solids, because it is gen-

erally impossible to predict the outcome of self–assembly that is directed by many competing,

weak non–covalent intermolecular interactions. A typical example is the phenomenon of

polymorphism in molecular crystals,13,190,191 whereby a given molecule can crystallize into

different solid forms. Polymorphism is a central issue of the design of molecular materials
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since different stacking patterns have a direct effect the materials properties. To overcome

this challenge, computational methods have been developed for crystal structure prediction

(CSP) of organic molecules; over the past decade, CSP has been developed to the point where

the experimentally-accessible polymorphs of small organic molecules can be predicted with

reasonable success, as demonstrated by a series of CSP blind tests.14 Recently, CSP has been

combined with property prediction to produce energy-structure-function maps that describe

the diversity of structures and properties available to a given molecule.87,192 Hence, struc-

ture prediction methods are gaining increasing attention in the field of computer–guided

materials design.18,23,24 Nevertheless, in contrast to other fields of molecular science such

as nano-clusters76,184 and biomolecules,60,73 little attention has been paid to the develop-

ment of automatic analysis methods to rationalize the potential energy landscape and the

structure-property relations in molecular crystals. Heuristic classifications of polymorphs

based on the analysis of packing types193 or of hydrogen bond (H-bond) patterns194 are useful

as they provide intuitive rules that can guide synthetic chemists in the design of crystallization

protocols that yield the desired products. However, they lack transferability, and risk biasing

the design of new materials based on outdated or partly irrelevant prior knowledge.

We discuss the application of the sketch-maps (see Section 3.2) and the HDBSCAN* (see

Section 3.3) techniques to develop a data-driven classification scheme that provides useful

insight into the packing motifs and structure-property relations. We use, as benchmark

systems, pentacene (see Fig. 3.7a) and two azapentacene (see Figs. 3.7b and 3.7c) isomers,

recently studied as possible organic semiconductors by CSP methods.87 To best inform and

automate the definition of this data-driven identification of structural patterns, we use the best

performing SOAP-REMatch kernels obtained for modelling the lattice stability in Section 4.2.2.

This classification scheme highlights families of structures on each CSP landscape and helps

clarifying how introducing nitrogen substitutions in pentacene modifies the overall crystal

packing landscape.

3.5.1 A Benchmark Database of organic semiconductors

We focus our present investigation on the lattice energies and charge mobility landscapes of

three polyaromatic molecules: pentacene and two azapentacenes (5A and 5B), as depicted in

Fig. 3.7. Pentacene is one of the most studied polyaromatic hydrocarbons, with promising

electronic properties for organic semiconductor applications as a hole transporter. Without

strong, directional intermolecular interactions, pentacene favours herringbone packing in

crystalline phases, where molecules are arranged with a tilted edge–to–face arrangement

in which neighboring molecules interact via C–H· · ·π interactions. Generally, a co–facial π–

stacking arrangement is preferable for crystalline organic semiconductors since it maximises

the intermolecular charge transfer integrals.195 Winkler and Houk,196 suggested introducing

a symmetric and complementary nitrogen substitution pattern along the long edges of the

pentacene molecule to encourage hydrogen–bonding into a sheet–like packing in the crystal

of the resulting azapentacene (molecule 5A, Fig. 3.7b), with the intention of increasing charge
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mobilities by promoting π–stackings. We have also studied molecule 5B (Fig. 3.7c) to further

investigate if an irregular nitrogen substitution pattern would be less likely to promote sheet–

like molecular arrangements in the crystal structure of this molecule.

Full details of the crystal structure and transport property predictions for these three molecules

were presented in Ref.87, and are summarized in Section 4.2.2. In brief, crystal structures were

generated by quasi-random sampling197 in a range of space groups, followed by lattice energy

minimization with DMACRYS198 using an empirically parameterized exp-6 force field model

(W99199) combined with atomic multipolar electrostatics derived from a distributed multipole

analysis (DMA).200

Besides this well-established semi-empirical model for predicting lattice energies, we also

computed single-point energies of all the structures using density functional theory (DFT),

with an expansion of Kohn-Sham orbitals in plane waves and a the generalized-gradient-

approximation density functional PBE,163 including Grimme’s D2 dispersion corrections,201 as

implemented in Quantum ESPRESSO.202 Further details of the DFT calculations are provided

in Section 4.2.2.128

(a) Pentacene (b) 5A (c) 5B

Figure 3.7 – Molecules investigated in the present study.

The crystal packings of the predicted structures were classified into one of the categories

typically used in describing polyaromatic hydrocarbon crystal packing:193,203 herringbone,

where all molecules adopt a tilted edge-to-face arrangement; sandwich-herringbone, in which

pairs of coplanar molecules pack in a herringbone manner; γ, which features stacks of coplanar

molecules; and sheet-like, where all molecules are coplanar. A fifth category, slipped–γ, was

added in our previous publication87 describing gamma structures in which the lateral offset

between stacked molecules is so large that there is little π−π contact along the stack of

molecules. The classification was performed using an in–house algorithm based on a set of

heuristic rules, by calculating the relative orientations of molecules in a sphere surrounding a

central reference molecule in a given crystal, as described in Ref.87.

3.5.2 Results & Discussion

While the “best” kernel for property prediction can be determined objectively based on

the cross-validation error, it is more difficult to formulate objective criteria to optimize the

parameters when a kernel is to be used for determining structural motifs, or generating low-

dimensional maps of the crystal structure landscape. We found that by starting from the best

parameters for energy prediction provided in Section 4.2.2, and modifying the cutoff radius
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to select different chemical features, e.g. H-bonds and CH· · ·π interactions, we can change

the representation of the structures in a predictable way. This turns out to be insightful, as we

discuss below for the pentacene, 5A and 5B databases.

Pentacene

Figure 3.8 shows a sketch-map representation of the pentacene dataset color-coded according

to the relative lattice energy (bottom right), a heuristic classification scheme developed in

the previous publication on CSP of azapentancenes87 (top right) and the clusters detected by

HDBSCAN* based on the kernel-induced metric (left).

Figure 3.8 – Sketch-map representations of the pentacene crystal structure landscape’s
similarity matrix (projection parameters shown follow the scheme σmap-A_B-a_b). The
atomic configurations are color-coded according to their relative lattice energy (bottom right),
class following the heuristic classification (top right) and cluster index (gray structures do not
belong to a cluster) found using HDBSCAN* on the similarity matrix (left). The structural
pattern of each cluster is illustrated from a view down the short edge of pentacene.

The ‘islands’ on the sketch-map indicate the presence of distinct structural motifs (Fig. 3.8).

The HDBSCAN* technique identifies seven clusters among which two match clearly the her-

ringbone and sheet heuristic classes. The correspondence between a classification based on

unsupervised data analysis and one based on a well-established understanding o the behavior

of π-stacked system provides a cross-validation of the two approaches. The combination

of SOAP-REMatch kernels, sketch-map and clustering is capable of recognizing well-known

stacking patterns, and vice versa these heuristic classes have a clear correspondence in the

structure of the crystal structure landscape.

Cases in which the two classifications differ are similarly insightful. For example, γ packing is
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defined by a stacking column of molecules along their short axis, while neighboring columns

could be tilted with respect to this reference stacking direction. The HDBSCAN* clustering

shows that this broadly-defined grouping overlooks the existence of several well-defined

clusters of ‘mixed’ character, that differ by the tilting pattern between neighboring molecules,

making it possible to identify e.g. structures that are (i) closer to a sheet–like packing, e.g. the

orange island shown in Fig. 3.8 where one nearest-neighbor column is parallel whereas another

neighboring column is tilted with respect to each others, or (ii) further from a sheet–like

packing, e.g. the purple island shown in Fig. 3.8 where all nearest-neighbor columns are tilted

with respect to each other. The slipped-γ packing, on the other hand, does not correspond

to a clear-cut group of structures, encompassing a sparse set of configurations that populate

different portions of the map. Inspection of these structures, informed by the mapping and

the automatic classifications, reveals that this heuristic class is not well-suited to rationalize

packing in pentacene.

Clustering techniques like HDBSCAN*, which work in the high dimensional space, are also use-

ful to complement non-linear projections based on the similarity matrix, making it possible to

recognize the distortions brought about by the projection and develop a better understanding

of the actual structure of the similarity matrix. For instance, small groups of structures such

as the one on the lower right of the sketch-map might appear like a cluster because of the

projection, while clusters such as the green and red ones might not seem fully homogeneous.

Nevertheless, a careful inspection of these groups of structures confirms that clusters detected

by HDBSCAN* are indeed structurally homogeneous while the group on the lower right corre-

sponds to complex variations and distortions of the herringbone pattern which do not show

an obvious common structural pattern.

The automatic classification based on kernels provides more fine-grained insights into the

structural diversity in the lattice energy landscape compared to the heuristic classifications.

To verify how these observations generalize to different classes of molecular crystals, we also

considered the case of the two azapentacene isomers 5A and 5B.

Azapentacene 5A

The main difference between configurations, which is apparent by visual inspection, consists

in the different arrangements of CH· · ·N H–bonds between molecules within each sheet.

In order to focus our investigation on such patterns, without the confounding information

associated with the relative arrangement of molecules in adjacent sheets, we use a kernel with

a cutoff radius of 3 Å, which is sufficient to identify H–bonds but is insensitive to inter-sheet

correlation, given that the typical distance between sheets is about ∼3.5 Å. The outcome of

this analysis is shown in Fig. 3.9. The HDBSCAN* automatic classification identifies nine

main structural patterns, eight of which are sub-classes of the sheet motif. Representative

structures for a few of these clusters (see Fig. 3.9) show that although a wide range of H-bond

arrangements are possible within sheets, only a handful emerge as well-defined packing

patterns. A single well-defined cluster that does not correspond to variations on the sheet
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Figure 3.9 – Sketch-map representations of the 5A crystal structure landscape. The atomic
configurations are color-coded according to their relative lattice energy (bottom right), class
following the heuristic classification (top right) and cluster index (gray structure do not
belong to a cluster) found using HDBSCAN* on the similarity matrix (left). The structural
pattern of each cluster is illustrated with a top and long side (yellow cluster) view of the 5A
polymorphs.

stacking is also present and identified, corresponding to the γ heuristic class, while other

patterns are detected as background/outliers by HDBSCAN*.

The fact that the overwhelming majority of structures can be traced to a sheet motif, despite

using a CSP protocol that is designed to sample as widely as possible the most–likely packing

patterns for a given molecule, as demonstrated in the case of pentacene, underscores the fact

that the nitrogen substitution favors the sheet stacking patterns and inhibits other kinds of

structural motifs. However, we find relatively poor correlation between structural similarity

and lattice energy (see Fig. 3.9, bottom right) when the kernel is tuned to disregard inter-layer

correlations. This reflects the fact that in-sheet H-bonding is not the sole factor determining

the stability of packing. This is an example of the insight that can be obtained by combining

supervised and unsupervised ML analysis of the configurational landscape of molecular

materials.

Azapentacene 5B

The structural basis of this greater complexity can be understood by performing an HDBSCAN*

analysis and inspecting the sketch-map representation of the dataset. Even when using a 3Å

cutoff for the kernel, the sketch-map representation of the similarity matrix does not show

clear ‘islands’, i.e. recurring structural patterns (see Fig. 3.10), suggesting the presence of a

glassy structural landscape in which many distinct patterns can be formed.204 Indeed, even
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Figure 3.10 – Representation of the similarity matrix for 5B The atomic configurations, i.e.
disks, on the three sketch-maps are color-coded according to their lattice energy (bottom
right), class following the heuristic classification (top right) and cluster index (gray structure
do not belong to a cluster) found using HDBSCAN* on the similarity matrix (left). The
structural pattern of each cluster is illustrated with a top view of the 5B polymorphs.

though HDBSCAN* finds 8 clusters that can be described as sheet-like (see a few representative

structures in Fig. 3.10), they correspond to less than 20% of the structures, and the majority of

the database (760 samples) is too sparse to be partitioned into well-defined clusters.

This variety of complex and diverse stacking patterns that do not seem to fit into specific

arrangements can be traced to the irregular substitutions of carbon atoms by nitrogen atoms,

that determines a transition from a structure-seeker energy landscape to a glassy energy

landscape.204
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Regression algorithms aim to construct a model F (A) that can predict accurately the tar-

get properties y associated with the input A.62 The internal parameters of the model are

determined by optimizing the accuracy of prediction over a set of training samples, D, asso-

ciated with their respective property, and their accuracy to that reference can be improved

systematically by increasing the size of the training set.77

One of the early applications of ML to the prediction of atomic-scale properties aimed at

obtaining an accurate model of the potential energy surface (PES), which is crucial to assess

the stability of a given configuration, and whose sampling underlies the evaluation of the

thermodynamic properties of a system.78 Contrary to traditional FFs, which assume physics-

inspired functional forms for the interactions, and often use experimental observable as fitting

targets, ML interatomic potentials (MLIPs) have flexible functional forms and usually rely on

electronic-structure calculations as a reference. In many cases, this more general, data-driven

approach has been shown to result in more transferable and accurate models.29,30,45,49 Besides

the PES, ML models have also been successful at predicting other zero Kelvin properties such

as chemical shieldings, band gaps, electron affinities, electron transfer integrals and static

isotropic polarizabilities.46,75,84,89,114,205–207 While considerable success has also been shown

in using ML to predict complex properties that cannot be seen as arising from an individual

atomic configuration (e.g. the free-energy of a state, the toxicity or pharmaceutical activity of

a molecule, etc.), here we will focus entirely on the well-defined task of building a surrogate

quantum model, which can sidestep the solution of the Schrödinger equation and predict the

properties of a specific atomic configuration.

As mentioned in Chapter 2, we focus on using representations of the atomic structure to adapt

any given ML model to these symmetries. Even though the regression techniques discussed

in this chapter are compatible with most representations, all of the following models are

based on the SOAP power spectrum representation (see Eq. (2.40)) and are trained to predict

scalar properties. In Section 4.1, we start by discussing the supervised learning algorithms

that are used to model lattice energy, chemical shieldings, and transfer integral in molecular

crystals (see Sections 4.2.1 and 4.2.2). We then investigate how to improve these models
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by optimizing the representation on several benchmark datasets in Section 4.3. Finally, in

Section 4.4, we present and benchmark a scheme to obtain an inexpensive and reliable

estimate of the uncertainty associated with the predictions of a machine-learning model of

atomic and molecular properties.

4.1 Supervised Learning for atomistic modelling†

A scalar property y({ri ,αi }) of a system A of N atoms of species αi , located at positions ri , can

be expressed formally as a function of a vector of features |A〉 that represents the structure,

y = F ( |A〉). (4.1)

The problem of modelling F ( |A〉) can therefore be decomposed into the problem of providing

a concrete formulation of the feature vector (that we have discussed in detail in Chapter 2)

and that of determining the functional form of the approximating model F . Irrespective

of the regression technique used, most of the transferable property models that have been

introduced in recent years decompose a property associated to a set of atoms A into atom-

centered contributions, i.e.

F ( |A〉) = ∑
i∈A

f ( |Ai 〉), (4.2)

where f is a trained ML model and Ai indicates the atomic environment centered on atom i of

structure A. For the simplicity of the notation, we will use |A〉 and A interchangeably to refer to

the representation of structure A. This choice can be motivated as a consequence of imposing

the invariance of the property on the absolute position of the system (see Section 2.1.4), and –

together with the limitation of the range of each environment to a region centered on the i -th

atom – yields models of great transferability, since it allows breaking down the properties of

large, complex configurations into a sum of contributions that only depends on the position

of the neighboring atoms. In the cases in which this ansatz is not justified (e.g. for properties

such as ligand binding affinity, or in the presence of significant long-range interactions) other

strategies for combining local environments predictions like the REMatch kernel should be

considered.114

Linear models based on permutation invariant polynomials (PIPs) have been very effec-

tive at reproducing accurate chemical reactions between small molecules49,50,209 and to

build efficient MLIPs with the many-body tensor (MTP) framework54 that extends them

to more complex systems.210,211 Similarly linear models based on the n-body correlation

function100,106,212–214 have shown great promise. Fully non-linear models based on artificial

neural networks (ANN) have however been the most popular this far. ANNs have been con-

structed based on the the expansion of the radial (and angular) distribution function on a basis

†This section has been adapted from section 3 of the journal article [208] whose authors are Félix Musil and
Michele Ceriotti. The author of this thesis wrote this review article under the supervision of Prof. Michele Ceriotti.
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such as the Behler-Parrinello symmetry functions,29,105,215–220 Zernike polynomials,221Chebychev

polynomials,118 Gaussians,205,222–224 and proved very successful at investigating the properties

of complex systems.207,225–229 Another class of models that have been both very popular and

successful is based on Gaussian process regression (GPR),88 that is formally equivalent to

kernel ridge regression (KRR) and can be seen as a middle-ground solution that introduces

non-linearity in the form of a kernel function k(A,B) built on pairs of feature vectors, but effec-

tively translates into a linear regression problem that uses (some of) the training set structures

as the basis on which the structure-property relation is constructed. GPR has been used to

predict the stability of molecules and solids30,32,33,45,75,83,84,94,114,206,230 and build MLIPs for

elemental solids,127,231–233 nano clusters,234 isolated molecules235 and molecular liquids236 as

well as for the direct prediction of other quantum mechanical properties.46,84,89,128,237–239

4.1.1 GPR model

In the most straightforward form, a GPR model built on a kernel function k can be written

based on a set T of N training structures, and the associated properties y . Assuming a

Gaussian likelihood, and an additive, atom-centered property model, the prediction for a

structure A becomes

F (A) = ∑
T∈T

xT K (A,T ), (4.3)

where xT is the weight associated with T , K (A,T ) =∑
i∈A

∑
j∈T k(Ai ,T j ) and the kernel func-

tion k(·, ·) quantifies the similarity between the local environments of T and A. The key

ingredient of this model is the kernel function that - subject to a few conditions such as

positive definiteness - defines an inner product between the inputs k(Ai ,T j ).

GPR is often preferred over the more sophisticated non-linear models because of its ease of

use: it has a single interpretable hyperparameter λ, and the solution for the weights x has the

closed form

x = (KT T +λ2I )−1 y , (4.4)

where KT T is the kernel matrix between the training inputs, I is the identity matrix and y

are the property associated with the training set T ; λ corresponds to an expected Gaussian

noise in the references y so it can account for small discrepancies in the convergence of the

electronic structure method that are often found across a training set, and for errors caused

by the local property ansatz. For simplicity we have used a single λ for the whole training

sets, but this parameter might also take different values for each training sample as it is done

in the GAP model.30 In the language of kernel ridge regression, Eq. (4.4) can be obtained by

minimizing the loss

L(x) = ∑
T∈T

|F (T )−YT |2 +λ2x2
T . (4.5)
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It should be mentioned that GPR provides a simple approach to compute derivatives of the

target properties with respect to atomic positions, e.g. the force consistent with the model,

in which case F models the energy of a configuration. Derivatives can also be incorporated

in the learning procedure,88,94,235,239–241 by including the discrepancy between reference and

predicted values in the loss Eq. (4.5). Finally, the probabilistic nature of GPR also allows one to

estimate the uncertainty associated with the prediction

σ2
Y (A) =λ2 +K A A −K AT (KT T +λ2I )−1KT A . (4.6)

4.1.2 Approximate GPR model

The drawback for such simplicity is the computational cost associated with the training

phase - which scales cubically with the training set size - and the need to use the full train-

ing set as a basis to perform predictions. To address this issue, many approximations of

the exact kernel matrix have been proposed,242,243 among which the projected process (PP)

approximation242,244 has been shown to be quite practical to include force references240,241

and effective from the point of view of the cost and accuracy of predictions.233,245 The PP

method introduces a set S of M sparse points with M < N to approximate the GP prior which

practically reduces the cost of training to the inversion of a M ×M matrix, and ensures that

predictions only require computing kernels between the new configurations and the M sparse

points:

F PP(A) = K T
SAK̃ −1KST y ,

σPP
Y (A)2 =λ2 +K A A −K T

SAK −1
SSKSA +K T

SAK̃ −1KSA ,
(4.7)

where K̃ = KSS +λ−2K T
T SKT S , KSS indicates the kernel matrix between pseudo inputs, and

KT S the matrix between training points and pseudo inputs. For simplicity, the pseudo inputs

(or active points) can be chosen directly from the training set and they represent a new basis

in which the regression is performed. To maximize the cost reduction and the accuracy of the

model, one needs to sample the active set carefully. Selecting randomly the active inputs is far

from optimal so several approaches have been proposed244,246–248 among which Farthest Point

Sampling (FPS),123 a greedy method that maximizes diversity, or a CUR decomposition116,240

of the feature matrix associated with the training set, which minimizes the effect of the PP on

the kernel matrix, have allowed significant reductions of the computational cost with minimal

degradation of the accuracy.233,245

4.1.3 Model ranking and optimization

ML algorithms include recipes to train their parameters, e.g. Eq. (4.4), but they do not specify

how to determine hyperparameters such as the regularization λ for GPR, the number of

layers in an ANN, and the cutoff radius rcut in the power spectrum representation, which can

influence heavily the quality of the model. In the Bayesian context these hyperparameters can
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be interpreted as priors that should be inferred from our knowledge of the physical system,240

or thought of as parameters that need to be optimized. In principle, the best parameters

should allow for the lowest possible prediction error on all possible inputs. Given that one

can only work on a finite-sized set of references, the problem becomes to find the parameters

that best reproduce the available references and at the same time generalize well to unknown

inputs. The performance of a model is measured by comparing the predicted values and

the reference values with metrics such as the mean absolute error (MAE), the root mean

square error (RMSE), the supremum error (SUP), the coefficient of determination (R2) or the

Spearman’s rank-order correlation (COR). An effective technique to avoid overfitting these

parameters, i.e. specialize the model for the training set which leads to poor generalization

performances, is the so-called k-fold cross-validation where the performances are evaluated

on several subsets of the training set (see Hansen et al. [230] and Refaeilzadeh, Tang, and Liu

[249] for more details). Cross validated scores are more likely to match the generalization error

which is a good basis to rank models and determine the optimal set of hyperparameters.250

Learning curves are another standard diagnostic tool to characterize the performance of ML

models. From statistical theory, the error of a given model decreases as a power-law with the

size of the training set.77 Figure 4.12 shows, on a logarithmic scale, three learning curves for

models trained on datasets of molecular crystal polymorphs to reproduce their lattice energies.

The GPR model performances vary with the considered training set because the learning rates

(slopes of the curves) and off-sets are different. These curves are very useful because they help

to differentiate between models that have a small offset and learning rates with models that

have a larger off-set but also steeper slopes (see Fig. 4.16 for an example). Indeed, building

a ‘good’ model with as few references as possible might be favored over a model that has a

better learning power but poorer performances with few samples.

Even though learning curves and cross-validation procedures can benchmark quantitatively

the ability of a model to perform well in production, demonstrating the performance of a

model on practical test cases is typically more compelling.

4.2 Predictive models for molecular solids

Molecular solids are characterized by the combinatorial complexity and diversity of organic

chemistry, the subtle dependence on conformations, and the long and short-range effects

of crystal packing, which leads to great chemical diversity. They frequently crystallize in

different polymorphs with substantially different physical properties.190,191 To help guide

the synthesis of candidate materials, atomic-scale modelling can be used to enumerate the

stable polymorphs and to predict their properties. This is a critical issue, especially for the

pharmaceutical industry, where properties of molecules, such as dissolution rate, must be

strictly controlled because they can be significantly affected by the presence of different

polymorphs.13 Polymorphism also affects the opto–electronic performance of organic semi-

conductors, which are used in flexible electronic devices. To contribute to overcoming these

challenges, we show that GPR with SOAP features is able to model the stability, the transfer
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integral (see Section 4.2.2), and chemical shifts (see Section 4.2.1) of molecular crystals.

4.2.1 Chemical shifts in molecular solids by machine learning‡

Solid-state nuclear magnetic resonance (NMR) spectroscopy is among the most powerful

methods for determining the atomic-level structure and dynamics of powdered and amor-

phous solids. A revolution in solid-state NMR has occurred with the introduction of accurate

methods to calculate chemical shifts,251–253 in particular using plane wave DFT methods

developed for periodic systems based on the PAW/GIPAW approach.254–256 This has enabled

very rapid development of chemical shift based NMR crystallography, which is now widely

used to validate structures of molecular solids and identify known polymorphs,257–275 or more

recently in combination with crystal structure prediction (CSP) protocols, to determine de

novo crystal structures from powders.276–281 The power of the method arises from the fact

that plane wave DFT with the GIPAW method is accurate enough to reproduce the exquisite

sensitivity of chemical shifts to changes in local atomic environments. However, this approach

also has severe limitations. The cubic scaling of the computational cost with system size

prevents the application to larger and more complex crystals, or non-equilibrium structures.

If one wanted to use more accurate ab initio calculations, the expense is prohibitive.

Data-driven prediction of chemical shifts for the specific case of proteins in solution using

methods based on large experimental databases, using traditional282–289 or machine learn-

ing approaches,80,290,291 have met with considerable success in predicting shifts based on

local sequence and structural motifs, and are widely used today. While there are some exam-

ples of machine learned experimental and ab initio chemical shifts of liquid and gas phase

molecules,79,292–295 to date there is only one example of machine learning being applied to

calculations of chemical shifts in solids, which deals with the specific case of silicas.296

In the following we use GPR with the SOAP representation (see Sections 2.2.4 and 4.1.1) to

predict chemical shifts in molecular solids. The protocol is schematically illustrated in Fig. 4.2.

In the absence of a database of experimental shifts, and given that experiments alone do not

provide a 1:1 mapping between chemical shifts and a single atomic configuration, we train the

model on DFT calculated chemical shifts for structures taken from the Cambridge Structural

Database (CSD),90 chosen to be as diverse as possible, and then show that the method can

predict chemical shifts in a test set with a R2 coefficients between the chemical shifts calculated

with DFT and with ML of 0.97 for 1H, 0.99 for 13C, 0.99 for 15N, and 0.99 for 17O, corresponding

to root-mean-square-errors (RMSEs) of 0.49 ppm for 1H, 4.3 ppm for 13C, 13.3 ppm for 15N,

and 17.7 ppm for 17O. Predicting the chemical shifts for a polymorph of cocaine, with 86 atoms

in the unit-cell, using the ML method takes less than a minute of CPU time, thus reducing the

computational time by a factor of between 5 to 10 thousand, without any significant loss in

accuracy as compared to DFT. Most significantly, even though no experimental shifts were

‡This section has been adapted from the journal article [89] whose authors are Federico M. Paruzzo, Albert
Hofstetter, Félix Musil, Sandip De, Michele Ceriotti, and Lyndon Emsley. The author of this thesis analyzed the
data, built and benchmarked the predictive ML models and wrote the ML related sections of the article.
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used in training, we show that the model has sufficient accuracy to be used in a chemical shift

driven NMR crystallography protocol to correctly determine, based on the match between

experimentally-measured and ML-predicted shifts, the correct structure of cocaine, and the

drug 4-[4-(2-adamantylcarbamoyl)-5-tert-butylpyrazol-1-yl]benzoic acid (AZD8329). We also

show that it is possible to calculate the NMR spectrum of very large molecular crystals. For

this we calculate the chemical shifts of six structures from the CSD with between 768 and 1,584

atoms in the unit-cells.

Methods and Computational Details

Crystal Structure Datasets We describe here how the datasets used to build the ML models

which are outlined in Fig. 4.2 have been built and the highlight the rational behind their

construction. In the absence of an experimental database of shifts the model is developed by

using a reference training set of structures for which chemical shifts are calculated with GIPAW

DFT. Moreover, to obtain a model which is robust and general, the training set should be as

large, as reliable, and as diverse as possible. All the crystal structures of CSD-61k and CSD-500

were obtained from the CSD.90 A total of 88648 structures was downloaded from the CSD, using

two different selection criteria: the maximum number and the type of atoms contained in the

unit-cell. We selected only structures with a maximum of 200 atoms, containing either (i) only

H and C or (ii) H, C and one hetero-atom between N and O or both. From this set we extracted

a subset of 61,012 (CSD-61k) structures by removing structures with missing protons, and

structures where the distance of at least one pair of atoms was smaller than the sum of their

covalent radii minus 0.3 Å. In addition, structures containing partial occupancy were resolved

by keeping only the first of the atoms with partial occupancy. If we were not able to resolve

the disorder, the entire structure was not included. The disorder was assumed to be removed,

if the number of atoms, for each atom type, was an integer multiple of the number of atoms

given in the chemical formula. Note, that as we sorted through more that 60000 structures,

the whole procedure was automatized and we didn’t manually select the most stable structure

for a given disorder. However, here we are not looking for ground state structures but instead

only for physically reasonable structures to expand our data-set. Given that performing a

GIPAW calculation for all of these structures would be prohibitively demanding, we then select

a random subset of 500 structures (CSD-500) that are representative of the chemical diversity

in the CSD, and we use it to test the accuracy of our model. For cross-validation and training,

instead, we select 2000 structures (corresponding to about 185000 atomic environments) out

of the CSD-61k using the FPS algorithm,123 namely CSD-2k. This step ensures near-uniform

sampling of the conformational space, improving the quality of the model when using a

relatively small number of reference calculations.

DFT Calculations All the DFT calculations were carried out using the DFT program Quan-

tum ESPRESSO.202,297 For all structures in the CSD-2k and CSD-500 databases we first car-

ried out geometry optimization using plane wave DFT. We used ultrasoft pseudopotentials
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with PAW256 reconstruction, H.pbe-kjpaw_psl.0.1.UPF, C.pbe-n-kjpaw_psl.0.1.UPF, N.pbe-n-

kjpaw_psl.0.1.UPF and O.pbe-n-kjpaw_psl.0.1.UPF from the USSP pseudopotential database.298

The optimizations were done with the generalized-gradient-approximation (GGA) density

functional PBE,163 using a wave-function energy cutoff of 60 Ry, a charge density energy cutoff

of 240 Ry, and without k-points. The Grimme van der Waals dispersion correction299 was

included in order to account for van der Waals interactions. The geometry optimization was

done relaxing all atomic positions while keeping the lattice parameters fixed. A single point en-

ergy (scf) was then computed for the relaxed geometry, using higher wave-function and charge

density energy cut-offs which were set to 100 Ry and 400 Ry respectively. For this calculation

we also used a Monkhorst-Pack grid of k-points300 corresponding to a maximum spacing of

0.06 Å−1 in the reciprocal space. The k-points and energy cutoff values were optimized to

ensure convergence of the electron density. Finally, we calculated the chemical shielding σref

using the GIPAW method, with the same parameters as used in the scf calculation. All the

relaxed geometries, together with the GIPAW DFT calculated chemical shifts, are available

from the SI of Ref.89. Note that using a convergence threshold of in the scf calculation of 10−8

Ry leads to a residual random error on the macroscopic contribution to the shifts of the order

of 0.1 ppm. Fully converged results can be achieved with a threshold of 10−12 −10−14 Ry.

Detection of Unusual Environments The quality of the training set is essential to ensure

the optimal performance of a machine learning algorithm. However, the individual curation

of the 2000 molecular crystals of the CSD-2k dataset would be very time consuming and cum-

bersome. Note, that the 2000 molecular crystals correspond to around 35000 symmetrically

non-equivalent atomic environments for 1H alone and the following detection procedure is

applied directly to the individual atomic environments instead of the whole molecular crystals.

We automate this detection procedure by assessing the ‘instability’ of the prediction of the

shielding of a given local environment using the difference between the predictions of several

GPR models and the reference DFT-shielding. We define this indicator as:

ε(Ai ) = 1

M

M∑
m=1

(ym(Ai )− y(Ai )), (4.8)

where each of the M models is made using a 2-fold split of the shuffled training set that does

not include the structure A. In total we generate M = 40 models, where each is generated

using a different random shuffling of the data. Environments with a large value of |ε(Ai )|
are not well-described by the rest of the training set within the SOAP-GPR framework. Note,

that the error would cancel out in the case of random noise within the prediction, while a

large value of |ε(Ai )| corresponds to a systematic error in the predicted chemical shielding,

that could be associated to the limitations listed below. We define local environments to

be unusual when |ε(Ai )| is larger than three times the standard deviation of |ε(Ai )| over the

whole training set, and we then do not use them for training. We perform this elimination

procedure on the CSD-2k dataset using a single kernel for each element (rcut = 4.5Å for 1H,

4Å for 13C, 4Å for 15N and 3Å for 17O). The hyperparameters of the single kernels used in the
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elimination procedure were determined using a grid search and 3-fold cross validation on the

uncleaned CSD-2k training set. The 1H environments excluded with this approach are shown

in Fig. 4.1. It is interesting to see that in several cases we can trace the unusual behavior of the

environment to subtle errors in the DFT calculations, or to physical phenomena that are ill

described within our DFT model (metallic systems, zwitterions,. . . ). However, note that we

are not systematically removing such structures and that the training set still contains many

structures with the listed features.

Most of the environments detected as ‘unusual’ are part of zwitterionic structures or charged

structures such as VIWYEH, ZACSOO or EKUJIF (these six letters correspond to the molecular

crystal identifier of the CSD). Others are metallic structures (ELU MO–EHOMO = 0), such as

HAZQUV, QUICNA02, DMEBQU01 or AYUKIP, or have a partially empty unit cell (QAHVUQ).

An intrinsic limit of this procedure is the fact that it might detect structures with uncommon

functional groups as ‘anomalies’ (e.g. TIMCHX, which is an aziridine – a three membered

heterocycle with one amine group, or FIGMAJ which has a cubane group), due to the fact that

these structures are not well represented by the used training set. However, with increasing

training size, we expect these structures to be better represented and they will not be detected

as anomalies anymore.

Figure 4.1 – 1H chemical shifts of the 76214 environments in the CSD-2k set. The
environments excluded using the unusual structures detection procedure described in Eq. (4.8)
are shown in red.

ML models SOAP-based structural kernels contain several adjustable hyper-parameters,

which we have not systematically explored. Instead we chose reasonable values of the param-

eters without extensive fine-tuning, based on previous experience114 to select a small subset

of parameters (see the SI of Ref.89) from which the optimal parameter sets were determined by

cross-validation on the CSD-2k training set. We also combine kernels computed for different
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cutoff radii to capture the contributions to shifts from different length scales,114 as is described

in detail above. The parameters of the best single and multi-kernel models are summarized in

Tables 4.1 and 4.2. The calculations of the local environment, the similarity kernel and the

weighted correlations were done using the glosim2 package.301

Atom rcut σ lmax nmax λ ζ

1H 2 0.3 9 9 0.1 2
3 0.3 9 9 0.1 2
4 0.4 9 9 0.1 2
5 0.4 9 9 0.1 2
6 0.5 9 12 0.1 2
7 0.5 9 12 0.1 2

13C 2 0.3 9 9 0.01 2
3 0.3 9 9 3.0 2
4 0.4 9 9 5.0 2
5 0.4 9 9 3.0 2
6 0.5 9 12 1.0 2
7 0.5 9 12 1.0 1

15N 2 0.3 9 9 0.5 2
3 0.3 9 9 1.0 2
4 0.4 9 9 0.1 2
5 0.4 9 9 0.1 2
6 0.5 9 12 0.1 2
7 0.5 9 12 0.05 2

17O 2 0.3 9 9 0.5 2
3 0.3 9 9 5.0 2
4 0.4 9 9 5.0 2
5 0.4 9 9 5.0 2
6 0.5 9 12 1.0 2
7 0.5 9 12 7.0 2

Table 4.1 – Kernel and GPR parameters. The GPR parameters (λ and ζ) are the ones used
in single kernel predictions.

Crystal Structure Prediction Here we use a set of possible polymorphs predicted by CSP

for cocaine and the drug 4-[4-(2-adamantylcarbamoyl)-5-tert -butylpyrazol-1-yl]-benzoic

acid (also referred as AZD8329). General details on the CSP protocol can be found in Ref.302.

In chemical shift based NMR crystallography, the CSP trial polymorphs are tested against

experimental parameters (1H chemical shifts) to determine the experimental crystal structure.

We used 30 possible polymorph structures of cocaine and 14 trial structures of AZD8329

generated with CSP. The 30 structures of cocaine were obtained from the Electronic Supporting

Information (ESI) of Ref.265, and correspond to the most stable polymorphs obtained with
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Atom
Multi-Scale Kernel Weights

λ ζ
rcut = 2Å rcut = 3Å rcut = 4Å rcut = 5Å rcut = 6Å rcut = 7Å

1H 256 128 32 8 8 1 0.1 2
13C 256 512 64 8 8 1 2.0 2
15N 256 128 32 8 8 1 0.1 2
17O 256 128 32 8 8 1 5.0 2

Table 4.2 – Kernel weights and GPR parameters used for multi-scale kernel prediction.

CSP. Crystal structures of AZD8329 were obtained from the ESI of Ref.276, and correspond to

the 14 most stable predicted polymorphs with the cis conformation of the amide bond. From

the same sources we obtained chemical shifts for each structure calculated with GIPAW254,255

using the DFT program CASTEP303 and the experimental chemical shifts. Labels for the

different polymorphs of each structure are based on their DFT calculated energy, with one

being the most stable trial polymorph of a given molecule.

Results

Training and validation using DFT calculated shifts of known crystal structures By defi-

nition machine learning models must be trained on the property that is to be predicted which

should ideally be the experimental chemical shifts. However, for molecular solids there are

currently only around 100 compounds with reliable crystal structures and for which assigned
1H or 13C shifts have been published, despite the rapidly increasing activity of NMR in crystal

structure determination. This is at least an order of magnitude too few structures to hope to

determine a reliable prediction model. In this light, we note that today GIPAW chemical shift

calculations can accurately reproduce experimental shifts.262,304 Thus we propose to develop

a machine learning model to predict chemical shifts by training the model on a database made

up of GIPAW calculated shifts from a large and diverse set of reference crystal structures. If

the model can then accurately predict GIPAW chemical shifts, we hypothesize that it should

also be in good agreement with experimental shifts. We also note in this context that even if

there was a database of experimental shifts, there would be a challenge to machine learning

related to the fact that the experiment reports on structures that include dynamics or distribu-

tions, making the connection between shifts and environments ambiguous. Learning using

GIPAW calculated shifts does not suffer from this problem. The approach we take to predicting

chemical shifts in molecular solids is illustrated in Fig. 4.2. We use the GPR framework88

described in Section 4.1 to predict the chemical shift of a new atomic configuration based on

a statistical model that identifies the correlations between structure and shift for a reference

set of training configurations, for which the chemical shifts have been determined by a GIPAW

DFT calculation.

Figure 4.2 shows the general workflow of our methods from the construction of the reference

dataset to the model validation and predictions. The training (CSD-2k) and test (CSD-500)
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structure set (CSD-61k)
61,000 molecular solids

(containing H,C,N and O)
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Trained Model
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Model Evaluation

predicted chemical shifts

DFT chemical shifts

vs

ShiftML chemical shifts
FPS selection

training set (CSD-2k)

2,000 structures 

(! 190,000 atomic environments) 

relaxed with DFT

calculated shifts

GIPAW DFT

structural features
local chemical environments (SOAP-kernel)

learning algorithm
Gaussian Progress Regression (GPR)

Model Generation

Shift Prediction (ShiftML)

random structure selection

Figure 4.2 – Scheme of the machine learning model used for the chemical shift predictions.

sets are described above in Section 4.2.1. Furthermore, to avoid including spurious environ-

ments in the model, e.g. environments which might not be well described by DFT, we also

automatically detect and discard from the training set atomic environments with values of

the DFT calculated shifts that are anomalous based on a cross validation procedure described

in Section 4.2.1. Note that using this unbiased statistical analysis we detected only a small

fraction of environments as outliers (e.g. 211 out of 76214 for 1H, or 0.3%).

We observe that the performance of the model degrades noticeably if one does not use this

procedure. This pruning as well as the parameter optimization procedure, described below,

were done exclusively using cross validation on the CSD-2k set (notably the test sets were not

subject to any curation). In order to reduce the computational cost of the training and testing

procedures we then finally remove from the training set all the symmetrically equivalent

environments. In case of 1H, this reduced the size of the training set from 70000 to about

35000 different atomic environments. The calculated chemical shieldings σ are converted to

the corresponding chemical shifts δ through the relationship δ=σref −σ. Here, we used a σref

of 30.8 ppm (for 1H) and 169.5 ppm (for 13C), found through linear regression between the

calculated and experimental chemical shifts for cocaine.

Figure 4.3 shows the chemical shift error between the DFT calculations and the ML predictions

for the CSD-500 set, which is representative of the expected accuracy for the entire CSD-61k.

The figure shows the overall prediction accuracy for 1H chemical shifts as RMSE in ppm

between the shifts calculated with DFT and with the protocol described above, which we refer

to in the following as ShiftML, as a function of the cutoff radius (rcut) and as a function of

the number of training structures included from CSD-2k. The effect of the different cutoff

radii is clearly visible. For example, for rcut = 2Å the prediction error for a small training

set (<10 structures or <100 atomic environments) can be smaller than for the larger radii,

but does not improve significantly with increasing size of the training set. On the contrary,

for rcut = 7Å we observe a relatively large prediction error for a small training set, but even
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Figure 4.3 – 1H chemical shift prediction error of the trained model for the CSD-500 set.
The RMSE prediction error between chemical shifts calculated with ShiftML and GIPAW
DFT is shown for different local environment cutoff radii, and for the multi-kernel (labelled
as msk), as a function of the training set size.

with 2,000 structures (35000 environments), the prediction error is still decreasing. A similar

behavior is observed in Fig. 4.4 for the prediction errors of the 13C, 15N and 17O chemical

shifts. The observed differences in the behavior of the prediction error with respect to rcut

clearly indicates the influence of the different extents of the local environment on the chemical

shift. Short range interactions are sufficient to explain the rough order of magnitude of the

shift, but long range interactions are required to learn about the higher order influences of

next-nearest neighbors on shifts. However, for long range interactions, a much larger number

of environments is needed in order to determine the correlation between environment and

shift. We exploit these differences to generate a combined SOAP kernel consisting of a linear

combination of the single local environment kernels,114 with weightings of 256 (rcut = 2Å),

128 (rcut = 3Å), 32(rcut = 4Å), 8 (rcut = 5Å and rcut = 6Å) and 1 (rcut = 7Å). This weighting was

determined by rough optimization around values inspired by previous experience,114 and by

cross-validation on the CSD-2k training set (as described in Section 4.2.1). It is clear from

Fig. 4.4 that learning with the combined kernel leads consistently to lower prediction errors

than any of the single kernels, although the improvement in performance varies between

nuclei. Figure 4.6a-d shows correlation plots between 1H, 13C, 15N and 17O chemical shifts

calculated by DFT and by ShiftML for the CSD-500 set trained on the whole CSD-2k combined

kernel. Using the combined kernel, we reach an error between ShiftML and DFT calculated

chemical shifts of 0.49 ppm for 1H (4.3 ppm for 13C, 13.3 ppm for 15N and 17.7 ppm for
17O). This is very comparable with reported DFT chemical shift accuracy for 1H of 0.33-0.43

ppm,13,57 while requiring a fraction of the computational time and cost: less than 1 CPU

minute compared to 62-150 CPU hours for DFT chemical shift calculation on structures

containing 86 atoms (around 350 valence electrons) as shown in Fig. 4.5. For the other nuclei,
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Figure 4.4 – RMSE learning curves showing the error between chemical shifts calculated
with GIPAW DFT and ShiftML of the CSD-2k dataset for different local environment cutoff
radii, and for the multi-kernel (labelled as msk), as a function of the training set size. The
curves are for 1H (a), 13C (b), 15N (c) and 17O (d) chemical shieldings.
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Figure 4.5 – CPU time for NMR chemical shift calculations using the GIPAW method. (a)
The CPU time is shown as function of the DFT accuracy, determined by the plane-wave
cutoff energy Ecuto f f and the number of k-points in each dimension for polymorph 1 of
cocaine. The charge density energy cut-offs were set to Eρ = 4Ecuto f f . (b) The CPU time is
shown as function of increasing system size in CSD-2k. The green squares and blue dots show
individual geometry optimization and GIPAW chemical shift DFT calculations, respectively.
The red line shows the best fit between the number of valence electrons and the required
CPU time as tC PU = aN 2

e +bN 3
e , with a = 0.0162 and b = 5.91 ·10−6.

the ML accuracy is slightly lower than reported values (1.9-2.2 ppm for 13C, 5.4 ppm for
15N and 7.2 ppm for 17O),262,305 which is not surprising as there are (currently) significantly

less training environments for the heteronuclei than for 1H. The R2 coefficients between the

chemical shifts calculated with DFT and with ShiftML are 0.97 for 1H, 0.99 for 13C, 0.99 for
15N, and 0.99 for 17O. Note that the CSD-500 set used for testing is selected randomly from

CSD-61k and not curated. Indeed, we find that many of the atomic environments in the

CSD-500 set with a relatively high prediction RMSE possess either unusual cavities inside their

crystal structure, possibly indicating an organic cage surrounding non-crystalline solvent or

other atoms, or exhibit strongly delocalised π-bonding networks. While there is no theoretical

reason preventing the machine learning model from correctly describing such environments,

they are rare and not well represented within the training set. CSD-500 thus constitutes a fairly

demanding test set.

Predicting shifts for polymorphs Having evaluated the power of the trained model to pre-

dict the diverse CSD-500 set, we now look at the capacity to predict potentially subtler dif-

ferences by looking at a set of polymorphs of a given structure. Figure 4.8a and b show the

correlation between the 1H shifts calculated by GIPAW DFT and by ShiftML for 30 polymorphs

of cocaine and 14 polymorphs of AZD8329, all of which were previously generated with a

CSP procedure.265,276 The figure clearly shows that ShiftML is able to accurately predict the

differences in 1H chemical shift for different polymorphs.

We find a chemical shift prediction error (RMSE) between GIPAW DFT and ShiftML for 1H for
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Figure 4.6 – Comparison of predictions from ShiftML and GIPAW DFT. Histograms and
scatter-plots showing the correlation between 1H (a), 13C (b), 15N (c) and 17O (d) chemical
shifts (shieldings) calculated with GIPAW and ShiftML. The black lines indicate a perfect
correlation.
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the cocaine polymorphs of 0.37 ppm and for AZD8329 of 0.46 ppm. Note that these values

are slightly less than for the CSD-500 set, which might be expected when looking at these two

fairly typical organic structures, and suggesting that the randomly selected CSD-500 indeed

provides a good overall benchmark. Note that for these cases the DFT structure optimization

and GIPAW chemical shift calculation were done with a different DFT program (CASTEP),306

which suggests that ShiftML is robust with respect to small deviations from the fully optimized

structures. For the heteronuclei we obtain an RMSE between GIPAW DFT and ShiftML for

cocaine of 3.8 ppm for 13C, 12.1 ppm for 15N and 15.7 ppm for 17O. For AZD8329 the 15N and
17O RMSEs are proportionally larger (17.7 and 54.7 ppm), and we attribute this to the fact that

the molecule contains a rather unusual C-O· · ·H-N / C-O· · ·H-O H-bonded dimer structure,

for which the learning is thus even sparser than for the heteronuclei in general. To illustrate

the unusual nature of this motif, we note that the calculated 17O shifts using DFT also change

by up to 50 ppm for structures relaxed either by the CASTEP protocol used in Ref.279, or the

Quantum Espresso protocol used here (the RMSE between ML and DFT for the Quantum

Espresso relaxed structures is reduced to 10.9 and 11.5 ppm for 15N and 17O). The RMSE of 4.0

ppm for 13C for AZD8329 is in line with the other systems.

Figure 4.7 – Chemical structures of the compounds used for experimental comparison taken
from Ref.305. In order, cocaine (a),265 3,5-dimethylimidazole and 4,5-dimethylimidazole
(b),307 AZD8329 (c),276 naproxen (d),308 theophylline (e)265 and uracil (f),309 and the
labelling scheme used here.
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Predicting experimental shifts and structure determination Further, the significance of

the method is illustrated by comparison to experimentally measured shifts. This comparison is

particularly important since the training protocol did not involve any experimentally measured

chemical shifts. We find that the predicted shifts are accurate enough to allow crystal structure

determination for both cocaine and AZD8329 from powder samples in a chemical shift driven

NMR crystallography approach.
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Figure 4.8 – Comparison of predictions from ShiftML and GIPAW DFT for polymorphs of
cocaine and AZD8329. (a) Histogram showing the distribution of the differences between 1H
chemical shifts calculated with GIPAW and with ShiftML for the polymorphs of cocaine (blue),
and the polymorphs of AZD8329 (orange). (b) Scatterplot showing the correlation between
1H chemical shifts calculated with GIPAW and ShiftML for cocaine (blue) and AZD8329
(orange). The black line indicates a perfect correlation.

Figure 4.9a and b show the correlation between experimentally measured 1H chemical shifts

and the 1H chemical shifts calculated by ShiftML for crystal structures and chemical shifts of

the six molecules shown in Fig. 4.7. The comparison between experimental and calculated 1H

chemical shifts for all crystal structures (for a total of 68 shifts) gives an error (RMSE) of 0.39

ppm and a R2 coefficient of 0.99. This compares very favorably to the equivalent agreement

found between GIPAW DFT and experiment which for this set of structures is an RMSE of 0.38

ppm. Figure 4.9c and d show in blue the RMSE between DFT calculated and experimental 1H

chemical shifts for the 30 polymorphs predicted by CSP to have the lowest energy for cocaine

and the 14 cis polymorphs of AZD8329. For both molecules the only structure in agreement

with the GIPAW DFT calculations, to below a 1H DFT chemical shift confidence interval of

0.49 ppm,262 is the correct crystal structure. In the same plots we overlay the result where the

experimental shifts are now compared to shifts predicted with ShiftML. Note that the RMSE

between experiment and the predicted chemical shifts follows the same trends as for the DFT

calculated shifts, and that here again the only structures below the confidence interval of 0.49

ppm are the two correct crystal structures. Note, that the cutoff of 0.49 ppm with respect

to experiment has been evaluated for GIPAW DFT chemical shifts262,304 and to rigorously
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Figure 4.9 – Comparison of ShiftML to experimentally measured shifts. (a) Histogram
showing the distribution of differences between experimentally measured 1H chemical shifts
and 1H chemical shifts calculated with ShiftML for six different crystal structures (see Fig. 4.7
for the structures and numerical values of the shifts). (b) Scatter plot showing the correlation
between these experimentally measured 1H chemical shifts and shifts calculated with ShiftML.
(c-d) Comparison between calculated and experimental 1H chemical shifts for the most stable
structures obtained with CSP for cocaine (c) and AZD8329 (d). For each candidate structure
an aggregate RMSE is shown between experimentally measured shifts and shifts calculated
using either GIPAW (blue) or ShiftML (red). The grey zones represent the confidence intervals
of the GIPAW DFT 1H chemical shift RMSD, as described in the text,262 and candidates (in
c and d) that have RMSEs within this range would be determined as correct crystal structures
using a chemical shift driven solid-state NMR crystallography protocol.
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repeat the CSP procedure for the ML method, the accuracy should be re-evaluated using more

extensive benchmarking of ShiftML to experiment, which will be the subject of further work.

Predicting shifts for large structures Finally, we note that the accuracy of the method does

not depend on the size of the structure, and that the prediction time is linear in the number

of atoms. For the structures we calculate here the prediction time actually appears nearly

constant, because it is dominated by the loading time of the reference SOAP vector (see

Fig. 4.10a). We have used this method to calculate the NMR spectra (shown in Fig. 4.10b-g)

for six structures from the CSD having among the largest numbers of atoms per unit cell

(containing only H,C,N,O), with between 768 and 1,584 atoms per unit cell. Figure 4.10a shows

the comparison between the GIPAW calculation time and the required ML prediction time.

We estimate that the whole calculation would require around 16 CPU years by GIPAW. ShiftML

requires less than 6 CPU minutes to calculate the shifts for all the compounds.

Figure 4.10 – Chemical shift calculation times and large structures. (a) DFT GIPAW
calculation time (blue) and ShiftML prediction time (turquoise) for different system sizes.
The GIPAW DFT calculation time for the six large structures (orange) is estimated from a
cubic dependence on the number of valence electrons in the structure (see Fig. 4.5). (b-g)
3D-shemes and 1H NMR spectra predicted with ShiftML, of the six large molecular crystals
with CSD Refcodes: (b) CAJVUH,310 Natoms = 828, (c) RUKTOI,311 Natoms = 768, (d)
EMEMUE,312 Natoms = 860, (e) GOKXOV,313 Natoms = 945, (f) HEJBUW,314 Natoms = 816,
(g) RAYFEF,315 Natoms = 1584.
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Discussion

We have presented a ML model based on local environments to predict chemical shifts of

molecular solids containing HCNO to within current DFT accuracy. The R2 coefficients

between the chemical shifts calculated with DFT and with ShiftML are 0.97 for 1H, 0.99 for
13C, 0.99 for 15N, and 0.99 for 17O. The approach allows the calculation of chemical shifts for

structures with 100 atoms in less than 1 minute, reducing the computational cost of chemical

shift predictions in solids by a factor of between 5 to 10 thousand compared to current DFT

chemical shift calculations, and thereby relieves a major bottleneck in the use of calculated

chemical shifts for structure determination in solids. Far from being just a benchmark of a

machine-learning scheme, the method is accurate enough to be used to determine structures

by comparison to experimental shifts in chemical shift based NMR crystallography approaches

to structure determination, as shown here for cocaine and AZD8329. The ML model only

scales linearly with the number of atoms and, for the prediction of individual structures, is

dominated by a constant I/O overhead. Here it allows the calculation of chemical shifts for

a set of six structures with between 768 and 1584 atoms in their unit cells in less than six

minutes (an acceleration of a factor 106 for the largest structure). The accuracy of the method

is likely to increase further with the size of the training set, and subsequently with the future

evolution of the accuracy of the method used to calculate the reference shifts used in training

(here DFT), or by using experimental shifts if a large enough set were available. To simplify

the dissemination of this model a web app has been developed and is publicly available at

http://shiftml.epfl.ch The model used here can easily be extended to organic solids including

halides or other nuclei, and to network materials such as oxides, and these will be the subject

of further work.

4.2.2 Property predictions for molecular crystals§

The systematic design of molecular materials is a great challenge because of the competition

of many weak interactions between their building blocks, i.e. constituent molecules. CSP

methods have been developed to enumerate hypothetical polymorphs. Each putative crys-

tal is ranked according to its likelihood to be observed experimentally and to its associated

properties. The delicate balance between non-covalent interactions316–318 and entropic and

quantum fluctuations319,320 call for a very precise description of the inter-molecular potential,

in order to determine the cohesive energies of different polymorphs with predictive accuracy.

The simplest stability indicator is the static lattice energy of the crystal which can be computed

with empirical FFs or more expansive ab initio methods for a small pool of candidates. More-

§This section has been adapted from the journal article [84] whose authors are Félix Musil, Sandip De, Jack
Yang, Joshua E. Campbell, Graeme Matthew Day and Michele Ceriotti. The author of this thesis analyzed the
data, built and benchmarked the supervised and unsupervised ML models and wrote the methods, results and
discussions sections of the article. Since this article combines both supervised and unsupervised ML models, it
has been split in Section 3.5 and here to follows the logic of this thesis. Please refer to Section 3.5 for a general
introduction to molecular materials and CSP, the details on the benchmark systems and the unsupervised learning
side of this article.
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over, the properties relevant to the design goals, e.g. electron/hole mobility for opto–electronic

applications, are often modeled by expansive calculations.

In the following, we build GPR models based on the SOAP-REMatch kernel as described in

Section 3.1 to reduce the cost associated with accurate lattice energy (see Section 4.2.2) and

transfer integral (see Section 4.2.2) calculations in three benchmark systems87 which are fully

described in Section 3.5.1. We also propose a methodology to inform a data-driven classifica-

tion of the patterns found in these datasets discussed in Section 3.5 through hyperparameters

optimization with respect to the energy.

Lattice energy

CSP protocol and computational details CSP were performed with Global Lattice Energy

Explorer (GLEE)197 for possible crystal packings of a given molecules in the 23 most commonly

adopted space groups for organic molecules in Z ′ = 1, and 12 common space groups for

molecules that crystallize in Z ′ = 2.321 This led to a total of 212,000 trial crystal structures,

which were subsequently energy minimized in DMACRYS198 using the W99 atom–atom in-

termolecular potentials199,322–324, and multipolar electrostatics described by the distributed

multipole model200. Duplicated crystal structures were removed using COMPACK325 to con-

solidate a final list of structures for subsequent analysis.
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Figure 4.11 – The correlation between the W99 and DFT relative lattice energy of pentacene,
5A and 5B crystals, for W99-optimized geometries.
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Single point energy calculations for the discussed set of molecular crystals have been carried

out within Density functional theory (DFT) with quantum espresso code202. Plane wave

basis set with wavefunction cutoff of 100Ry and charge density cutoff of 400Ry has been

used, together with projector augmented wave (PAW) type pseudo potentials (non-linear core

correction and scalar relativistic) and Perdew-Burke-Ernzerhof (PBE)163 exchange correlation

functional. To account for van der Waals interaction, Grimme’s van der Waals dispersion

correction201 has been used with a cutoff radius of 80 bohr. The energy has been converged

within an accuracy of 10−6 Hartree. The correlation between W99 and DFT energies are shown

in Fig. 4.11

Hyperparameters and structural interpretation The form of the SOAP-REMatch kernels

is general, and rather agnostic of the nature for the system. However, it contains many hy-

perparameters that can be tuned at will. The spread of the smooth Gaussians σ determines

how important are small displacements of the atoms; the entropy regularization γ determines

how much the combination of environments departs from a purely additive form.114 The

performance of the kernels are relatively insensitive to the value of most of these hyperparam-

eters. The accuracy of cross-validated predictions provides an estimate of the generalization

error of our models, i.e. the error for previously unseen data, which we used to optimize the

performance of GPR for different systems. We found that a Gaussian width of σ= 0.3Å and a

regularization γ= 2 provide the best performance for all the systems we considered.

The cutoff radius of the environment has the most significant influence on prediction perfor-

mance and on the outcomes of the ML analysis. It also lends itself to a physical interpretation,

since it determines the scale on which structural similarity is assessed. Although long-range

electrostatics contribute significantly to the total lattice energies of crystalline structures,

we found that a relatively short-range cutoff of rcut = 5Å is sufficient to obtain remarkably

accurate predictions of the reference lattice energies. This finding suggests that the most

important differences in electrostatic interactions between competing crystal structures of a

given molecule are those between nearest-neighbor molecules. It is important to note that the

lattice energies were calculated using a pairwise additive force field, so the lattice energies

lack contributions from polarization. Although we also observed excellent performance when

predicting DFT energies, that contain full electrostatic responses, the slight degradation of

the prediction accuracy suggests that a longer cutoff, or explicit treatment of the electrostatic

terms, might be beneficial when learning energies that contain long-range many-body effects.

Pentacene Using the SOAP-REMatch kernel with the hyper-parameters γ = 2, σ = 0.3Å,

rcut = 5Å, the force field relative lattice energies of the pentacene crystals can be predicted

with an accuracy of MAE = 0.29±0.03kJ/mol and R2 = 0.979 using 75% of the dataset (see

Table 4.3). The learning curve for pentacene (see Fig. 4.12) shows a polynomial convergence

of the error with respect to the training set size, indicating that the accuracy of the method

can be improved systematically.
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Figure 4.12 – Learning curves for the lattice energy predictions of pentacene, 5A and 5B
datasets on a logarithmic scale. All hyper-parameters of our ML model are fixed except
for the regularization parameter λ in the GPR model which is optimized on the fly at each
training. We use 4-fold cross validation on the randomly shuffled dataset and randomly
draw N times an increasing number of training samples from 75% of the dataset for each
fold. The test MAE and error bars are, respectively, average and standard deviation over
the folds. The left-hand panel corresponds to the prediction of W99 energies computed
for W99-optimized geometries, the right-hand panel correspond to the prediction of DFT
energies on such structures, and the bottom panel to the prediction of the difference between
DFT and a W99 baseline.

Dataset MAE [kJ/mol] RMSE [kJ/mol] R2

Pentacene(W99) 0.29 ± 0.03 0.49 ± 0.08 0.979
Pentacene(DFT) 0.48 ± 0.04 0.68 ± 0.04 0.984

Pentacene(∆) 0.51 ± 0.04 0.70 ± 0.06 0.96
5A(W99) 0.41 ± 0.02 0.59 ± 0.04 0.967
5A(DFT) 0.64 ± 0.03 0.91 ± 0.07 0.930

5A(∆) 0.59 ± 0.03 0.85 ± 0.06 0.85
5B(W99) 0.98 ± 0.03 1.31 ± 0.03 0.877
5B(DFT) 1.09 ± 0.03 1.44 ± 0.04 0.870

5B(∆) 0.74 ± 0.04 1.00 ± 0.05 0.83

Table 4.3 – Summary of the lattice energy prediction scores for pentacene, 5A and 5B
(respectively 564, 594 and 936 structures). Our best accuracies on these datasets are
estimated from average scores from a 4-fold cross validation (75% of the dataset is used for
training). ∆-learning refers to the learning of the difference between W99 and DFT energies.
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4.2. Predictive models for molecular solids

Errors in the absolute lattice energies calculated with the W99+DMA force field are, on average,

about 15 kJ/mol when compared to benchmark experimental values,326 which is 1.2 to 4 times

larger than the error associated with dispersion–corrected DFT. However, these errors are

largely systematic and so much of the error cancels in the evaluation of relative lattice energies.

Thus, W99+DMA has been shown to be reliable in ranking the relative lattice energies in CSP

studies on a large set of organic molecules327 and was validated for this study by reproducing

the known crystal structures of pentacene and an aza-substituted tetracene as global minima

on their CSP landscapes.87

In the present study, using only a small fraction (5%) of the pentacene dataset for training,

one can already very accurately reproduce the lattice energies calculated using the W99+DMA

force field, with a MAE below 1 kJ/mol in the machine learned lattice energy predictions. The

pentacene lattice energy landscape is dominated by the repulsion-dispersion contribution to

intermolecular interactions and the above findings suggest that the predictions from the SOAP-

REMatch kernel are robust in describing the relative thermodynamic stabilities of crystals

of such non–polar molecules. The small fraction of structures required for training suggests

that this approach could be used to reduce the cost of obtaining energy estimates at a higher

level of theory, such as dispersion-corrected DFT, by performing training on a small number

of high–level reference calculations. To verify this hypothesis we computed single-point

dispersion-corrected DFT energies for each of the structures, which were then learned using

the same kernel. As shown in Fig. 4.12, even though predictions are slightly less accurate, a ML

model that uses just 50 training points can predict the DFT relative stability of different phases

with a sub-kJ/mol error, opening the way to the use of more accurate energetics in large-scale

CSP studies.

The quality of energy predictions based on SOAP-REMatch kernels for the predicted poly-

morphs of pentacene is remarkable, and the automatic classification based on kernels provides

more fine-grained insights into the structural diversity in the lattice energy landscape com-

pared to the heuristic classifications. To verify how these observations generalize to different

classes of molecular crystals, we also considered the case of the two azapentacene isomers 5A

and 5B.

Azapentacene 5A The quality of the lattice energy predictions for the 5A dataset is com-

parable to the pentacene dataset (see Table 4.3 and Fig. 4.12), showing similar accuracy

estimations (MAE = 0.41±0.02kJ/mol and R2 = 0.967 for predicting W99 energies, and MAE =
0.64±0.03kJ/mol and R2 = 0.930 for DFT predictions) and trends in the learning curves. How-

ever, to reach 1 kJ/mol accuracy, we need at least twice as many training samples compared to

pentacene. This can be rationalized by the introduction of stronger intermolecular electro-

static interactions involving the polar nitrogen atoms, which leads to the formation of CH· · ·N
H-bonds and the formation of molecular sheets. The presence of significant electrostatics as

well as the dispersion interactions between arene rings results in a more complex lattice energy

surface than that of pentacene, where dispersion interactions dominated and electrostatic
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contributions were small. The greater structural complexity of the landscape is reflected in

the eigenvalue spectrum of the kernel matrices shown in Fig. 4.13, which decays more slowly

than in the case of pentacene.

Figure 4.13 – First 200 largest eigenvalues corresponding to the centered kernel matrices140

of pentacene, 5A and 5B datasets with cutoff radius of 5Å, gaussian width of 0.3Å and γ= 2.

Azapentacene 5B Our results on the learning of lattice energies of the 5B dataset are satisfac-

tory, but not as good as those observed for pentacene and 5A datasets (Table 4.3 and Fig. 4.12);

we reach an accuracy of about 2 kJ/mol with 100 training points and 1 kJ/mol accuracy with

75% of the dataset. Not only are the absolute errors larger, but also the slope of the learning

curve is smaller, showing that it is difficult to improve the accuracy by simply including more

structures in the training set.

The difficulty in learning can be traced to a higher inherent dimensionality of the dataset, as

evidenced by the slow decay of the kernel eigenvalue spectrum (see Fig. 4.13). The relatively

poor performance when learning lattice energies can then be understood in terms of the

presence of a large number of distinct structural motifs that require a larger training set size in

comparison to pentacene and 5A, which on the contrary are characterized by combinations

of relatively few easy-to-rationalize and easy-to-learn stacking and H-bond patterns. Similar

performance is observed when learning DFT energetics, with MAE and RMSE errors about 0.1

kJ/mol higher than learning the W99 lattice energies.

An alternative strategy for learning the DFT lattice energies is to use the W99 results as a

baseline and to apply ML to predict the difference between the baseline and DFT. This ap-

proach was applied to all three molecules (Table 4.3 and Fig. 4.12). For pentacene and 5A

and when using 75% of structures for training, the resulting errors are essentially the same as

when learning the DFT lattice energies directly. For smaller train set sizes and for 5B, instead,

this approach considerably improves the accuracy. This indicates that W99 baselining does

reduce the intrinsic variance of the learning targets: given that W99 energies are an inevitable
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4.2. Predictive models for molecular solids

byproduct of the W99-based structure search, it is a good idea to use them as a starting point

to compute more accurate lattice energies. It is however clear that the difference between

W99 and DFT is a function that is as difficult to learn than the DFT or W99 energy itself, so the

asymptotic accuracy is not improved much – contrary to what is observed e.g. when using

a ML model to predict exact-exchange corrections to DFT, where the use of a baseline can

improve the predictions by almost an order of magnitude.32,114

Mobility Prediction
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Figure 4.14 – Learning curves for the errors in predicting TI when selecting training dimers
using a random or the FPS strategy. MAE, RMSE and SUP errors are defined in the text.

8 25 50 80
Percentage of Training Dimers

0.01

0.001

Pr
ed

ic
tio

n 
M

AE
 fo

r t
he

 T
I [

eV
]

5B
5A
Pentacene

Figure 4.15 – Learning curves for the MAE in predicting TI when using the FPS selection
of the training set. The three systems are compared as a function of the fraction of the total
symmetry-independent dimer configurations.

Charge mobility is a key performance indicator for these set of molecular crystals considering

their possible application to organic electronics. Therefore, being able to predict the hole (for

pentacene) or electron (azapentacenes) mobility in putative crystal structures from CSP at a

reasonable computational cost could accelerate property-driven design of functional organic

semiconductors. However, contrary to the lattice energy for which bond-order expansions

and additive energy models have been very successful, the charge mobility is commonly

estimated through the computation of transfer integrals between pairs of molecules, each of

which requires a rather demanding electronic structure calculation. The simulation protocol
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requires the collection from the crystal structures, up to 15 kJ/mol above the predicted global

minimum for 5A, of all of the unique dimers within a specified distance cutoff, which are then

used to calculate the corresponding TI values. Then instead of directly predicting the charge-

carrier mobility of a given crystal structure, we thus decided to apply our ML framework to

predict the value of TIs within dimers, which is the most computationally demanding part of

the mobility calculation.

Computational details The charge mobility can be estimated using Einstein relationship:

µ= e

kB T
D, (4.9)

where e is the charge of electrons, kB is the Boltzmann constant, T is the temperature and was

set to 300 K. The electron diffusivity (D) is then evaluated as:

D = 1

2nM

M∑
n=1

Ni∑
j=1

r 2
i j ki j Pi j , (4.10)

in which M is the total number of symmetrically independent molecules in a crystal that can

be related to the Z ′ number for a crystal. For the i –th symmetrically independent molecule,

Ni number of nearest–neighboring molecules will be extracted, which gives rise to a total

of M Ni dimer pairs in the crystal structure. Symmetrically equivalent dimers based on an

RMSD< 0.1Å criteria was filtered out from explicit transfer integral calculations with DFT

to decrease the overall computational cost. For each dimer, ri j denotes its inter–centroid

distance, ki j is the corresponding charge hopping rate, derived from Marcus theory:

ki j =
t 2

i j

ħ
√

π

λkB T
exp

[
− λ

4kB T

]
, (4.11)

where ti j , the transfer integral, describes the intermolecular electronic coupling which de-

pends on the relative positions and orientations of the molecules in the crystal structure and

λ is the intramolecular reorganization energy, and was calculated here using the conventional

four–point models at B3LYP/6-311G** level of theory with GAUSSIAN09. Pi j is the probability

for charge to hop between molecule i and j and it is related to the transfer integral as:

Pi j =
ki j∑Ni

j=1 ki j

=
t 2

i j∑Ni

j=1 t 2
i j

. (4.12)

It should be clear from the above discussions that the key quantity that varies across crystal

structures is ti j , which is explicitly calculated with frozen–density embedding (FDE) DFT

scheme. The calculations were performed at PW91/DZ level of theory with the non–additive

kinetic energy modelled with PW91k functional. A threshold of S < 10−2, below which the

Penrose pseudo-inverse was applied in the final calculations of TI, was applied globally for

all dimers considered, in order to avoid numerical instabilities when the orbital overlap
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between two monomers, S, is less than 10−2. Hence our key effort here in accelerating mobility

calculations will be focusing on direct prediction of ti j ’s for all dimers extracted from predicted

crystal structures. Contrary to energies, the transfer integral is not an extensive observable

because of the FDE scheme. FDE was built on the basis that the total electron densities of

two interacting systems can be exactly partitioned into the sum of electron densities of two

interacting systems as ρ(r) = ρI (r)+ρI I (r). In a Kohn–Sham scheme, where the total energy of

the system is a functional of the total charge densities E [ρ(r)], the same partition scheme for

density does not apply for the total energy, in which a interacting non–additive component

must be included as

E [ρ(r)] = E I [ρI (r)]+E I I [ρI I (r)]+Ei nt [ρI (r),ρI I (r)]. (4.13)

In FDE, this is achieved by including a embedding potential vemb(r) in the Kohn–Sham

equation, which takes into account contributions from non–additive kinetic and exchange–

correlation energies. Furthermore, the embedding potential v I (I I )
emb (r) acting on subsystem

I (I I ) contains a Coulomb interaction between ρI (r) and ρI I (r), and this was solved itera-

tively via ‘freeze–and–thaw’ cycles by updating the electron densities of one subsystem while

keeping the other one frozen. For the evaluation of ti j , one needs to introduce an additional

electron/hole into the charge densities of the subsystems, thus Ei nt [ρI (r),ρI I (r)] in Eq. (4.13)

would also involve energetic contributions from polarized electron densities, which is also

non–pairwise additive.

Discussion of the ML model of the TI Given that the molecules are rigid, and that the value

of the TIs depends primarily on the relative intermolecular orientation, we use a simplified

version of the SOAP similarity that does not require the computation of several overlap kernels

for each dimer. We introduce a virtual atom situated at the center of mass of the dimers, which

is used as the center of a single SOAP environment used to define the similarity between two

dimers A and B . We set the environment cutoff to 10 Å, so that it encompasses the entirety of

the two molecules, giving a complete information on the geometry of the dimer. We found

that the accuracy of the resulting ML model obtained with this procedure is comparable to an

optimized SOAP-REMatch model while being much faster to compute.

Given the total pool of dimer configurations for each system, one needs to question what is the

most efficient strategy to obtain a given level of accuracy with the minimum computational

effort. We considered two different strategies to determine the training structures (for which

electronic structure calculations need to be performed) and the test structures (for which one

would want to just use ML predictions). As the simplest possible method we considered a

random selection of dimers as training references. As a second approach, we built a training

set that simultaneously maximizes structural diversity while explicitly computing the value of

the TI for unusual, outlier structures for which a ML prediction may fail. We do this by using

FPS algorithm122,123 which is detailed in Chapter 3.
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We then used the similarity kernel of the training set to learn the TI values and perform

predictions for the remaining dimers, within the GPR framework as described in Section 4.1.1,

using the hyper-parameters ζ= 3 and λ= 5×10−4 throughout. Fig. 4.14 shows the trend of the

MAE, RMSE and SUP in prediction when the training set was increased systematically from

10-80% of the full set, while predicting on the remaining dimers. All systems show similar

trends. The RMSE is consistently about a factor of 2 larger than the MAE, which indicates a

heavy-tailed distribution of errors (for a Gaussian distribution RMSE/MAE=
p
π/2 ≈ 1.2).

There is a very substantial difference in the training curves between the random and the FPS

selection of the training set. Similarly to what has been observed with isolated molecules,114 a

small training set size with random selection provides better MAE, since more training points

are concentrated in the densely-populated portions of the structural landscape. The SUP

error, however, shows that this improved MAE comes at the price of larger errors coming

from the outlier structures. As the training set size is increased, the FPS learning curves decay

much faster, and quickly outperform the random selection. On the one hand, this is due to

the greater diversity of the training set which, for a given size, provides a relatively uniform

coverage of the landscape. On the other hand, outlier configurations that may be hard to

predict are computed explicitly, and so only “easy” configurations are left in the test set. Far

from being an artifact of the FPS training set construction, this second element is a useful

feature that can be used in a practical setting, since the selection can be performed based only

on the structures. Being able to focus explicit simulations on “difficult” structures makes it

possible to achieve the best overall accuracy for a given investment of computer time.

When discussing the absolute accuracy of predictions, one should keep in mind that the

values of the TIs spread across several orders of magnitudes. Even when wavefunction–based

methods, which were more accurate than the DFT–based method used here, were used to

evaluate TIs, these could still lead to errors of the order of 5–10 meV compared to high–

level reference values328,329; this indicates the intrinsic challenge in accurately predicting TIs.

Here, it can be seen that this level of accuracy to predict DFT–derived TIs is easily achieved

with about 10% of the dimer configurations, particularly if using a random selection. Using

a FPS selection and increasing the training set size to about 25%, one can achieve more

reliable predictions, with a MAE of about 3meV for 5A dimers, and about 7meV for 5B and

pentacene (see Fig. 4.15). It is easy to see that the accuracy of predictions could be improved

further. For instance, one could compute baseline values of the transfer integrals by a semi-

empirical method,32,114 or pre-select dimers with negligible TIs to reduce the computational

expense. However, the present results already show that it is possible to use a straightforward

ML protocol to reduce by a factor of 4-10 (depending on the desired level of accuracy) the

cost of thoroughly screening all structures on a CSP landscape in terms of their charge carrier

mobilities.
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Conclusion

In Section 4.2.2, we have shown that sub-kJ/mol accuracy can also be obtained when predict-

ing reference energies for the stability of different polymorphs of molecular crystals (relative

lattice energies). Not only we can reproduce the energetics computed using an empirical

atom-atom potential, but also predict accurately energies obtained at the dispersion-corrected

DFT level. The possibility of interpolating between a few high-end reference calculations

could improve the reliability of crystal structure prediction, while minimizing the added com-

putational cost. Machine-learning models can also be used to predict properties other than

polymorph stability. Given that the polyaromatic compounds studied here are relevant for

molecular electronics, we chose as an example the calculation of charge mobility. In order to

build a model that minimizes the investment of CPU time needed to achieve a quantitative

prediction for the large numbers of crystal structures found on CSP landscapes, we focused

on the bottleneck of the calculation, which is the evaluation of electronic transfer integrals

between pairs of adjacent molecules. Because of their origin in the electronic structure of

interacting molecules, there is no simple form for the relationship between the intermolecular

arrangement and these transfer integrals. Despite the fact that transfer integrals vary over

several orders of magnitude, we showed that our ML scheme could predict their value at a

level of accuracy comparable to that of the electronic structure reference using only 10% of

the dimer configurations – corresponding to a potential 90% reduction of the computational

effort associated with the screening of crystal structures for their charge mobility.

4.3 Feature optimization for atomistic machine learning yields a

data-driven construction of the periodic table of the elements||

Machine-learning of atomic-scale properties amounts to extracting correlations between

structure, composition, and the quantity that one wants to predict. Representing the input

structure in a way that best reflects such correlations makes it possible to improve the accuracy

of the model for a given amount of reference data. Indeed, after symmetries have been

accounted for, there is still considerable freedom in how to define the details of an atomic-

scale representation. Optimizing the input representation can improve substantially the

performance of the regression, by adapting it to the specific structure-property relations

associated with a given problem. What is more, in the process one can often recognize

correlations that rely on intuitive information on such structure-property relations. We build

on a generalization of the n-body invariant representation developed in Section 2.3 and GPR

models to test adaptations of the SOAP representation to (a) the intrinsic length scales of

atomic interactions, and to (b) “alchemical” correlations between chemical species, which

make it possible for instance to exploit the similar behavior of different elements to accelerate

learning in very chemically heterogeneous data sets. Not only do these extensions improve

||This section has been adapted from the journal article [117] whose authors are Michael J. Willatt, Félix Musil
and Michele Ceriotti. The author of this thesis built and benchmarked the QM9 models and wrote methods on the
feature optimization and contributed to the rest of the manuscript.
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significantly the performance of SOAP representations, but they do indeed offer insights

into the chemistry of the system, for instance providing a data-driven representation of the

similarity between elements that is reminiscent of the periodic table of the elements.

4.3.1 Benchmark Datasets

Having discussed different ways SOAP representations can be modified to represent in a

more efficient way structure-property relations in complex data sets, we now verify what the

practical implications of such modifications are. In order put these ideas to the test, we chose

two data sets, one of which contains geometrically diverse, isolated organic molecules while

the other contains elementally diverse inorganic crystals.

The QM9 data set is a collection of about 134k DFT-optimized (B3LYP/6-31G) structures of

small organic molecules.25 Each molecule contains up to nine heavy atoms (C, N, O and F)

in addition to H. While the data set comprises only five atomic elements, it encompasses

621 distinct stoichiometries and is therefore very diverse geometrically. We followed Ref.25

by removing all the 3,054 structures that failed the SMILES consistency test. The QM9 data

set has been used in many pioneering studies of machine learning for molecules, notably

for the demonstration of the predictive power of methods based on Coulomb matrices,32,115

radial distribution functions104 and SOAP.114 It has also been used together with deep-learning

schemes, such as Sch-Net205 and HIP-NN.223 QM9 is a very heterogeneous data set, with

some stoichiometries being heavily represented, and some considerably less sampled (e.g. F-

containing compounds). This, together with the fact that it has been thoroughly benchmarked

with several different representations and regression strategies,206 makes it an ideal benchmark

to demonstrate the improved learning that is made possible by the scheme we introduce here.

The elpasolite data set comprises about 11k DFT-optimized quaternary structures with stoi-

chiometry ABC2D6 (elpasolite AlNaK2F6 being the archetype). We have used the elpasolite

data set of Faber et al.33 in which the four elements constituting each structure were chosen

from the 39 main group elements H to Bi. The DFT-relaxed geometries of each structure in the

elpasolite crystals are almost identical which means that the data set is geometrically uniform

but elementally diverse.

For each data set, we randomly selected two subsets: an optimization set (A) to be used to

determine the hyperparameters of the model by cross-validation, and the other (B) to be

used for training and testing. The optimizations discussed here were performed on the A set

following the methods described in Sections 2.3.2 to 2.3.4, namely radial scaling, “alchemical”

learning and multiple-kernel learning. Once each optimization was performed, we randomly

shuffled and partitioned set B multiple times to produce training set and test set pairs. In

order to account for the variability of the model accuracy with respect to the composition

of the training and test sets, we averaged over the learning curves for each pair to create the

figures presented here.
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FCHL18

Figure 4.16 – Learning curves for the elpasolite crystals. The standard SOAP curve is shown
in black, the best curve from Ref.104 is shown in bright red and the optimized curves are
shown in dark red (d J = 1), purple (d J = 2) and blue (d J = 4). For each of these models, the
kernels were constructed with rcut = 5Å and ζ= 1. The multiple-kernel model (shown in grey)
combines three standard SOAP kernels (ζ= 1, rcut = 4; ζ= 1, rcut = 6; ζ= 4, rcut = 6) and
one optimized kernel (d J = 4, ζ= 1, rcut = 5) in the ratio 4 : 3 : 1 : 220. All of the kernels were
constructed with ν= 2, nmax = 12 radial basis functions and lmax = 9 non-degenerate spherical
harmonics. Error bars are omitted because they are as small as the data point markers.

4.3.2 Reduced-dimensionality alchemical kernels

For the elpasolite crystals, our optimization set contained 2k structures and the remainder

were used to construct five training and test set pairs at random (6k and 2k structures respec-

tively). Figure 4.16 shows the averaged learning curves. The reference curve (bright red line)

was taken from Ref.104 and corresponds to recently-proposed density-based representations.

The dark red, purple and blue curves show the result of optimizing the alchemical kernel,

which we did by initializing low-dimensional u Ja based on the d J principal components of

the alchemical kernel,

κa1a2 = e−(εa1−εa2 )2/2σ2
ε−(ra1−ra2 )2/2σ2

r , (4.14)

where εa1 and ra1 correspond to Pauling atomic electronegativity and van der Waals radius for

the element a1. The values of u Ja were then optimized with an iterative scheme working in

the primal formulation of ridge regression for ζ= 1. using the generic regularized loss function

is defined by

L(u,w,σw ; {A}) = 1

2

∑
N∈A

[
y(N )− 〈w |N〉]2 + 1

2
σ2

w 〈w |w〉 , (4.15)

where w = {〈n1 J1n2 J2l |w〉} and u = {ua J }, on which |N〉 is implicitly dependent. For k-fold
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cross validation, there are k optimal linear regression weights wk , which satisfy the vector

equations

L2(u,wk ,σw ; {Ak }) = 0, (4.16)

where the subscript denotes differentiation with respect to the second argument. Solving

these equations, which are linear in wk , provides relations for wk (u). Furthermore,

w′
k (u) =−L−1

22 (u,wk (u),σw ; {Ak })L12(u,wk (u),σw ; {Ak }). (4.17)

Having calculated these quantities, the total k-fold cross-validation error (the square of the

total Root Mean Square Error),

L(u) =∑
k

L(u,wk (u),σw = 0;{Ak }c ), (4.18)

where the c superscript denotes the set complement, can be minimized (at least locally) by

findings the roots of

L′(u) =∑
k

L1(u,wk (u),σw = 0;{Ak }c )+L2(u,wk (u),σw = 0;{Ak }c )w′
k (u). (4.19)

To optimize Eq. (4.19) with a 2-fold cross-validation error, we used the L-BFGS algorithm

starting from the Cholesky factor u of the matrix κ defined in Eq. (4.14) and stopping after 500

iterations.

Note that the effective regularization parameter of the KRR model we use is given by r ege f f =
σ2 Tr{K }/var (y)N , where σ is the reported regularization parameter, K is the kernel matrix

for the training set, var (y) is the variance of the training properties and N is the number of

training samples.

Reducing the dimensionality of the SOAP representations by three orders of magnitude with

d J = 1 leads to a poor learning rate (dark red line). The learning behavior is much improved

with d J = 2 (purple line), which corresponds to a reduction in the dimensionality of the SOAP

representations by a factor of 380. For fewer than 2k structures, the performance is better

than standard SOAP (black line), but the learning rate gradually decreases (saturation) as the

number of training structures increases. This suggests that the d J = 2 representation is unable

to represent diversity adequately in large sets of structures because of its low dimensionality,

in much the same way as reducing ζ has been found to lead to saturation in SOAP models

trained on the QM9 data set.130

By increasing d J to 4 (blue line), which corresponds to a reduction in the dimensionality of

the SOAP representations by 99%, the resulting model outperforms both the reference (bright

red line) and standard SOAP models. There is still, however, a reduction in the learning rate

as the number of training structures increases. Again, this is likely an indication that the low

dimensionality of the representation is unable to represent diversity adequately in large sets
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Figure 4.17 – Data-driven representations of the chemical space. (a) A 2D map of the
elements contained in the elpasolite data set, with the coordinates corresponding to u1a and
u2a, for the case d J = 2. Points are colored according to the group. (b) A periodic table
colored according to the coordinates in the 2D chemical space. u1a corresponds to the red
channel and u2a to the blue channel. (c) A periodic table colored according to u1a (red
channel) for a 1D chemical space. (d) A periodic table colored according to 4D chemical
coordinates (u1a : red channel, u2a : green channel, u3a : blue channel, u4a : hatches opacity)

of structures (in contrast to the higher-dimensional standard SOAP representation).

To test this idea, we combined multiple kernels in linear combination, including full dimen-

sionality standard SOAP kernels for rcut = 4,5,6 and ζ= 1,2,3,4, and the optimal alchemical

kernels for d J = 1,2,4. This multiple-kernel model (grey line) combines the optimized element

correlations of the alchemical representation with the resistance to saturation of the standard

SOAP representation, leading to an improvement in performance over standard SOAP and the

state of the art by some 30% on the full training set. It is worth noting that our regression model

also outperforms by a factor of two a recently-proposed scheme to determine similarities

between elements based on artificial intelligence techniques.330

The performance of the model for different levels of compression of the chemical space reflect

the tradeoff between the available data and the complexity of the representation. Training of

the extended model entails non-linear optimization of d J ×nelements weights, combined with

KRR in a SOAP representation that contains d 2
J “element channels”. A low-dimensional model
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can extrapolate more reliably to combinations of elements that are not present in the train set,

but may not have sufficient flexibility to maintain high learning rates when larger amounts

of data are available. This tradeoff is evident when considering the apparent contradiction

between the fact that we observed little improvement in model performance when increasing

d J beyond four, and the fact that a multi-kernel that includes full SOAP models does improve

significantly the prediction accuracy. We attribute this to the fact that the number of free

parameters grows steeply with d J , which leads to failure of cross-validation scheme to extract

meaningful information from the relatively small optimization set. Conversely, the multi-

kernel model provides an approach to include full element information, with only a small

number of hyperparameters defining how much weight this information should be given in

comparison to more coarse-grained descriptions.

4.3.3 A data-driven periodic table of the elements

The eigenvectors of the alchemical kernel κaa′ lend themselves naturally to be interpreted

as spanning a continuous alchemical space in which the element kets |a〉 are embedded. In

other terms, they make it possible to obtain a low-dimensional representation of the elements,

in which case elements that behave in a similar way with respect to the target property lie

close to each other. Figure 4.17 (a) shows the optimized distribution of the elements ua J in the

two-dimensional space spanned by |1〉 and |2〉 for d J = 2. Elements within different groups

of the periodic table are coloured differently. It is immediately apparent from this colouring

scheme that optimization of the alchemical kernel leads to clustering of elements that is

reminiscent of their position in the periodic table. The correlation between the data-driven

element representations and the position in the periodic table is perhaps even more apparent

in Fig. 4.17 (b), in which the periodic table is color-coded according to the values of u Ja . This

fascinating observation suggests that one could in principle construct a reasonable alchemical

kernel using chemical intuition alone. However, there are two significant advantages to the

approach presented here. First, the optimization is performed automatically on the data set

under consideration. Second, the optimization can be performed just as well in a lower or

higher-dimensional space (e.g. d J = 1 or d J = 4, Fig. 4.17 (c) and (d)), where intuition based on

the (two-dimensional) periodic table is likely to hinder the performance of the model.

It should also be noted that the elpasolite data set consists of configurations that share the

same structure, and span a space that is dominated by element correlations, making an opti-

mization that ignores geometric correlations particularly effective. More structurally diverse

data sets will imply stronger coupling between geometry and composition, making it advis-

able to consider more general extensions of the SOAP representations to extract comparable

insight.

88



4.3. Feature optimization for atomistic machine learning yields a data-driven
construction of the periodic table of the elements

4.3.4 Radial scaling in the QM9 data set

Molecular databases such as the QM9 are less elementally diverse (containing only 5 elements),

but contain a broad variety of structures. It has been shown that SOAP kernels can predict with

great accuracy the stability of these molecules. However, reaching the best accuracy requires a

combination of kernels, as in Eq. (2.67), with different cutoff radii. The combination of kernels

with different length scales has been interpreted in terms of the need for encoding in the

kernel the notion of multiple length scales in molecular interactions.114 The same argument

can be applied to the optimization of a radial scaling function u(r ) (see Section 2.3.2), so it

should be possible to obtain similar accuracy to a multi-scale kernel by simply optimizing a

suitable parameterization of such scaling.
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Figure 4.18 – Learning curves for the QM9 data set. Four of the lines show the MAE on
the test set for various standard SOAP kernels (ζ = 2) with different cutoff radii (dashed
lines graduating from red to blue). The other lines show the MAE on the test set for the
optimal radially-scaled (RS) and multiple-kernel (MK) SOAP models (black and grey lines
respectively). In every model, the kernels were constructed with ν= 2, nmax = 12 radial basis
functions and lmax = 9 non-degenerate spherical harmonics. The inset shows the radial-scaling
function u(r ) from r = 0Å to r = 5Å with the parameters that were found to minimize the
ten-fold cross validation MAE on the optimization set through a grid search, r0 = 2Å and
m = 7. The multiple-kernel model combines the rcut = 2,3,4 and RS kernels in the ratio
100,000 : 1 : 2 : 10,000, and the learning curve agrees with the RS result to within graphical
accuracy. Error bars are omitted because they are as small as the data point markers. Note
that errors are expressed on a per-atom basis. Error per molecule expressed in kcal/mol can
be obtained approximately by multiplying the scale by 0.4147, that is computed based on the
average size of a molecule in the QM9 database.

Following Section 2.3.2, we consider a simple functional form with a long-range algebraic
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σ 10−7 10−6 10−5 10−4 10−3 0.01 0.1
m 0 1 2 4 5 6 7 8 9
r0 1 2 3 4

Table 4.4 – Parameters used for the grid search of the optimal radial scaling on QM9. All
the possible combinations of the three parameters were evaluated.

decay and smooth behavior at r → 0,

u(r ) =


1/(r /r0)m if c=0,

1 if m=0,

c/c + (r /r0)m else.

(4.20)

We optimized r0 and m and the regularization parameter (see Table 4.4 for the choice of

values) using a grid search and 10-fold cross validation over an optimization set of 5,000

randomly-selected molecules with c = 1. The other parameters of the kernel were fixed to

rcut = 5, c = 1, u0 = 1, ζ= 2, ν= 2, nmax = 12, lmax = 9 and Gaussian width gw = 0.3.

Figure 4.18 compares the learning curves of conventional SOAP for different cutoff radii with

the best radial scaling determined on the A set. Radial scaling leads to a substantial ( 25%)

improvement in the performance of the model.¶ The learning rate does not decrease when the

training is extended to larger fractions of the QM9. At the level of 100k reference configurations,

the radially-scaled kernel achieves a MAE as low as 0.34 meV/atom, corresponding to 0.14

kcal/mol. When considering state-of-the-art results achieved in the past year using more

generally-applicable representations, our optimized model achieves an improvement which is

between 25 and 60%. Multi-kernel SOAP331 yields 0.18 kcal/mol MAE, and two different neural

network models reach 0.26223 or 0.32205 kcal/mol MAE. We also attempted to build a multi-

kernel model including both conventional SOAP kernels and the best radially-scaled kernels.

The improvement we could achieve is marginal, which reinforces the notion that an optimal

radial scaling of the representation is essentially equivalent to an optimized combination of

representations with different scales.

Although the QM9 data set exhibits a low degree of composition diversity, one can attempt to

further improve the performance of the model by introducing correlations between chemical

species. In this case it is necessary to use a ζ= 2 exponent to incorporate many-body interac-

tions in the regression, which makes the application of the primal-based optimization scheme

we used for elpasolites impractical.†† For this reason, and inspired by previous results based

on a heuristic determination of κa1a2 based on the Pauling electronegativity of the atoms,114

we just used Eq. (4.14) and performed a grid search to find the optimal values of σε and σr .

¶It is important to stress that the results we report here are about 20% better than those in Ref.114, because we
removed the 3,054 structures that failed the SMILES consistency test, as is done by other papers using this data set
as benchmark, including Ref.104.

††Note that the uJa optimized for the ζ= 1 representations lead to a degradation of the accuracy when used for
the ζ= 2 case.
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We considered the MAE averaged over 10-fold cross validation score for each combination

on the range from 0.1 to 1 for σε and 1 to 2 for σr with an increment of 0.1 and from 10−7

to 10−4 for σ with an increment of factors of 10. The other kernel parameters were fixed as

follow: rcut = 5, ζ = 2, ν = 2, nmax = 12, lmax = 9, gw = 0.3, u0 = 2, c = 1, r0 = 2, m = 7. Note

that the Pauling’s atomic electronegativities and the van der Waals radii were standardized

(mean is removed and scaled with the standard deviation) to simplify the determination of the

search range for σε and σr . Figure 4.19 shows that this simple ansatz improves by a further

10% the performance of a SOAP-based KRR model, and also combines with the optimized

radial scaling to yield a model which is essentially equivalent in performance to the optimized

representations of Ref.206. The success of the rather primitive form of this feature optimization

protocol suggests that a more general strategy in which structural and chemical correlations

are tuned simultaneously could improve even further beyond the state of the art.

FCHL18

Figure 4.19 – Learning curves for the QM9 data set after inclusion of radially-scaled and
alchemically-optimized SOAP kernels. Standard SOAP kernels with different cutoff radii are
compared with the result of optimizing alchemical correlations using the scheme presented
previously for the elpasolite crystal data set (blue and red lines). The learning curve of the
optimized radially-scaled kernel (dashed black line with circles) is improved through inclusion
of a Gaussian alchemical kernel (dashed black line with squares), which was optimized
specifically for ζ= 2 using a grid search. The combined optimization of the radial scaling
and alchemical correlations leads to a model that matches the accuracy of the state of the
art curve (dashed red line), which corresponds to the representations from Ref.104, with
the errors normalized by the average size of a molecules in the QM9 database. In every
SOAP-based model, the kernels were constructed with ν= 2, nmax = 12 radial basis functions
and lmax = 9 non-degenerate spherical harmonics. Error bars are omitted because they are as
small as the data point markers.

Thanks to their mathematically sound, unbiased constructions, SOAP representations are

particularly well-suited to be extended, incorporating information on correlations between

structure, composition and properties. We have given two examples of such extensions,
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representing the behavior of different chemical species as low-dimensional vectors, and

modulating the information content of the representations with a radial scaling function.

These optimizations improve significantly the performance of SOAP representations, matching

or surpassing the state of the art on two very different data sets – a chemically diverse set

of quaternary solid compounds, and a collection of small organic molecules. As we have

demonstrated by re-discovering the periodic table of the elements, and extending it to one

and four dimensions, they also makes it possible to extract useful insights from the inspection

of the optimal combinations of features.

4.4 Fast and Accurate Uncertainty Estimation in Chemical Machine

Learning‡‡

One of the possible approaches to quantify the accuracy of a machine learning model when

presented with new inputs (the generalization error), involves measuring the residual error on

a set of input-observation pairs (the test set) that are deliberately excluded from the training

phase. These residual errors might be combined into a single score for the model, e.g. the

Root Mean Square Error (RMSE) or Mean Absolute Error (MAE), which provides an estimate

of the magnitude of the expected residual for an arbitrary input on average. Scores like the

RMSE and MAE are undoubtedly useful guides, but one would often like an estimate of the

error or uncertainty associated with a particular input.233,332–336 Roughly speaking, one would

like to know when the model is interpolating and when it is extrapolating (and thus likely to be

less reliable). Not only can such a measure of prediction uncertainty allow the computational

chemist to conclude more confidently from the model, but it can also direct the construction of

the training set by highlighting important regions of the input space that are underrepresented

and form the basis for an active learning strategy.88,337

In the following, we compare the GPR uncertainty estimator with another that is based on

sub-sampling338,339 of the training set, where multiple models are trained on different portions

of the training set, and the distribution of predictions across the models is used to estimate

the prediction uncertainty. We discuss ways to assess the relative performance of different

uncertainty estimators and to improve the performance of an estimator by a calibration pro-

cedure based on cross-validation. We demonstrate this framework by assessing the accuracy

of SOAP-GPR predictions of formation energies in the QM925 and Elpasolite crystal33 datasets

and 1H NMR chemical shieldings in the CSD dataset.89,90

4.4.1 Resampling (RS)

Another approach to estimate the uncertainty associated with a prediction involves creating a

family of models based on the same input data, which are representative of the statistical error

‡‡This section has been adapted from the journal article [245] whose authors are Félix Musil, Michael J. Willatt,
Mikhail A. Langovoy and Michele Ceriotti. The author of this thesis computed the reference chemical shieldings,
built the ML models for the molecular crystal and QM9 datasets and contributed to writing the manuscript.
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associated with the finite amount of available training inputs.333,338–340 Here we will discuss

bootstrapping (BS) and sub-sampling (SS) techniques, which are applicable to any predictive

statistical model.

Given the original training set D of size N , one creates NR new datasets by drawing n input-

observation pairs from D at random. In bootstrapping, the input-observation pairs are drawn

from D with replacement and n = N , whereas in sub-sampling the selection is performed

without replacement and n < N . Models trained independently on this ensemble of resam-

pling datasets produce a fully non-parametric estimate of the distribution of the prediction

for an input A, P
(
y
∣∣A

)
, whose moments can be calculated, e.g.

yRS(A) = 1

NR

∑
i

y (i )(A)

σ2
RS(A) = 1

NR −1

∑
i

[
y (i )(A)− yRS(A)

]2
,

(4.21)

where y (i )(A) is the prediction for the i th resampling model. An advantage of this family

of methods is that the ensemble of predictions
{

y (i )(A)
}

provides a full characterization of

the error statistics which makes it possible to evaluate a non-parametric empirical model

of P
(
y
∣∣A

)
. What is more, when considering multiple inputs A, the ensemble of predictions

relates to the fully correlated prediction distribution P
(

y
∣∣A)

, making it trivial to estimate the

uncertainty for any combination of the predictions.

In bootstrapping, the procedure is called the pairs resampling algorithm (as opposed to the

bootstrap residuals resampling algorithm),332,333 and it is commonly used in machine learning

to construct committee models341 and estimate prediction uncertainties. In the context

of uncertainty estimation, the bootstrap variance σ2
RS(A) is sometimes used to estimate

uncertainties in predictions from neural networks, where it has been found to be more reliable

than alternative estimators because the variability of the predictions with respect to the

initialization parameters of the neural network is incorporated automatically.333,342

Bootstrapping generates random samples of the right size N from the wrong distribution.

On the other hand, sub-sampling generates random samples of the wrong size n < N from

the right distribution, provided n ¿ N .339 There are a variety of approaches to correct for

this shortcoming of the sub-sampling approach. The most common is to assume a power

law relationship between the statistic one is interested in and the size of the sub-sample n.

Linear regression for a variety of sub-sample sizes then allows one to infer the exponent in the

power law and extrapolate to the n → N limit.339 Instead, to extrapolate to the n → N limit, we

apply a scaling to the statistic that is optimized using a validation set, as discussed in detail

later. As shown below, we have found that the criteria we use to assess uncertainty estimates

suggest bootstrapping offers no advantage over sub-sampling for uncertainty estimation with

the GPR PP models presented here (see Tables 4.5 to 4.7). Since sub-sampling is simpler and

computationally cheaper, we focus on sub-sampling in the remainder of this article.
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A practical concern regarding resampling algorithms is that they require NR models to be

trained, which increases the computational cost NR-fold.333,334 However, this added com-

putational cost is associated with the training phase, whereas calculating the GPR variance

is expensive in the testing phase. In most situations where one would like an uncertainty

estimate for each prediction, an extended training phase is often preferable over an increased

cost of making predictions. Moreover, if one exploits the model compression scheme (GPR

PP) outlined in Section 4.1.2, where the training set is partitioned into active and passive com-

ponents, then the computational expense of training and testing can be reduced significantly

for both the resampling and GPR approaches to uncertainty estimation. Furthermore, if one

uses the same representative set for all models then the cost of predicting the uncertainty for a

resampling estimator becomes effectively zero. In fact, one only needs to compute once the

kernel between the new input and the representative set (which is typically the expensive step),

and evaluating multiple models requires only the calculation of NR scalar products. This is in

stark contrast to similar approaches based on neural networks334,343 in which the evaluation

of multiple models entails a substantial overhead. The PP approximation is, however, known

to be detrimental to the quality of the GPR variance and, to a lesser extent, the prediction.

Log-likelihood assessment of uncertainty estimates

Assessing the prediction accuracy of a machine learning model is straightforward, as it suffices

to compute some average of the prediction errors y A − y(A) for an appropriate validation/test

set of points. However, how should one assess the quality of a model that provides an estimate

of the uncertainty σ(A) as well as of the value of the property y(A)? Here, we use for this

purpose a log-likelihood estimator that has also been adopted for the same purpose in some

classical works on statistical regression.335,344,345

In a nutshell, we assume that the true values of the properties y associated with the test

structures T are uncorrelated and follow a Gaussian probability distribution,

P
(

y
∣∣T )= ∏

A∈T

1√
2πσ2(A)

exp

(
− (y A − y(A))2

2σ2(A)

)
, (4.22)

whose means y(A) are the GPR predictions for a reference model based on the full training set,

and whose variances σ2(A) are determined with a statistical model – a Gaussian process or a

committee of Gaussian processes in the present work (see Eqs. (4.7) and (4.21) respectively).

The match between the predictions and the actual values of y can be quantified by summing

the logarithms of P
(
y
∣∣A

)
over an appropriate test set – corresponding to the logarithm of the

probability that the true targets are a realization of the model,

LL = 1

Ntest

∑
A∈T

logP
(
y A

∣∣A
)

. (4.23)

When using the same test set to compare two models that only differ by the uncertainty

estimate, the best model will yield the highest value of LL. Note that a more general discussion
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of the likelihood for Gaussian probability distributions can be found in Ref.62.

Maximum likelihood estimation for scaling uncertainty estimates

Since sub-sampling models are trained with n < N input-observation pairs, each term in the

joint distribution of predictions about the references over a set of sub-sampling models (see

Eq. (4.22)) is likely to be too broad or narrow in general. If we assume that distributions for

different inputs are broadened or narrowed by roughly the same amount, then this distortion

can be corrected by scaling each term in the product by the same constant. The same approach

can of course be applied to the GPR predictive distribution, to correct for the detrimental effect

of a small representative set, and also to bootstrapping to correct for artificial correlations

between the resampled models.

To make this notion concrete, we suppose the following form for the predictive distribution,

P
(

y
∣∣T )= ∏

A∈T

1√
2πα2σγ+2(A)

exp

(
− (y A − y(A))2

2α2σγ+2(A)

)
, (4.24)

where α and γ are optimizable parameters, and Eq. (4.22) is recovered with α= 1 and γ= 0.

The calibrated uncertainty estimate for input A is then given by the standard deviations of the

corresponding marginal distribution,

σ(A) =ασγ/2+1(A). (4.25)

For γ= 0 (linear scaling) the value of α that maximizes the log likelihood over a validation set

V of size Nval is simply,

α2
0 =

1

Nval

∑
A∈V

z2
A

σ2(A)
, (4.26)

where zA is the residual error for input A. For γ 6= 0 (non-linear scaling) the optimal values of

α and γ can be determined easily by numerical optimization. Note that this a biased estimator

α0 for which a correction can be found in Ref.346.

As is often the case, one should be wary of overfitting. While we mitigate this risk by a cross-

validation procedure, in the context of maximum likelihood estimation it is customary to

introduce a penalty for the complexity of the model. Commonly used techniques, such as the

Bayesian Information Criterion,347 or the Akaike Information Criterion,348 also allow for an

information-theoretic interpretation that justifies a comparison between models of different

complexity. For the Gaussian process case, the scaling factor α0 is the scalar product norm

of the score vector for the sub-problem with Nval observations. The covariance matrix is the

Gram matrix of the score vector. Therefore, in view of the Cauchy-Schwarz inequality for

scalar products in Hilbert spaces, α0 serves as a normalizing factor for the LL. This implies

that LL corresponding to the modified distribution (Eq. (4.24)) with α=α0 and γ= 0 can be
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also used as a likelihood-based test statistic for testing the above assumption of uncorrelated

normally distributed reference predictions.349 In the case of non-linear scaling with γ 6= 0,

the LL for (Eq. (4.24)) is statistically equivalent to a penalized log-likelihood with the penalty

depending on γ and α. In order to prevent overfitting, it might still be necessary to introduce

an additional penalty for the complexity of the model. The norm of LL in this case can be used

for hypothesis testing, but one has to be aware that the null distribution of the corresponding

test statistic is typically more complex than in the case of linear scaling.

In a demanding, real application, removing input-observation pairs from the training set might

be overly wasteful. In Ref.342, Heskes points out that in a randomly-resampled dataset Di ,

many of the input-observation pairs in D will be absent and can thus be used for validation.

An attractive way of optimizing α and γ without explicitly constructing a validation set is

therefore the following internal validation scheme,

yINT(A) = 1

NR(A)

∑
i

A 6∈Di

y (i )(A) (4.27)

σ2
INT(A) = 1

NR(A)−1

∑
i

A 6∈Di

[
y (i )(A)− yINT(A)

]2
, (4.28)

where NR(A) is the number of resampling models that do not contain A in the training set. By

using

P
(

y
∣∣D)= ∏

A∈D

1√
2πα2σ

γ+2
INT (A)

exp

(
− (y A − y(A))2

2α2σ
γ+2
INT (A)

)
, (4.29)

where y(A) is the leave-one-out350 prediction for input A, the log likelihood corresponding to

this distribution can be maximised with respect to α and γ over the set of training inputs D
that are absent from at least a few of the resampled models (so that Eq. (4.28) is finite and well

converged for each A). In this work we only used training inputs that were absent from at least

five of the resampled models. It is straightforward to show that, as the size N of the training

set grows, the fraction of absent inputs for a random bootstrap sample tends to e−1, while

for sub-sampling it is always 1−n/N . This means for example that if one takes NR = 10 and

n = N /2, slightly more than 50% of the training inputs are expected to be absent from at least

five of the resampling models, and the size of the effective validation set for the procedure

described above is therefore roughly half of the full training set.

By default, SOAP kernels are dimensionless. For the GPR interpretation of the kernel as a

covariance to make sense, they must assume the squared units of the property one wants to

predict. This is easily achieved by taking

K
Var[y]

Tr[K ]
→ K , (4.30)
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and the regularization parameter λ2 must then be scaled by the same amount since it adopts

the same units. This procedure has absolutely no effect on the prediction y(A) but is essential

to make the uncertainty estimate σ2
GPR(A) dimensionally correct and therefore meaningful.

Note that a linear scaling of the kernel with a hyperparameter (αK → K ) is sometimes exploited

to improve GPR model performance.88 It has the same effect on the GPR variance as the linear

scaling introduced earlier in Eq. (4.25) with γ= 0, provided the kernel and λ2 are scaled by the

same amount. If the regularisation parameter is not simultaneously scaled then the predictive

mean y(A) also changes, which is an undesirable effect in the present context since our aim

is to calibrate the variation of predictive distribution about its fixed mean. If one wishes to

relax this constraint by optimizing the log likelihood with respect to both λ2 and the scale

of the kernel, then the two approaches are identical. We have avoided the latter approach

in the present work since it adds an extra degree of freedom to the log likelihood, which

could exacerbate overfitting, and one often has a good reason for determining λ2 in advance,

especially if the variance of the noise contaminating the data points is known.

4.4.2 Benchmark Datasets

Molecular crystals dataset To generate a benchmark database for this work, that includes a

more diverse set of off-equilibrium environments, the structures from the CSD-500 dataset, de-

scribed in Section 4.2.1, were randomly perturbed away from their optimal geometries, so that

the Root Mean Squared Deviation (RMSD) between the positions of an optimized structure

and its rattled counterparts is 0.25Å and 0.5Å. We call this dataset, that contains 890 structures,

the CSD-890-R. The 1H chemical shieldings were calculated using the Quantum Espresso

package.202,297,351 We used PBE163 ultrasoft pseudopotentials with GIPAW254,255 reconstruc-

tion, H.Perdew1996-kjpaw_psl.0.1.UPF, C.Perdew1996-n-kjpaw_psl.0.1.UPF, N.Perdew1996-n-

kjpaw_psl.0.1.UPF and O.Perdew1996-n-kjpaw_psl.0.1.UPF from the PSlibrary 0.3.1.352 The

wave-function and charge density energy cut-offs were set to 100 Ry and 400 Ry respectively,

the convergence threshold of the self consistent cycle is set to 10−12 Ry and a Monkhorst-Pack

grid of k-points300 corresponding to a maximum spacing of 0.06Å in the reciprocal space.

The scalar chemical shieldings are obtained from the average of the diagonal of the chemical

shielding tensor using a linear response wave-vector of 0.02 bohrradius−1 and a convergence

threshold of 10−14 Ry2 for the Green’s function solver.

We randomly partitioned 30k of the H environments into 20k, 5k and 5k sets. One of the 5k

sets was used for validation and the other was used for testing. We sorted the 20k training

environments using FPS and used the 10k most diverse environments as the representative

set for the PP approach. For sub-sampling we selected 64 random sub-samples of the training

set for each sub-sample size.

QM9 dataset We randomly partitioned 30k of the QM9 structures (see Section 4.3.1for more

details) into 20k, 5k and 5k sets. One of the 5k sets was used for validation and the other was

used for testing. We sorted the 361k environments present in the 20k training structures with
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FPS and used the 5k most distant environments as the representative set in the PP approach.

For sub-sampling we selected 64 random sub-samples of the training set for each sub-sample

size.

Elpasolite crystal dataset We randomly partitioned the elpasolite dataset (see Section 4.3.1

for more details) into 8k and 1k sets. The 1k set was used for validation and the rest of the

structures were used for testing. We sorted the 8k randomly selected structures using FPS and

used the 4k most distant ones as the representative set in the PP approach. For sub-sampling

we selected 64 random sub-samples of the training set for each sub-sample size (as for the

molecular crystals and QM9 datasets).

4.4.3 Results and Discussion

Prediction of CSD 1H NMR chemical shieldings
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Figure 4.20 – Distribution of 1H chemical shielding predictions. The colored solid lines
show contours of P (lnεt |lnσ), while the colored dashed lines show contours of P (lnεm |lnσ)
(see Eq. (4.31) and the corresponding contour levels are shown in the legend. The grayscale
density plot and the solid black line respectively correspond to the marginal distribution of
the predicted uncertainty P (lnσ) and to y = x.

Table 4.5 shows the log likelihood on the test set (Eq. (4.23)) for different sub-sample sizes,
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before scaling with the maximum likelihood estimation scheme and after scaling, using either

a validation set or internally with the training set as described earlier. It also shows the GPR log

likelihoods before and after scaling with the validation set. Note that scaling the GPR variances

using the training set for internal validation is impossible, hence the corresponding cells are

empty. We remark here that LL (Raw) likelihoods in the first column of Table 4.5 can be directly

compared to each other, when our goal is to evaluate relative efficiency of different sub-sample

sizes. This is due to the fact that such comparison is equivalent to likelihood-based model

selection with an Akaike information criterion-type (AIC) penalty.348 Indeed, AIC penalties

depend only on the problem’s dimensionality and not on the sub-sample size, so comparing

penalized likelihoods in the AIC framework coincides with comparing LL likelihoods in the

first column of the Table.

This is a convenient feature of our approach, as, in general, values of log-likelihoods for

different sub-problems cannot be directly compared to each other.349,353 Strictly speaking,

the powerful machinery of maximum likelihood only guarantees good properties of the best

solution, but does not always directly induce a quality scale to rank other solutions via the use

of the likelihood function. Before scaling, the log likelihood shows considerable variability

between resampling estimators obtained with different sample size. It appears that the

estimator based on sub-samples of 5k environments (i.e. one quarter of the training set)

strikes the best balance between resampling from the correct distribution but with the wrong

size (small sub-sample sizes), and resampling from the wrong distribution but with the right

size (large sub-sample sizes). Rescaling the uncertainty estimator leads to a substantially

more stable, standardized version of the log-likelihood, and reduces greatly the impact of

the sample size for RS estimators. Additionally, we observed that after rescaling, the GPR-PP

estimator leads to noticeably higher log likelihood.

The log likelihood provides a measure of the accuracy of the uncertainty estimation that is

quantitative but hardly intuitive. To provide a more straightforward representation of the

accuracy of an uncertainty estimator, we observe that in an ideal scenario, the distribution

of actual errors relative to the reference should match the distribution of the predictions

of RS models around their mean. The equality of the distributions should be true for an

arbitrarily-selected subset of the test set.

Based on this observation, we computed the distribution of actual errors εt (A) = ∣∣y(A)− y A
∣∣

conditioned on the value of the predicted uncertainty σ(A) (calibrated with a linear scaling),

and the distribution of model errors εm(A) = ∣∣y (i )(A)− y(A)
∣∣. Given that the predicted (and

actual) errors can span a broad range, we computed the conditional on a log scale, e.g.

P (lnε|lnσ) = P (lnε, lnσ)/P (lnσ) . (4.31)

The plots comparing the predicted and actual error distributions from the linearly scaled

estimators are shown in Fig. 4.20. One sees in all cases there is a good qualitative agreement

between the distribution of the model (which is Gaussian by construction for the GPR model,
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Figure 4.21 – Distribution of 1H chemical shielding predictions. The solid lines show contours
of P (lnεt |lnσ), while the dashed lines show contours of P (lnεm |lnσ) (see Eq. (4.31)),
including a non-linear scaling of the uncertainty corresponding to Eq. (4.25) with γ 6= 0, and
the corresponding contour levels are shown in the legend. The grayscale density plot and
the solid black line respectively correspond to the marginal distribution of the predicted
uncertainty P (lnσ) and to y = x.
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and in some cases strongly non-Gaussian for RS estimators), with essentially none of the

samples with large true errors being associated with a small σ(A).

Method
Active/Train

Size

LL

(Raw)

LL

(Val.)

LL

(Val./N-L)

LL

(Int.)

LL

(Int./N-L)

SS

5k/1k 1.989 2.178 2.203 2.177 2.202

5k/5k 2.188 2.19 2.222 2.190 2.221

5k/10k 1.846 2.21 2.243 2.210 2.243

5k/15k -0.534 2.214 2.259 2.203 2.257

5k/18k -10.546 2.203 2.261 2.048 2.242

BS 5k/20k 1.409 2.211 2.249 2.211 2.249

GPR PP 5k/20k -3.054 2.301 2.302 N/A N/A

Table 4.5 – Log likelihood (LL) of chemical shielding predictions on the test set for different
sub-sample sizes. After scaling the variances through maximum likelihood estimation –
internally (Int.) or on the validation set (Val.) – the final log likelihood is insensitive to the
sub-sample size. A non-linear scaling of the uncertainty (N-L), i.e. γ 6= 0, further improves the
quality of the uncertainty estimates. To normalize the results, the log likelihood (-2.560) of a
model with a constant mean and variance corresponding to the empirical chemical shielding
mean and variance of the full training set has been subtracted from each value.

On the other hand, there are also substantial differences between the various estimators. An

obvious difference is the range spanned by the predicted σ(A). One could argue that - for a

given LL - the model that spans the broader range of values is the most useful, as it yields

better resolution between more or less trustworthy predictions. From this point of view, large-

sample-size RS estimators appear to be superior, spanning almost two orders of magnitude in

the value of σ(A). The GPR PP model, however, clearly displays the best agreement between

predicted and actual error distributions, which is consistent with the higher LL. Looking

more carefully at the distributions for the RS models, one can see that the actual errors tend

to increase monotonically as a function of σ(A), even though they do not follow the trend

predicted by the sample distribution. This suggests that the performance of the estimator can

be improved by optimizing away from γ= 0 in Eq. (4.25). As shown in Fig. 4.21 this procedure

improves the agreement between the RS and the actual error distribution, and brings the LL

close to the level of the GPR PP estimator (see also Table 4.5). The observed improvement in fit

hints at the possibility that the data are a better match to a light heavy-tailed process354 rather

than to a standard Gaussian process. This is entirely plausible due to the high complexity of

molecular models and high dimensionality of the associated data.
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Prediction of QM9 formation energies

Method
Active/Train

Size

LL

(Raw)

LL

(Val.)

LL

(Val./N-L)

LL

(Int.)

LL

(Int./N-L)

SS

5k/1k 4.145 4.465 4.465 4.466 4.466

5k/5k 4.395 4.485 4.486 4.485 4.484

5k/10k 3.462 4.491 4.492 4.492 4.491

5k/15k 0.030 4.495 4.496 4.492 4.488

5k/18k -10.503 4.492 4.492 4.450 4.452

BS 5k/20k 2.997 4.496 4.496 4.497 4.493

GPR PP
5k/20k 4.151 4.178 4.22 N/A N/A

10k/20k 3.981 4.366 4.428 N/A N/A

Table 4.6 – Log likelihood (LL) of formation energy predictions (QM9 dataset) on the test
set for different sub-sample sizes. After scaling the variances through maximum likelihood
estimation – internally (Int.) or on the validation set (Val.) – the final log likelihood is
insensitive to the sub-sample size. To normalize the results, the log likelihood (0.207) of a
model with a constant mean and variance corresponding to the empirical formation energy
mean and variance of the full training set has been subtracted from each value.

Table 4.6 is the analogue of Table 4.5 for the QM9 dataset. The same trend is observed as

for the CSD dataset with the 5k sub-sampling estimator as the most reliable before scaling

through maximum likelihood estimation. Despite the differences between predicting chemical

shieldings (a local property) and formation energies (a global property), we see again that

the (non-linear) scaling procedure with a validation set makes the GPR and the sub-sample

uncertainty estimators more or less equally reliable.

Figure 4.22 is the QM9 analogue of Fig. 4.21, reporting a more analytical representation of the

correspondence between predicted and actual errors for the non-linearly scaled models. Again,

the fundamental assumption of sub-sampling – that the sub-samples are to the reference what

the reference is to the target – appears to be reliable. As for the CSD chemical shielding results,

we found the quality of this agreement to be roughly the same, regardless of the sub-sample

size. In this case, even after non-linear scaling, the GPR estimator yields a narrow uncertainty

distribution, while the RS models accurately predict the uncertainty over a span of two orders

of magnitude.

The fact that in the QM9 dataset about 3k molecular configurations are tagged as ‘unreliable’

(as their SMILES strings after geometry optimization differ from those of the corresponding

starting configurations) provides an interesting benchmark for the uncertainty estimation. In

Fig. 4.22 we also show the predicted variance - actual error pairs for 100 randomly selected

SMILES-inconsistent compounds. Note that no SMILES-inconsistent structures were used in

the training, validation and testing of the models reported in the table; the randomly-selected

100 were only added to the test set when making the figure. While most of the structures
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Figure 4.22 – Distribution of formation energy differences for the QM9 dataset. The
colored solid lines show contours of P (lnεt |lnσ), while the colored dashed lines show the
contours of P (lnεm |lnσ) (see Eq. (4.31)), including a non-linear scaling of the uncertainty
corresponding to Eq. (4.25) with γ 6= 0, and the corresponding contour levels are shown in
the legend. The grayscale density plot and the solid black line respectively correspond to
the marginal distribution of the predicted uncertainty P (lnσ) and to y = x. The red dots
show the distribution of actual errors and predicted uncertainties for 100 randomly selected
structures that failed the SMILES consistency test when the QM9 dataset was constructed.
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lie in the high-predicted-variance range of the data, reflecting the fact they have somewhat

unusual structure, they span an order of magnitude range of σ(A), and there are several

SMILES-consistent structures having larger predicted (and actual) errors. This observation

underscores the fact that predictive uncertainty estimates can be a better guide than heuristic

arguments to detect outliers and to identify structures that are needed to enlarge a training

set.

Prediction of Elpasolite crystal formation energies

Method
Active/Train

Size

LL

(Raw)

LL

(Val.)

LL

(Val./N-L)

LL

(Int.)

LL

(Int./N-L)

SS

4k/1k 1.771 1.794 1.802 1.665 1.665

4k/2k 1.772 1.783 1.798 1.711 1.711

4k/4k 1.716 1.723 1.794 1.717 1.745

4k/6k 1.103 1.695 1.800 1.691 1.761

BS 4k/8k 1.646 1.697 1.798 1.696 1.759

GPR PP 4k/8k 1.660 1.779 1.791 N/A N/A

Table 4.7 – Log likelihood (LL) of formation energy predictions (Elpasolite crystal dataset)
on the test set for different sub-sample sizes. After scaling the variances through maximum
likelihood estimation – internally (Int.) or on the validation set (Val.) – the final log likelihood
is insensitive to the sub-sample size. A non-linear scaling of the uncertainty (N-L) further
improves the uncertainty model. To normalize the results, the log likelihood (-1.353) of a
model with a constant mean and variance corresponding to the empirical formation energy
mean and variance of the full training set has been subtracted from each value.

Table 4.7 shows the log likelihood of formation energy predictions on the Elpasolite crystal

dataset, and Fig. 4.23 shows the distributions of actual and predicted errors after non-linear

scaling. While there is a large variation in the log likelihoods before scaling, all the uncertainty

estimators appear to become more or less equally effective after optimizing the log likelihood

with respect to α and γ, with the GPR PP uncertainties faring very slightly worse. Interest-

ingly, the effect of introducing a non-linear scaling offers no advantage over a linear scaling

according to the log likelihood values. Also, using the training set for internal validation leads

to significantly worse resampling uncertainty estimators, in contrast to the CSD and QM9

results.

We speculate that these minor differences in behavior can be traced to the discrete structure

of the Elpasolite dataset; whereas CSD and QM9 are chemically homogeneous and contain

a broad variety of atomic structures, Elpasolite crystals possess essentially a fixed geometry,

and differ primarily by the chemical composition, that spans quaternary combinations of 39

elements, suggesting that the uncertainty estimation framework works even when the dataset

reflect discrete chemical differences rather than smooth position variables.
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Figure 4.23 – Distribution of formation energy differences for the Elpasolite crystal dataset.
The colored solid lines show contours of P (lnεt |lnσ), while the colored dashed lines show
contours of P (lnεm |lnσ) (see Eq. (4.31)), including a non-linear scaling of the uncertainty
corresponding to Eq. (4.25) with γ 6= 0, and the corresponding contour levels are shown in
the legend. The grayscale density plot and the solid black line respectively correspond to the
marginal distribution of the predicted uncertainty P (lnσ) and to y = x.
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Figure 4.24 – Time taken to compute the GPR PP and sub-sampling (SS) uncertainty
estimates (Eqs. (4.7) and (4.21) respectively) as a function of the active set size for 2.5k
Elpasolite crystal structures as a test set. 64 training set sub-samples were used to produce
the sub-sampling result (i.e. 64 linear regression weights). The time taken to generate the
kernels between active and test points is excluded from the reported computation times.
The simulations were performed using the NumPy module in Python for the necessary linear
algebra (one Intel(R) Xeon(R) CPU E5-4627 v2 @ 3.30GHz core).

We use this dataset to also provide a benchmark of the overhead associated with uncertainty

estimation. Figure 4.24 gives a comparison of the computation times of evaluating the GPR

PP and sub-sampling uncertainty estimates for the Elpasolite crystal dataset. The time taken

to compute kernels between active and test points is excluded, since those quantities are

necessary for the property estimation, and are therefore already available to compute the

uncertainty. We also do not consider the cost of the training phase: as stressed earlier, the

main computational advantage of sub-sampling over GPR PP for uncertainty estimation

is expected in the testing phase. The figure shows clearly that the sub-sampling approach

to uncertainty estimation is significantly cheaper than the GPR PP approach in the testing

phase. Sub-sampling is expected to scale linearly with the active set size M because the

computationally demanding step is the evaluation of vector dot products of length M . On the

other hand, GPR PP is expected to scale quadratically with M because, before taking vector

dot products of length M , one of the vectors must be multiplied by an M ×M matrix. The

timings shown in the figure reflect these asymptotic considerations.
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5 Conclusions

In this thesis, we have presented an array of methodological improvements accelerating several

aspects of atomic-scale modelling by using ML algorithms. We have introduced a general for-

mulation of the problem of representing atomic structures in terms of a (smooth) atom density,

which is independent of the basis that is used to expand it. Starting from a representation of a

3D structure in terms of a superposition of atom-centered functions decorated with elemental

kets, we introduce symmetries by formally averaging the feature vectors over the continuous

translation and rotation groups. The averaging removes information, but a complete, unique

description can be retained by taking tensor products of the ket before computing the integral.

Different representations, capturing varying amounts of inter-atomic correlations, can be

obtained depending on the combination of tensor products and symmetrized averages. This

formulation provides a unified picture of density-based representations for machine learning

of atomic-scale properties, with several popular frameworks emerging by taking different

limits, or using specific basis sets to represent the abstract invariant kets. In particular, using a

basis of radial functions and spherical harmonics shows clearly the 1:1 mapping between the

symmetrized kets and different flavors of the SOAP representation. Even alternative schemes

that start from rotationally and translationally-invariant internal coordinates and proceed to

ensure permutation invariance appear to contain comparable information.

We discussed how several modifications and optimizations can be introduced in terms of

operators that couple and scale different channels of the representation, focusing in particular

on the SOAP power spectrum representation. We have given two examples of such extensions,

representing the behavior of different chemical species as low-dimensional vectors, and

modulating the information content of the representations with a radial scaling function.

These optimizations improve significantly the performance of SOAP representations, matching

or surpassing the state of the art on two very different data sets – a chemically diverse set of

quaternary solid compounds, and a collection of small organic molecules. The framework

we use to simplify the description of atomic species can reduce dramatically the complexity

and computational costs of machine-learning models for multi-component systems, and

could also be applied to coarse-grained models, in which beads correspond to functional
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groups, and a reduced-dimensionality description could identify features such as polarity or

hydrophobicity. Moreover by re-discovering a data-driven version of the periodic table of the

elements, and extending it to one and four dimensions, it also makes it possible to extract

useful insights from the inspection of the optimal combinations of features.

We have demonstrated how a set of unsupervised learning techniques such as hierarchical

clustering and sketch-map coupled with the SOAP power spectrum and the REMatch ker-

nel can be used to navigate databases of molecules and molecular materials. Rather than

simply reflecting preconceived notions of what would be the key structural parameters to

differentiate conformers and polymorphs, automatic clustering identifies motifs that can be

easily related to heuristic structural classifications, while capturing finer details and being fully

data-driven. In the particular case of oligopeptide structures in the gas phase, such analysis

reveals the importance of peptide bond isomerization in describing the high-energy portion

of conformational space of oligopeptides, the possibility of changes in chemical connectivity

in the course of the ab initio structural search, and the interplay between hydrogen-bonding,

backbone dihedrals, and electrostatic interactions. Moreover, a similar study applied to pen-

tacene molecular crystals and nitrogen substituted pentacenes 5A and 5B confirmed that

a regular substitution leads to regular H-bond patterns within the molecular planes, while

an asymmetric substitution leads to less robust H-bonding patterns and a generally glassy

potential energy landscape. At the same time, comparing energy predictions and structural

classification showed clearly that H-bonding alone is not sufficient to characterize the lattice

energies of 5A and 5B, but inter-sheet arrangements also need to be properly accounted for.

Lastly, we also show the importance of automated analysis techniques in assessing the integrity

and the internal consistency of a database, by successfully identifying a subset of structures

associated with ill-converged energetics. By simplifying the analysis and the interpretation of

computational datasets containing thousands or millions of hypothetical compounds, these

methods will be crucial to unleash the full potential of computational materials design.

We have applied the Gaussian process regression technique using the SOAP power spectrum

representation to model several important ground state properties of molecular materials.

Here we have shown that sub-kJ/mol accuracy can be obtained when predicting reference

energies for the stability of different polymorphs of molecular crystals. Moreover, we have built

accurate models for the prediction of chemical shifts and electron/hole mobility in molecular

crystals, demonstrating how supervised learning can reduce the cost associated with crystal

structure prediction and determination. Indeed, the chemical shielding models are accurate

enough to be used to determine structures by comparison to experimental shifts in chemical

shift based NMR crystallography approaches to structure determination, as shown here for

cocaine and AZD8329. The ML model only scales linearly with the number of atoms and,

for the prediction of individual structures, is dominated by a constant I/O overhead. Here it

allows the calculation of chemical shifts for a set of six structures with between 768 and 1584

atoms in their unit cells in less than six minutes (an acceleration of factor 106 for the largest

structure). In order to build a model of the charge mobility that minimizes the investment

of CPU time needed to achieve a quantitative prediction for the large numbers of crystal
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structures found on CSP landscapes, we focused on the bottleneck of the calculation, which is

the evaluation of electronic transfer integrals between pairs of adjacent molecules. Because

of their origin in the electronic structure of interacting molecules, there is no simple form

for the relationship between the intermolecular arrangement and these transfer integrals.

Even though transfer integrals vary over several orders of magnitude, we showed that our ML

scheme could predict their value at a level of accuracy comparable to that of the electronic

structure reference using only 10% of the dimer configurations – corresponding to a potential

90% reduction of the computational effort associated with the screening of crystal structures

for their charge mobility.

Finally, we have presented a scheme to obtain an inexpensive and reliable estimate of the

uncertainty associated with the predictions of a machine-learning model of atomic and

molecular properties. The scheme is based on sub-sampling and sparse Gaussian Process

Regression. We have investigated the reliability of this approach for two applications: the

prediction of 1H NMR chemical shieldings in organic crystals and the prediction of formation

energies of small organic molecules and inorganic crystals. In every case, we found the sub-

sampling estimator to be reliable based on log-likelihood results and the good agreement

between the true and predicted distribution of errors on a test set. Besides the computational

savings, the fact that the sub-sampling models generate an ensemble of predictions makes it

trivial to predict uncertainties in derived properties, that are obtained by a linear or non-linear

combination of multiple predictions such as thermal averages.

To conclude, ML techniques have demonstrated their utility in the context of atomistic sim-

ulations over the last decade, by automating the post-processing of large amounts of data,

e.g. molecular dynamics trajectories, and by improving the efficiency and/or the accuracy of

the prediction of atomic-scale properties. Over the course of this thesis, we have developed a

toolbox, based on a general framework for representing atomic structures and ML algorithms,

to accelerate the analysis of structure-property relations and the reliable property prediction in

atomistic systems. Far from exhausting all possible aspects of the this research field, we believe

this thesis exposes a few questions regarding the incorporation of physical priors into the

representation and/or ML model and the need for high body order representations along with

their efficient implementation. Moreover, an accurate and inexpensive uncertainty estimation

might help to streamline more atomistic ML by developing active-learning strategies to effi-

ciently generate training datasets. More generally, several aspects of atomistic modelling such

as enhanced sampling and coarse-graining have yet to benefit fully from the integration of

ML techniques despite clear potential benefits. In light of this thesis, data-driven approaches

applied to atomistic simulation are about to pass the stage of proof concepts to enrich well

established frameworks.
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A Details on Spherical Invariants

This appendix gathers the various observations and notes that improved my understanding

and familiarity with the SOAP power spectrum and more generally the n-body spherical

invariant representations. I will be using the notation introduced in Chapter 2 for this purpose.

A particular emphasis is put on their explicit derivations and features associated with gradients

evaluation with explicit references to the NIST Digital Library of Mathematical Functions [355]

or other online libraries are provided as footnote. I start discussing some important properties

of the angular basis, or spherical harmonics, in Section A.1. Then I show in Section A.2 how this

basis is convenient to derive explicit expressions for invariant features based on the density

expansion coefficients. Formulas for the evaluation of atom density expansion coefficients and

their derivatives w.r.t. atomic positions are derived in Section A.3 and Section A.4 respectively.

A.1 Angular basis

In this section I summarize a few results on the complete and orthonormal spherical ket basis

|l m〉 for which full discussions can be found in Ref.356 and Ref.357.

A.1.1 Spherical harmonics

In real space the angular basis is composed of spherical harmonics (SPHs) and we use the

following convention

〈lm|r̂〉 = Y m
l (r̂) = Y m

l

(
θ,φ

)= Am
l e i mφP m

l (cosθ) , (A.1)

where Am
l = p

(l −m)!(2l +1)/4π(l +m)!, the associated Legendre Polynomials (ALPs) are

given by

P m
l (x) = (−1)m(1−x2)m/2 dm

dxm Pl (x) (A.2)

and r̂ is the direction vector defined by the spherical coordinates θ and φ orientated from êz .
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The complex SPHs of Eq. (A.1) are useful for analytical derivations but the real SPHs defined

as

Ȳl m(r̂i j ) = cos
(
mφ

)
P̄ m

l (cosθ)

Ȳl ,−m(r̂i j ) = sin
(
mφ

)
P̄ m

l (cosθ)

}
for m > 0 (A.3a)

Ȳl ,0(r̂i j ) = 1p
2

P̄ 0
l (cosθ)

where

P̄ m
l (cosθ) =

√
2l +1

2π

(l −m)!

(l +m)!
P m

l (cosθ), (A.3b)

are computationally more efficient.358 Indeed the effect of conjugation

〈r̂|l −m〉 = (−1)m 〈lm|r̂〉 (A.4)

allow to retrieve the terms missing from Eq. (A.3) trivially.

A.1.2 Finite rotations

The rotation matrix R̂ := R̂(α,β,γ) where α,β,γ are the Euler angles as defined in the z − y − z

convention is an element of the SO (3) group. The irreducible representation of this rotation

group in the angular basis is given by the Wigner-D matrix elements

〈lm|R̂|λµ〉 = δlλD l
mµ

(
R̂

)
, (A.5)

which follow the orthogonality relation∫ 2π

0
dα

∫ π

0
sinβdβ

∫ 2π

0
dγD l

mµ

(
R̂

)∗
D l ′

m′µ′
(
R̂

)= 8π2

2l +1
δl l ′δmm′δµµ′ , (A.6)

where their complex conjugate are given by

D l
mµ

(
R̂

)= (−1)m−µD l
−m,−µ

(
R̂

)∗
. (A.7)

Products of Wigner-D matrix elements can be reduced using

D l
mµ

(
R̂

)
D l ′

m′µ′
(
R̂

)= l+l ′∑
L=|l−l ′|

〈l ml ′m′|L(m +m′)〉 〈lµl ′µ′|L(µ+µ′)〉DL
(m+m′),(µ+µ′)

(
R̂

)
, (A.8)

where 〈l1m1l2m2|l3m3〉 is a Clebsch-Gordan (CG) coefficient. The relation between Wigner-D

matrices and SPHs is given by

Dl
m0

(
α,β,γ

)=√
4π

2l +1
Y m

l

(
β,α

)∗ , (A.9)
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and the rotation of a spherical harmonic is expressed in terms of Wigner-D matrices

Y m
l

(
R̂r̂

)= l∑
m′=−l

Dl
mm′

(
R̂

)∗
Y m′

l (r̂) . (A.10)

A.2 Spherical invariants of order ν= 1,2,3

For an atom density expressed on the angular basis and a radial basis 〈nlm|, the 2-body

invariant representation (ν= 1) is

〈nlm|ρ⊗1
j 〉 =

∫
SO(3)

dR̂ 〈nlm|R̂ρ j 〉 ,

=∑
µµ′

〈nlµ|ρ j 〉 〈n′l ′µ′|ρ j 〉
∫
SO(3)

dR̂ 〈lm|R̂|lµ〉 ,

=∑
µµ′

〈nlµ|ρ j 〉 〈n′l ′µ′|ρ j 〉
∫
SO(3)

dR̂D l
mµ

(
R̂

)
D0

00

(
R̂

)
,

= 8π

2l +1
〈nlm|ρ j 〉δl0δm0,

⇒ 〈n|ρ⊗1
j 〉 =8π〈n00|ρ j 〉 , (A.11)

where we have used Eqs. (A.5) to (A.7) and D0
00

(
R̂

) = 1 ∀R̂ ∈ SO (3). The 3-body invariant

representation (ν= 2) is given by

〈n1l1m1;n2l2m2|ρ⊗2
j 〉 =

∫
SO(3)

dR̂ 〈n1l1m1|R̂ρ j 〉 〈n2l2m2|R̂ρ j 〉 ,

= ∑
m′

1m′
2

〈n1l1m′
1|ρ j 〉 〈n2l2m′

2|ρ j 〉∫
SO(3)

dR̂ 〈l1m1|R̂|l1m′
1〉 〈l2m2|R̂|l2m′

2〉 ,

= ∑
m′

1m′
2

〈n1l1m′
1|ρ j 〉 〈n2l2m′

2|ρ j 〉∫
SO(3)

dR̂D l1

m1m′
1

(
R̂

)
D l2

m2m′
2

(
R̂

)
,

= 8π

2l +1
(−1)−m1δl l ′δm1,−m2∑

m
(−1)m 〈n1l1m|ρ j 〉 〈n2l2 −m|ρ j 〉 , (A.12)

where we have used the Eqs. (A.5) to (A.7). Inspecting Eq. (A.12) shows that the angular basis

〈l1m1; l2m2| has a large null space since the orders mi do not affect the representation. More

generally the ν+1-order invariant representation can be simplified by coupling the angular

basis 〈l1m1; . . . ; lνmν| (see Ref.357 for a complete discussion of the procedure). The coupled
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3-body invariant representation (ν= 2) is then given by

〈n1l1;n1l2;LM |ρ⊗2
j 〉 = ∑

m1m2

〈n1l1;n1l2;LM |n1l1m1;n2l2m2〉

〈n1l1m1;n2l2m2|ρ⊗2
j 〉 ,

=δL0δM0(−1)l1−m1
√

2l1 +1〈n1l1m1;n2l2m2|ρ⊗2
j 〉 ,

where we have used the orthonormality of the basis |l1m1; l2m2〉 along with the contraction of

CG coefficients∑
m

(−1) j−m 〈 j m j −m|J0〉 =
√

2J +1
√

2 j +1δJ0. (A.13)

Equation (A.12) simplifies then into

〈n1n2l |ρ⊗2
j 〉 = 8π2(−1)l

p
2l +1

∑
m

(−1)m 〈n1lm|ρ j 〉 〈n2l (−m)|ρ j 〉 , (A.14)

which corresponds to the SOAP powerspectrum up to factors that do not change the SOAP

kernel.53 Following the same procedure as for Eq. (A.12) with Eq. (A.8) the uncoupled 4-body

spherical invariant is

〈n1l1m1;n2l2m2; a3n3l3m3|ρ⊗3
j 〉 = 8π2

2l1 +1
(−1)−m1 〈l2m2l3m3|l1 −m1〉∑

ν1ν2ν3

(−1)−ν1 〈l2ν2; l3ν3|l1(−ν1)〉 〈n1l1ν1|ρ j 〉 〈n2l2ν2|ρ j 〉 〈n3l3ν3|ρ j 〉 , (A.15)

which simplifies into

〈n1l1;n2l2;n3l3|ρ⊗3
j 〉 = 8π2(−1)l1√

2l1 +1

∑
m1m2m3

(−1)m1 〈l2m2; l3m3|l1(−m1)〉 〈n1l1m1|ρ j 〉

〈n2l2m2|ρ j 〉 〈n3l3m3|ρ j 〉 (A.16)

by reducing the coupling

〈l1l2l3l23;LM |ρ⊗3
j 〉 = ∑

m1m2
m3m23

〈l1l23;LM |l1m1〉 〈l2l3; l23m23|l2m2l3m3〉 〈l1m1l2m2l3m3|ρ⊗3
j 〉 ,

(A.17)

using the exclusion rules of the Clebsch-Gordan coefficients, the orthonormality of the angular

basis and Eq. (A.13). Equation (A.16) is the SOAP bispectrum up to factors that do not change

the SOAP kernel.53
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A.3. Atom density expansions

A.3 Atom density expansions

Section A.2 shows how invariant features can be computed from contractions of the atom

density expanded on a basis. In this section we derive expressions for the coefficients of the

density expansion and their derivative with respect to the atomic coordinates using several

basis sets. In real space the atom density is given by

〈ar|ρi 〉 =
∑
j∈i
δaa j exp

[
−c

(
r− ri j

)2
]

fc (ri j ), (A.18)

where c = 1/2σ2, σ is the width of the Gaussian, fc (ri j ) is a cutoff function with cutoff radii

rcut and a j is the atomic species of atom j , a neighbor of atom i . Then the density coefficients

become

〈anl m|ρi 〉 =
∫

IR3
dr〈n|r 〉 〈lm|r̂〉 〈ar|ρi 〉 =

∑
j∈i
δaa j fc (ri j )C i j

nlm , (A.19)

where 〈n|r 〉 = Rn(r ) is a radial basis and 〈lm|r̂〉 = Y m
l (r̂) is a spherical harmonic.

A.3.1 Angular integration

We use the orthonormality of the basis set to compute the expression for the density coef-

ficients and express the resulting integral over IR3 in spherical coordinates using the law of

cosines ‖r− ri j‖2 = ‖r‖2 +‖ri j‖2 −2‖r‖‖ri j‖ cosθ:

〈anl m|ρi 〉 =
∑
j∈i
δaa j fc (ri j )

∫ ∞

0
dr r 2 exp

[
−c

(
r 2 + r 2

i j

)]
Rn(r )

∫ 1

−1
d(cosθ)

∫ 2π

0
dφexp

[
2cr ri j cosθ

]
Y m

l

(
R̂êz

)
,

(A.20)

where R̂ = R̂Z Y Z
(
αi j ,βi j ,0

)
is the ZYZ-Euler matrix that rotate êz onto r̂i j to match θ with

the angle of the integral. Note that global normalization constants are omitted because of a

normalization at the end. The integration over the angular part yields∫ 1

−1
d(cosθ)exp

[
cr ri j cosθ

]∫ 2π

0
dφY m

l

(
R̂

(
αi j ,βi j ,0

)
r̂
)=4πY m

l

(
βi j ,αi j

)
il

(
ar ri j

)
,

=Y m
l

(
r̂i j

)
il

(
ar ri j

)
,

(A.21)

where the intermediate steps are detailed in the following paragraphs.

Integration over φ The integration over the polar angle cancels out all orders of m from the

SPH ∫ 2π

0
dφY m

l

(
θ,φ

)=√
π (2l +1)Pm

l (cosθ)δm0, (A.22)
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since

∫ 2π

0
dφexp

[
i mφ

]= 2πδ0m . (A.23)

Using Eqs. (A.9) and (A.10), the polar integral over the rotated SPH simplifies into

∫ 2π

0
dφY m

l

(
R̂r̂

)= l∑
m′=−l

Dl
mm′

(
αi j ,βi j ,0

)√
π(2l +1)P m′

l (cosθ)δm′0

=2πY m
l

(
βi j ,αi j

)
P 0

l (cosθ) .

(A.24)

Integration over θ The modified spherical Bessel function of the first kind (MSBF) admit

the following integral representation

in (z) = 1

2

∫ 1

−1
dx exp(zx)P0

n (x) , (A.25)

which can be shown using the reference relations Eqs. (A.26) to (A.28)

jn (z) = (−i )n

2

∫ 1

−1
dx exp[i zx]P 0

n (x) , † (A.26)

in (z) =(−i )n jn (i z) , ‡ (A.27)

in (z) =(−1)n in (−z) , § (A.28)

jn is the spherical Bessel function of the first kind. The integral over the polar angle is then

given by∫ 1

−1
d(cosθ)exp

[
2cr ri j cosθ

]
P 0

l (cosθ) =2il (2cr ri j ). (A.29)

A.3.2 Radial integration

Summing up the results from the previous section

C i j
nlm = 4πY m

l (r̂i j )exp
[
−cr 2

i j

]∫ ∞

0
dr r 2Rn(r )e−cr 2 il

(
2cr ri j

)
︸ ︷︷ ︸

=Ii j
nl

, (A.30)

†http://dlmf.nist.gov/10.54.E2
‡http://dlmf.nist.gov/10.47.E12
§http://dlmf.nist.gov/10.47.E16
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we identify the radial integral Ii j
nl for which an explicit choice of a radial basis function has to

be done. Inspecting Eq. (A.30) shows that a swap of the i j indices in the pair coefficient only

affects the spherical harmonics and it corresponds to reflecting the orientation of the r̂i j . The

parity operator applied on spherical harmonics357 yields the following relation for the pair

coefficients:

C
i j a j

nlm = (−1)l C j i ai

nlm , (A.31)

where a j is the type of atom j and ai is the type of atom i .

In the following we provide explicit results for Ii j
nl using several radial basis.

Gaussian Type Orbital (GTO) like radial basis

The GTO radial basis is defined as

RGT O
n (r ) =Nn r n exp

[−bnr 2], (A.32)

where bn = 1/2σ2
n , σn = rcut max(

p
n,1)/nmax and the normalization factor is given by

N 2
n = 2

σ2n+3
n Γ(n +3/2)

, (A.33)

where Γ(x) is the Gamma function. The GTO radial basis is interesting because it allows for an

analytical integration of the radial integral (see the next paragraph for the detailed derivation

steps)

I i j GTO
nl =Nn

p
π

4

Γ ((n + l +3)/2)

Γ (l +3/2)
c l r l

i j (c+bn)−(n+l+3)/2
1F1

(
n + l +3

2
, l + 3

2
,

c2r 2
i j

c +bn

)
, (A.34)

where 1F1 is the confluent hypergeometric function of the first kind and the neighbor contri-

bution becomes

C i j GTO
nlm =(π)3/2Nn

Γ ((n + l +3)/2)

Γ (l +3/2)
(c +bn)−(n+l+3)/2 (A.35)

Y m
l (r̂i j )exp

[
−cr 2

i j

]
(cri j )l

1F1

(
n + l +3

2
, l + 3

2
,

c2r 2
i j

c +bn

)
. (A.36)

The GTO radial basis is not orthonormal so the expansion coefficients are given by

〈anl m|ρi ;GTO〉 =∑
n′

S−1/2
nn′

∑
j∈i
δaa j fc (ri j )C i j GTO

n′l m (A.37)
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where the overlap matrix is

Snn′ =
∫ ∞

0
RGT O

n (r )RGT O
n′ (r )r 2 dr = 1

2
NnNn′ (bn +bn′)−0.5(3+n+n′)Γ(

3+n +n′

2
).

Analytic radial integral We write an integral representation of the confluent hypergeometric

function 1F1 (a,b, z) (CHF) in terms of MSBF:

1F1

(
a, l + 3

2
, x

)
= 2x−l /2

p
π

Γ (l +3/2)

Γ (a)

∫ ∞

0
e−t t a−1−l/2il (2

p
xt )dt , (A.38)

using these relations

1F1 (a,b, z) = 1

Γ (a)

∫ ∞

0
e−t t a−1

0F1 (b, zt )dt , ¶¶ (A.39)

Il (z) = (z/2)l

Γ (l +1)
0F1

(
l +1,

z2

4

)
, ††† (A.40)

il (z) =
√

π

2z
Il+1/2(z), ‡‡‡ (A.41)

il (z) =
√
π

4

(z/2)l

Γ (l +3/2)
0F1

(
l + 3

2
,

z2

4

)
, (A.42)

0F1

(
l + 3

2
, xt

)
=

√
4

π
Γ

(
l + 3

2

)
x−l/2t−l /2il (2

p
xt ), (A.43)

where Il is the modified Bessel function and 0F1 (b, z) is the limit conflent hypergeometric

function.

The radial integral with GTO radial basis function is

I i j GTO
nl =

∫ ∞

0
dr r 2RGTO

n (r )e−r 2/2σ2 il
(
r ri j /σ2)=Nn

∫ ∞

0
dr r 2+ne−r 2(c+bn )il

(
2cr ri j

)
. (A.44)

We partially identify the terms between Eq. (A.38) and Eq. (A.44):

t =r 2(c +bn), (A.45)

dt =2r dr (c +bn), (A.46)

x =
c2r 2

i j

c +bn
, (A.47)

¶¶http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/07/01/01/
0002/ or http://dlmf.nist.gov/16.5.E3

†††https://en.wikipedia.org/wiki/Generalized_hypergeometric_function#The_series_0F1
‡‡‡http://mathworld.wolfram.com/ModifiedSphericalBesselFunctionoftheFirstKind.html
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to change the integrand of the radial integral

I i j GTO
nl =Nn

∫ ∞

0

dt

2(c +bn)
(c +bn)−(n+1)/2t (n+1)/2e−t il

(
2
p

xt
)

, (A.48)

and identify the last term to (n + l +3)/2

Descrete Variable Representation (DVR) radial basis

Alternatively, the radial integral can be solved numerically

Ii j
nl =

K∑
k=1

ωk r 2
k Rn(rk )e−cr 2

k il
(
2crk ri j

)
, (A.49)

where the ωk are the quadrature weights evaluated at the quadrature nodes rk . Depending on

the quadrature rule, the following shifting formula is useful,∫ b

a
f (x) dx ≈ b −a

2

n∑
i=1

wi f

(
b −a

2
xi + a +b

2

)
.

The cost associated with the K function evaluations can be mitigated by choosing the DVR

radial basis and the Gauss-Legendre quadrature rule (see Ref.359 for more details)

Ii j DVR
nl = xn

p
ωne−cx2

n il
(
2cxnri j

)
, (A.50)

where xn andωn have been shifted to the proper range. Note we have xn instead of x2
n because

when starting from the kernel for the power spectrum in real space and approximating the

radial integrals with Gauss quadrature, the r 2 gets split into the two spherical expansions of

the power spectrum.

A.4 Gradients of the atom density expansions

From Section A.3, it is clear that irrespective of the radial basis the atom density expansion

can be written as

〈anl m|ρi 〉 =
∑
j∈i
δaa j Y m

l (r̂i j )Dnl (ri j ), (A.51)
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where j is a neighbor of atom i of species a j and Dnl (ri j ) = fc (ri j )exp
[
−cr 2

i j

]
I i j

nl . Hence the

derivative w.r.t. the atomic positions instead

∇∇∇k 〈anl m|ρi 〉 =
∑
j∈i
δaa j ∇∇∇kC i j

anl m

=∑
j∈i
δaa j

[∇∇∇k Y m
l (r̂i j )Dnl (ri j )+Y m

l (r̂i j )∇∇∇k Dnl (ri j )
]

, (A.52)

where k can be i or j . From this expression we can derive a few properties of ∇∇∇k 〈anl m|ρi 〉
that are helpfull to its efficient implementation:

∇∇∇i 〈anl m|ρi 〉 =
∑
j∈i
δaa j ∇∇∇i C i j

a j nlm (A.53)

∇∇∇ j 〈anl m|ρi 〉 =δaa j ∇∇∇ j C i j
a j nlm . (A.54)

Inspection of Eq. (A.52) shows that

∇∇∇i C i j
a j nlm =−∇∇∇ j C i j

a j nlm , (A.55)

which allow to simply write Eq. (A.54) in terms of Eq. (A.53)

∇∇∇ j 〈anl m|ρi 〉 =−δaa j ∇∇∇i C i j
a j nlm . (A.56)

In a similar fashion, the missing j i pairs when i < j using the half neighbor list can be

recovered. The terms ∇∇∇i 〈anl m|ρ j 〉 are not explicitly present but we can get them using:

∇∇∇i 〈anl m|ρ j 〉 =∇∇∇i C j i
anl m = (−1)l∇∇∇i C i j

a j nlm = (−1)l+1∇∇∇ j C i j
a j nlm = (−1)l+1∇∇∇ j 〈anl m|ρi 〉 . (A.57)

A.4.1 ∇∇∇k Y m
l (r̂i j )

The derivative of the SPH can be expressed in a few different ways. The real SPHs definition is

used in the following derivation (see Eq. (A.3)). Derivative w.r.t. the z coordinate:

∂Ȳ m
l

∂zi
= −sinθ

2ri j
cos

(
mφ

)(√
(l +m)(l −m +1)P̄ m−1

l (cosθ)

−
√

(l −m)(l +m +1)P̄ m+1
l (cosθ)

)
(A.58)

∂Ȳ −m
l

∂zi
= −sinθ

2ri j
sin

(
mφ

)(√
(l +m)(l −m +1)P̄ m−1

l (cosθ)

−
√

(l −m)(l +m +1)P̄ m+1
l (cosθ)

)
(A.59)

∂Ȳ 0
l

∂zi
= sinθ

ri j

√
l (l +1)

2
P̄ 1

l (cosθ)) (A.60)
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The x component is:

∂Ȳ m
l

∂xi
= −m sinφ√

x2
i j + y2

i j

Ȳ −m
l + cosφcosθ

2ri j
cos

(
mφ

)(√
(l +m)(l −m +1)P̄ m−1

l (cosθ)

−
√

(l −m)(l +m +1)P̄ m+1
l (cosθ)

)
(A.61)

∂Ȳ −m
l

∂xi
= m sinφ√

x2
i j + y2

i j

Ȳ m
l + cosφcosθ

2ri j
sin

(
mφ

)(√
(l +m)(l −m +1)P̄ m−1

l (cosθ)

−
√

(l −m)(l +m +1)P̄ m+1
l (cosθ)

)
(A.62)

∂Ȳ 0
l

∂xi
= −cosφcosθ

ri j

√
l (l +1)

2
P̄ 1

l (cosθ) (A.63)

and for the y component, similarly:

∂Ȳ m
l

∂yi
= m cosφ√

x2
i j + y2

i j

Ȳ −m
l + sinφcosθ

2ri j
cos

(
mφ

)(√
(l +m)(l −m +1)P̄ m−1

l (cosθ)

−
√

(l −m)(l +m +1)P̄ m+1
l (cosθ)

)
(A.64)

∂Ȳ −m
l

∂yi
= −m cosφ√

x2
i j + y2

i j

Ȳ m
l + sinφcosθ

2ri j
sin

(
mφ

)(√
(l +m)(l −m +1)P̄ m−1

l (cosθ)

−
√

(l −m)(l +m +1)P̄ m+1
l (cosθ)

)
(A.65)

∂Ȳ 0
l

∂yi
= −sinφcosθ

ri j

√
l (l +1)

2
P̄ 1

l (cosθ) (A.66)

The formulæ above have a singularity at the poles for m 6= 0, so the following identity:

m√
x2

i j + y2
i j

(
Ȳl ,−m(r̂i j )

Ȳl ,m(r̂i j )

)
= −1

2zi j

(
sin

(
mφ

)
cos

(
mφ

))(√
(l +m)(l −m +1)P̄ m−1

l (cosθ)

+
√

(l −m)(l +m +1)P̄ m+1
l (cosθ)

)
(A.67)

can be used to shift the singularity to the equator (z = 0).

A.4.2 ∇∇∇k Dnl (ri j )

∇∇∇k Dnl (ri j ) =
[

d fc (ri j )

dri j
I i j

nl −2cri j fc (ri j )I i j
nl + fc (ri j )

dI i j
nl

dri j

]
exp

[
−cr 2

i j

]
∇∇∇k ri j (A.68)

where ∇∇∇i , j ri j =∓ri j /ri j and ri j = r j − ri .
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Appendix A. Details on Spherical Invariants

Derivative of the radial integral

GTO radial basis Using the recurrence relation of the 1F1
†:

d

dz
1F1 (a,b, z) = a

b
1F1 (a +1,b +1, z) , (A.69)

the gradient of the GTO radial integral becomes:

dI i j GT O
nl

dri j
= Nn

2
c l+2r l+1

i j (c +bn)−n+l+5/2Γ(n + l +5/2)

Γ(l +5/2)
1F1

(
n + l +5

2
, l + 5

2
,

c2r 2
i j

c +bn

)

+ l

ri j
I i j GT O

nl (A.70)

DVR radial basis Using the recurrence relation of the MSBF‡:

dil (x)

dx
= 1

2l +1
[l il−1(x)+ (l +1)il+1(x)], (A.71)

the gradient of the DVR radial integral becomes:

dI i j DV R
nl

dri j
= 2c

p
ωn

2l +1

rcut

2
x3

ne−cx2
n [l il−1(2cxnri j )+ (l +1)il+1(2cxnri j )], (A.72)

where xn = rcut/2rn + rcut/2 and rn are the Gauss-Legendre quadrature points.

†http://dlmf.nist.gov/13.3.E15
‡http://mathworld.wolfram.com/ModifiedSphericalBesselFunctionoftheFirstKind.html
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2.1 Atom-density-based structural representations, expressed in the real-space 〈r|
basis. (a) A structure can be mapped onto a smooth atom density built as a

superposition of smooth atom-centered functions. The overall density can be

decomposed in atom-centered environments, and information on chemical

compositions can be stored by decorating the functions with elemental kets. (b)

The ν= 1 invariant ket corresponds to spherical averaging of the environmental

atom density. (c) The ν= 2 invariant ket corresponds to three-body correlations,

which are obtained by integrating over all rotations a stencil corresponding to

two distances along two directions with a fixed angle arccosω between them. . 15

2.2 Isocontours of the 3-body correlation functions associated with the environment

centered on the tagged carbon atom of an ethanol molecule. From left to right,

the figures correspond to 〈Cr Hr ′ω|ρ⊗2
j 〉/r r ′, 〈Or Hr ′ω|ρ⊗2

j 〉/r r ′, 〈Or Hr ′ω|ρ⊗2
j 〉/r r ′. 16

2.3 Schematic representation of the construction of a real-space representation of

a tensorial ket associated with a λ-SOAP kernel. The (smooth) atom density is

evaluated at two points corresponding to a stencil (r,r ′,ω), and the spherical

harmonic Y λ
µ is evaluated at the angles (θ,φ), relative to the reference frame that

is used to describe the stencil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 (a) Permutation-variant structural descriptors can be stored in a vector to be

used as an atomic-scale representation. (b) Sorting this vector makes it per-

mutationally invariant. (c) It is easy to see how the sorted vector relates to the

cumulative distribution function associated with the histogram of the values of

the structural features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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2.5 (a) Schematic representation of an ANN in which the input layer corresponds to

the elements of a density-based representation. The target property associated

with the full structure is expressed as a sum of atomic contributions. (b) In the

case of a tensorial property it is essential to preserve the covariant nature of the

λ-SOAP ket. To do so, one can construct a NN using only scalar SOAP features,

and use the output as a multiplier for the tensorial features. The output of several

of these blocks must then be combined linearly and without mixing different λµ

components to obtain the environment’s contribution to a tensorial property. 22

3.1 The lysine building block was studied in three forms: (a) uncharged dipeptide,

(b) protonated dipeptide, and (c) uncapped and uncharged amino acid. . . . . 36

3.2 Representation of the similarity matrix corresponding to the lysine dipeptide

dataset using the agglomerative clustering algorithm (top) and the sketchmap

algorithm (bottom, projection parameters shown following the scheme σ-A_B-

a_b). A few representative structures (see Eq. (3.7)) of interesting clusters are

shown (right) and their corresponding position on the sketch-maps and dendro-

gram representation is highlighted. The five sketch-maps are colored according

to the conformational energy and the backbone dihedral angles φ, ψ, ω1 and ω2.

The dendrogram shows the clustering hierarchy of the structures of the dataset.

Each structure is vertically aligned with its properties shown using color bars

below the dendrogram. The dendrogram is cut at a linkage distance of 0.1 since

structural properties are very similar below this threshold, and the clusters that

are merged at this level are shown as thick gray bars separated by light-gray lines.

Clusters composed of only one structure are drawn as a black line reaching the

bottom of the dendrogram. The main structural motifs of this set of structures

are governed by the peptide bond dihedral angles ω1 and ω2. The two main

clusters (a) and (b) are showing a global correlation with the angle ω2 while the

angle ω1 splits them into two well correlated sub-clusters (d), (e) and (f), (g)

respectively. The cluster (c) is highlighted as an example containing ‘outlier’

structures of low conformational energy. . . . . . . . . . . . . . . . . . . . . . . . 37
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3.3 Representation of the similarity matrix corresponding to the protonated ly-

sine dipeptide dataset using the agglomerative clustering algorithm (top) and

the sketchmap algorithm (bottom, projection parameters shown following the

schemeσ-A_B-a_b). A few representative structures (see Eq. (3.7)) of interesting

clusters are shown (right) and their corresponding position on the sketch-maps

and dendrogram representation is highlighted. The six sketch-maps are colored

according to the conformational energy, the minimal distance between O1 or

O2 with N3 called DON, and the backbone dihedral angles φ, ψ, ω1 and ω2. The

dendrogram shows the clustering hierarchy of the structures of the dataset. Each

structure is vertically aligned with its properties shown using color bars below

the dendrogram. The dendrogram is cut at a linkage distance of 0.1 since struc-

tural properties are very similar below this threshold, and the clusters that are

merged at this level are shown as thick gray bars separated by light-gray lines.

Clusters composed of only one structure are drawn as a black line reaching the

bottom of the dendrogram. The main structural motifs of this set of structures

are governed by the dihedral angles ω1 and ω2 and the distance DON. The two

main clusters (a) and (b) are showing a global correlation with the angle ω2 while

the angle ω1 splits them into well correlated sub-clusters (e.g. sub-clusters (d)

and (e)). The other important sub-clustering parameter is the distance DON,

e.g. sub-clusters (c) and (b), which also correlates well with the separation be-

tween low and high conformational energy shown on the sketch-maps. Two

sub-clusters are particular: (g) is a clear ‘outlier’ due to a chemical change and (f)

features a H-bonding pattern with the side chain NH+
3 pointing to both carboxy

groups that sets this cluster apart from all others. . . . . . . . . . . . . . . . . . . 40
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3.4 Representation of the similarity matrix corresponding to the lysine uncapped

dataset using the agglomerative clustering algorithm (top) and the sketchmap

algorithm (bottom, projection parameters shown following the scheme σ-A_B-

a_b). A few representative structures (see Eq. (3.7)) of interesting clusters are

shown (right) and their corresponding position on the sketch-maps and dendro-

gram representation is highlighted. The five sketch-maps are colored according

to the conformational energy, the distance between N1 and the hydrogen in the

carboxilic group H1 (labelled DH), the distance between N2 and Cα (labelled

DCN), and the dihedral angles α1 and α2 which are respectively computed with

the following atoms (N1,Cα,C2,C3) and (C1,Cα,C2,C3). The dendrogram shows

the clustering hierarchy of the structures of the dataset. Each structure is verti-

cally aligned with its properties shown using color bars below the dendrogram.

The dendrogram is cut at a linkage distance of 0.1 since structural properties

are very similar below this threshold, and the clusters that are merged at this

level are shown as thick gray bars separated by light-gray lines. Clusters com-

posed of only one structure are drawn as a black line reaching the bottom of

the dendrogram. The main structural motifs of the database are governed by

the distance DH. The two main clusters (a) and (b) are agglomerated according

to the orientation of H1 and the oxygen atom it is bonded to with respect to N1

which is well described by the distance DH. The sub-cluster (e) is composed

of ‘outlier’ structures showing an H-bond between N2 and an hydrogen of N1

resulting in a folded side chain structural motif. Finally, the outlier cluster (f)

contains a H-bond between the carboxy H and the side-chain NH2, that can be

seen as a precursor to the zwitterionic form. . . . . . . . . . . . . . . . . . . . . . 42

3.5 The out-of-sample embedding of conformers with Ca2+ ion on the sketchmap

of their pure counterpart, for the three systems we discussed in above: lysine

dipeptide (a), protonated lysine dipeptide (b) and molecular lysine (c) systems.

The projected conformers are colored with their energy where as the sketchmap

on which they are projected are kept all in grey color. The location of the pro-

jected conformers allows us to understand how the conformational space of the

pure conformers are affected due to presence of the Ca2+ ion. . . . . . . . . . . 43

3.6 This figure compares the homogeneity of clusters from the protonated lysine

dipeptide (see a) and the bare lysine uncapped (see b) with respect to properties

of their elements. The homogeneity of a cluster is probed using the standard de-

viation with respect to the distance between each cluster elements, σD , and the

conformational energy, σE . The outliers of uncapped lysine (b) were manually

highlighted in orange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Molecules investigated in the present study. . . . . . . . . . . . . . . . . . . . . . 48
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3.8 Sketch-map representations of the pentacene crystal structure landscape’s simi-

larity matrix (projection parameters shown follow the scheme σmap -A_B-a_b).

The atomic configurations are color-coded according to their relative lattice

energy (bottom right), class following the heuristic classification (top right) and

cluster index (gray structures do not belong to a cluster) found using HDBSCAN*

on the similarity matrix (left). The structural pattern of each cluster is illustrated

from a view down the short edge of pentacene. . . . . . . . . . . . . . . . . . . . 49

3.9 Sketch-map representations of the 5A crystal structure landscape. The atomic

configurations are color-coded according to their relative lattice energy (bottom

right), class following the heuristic classification (top right) and cluster index

(gray structure do not belong to a cluster) found using HDBSCAN* on the simi-

larity matrix (left). The structural pattern of each cluster is illustrated with a top

and long side (yellow cluster) view of the 5A polymorphs. . . . . . . . . . . . . . 51

3.10 Representation of the similarity matrix for 5B The atomic configurations, i.e.

disks, on the three sketch-maps are color-coded according to their lattice energy

(bottom right), class following the heuristic classification (top right) and cluster

index (gray structure do not belong to a cluster) found using HDBSCAN* on the

similarity matrix (left). The structural pattern of each cluster is illustrated with a

top view of the 5B polymorphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 1H chemical shifts of the 76214 environments in the CSD-2k set. The environ-

ments excluded using the unusual structures detection procedure described in

Eq. (4.8) are shown in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Scheme of the machine learning model used for the chemical shift predictions. 64

4.3 1H chemical shift prediction error of the trained model for the CSD-500 set. The

RMSE prediction error between chemical shifts calculated with ShiftML and

GIPAW DFT is shown for different local environment cutoff radii, and for the

multi-kernel (labelled as msk), as a function of the training set size. . . . . . . . 65

4.4 RMSE learning curves showing the error between chemical shifts calculated with

GIPAW DFT and ShiftML of the CSD-2k dataset for different local environment

cutoff radii, and for the multi-kernel (labelled as msk), as a function of the

training set size. The curves are for 1H (a), 13C (b), 15N (c) and 17O (d) chemical

shieldings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
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4.5 CPU time for NMR chemical shift calculations using the GIPAW method. (a)

The CPU time is shown as function of the DFT accuracy, determined by the

plane-wave cutoff energy Ecuto f f and the number of k-points in each dimension

for polymorph 1 of cocaine. The charge density energy cut-offs were set to

Eρ = 4Ecuto f f . (b) The CPU time is shown as function of increasing system

size in CSD-2k. The green squares and blue dots show individual geometry

optimization and GIPAW chemical shift DFT calculations, respectively. The red

line shows the best fit between the number of valence electrons and the required

CPU time as tC PU = aN 2
e +bN 3

e , with a = 0.0162 and b = 5.91 ·10−6. . . . . . . . 67

4.6 Comparison of predictions from ShiftML and GIPAW DFT. Histograms and

scatter-plots showing the correlation between 1H (a), 13C (b), 15N (c) and 17O (d)

chemical shifts (shieldings) calculated with GIPAW and ShiftML. The black lines

indicate a perfect correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 Chemical structures of the compounds used for experimental comparison taken

from Ref.305. In order, cocaine (a),265 3,5-dimethylimidazole and 4,5-dimethylimidazole

(b),307 AZD8329 (c),276 naproxen (d),308 theophylline (e)265 and uracil (f),309 and

the labelling scheme used here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8 Comparison of predictions from ShiftML and GIPAW DFT for polymorphs of

cocaine and AZD8329. (a) Histogram showing the distribution of the differences

between 1H chemical shifts calculated with GIPAW and with ShiftML for the

polymorphs of cocaine (blue), and the polymorphs of AZD8329 (orange). (b)

Scatterplot showing the correlation between 1H chemical shifts calculated with

GIPAW and ShiftML for cocaine (blue) and AZD8329 (orange). The black line

indicates a perfect correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.9 Comparison of ShiftML to experimentally measured shifts. (a) Histogram show-

ing the distribution of differences between experimentally measured 1H chemi-

cal shifts and 1H chemical shifts calculated with ShiftML for six different crystal

structures (see Fig. 4.7 for the structures and numerical values of the shifts). (b)

Scatter plot showing the correlation between these experimentally measured 1H

chemical shifts and shifts calculated with ShiftML. (c-d) Comparison between

calculated and experimental 1H chemical shifts for the most stable structures

obtained with CSP for cocaine (c) and AZD8329 (d). For each candidate structure
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4.10 Chemical shift calculation times and large structures. (a) DFT GIPAW calculation

time (blue) and ShiftML prediction time (turquoise) for different system sizes.

The GIPAW DFT calculation time for the six large structures (orange) is estimated

from a cubic dependence on the number of valence electrons in the structure

(see Fig. 4.5). (b-g) 3D-shemes and 1H NMR spectra predicted with ShiftML, of

the six large molecular crystals with CSD Refcodes: (b) CAJVUH,310 Natoms = 828,

(c) RUKTOI,311 Natoms = 768, (d) EMEMUE,312 Natoms = 860, (e) GOKXOV,313

Natoms = 945, (f) HEJBUW,314 Natoms = 816, (g) RAYFEF,315 Natoms = 1584. . . . 72
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geometries, the right-hand panel correspond to the prediction of DFT energies

on such structures, and the bottom panel to the prediction of the difference
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4.16 Learning curves for the elpasolite crystals. The standard SOAP curve is shown

in black, the best curve from Ref.104 is shown in bright red and the optimized

curves are shown in dark red (d J = 1), purple (d J = 2) and blue (d J = 4). For each

of these models, the kernels were constructed with rcut = 5Å and ζ = 1. The

multiple-kernel model (shown in grey) combines three standard SOAP kernels

(ζ= 1, rcut = 4; ζ= 1, rcut = 6; ζ= 4, rcut = 6) and one optimized kernel (d J = 4,

ζ= 1, rcut = 5) in the ratio 4 : 3 : 1 : 220. All of the kernels were constructed with

ν = 2, nmax = 12 radial basis functions and lmax = 9 non-degenerate spherical

harmonics. Error bars are omitted because they are as small as the data point

markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.17 Data-driven representations of the chemical space. (a) A 2D map of the elements

contained in the elpasolite data set, with the coordinates corresponding to u1a

and u2a , for the case d J = 2. Points are colored according to the group. (b) A

periodic table colored according to the coordinates in the 2D chemical space.

u1a corresponds to the red channel and u2a to the blue channel. (c) A periodic

table colored according to u1a (red channel) for a 1D chemical space. (d) A

periodic table colored according to 4D chemical coordinates (u1a : red channel,

u2a : green channel, u3a : blue channel, u4a : hatches opacity) . . . . . . . . . . . 87

4.18 Learning curves for the QM9 data set. Four of the lines show the MAE on the

test set for various standard SOAP kernels (ζ = 2) with different cutoff radii

(dashed lines graduating from red to blue). The other lines show the MAE

on the test set for the optimal radially-scaled (RS) and multiple-kernel (MK)

SOAP models (black and grey lines respectively). In every model, the kernels

were constructed with ν= 2, nmax = 12 radial basis functions and lmax = 9 non-

degenerate spherical harmonics. The inset shows the radial-scaling function

u(r ) from r = 0Å to r = 5Å with the parameters that were found to minimize

the ten-fold cross validation MAE on the optimization set through a grid search,

r0 = 2Å and m = 7. The multiple-kernel model combines the rcut = 2,3,4 and RS

kernels in the ratio 100,000 : 1 : 2 : 10,000, and the learning curve agrees with the

RS result to within graphical accuracy. Error bars are omitted because they are

as small as the data point markers. Note that errors are expressed on a per-atom

basis. Error per molecule expressed in kcal/mol can be obtained approximately

by multiplying the scale by 0.4147, that is computed based on the average size of

a molecule in the QM9 database. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
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4.19 Learning curves for the QM9 data set after inclusion of radially-scaled and

alchemically-optimized SOAP kernels. Standard SOAP kernels with different cut-

off radii are compared with the result of optimizing alchemical correlations using

the scheme presented previously for the elpasolite crystal data set (blue and

red lines). The learning curve of the optimized radially-scaled kernel (dashed

black line with circles) is improved through inclusion of a Gaussian alchemical

kernel (dashed black line with squares), which was optimized specifically for

ζ= 2 using a grid search. The combined optimization of the radial scaling and

alchemical correlations leads to a model that matches the accuracy of the state

of the art curve (dashed red line), which corresponds to the representations

from Ref.104, with the errors normalized by the average size of a molecules in the

QM9 database. In every SOAP-based model, the kernels were constructed with

ν = 2, nmax = 12 radial basis functions and lmax = 9 non-degenerate spherical

harmonics. Error bars are omitted because they are as small as the data point

markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.20 Distribution of 1H chemical shielding predictions. The colored solid lines

show contours of P (lnεt |lnσ), while the colored dashed lines show contours

of P (lnεm |lnσ) (see Eq. (4.31) and the corresponding contour levels are shown

in the legend. The grayscale density plot and the solid black line respectively

correspond to the marginal distribution of the predicted uncertainty P (lnσ) and

to y = x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.21 Distribution of 1H chemical shielding predictions. The solid lines show con-

tours of P (lnεt |lnσ), while the dashed lines show contours of P (lnεm |lnσ) (see

Eq. (4.31)), including a non-linear scaling of the uncertainty corresponding to

Eq. (4.25) with γ 6= 0, and the corresponding contour levels are shown in the leg-

end. The grayscale density plot and the solid black line respectively correspond

to the marginal distribution of the predicted uncertainty P (lnσ) and to y = x. . 100

4.22 Distribution of formation energy differences for the QM9 dataset. The colored

solid lines show contours of P (lnεt |lnσ), while the colored dashed lines show

the contours of P (lnεm |lnσ) (see Eq. (4.31)), including a non-linear scaling of

the uncertainty corresponding to Eq. (4.25) with γ 6= 0, and the corresponding

contour levels are shown in the legend. The grayscale density plot and the solid

black line respectively correspond to the marginal distribution of the predicted

uncertainty P (lnσ) and to y = x. The red dots show the distribution of actual

errors and predicted uncertainties for 100 randomly selected structures that

failed the SMILES consistency test when the QM9 dataset was constructed. . . 103
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4.23 Distribution of formation energy differences for the Elpasolite crystal dataset.

The colored solid lines show contours of P (lnεt |lnσ), while the colored dashed

lines show contours of P (lnεm |lnσ) (see Eq. (4.31)), including a non-linear

scaling of the uncertainty corresponding to Eq. (4.25) with γ 6= 0, and the corre-

sponding contour levels are shown in the legend. The grayscale density plot and

the solid black line respectively correspond to the marginal distribution of the

predicted uncertainty P (lnσ) and to y = x. . . . . . . . . . . . . . . . . . . . . . . 105
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