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Abstract—A person’s passage of time perception (POTP) is
strongly linked to their mental state and stress response, and
can therefore provide an easily quantifiable means of continuous
mental health monitoring. In this work, we develop a custom
experiment and Machine Learning (ML) models for predicting
POTP from biomarkers acquired from wearable biosensors. We
first confirm that individuals experience time passing slower than
usual during fear or sadness (p = 0.046) and faster than usual
during cognitive tasks (p = 2× 10−5). Then, we group together
the experimental segments associated with fast, slow, and normal
POTP, and train a ML model to classify between these states
based on a person’s biomarkers. The classifier had a weighted
average F-1 score of 79%, with the fast-passing time class having
the highest F-1 score of 93%. Next, we classify each individual’s
POTP regardless of the task at hand, achieving an F-1 score
of 77.1% when distinguishing time passing faster rather than
slower than usual. In the two classifiers, biomarkers derived from
the respiration, electrocardiogram, skin conductance, and skin
temperature signals contributed most to the classifier output, thus
enabling real-time POTP monitoring using noninvasive, wearable
biosensors.

Index Terms—passage of time perception, wearable sensors,
mental health monitoring, machine learning, biomarkers

I. INTRODUCTION

The way in which humans perceive the passage of time
is a psychological and neurological phenomenon linked to
emotions, memory, attention, and the body’s response to stress
[1], [2]. When people are busy, amused or excited, they
experience time passing faster than it truly does. Conversely,
when people are afraid or under stress, time seems to slow
down [1]–[3]. Furthermore, during the recent COVID-19 pan-
demic lockdown, it was found that the experience of time
passing slowly was associated with increased stress, decreased
task load, and decreased satisfaction with one’s amount of
social interactions [4]. Moreover, a person’s passage of time
perception (POTP) is a quantifiable measure that is intricately
linked to their mental state [3].

Along with distortions in POTP, various emotions also
induce changes in physiological processes such as heart rate,
blood pressure, muscular contraction and respiration [3], [5].
This phenomenon illustrates the notion that our perception
of time is related to our homeostatic state, and thus, to our
physiological stress response that our body triggers to deal
with a disturbance in homeostatic balance [6].

Physiological monitoring through noninvasive biosensors
has previously been used as a means of monitoring mental
health conditions including depression, anxiety, bipolar dis-

orders, and many more [7]. These sensors enable continuous
measurements and online estimations of a person’s emotions
[8], thereby providing real-time insights into their mental state
and facilitating timely interventions in the case of deteriorating
mental health. Biomarkers computed from such sensors have
been previously used to classify a person’s stress response [8],
[9], cognitive load [10], and emotions on the arousal-valence
scale [11]. However, no study has thus far has used unobtru-
sively measured biosignals to predict individuals’ POTP, which
provides additional insights into their mental state.

In this study, we assess the hypothesis that a person’s
POTP relates to their stress-related physiological processes,
as these relate to their mental state. Thus, we aim to use
noninvasive biosignal monitoring and Machine Learning (ML)
tools to predict a person’s POTP, both directly through binary
classification, and indirectly through multi-class prediction of
activities that elicit significant changes in POTP. We first
investigate the correlations between different induced emotions
and their effects on subjects’ POTP. Then, we propose a
ML model training and optimization procedure for predicting
the experimental segment – and its corresponding POTP – a
subject experienced given their physiological features. Next,
we use this ML technique to distinguish periods of fast time
perception from those of slow time perception across all
experimental segments. Finally, we investigate the influence of
individual biomarkers in the POTP and emotion classification
outcome to determine which features affect each model.

II. METHODS

The set of contributions of this work, namely, the quantifi-
cation and classification of POTP, is presented in Fig. 1. First,
various emotional states are induced in the subject through a
custom-designed experimental protocol. Since the physiologi-
cal stress response has been associated with different levels of
cognitive workload, job performance, emotions, and optimal
physical states [8], [9], we investigate multiple biosignals
and the correlation of their changes with the perception of
passage of time during a variety of stimuli that elicit different
emotions, cognitive loads, and stress levels. Thus, we induce
emotions and cognitive states on a set of participants as they
perform specific tasks and watch emotional short films while
we measure their response to these stimuli, as well as their
sense of the passage of time.

Throughout the experiment, five biosignals are measured
– electrocardiogram (ECG), skin temperature (SKT), electro-
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Fig. 1: Overall methodology of the POTP statistical analysis and classification

dermal activity (EDA), respiration (RSP), and photoplethys-
mography (PPG) – for their proven contribution to emotion
and psychological stress monitoring [8], [9]. Next, we de-
velop a ML optimization procedure to select the ML model
and hyperparameters that perform the best classification of
emotional states and time perceptions based on the subjects’
physiological features. Finally, the models are tested to predict
subjects’ emotional states and time perceptions.

A. Induced Emotional States: Experimental Protocol Design

In order to investigate the relationship between subjects’
emotional state and their POTP, we designed an experiment
to elicit various emotions in healthy volunteers using films,
cognitive tasks, and intermittent rest states. The exact experi-
mental protocol and the groupings of segments for statistical
analysis are displayed in Table I:

TABLE I: Experimental protocol

No Segment Duration Class
1 Relaxation audio 3 min Rest
2 Neutral Clip 2 min Neutral
3 Rest 2 min Neutral
4 Fear Clip 2 min Emotional
5 Mathematics Task 3 min Cognitive
6 Rest 1.5 min Rest
7 Stroop Color Test 1.5 min Cognitive
8 Sadness Clip 1.5 min Emotional
9 Rest 3 min Rest

The video clips were selected from the Emotional Movie
[12] and the FilmStim Databases [13], which are two validated
databases containing footage to induce specific emotions. The
mathematics activity consists of solving arithmetic tasks given
time constraints with startling negative feedback [14]. The
Stroop Color Test is a color-word reading exercise used to
measure cognitive flexibility and working memory [15].

Between experimental segments, the subject completes a
questionnaire including a visual analogue scale for stress
(VASS), in which they select their stress level at that moment
from 0 to 100 [16]. Also, the subjects estimate the duration
of the past experimental segment using a time scale ranging
from 0 to 5 minutes in increments of 30 seconds. Rest phases
are included between experimental phases to give the subject
time to reset their emotional state to its baseline. During the
experiment, the Shimmer Node3 ECG [17] and Empatica E4
wristband [18], which are two lightweight and unobtrusive
sensing devices, are used to measure the 5 biosignals.

There were 18 participants recruited for this study: 13 males
and 5 females between the ages of 22 and 31. Each experiment
was conducted in one sitting using a custom-made Android

application to display the instructions and tasks. The ethical
approval for this study was obtained from the Cantonal Ethics
Commissions for Human Research Vaud (ID 2019-00321).

B. Biosignal Measurement and Analysis

The body’s physiological response to emotions and stress
is characterized by the combination of several biometric vari-
ables [9]. These variables can be monitored through parame-
ters derived from biosignals that are unobtrusively measured
and continuously monitored. After preprocessing each signal
(i.e., filtering and delineation), various parameters are ex-
tracted. The preprocessing algorithms and primary parameters
obtained from each time series signal are computed as in [8],
[10], and [19]. Next, 80 physiological features in the time
and frequency domains are extracted from the parameters in
segmentation windows of 45s. Previous works have used win-
dows of length 60s [8], [9], [20], but learning curves indicated
that this produced insufficient data for training. Therefore,
we reduced the window length for feature extraction to 45s
as a data augmentation technique. These features capture the
subject’s physiological response during each emotional state.
Several key biosignal parameters and features from were the
biomarkers are selected, are described as follows:

1) SKT: For the SKT signal, we compute the gradient
(SKT gradient) and total power, (SKT power) of its
power spectral density (PSD).

2) EDA: The EDA signal is divided into two main
components: the skin conductance level (SCL) and the
skin conductance response (SCR) as the driver phasic sig-
nal (SCR power). The gradient and mean of the SCL
(SCL gradient, SCL mean) are obtained.

3) RSP: We compute respiration rate and period
(RSP Rate,RSP Prd), duration of air inhaled (InspT ime)
and exhaled (ExpT ime) and compute statistics based on these
parameters. In the frequency domain, we compute the PSD
in four different bands of equal bandwidth between 0-1 Hz
(RSP PSD1−4). Additionally, we consider the normalized
band power in these four bands (RSP nPSD1−4), as well
as in 5 fine-grained bands in 0.08-0.6 Hz (RSP pBF1−5).
Then, we extract RSP F1pond, which is the mean frequency
of a Gaussian distribution used to fit the PSD estimated
in the HF band (0.15 − 0.5Hz). Moreover, we applied the
method proposed in [21] to compute the estimated respiratory
frequency, as the largest peak power (RSP Pk) of the
Lomb-Scargle PSD of respiration using a Welch periodogram.
Finally, we compute the average signal power across all
windows (RSP power).
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Fig. 2: Pipeline for machine learning model selection and testing

4) ECG: From the ECG, the RR intervals are obtained
as in [22], and then features are extracted based on the
Heart Rate Variability (HRV) analysis [23], such as its mean
(ECG RR mean), median (ECG RR median) and stan-
dard deviation (ECG RR SDNN ). Additionally, we com-
pute its normalized bandpower in the very low frequency
(ECG RR nV LF ), low frequency (ECG RR nLF ), and
high frequency (ECG RR nHF ) bands centered at 0.04
Hz, 0.15 Hz, and 0.4 Hz, respectively. Non-linear features
are also extracted from Poincaré plot indicating vagal and
sympathetic function. They are the following: the length of the
transverse axis (ECG RR T ), the length of the longitudinal
axis (ECG RR L), and their ratio, called Cardiac Sympa-
thetic Index (ECG RR CSI), as well as the modified CSI
(ECG RR CSI modified) [20].

5) PPG: We compute several PPG parameters, includ-
ing the pulse period (PPG PP ), pulse wave rising time
(PPG PRT ), pulse wave decreasing time (PPG PDT ),
pulse width until reflected wave (PPG PW ). We then extract
ensemble statistics from each parameter, as well as the same
frequency analysis as for the RR intervals.

C. Passage of Time Perception Assessment

In order to quantify subjects’ POTP, we define the relative
time estimation error metric trel. This metric is calculated
based on the correct segment time tcorrect and the subjects’
estimation of the passed time tperceived, as shown in Equation
1. A positive trel means that the person experienced time
as passing faster than it truly did, whereas a negative trel
corresponds to the perception of time passing slower.

trel =
tcorrect − tperceived

tcorrect
∗ 100 (1)

The segments are grouped into three categories, as displayed
in Table I: emotional, cognitive, and neutral. Neutral segments
are placed after the initial rest period to avoid bias by any
previous experimental segment or sensor placement. We then
test the statistical significance in the difference of means of
trel for each category to confirm previous hypotheses that each
segment corresponds to a given POTP.

D. ML Model of Emotional State and Time Passage

Next, we train ML models to predict a person’s POTP
based on their physiological features. Hence, we perform two
classification tasks: a binary classification to determine when
each person determines that time is passing faster rather than
slower than usual, as well as a multiclass classification of the
experimental state of the user (emotional, cognitive, neutral),
as these states each correspond to a different POTP.

We compare 8 state-of-the art ML classification algorithms
to perform the inference: Logistic Regression (LogReg), Deci-
sion Tree Classifier (DTC), k Nearest Neighbor (KNN), Linear
Discriminant Analysis (LDA), Gaussian Naive Bayes (GNB),
Support Vector Machines (SVM), Random Forest (RF) and
eXtreme Gradient Boosting (XGB). A ML model development
pipeline is implemented to ensure generalizability of the
chosen model across all subjects, as displayed in Fig. 2.

First, every biosignal for each experimental segment is di-
vided into 45 s non-overlapping segments. The signals are then
preprocessed and the aforementioned features are extracted.
Features with multiple NaN values are removed as they may
be unstable. Then, all features are scaled by subtracting the
mean and dividing by the standard deviation of each feature
using the training dataset. In both classification tasks, the same
randomly-selected 22% of subjects is designated as the testing
set to assess the generalizability of the trained model. No
samples belonging to the same subject appear in both the
testing and training sets, nor the training and validation sets
of each cross-validation (CV) fold.

Next, we train all eight ML models and perform 10-
fold Leave-n-Subjects-Out CV, thereby ensuring that signal
segments belonging to the same subject are not used for
training and validation at a given CV fold. 20% of the
subjects are used for validation in each fold. The utilized
metric is the F-1 score in the case of binary classification,
and weighted average F-1 score in the multi-label case. The
selected model is the one with the highest mean F-1 score
across the training folds. In the case that multiple algorithms
produce similar mean F-1 scores, the learning curves of the
algorithms are analyzed to examine the bias-variance trade-
off. The model with the higher variance than bias is selected,
as the subsequent hyperparameter optimization and feature
elimination steps intend to reduce overfitting [24].

Once the algorithm is selected, its hyperparameters are
tuned using Tree-structured Parzen Estimators (TPE) [25]
with the objective of maximizing the mean CV F-1 score.
Next, Recursive Feature Elimination with Cross-Validation
(RFECV) is performed to remove features that do not con-
tribute to the classification outcome [24]. Following RFECV,
the aforementioned TPE procedure is performed to re-optimize
the model to its new feature set.

III. RESULTS

First, we analyze the results of the statistical analysis of
relative time errors in the feature set to determine which exper-
imental segments truly produce significant POTP distortions.
We use this information, along with the distribution of trel



Fig. 3: Average trel (blue), with standard deviations (black),
for each experimental segment

values, to set up the emotion classification procedure and
determine thresholds for the POTP classification. ML models
are trained to perform each classification task based on the
extracted biomarkers and subsequently analyze each model’s
generalization capabilities.

A. Passage of Time Perception

The average trel across all subjects for each segment are
displayed in Fig. 3. We can see that the most positive trel
occurs for the mathematics test, whereas the most negative
one occurs for the fear clip.

Next, we performed one-sample, one-tailed t-tests to de-
termine whether or not these time errors deviated signifi-
cantly from zero during each experimental segment. Tasks
corresponding to the same hypothesized POTP direction were
grouped together, as described in Section I. The null hypoth-
esis for neutral (rest and neutral clip) and emotional (fear and
sadness) tasks is that the time error is less than zero, since
people typically perceive time as passing slower when they
are bored or afraid. Conversely, for the cognitive (mathematics
and Stroop) tasks, we ran a right-tailed t-test, since people
normally perceive time as passing faster when they are busy.
This grouping leads to a nearly balanced sample of neutral,
emotional, and cognitive segments.

The results of the t-tests are summarized in Table II. The
neutral segments showed no significant deviation from zero
(p = 0.942). Conversely, the cognitive tasks and the emotional
tasks were significantly higher than zero (p = 2.01×10−5) and
lower than zero (p = 0.0456), respectively. The sadness clip
showed significant variance in trel and no significant deviation
from zero by itself, perhaps due to the short duration of the
clip and subjectivity in individuals’ perceptions of sadness.

TABLE II: Statistical Analysis Results

Class Average trel P-Value Pass. of Time
Emotional -16.1% 0.0456 Slower
Neutral 6.94% 0.942 No change
Cognitive 23.6% 2× 10−5 Faster

The reported VASS stress levels were highest during the
mathematics task (63 ± 26) and fear clips (38 ± 20). There
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Fig. 4: Classification thresholds for trel

was no significant correlation (α = 0.05) between the stress
levels and either the signed or absolute value of trel.

Finally, to facilitate classification based directly on POTP,
we define thresholds on trel to identify biosignal segments
during which the individual subjects experience time passing
significantly fast and slowly. Fig. 4 shows a histogram of
all trel values in the training dataset. We notice a bi-modal
distribution of positive and negative time errors, so we fit
Gaussian curves to the positive and negative trel values. The
upper threshold is located two standard deviations to the right
of the mean of negative trel values, while the lower threshold
is two standard deviations to the left of the positive trel mean.
This process provides an empirical estimation of statistically
significant low and high values of trel.

Therefore, our final classification labels for the passage of
time are as follows:

• Time passes faster (1) if trel > 10
• Time passes slower (-1) if trel < −19

This grouping leads to an imbalanced sample of the two
classes, since there are about twice as many segments in which
time passes faster rather than slower.

B. POTP Classification

Once we determined which experimental states corre-
sponded to a faster, slower, or normal POTP, we built a ML
model to classify these states. We first use the procedure
described in Fig. 2 to train a ML model to determine whether
a person was in the emotional, cognitive, or neutral phases
of the experiment based on their physiological features. The
algorithm selection procedure is shown in Fig. 5, which
displays the CV F-1 scores of each model.
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Fig. 5: CV mean and st. dev. F-1 scores for each ML model
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Fig. 6: Learning curves of the SVM and RF algorithms

We note from Fig. 5 that SVM exhibits the highest mean
F-1 score, but its standard deviation is much larger than that of
RF, which has a similar mean. To finalize our model selection,
we examine the learning curves, as shown in Fig. 6.

We can see that the training and CV accuracies of the SVM
model converge quickly to around 0.7, implying low variance
and high bias, and in the RF there remains a large gap between
the training and validation accuracies, implying high variance.
We therefore select the RF model for further analysis because
its variance can be reduced using TPE and RFECV. Following
TPE, the average CV score of the RF model increased by
7.2%, as shown in Table III. Then, RFECV revealed that the
optimal number of features was 45.

TABLE III: ML Optimization Step-by-Step Results

ML Step Mean CV F-1 Score (%)
3-Class RF 2-Class XGB

First training 56.7% 69.0%
Hyperparameter Opt. 63.3% 70.6%
RFECV 63.3% (45 feat.) 70.8% (18 feat.)
Hyperparameter Re-Opt. – 72.4%
Test on Unseen Data 79.0% 77.1%

The final model is then tested on new, unseen data from four
subjects. The results are displayed in the confusion matrix in
Fig. 7, as well as the F-1 scores in Table IV. We can see
that the “Fast POTP” class is the easiest for the classifier to
distinguish, with a 100% precision and highest F-1 score of
93%. Most of the misclassifications are due to the “No Change
in POTP” signals being classified as “Slow POTP” signals. The
weighted average of the F-1 scores of all classes with respect
to the number of data points per class is 79%.

TABLE IV: Emotion Classifier Results on Unseen data

Class Precision Recall F-1 Score
Emotional (Slow POTP) 64% 88% 74%
Neutral (No change POTP) 83% 62% 71%
Cognitive (Fast POTP) 100% 87% 93%
Weighted Avg. 82% 79% 79%

Finally, we compute the Shapley (SHAP) values of the
model, which are measures of the relative importance of the
features in the model’s classification decision [26]. The fea-
tures and their relative importances to each class are displayed
in Fig. 8. We can see that by far, the most important features
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Fig. 7: Confusion matrix for the emotion classifier

are the SCL gradient and SKT power. The remaining
features relate to the ECG, RSP, SKT, SCR, and SCL signals.

The SHAP values of the passage of time perception classi-
fier are displayed in Fig. 9. In this case, the two most important
features are PSD features of the ECG and RSP inspiration
time. Other important features are derived from the ECG and
RSP signals. All of the important RSP features relate to the
time-domain inspiration time parameter, whereas the important
ECG features are computed using the time and frequency
domain of the R-R interval signal.
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IV. DISCUSSION AND FUTURE WORK

The way a person perceives the passage of time is a
quantifiable metric that indicates their mental state. Therefore,
continuous monitoring of subjects’ POTP may provide insights
into their mental well-being. In this work, we have developed
an experiment to induce certain emotions that have known
effects on the passage of time. Our results have confirmed our
hypotheses that people consistently interpret time as passing
slower during fear or sadness (p = 0.046), and faster during
mentally taxing tasks (p = 2×10−5). Then, we have developed
a classifier to predict which experimental state, which is
correlated to a change or lack thereof in POTP, a subject
experienced based on physiological features extracted from
unobtrusively measured biosignals. This classifier obtained a
weighted average F-1 score of 79%, with fast POTP tasks
being the easiest to distinguish with an F-1 score of 93%.

Next, we classify the POTP directly by identifying segments
with significantly high and low trel values regardless of
the task at hand. We obtain a 77.1% F-1 score in distin-
guishing time passing fast rather than slow, meaning that
is possible to determine a person’s POTP based solely on
their physiological signals. When we analyzed the feature
importance of the two models, the emotion classifier used
more diverse biosignals than the POTP classifier, the latter
of which did not heavily weigh features derived from SCL
or SKT. Both classifiers place heavy importance on the
ECG RR median, ECG RR mean, ECG RR SDNN ,
and RSP InspT ime mean biomarkers. These results indi-
cate that by monitoring a few biosignals with simple, wearable
sensors, it is possible to unobtrusively monitor POTP and
mental state on a continuous basis.

In the future, these preliminary results may be enhanced
by using a larger, more diverse sample of subjects for testing
and training, as well as longer experimental segments. These
factors may help overcome the high variance seen in trel of
the sadness clip, as well as the class imbalance in the binary
classification task. With more individuals and longer biosignal
durations, Deep Learning analysis may be employed.

ACKNOWLEDGMENT

This work has been partially supported by the Innosu-
isse Innocheque (No. 38484.1), the ML-edge Swiss Na-
tional Science Foundation (NSF) Research project (GA No.
200020182009/1), and the MyPreHealth research project
(Hasler Foundation project No. 16073). We would also like
to thank Giulio Masinelli for his help with the experimental
setup.

REFERENCES

[1] S. Droit-Volet and W. H. Meck, “How emotions colour our perception
of time,” Trends in Cognitive Sciences, vol. 11, no. 12, pp. 504–513, 12
2007.

[2] K. van Hedger et al., “The influence of social stress on time perception
and psychophysiological reactivity,” Psychophysiology, vol. 54, no. 5,
pp. 706–712, 5 2017.

[3] S. Droit-Volet and S. Gil, “The emotional body and time perception,”
Cognition and Emotion, vol. 30, no. 4, pp. 687–699, 5 2016.

[4] R. S. Ogden, “The passage of time during the UK Covid-19 lockdown,”
PLoS ONE, vol. 15, no. 7, 7 2020.

[5] M. T. Valderas et al., “Human emotion recognition using heart rate
variability analysis with spectral bands based on respiration,” in Proceed-
ings of the Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, EMBS, 2015, pp. 6134–6137.

[6] R. S. Lazarus, “From psychological stress to the emotions: a history of
changing outlooks.” Annual review of psychology, vol. 44, pp. 1–21, 1
1993.

[7] E. Garcia-Ceja, V. Osmani, and O. Mayora, “Automatic stress detection
in working environments from smartphones’ accelerometer data: A first
step,” IEEE Journal of Biomedical and Health Informatics, vol. 20, no. 4,
pp. 1053–1060, 7 2016.

[8] V. Montesinos et al., “Multi-modal acute stress recognition using off-
the-shelf wearable devices,” in Proceedings of the Annual International
Conference of the IEEE Engineering in Medicine and Biology Society,
EMBS, 2019, pp. 2196–2201.

[9] A. Arza et al., “Measuring acute stress response through physiological
signals: towards a quantitative assessment of stress,” Medical and
Biological Engineering and Computing, pp. 1–17, 8 2018.

[10] G. Masinelli et al., “Self-aware machine learning for multimodal work-
load monitoring during manual labor on edge wearable sensors,” IEEE
Design and Test, vol. 2356, no. c, pp. 1–7, 2020.

[11] L. Santamaria-Granados et al., “Using deep convolutional neural net-
work for emotion detection on a physiological signals dataset (AMI-
GOS),” IEEE Access, vol. 7, pp. 57–67, 2019.

[12] S. Carvalho et al., “The emotional movie database (EMDB): A
self-report and psychophysiological study,” Applied Psychophysiology
Biofeedback, vol. 37, no. 4, pp. 279–294, 12 2012.

[13] A. Schaefer et al., “Assessing the effectiveness of a large database of
emotion-eliciting films: A new tool for emotion researchers,” Cognition
and Emotion, vol. 24, no. 7, pp. 1153–1172, 2010.

[14] R. Baumeister and K. Vohs, Encyclopedia of Social Psychology,
E. Harmon-Jones and P. Winkielman, Eds. California: SAGE Pub-
lications, Inc., 2007.

[15] F. Scarpina and S. Tagini, “The Stroop color and word test,” Frontiers
in Psychology, vol. 8, no. APR, p. 557, 4 2017.

[16] F. X. Lesage, S. Berjot, and F. Deschamps, “Clinical stress assessment
using a visual analogue scale,” Occupational Medicine, vol. 62, no. 8,
pp. 600–605, 12 2012.

[17] Shimmer, “3 ECG Unit,” http://www.shimmersensing.com/products.
[18] Empatica, “E4 Wristband,” https://www.empatica.com/research/e4/.
[19] G. Masinelli et al., “SPARE: A spectral peak recovery algorithm for

PPG signals pulsewave reconstruction in multimodal wearable devices,”
Sensors, vol. 21, no. 8, p. 2725, 4 2021.

[20] F. Dell’Agnola et al., “Cognitive workload monitoring in virtual reality
based rescue missions with drones,” in 12th International Conference on
Virtual, Augmented and Mixed Reality, Copenhagen, Denmark, 7 2020.

[21] A. Hernando et al., “Inclusion of respiratory frequency information in
heart rate variability analysis for stress assessment,” IEEE Journal of
Biomedical and Health Informatics, vol. 20, no. 4, pp. 1016–1025, 7
2016.

[22] L. Orlandic et al., “Reward: Design, optimization, and evaluation of a
real-time relative-energy wearable r-peak detection algorithm,” in 41st
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), 2019, pp. 3341–3347.

[23] Task Force of the European Society of Cardiology and the North Amer-
ican Society of Pacing and Electrophysiology., “Heart rate variability:
standards of measurement, physiological interpretation and clinical use.”
Circulation, vol. 93, no. 5, pp. 1043–1065, 3 1996.

[24] M. A. Munson and R. Caruana, “On feature selection, bias-variance,
and bagging,” in Lecture Notes in Computer Science, vol. 5782 LNAI,
no. PART 2, 2009, pp. 144–159.

[25] J. Bergstra et al., “Algorithms for hyper-parameter optimization,” Neural
Information Processing Systems (NIPS 2011), vol. 24, dec 2011.
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